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1 Introduction

It has been shown in [1, 2] (see also [3–5]) that the four-point correlation function of
superconformal primary operators of the stress tensor multiplet in N = 4 supersymmetric
Yang-Mills (SYM) theory can be computed exactly when we integrate out the spacetime
dependence with a certain choice of the measure. Such physical observables are called
integrated correlators and they are related to the partition function of N = 2? SYM on S4,
which can be computed using supersymmetric localisation [6]. There are two known choices
of the integration measure [1, 2]. For one of these measures, the integrated correlator is
given by

CGN (τ, τ̄) = 1
4∆τ∂

2
m logZGN (τ, τ̄ ;m)

∣∣
m=0 , (1.1)

where τ = θ/(2π) + i 4π/g2
YM = τ1 + i τ2 is the complexified Yang-Mills coupling, ∆τ =

4τ2
2 ∂τ∂τ̄ is the hyperbolic laplacian, and ZGN is the partition function of N = 2? SYM

with gauge group GN on S4, which can be viewed as N = 4 SYM deformed by some mass
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terms (denoted as m in the above formula) in the hypermultiplet. Due to supersymmetric
localisation, the partition function ZGN can be expressed as an N -dimensional matrix-model
integral over Coulomb branch parameters with an integrand that contains both perturbative
and non-perturbative instanton contributions [6, 7]. It was found in [8–10] that CGN (τ, τ̄)
obeys a set of recursion relations, which were called Laplace-difference equations, that relate
the integrated correlators of different gauge groups.1 For example, in the case of SU(N)
that we will consider in this paper, the Laplace-difference equation takes the following form

∆τ CN (τ, τ̄) = N(N − 1) CN+1(τ, τ̄)− 2(N2 − 1) CN (τ, τ̄) +N(N + 1) CN−1(τ, τ̄) , (1.2)

where to simplify the notation we have denoted CSU(N)(τ, τ̄) as CN (τ, τ̄).
Following the earlier proposal [1], the supersymmetric localisation computation has

been recently applied to more general correlators of the form 〈O2O2O(i)
p O(j)

p 〉 [12],2 where
O(i)
p is a superconformal primary of dimension p that is charged under SU(4) R-symmetry

(so we will call p charge or dimension interchangeably).3 In general, there are multiple
operators which have the same dimension p (when p > 3), and the superscript i is to label
the degeneracy. We will denote these more general integrated correlators as C(i,j)

N,p (τ ; τ̄),
and they are modular functions of (τ, τ̄) due to Montonen-Olive duality of N = 4 SYM
with SU(N) gauge group [17]. When p = 2, it reduces to the integrated correlator CN (τ, τ̄)
that appeared in (1.1) and (1.2). It was argued in [1, 12] that C(i,j)

N,p (τ ; τ̄) for p > 2 can be
related to the partition function of N = 2? SYM on S4 deformed by the higher-dimensional
operators O(i)

p , which again can be computed via supersymmetric localisation. Certain
examples of integrated correlators for particular values of p as well as a particular class of
operators (called maximal-trace operators) were explicitly studied in [12]. Remarkably, as
demonstrated in [12], recurrence relations were found for certain examples of integrated
correlators, which relate integrated correlators of different ranks of the gauge group as well
as different charges, generalising the Laplace-difference equation given in (1.2).

In this paper, we will prove that the integrated correlators C(i,j)
N,p (τ ; τ̄) for any p and

N obey a universal Laplace-difference equation that relates the integrated correlators of
operators with different charges. The localisation computation is performed on S4, where
there is mixing for operators with different dimensions due to the dimensionful radius of
S4. The mixing is resolved through the Gram-Schmidt procedure [1, 18]. To systematise
the Gram-Schmidt procedure and simplify the localisation computation, it is important to
reorganise the operators, as we describe in section 2.2. After this crucial reorganisation, the
four-point functions now take the following form,

〈O2O2O(i)
p|M O

(i′)
p′|M ′〉 , with O(i)

p|M := (O2)pO(i)
0|M , (1.3)

where we have reorganised the higher-dimensional operators, which are now denoted as
O(i)
p|M . Here M = 0, 3, 4, . . ., and superscript i denotes possible degeneracy for a given M ,

1See [11] for a recent SAGEX review on this topic.
2Note the four-point correlator 〈O2O2O(i)

p O(j)
q 〉 is non-trivial in N = 4 SYM only if p = q, see

e.g. [13–15].
3See also [16] for recent related work on these integrated correlators in the planar limit.
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which happens when M ≥ 6. We will simply omit the index i for M < 6. When M = 0,
O0|0 = I is the identity operator, and in general O(i)

0|M is a dimension-M operator that is
defined recursively in (2.15). Therefore O(i)

p|M has dimension 2p+M , and for the correlators
to be non-trivial, we must have 2p+M = 2p′+M ′ (so p′ is not an independent variable). We
will denote the integrated correlators associated with the four-point functions given in (1.3)
as C(M,M ′|i,i′)

N,p (τ, τ̄). It will be shown that it is crucial to normalise the integrated correlators
appropriately, and the integrated correlators including this important normalisation factor
will be denoted as Ĉ(M,M ′|i,i′)

N,p (τ, τ̄).
We will then prove that remarkably Ĉ(M,M ′|i,i′)

N,p (τ, τ̄) obeys a universal Laplace-difference
equation that relates the integrated correlators with different charges p,4 which takes the
following form,

∆τ Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) = (p+1+δ)(p+a+1) Ĉ(M,M ′|i,i′)

N,p+1 (τ, τ̄)+p(p+a+δ) Ĉ(M,M ′|i,i′)
N,p−1 (τ, τ̄)

−[2p(p+a)+(2p+a+1)(δ+1)] Ĉ(M,M ′|i,i′)
N,p (τ, τ̄)−4δM,M ′δi,i′ CN (τ, τ̄) ,

(1.4)
where

a = N2 +M +M ′ − 3
2 , δ = M −M ′

2 , (1.5)

and the “source term” CN (τ, τ̄) is the integrated correlator that appeared in (1.1), whose
expression is known exactly, and obeys its own Laplace-difference equation as given in (1.2) [8,
9].5 The Laplace-difference equation (1.4) is a recursion relation that completely determines
Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) for any p in terms of the initial condition Ĉ(M,M ′|i,i′)

N,0 (τ, τ̄).
The rest of the paper is organised as follows. In section 2, we will introduce the

integrated correlators involving operators with general charges and their computation using
supersymmetric localisation. The localisation computation is performed on S4, which
leads to mixing of operators with different dimensions. Such mixing is resolved by a
standard Gram-Schmidt procedure. We will reorganise the operators into towers as well as
subtowers, which are associated with M and i in (1.3) respectively. Crucially, the operators
in different (sub)towers have a vanishing two-point function on S4, which implies the
Gram-Schmidt procedure only needs to apply to the set of operators in a given (sub)tower.
However, precisely because of the vanishing of these two-point functions, a naive definition
of integrated correlators from localisation following [14] would lead to 0/0 for the integrated
correlators involving operators in different (sub)towers. We will carefully treat this issue
and appropriately normalise the integrated correlators, so that 0/0 is avoided and symmetry
properties of the integrated correlators are made manifest. In section 3, we will prove
that the integrated correlators with the normalisation factor defined in section 2 satisfy
the universal Laplace-difference equation (1.4). We will find that the precise form of the

4To be precise the total charge of O(i)
p|M is 2p+M . We will mostly be interested in the situation with

fixed M and different p’s, so we will loosely call p the charge.
5Note CN (τ, τ̄) is the integrated correlator associated with four-point function 〈O2O2O2O2〉, so in our

notation it is equivalent to C(0,0)
N,1 (τ, τ̄). Namely, this corresponds to M = M ′ = 0 and p = 1, for which there

is no degeneracy. To unify the notation, we will denote CN (τ, τ̄) as C(0,0)
N,1 (τ, τ̄), where we have omitted the

indices i, i′. Furthermore, as will become clear later, we have C(0,0)
N,1 (τ, τ̄) = N2−1

8 Ĉ(0,0)
N,1 (τ, τ̄).

– 3 –



J
H
E
P
0
6
(
2
0
2
3
)
0
6
6

partition function of N = 2∗ SYM that enters in the localisation computation of the
integrated correlators is in fact not important for the integrated correlators to obey the
Laplace-difference equation. The validity of the equation relies only on the reorganisation
of operators and the Gram-Schmidt procedure, as well as some very basic properties of
the partition function such as its power behaviour as a function of τ2. In section 4, we
will give some details of the supersymmetric localisation computation and provide explicit
perturbative results of certain integrated correlators. In particular, we will find that
interestingly the perturbative contributions to integrated correlators involving operators
in different (sub)towers start at higher loops. We will mainly focus on the perturbative
contributions, but we will also comment on the SL(2,Z) completion of the integrated
correlators and their lattice-sum representation. We will conclude and comment on future
directions in section 5. The paper also includes an appendix A, in which we will provide
exact expressions for the initial conditions (i.e. the integrated correlators with p = 0) of the
Laplace-difference equation for the integrated correlators that are considered in section 4.

Note added. While we were finalising this paper we learned about [19] where the large-
charge properties of integrated correlators with maximal-trace operators were analysed.

2 Integrated correlators of operators with general charges

In this section, we will briefly review the definition of the integrated correlators for the four-
point correlation functions 〈O2O2O(i)

p O(j)
p 〉, and their computation using supersymmetric

localisation. Because the localisation computation is on S4, there is a mixing for operators
with different dimensions, which is resolved through a Gram-Schmidt procedure [1, 18].
To systematise the Gram-Schmidt procedure and simplify the localisation computation, it
is crucial to reorganise the operators appropriately [18]. The operators will be organised
into different towers, and each tower may further contain subtowers. We will perform
the Gram-Schmidt procedure and determine the mixing coefficients that are associated
with these reorganised operators. We will then introduce the normalisation factor for the
integrated correlators, which will play an extremely important role in obtaining a universal
Laplace-difference equation for the integrated correlators.

