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Abstract 

 

Desmosomes are macromolecular, dynamic and adaptable complexes that connect 

intermediate filaments of neighboring cells in a variety of tissues, generating a large 

mechanically resilient structure. The importance of maintaining desmosome 

homeostasis for tissue integrity and optimal organ function has been revealed 

through the identification of desmosome-associated disorders and mechanistic 

studies into desmosome regulation. This thesis focuses on inherited skin and heart 

conditions linked to mutations in desmosomal genes or in genes believed to be 

implicated in desmosome regulation. 

Part of this thesis is focused on the molecular analysis and identification of novel 

desmosomal mutations in patients clinically diagnosed with Arrhythmogenic Right 

Ventricular Cardiomyopathy, and the genetic diagnosis of patients with 

hypotrichosis, hypotrichosis and PPK or acral peeling skin syndrome. Patients were 

analysed using a number of different genetic techniques including custom capture 

array, HaloPlex targeted resequencing, exome capture and Sanger sequencing. Both 

novel and previously reported mutations were identified in DSP, DSC2, DSG2, PKP2, 

DSG4 or CSTA in patients diagnosed with these disorders. 

The molecular mechanisms behind mutations in the protease inhibitors cystatin A 

and calpastatin, leading to the skin disorders exfoliative ichthyosis and PLACK 

syndrome, were also investigated. In vitro analysis, using siRNA-mediated 

knockdown in the immortalised keratinocyte cell line HaCaT, demonstrated that 

these mutations, affecting the structure and function of the protease inhibitors, lead 

to deficient intercellular adhesion, possibly through the indirect regulation of 

desmosomal complexes through their target proteases. 
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1.1. The Skin 

The skin is key in maintaining the integrity and healthy functioning of the human 

organism. The skin’s most critical function is to form a barrier between the “outer” 

and “inner” environments, and by this regulating processes such as water loss, thus 

preventing desiccation, and protecting against chemical (irritants, allergens), 

mechanical (UV light, temperature variations, mechanical stress) and microbial 

assaults (fungus, bacteria, viruses) through a permanent rearrangement and 

regulation of its structural and molecular components (Egberts et al., 2004). 

The three consisting layers of the skin are the epidermis, the dermis and the 

hypodermis. The hypodermis is the deepest skin layer, with roles such as body 

insulation, energy resource and skin protection, and cushion against mechanical 

stress while serving as a shelter for nerve fibres, blood and lymph vessels. The 

dermis is the intermediate layer and also the thickest layer of the skin, formed of 

fibrous, filamentous, diffuse and connective tissue elements which accommodate 

nerves, glands and vascular components. It serves as a thermal regulator, binds 

water, protects against mechanical injury and is the main sensorial receptor. The 

epidermis is the outer layer of the skin and the first barrier against external assaults. 

Some of the key roles of this layer are UV protection, immune defence and adhesion 

(Wolff et al., 2007).   

1.1.1. The epidermis 

The epidermis is structured on four layers named after their position or a specific 

characteristic. These layers stratify from the basal layer, the spinous layer, the 

granular layer to the stratum corneum which is shed during desquamation (Figure 

1.1.). Keratinocytes represent 80% of the cells forming the epidermal layers and 

intercalate with various other cells such as melanocytes, Langerhans cells, Merkel 

cells and lymphocytes (Houben et al., 2008).  

The structure of all keratinocytes is directed by a family of intermediate filaments, 

named keratins, through a cell-type and tissue-type differentiation stage, 

developmental stage and disease-dependent co-expression of fifty-four keratins.  
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The basal layer is where keratinocyte differentiation, a genetically-programmed, 

carefully regulated and complex morphologic and metabolic process, begins only to 

end with a terminally differentiated dead keratinocyte which contains keratin and 

matrix proteins with surface-associated lipids. This layer contains mitotically active 

keratinocytes which get their columnar shape and attachment to the basement 

membrane function from keratins 5 (KRT5) and 14 (KRT14). Melanocytes, another 

epidermal cell type, produce melanin, which is the pigment in these cells, giving the 

overall skin pigmentation perceived macroscopically. Various studies suggest that 

the basal layer can exhibit three proliferative potentials, as stem cells, transit 

amplifying cells and post mitotic cells. It is believed that stem cells are located within 

the follicular bulge region and that these cells are not only capable of forming the 

entire pilo-sebaceous unit but also the interfollicular epidermis. The transit 

amplifying cells arise from stem cells as a consequence of their infrequent division. 

These daughter cells are the most common cells in the basal layer and represent the 

stable self-renewed cells which reach their end terminal point in the stratum 

corneum after a succession of divisions (Wolff et al., 2007). 

The spinous layer takes its name from the special shape the composing 

keratinocytes have, which changes as the cells differentiate into the granular layer. 

These cells retain the stable KRT5 and KRT14 filaments produced in the basal layer, 

localised around the nucleus and tethered to desmosomes, but do not synthesize 

any new mRNA, instead they produce KRT1 and KRT10 specific to this epidermal 

layer. These keratins are specific to differentiated/keratinised cells and their down-

regulation together with the up-regulation of KRT6 and KRT16 are a hallmark of 

hyperproliferative disorders (Wolff et al., 2007). 

The basophilic keratohyalin granule-containing cells make up the granular layer, 

which takes its name from this attribute. These granules are composed primarily of 

profilaggrin, keratin filaments and loricrin. This layer is where many of the 

characteristics of the epidermal barrier are formed. Release of profilaggrin from the 

granules results in its calcium-dependent cleavage into filaggrin monomers which 

aggregate with keratin to form macrofilaments, eventually filaggrin being degraded 

into UV protective molecules (Wolff et al., 2007). 
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The final stage of keratinocyte differentiation ends with flattened cornified cells that 

form the stratum corneum. During this differentiation process an apoptotic 

mechanism results in the destruction of the nucleus together with all intracellular 

components excepting the keratin filaments and filaggrin matrix. Regulation of 

permeability, desquamation, antimicrobial peptide activity, toxin exclusion and 

selective chemical absorption, some of the most important functions of the 

extracellular lipid matrix, together with mechanical reinforcement, hydration, 

cytokine-mediated inflammation and protection from UV damage provided by the 

corneocytes represent the first defence barriers of the human organism against 

external factors (Egberts et al., 2004, Houben et al., 2007, Fuchs, 1990, Fuchs, 2007). 
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Figure 1.1. Schematic structure of the human epidermis. The different epidermal layers 

indicative of layer-specific cellular differentiation are shown including the basal, spinous, 

granular and cornified layers. 
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1.1.2. The dermal-epidermal junction 

The dermal-epidermal junction (DEJ) is a complex form of the basement membrane 

and it underlies the basal layer of the epidermis, extending into the upper layers of 

the dermis, and covering the entire length of the epidermis and epidermal 

appendages such as sweat glands, sebaceous glands and hair follicles. The DEJ 

consists of three zones which through complex protein-protein interactions provide 

a strong mechanical stability between the epidermal and dermal structures. The 

first zone is formed of keratin filaments spanning from the nuclear area of the basal 

cells of the epidermis into the plasma membrane and associate to hemidesmosomal 

plaques. External to the plasma membrane of the basal cells, anchoring filaments, 

seen throughout the lamina lucida, connect to the lamina densa. The second zone, 

called lamina densa, has been described under higher magnification with a granular-

fibrous appearance, mainly formed of collagen IV, nidogen-entactin, perlecan, and 

laminins, which can polymerize to form networks of variable thickness. The third 

zone is the subbasal lamina formed of microfibrilar structures such as the anchoring 

fibrils, mainly collagen VII aggregates, and the elastic fibers. The majority of 

anchoring fibrils bind to the basal lamina with one end and the fibrous structures of 

the dermis with the other end. Other fibrils originating from the lamina densa curve 

in a horse shoe manner and reinsert themselves into the lamina densa or insert into 

amorphous structures named anchoring plaques. These microfibrils insert into the 

basal lamina perpendicularly to the basement membrane, and extend into the 

dermis merging with the elastic fibers to form a plexus parallel to the DEJ (Burgeson 

and Nimni, 1992, Christiano and Uitto, 1994, Kielty and Shuttleworth, 1997, Tamai 

et al., 2009, Ko and Marinkovich, 2010). The DEJ therefore provides a variety of 

complex attachments between the reticular dermis and the intermediate filament 

cytoskeleton of the basal cells of the epidermis. 

1.1.3. The dermis 

The dermis is the skin layer below the epidermis, usually much thicker than the 

layer above, it serves as physical support and a source of nutrients for the avascular 

epidermis, but also as a thermal regulator and a sensorial receptor due to the 

numerous nervous endings. It is largely composed of a network of collagen and 
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elastin fibres embedded in the extra-cellular matrix (ECM), a heterogeneous 

network of complex molecules including proteins and polysaccharides, such as 

fibronectin, laminins, hyaluronic acid and proteoglycans. Scattered throughout the 

dermis are cells called fibroblasts which regulate the organisation of the fibrillar 

dermal matrix and responsible with the synthesis and maintenance of the 

precursors of the ECM. This complex macromolecular network provides a scaffold 

through which cells can move, influencing cell behaviour through the constant 

turnover and remodelling of its components (Halper and Kjaer, 2014).  

Structurally, the dermis is divided into the superficial papillary dermis and the 

deeper reticular dermis. The papillary dermis, presents a looser fibrous texture in 

comparison to the reticular layer, and is formed of vascular networks, parallel to the 

skin surface, that communicate between themselves through vertical vessels, 

together forming the superficial plexus serving different dermal papillae. Similarly 

to the superficial blood vessels, the collagen bundles follow the structures they 

surround. The reticular dermis is the thicker layer of the dermis and is formed of 

larger blood and lymph vessels, thicker collagen and elastic fibres and nerve endings 

(Halper and Kjaer, 2014). 

1.1.4. Keratinocyte adhesion and communication in the epidermis 

The skin, as the first defence organ, can successfully accomplish its basic functions 

with the essential assistance of intercellular junctions which serve to create a tight 

barrier between keratinocytes. The barrier, formed by adherens junctions, tight 

junctions and desmosomes together with gap junctions, facilitates both the 

structural integrity and cell-cell communication homeostasis (Figure 1.2.).  
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Figure 1.2.  Diagram of epidermal intercellular junctions. Intercellular junctions 

include gap junctions (orange), adherens junctions (purple), desmosomes (red, Sobolik-

Delmaire et al., 2010) and tight junctions (blue), connecting keratinocytes. Adherens and 

tight junctions are shown to be connected to actin microfilaments (dark red). Desmosomes 

are connected to keratin intermediate filaments (green). Adhesion between adherens 

junctions and desmosomes is mediated by cadherin proteins, which form links between 

neighbouring keratinocytes. 
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1.1.4.1. Adherens junctions 

The adherens junctions are major cell-cell links that mediate cell recognition, 

adhesion, morphogenesis and tissue integrity, their importance being highlighted 

by the maintenance of their structural similarities during evolution (Yonemura, 

2011, Oda and Takeichi, 2011). This type of junction is not only found in epithelial 

tissues but also in non-epithelial cells such as fibroblasts, cardiac muscles and 

neurons. They are characterised as regions at the interface of two neighbouring cells 

and enclose a dense undercoat associated with actin filaments at the cytoplasmic 

surface. 

Cadherins, the major components of these junctions, are structurally formed of 

repeating extracellular cadherin domains and a cytoplasmic region that binds p120-

catenin and β-catenin at opposing ends (Oda and Takeichi, 2011). A variety of 

cadherins are known, with different names depending on their localisation, such as 

E-cadherin in the epithelium, N-cadherin in the neuronal tissue (Meng and Takeichi, 

2009). P120-catenin is known to stabilise cadherins at the intercellular surface, 

while β-catenin is thought to mediate the interactions of cadherins with the actin 

filaments through α-catenin, until recently when this theory was dismissed 

(Yamada et al., 2005). Alongside its function in adherens junctions, β-catenin is also 

a crucial component of the Wnt signalling pathway, which regulates development 

and homeostasis via gene expression, cell growth, survival and polarity (Moon et al., 

2002). Under normal conditions Wnt pathway signalling is regulated by 

phosphorylation and subsequent degradation of β-catenin, meaning that somatic 

mutations in β-catenin itself, or in those proteins involved in its phosphorylation or 

degradation (including Dishevelled, Axin, Adenomatous Polyposis Coli [APC], and 

glycogen synthase kinase-3β) can lead to constitutive β-catenin activation and lead 

to cancer development (Moon et al., 2002). 

1.1.4.2. Tight junctions 

Tight junctions form the boundary between the apical and basolateral domains of 

epithelia and serve in preventing the paracellular passage of fluids, electrolytes and 

macromolecules (Bonazzi and Cossart, 2011). The four main protein groups which 

constitute the junction are the occludins, the claudins, the junction adhesion 
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molecules (JAM) and the coxsackievirus and adenovirus receptor proteins (CAR) 

(Citi and Cordenonsi, 1998). The first two types of proteins, occludins and claudins, 

have four transmembrane domains and form homodimers via their extracellular 

loops, while JAMs and CARs have only one transmembrane domain and extracellular 

IgG-like domain that mediate adhesion. These transmembrane components bind to 

intracellular components which link them to the actin cytoskeleton. Due to their 

apical location, tight junctions are easily disrupted by pathogens during host 

infection and virus spread (Bonazzi and Cossart, 2011). 

1.1.4.3. Gap junctions 

The main role of gap junctions is to permit intercellular communication, a function 

vital for controlling homeostasis, and responding to external stimuli, which they 

accomplish by allowing the transfer of ions (including Ca2+ and Mg2+) and small 

molecules of less than 1 kDa (such as cAMP, cGMP and ATP) between cells (Scott 

and Kelsell, 2011). Gap junctions consist of plaques of many small channels, each 

the product of two hexameric hemi-channels on closely apposed cell membranes. 

Each hemi-channel is a homo- or heteromeric hexamer made up of connexins (Cx) 

(Storme et al.), a protein family of 21 members in humans, named according to their 

molecular mass (Wei et al., 2004). Cx are differentially expressed in the human body, 

with multiple types expressed in any single tissue type. Microtubules are believed 

to facilitate the trafficking of hemi-channels to the cell surface where they can be 

found unopposed to another channel or docked with a hemi-channel on an adjacent 

cell to form a gap junction connecting the cytoplasms of these two neighbouring 

cells. Hemi-channels can be either homo- or heterotypic which means that they are 

composed of identical or different hemi-channels respectively (Caspar et al., 1977). 

Gap junctions composed of different connexins have different properties due to a 

varied permeability to molecules and ions (Goldberg et al., 2004). 

1.1.5. The desmosome – a complex intercellular junction 

Desmosomes are complex macromolecular structures with a key role in the 

maintenance of collateral epidermal integrity. These structures were discovered by 

Italian pathologist Giulio Bizzozero (1846-1901), in a variety of tissue types exposed 
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to mechanical stress, such as the intestinal mucosa, gallbladder, uterus and oviduct, 

liver, pancreas, stomach, salivary and thyroid glands, and the epithelial cells of the 

nephron, but are most abundant in the skin and myocardium  (Farquhar and Palade, 

1963, Kelly, 1966, Staehelin, 1974, Holthofer et al., 2007). A primary function of 

desmosomes is the anchoring of cytoskeletal keratin intermediate filaments in the 

epidermis, desmin intermediate filaments in the heart, vimentin intermediate 

filaments in meningeal cells and the follicular dendritic cells of lymph nodes to the 

cell membrane (Green and Gaudry, 2000). 

1.1.5.1. Ultrastructural organisation of the desmosomal complex 

All desmosomes, independent of their localisation, are formed of three main classes 

of proteins divided into three parallel individual zones, arranged symmetrically on 

the cytoplasmic faces of the plasma membranes of bordering cells and separated by 

the extracellular domain. The five known desmosomal components are: the 

desmosomal cadherins, represented by four desmogleins (DSG1-4) and three 

desmocollins (DSC1-3), the armadillo family members, plakoglobin (PG)/γ-catenin 

and the three plakophilins (PKP1-3), and the plakin linker protein desmoplakin 

(DSP) which anchors the intermediate keratin filaments (Figure 1.3.).  
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Figure 1.3. Structural organisation of the desmosomal complex. Schematic diagram of 

the desmosome with the relative localisation of desmosome-associated proteins, the 

cadherin family (desmogleins, in pink and desmocollins, in orange), the armadillo family 

(plakoglobin, in purple and plakophillins, in green), the plakin linker (desmoplakin, in dark 

red) and the intermediate filaments (in light purple) bound to desmoplakin. PM – plasma 

membrane; ECD – extracellular core domain; ODSP – outer dense plaque; IDSP – inner dense 

plaque. 
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1.1.5.2. Molecular composition of desmosome-associated proteins 

1.1.5.2.1. The cadherin superfamily of intercellular linkers 

The desmosomal cadherins belong to the larger cadherin superfamily which also 

includes T-cadherin, FAT family cadherins (Angst et al., 2001), seven pass 

transmembrane cadherins, proto-cadherins and classic cadherins, all sharing an 

approximately 110 amino acid motif involved in adhesion and calcium binding 

(Takeichi, 1977, Takeichi, 1990). 

Desmogleins (DSGs) and desmocollins (DSCs) are the transmembrane components 

that bridge adjacent cells and are embedded in the cytoplasmic plaques, forming the 

dense extracellular midline seen in mature desmosomes. They share 30% amino 

acid identity between each other and with classical cadherins (Garrod et al., 2002), 

with DSC genes being more closely related to the classical cadherins than they are 

to DSGs (Kljuic et al., 2004). 

Structurally, the desmosomal cadherins are formed of five extracellular cadherin 

repeats (EC1-5) containing Ca2+-binding sites and a cell-adhesion recognition (CAR) 

site (Tselepis et al., 1998, Runswick et al., 2001). A unique characteristic of all DSC 

genes is the alternative splicing which generates a complete DSCa form and a 

shorter DSCb form of the protein by the insertion of a mini-exon containing a stop 

codon, the shorter C-terminal domain being the only difference between the two 

isoforms (Collins et al., 1991). Desmogleins contain an extended 500 amino acid tail 

with not yet fully understood functions (Figure 1.4.). 