2.1 Integrated correlators from localisation

We are interested in correlation functions of four half-BPS superconformal primary operators
in N = 4 SYM. These operators will be denoted as O(i)

p , where p refers to the scaling
dimension that is protected by supersymmetry. The superscript i denotes the degeneracy,
which happens when p ≥ 4. Often, the superscript i is omitted if there is no degeneracy. The
operator O(i)

p transforms in the [0, p, 0] representation of the SU(4) R-symmetry, therefore
we also may refer to p as charge. Explicitly, in terms of fundamental scalar fields ΦI (here
I = 1, · · · , 6 is the SO(6) R-symmetry index), the operators have the following forms: for
the single-trace operators, we have6

Tp(x, Y ) = 1
p
YI1 · · ·YIpTr

(
ΦI1(x) · · ·ΦIp(x)

)
, (2.1)

6Here for the normalisation of the operators, we follow the convention of [12].
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where YI is a null SO(6) vector; the multi-trace operators are given by

Tp1,··· ,pn(x, Y ) = p1 · · · pn
p

Tp1(x, Y ) · · ·Tpn(x, Y ) , (2.2)

where p =
∑n
i=1 pi. It is clear that for a given dimension p ≥ 4, there are in general more

than one distinguishable operator. For example, O2, which appears in the definition of
the integrated correlators, is simply T2, and at dimension four, one may choose O(1)

4 = T4
and O(2)

4 = T2,2.
We now consider the correlation functions of these operators. Two- and three-point

correlation functions are protected by supersymmetry [20], and the first non-trivial case
is the four-point correlators. We will consider a special class of correlators of the form
〈O2O2O(i)

p O(j)
p 〉. Because of the constraints from superconformal symmetry, the correlators

can be expressed as [21, 22]

〈O2(x1, Y1)O2(x2, Y2)O(i)
p (x3, Y3)O(j)

p (x4, Y4)〉 = G(i,j)
free (x, Y ) + I4(x, Y )H(i,j)

N,p (U, V ; τ, τ̄) ,
(2.3)

where we have separated the result of the correlator into a free part, G(i,j)
free , that is independent

of the coupling and can be computed simply by free-field Wick contractions, and a part
that non-trivially depends on the dynamics of the theory. For the dynamic part, one can
further factor out the R-symmetry dependence, denoted I4(x, Y ) (the expression can be
found in [1, 12]), which is completely fixed by the symmetry. The function H(i,j)

N,p (U, V ; τ, τ̄)
is our main focus, which is a modular function of the complexified Yang-Mills coupling τ
and the cross ratios,

U = x2
12x

2
34

x2
13x

2
24
, V = x2

14x
2
23

x2
13x

2
24
. (2.4)

It also depends on the rank of gauge group N , the dimension of the operator p, and the
degeneracy indices (i, j).

As shown in [1] (see also [12] for further clarification, including the non-perturbative
instanton effects), this particular type of correlator can be computed by supersymmetric
localisation, once the space-time dependence has been integrated out with a certain measure.
More concretely, we define the integrated correlators as [1]

C(i,j)
N,p (τ, τ̄) = − 2

π

∫ ∞
0

dr

∫ π

0
dθ
r3 sin2 θ

U2 H(i,j)
N,p (U, V ; τ, τ̄) , (2.5)

with U = 1 − 2r cos(θ) + r2 and V = r2, and C(i,j)
N,p (τ, τ̄) can be related to the partition

function ZN (τ, τ ′A;m) of N = 2? SYM on S4 (now deformed by higher-dimensional operators
O(i)
p ) in the following manner. It is convenient to factorise C(i,j)

N,p (τ, τ̄) into the following
form [12],

C(i,j)
N,p (τ, τ̄) =

R
(i,j)
N,p

4 Ĉ(i,j)
N,p (τ, τ̄) , (2.6)

where the prefactor R(i,j)
N,p is independent of τ , and is determined by the two-point function via

〈O(i)
p (x1, Y1)O(j)

p (x2, Y2)〉 = R
(i,j)
N,p

(
Y1 · Y2
x2

12

)p
, (2.7)
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and Ĉ(i,j)
N,p (τ, τ̄), which is a highly non-trivial function of (τ, τ̄), can be obtained from the

partition function ZN (τ, τ ′A;m),

Ĉ(i,j)
N,p (τ, τ̄) =

vi,µp v̄j,νp ∂τ ′µ∂τ̄ ′ν∂
2
m logZN (τ, τ ′A;m)

∣∣
m=τ ′A=0

vi,µp v̄j,νp ∂τ ′µ∂τ̄ ′ν logZN (τ, τ ′A; 0)
∣∣
τ ′A=0

. (2.8)

Note in the above expression the repeated indices µ, ν are summed. The vectors vi,µp , v̄j,νp
are the so-called mixing coefficients, which are named as such due to the fact that on
S4, operators with different dimensions can mix because of the additional dimensionful
parameter, i.e. the radius of S4 [18]. We will discuss the mixing coefficients in more
detail later.

The connection between the integrated correlators and the partition function of N = 2∗

SYM can be roughly understood as follows. Two derivatives in mass m bring down two
O2’s, and the derivatives vi,µp ∂τ ′µ and v̄j,νp ∂τ̄ ′ν lead to the associated dimension-p operators
O(i)
p and O(j)

p . Since all the operators are brought down from the action, they are integrated
over spacetime. The partition function ZN (τ, τ ′A;m) is computable by supersymmetric
localisation, and can be expressed as [6]

ZN (τ, τ ′A;m) =∫
dN−1a

∣∣∣∣∣∣exp

iπτ N∑
i=1

a2
i + i

∑
p>2

πp/2τ ′p

N∑
i=1

api

∣∣∣∣∣∣
2

Z1−loop(a;m)
∣∣Zinst(τ, τ ′, a;m)

∣∣2 , (2.9)

where the integration variables ai are constrained by
∑N
i=1 ai = 0, and Z1−loop gives the

perturbative contributions and Zinst leads to non-perturbative instanton contributions.
Explicitly, the perturbative term is given by

Z1−loop(a;m) =
∏
i<j a

2
ijH

2(aij)
HN−1(m)

∏
i 6=j H(aij +m) ,

(2.10)

where aij = ai−aj , m is the mass of the adjoint hypermultiplet, and H(z) = e−(1+γ) z2
G(1+

iz)G(1 − iz) with G(x) being the Barnes G-function. The Nekrasov instanton partition
function Zinst gives non-perturbative instanton contributions, which is well understood
when deformation is not turned on, i.e. τ ′A = 0 [7]. For general non-vanishing τ ′A, which is
of interest to our consideration, results may be found in [23], which were utilised in [12]
in the study of the integrated correlators C(i,j)

N,p (τ, τ̄). When m = 0, we have the N = 4
supersymmetry, and Z1−loop(a; 0) = Zinst(τ, τ ′, a; 0) = 1, and therefore,

ZN (τ, τ ′A; 0) =
∫
dN−1a

∣∣∣∣∣∣exp

iπτ N∑
i=1

a2
i + i

∑
p>2

πp/2τ ′p

N∑
i=1

api

∣∣∣∣∣∣
2

. (2.11)

In general, all the operators we consider are linear combinations of Tp1,··· ,pn that are
defined in (2.2). For the localisation computation, one can insert the operator Tp1,p2,...,pn

by taking the derivative
∂τ ′p1,p2,...,pn

= ∂τ ′p1
∂τ ′p2

. . . ∂τ ′pn , (2.12)

– 6 –
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where each ∂τ ′pi
represents inserting the operator Tpi . It is important to note that, as

the l.h.s., the r.h.s. in the above definition should be understood as a single derivative,
for example,

∂τ ′p1,p2,...,pn
logZN (τ, τ ′A;m) =

∂τ ′p1,p2,...,pn
ZN (τ, τ ′A;m)

ZN (τ, τ ′A;m) =
∂τ ′p1

∂τ ′p2
. . . ∂τ ′pnZN (τ, τ ′A;m)
ZN (τ, τ ′A;m) .

(2.13)
As we commented earlier, the appearance of the vectors vi,µp , v̄j,νp is due to the Gram-

Schmidt procedure to resolve the mixing of operators on S4 [18]. In general, a dimension-p
operator on S4 could mix with operators of dimensions (p−2), (p−4) etc. Such mixing
is resolved through the Gram-Schmidt procedure by requiring the connected two-point
functions of operators with different dimensions to vanish. To simplify the Gram-Schmidt
procedure, we will reorganise the operators into different towers (as well as subtowers) in
the next subsection.

2.2 Organisation of operators

The localisation computation and the Gram-Schmidt procedure are greatly simplified by
reorganising the operators appropriately. We will organise all superconformal primary
operators as [18]

O(i)
p|M = (T2)pO(i)

0|M , (2.14)

where (T2)p denotes the multi-trace operator T2,2,...,2 as defined in (2.2), i.e. it has p copies
of T2 (which has also been called O2). The operator O(i)

0|M , which will be defined shortly,
has dimension M and consequently O(i)

p|M has dimension 2p+M . To define O(i)
0|M , we begin

by considering a general operator Tp1,p2,...,pn as given in (2.2) with all pi > 2 (namely, T2 is
excluded). These operators are ordered according to their dimensions, which are labeled as
B

(i)
M with dimension M and i denotes possible degeneracy. In the case of no degeneracy, we

may simply omit the i index. The first few examples are B0 = I, B3 = T3, B4 = T4, and
B5 = T5 (there is no degeneracy for M < 6). For M = 0, we define O0|0 = B0 = I, which is
the identity operator, and then O(i)

0|M with M ≥ 3 are defined recursively as

O(i)
0|M = B

(i)
M −

∑
M ′≤M

∑
j

〈B(i)
M ,O(j)

0|M ′〉S4

〈O(j)
δ|M ′ ,O

(j)
0|M ′〉S4

O(j)
δ|M ′ , (2.15)

where we have used the definition (2.14) for O(j)
δ|M ′ , and the summation over j is restricted

to j < i when M ′ = M . Here δ = (M −M ′)/2 so that O(j)
δ|M ′ has the same dimension as

B
(i)
M . The two-point function on S4 is defined as

〈Op ,Oq〉S4 =
∂τ ′p∂τ ′qZN (τ, τ ′A; 0)

∣∣
τ ′A=0

ZN (τ, 0; 0) , (2.16)

with ZN (τ, τ ′A; 0) given in (2.11). Importantly, the operators O(i)
0|M constructed in this way

obey the following orthogonality condition,

〈O(i1)
0|M1

, O(i2)
0|M2
〉S4 = 0 , unless M1 = M2 and i1 = i2 , (2.17)

– 7 –
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which further implies for any p1, p2 [18]

〈O(i1)
p1|M1

, O(i2)
p2|M2

〉S4 = 0 , unless M1 = M2 and i1 = i2 . (2.18)

The first few examples of O(i)
0|M are given by,

O0|0 = I , O0|3 =T3 , O0|4 =T4−
2N2−3
N(N2+1)T2,2 , O0|5 =T5−

5(N2−2)
N(N2+1)T2,3 .

(2.19)
For M < 6 there is no degeneracy, and these operators actually coincide with the so-called
single-particle operators SM [14], which are defined to have vanishing two-point functions
with all the multi-trace operators, namely

〈SM , Tq1,q2,...,qn〉 = 0 , for n ≥ 2 . (2.20)

There is non-trivial degeneracy when M ≥ 6. For example, when M = 6, we can choose
B

(1)
6 = T3,3 and B(2)

6 = T6, and we find,

O(1)
0|6 = T3,3 −

9
N2 + 7T4,2 + 3

(
5N2 + 1

)
N (N2 + 3) (N2 + 7)T2,2,2 ,

O(2)
0|6 = T6 −

3N4 − 11N2 + 80
N(N4 + 15N2 + 8)T3,3 −

6(N2 − 4)(N2 + 5)
N(N4 + 15N2 + 8)T4,2 + 7(N2 − 7)

N4 + 15N2 + 8T2,2,2 ,

(2.21)
where O(2)

0|6 is again the single-particle operator at dimension six [14], whereas O(1)
0|6, which

is orthogonal to T2,2,2 and T4,2 but not T3,3, may be thought as the “next-to-single-particle
operator”.