Desmosomal cadherins show complex developmental and differentiation-specific 

patterns of expression (Holthofer et al., 2007), which suggests that desmosomes 

within different tissues are biochemically and functionally distinct. The precise role 

for the tissue-specific expression pattern of desmosomal cadherins is not fully 

understood, however manipulation of desmosomal cadherins expression suggests 

that tight regulation of their expression pattern is critical to tissue homeostasis 

(Bannon et al., 2001). Within the epidermis these genes are differentially expressed 

as keratinocytes undergo terminal differentiation (Kottke et al., 2006, Holthofer et 

al., 2007) as follows: DSG1 and DSC1 are strongly expressed in the granular and 
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spinous layers, their levels decreasing in the lower layers of the epidermis (King et 

al., 1995, Shimizu et al., 1995, North et al., 1996); DSG2 and DSC2 are expressed in 

all desmosome-bearing tissues, represent the predominant isoforms in simple 

epithelia (Legan et al., 1994, Schafer et al., 1996), and are mainly expressed in the 

basal layers of stratified epidermis (Garrod et al., 2002, North et al., 1996). DSG4 is 

primarily expressed in the hair follicle and is restricted to the more differentiated 

layers in stratified epithelia (Delva et al., 2009). DSGs 1, 3, and 4, and DSCs 1 and 3 

are predominantly expressed in the epidermis, while DSG2 and DSC2 are highly 

expressed in the myocardium (Li and Radice, 2010) (Figure 1.5.).  

Within the cornified layer of the epidermis (stratum corneum), desmosomes are 

modified into corneodesmosomes, structures which contain DSG1, DSC1 and 

corneodesmosin as their major extracellular constituents. The relative thickness of 

the stratum corneum is achieved by the controlled degradation of 

corneodesmosomes, any modifications at this level leading to severe barrier defects 

(Ishida-Yamamoto et al., 2011).  

1.1.5.2.2. The armadillo family of proteins with multiple complex functions 

PG together with the three known plakophilins PKP1-3 (Hatzfeld, 2007, Hatzfeld, 

2005), all members of the armadillo family, are adaptor proteins with roles in 

facilitating the adhesion of DSP to keratin intermediate filaments, in regulating 

clustering of the desmosomal components, and in mediating important signal 

transduction pathways. PG is formed of 12 arm repeats that share 65% amino acid 

identity with β-catenin, the equivalent protein associated with adherens junctions. 

The central armadillo domain of PG interacts with DSP, which in turn tethers 

intermediate filaments to the desmosomal plaque (Figure 1.4.). PG can also 

translocate to adherens junctions and bind E-cadherin in the same manner as β-

catenin, but its higher affinity for DSP may explain why PG and not β-catenin locates 

to desmosomes (Choi et al., 2009).  

Both PKP1 and 2 exist in two isoforms, a shorter “a” form and a longer “b” form 

(Mertens et al., 1996, Schmidt et al., 1997), with the short “a” form more 

predominant and PKP1b form exclusive to the nucleus. The presence of PKP2 in the 

nucleus is regulated by the 14-3-3 protein and contributes to the RNA polymerase 
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III holoenzyme complex (Desai et al., 2009). The presence of a previously reported 

fourth PKP protein, in the desmosome and the adherens junctions, has since been 

questioned (Hofmann et al., 2009).  

PKPs 1-3 share 50-55% sequence similarity with the arm domain of p120-catenin 

(Hatzfeld, 2007), another armadillo family protein. Based on structural analysis 

studies, PKPs contain 9 arm repeat domains (Choi and Weis, 2005), with 21 

additional amino acids added to PKP1 and 44 amino acids added to PKP2. PKPs 

show tissue and differentiation specific patterns of expression similar to the 

desmosomal cadherins. It has been observed that while PKP3 shows expression 

throughout simple epithelia and all layers of stratified epithelia, apart from 

hepatocytes, PKP1 is mostly expressed in the suprabasal layers of stratified 

epithelia, and PKP2 expression extends to simple epithelia, lower layers of stratified 

epithelia and non-epithelial tissues such as lymph nodes and the cardiac muscle, 

where it is the only isoform (Heid et al., 1994, Mertens et al., 1996, Schmidt et al., 

1997, Mertens et al., 1999, Bonne et al., 1999, Franke et al., 2007) (Figure 1.5.). 

PKPs appear to play a role in the clustering of desmosomal proteins during the 

formation of desmosomes. The N-terminal head domain of PKP1 can associate with 

DSG1, PG, keratin and actin filaments, and ultimately with DSP through what 

appears to be a robust association which drives DSP recruitment to cell-cell 

junctions (Kowalczyk et al., 1999, Hatzfeld et al., 2000, Wahl, 2005, Hofmann et al., 

2000). PKP3 interacts with the largest number of desmosomal proteins, including 

DSP, PG, DSG1-3, DSC3a and DSC3b, and DSC1a and DSC2a (Hatzfeld, 2007). PKP2 

plays an important role in transport of DSP to the plasma membrane during 

desmosome assembly, but does so less efficiently than PKP1 (Green et al., 2010, 

Chen et al., 2002). The mechanism behind PKP1 and PKP3 mediated-desmosomal 

assembly is not yet fully determined, although it appears that PKP2 functions as a 

scaffold for PKC-α and regulates DSP association to the intermediate filaments 

(Godsel et al., 2010, Godsel et al., 2005, Bass-Zubek et al., 2008).  
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Figure 1.4. Structure of desmosome-associated proteins. (a) Similar to the classic 

cadherins, desmosomal cadherins are type I membrane molecules with extracellular 

calcium binding sites. The four members of the desmoglein subfamily (~160 kDa) are 

unique in having extended tails beyond the intracellular catenin-binding site (Coonrod et 

al., 2014). The three members of the desmocollin subfamilly (110–115 kDa) each have two 

splicing isoforms. The ‘b’ isoform lacks the ICS making it unable to bind plakoglobin. (b) The 

desmosomal armadillo family includes plakoglobin, and the plakophilins. Plakoglobin, 

functionally related to β-catenin, links the desmosomal cadherin tails to desmoplakin 

through binding sites, but is believed to engage in lateral interactions as well. Plakophilins, 

more related to p120, appear to have more restrictive binding sites than plakoglobin. (c) 

Desmoplakin is formed of three domains, a central α-helical coiled-coil ROD, flanked by 

globular C- and N-terminal domains, which interact with intermediate filaments and 

armadillo/cadherin family members. The N-terminus contains a series of predicted α-

helical bundles designated NN, Z, Y, X, W and V, whereas the C-terminus contains the 

intermediate-filament-binding domain formed of homology units A, B and C (Adapted from 

Green and Gaudry, 2000). 
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1.1.5.2.3. The plakin linkers – tethers of intermediate filaments 

DSP, the most abundant desmosomal protein, plays a key role as the linker between 

the plasma membrane and the intermediate filament complex (Delva et al., 2009). 

The protein is predicted to form homodimers through an α-helical coiled-coil rod 

domain which also interconnects a globular N-terminus domain, responsible for 

binding the arm proteins PG and PKPs, and a C-terminus domain, responsible for 

the attachment of intermediate filaments (Holthofer et al., 2007, Kowalczyk et al., 

1994, Bornslaeger et al., 2001, Choi et al., 2002, Yin and Green, 2004) (Figure 1.4.). 

Until recently only two isoforms of DSP (DSP I and DSP II) have been known. As with 

the “a” and “b” forms of desmocollins, DSP I and II isoforms are produced as a result 

of alternative mRNA splicing, with DSP II the shorter isoform of the two. Both are 

widely expressed in numerous tissues, although DSP II is absent from the heart and 

from simple epithelia (Angst et al., 1990). A minor DSP isoform derived from DSP I, 

named DSP Iα, produced by the alternative splicing of DSP I mRNA has also been 

described, detectable in lower levels than the dominant isoforms, and presenting a 

similar tissue distribution (Cabral et al., 2010b). 

By immunogold labelling of DSP, Franke et al. have observed that in normal heart 

muscle DSP is located in all plaques of the desmosome-like and fascia adherens-type 

junctions, with a very intense signal within the desmosome-like junctions (Franke 

et al., 2006). Several in vivo and in vitro studies support the importance of DSP in 

desmosome assembly and function, and show its pivotal role in the development of 

epidermis, neuro-epithelium, heart and blood vessels (Gallicano et al., 2001, 

Vasioukhin et al., 2001). In keratinocytes, DSP II appears to play a more significant 

role than DSP I, in maintaining robust adhesion, suggesting cell-type specific 

functions for the DSP isoforms (Cabral et al., 2012b) (Figure 1.5.).   
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Figure 1.5. Desmosome-associated proteins in the epidermis. The figure illustrates the 

differential distribution and approximate expression levels of the desmosome-associated 

proteins in the human epidermis.   
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1.2. Modulation of desmosomal adhesion 

Desmosomes are not just static structures that glue cells together; instead, they are 

very dynamic and adaptable complexes as shown by their ability to adopt different 

conformations with different adhesive affinities, suppressing pathways important 

for establishing cell polarity and determining the balance between proliferation and 

differentiation, all done through interactions with signalling cascades. Modulation 

of these structures is highlighted in pre-programmed processes such as apoptosis 

but also in malignant processes such as tumour invasion and metastasis. 