In this way, we organise the operators into different towers, and within a given tower,
there may be also subtowers. In particular, O(i)

p|M (for any p) is in the i-th subtower of
the M -th tower. The operators Op|0 (and Op|3) are also known as the maximal-trace
operators [12], as they contain a maximal number of traces for operators with a given
dimension 2p (and 2p+ 3). The property (2.18) implies that operators in different towers as
well as different subtowers are orthogonal to each other on S4. Therefore, the Gram-Schmidt
procedure only needs to be applied to operators within a given subtower, which greatly
simplifies the procedure and consequently the localisation computation.

2.3 Gram-Schmidt procedure

In this subsection, we will determine the mixing coefficients vµp|M for all the operators O(i)
p|M

that are defined according to (2.14). As we have emphasised, because of the important
orthogonal property (2.18), we only need to apply the Gram-Schmidt procedure for the
operators in the same subtower. The mixing coefficients vµp|M are determined by requiring

〈
vµp|MO

(i)
µ|M ,O(i)

q|M

〉
c

= 0 , with q = 0, 1, . . . , p− 1 , (2.22)
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where, again, the repeated index µ is summed over, with µ = 0, 1, . . . , p, and when µ = p,
we have vpp|M = 1. The connected two-point function is defined as〈
O(i)
p|M ,O(i′)

p′|M ′

〉
c

=
〈
O(i)
p|M ,O(i′)

p′|M ′

〉
S4
−
〈
O(i)
p|M

〉
S4

〈
O(i′)
p′|M ′

〉
S4
,

=
∂
τ ′

(i)
p|M

∂
τ̄ ′

(i′)
p′|M′
ZN (τ,τ ′A;0)

∣∣
τ ′
A

=0

ZN (τ,0;0) −
∂
τ ′

(i)
p|M
ZN (τ,τ ′A;0)

ZN (τ,0;0)

∂
τ̄ ′

(i′)
p′|M′
ZN (τ,τ ′A;0)

∣∣
τ ′
A

=0

ZN (τ,0;0) ,

(2.23)
where ∂

τ ′
(i)
p|M

is to insert the operator O(i)
p|M , which can be further expressed in terms of

Tp1,p2,...,pn using the definition (2.14) and (2.15) (see examples in (2.19) and (2.21)). The
insertion of the operator Tp1,p2,...,pn is then given by (2.12), as we described previously. Note
by the construction of the operators O(i)

p|M , we have
〈
O(i)
p|M

〉
S4

=
〈
O(i)
p|M ,O0|0

〉
S4

= 0 if
M > 0, therefore

〈
O(i)
p|M ,O(i′)

p′|M ′
〉
c

=
∂
τ ′

(i′)
p|M

∂
τ̄ ′

(i)
p′|M′
ZN (τ, τ ′A; 0)

∣∣
τ ′A=0

ZN (τ, 0; 0) , (2.24)

if M 6= 0 or M ′ 6= 0. When M = M ′ = 0, we will need to keep both terms in (2.23).
The set of equations (2.22) uniquely determine vµp|M . We find the mixing coefficients

vµp|M for the operators O(i)
p|M are in fact independent of the index i. Explicitly, they take

the form

vµp|M =
(
p

µ

)(N2+2M−1
2 + µ

)
p−µ

(2 i τ2)p−µ , (2.25)

where (x)n is the Pochhammer symbol. Note that µ, p both start from 1 when M = 0, but
they start from 0 when M > 0.7 When M = 0 it reproduces the result given in [12], with
the first few examples as given below,

v1|0 = {1, 0, 0, 0, . . .} ,

v2|0 =
{
− i
(
N2 + 1

)
2 τ2

, 1, 0, 0, . . .

}
,

v3|0 =
{
−3

(
N2 + 1

) (
N2 + 3

)
16 τ2

2
, −3 i

(
N2 + 3

)
4 τ2

, 1, 0, . . .

}
.

(2.26)

Generally, for M > 0, we have,

v0|M = {1, 0, 0, 0, . . .} ,

v1|M =
{
− i
(
N2 + 2M − 1

)
4 τ2

, 1, 0, 0, . . .

}
,

v2|M =
{
−
(
N2 + 2M − 1

) (
N2 + 2M + 1

)
16 τ2

2
, − i

(
N2 + 2M + 1

)
2 τ2

, 1, 0, . . .

}
.

(2.27)
7This is because for M = 0, the first non-trivial operator is T2, which according to our definition is O1|0,

i.e. M = 0, p = 1.
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We will now prove that the mixing coefficient vµp|M given in (2.25) is indeed the solution
to the equations (2.22). Consider theM 6= 0 case, for which we will use (2.24). We first note,

∂
τ ′

(i)
µ|M

∂
τ̄ ′

(i′)
ν|M′
ZN (τ, τ ′A; 0)

∣∣
τ ′A=0 = ∂µτ ∂

ν
τ̄ ∂τ ′(i)0|M

∂
τ̄ ′

(i′)
0|M′
ZN (τ, τ ′A; 0)

∣∣
τ ′A=0 , (2.28)

and

∂
τ ′

(i)
0|M

∂
τ̄ ′

(i)
0|M
ZN (τ, τ ′A; 0)

∣∣
τ ′A=0 ∼ τ

−N
2+2M−1

2
2 . (2.29)

The behaviour (2.29) can be shown as follows. Recall from (2.11), when m = τ ′A = 0, the
partition function is simply,

ZN (τ, 0; 0) =
∫
dN−1a

∏
1≤i<j≤N

a2
ij exp

(
−2πτ2

N∑
i=1

a2
i

)
∼ τ−

N2−1
2

2 . (2.30)

Each differential operator ∂
τ ′

(i)
0|M

inserts a dimension-M operator O(i)
0|M , which gives an

additional factor of τ−M/2
2 , therefore together with (2.30) we find the right behaviour as

given in (2.29). From (2.28) and (2.29), we have

∂
τ ′

(i)
µ|M

∂
τ̄ ′

(i)
q|M
ZN (τ, τ ′A; 0)

∣∣
τ ′A=0 ∼ ∂

µ
τ ∂

q
τ̄ τ
−N

2+2M−1
2

2 , (2.31)

which can be evaluated explicitly and gives

∂µτ ∂
q
τ̄ τ
−N

2+2M−1
2

2 =
(−1)q

(
N2+2M−1

2

)
µ+q

(−2i)µ+q τ2
−N

2+2M−1
2 −µ−q . (2.32)

Using the above expression and vµp|M given in (2.25), we find,

vµp|M∂τ ′(i)
µ|M

∂
τ̄ ′

(i)
q|M
ZN (τ,τ ′A;0)

∣∣
τ ′A=0∼

(−1)q
(
N2+2M−1

2

)
q
Γ(p−q)

2p+qΓ(−q) τ2
−N

2+2M−1
2 −p−q ,

(2.33)
which vanishes identically for 0 ≤ q < p. One can similarly prove the result for the
M = 0 case.

2.4 Normalisation of integrated correlators

We have now appropriately organised the operators and determined the corresponding
mixing coefficients, and so we will now consider the integrated correlators that are associated
with the four-point functions of the following general form

〈O2O2O(i)
p|M O

(i′)
p′|M ′〉 . (2.34)

Note that the operators O(i)
p|M and O(i′)

p′|M ′ need to have the same dimension, i.e. 2p+M =
2p′ +M ′, therefore one may remove the dependence on p′. We will denote these integrated
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correlators as C(M,M ′|i,i′)
N,p (τ, τ̄). However, the definition of Ĉ(M,M ′|i,i′)

N,p (τ, τ̄) following (2.8) in
general is problematic now. Following (2.6), we would naively write,

C(M,M ′|i,i′)
N,p (τ, τ̄) =

R
(M,M ′|i,i′)
N,p

4 Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) , (2.35)

where Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) according to (2.8) would be given by

Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) =

vµp|M v̄νp′|M ′∂τ ′(i)
µ|M

∂
τ̄ ′

(i′)
ν|M′

∂2
m logZN (τ, τ ′A;m)

∣∣
m=τ ′A=0

vµp|M v̄νp′|M ′∂τ ′(i)
µ|M

∂
τ̄ ′

(i′)
ν|M′

logZN (τ, τ ′A; 0)
∣∣
τ ′A=0

, (2.36)

where again ∂
τ ′

(i)
µ|M

represents inserting operator O(i)
µ|M , with µ = 0, 1, . . . , p for M > 0, and

with µ = 1, . . . , p if M = 0; and R(M,M ′|i,i′)
N,p is determined by the two-point function via

〈O(i)
p|M (x1, Y1) ,O(i′)

p′|M ′(x2, Y2)〉 = R
(M,M ′|i,i′)
N,p

(
Y1 · Y2
x2

12

)2p+M
. (2.37)

However, (2.36) is only valid for the special cases with M = M ′ and i = i′; for other cases
the denominator in the expression is zero, precisely due to the orthogonality property (2.18).
The integrated correlators C(M,M ′|i,i′)

N,p (τ, τ̄) are of course in general non-zero and well-defined,
because the prefactor R(M,M ′|i,i′)

N,p ∼ 〈O(i)
p|M ,O(i′)

p′|M ′〉 also vanishes when the denominator
of (2.8) vanishes. Therefore, we have the issue of 0/0 in these cases.

To deal with this issue when O(i)
p|M is not identical to O(i′)

p′|M ′ , we first note the four-point
function 〈O2O2O(i)

p|M O
(i′)
p′|M ′〉 can be written as

〈O2O2O(i)
p|M O

(i′)
p′|M ′〉 = 〈O2O2O(i)

p|M O
(i)
p|M 〉+ 〈O2O2O(i)

p|M Od〉 , (2.38)

where Od = O(i′)
p′|M ′ − O

(i)
p|M . Applying the above relation to the integrated correlators,

we have

C(M,M ′|i,i′)
N,p (τ, τ̄) =

R
(M,M |i,i)
N,p

4 Ĉ(M,M |i,i)
N,p (τ, τ̄) + ROd

4 ĈOd(τ, τ̄) , (2.39)

where the second term schematically denotes the integrated correlator associated with
〈O2O2O(i)

p|M Od〉. Using (2.8) from supersymmetric location, Ĉ(M,M |i,i)
N,p (τ, τ̄) and ĈOd(τ, τ̄)

can be expressed as

Ĉ(M,M |i,i)
N,p (τ, τ̄) =

vµp|M v̄νp|M∂τ ′(i)
µ|M

∂
τ̄ ′

(i)
ν|M

∂2
m logZN (τ, τ ′A;m)

∣∣
m=τ ′A=0

vµp|M v̄νp|M∂τ ′(i)
µ|M

∂
τ̄ ′

(i)
ν|M

logZN (τ, τ ′A; 0)
∣∣
τ ′A=0

,

ĈOd(τ, τ̄) =
vµp|M v̄νOd∂τ ′(i)

µ|M
∂τ̄ ′
ν|Od

∂2
m logZN (τ, τ ′A;m)

∣∣
m=τ ′A=0

vµp|M v̄νOd∂τ ′(i)
µ|M

∂τ̄ ′
ν|Od

logZN (τ, τ ′A; 0)
∣∣
τ ′A=0

.