Desmosome regulation is ultimately the indirect regulator of downstream nuclear 

and signalling processes through regulation of subcellular distribution of 

desmosomal components. 

The hyper-adhesiveness of desmosomes is regulated by the presence or absence of 

Ca2+, PKC, proteolytic processing through ADAM proteins, EGFR expression levels, 

raft regulation and the yet unclear mechanism of the ubiquitin-proteasome system 

(UPS), all with a role in mediating desmosome assembly and function (Nekrasova 

and Green, 2013, Yin and Green, 2004, Stahley et al., 2014, Loffek et al., 2012, 

Blaydon et al., 2011a, Blaydon et al., 2011b).  

1.2.1. Calcium-dependent modulation 

During Ca2+ regulation the key players are DSGs and DSCs, required for strong cell-

cell adhesion (Getsios et al., 2004), via their interaction with each other, across the 

intercellular space, in a homophilic and/or heterophilic manner. Via several binding 

motifs within their structure, DSGs and DSCs bind Ca2+ and assume a rigidified 

functional conformation (Pokutta and Weis, 2007), thereby increasing the level of 

adhesion between neighbouring cells and creating what has been described as the 

dense midline of desmosomes. In low-Ca2+ conditions (less than 0.5 mM) the 

desmosomal plaque components and membrane proteins are transported to the 

plasma membrane, together or in separate compartments, but when desmosomal 

assembly is triggered, cadherins and DSP complexes do not associate as in normal 

Ca2+ conditions and remain separated (Cirillo et al., 2010). It has been observed that 

during the early stages of desmosome formation the assembly can reverse between 
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the mature and young phases but ultimately desmosomes mature and can no longer 

be dissociated by calcium depletion (Watt et al., 1984), especially in stratified 

epithelia. Adhesion strength in cultured keratinocytes increases after 6 days in 

culture due to this phenomenon (Cirillo et al., 2010), in a similar way to intact 

epithelia in vivo (Garrod et al., 2005, Wallis et al., 2000). This is referred to as hyper-

adhesion, and represents the result of high-affinity and stable adhesive binding of 

desmosomal components into mature structures. It has not been observed in 

adherens or tight junctions, making it specific to desmosomes and explaining the 

hyper-adhesive state of keratinocytes (Kimura et al., 2007).  

There are various situations in which desmosomes switch from a Ca2+-independent 

to a Ca2+-dependent state. It has been observed that upon “wounding” of 

keratinocyte cell monolayers the desmosomes of cells situated at the edge of the 

“wound” lose their hyper-adhesiveness and become Ca2+-dependent, permitting the 

cell motility required for wound re-epithelialisation (Wallis et al., 2000). In this case, 

protein kinase C-alpha (PKCα), a conventional PKC isoenzyme and serine-threonine 

kinase, localises to the dense plaque of wound-edge epidermal desmosomes, 

normally absent from hyperadhesive desmosomes. 

Desmosomal proteins undergo both serine-threonine and tyrosine phosphorylation 

that regulate their fate and interactions with other proteins, and this is where PKC 

can play both positive and negative roles in desmosome assembly with protein 

phosphatase activity being a requirement for the final stages of desmosomal plaque 

formation (Yin and Green, 2004). The main focus of these studies has been PG as 

this desmosomal protein is regulated by all of the above processes. It appears that 

PG is more highly phosphorylated in the soluble non-junction pool therefore it is 

believed that phosphorylation regulates its fate during desmosome assembly 

(Pasdar et al., 1995). 

While the passage of desmosomes from a less adhesive to a hyper-adhesive state is 

Ca2+-dependent, O-glycosylation of the desmosomal plaque component PG has also 

been shown to augment desmosomal adhesion in keratinocytes (Hu et al., 2006). 

Activation of PKCα has been reported to stimulate desmosome formation under 

low-Ca2+ conditions and in the absence of adherens junctions (Green et al., 2010), 
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by regulating the availability of DSP for desmosome assembly (Bass-Zubek et al., 

2008). A recent report by Kroger et al., showed that cells lacking all keratin 

intermediate filaments exhibited higher PKC-dependent DSP phosphorylation 

levels, resulting in an increase in desmosome dynamics and internalisation (Kroger 

et al., 2013). 

With regards to desmosomal cadherins, the levels of DSG1 were found to be 

regulated by two Ca2+-independent ‘novel’ PKC isoforms, increased by the 

differentiation-promoting PKCδ and decreased by the growth-promoting PKCε. The 

expression of DSG3 is also regulated by these isoenzymes, but also inhibited by 

PKCα (Szegedi et al., 2009). Kimura et al. have shown that there are other situations, 

such as mitotically active basal cells and during tumour invasion, when the 

transition from a Ca2+-dependent to a Ca2+-independent state happens with the 

induction of hyper-adhesion via modulation of PKCα signalling (Kimura et al., 2007).  

More recent research studies indicate that intact membrane rafts and therefore 

cholesterol could be another mechanism of desmosome regulation. Membrane rafts 

are cholesterol-enriched membrane domains which have been shown to associate 

desmosomal proteins and release them during desmosomal assembly. Resnik et al. 

have shown that a reduction in cholesterol is equivalent to DSC2 release from the 

rafts and decrease in cell-cell adhesion (Resnik et al., 2011). These findings are 

supported by a more recent study by Stahley et al., which has added DSG3 to the 

other desmosomal proteins, DSC2, DSG2, PG and DSP, previously observed to be raft 

associated, and therefore suggest that their integration and assembly into 

desmosomes is cholesterol regulated (Stahley et al., 2014, Resnik et al., 2011, Nava 

et al., 2007, Brennan et al., 2012). 

1.2.2. Apoptotic modulation  

During apoptosis, between the substrates targeted by effector caspases, a number 

of proteins involved in the regulation of cell contacts and of the cytoskeleton such 

as focal adhesion kinase (Crouch et al., 1996), E-cadherin (Schmeiser and Grand, 

1999), PG (Brancolini et al., 1998), fodrin (Janicke et al., 1998), Gas2 (Brancolini et 

al., 1995) and β-catenin (Brancolini et al., 1998) were identified. In addition to 
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previously published research showing that PG is cleaved by caspase3 during 

apoptosis, recent biochemical and cell biological studies have shown that DSGs and 

DSCs are also specifically cleaved. These studies suggest that the cytoplasmic tail of 

human DSG3 is cleaved by caspases at two distinct sites and that the extracellular 

domain is released from the cell surface by metalloproteinases. Inhibition studies 

have shown that the DSG3 release during apoptosis is different to the release of the 

extracellular domain of E-cadherin. Weiske et al., have also shown that PKP1 and 

both isoforms of DSP are being cleaved by caspases during apoptosis, this process 

leading to the disruption of the desmosomal structure and thus facilitating apoptotic 

cell-specific changes (Weiske et al., 2001). 

1.2.3. Desmosomal dysregulation promotes cancer 

Desmosome regulation was observed to play a role in cancer progression, with 

various desmosome-associated proteins dysregulated in a variety of tumours. 

Numerous models have been used to provide a clarification for how desmosome 

regulation promotes tumour metastasis and invasion, with little success as these 

studies produced contradictory and confusing results. Some cancers, such as head 

and neck, prostate, lung and some skin cancers present with an overexpression of 

desmosomal proteins DSG2, DSG3 and PKP3, in comparison to normal tissue 

(Brennan and Mahoney, 2009, Chen et al., 2007, Furukawa et al., 2005, Kurzen et al., 

2003, Breuninger et al., 2010). In contrast, the down-regulation of other 

desmosomal components, DSG1-3, DSC2, DSC3, PG, PKP1-3 and DSP was observed 

in the metastatic progression and development of other human cancers such as 

breast, bladder, prostate, cervical and endometrial, head and neck, gastric, 

colorectal and some skin cancers (Dusek and Attardi, 2011), and in some instances 

no changes in expression of desmosome-associated proteins was noted (Kurzen et 

al., 2003). 

The most studied model is based on the release of specific desmosomal components, 

such as PG which can display oncogenic activity through its β-catenin-like signalling 

activity. It is believed that PG replaces β-catenin in adherens junctions thus freeing 

β-catenin which can stimulate the transcription of Wnt target genes, including 

oncogenic targets such as CCDN1 (cyclin D1) (Conacci-Sorrell et al., 2002). In 
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addition to this, PG can transit to the nucleus and directly activate the oncogenic β-

catenin-LEF/TCF target genes or potentially stimulating the expression of 

uncharacterised targets which promote proliferation or transformation (Zhurinsky 

et al., 2000), while concomitantly inhibiting apoptosis by induction of Bcl-2, an anti-

apoptotic protein (Hakimelahi et al., 2000). Recently, Chen et al. have shown in their 

in vitro studies that a PG-dependent mechanism can be activated by knockdown of 

DSG3, which led to translocation of PG to the nucleus and suppression of TCF/LEF 

transcriptional activity, thus leading to the inhibition of expression of c-myc, CCDN1 

and MMP-7 target genes (Chen et al., 2013). 

The nuclear localisation of PKPs in specific conditions suggests that these proteins 

could modulate gene expression and it has been shown that PKP2 can interact with 

β-catenin leading to increased β-catenin-TCF transcriptional activity; whether this 

process is direct or takes place through mediators it remains unknown (Sobolik-

Delmaire et al., 2010). In addition PKP1 and PKP3 localise to certain cytoplasmic 

compartments where they can interact with translation-initiation factors and 

stimulate translation, the implication of PKPs in tumourigenesis being supported by 

the observed redistribution of these proteins from the plasma membrane to the 

cytoplasm (Wolf and Hatzfeld, 2010). It is believed that the simple loss of the hyper-

adhesive strength that is unique to desmosomes may contribute to cancer 

progression by releasing a barrier to invasion and metastasis (Dusek and Attardi, 

2011). Similarly to in vivo observations, several in vitro studies have reported 

conflicting results with regards to a clear mechanism behind metastatic 

proliferation, apoptosis and invasion, and whether this mechanism is dependent on 

the up-regulation or down-regulation of desmosomal proteins (Dusek and Attardi, 

2011). 

Another desmosome-related protein associated with cancer is PERP (p53 apoptosis 

effector related to PMP-22), a p53/p63 regulated membrane protein, required for 

desmosome assembly. Initially identified as a transcriptional target of the p53 

tumour suppressor, upregulated during apoptosis, and subsequently seen as a 

target of p63, promoting intercellular adhesion and preserving epithelial integrity 

(Attardi et al., 2000, Ihrie et al., 2005). Mouse studies have shown that mice with 

Perp knockout or LOF mutations, exposed to UVB light have an increased tendency 
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to develop squamous cell carcinomas (SCCs), Perp-ablation leading to both tumour 

initiation and progression in various types of tumours (Beaudry et al., 2010b, 

Beaudry et al., 2010a). Moreover, Perp-deficient tumours show a significant down-

regulation of desmosomal components, while adherens junctions remain intact, 

suggesting a specific role for desmosomes in tumourigenesis. These observations 

were confirmed in human SCCs, and suggest a clear implication of Perp, as a critical 

mediator of p53 tumour suppressor, in SCC development (Beaudry et al., 2010b).  

1.2.4. Regulation of desmosomal adhesion through proteases and their 

inhibitors 

Proteases are key factors in orderly processes such as desquamation and regulation 

of the skin's barrier function. On the basis of their catalytic domain, proteases were 

classified into aspartate-, cysteine-, glutamate-, metallo-, serine-, and threonine 

proteases. Particularly, serine proteases (SPs) contribute to epidermal permeability 

barrier homeostasis, as acute barrier disruption increases SP activity in skin and 

inhibition by topical SP inhibitors accelerated recovery of barrier function (Meyer-

Hoffert and Schroder, 2011). 

Endogenous and exogenous proteases such as kallikreins, matriptase, caspases, 

cathepsins, and proteases derived from microorganisms are important in the 

desquamation of the stratum corneum and are able to regulate the activity of 

defence molecules in the human epidermis. Protease inhibitors such as LEKTI, 

elafin, SLPI, SERPINs and cystatins regulate their proteolytic activity and contribute 

to the integrity and protective barrier function of the skin. Changes in the proteolytic 

balance of the skin can result in inflammation, which leads to the typical clinical 

signs of redness, scaling, and itching (Meyer-Hoffert, 2009). 

As two of the results chapters of this thesis are focused on exfoliative ichthyosis, an 

inherited skin disorder linked to mutations in CSTA encoding for cystatin A (Blaydon 

et al., 2011b), and on a novel clinical entity which we have named PLACK syndrome, 

linked to mutations in CAST, the gene encoding for calpastatin (Lin et al., 2015), the 

following introductory subsections will expand on these specific protease inhibitors 

and their target proteases.  
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1.2.4.1. Cysteine protease inhibitors of papain-like proteases 

Cystatins are part of a large superfamily of cysteine protease inhibitors, also named 

class I cystatins, initially described as inhibitors of lysosomal cysteine proteases, 

and in recent years also reported to have a variety of other roles. Cystatins have 

been divided into four protein families, three families of inhibitory proteases and 

one family of enzymes with non-inhibitory function (Rawlings and Barrett, 1990). 

The three families with inhibitory functions are: family I, comprised of the mainly 

endogenous stefins A and B with one inhibitory domain, expressed in a variety of 

organisms and tissue types, stefin C discovered in bovine thymus (Turk et al., 1993) 

and stefin D identified in pigs (Lenarcic et al., 1996); family II, comprised of 

exogenous cystatins C, D, E/M, F, G, S, SN and SA (Abrahamson et al., 2003), the male 

reproductive tract cystatins 8 (CRES, cystatin-related epididymal spermatogenic 

protein), 9 (testatin), 11 and 12 (cystatin T), the bone marrow-derived cystatin-like 

molecule CLM (cystatin 13) and the secreted phosphoprotein ssp24 (cystatin 14) 

with one inhibitory domain (Keppler and Sierra, 2005), where cystatin C is 

expressed in a variety of tissues while the other cystatins are more tissue-specific 

(Magister and Kos, 2013), and family III, comprised of the so called L- and H-

kininogens in a variety of species and T-kininogen only in rats (DeLa Cadena and 

Colman, 1991), intravascular inhibitors, with three inhibitory domains. The fourth 

non-inhibitory family consists of homologues of two cystatin-like domains, the 

human α-2SH-glycoprotein (fetuin) and histidine-rich glycoprotein (Brown and 

Dziegielewska, 1997).  

1.2.4.1.1. Cystatin A protease inhibitor – structure and function 

Cystatin A (also known as stefin A, acid cysteine protease inhibitor, epidermal SH-

protease inhibitor), a member of family I of cysteine protease inhibitors, isolated 

initially from rat skin, is the first cysteine inhibitor described in mammals (Jarvinen 

and Hopsu-Havu, 1975). With a selective expression pattern, CSTA is abundantly 

expressed in the cytoplasm of epithelial cells (Rinne et al., 1978, Rasanen et al., 1978, 

Rinne et al., 1980), dendritic reticulum cells of lymphoid tissue (Soderstrom et al., 

1995), Hassall’s corpuscles (Soderstrom et al., 1994), liver neutrophils (Davies and 

Barrett, 1984) and in thymic medullary cells (Soderstrom et al., 1994), suggesting a 
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key role in the first line defence mechanism against pathogens in various organs. 

CSTA is thought to play an important role in a variety of mechanisms, from skin 

protection against allergens such as dust mites (Kato et al., 2005) and cellular 

proliferation to regulating the activity of several target proteases in different types 

of cancers, including tumours of the breast (Kuopio et al., 1998), lung (Butler et al., 

2011), prostate (Sinha et al., 1999), and SCCs of the head and neck (Strojan et al., 

2000). 

Structurally, CSTA is a 98-amino acid protein, with a molecular mass of 

approximately 11 kDa, sharing 58% identity with stefin B. The 3D structure of CSTA 

was studied for the first time in solution and through its interaction with cathepsin 

H, one of the target proteases of CSTA (Machleidt et al., 1983). Although it is believed 

that CSTA is less selective in its inhibitory function than the exogenous cystatins, 

some of the more studied target proteases of CSTA are cathepsins B, H, L, V and S, 

with the first three frequently dysregulated in a variety of cancers, appearing to 

facilitate tumour invasion and metastasis through cleavage of cell-to-cell junctions 

(Strojan et al., 2000). 

The conformation of this inhibitor, initially suggested following a study on chicken 

CSTA, is formed of five stranded antiparallel β-sheets wrapped around a five turn α-

helix with an additional C-terminal strand running along the convex side of the sheet 

(Bode et al., 1988). The N-terminal end and two β-hairpins form the edge of a wedge-

shaped surface which binds into the active site cleft of the target proteases in what 

was called the “elephant trunk” model. Jenko et al. have looked at the crystal 

structure of CSTA in relation to cathepsin H and have confirmed the mode of 

interaction previously described. It appears that on binding, the N-terminal end of 

CSTA becomes like a hook which pushes away the mini-chain residues of cathepsin 

H, leading to structural changes on the surface of both proteins involved in the 

complex (Jenko et al., 2003), a mechanism confirmed for the interaction between 

CSTA with cathepsin B (Renko et al., 2010).  

Some of the pathologic processes that CSTA has been linked with cover both 

disorders arisen due to a defective inhibitory function, the inhibition of the major 

dust mite allergens Der f 1 and Der p 1 (Kato et al., 2005), and its dysregulation in a 
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variety of cancers (Rivenbark and Coleman, 2009, Rinne, 2010), and also disorders 

arisen due to sequence variations in the CSTA gene, such as a polymorphism leading 

to the inflammatory condition atopic dermatitis (Vasilopoulos et al., 2007), the 

association with  psoriasis (Vasilopoulos et al., 2008), loss-of-function mutations 

linked to exfoliative ichthyosis (Blaydon et al., 2011b, Moosbrugger-Martinz et al., 

2014) and acral peeling skin syndrome (APSS) (Krunic et al., 2013).  