(2.40)

The mixing coefficient vµp|M is given in (2.25), and we have used v̄νOd∂τ̄ ′ν|Od
to schematically

denote the insertion of the operator Od. We will not explicitly perform the Gram-Schmidt
procedure on Od, as the details of v̄νOd and ∂τ̄ ′

ν|Od
are not needed for the following arguments.
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Note neither R(M,M |i,i)
N,p , ROd nor the denominators of Ĉ(M,M |i,i)

N,p (τ, τ̄) and ĈOd(τ, τ̄) given
in the above vanish, so each term is well-defined. Importantly, because of the vanishing of
the two-point function, 〈O(i)

p|M ,O(i′)
p′|M ′〉 = 0, we have

R
(M,M |i,i)
N,p +ROd = 0 , (2.41)

and the denominators of Ĉ(M,M |i,i)
N,p (τ, τ̄) and ĈOd(τ, τ̄) are also related to each other via

vµp|M v̄νp|M∂τ ′(i)
µ|M

∂
τ̄ ′

(i)
ν|M

logZN (τ,τ ′A;0)
∣∣
τ ′A=0+vµp|M v̄νOd∂τ ′(i)

µ|M
∂τ̄ ′
ν|Od

logZN (τ,τ ′A;0)
∣∣
τ ′A=0 = 0 .

(2.42)
Therefore, the relation (2.39) reduces to

C(M,M ′|i,i′)
N,p (τ, τ̄) =

R
(M,M |i,i)
N,p

4

v
µ
p|M v̄νp|M∂τ ′(i)

µ|M
∂
τ̄ ′

(i)
ν|M

∂2
m logZN (τ, τ ′A;m)

∣∣
m=τ ′A=0

vµp|M v̄νp|M∂τ ′(i)
µ|M

∂
τ̄ ′

(i)
ν|M

logZN (τ, τ ′A; 0)
∣∣
τ ′A=0

+
vµp|M v̄νOd∂τ ′(i)

µ|M
∂τ̄ ′
ν|Od

∂2
m logZN (τ, τ ′A;m)

∣∣
m=τ ′A=0

vµp|M v̄νp|M∂τ ′(i)
µ|M

∂
τ̄ ′

(i)
ν|M

logZN (τ, τ ′A; 0)
∣∣
τ ′A=0

 .
(2.43)

Using the fact that O(i′)
p′|M ′ = Od +O(i)

p|M , the numerators can be combined, which leads to

C(M,M ′|i,i′)
N,p (τ, τ̄) =

R
(M,M |i,i)
N,p

4

vµp|M v̄νp′|M ′∂τ ′(i)
µ|M

∂
τ̄ ′

(i′)
ν|M′

∂2
m logZN (τ, τ ′A;m)

∣∣
m=τ ′A=0

vµp|M v̄νp|M∂τ ′(i)
µ|M

∂
τ̄ ′

(i)
ν|M

logZN (τ, τ ′A; 0)
∣∣
τ ′A=0

.

(2.44)
Importantly, there is a simple relation between R(M,M |i,i)

N,p and the denominator in (2.44),

R
(M,M |i,i)
N,p = (4τ2)M+2p

(M + 2p)2 v
µ
p|M v̄νp|M∂τ ′(i)

µ|M
∂
τ̄ ′

(i)
ν|M

logZN (τ, τ ′A; 0)
∣∣
τ ′A=0 . (2.45)

As 2p+M = 2p′+M ′, this relation implies that in obtaining the expression for C(M,M ′|i,i′)
N,p (τ, τ̄)

one could also eliminate O(i)
p|M in favour of O(i′)

p′|M ′ , and lead to the same result for
C(M,M ′|i,i′)
N,p (τ, τ̄). This gives a consistency check of the argument.

One could simply use (2.44) to compute the integrated correlators C(M,M ′|i,i′)
N,p (τ, τ̄). How-

ever, we find it is much more convenient and extremely useful to introduce a normalisation
factor, and express the integrated correlators as8

C(M,M ′|i,i′)
N,p (τ, τ̄) =

R̃
(M,M ′|i,i′)
N,p

4 Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) , (2.47)

8Using (2.44), one could simply factor out R(M,M|i,i)
N,p and define

Ĉ(M,M′|i,i′)
N,p (τ, τ̄) =

vµ
p|M v̄νp′|M′∂τ ′(i)

µ|M
∂
τ̄ ′(i
′)

ν|M′
∂2
m logZN (τ, τ ′A;m)

∣∣
m=τ ′

A
=0

vµ
p|M v̄ν

p|M∂τ ′(i)
µ|M

∂
τ̄ ′(i)
ν|M

logZN (τ, τ ′A; 0)
∣∣
τ ′
A

=0

. (2.46)

However, with this normalisation, we find that Ĉ(M,M′|i,i′)
N,p (τ, τ̄) does not obey a simple Laplace-difference

relation. The denominator in this definition is not very natural, as p, p′ are not on an equal footing.
Furthermore, we also find factoring out

√
R

(M′,M′|i′,i′)
N,p′ R

(M,M|i,i)
N,p does not lead to a simple recursion

relation either.
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where Ĉ(M,M ′|i,i′)
N,p (τ, τ̄), which will be our main focus, is defined as

Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) =

vµp|M v̄νp′|M ′∂τ ′(i)
µ|M

∂
τ̄ ′

(i′)
ν|M′

∂2
m logZN (τ, τ ′A;m)

∣∣
m=τ ′A=0

N (i)
M D

(M,M ′)
N,p

, (2.48)

and the normalisation factor, which is independent of the coupling τ , is given by

R̃
(M,M ′|i,i′)
N,p =

R
(M,M |i,i)
N,p N (i)

M D
(M,M ′)
N,p

vµp|M v̄νp|M∂τ ′(i)
µ|M

∂
τ̄ ′

(i)
ν|M

logZN (τ, τ ′A; 0)
∣∣
τ ′A=0

, (2.49)

so that C(M,M ′|i,i′)
N,p (τ, τ̄) agrees precisely with the expression given in (2.44). As we will

prove later, the integrated correlators normalised in this particular way, i.e. Ĉ(M,M ′|i,i′)
N,p (τ, τ̄)

given in (2.48), obey a universal Laplace-difference equation, which relates Ĉ(M,M ′|i,i′)
N,p (τ, τ̄)

with different charges p.
Let us now explain all the ingredients as well as the motivation for the denominator

that appeared in the definition of Ĉ(M,M ′|i,i′)
N,p (τ, τ̄). The factor D(M,M ′)

N,p in the denominator
— the crucial part in the definition of Ĉ(M,M ′|i,i′)

N,p — is defined as follows: when M ′ 6= 0,

D
(M,M ′)
N,p = i(M−M

′)/2 vµp|M v̄νp′|M ′∂
µ
τ ∂

ν
τ̄ τ
−N

2+M+M′−1
2

2 , (2.50)

and when M ′ = 0,

D
(M,0)
N,p = iM/2 vµp|M v̄νp′|0∂

µ
τ ∂

ν
τ̄ τ
−N

2+M−1
2

2 − iM/2 vµp|M v̄νp′|0∂
µ
τ τ
−N

2+M−1
2

2 ∂ντ̄ logZN (τ, 0; 0) .
(2.51)

The expression of D(M,M ′)
N,p treats p, p′ on an equal footing (unlike the naive definition (2.46)),

and as we will see it naturally generalises the definition (2.36) that is valid only for
M = M ′, i = i′. The right choice of D(M,M ′)

N,p is crucial for Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) to satisfy a

universal and simple Laplace-difference equation, which will be presented in the next section.
Finally, the factor N (i)

M is introduced so that when M ′ = M and i′ = i, Ĉ(M,M ′|i,i′)
N,p (τ, τ̄)

reduces to the original definition (2.8). This factor is given by,9

N (i)
M = τ

N2+2M−1
2

2 ∂
τ ′

(i)
0|M

∂
τ̄ ′

(i)
0|M

logZN (τ, τ ′A; 0)
∣∣
τ ′A=0

= M2

22M τ
N2−1

2
2 R

(M,M |i,i)
N,0 ,

(2.52)

9One could choose a different definition for N (i)
M , for example

τ
N2+M+M′−1

2
2

√
∂
τ ′(i)0|M

∂
τ̄ ′(i)0|M

logZN (τ, τ ′A; 0)
∣∣
τ ′
A

=0
∂
τ ′(i
′)

0|M′
∂
τ̄ ′(i
′)

0|M′
logZN (τ, τ ′A; 0)

∣∣
τ ′
A

=0
,

which is then symmetric in M,M ′ and reduces to N (i)
M when M = M ′, i = i′. However, this is not important

for the purpose of obtaining the Laplace-difference equation (1.4) since all the p-dependence is contained
in D(M,M′)

N,p .
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where we have used the relation (2.45) and the fact that v0|M = 1. We should stress that
N (i)
M is independent of p, therefore it plays no role for the recursion relation involving

integrated correlators of different p’s.
The motivation of defining D(M,M ′)

N,p in this particular way can be understood as follows.
As in (2.28), we first note,

∂
τ ′

(i)
µ|M

∂
τ̄ ′

(i′)
ν|M′
ZN (τ, τ ′A; 0)

∣∣
τ ′A=0 = ∂µτ ∂

ν
τ̄ ∂τ ′(i)0|M

∂
τ̄ ′

(i′)
0|M′
ZN (τ, τ ′A; 0)

∣∣
τ ′A=0 . (2.53)

Therefore, in the definition (2.50), we essentially replaced ∂
τ ′

(i)
0|M

∂
τ̄ ′

(i′)
0|M′
ZN (τ, τ ′A; 0)

∣∣
τ ′A=0

in (2.36) with τ
−N

2+M+M′−1
2

2 to avoid a vanishing denominator. Even though
∂
τ ′

(i)
0|M

∂
τ̄ ′

(i′)
0|M′
ZN (τ, τ ′A; 0)

∣∣
τ ′A=0 vanishes unless M = M ′, i = i′, it is easy to see that as

a function of τ2, it should behave as τ−
N2+M+M′−1

2
2 , following the same argument of ob-

taining (2.29). The additional factor i(M−M ′)/2 is just to ensure that D(M,M ′)
N,p is real. The

extra term in (2.51) is because, when M ′ = 0, the one-point function 〈Op′|0〉S4 6= 0. We
will see a similar difference between the cases of M ′ = 0 and M ′ 6= 0 for the numerator of
Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) when we write it out explicitly.