Up to date the target proteases inhibited by CSTA, cathepsins B, H and L have only 

been described in relation to a variety of cancers through their role in the 

degradation of the ECM, facilitating the growth, invasion and metastasis of tumour 

cells, and also in tumour angiogenesis (Rivenbark and Coleman, 2009). Increased 

activity of cathepsins B, L and H is associated with a lower CSTA inhibitory activity 

in the majority of examined patients with breast neoplasms (Lah et al., 1992, 

Gabrijelcic et al., 1992) and in non-small-cell lung cancer patients (Leinonen et al., 

2007). In contrast, Kuopio et al. have demonstrated that positive expression of CSTA 

in breast tumours is associated with a poor outcome, and that co-expression of CSTA 

with p53 in this type of cancers is associated with a high risk of death (Kuopio et al., 

1998). An independent study has revealed that inhibition of cathepsin B in vitro 

reduced bone metastasis in breast cancer patients (Withana et al., 2012). Similarly, 

in the cytosol of patients suffering from head and neck carcinoma, the activities of 

cathepsins B and L correlated significantly with those of CSTA (Kos et al., 1995). 

Strojan et al. have observed that, in patients with SCC of the head and neck, the CSTA 

activity could predict both the tumour aggressiveness as well as the likelihood of 

disease recurrence (Strojan et al., 2011), with patients that present with low CSTA 

expression having a significantly higher recurrence rate than patients with high 

CSTA expression (Strojan et al., 2000). Two other studies looking at patients with 

SCCs have revealed that the immunohistochemical analysis of cathepsin L and CSTA 

is a very good indicator for an aspect of malignancy in human epidermal 

keratinocytes (Palungwachira et al., 2002) and overexpression of CSTA delayed the 

in vivo and in vitro cell growth and metastasis of oesophageal SCC (Li et al., 2005). 

The direct role of CSTA in various human neoplasms requires further study, as up 

to date studies have shown its implication in cell mobility, invasion and tumorigenic 

potential. 
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1.2.4.2. Calpastatin protease inhibitor and the target proteases  

Calpastatin (CAST) is a ubiquitously expressed, specific endogenous protease 

inhibitor of the cysteine proteases calpains 1 and 2, existing in two types: tissue type 

and erythrocyte type, resulted from alternative splicing and proteolytic processing 

(Takano et al., 1991, Takano et al., 1993). Biochemical analysis of CAST has revealed 

that the 126 kDa structure is formed of a unique leader domain (L-domain) in the 

N-terminal end, with no inhibitory properties, and four homologous repetitive 

domains (domains 1-4) with the capacity to bind and inhibit several calpain 

molecules (Minobe et al., 2011). Each of the four inhibitory domains of CAST are 

structured into three subdomains A, B and C, with A and C responsible for binding 

to different domains of calpain and having inhibitory function only due to the 

presence of subdomain B, however increasing the inhibitory capacity of this 

subdomain. It has also been observed that the peptides of subdomain B have no 

inhibitory activity unless they are 13 amino acids or over, the increase in the 

number of amino acids of this subdomain being directly proportional with the 

inhibitory strength, suggesting the need of a large calpain interaction area. Also, as 

this subdomain has not been seen to interact with the active site of calpains, it is 

believed that it may bind to a domain of calpain only after calpain activation by Ca2+ 

(Wendt et al., 2004, Hanna et al., 2008, Moldoveanu et al., 2008).  

A study by Kawasaki et al. has revealed two roles for CAST: a role in inhibiting the 

proteolytic activity of calpains through the interaction between the catalytic site of 

calpain and the inhibitory sequence of CAST, and a role in inhibiting the binding of 

calpains to the cell membrane through the interaction between the regulatory site 

of calpain and the regulatory inhibition site of CAST. Moreover, it appears that the 

modes of action of the two CAST sites do not overlap. Kawasaki et al. concluded that 

the regulation of calpain binding to the cell membrane is essential for the regulation 

of calpain activity (Kawasaki et al., 1993). 

The target cysteine proteases of CAST, “conventional” calpains 1 and 2, initially 

named µ-calpain and m-calpain, based on the concentration of calcium required for 

their activation (Ando et al., 1988, Goll et al., 2003), are non-lysosomal, Ca2+-

activated neutral cysteine proteases with an intracellular localisation, expressed 
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ubiquitously. Crystal analysis of the calpain structure showed that both enzymes are 

heterodimers, sharing one 29 kDa light subunit to which another 83 kDa or 80 kDa 

heavy subunit is added for calpain 1 and 2 respectively, both proteases initially seen 

to cleave keratin filaments into small fragments (Ando et al., 1988).  

CAST together with its target proteases have been named the calpain system, which 

controls a variety of cellular functions such as cytoskeletal remodelling, cell cycle 

progression, gene expression, apoptotic and necrotic cell death, ischemia formation 

and exocytosis (Hanna et al., 2008, Salehin et al., 2011).   

Up to date the calpain system has been linked to numerous disorders, from its 

influence in the tumour formation and progression of various cancers such as skin, 

breast, renal cell, ovarian and prostate (Moretti et al., 2014), to CAST depletion and 

calpain 2 activation in Alzheimer’s Disease (Rao et al., 2008), calpains 1 and 2 

overexpression in Duchenne muscular dystrophy (Ueyama et al., 1998), 

autoantibodies targeting CAST in rheumatoid arthritis (Goldbach-Mansky et al., 

2000), calpain regulation in Huntington’s disease (Menzies et al., 2014) and a 

requirement for a balanced expression of calpain 1 and CAST in acute renal allograft 

rejection (Letavernier et al., 2011), to name a few. Also, calpains play a key role in 

myogenesis, especially in the early stages of this process, myoblast migration and 

fusion. It was observed that calpain activity increases significantly during fusion and 

that CAST inhibits myoblast migration and fusion (Barnoy et al., 1996, Barnoy et al., 

2005, Cottin et al., 1994, Dedieu et al., 2004, Temm-Grove et al., 1999, Leloup et al., 

2006). With regards to the skin, the calpain system has previously been linked with 

psoriasis due to autoantibodies targeted against CAST but also other autoimmune 

skin disorders, suggesting that CAST may play a role in the inflammation process 

associated with these disorders (Matsushita et al., 2005).  

1.3. Acquired desmosome-linked disorders 

The crucial role played by accurate desmosomal assembly and function in skin 

homeostasis, is also highlighted by autoimmune and infectious disorders and also 

through desmosome-linked cancers. 
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1.3.1. Autoimmune disorders 

Pemphigus foliaceus (PF) and Pemphigus vulgaris (PV), a pair of potentially fatal 

autoimmune disorders, characterised by the loss of intercellular adhesion in 

keratinocytes (a process named acantholysis) together with blister formation, 

appear as a consequence of autoantibodies targeting a pair of desmosomal 

cadherins, DSG1 (in PF; (Ishii et al., 1997)) and DSG3 with or without DSG1 (in PV; 

(Amagai et al., 1991)). Independent studies have reported that in early-PV patients, 

presenting with mucosal lesions only, the autoantibodies are targeted only against 

DSG3, and that patients in the later disease stages, presenting with both skin and 

mucosal lesions, autoantibodies target both DSG1 and DSG3 (Ding et al., 1997), 

giving a more severe phenotype, reflective of the desmosomal cadherin expression 

patterns between skin and mucosal tissues (Shirakata et al., 1998).  

These clinical differences between PF and PV patients were explained by the 

compensatory theory, which takes into consideration the difference in expression 

of DSG1 and DSG3 in the epidermis and mucosal tissues. While DSG1 is expressed in 

the upper layers of the epidermis with very low, if any, expression in mucosal 

tissues, DSG3 is expressed in the basal layers of the epidermis and is the main 

cadherin expressed in mucosal tissues. It has been suggested that in PF patients, 

autoantibodies targeting DSG1 disturb the cell-cell adhesion in the more superficial 

layers of the epidermis, generating the PF-characteristic superficial acantholysis 

and blistering, the more subtle phenotype being a result of DSG3 compensation for 

DSG1 in the basal layers of the skin and in mucosal tissues. On the contrary, in PV 

patients (mucous type), whose sera contains DSG3 autoantibodies, the blistering 

occurs mainly in the mucosal tissues, where DSG1 is expressed in very low levels 

and therefore cannot compensate for the lack of DSG3, and rarely causing blisters in 

the skin where DSG1 is expressed and can therefore compensate. This theory 

becomes evident in PV patients (muco-cutaneous type) whose sera contains 

autoantibodies for both DSG1 and DSG3, leading to severe epidermal and mucosal 

blistering due to severe dysregulation of intercellular adhesion in all layers of the 

epidermis, linked to loss of DSG1 and DSG3 (Mahoney et al., 1999, Amagai et al., 

2006). Two independent theories were suggested in an attempt to explain the 

mechanism of autoimmune DSG3 antibodies in PV.  
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Initial studies have shown half-formed desmosomes covered with IgG-labelled 

particles (Iwatsuki et al., 1989, Shimizu et al., 2004), suggesting that PV 

autoantibodies targeting the N-terminal domain of DSG3 could interfere with the 

adhesive function of DSG3, directly leading to breakage of desmosomal connections 

(Mahoney et al., 1999, Sekiguchi et al., 2001, Futei et al., 2003, Stanley and Amagai, 

2006). An in vitro study by Aoyama et al. has revealed that the use of IgG-labelled 

particles, in low calcium conditions, leads to attachment of these particles to half-

desmosomes, and that upon switching to high-Ca2+ these desmosomes couple to 

form complete-desmosomes (Aoyama et al., 2010). These results suggest that 

binding of the PV-specific anti-DSG3 autoantibodies could not split the desmosome 

as the forces are not strong enough to cause the splitting, also supported by a Dsg3-

deficient knockout mouse that formed nearly structurally-intact desmosomes, as 

observed in independent studies (Koch et al., 1997, Chernyavsky et al., 2007). 