From the definition (2.50), and the expression of mixing coefficients (2.25), we can
explicitly evaluate D(M,M ′)

N,p . We find it can be expressed as

D
(M,M ′)
N,p =

p∑
j=0

p+δ∑
k=0

(
p

j

)(
p+ δ

k

)
(a+ δ + 1 + j)p−j (a− δ + 1 + k)p+δ−k

(a+ 1)j (a+ j + 1)k (−1)j+k+δ 2−2p−δ τ
−(a+1+2p+δ)
2 ,

(2.54)

which simplifies to

D
(M,M ′)
N,p = 2−2p−δ (a+ 1)p+Θ(δ) Γ (p+ δ −Θ(δ) + 1) τ−(a+1+δ+2p)

2 , (2.55)

where Θ(x) = 0 if x ≥ 0 and Θ(x) = x if x < 0, and the parameters a, δ are given by

a = N2 +M +M ′ − 3
2 , δ = M −M ′

2 . (2.56)

Using 2p+M = 2p′ +M ′, one can see that D(M,M ′)
N,p is symmetric under M ↔M ′, p↔ p′.

Without loss of generality, one may assume M ≥ M ′ so that Θ(δ) = 0. When M ′ = 0,
we have,

D
(M,0)
N,p =

p∑
j=0

p+δ∑
k=1

(
p

j

)(
p+ δ

k

)
(a+ δ + 1 + j)p−j (a− δ + 1 + k)p+δ−k

(a+ 1)j (a+ j + 1)k (−1)j+k+δ 2−2p−δ τ
−(a+1+2p+δ)
2

−
p∑
j=0

p+δ∑
k=1

(
p

j

)(
p+ δ

k

)
(a+ δ + 1 + j)p−j (a− δ + 1 + k)p+δ−k

(a+ 1)j (a− δ + 1)k (−1)j+k+δ 2−2p−δ τ
−(a+1+2p+δ)
2 ,

(2.57)
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where the sum over k now starts at k = 1, as the mixing coefficient vµ(p|0) starts at p = 1
and µ = 1. The second term in D(M,0)

N,p sums to

p∑
j=0

(
p

j

)
(a+ δ + 1 + j)p−j (a− δ + 1)p+δ (a+ 1)j (−1)j+δ 2−2p−δ τ

−(a+1+2p+δ)
2 , (2.58)

which is in fact equivalent to the k = 0 case of the first term. Therefore we can combine
these two terms in (2.57), which leads to the same expression as (2.54). We see that with
the extra term in the definition of D(M,0)

N,p , the final expression for D(M,0)
N,p is simply D(M,M ′)

N,p

given in (2.55) with M ′ → 0.
Using the relation (2.45) and the expressions for N (i)

N and D(M,M ′)
N,p as given in (2.52)

and (2.55), we can simplify the normalisation factor R̃(M,M ′|i,i′)
N,p as given in (2.49), and find

R̃
(M,M ′|i,i′)
N,p = 22p+δM2

(M + 2p)2 (a+ 1)p+Θ(δ) Γ (p+ δ −Θ(δ) + 1) R(M,M |i,i)
N,0 . (2.59)

Note by construction, when M = M ′ and i = i′, R̃(M,M ′|i,i′)
N,p reduces to R(M,M |i,i)

N,p .
From now on, we will mainly focus on Ĉ(M,M ′|i,i′)

N,p (τ, τ̄) as defined in (2.48). In the next
section, we will prove that, with this crucial normalisation factor R̃(M,M ′|i,i′)

N,p , Ĉ(M,M ′|i,i′)
N,p (τ, τ̄)

obeys a universal Laplace-difference equation that gives a three-term recursion relation
relating the integrated correlators of different charges p.

3 Laplace-difference equation

In this section, we will show that the normalised integrated correlators Ĉ(M,M ′|i,i′)
N ;p (τ, τ̄) as

defined in (2.48) satisfy the following universal Laplace-difference equation,

∆τ Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) = (p+1+δ)(p+a+1) Ĉ(M,M ′|i,i′)

N,p+1 (τ, τ̄)+p(p+a+δ) Ĉ(M,M ′|i,i′)
N,p−1 (τ, τ̄)

−[2p(p+a)+(2p+a+1)(δ+1)] Ĉ(M,M ′|i,i′)
N,p (τ, τ̄)−4δM,M ′δi,i′C(0,0)

N,1 (τ, τ̄) ,
(3.1)

where the parameters a, δ are given in (2.56), and ∆τ = 4τ2
2 ∂τ∂τ̄ . The “source term”

C(0,0)
N,1 (τ, τ̄), which only appears when M = M ′ and i = i′, is given in (1.1) (now it is written

in our unified notation). It also obeys a Laplace-difference equation (1.2) and is known
exactly for any N and τ [8, 9]. It is important to note that because Ĉ(M,M ′|i,i′)

N,p (τ, τ̄) = 0
when p < 0, (3.1) is a recursion relation (rather than a differential equation) that determines
Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) for any p in terms of the initial data Ĉ(M,M ′|i,i′)

N,0 (τ, τ̄). In the special case
M = M ′ = 0 (the operators were called maximal-trace operators with even dimensions), our
Laplace-difference equation (3.1) reproduces what has been found in [12]. We will therefore
mainly focus on M > 0 in the cases with M = M ′, i = i′. It is intriguing to note that the
N -dependence of the recursion only appears in the parameter a (given in (2.56)), which
has the symmetry of N2 ↔M +M ′.

Interestingly, the difference of integrated correlators,

Ĥ(M,M ′|i,i′)
N,p (τ, τ̄) = Ĉ(M,M ′|i,i′)

N,p (τ, τ̄)− Ĉ(M,M ′|i,i′)
N,p−1 (τ, τ̄) , (3.2)
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also satisfies a three-term recursion relation,

∆τ Ĥ(M,M ′|i,i′)
N,p (τ, τ̄) = (p+ 1 + δ) (p+ a+ 1) Ĥ(M,M ′|i,i′)

N,p+1 (τ, τ̄)

+ (p− 1) (p+ a+ δ − 1) Ĥ(M,M ′|i,i′)
N,p−1 (τ, τ̄)

− [(p+ a)(p+ δ) + p(p+ a+ δ)] Ĥ(M,M ′|i,i′)
N,p (τ, τ̄) .

(3.3)

Note the above recursion relation for Ĥ(M,M ′|i,i′)
N,p (τ, τ̄) is valid only for p ≥ 1. It is worth

emphasising that it is non-trivial that a three-term recurrence relation exists for the
difference Ĥ(M,M ′|i,i′)

N,p (τ, τ̄).
In the following subsections, we will prove the Laplace-difference equation (3.1).

3.1 Cases with M = M ′, i = i′

In this subsection, we consider the cases with M = M ′ and i = i′. As we mentioned we
will focus on M > 0 with general M here. For these particular cases, by construction the
denominator in (2.48) reduces to

N (i)
M D

(M,M)
N,p = vµp|M v̄νp|M∂τ ′(i)

µ|M
∂
τ̄ ′

(i)
ν|M

logZN (τ, τ ′A;m)
∣∣
m=τ ′A=0 , (3.4)

so we have

Ĉ(M,M |i,i)
N,p (τ, τ̄) =

vµp|M v̄νp|M∂τ ′(i)
µ|M

∂
τ̄ ′

(i)
ν|M

∂2
m logZN (τ, τ ′A;m)

∣∣
m=τ ′A=0

vµp|M v̄νp|M∂τ ′(i)
µ|M

∂
τ̄ ′

(i)
ν|M

logZN (τ, τ ′A; 0)
∣∣
τ ′A=0

. (3.5)

As ZN (τ, τ ′A;m) is an even function of m, we have

∂2
m logZN (τ, τ ′A;m)

∣∣
m=0 =

∂2
mZN (τ, τ ′A;m)

∣∣
m=0

ZN (τ, τ ′A; 0) , (3.6)

and from (2.18), we have

∂
τ ′

(i)
µ|M
ZN (τ, τ ′A; 0)

∣∣
τ ′A=0 = ∂

τ̄ ′
(i)
ν|M
ZN (τ, τ ′A; 0)

∣∣
τ ′A=0 = 0 . (3.7)

We therefore find

Ĉ(M,M |i,i)
N,p (τ, τ̄) =

vµp|M v̄νp|M∂τ ′(i)
µ|M

∂
τ̄ ′

(i)
ν|M

∂2
mZN (τ, τ ′A;m)

∣∣
m=τ ′A=0

vµp|M v̄νp|M∂τ ′(i)
µ|M

∂
τ̄ ′

(i)
ν|M
ZN (τ, τ ′A; 0)

∣∣
τ ′A=0

−
∂2
mZN (τ, 0;m)

∣∣
m=0

ZN (τ, 0; 0) .

(3.8)
Let us first consider the second term in the above equation. The laplacian acting on it

leads to
∆τ

∂2
mZN (τ, 0;m)

∣∣
m=0

ZN (τ, 0; 0) = 4 C(0,0)
N,1 (τ, τ̄) . (3.9)

Using this fact, one can see that this term alone obeys the Laplace-difference equation (3.1).
Therefore, from now on we will only focus on the first term of (3.8), which we will denote
as Ĉ′(M,M |i,i)

N,p (τ, τ̄) and quote as below,

Ĉ′(M,M |i,i)
N,p (τ, τ̄) =

vµp|M v̄νp|M∂τ ′(i)
µ|M

∂
τ̄ ′

(i)
ν|M

∂2
mZN (τ, τ ′A;m)

∣∣
m=τ ′A=0

vµp|M v̄νp|M∂τ ′(i)
µ|M

∂
τ̄ ′

(i)
ν|M
ZN (τ, τ ′A; 0)

∣∣
τ ′A=0

. (3.10)
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Since the source term −4 C(0,0)
N,1 (τ, τ̄) arises from the second term of (3.8) as we just showed,

we will prove that Ĉ′(M,M |i,i)
N,p (τ, τ̄) obeys (3.1) without the source term, namely

∆τ Ĉ′
(M,M |i,i)
N,p (τ, τ̄) = (p+ 1 + δ) (p+ a+ 1) Ĉ′(M,M |i,i)

N,p+1 (τ, τ̄) + p (p+ a+ δ) Ĉ′(M,M |i,i)
N,p−1 (τ, τ̄)

− [2p (p+ a) + (2p+ a+ 1)(δ + 1)] Ĉ′(M,M |i,i)
N,p (τ, τ̄) ,

(3.11)
with δ = 0 due to M = M ′. In the next subsection, we will in fact see that, for the
integrated correlators with M 6= M ′ or M = M ′ but i 6= i′, what we will need to prove is
essentially the same as (3.11) (with δ 6= 0 if M 6= M ′).

3.2 Cases with M 6= M ′ or i 6= i′

We now consider the cases with M 6= M ′, i.e. the operators are in different towers, or the
cases with M = M ′ but i 6= i′, i.e. the operators are in different subtowers. For all these
cases, because the two-point functions vanish, we need to use the refined definition (2.48)
for Ĉ(M,M ′|i,i′)

N,p (τ, τ̄). We will first consider both M and M ′ are not 0. Besides (3.7), we also
have the relation

∂
τ ′

(i)
µ|M

∂
τ̄ ′

(i′)
ν|M′
ZN (τ, τ ′A; )

∣∣
τ ′A=0 = 0 , (3.12)

when the operators are in different (sub)towers. Therefore, unlike (3.8), Ĉ(M,M |i,i′)
N,p (τ, τ̄) has

no analogical second term, and so

Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) =

vµp|M v̄νp′|M ′∂τ ′(i)
µ|M

∂
τ̄ ′

(i′)
ν|M′

∂2
mZN (τ, τ ′A;m)

∣∣
m=τ ′A=0

N (i)
M D

(M,M ′)
N,p

. (3.13)

Therefore in these cases, there is no source term −4 C(0,0)
N,1 (τ, τ̄), consistent with the Laplace-

difference equation (3.1).
When M ′ = 0, the relation (3.7) is not valid anymore. In particular, we have

∂
τ ′

(1)
µ|0
ZN (τ, τ ′A; 0)

∣∣
τ ′A=0 = ∂µτ ZN (τ, 0; 0) 6= 0 . (3.14)

Here and in the following, because there is no degeneracy whenM ′ = 0, we set the degeneracy
index i as 1. Equation (3.14) implies that there is an additional term in Ĉ(M,0|i,1)

N,p (τ, τ̄),

Ĉ(M,0|i,1)
N,p (τ, τ̄) =

vµp|M v̄νp′|0∂τ ′(i)
µ|M

∂
τ̄ ′

(1)
ν|0
∂2
mZN (τ, τ ′A;m)

∣∣
m=τ ′A=0

N (i)
M D

(M,0)
N,p

−
vµp|M v̄νp′|0∂τ ′(i)

µ|M
∂2
mZN (τ, τ ′A;m)

∣∣
m=τ ′A=0 ∂τ̄ ′(1)

ν|0
ZN (τ, 0; 0)

N (i)
M D

(M,0)
N,p ZN (τ, 0; 0)

.

(3.15)

This important difference between (3.13) and (3.15) is similar to the definition (2.51) for
the normalisation factor in the case of M ′ = 0, as we emphasised earlier.

In the next subsection, using these explicit expressions of Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) we have

obtained in the above analysis, we will prove that Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) satisfies the universal

Laplace-difference equation (3.1).
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3.3 Proof of Laplace-difference equation

We will now prove the Laplace-difference equation (3.1). Just as in (2.28), we have,

∂
τ ′

(i)
µ|M

∂
τ̄ ′

(i′)
ν|M′

∂2
mZN (τ, τ ′A;m)

∣∣
m=τ ′A=0 = ∂µτ ∂

ν
τ̄ ∂τ ′(i)0|M

∂
τ̄ ′

(i′)
0|M′

∂2
mZN (τ, τ ′A;m)

∣∣
m=τ ′A=0 , (3.16)

therefore Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) can be written in terms of ∂

τ ′
(i)
0|M

∂
τ̄ ′

(i′)
0|M′

∂2
mZN (τ, τ ′A;m)

∣∣
m=τ ′A=0

with derivatives with respect to τ and τ̄ acting on it. To prove the Laplace-difference
equation (3.1), we will collect all the terms with the same number of derivatives of τ and τ̄ ,
and show that the corresponding coefficients vanish. Therefore we find that the Laplace-
difference equation does not rely on the precise form of ∂

τ ′
(i)
0|M

∂
τ̄ ′

(i′)
0|M′

∂2
mZN (τ, τ ′A;m)

∣∣
m=τ ′A=0.

Furthermore, as we discussed in the previous subsections, because there is some difference
between the cases of M ′ = 0 and the cases of M ′ > 0, we will consider them separately.
Without losing generality, we will assume M ≥M ′ in the following discussion.

3.3.1 Cases with M ′ > 0

We begin with the case M ′ > 0. Using the result of D(M,M ′)
N,p as given in (2.55) and the

mixing coefficients (2.25), we can express Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) as

Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) =

1
N (i)
M (a+1)p(p+δ)!

p∑
j=0

p+δ∑
k=0

(
p

j

)(
p+δ
k

)
(a+δ+j+1)p−j

(a−δ+k+1)p+δ−k (−1)k−δ 2j+k ij+k−δ τ j+k+a+1
2 ∂jτ ∂

k
τ̄ ∂τ ′(i)0|M

∂
τ̄ ′

(i′)
0|M′

∂2
mZN (τ,τ ′A;m)

∣∣
m=τ ′A=0 .

(3.17)
As we commented above, the validity of the Laplace-difference equation is actually inde-
pendent of the precise form of ∂

τ ′
(i)
0|M

∂
τ̄ ′

(i′)
0|M′

∂2
mZN (τ, τ ′A;m)

∣∣
m=τ ′A=0. It holds separately

for every
∂jτ ∂

k
τ̄ ∂τ ′(i)0|M

∂
τ̄ ′

(i′)
0|M′

∂2
mZN (τ, τ ′A;m)

∣∣
m=τ ′A=0 . (3.18)

We therefore isolate the j and k-th derivative

Ĉ(M,M ′|i,i′)
N,p (τ, τ̄)

∣∣
j,k

=

(−1)k−δ 2j+k ij+k−δ τ j+k+a+1
2

N (i)
M (a+ 1)p (p+ δ)!

(
p

j

)(
p+ δ

k

)

(a+ δ + j + 1)p−j (a− δ + k + 1)p+δ−k ∂jτ ∂kτ̄ ∂τ ′(i)0|M
∂
τ̄ ′

(i′)
0|M′

∂2
mZN (τ, τ ′A;m)

∣∣
m=τ ′A=0 .

(3.19)

The above expression implies

Ĉ(M,M ′|i,i′)
N,p+1 (τ, τ̄)

∣∣
j,k

= (p+ 1)(a+ 1 + p+ δ)
(p+ 1− j)(p+ δ + 1− k) Ĉ

(M,M ′|i,i′)
(N,p) (τ, τ̄)

∣∣
j,k
, (3.20)
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and
Ĉ(M,M ′|i,i′)
N,p−1 (τ, τ̄)

∣∣
j,k

= (p− j)(p+ δ − k)
p(a+ p+ δ) Ĉ(M,M ′|i,i′)

(N,p) (τ, τ̄)
∣∣
j,k
. (3.21)

Taking the laplacian ∆τ = 4τ2
2 ∂τ∂τ̄ and collecting the j and k-th derivatives, we find

∆τ Ĉ(M,M ′|i,i′)
N,p (τ, τ̄)

∣∣
j,k

=(
(a+ j + k)(a+ j + k + 1) + j (a+ j + k)(a+ δ + j)

p− j + 1

+k (a+ j + k)(a− δ + k)
p+ δ + 1− k + j k (a+ δ + j)(a− δ + k)

(p− j + 1)(p+ δ + 1− k)

)
Ĉ(M,M ′|i,i′)
N,p (τ, τ̄)

∣∣
j,k
.

(3.22)

Let us now consider the following combination that is relevant for the Laplace-difference
equation (3.1),

∆τ Ĉ(M,M ′|i,i′)
N,p (τ, τ̄)

∣∣
j,k

+ [2p (p+ a) + (2p+ a+ 1)(δ + 1)] Ĉ(M,M ′|i,i′)
N,p (τ, τ̄)

∣∣
j,k

− (p+ 1 + δ) (p+ a+ 1) Ĉ(M,M ′|i,i′)
N,p+1 (τ, τ̄)

∣∣
j,k
− p (p+ a+ δ) Ĉ(M,M ′|i,i′)

N,p−1 (τ, τ̄)
∣∣
j,k
.

(3.23)

Using the above results, (3.23) becomes[
(a+ j + k)(a+ j + k + 1) + j(a+ j + k)(a+ δ + j)

p− j + 1 + k(a+ j + k)(a− δ + k)
p+ δ + 1− k

+ jk(a+ δ + j)(a− δ + k)
(p− j + 1)(p+ δ + 1− k) −

(p+ 1)(p+ δ + 1)(a+ p+ δ + 1)(a+ p+ 1)
(p+ 1− j)(p+ δ + 1− k)

+ (p− j)(p+ δ − k)− (2p(p+ a) + (2p+ a+ 1)(δ + 1))
]
Ĉ(M,M ′|i,i′)
N,p (τ, τ̄)

∣∣
j,k
.

(3.24)

It is straightforward to check that the factor in front of Ĉ(M,M ′|i,i′)
N,p (τ, τ̄)

∣∣
j,k

in the above
expression identically evaluates to zero.

Clearly the above discussion also applies to the special case M = M ′ and i = i′,
namely Ĉ′(M,M |i,i)

N,p (τ, τ̄) defined in (3.10) and the relation (3.11) it satisfies. This proves the
Laplace-difference equation for the case M ′ > 0.

3.3.2 Cases with M ′ = 0

The proof of the Laplace-difference equation for the case M ′ = 0 is similar. When M ′ = 0,
analogous to D(M,0)

N,p in the denominator in (2.51), the numerator of Ĉ(M,0|i,1)
N,p (τ, τ̄) also has

an extra term, as given in (3.15). Explicitly, Ĉ(M,0|i,1)
N,p (τ, τ̄) can be expressed as

Ĉ(M,0|i,1)
N,p (τ, τ̄) =

1
N (i)
M (a+1)p(p+δ)!

p∑
j=0

p+δ∑
k=1

(
p

j

)(
p+δ
k

)
(a+δ+1+j)p−j

(a−δ+1+k)p+δ−k(−1)k−δ 2j+k ij+k−δ τ j+k+a+1
2 ∂jτ ∂

k
τ̄ ∂τ ′(i)0|M

∂
τ̄ ′

(1)
0|M′

∂2
mZN (τ,τ ′A;m)

∣∣
m=τ ′

A
=0

− 1
N (i)
M (a+1)p(p+δ)!

p∑
j=0

p+δ∑
k=1

(
p

j

)(
p+δ
k

)
(a+δ+1+j)p−j

(a−δ+1+k)p+δ−k(a−δ+1)k(−1)k−δ 2j ij−δ τ j+a+1
2 ∂jτ ∂τ ′(i)0|M

∂
τ̄ ′

(1)
0|M′

∂2
mZN (τ,τ ′A;m)

∣∣
m=τ ′

A
=0 .

(3.25)
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Similarly to D(M,0)
N,p in (2.58), the second term in Ĉ(M,0|i,1)

N,p (τ, τ̄) can be simplified and sums to

1
N (i)
M (a+ 1)p(p+ δ)!

p∑
j=0

(
p

j

)
(a+ δ + 1 + j)p−j(a− δ + 1)p+δ

(−1)−δ 2j ij−δ τ j+a+1
2 ∂jτ ∂τ ′(i)0|M

∂
τ̄ ′

(1)
0|M′

∂2
mZN (τ, τ ′A;m)

∣∣
m=τ ′A=0 ,

(3.26)
which is equivalent to the k = 0 case of the first term, and so the integrated correlator can
be expressed as

Ĉ(M,0|i,1)
N,p (τ, τ̄) =

1
N (i)
M (a+1)p(p+δ)!

p∑
j=0

p+δ∑
k=0

(
p

j

)(
p+δ
k

)
(a+δ+1+j)p−j

(a−δ+1+k)p+δ−k (−1)k−δ 2j+k ij+k−δ τ j+k+a+1
2 ∂jτ ∂

k
τ̄ ∂τ ′(i)0|M

∂
τ̄ ′

(1)
0|M′

∂2
mZN (τ,τ ′A;m)

∣∣
m=τ ′A=0 .