The second theory suggests that anti-DSG3 autoantibodies bind to DSG3 prior to the 

assembly of DSG3 into desmosomes, and thus triggering a mechanism of 

endocytosis of the autoimmune complexes (Calkins et al., 2006, Delva et al., 2008, 

Sato et al., 2000, Mao et al., 2009). Oktarina et al. have used double staining to show 

that in skin biopsies from PV patients only DSG3 co-localised with IgG antibodies 

and not DSG1, suggesting that DSG3 becomes sequestered from desmosomes 

leaving only DSG1, thus leading to disturbed desmosome assembly and DSG3-

depleted desmosomes (Oktarina et al., 2011). All these observations support the 

non-assembly and depletion hypothesis, by which the compromised function of PV-

affected desmosomes, with an insufficient amount of DSG3, are being split by 

external factors, such as mechanical stress (Aoyama et al., 2010, Amagai, 2010, 

Kitajima, 2013). 

1.3.2. Infectious diseases  

Bullous impetigo, and its generalised form Staphylococcal Scalded Skin Syndrome 

(SSSS), are two infectious disorders mostly affecting children under the age of 6 and 

immuno-compromised adults (Amagai, 2010), characterized by severe blistering as 

a result of keratinocyte acantholysis. This condition is a result of exfoliative toxins 

(ETs), unique serine proteases that show lock and key specificity to the desmosomal 
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cadherin DSG1, and not the closely related DSG3. These peptide toxins are produced 

by some strains of pathogenic Staphylococcus aureus bacteria (Amagai et al., 2000, 

Amagai et al., 2002). The three known ETs affecting humans, ETA, ETB and ETD, use 

Ca2+ to cleave a single peptide bond at a Ca2+-binding site within the extracellular 

domain of DSG1, thus removing residues 1-381 of the DSG1 ectodomain, producing 

a truncated protein which in turn disrupts keratinocyte adhesion leading to 

formation of blisters (Hanakawa et al., 2003). The severity of the phenotype is 

reflected by the location and depth of the blisters, and resembles characteristics 

seen in PF (see section 1.3.1.), most likely as a result of the same compensatory 

theory, by which DSG3 can only compensate if expressed in the areas where DSG1 

is affected. Amagai et al. have shown that by injecting neonatal mice with PF IgGs or 

ET, the mice developed blisters with essentially the same histology, suggesting that 

the two disorders may share a similar mechanism of action targeting DSG1, thus 

supporting the compensatory theory. In the same study Amagai et al. have 

demonstrated that DSG1 expression was significantly affected in the suprabasal 

layers of neonatal mice after incubation with ETA toxin for an hour. Furthermore, 

the direct proteolysis of DSG1 by ETA toxin was demonstrated by incubating mouse 

and human soluble recombinant forms of the extracellular domains of DSG1 and 

DSG3 with ETA toxin, which cleaved both the human and mouse recombinant forms 

of DSG1 in a dose-dependent manner (Amagai, 2010). These studies taken together 

suggest that cleavage of the N-terminal domain of DSG1 is enough to induce 

epidermal blister formation (Nishifuji et al., 2010).  

1.4. Inherited cardio-cutaneous disorders in humans and 

mouse models 

The complexity and incomplete understanding of how desmosomal components 

interact with each other and with other compartments in a cell-type and 

differentiation-dependent manner is reflected by the wide range of genetic 

disorders arising from mutations in desmosomal genes (Table 1.1.). The large 

number of publications reporting various mutations affecting all desmosomal genes 

highlight the phenotypic heterogeneity behind these conditions, different mutations 

resulting in similar cutaneous disorders with or without cardiac and hair 
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implications, named generically cardio-cutaneous disorders (Bolling and Jonkman, 

2009). In vivo mouse models are also being used to decipher the disease 

mechanisms behind these inherited disorders. 

A large number of mutations in genes encoding for desmosome-associated proteins 

and interacting partners were reported to date (Al-Jassar et al., 2013), leading to 

disorders such as woolly hair with/without cardiac implications (Norgett et al., 

2000, Simpson et al., 2009b), striate palmoplantar keratoderma (SPPK) (Simpson et 

al., 2009b) and hypotrichosis (Kljuic et al., 2003a).   

1.4.1. Human disorders associated to mutations in Armadillo proteins 

Twelve mutations in PKP1 reported to date, arising from missense and nonsense 

mutations to splice-site and compound heterozygous changes, appear to result in 

phenotypes ranging from skin fragility to severe autosomal recessive ectodermal 

dysplasia, including peri-oral cracking and inflammation, scant hair, reduced 

sweating and astigmatism (McGrath et al., 1997, Boyce et al., 2012, Hernandez-

Martin et al., 2013, Pieperhoff et al., 2010, Tanaka et al., 2009, Zheng et al., 2005, 

Ersoy-Evans et al., 2006). PKP2 mutations are a major genetic cause of non-

syndromic autosomal dominant ARVC (Gerull et al., 2004). 

With regards to the armadillo family member PG, the first human genetic studies in 

individuals from the Greek Island of Naxos, affected with an autosomal recessive 

condition known today as “Naxos Disease”, clinically characterised by ARVC, woolly 

hair and mild epidermolytic PPK, have revealed homozygous truncating mutations 

in JUP, the gene encoding for PG, as responsible for this disorder (McKoy et al., 2000, 

Protonotarios and Tsatsopoulou, 2004, Delmar and McKenna, 2010). In two other 

independent studies, Erken et al. have described a recessive missense mutation in 

JUP in a patient presenting with PPK and total alopecia with a cardiac phenotype 

(Erken et al., 2011), while Pigors et al. reported a lethal phenotype caused by a 

homozygous nonsense mutation in JUP leading to severe congenital skin fragility, 

generalized epidermolysis, massive transcutaneous fluid loss and no apparent 

cardiac dysfunction, due to a complete loss of PG in patient skin, leading to fewer 

desmosomes and no adhesion structures between keratinocytes (Pigors et al., 
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2011). The complexity of the disease mechanisms behind these disorders is 

highlighted by yet another report of loss-of-function JUP mutations linked to a 

recessive syndrome of skin fragility, diffuse PPK and woolly hair with no signs of 

ARVC (Cabral et al., 2010a), leading to little or no expression of PG. 

1.4.1.1. Armadillo mouse models 

Pkp2-null mice studies have shown mid-gestational embryonic lethality caused by 

cardiac patterning defects and fragility of the myocardium (Grossmann et al., 2004), 

alongside retraction of intermediate filaments from the plasma membrane, thus 

demonstrating the importance of PKPs in DSP recruitment and intermediate 

filament tethering to desmosomes (Delva et al., 2009). Despite no disease-causing 

mutations reported, to our knowledge, in humans for PKP3, ablation of this isoform 

in mice results in defective hair follicle morphogenesis, increased keratinocyte 

proliferation and DSP mislocalisation, leading to susceptibility to dermatitis and 

secondary alopecia (Sklyarova et al., 2008).  

The key role for PG in desmosome assembly has been demonstrated by knockout 

studies in mice, which show acantholysis, indicative of compromised desmosome 

function, and are lethal due to fragility of myocardium (Bierkamp et al., 1996, 

Acehan et al., 2008). In some cases mouse pups were born but presented epidermal 

fragility, heart defects and died shortly after birth (Bierkamp et al., 1996, Ruiz et al., 

1996). Recently, Li et al. created an epidermal conditional Jup-knockout mouse with 

a skin phenotype characterised by perturbed cell proliferation, apoptosis, 

differentiation and compromised immune defence (Li et al., 2012). 

1.4.2. Desmoplakin mutations in cardio-cutaneous disorders  

DSP is the most abundant component of the desmosomal complex and a variety of 

genetic disorders are associated with mutations in this gene, resulting in conditions 

with varying degrees of severity (Lai Cheong et al., 2005). The first reported link 

between DSP mutations and human skin disease was in association with autosomal 

dominant SPPK, characterised by a longitudinal pattern of hyperkeratosis, the loss-

of-function mutations suggesting that the disease mechanism was 

haploinsufficiency and that dosage of DSP was critical in the stressed areas of the 
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skin such as the palm and sole (Armstrong et al., 1999). In addition, the first 

recessive DSP mutation was identified in Ecuadorian families with Carvajal 

syndrome, an ARVC variant which presents with dilated cardiomyopathy, 

accompanied by woolly hair and SPPK, but also with hyperkeratosis at other stress 

sites in the skin including the flexure. The homozygous mutation truncates the DSP 

protein leading to the loss of a portion of the IF-binding site, again leading to loss of 

cell adhesion and a collapsed IF network (Norgett et al., 2000, Huen et al., 2002).  