(3.27)
We see that Ĉ(M,0|i,1)

N,p (τ, τ̄) takes the same form as that for M ′ 6= 0 as given in (3.17).
Therefore, the proof of the Laplace-difference equation for the M ′ 6= 0 case applies to
M ′ = 0 as well. This completes the proof of the Laplace-difference equation (3.1).

4 Examples of integrated correlators

In this section, we will give some explicit results for certain examples of the integrated
correlators Ĉ(M,M ′|i,i′)

N,p (τ, τ̄) and the corresponding prefactors R̃(M,M ′|i,i′)
N ;p . Here we will

mainly focus on the perturbative contributions, i.e. the zero-instanton sector. However,
as we will comment on further, with some appropriate assumptions of SL(2,Z) modular
properties of the integrated correlators, the perturbative contributions actually uniquely
determine the full integrated correlators. For the perturbative contributions, we can simply
omit the instantonic contribution Zinst in the partition function (2.9), and the small-m
expansion of Z1−loop can be straightforwardly evaluated by using [24],

∂2
m log H2(a)

H(a+m)H(a−m)

∣∣∣
m=0

= −4
∫ ∞

0
dw

w (cos(2wa)− 1)
sinh2(w)

= −4
∞∑
`=1

(−1)` (2`+ 1) ζ(2`+ 1) a`+1 .

(4.1)

Furthermore, the derivative ∂τ ′p is to insert iπp/2
∑
i a
p
i . Therefore, in the perturbation, the

integrals that we need to compute are gaussian integrals of the form

∫
dNa δ

(
N∑
i=1

ai

)
exp

(
−2πτ2

N∑
i=1

a2
i

)∏
i<j

a2
ij

∏
j

N∑
i=1

a
pj
i

 . (4.2)

It is straightforward to compute these integrals explicitly, at least up to some finite orders.
To illustrate the structures, below we will provide the first few orders in perturbation for
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the integrated correlators Ĉ(M,M ′|i,i′)
N,p with M,M ′ ≤ 5, and as we mentioned they coincide

with the single-particle operators when p = 0. Since there is no degeneracy for these cases,
we will simply drop the indices i and i′ for all these examples.

4.1 Integrated correlators with M = M ′

We begin with the integrated correlators with M = M ′. The special case M = M ′ = 0
has been considered in [12], so we will only consider those with M > 0, and the results are
listed as follows:

(M, M ′) = (3, 3):

Ĉ(3,3)
N,p (τ2) =[
1+ 2p

3

] 18Nζ(3)
τ2π

−
[
1+

(
5N2+67

)
p

(N2+5)(N2+7)

(
N2+5

6 + p

3

)]
90N2ζ(5)
τ2

2π
2

+
[
1+

(
N2+23

)
p

(N2+5)(N2+7)(N2+9)

(
3N4+33N2+94

3 +5
(
N2+5

)
p+ 20p2

3

)]
735N3ζ(7)

2τ3
2π

3 +. . . .

(4.3)

(M, M ′) = (4, 4):

Ĉ(4,4)
N,p (τ2) =[
1+ p

2

] 24Nζ(3)
τ2π

−
[
1+

(
5N6+96N4−5N2+144

)
p

(N2+7)(N2+9)(2N4+3)

(
N2+7

4 + p

2

)]
60
(
2N4+3

)
ζ(5)

(N2+1)τ2
2π

2

+
[
1+

(
7N6+240N4−367N2+1080

)
p

(N2+7)(N2+9)(N2+11)(2N4−3N2+9)

(
3N4+45N2+172

15 +
(
N2+7

)
p+ 4p2

3

)]
525N

(
2N4−3N2+9

)
ζ(7)

2(N2+1)τ3
2π

3 +. . . .

(4.4)

(M, M ′) = (5, 5):

Ĉ(5,5)
N,p (τ2) =[
1+ 2p

5

] 30Nζ(3)
τ2π

−
[

1+
(
N6+28N4+43N2+144

)
p

(N2+9)(N2+11)(N4+2N2+6)

(
N2+9

2 +p
)] 150

(
N4+2N2+6

)
ζ(5)

(N2+5)τ2
2π

2

+
[

1+
(
7N6+328N4−515N2+5220

)
p

(N2+9)(N2+11)(N2+13)(5N4−8N2+87)

(
2
(
3N4+57N2+274

)
15 +2

(
N2+9

)
p+ 8p2

3

)]
525N

(
5N4−8N2+87

)
ζ(7)

4(N2+5)τ3
2π

3 +. . . .

(4.5)
It is easy to check that the above results are solutions to the Laplace-difference equation.
When p = 0, the above expressions reproduce the results for the integrated correlators
involving the single-particle operators that were considered in [12], which also serve as the
initial conditions for the Laplace-difference equation. These particular examples clearly show
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some intriguing structures of the perturbative expansion. For example, we observe that the
leading term in all the examples we studied takes the simple form of 6N (2p+M) ζ(3)/(τ2 π).

Finally, to obtain C(M,M ′|i,i′)
N,p , we will also need the expression for R̃(M,M ′|i,i′)

N,p that
appeared in the definition (2.47). Recall for the identical operators, namely the cases with
M = M ′ and i = i′, R̃(M,M |i,i)

N,p = R
(M,M |i,i)
N,p , which is determined in terms of the two-point

function as given in (2.37). Because two-point functions are protected by supersymmetry,
it is straightforward to compute them simply by Wick contractions. For example, for a
particular set of operators O(i)

p|M = (T2)p SM with SM being the single-particle operators [14]
that are defined in (2.20), we find

R
(SM )
N,p = R

(SM )
N,0

M ε × 22p p!
(2p+M)2

(
N2 + 2M − 1

2

)
p , (4.6)

where ε = 2 when M > 0 and ε = 1 if M → 0, and R(SM )
N ;0 is given by [14]

R
(SM )
N,0 = (M − 1)

[ 1
(N −M + 1)M−1

− 1
(N + 1)M−1

]−1
. (4.7)

The cases with M = 3, 4, 5 are relevant to the integrated correlators we consider here.

4.2 Integrated correlators with M 6= M ′

In this subsection we consider the examples of integrated correlators with M 6= M ′, for
M,M ′ ≤ 5. First, we note all the integrated correlators Ĉ(M,M ′|i,i′)

N,p withM+M ′ being an odd
number always vanish. Therefore we only need to consider the cases with (M,M ′) = (4, 0)
and (M,M ′) = (5, 3), which we will list below:

(M, M ′) = (4, 0):

Ĉ(4,0)
N,p (τ2) =

−
[
1+

4p
(
(N2+4)+p

)
(N2+3)(N2+5)

]
120Nζ(5)
τ2
2π

2 +
[
1+

4p
(
(2N4+19N2+43)+(5N2+23)p+4p2)

(N2+3)(N2+5)(N2+7)

]
1470N2ζ(7)

τ3
2π

3

−
[
1+

4p
((
N2+7

)(
10N4+95N2+213

)
+
(
3N2+13

)(
15N2+91

)
p+84

(
N2+5

)
p2+56p3)

3(N2+3)(N2+5)(N2+7)(N2+9)

]
2835N

(
4N2+1

)
ζ(9)

τ4
2π

4 +. . . .
(4.8)

(M, M ′) = (5, 3):

Ĉ(5,3)
N,p (τ2) =

−
[
1+

2p
(
(3N2+23)+4p

)
(N2+7)(N2+9)

]
180Nζ(5)
τ2
2π

2 +
[
1+

4p
((

3N2+23
)(
N2+9

)
+10p

(
N2+8

)
+10p2)

(N2+7)(N2+9)(N2+11)

]
1890N2ζ(7)

τ3
2π

3

−
[
1+

4p
((

5N6+135N4+1215N2+3629
)
+2
(
15N4+255N2+1088

)
p+14

(
5N2+41

)
p2+56p3)

(N2+7)(N2+9)(N2+11)(N2+13)

]
8605N

(
3N2+1

)
ζ(9)

2τ4
2π

4 +. . . .
(4.9)
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Again, we have omitted the degeneracy index i. It is also straightforward to verify that
these are solutions to the Laplace-difference equation (3.1), and in appendix A we also
provide the initial conditions for the recursion relation, namely Ĉ(4,0)

N,0 (τ, τ̄) and Ĉ(5,3)
N,0 (τ, τ̄)

for any N and τ . The perturbative expansion of the integrated correlators obeys interesting
structures that are similar to those with M = M ′. However, we also note that interestingly
the integrated correlators with operators that are in different (sub)towers in general start
at higher loops in the perturbative expansion. For the examples we considered here, they
both begin at two loops. In a related context, a similar phenomenon was observed for the
U(1)-violating correlators in N = 4 SYM studied in [25, 26].

Again, to obtain C(M,M ′|i,i′)
N,p , we now compute the normalisation factor R̃(M,M ′|i,i′)

N ;p . For
the integrated correlators with operators in different (sub)towers, we use the expression
given in (2.59). For M = 4,M ′ = 0, we find

R̃
(4,0)
N,p = 22p−2 (p+ 2)!

(p+ 2)2

(
N2 + 3

2

)
p

(
N2 − 9

) (
N2 − 4

) (
N2 − 1

)
(N2 + 1) , (4.10)

and for M = 5,M ′ = 3, we have

R̃
(5,3)
N,p = 22p−1(p+ 1)!

(2p+ 5)2

(
N2 + 7

2

)
p

5
(
N2 − 16

) (
N2 − 9

) (
N2 − 4

) (
N2 − 1

)
N (N2 + 5) . (4.11)

4.3 SL(2,Z) completion and lattice-sum representation

In the previous subsections we presented examples of the perturbative expansions (i.e. zero
instanton sector) of integrated correlators. The complete results of integrated correlators
are SL(2,Z) modular invariant functions of (τ, τ̄) because of Montonen-Olive duality of
N = 4 SYM with SU(N) gauge group [17]. Therefore, the perturbative results should be
completed into some modular functions, which in general is not unique at all. However,
as already noted in the case of 〈O2O2O2O2〉 in [9], by assuming the so-called lattice-sum
representation of the integrated correlator, which has been proved recently in [27], one
can show that the integrated correlator is completely determined in terms of the zero-
instanton perturbative results [9, 10].10 Essentially the same property was assumed in [14]
(using the language of SL(2,Z) spectral decomposition following [30]) for the more general
integrated correlators we are considering here, which was verified by explicit perturbative
and non-perturbative results [14].

Here we will briefly discuss the SL(2,Z) completion of the integrated correlators
and their lattice representation. In a forthcoming paper [31], we will study in detail
the lattice representation of the integrated correlators and its implications, such as the
modular properties of integrated correlators, and their behaviour in the large-charge limit.
Following [9], we propose that Ĉ(M,M ′|i,i′)

N,p (τ, τ̄) can be expressed as

Ĉ(M,M ′|i,i′)
N,p (τ, τ̄) =

∑
(m,n)∈Z2

∫ ∞
0

e−tYm,n(τ,τ̄)B̂
(M,M ′|i,i′)
N,p (t) dt , (4.12)

10See [10] (and also [28] for the earlier work) on understanding the modular properties of the integrated cor-
relator associated with 〈O2O2O2O2〉 in N = 4 SYM with other classical gauge groups, and the manifestations
of Goddard, Nuyts and Olive duality [29].
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with Ym,n(τ, τ̄) := π |m+nτ |2
τ2

. The above expression is manifestly SL(2,Z) invariant, and all
the non-trivial information of the integrated correlators is encoded in the single rational
function of t, B̂(M,M ′|i,i′)

N,p (t). The function B̂(M,M ′|i,i′)
N,p (t) obeys several important properties,

for example,

B̂
(M,M ′|i,i′)
N,p (t) = 1

t
B̂

(M,M ′|i,i′)
N,p (1/t) ,

∫ ∞
0

dt√
t
B̂

(M,M ′|i,i′)
N,p (t) = 0 . (4.13)

What is relevant to the current discussion is that, using (4.12), one can show that
B̂

(M,M ′|i,i′)
N,p (t) is uniquely determined by the perturbative results of Ĉ(M,M ′|i,i′)

N,p (τ, τ̄) [9, 10].
Furthermore, as the Laplace-difference equation (3.1) is also in an SL(2,Z)-invariant form,
one may solve the equation and obtain modular functions for the integrated correlators,
providing the SL(2,Z)-invariant initial data. Following the ideas of [27], one can in fact
further introduce SL(2,Z)-invariant generating functions, that sum over all the charge-p
dependence of the integrated correlators. The concept of the generating functions for the
integrated correlators and their explicit expressions and applications will be studied in
detail in [31].

5 Conclusion and outlook

In this paper we studied integrated correlators in SU(N) N = 4 SYM associated with
four-point correlation functions of the form 〈O2O2O(i)

p O(j)
p 〉, for the half-BPS operators O(i)

p

with charge (or dimension) p. To systematise the supersymmetric localisation computation,
we reorganised the operators into different towers as well as subtowers of the form O(i)

p|M =
(O2)pO(i)

0|M , with index M denoting the tower and i the subtower. Crucially, operators in
different towers (and subtowers) are orthogonal to each other, which greatly simplifies the
Gram-Schmidt procedure for the localisation computation. We proved that, remarkably, all
the integrated correlators for any N satisfy a universal Laplace-difference equation that
relates integrated correlators of different charges p. It is vitally important to normalise
the integrated correlators appropriately for them to obey the Laplace-difference equation.
This is especially important when the integrated correlators involve two different operators,
as a naive choice of the normalisation factor would either lead to 0/0, or some very
complicated Laplace-difference equation that would obscure the underlying simplicity of
the integrated correlators.

An analogous Laplace-difference equation, i.e. (1.2), was found in [9] for the integrated
correlator associated with 〈O2O2O2O2〉, which relates the integrated correlator of different
gauge groups. Even though the equations may look similar, they seem to arise from different
origins. The proof of the Laplace-difference equation of [9], as was done recently in [27],
crucially relies on the explicit form of the partition function of N = 2∗ SYM that enters in
the localisation computation. As we showed, in proving the Laplace-difference equation of
this paper which relates integrated correlators with different charges, the precise form of
the partition function is not important. Our Laplace-difference equation in this sense is
more similar to the Toda equations for the extremal correlators in N = 2 supersymmetric
theories [18, 32–34]. In both cases, the recursion relations relate correlators of operators
with different charges, and the validity of recursion relations does not rely on the precise
form of the partition functions that enter in the localisation computation.
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The Laplace-difference equation provides a powerful recursion relation that paves
the way for determining the integrated correlators in terms of initial data. To completely
determine all the integrated correlators, one would also need to compute all initial conditions,
i.e. Ĉ(M,M ′|i,i′)

N,p (τ, τ̄) with p = 0. We provided some examples of these initial conditions in
appendix A. They seem to also obey some interesting recursion relations relating integrated
correlators with different N [12]. It will be very interesting to study these initial conditions
systematically and understand better the recursion relations that are satisfied by them.

The unintegrated correlators 〈O2O2O(i)
p O(j)

p 〉 have been studied extensively in various
limits in the literature. In the perturbative region, the correlators are known up to two
loops for general p [35] (and three loops in the planar limit [36]), and up to three loops
for p = 2 [37]. The integrands however are known to higher loops [38–40]. In the strong
coupling limit, they have been computed using bootstrap approaches and holographically
in the planar limit [41–50]11 and beyond [52–60]. Our results provide additional important
information about these correlators that are exact with finite τ and make the SL(2,Z)
symmetry manifest. It is feasible that one could reconstruct unintegrated correlators by
writing down an appropriate ansatz, probably in the large-p limit, and to use our results as
constraints to fix the ansatz. It would also be interesting to exploit the higher-loop integrands
to study the relations between the perturbative parts of our results and these Feynman
integrals using the connections between integrated correlators and Feynman integral periods
observed in [61]. It would be particularly interesting to understand from the standard
Feynman integral point of view the absence of the lower-loop terms in the perturbative
expansion of the integrated correlators involving operators in different (sub)towers.

Another natural question that arises from our results is to solve the Laplace-difference
equation, and to obtain explicit expressions for the integrated correlators and to understand
the dependence on the charge p. Following the ideas of [27], this can be conveniently
done by introducing the generating functions of the integrated correlators, which sum
over the charge-p dependence. In a forthcoming paper [31], we will see that the Laplace-
difference equation becomes a differential equation for the generating functions, and we
will solve the equation explicitly and derive the generating functions of the integrated
correlators. We will be particularly interested in the large-p behaviour of the integrated
correlators. From the generating functions, we will find that in the large-p expansion, the
integrated correlators take a universal form, which resembles the large-N expansion of the
integrated correlators [27]12 with p and N exchanged, albeit with some interesting and
subtle differences.
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A Initial conditions for Laplace-difference equation

In this appendix, we will provide exact results for the integrated correlators Ĉ(M,M ′|i,i′)
N,p

with p = 0 for M,M ′ ≤ 5, namely the initial conditions for the Laplace-difference equation
for the examples that we considered in section 4. It was found in [12] that the integrated
correlators associated with 〈O2O2O(i)

p O(j)
p 〉 for p ≤ 5 obey some recursion relations that

relate these integrated correlators with different N . As we discussed in section 2.2, the
towers of operators O(i)

0|M are particular linear combinations of O(i)
p or Tp1,p2,...,pn . For the

relevance of this discussion, the examples given in (2.19) are quoted below,

O0|0 = I , O0|3 =T3 , O0|4 =T4−
2N2−3
N(N2+1)T2,2 , O0|5 =T5−

5(N2−2)
N(N2+1)T2,3 .

(A.1)
As we commented, they also coincide with the identical single-particle operators. The
integrated correlators involving two identical single-particle operators with M < 6 have been
considered in [12]. In our notation, they are Ĉ(M,M |i,i)

N,0 (τ, τ̄), with M = 3, 4, 5. Therefore,
here we will only consider the cases with M 6= M ′. Since there is no degeneracy we will also
drop the indices i, i′, and the only non-trivial cases are Ĉ(4,0)

N,0 (τ, τ̄) and Ĉ(5,3)
N,0 (τ, τ̄), which

we will present below.
Using (A.1), we have the following relation between four-point functions

〈O2O2O0|4O2|0〉 = 〈O2O2 T4 T2,2〉 −
2N2 − 3
N(N2 + 1)〈O2O2 T2,2 T2,2〉 , (A.2)

which implies the same relation for the corresponding integrated correlators. It was found
in [12] (see section 3 of the reference) that the integrated correlators associated with
〈O2O2 T4 T2,2〉 and 〈O2O2 T2,2 T2,2〉 obey some N -dependent recursion relations. Solving
these recursion relations, using (A.2) and adapting to our normalisation, we obtain the results
for Ĉ(4,0)

N,0 (τ, τ̄) in terms of only C(0,0)
N,1 (τ, τ̄). Once again, C(0,0)

N,1 (τ, τ̄) is known exactly [8, 9],
which may be determined by the recursion relation (1.2). Explicitly, we find

Ĉ(4,0)
N,0 (τ, τ̄) = (N − 3)7

32N(N2 + 1)

[
F

(4)
N (τ, τ̄)− 2N2 − 3

N(N2 + 1)
(
∆τ + 2N2

)
C(0,0)
N,1 (τ, τ̄)

]
, (A.3)

where (N − 3)7 is the Pochhammer symbol. Using the Laplace-difference equation (1.2), one
could replace ∆τCN (τ, τ̄) by linear combinations of C(0,0)

N−1,1(τ, τ̄), C(0,0)
N,1 (τ, τ̄) and C(0,0)

N+1,1(τ, τ̄).
Furthermore, the function F (4)

N (τ, τ̄) is also expressed in terms of C(0,0)
N,1 (τ, τ̄),

F
(4)
N (τ, τ̄) =

N−1∑
l=1

1
2l(l+1)

[
l2(l+1)2

(
C(0,0)
l+2,1(τ, τ̄)+C(0,0)

l−1,1(τ, τ̄)
)
−l(l−2)

(
l2+4l−1

)
C(0,0)
l+1,1(τ, τ̄)

−(l+1)(l+3)
(
l2−2l−4

)
C(0,0)
l,1 (τ, τ̄)

]
.

(A.4)
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Similarly for Ĉ(5,3)
N,0 (τ, τ̄), we have

40N2(N2+5)
(N−4)9

Ĉ(5,3)
N,0 (τ, τ̄) =

F
(5)
N (τ, τ̄)+ 6

25N(N−1)
[
3N(N−1)(N2+17)C(3,3)

N−1,0(τ, τ̄)

−6N(N+1)(N2+2N−21)C(0,0)
N−1,1(τ, τ̄)+2(N−1)(N−2)

(
(N3+5N2−13N+25)C(0,0)

N,1 (τ, τ̄)

+6N(N−1)C(0,0)
N+1,1(τ, τ̄)

)]
,

(A.5)
where C(3,3)

N,0 (τ, τ̄) is the integrated correlator associated with 〈O2O2O3O3〉, which is given by

C(3,3)
N,0 (τ, τ̄) = 2

N−1∑
l=1

(
C(0,0)
l,1 (τ, τ̄) + C(0,0)

l+1,1(τ, τ̄)
)
− 4
N
C(0,0)
N,1 (τ, τ̄) , (A.6)

and F (5)
N (τ, τ̄) taking the following form,

F
(5)
N (τ, τ̄) =

N−1∑
l=1

6
5l2(l+1)2

[
4l(l+2)(l+1)2F

(4)
N (τ, τ̄)+l(l2−1)

(
(9l−6)C(3,3)

N,0 (τ, τ̄)+2l2(l+1)C(0,0)
N+2,1(τ, τ̄)

)
−2l2(l−1)(3l2−4l+3)C(0,0)

N+1,1(τ, τ̄)−2(l+1)(l+2)(l4+l3−11l2+11l−8)C(0,0)
N,1 (τ, τ̄)

]
,

(A.7)
with F (4)

N (τ, τ̄) and C(3,3)
N,0 (τ, τ̄) given in (A.4) and (A.6), respectively.
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