Moreover, a significant number of genetic DSP-associated conditions known as 

cardio-cutaneous disorders have been reported, presenting with varied degrees of 

severity.  A homozygous mutation, identified by Uzumcu et al., leads to complete 

absence of DSP I, but normal levels of DSP II, the loss of DSP I being associated with 

autosomal recessive mild epidermolytic PPK, woolly hair and aggressive ARVC, 

leading to severe ventricular dysfunction and associated arrhythmia (Uzumcu et al., 

2006). An example of DSP-compound heterozygosity is the identification of an N-

terminal missense mutation and a C-terminal nonsense mutation leading to severe 

keratoderma, skin fragility and woolly hair, or alopecia with or without cardiac 

involvement (Asimaki et al., 2007, Whittock et al., 2002). Another variation of the 

cardio-cutaneous disorders in association with woolly hair and tooth agenesis, was 

reported by Norgett et al. in a patient with a 30 bp insertion in the DSP gene (Norgett 

et al., 2006, Chalabreysse et al., 2011, Boule et al., 2012). 

Alongside DSP mutations linked to cardio-cutaneous disorders, a number of 

cutaneous conditions with and without hair implications have also been reported. A 

heterozygous mutation which truncated the C-terminus of DSP leads to severe 

acantholytic epidermolysis bullosa, a lethal disorder characterised by complete 

alopecia, neonatal teeth, nail loss and death due to transcutaneous fluid loss as a 

result of extensive skin erosion (Jonkman et al., 2005). Furthermore, dominant DSP 

mutations have also been reported linked to non-syndromic ARVC but no obvious 

cutaneous phenotype (Rampazzo et al., 2002, Norman et al., 2005).  

1.4.2.1. Desmoplakin mouse models  

All previous studies on Dsp knockout mice confirm the lethality of this model in early 

embryonic stages, presumably due to loss of integrity of the embryonic ectoderm, 
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as a result of a significant reduction in the number of desmosomes coupled with a 

disrupted IF network and lack of keratin IF attachment in the remaining 

desmosomes (Gallicano et al., 1998, Vasioukhin et al., 2001).  

1.4.3. Inherited cadherin-linked disorders 

The first linkage of human disease to mutations in desmosomal cadherins came 

from the autosomal dominant skin disorder SPPK, linked to DSG1 haploinsufficiency 

mutations (Rickman et al., 1999, Kljuic et al., 2003b, Amagai and Stanley, 2012). 

Recently, two homozygous variations for these loss-of-function DSG1 mutations 

underlie a syndrome characterised by severe dermatitis, allergies and metabolic 

wasting (SAM) (Samuelov et al., 2013). A number of monogenic human disorders 

have also been linked to mutations in desmosomal cadherins (Brooke et al., 2012), 

such as dominant DSC2 and DSG2 associated with non-syndromic ARVC (Syrris et 

al., 2006, Pilichou et al., 2006). Moreover, a variety of DSG4 mutations ranging from 

frameshift, splice-site, missense and nonsense are responsible for the autosomal 

recessive condition Monilethrix and for the hair-follicle differentiation-deficient 

phenotype known as hypotrichosis (Zlotogorski et al., 2006, Schaffer et al., 2006, 

Shimomura et al., 2006). DSC3 is another desmosomal gene associated with 

hypotrichosis, where homozygous nonsense mutations resulted in large skin 

vesicles filled with watery fluid with sparse and fragile hair on the scalp and absent 

eyebrows and eyelashes (Ayub et al., 2009). It has been observed that the impact 

level of DSG1 and DSG4 mutations in the skin is proportional to their expression 

profiles.  

1.4.3.1. Cadherin mouse models 

Knockout mouse models have shown that the lack of Dsg2 and Dsc3 result in early 

embryonic lethality, while Dsg2 deficiency leads to defects in embryonic stem-cell 

viability and proliferation (Desai et al., 2009) Dsc3-deficient mice are lethal in the 

very early embryonic stage, highlighting its importance in desmosomal assembly.  

Despite of the lack of disease-causing mutations being identified in DSG3 and DSC1 

in humans, a Dsg3-knockout mouse presented with hair loss and loss of epithelial 

integrity (Koch et al., 1997), while the Dsc1 deficient mice causes defects of the skin 
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which become more apparent 2 days after birth, and later on develop into localised 

lesions and epidermal fragility with localised hair loss (Chidgey et al., 2001). 

Mutations leading to Dsg4 deficiency present with a lanceolate hair phenotype, 

characterised by sparse, fragile, broken hair shafts, follicular dystrophy and 

ichthyosiform dermatitis (Jahoda et al., 2004, Bazzi et al., 2005).   
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Gene Inheritance Disorder 

DSP 

Dominant 

ARVC alone (Rampazzo et al., 2002, 

Norman et al., 2005) 

SPPK (Armstrong et al., 1999) 

PPK, woolly hair & ARVC (Norgett et 

al., 2006) 

Recessive 

SPPK, woolly hair & ARVC (Carvajal 

syndrome) (Norgett et al., 2000, Alcalai 

et al., 2003) 

Skin fragility & woolly hair (SFWHS) 

(Whittock et al., 2002) 

Lethal acantholytic epidermolysis 

bullosa (Jonkman et al., 2005) 

Naxos-like disease affecting DSP I only 

(Uzumcu et al., 2006) 

JUP 

Dominant ARVC alone (Asimaki et al., 2007) 

Recessive 

Focal and diffuse PPK & woolly hair 

(Cabral et al., 2010a) 

ARVC, PPK & total alopecia (Erken et 

al., 2011) 

Lethal acantholytic epidermolysis 

bullosa (Pigors et al., 2011) 

PPK, woolly hair & ARVC (Naxos 

disease) (McKoy et al., 2000) 

PKP1 Recessive 

Ectodermal dysplasia/Skin fragility 

syndrome & ARVC (McGrath et al., 

1997) 

PKP2 
Dominant ARVC alone (Gerull et al., 2004) 

Recessive ARVC alone (Awad et al., 2006) 

PKP3 No mutations in humans to date 

DSG1 Recessive SPPK (Rickman et al., 1999) 
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Gene Inheritance Disorder 

PPK, Hypotrychosis & hyper-IgE 

(EPKHE) (Samuelov et al., 2013) 

DSG2 
Dominant ARVC alone (Pilichou et al., 2006) 

Recessive ARVC alone (Syrris et al., 2007) 

DSG3 No mutations in humans to date 

DSG4 Recessive 

Hypotrichosis (Kljuic et al., 2003a)  

Monilethrix-like Hypotrichosis 

(Shimomura et al., 2006) 

DSC1 No mutations in humans to date 

DSC2 Recessive 

ARVC alone (Syrris et al., 2006, Heuser 

et al., 2006)  

ARVC, PPK  & woolly hair (Simpson et 

al., 2009b) 

DSC3 Recessive 
Hypotrichosis with skin vesicles (Ayub 

et al., 2009) 

Table 1.1. Inherited cardio-cutaneous disorders with/without hair association, 

linked to mutations in genes encoding for desmosome-associated proteins (adapted 

from Nitoiu et al., 2014).  
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1.5. Hypotheses of this study 

Two major hypotheses constitute the basis of this project and together they look at 

the role desmosome homeostasis plays in epidermal integrity, directly though 

mutations in desmosome-associated proteins and indirectly through mutations in 

protease inhibitors, ultimately targeting desmosome regulation.  

The first investigations were based on a cohort of patients with non-syndromic 

ARVC, seen both in the UK and New Zealand. Based on the large number of 

publications reporting mutations in genes encoding for proteins specific to the 

cardiac desmosome linked to heart disorders, we suspected that our patients would 

also present mutations in genes encoding for the desmosome-associated proteins, 

DSP, PG, PKP2, DSC2 and DSG2 (Brooke et al., 2012, Nitoiu et al., 2014). Additionally, 

patients with acral peeling skin syndrome, hypotrichosis and hypotrichosis with 

PPK were also studied. As it has previously been shown that different desmosome-

associated protein isoforms may have different functions within the desmosome, it 

is expected that the identified mutations will affect different aspects of keratinocyte 

and cardiomyocyte adhesion, differentiation and/or signalling (Cabral et al., 2012b). 

A number of molecular techniques were used in the identification of mutations 

including the application of two high throughput sequencing platforms. 

The second hypothesis is based on the identification of loss-of-function mutations 

in CSTA (Blaydon et al., 2011b) and CAST (Lin et al., 2015) genes encoding for the 

protease inhibitors cystatin A and calpastatin. CSTA LOF mutations are linked to 

exfoliative ichthyosis, a skin disorder characterised by dry, scaly skin over most of 

their body with nonerythematous peeling of skin on their palms and feet, 

exacerbated by moisture and minor trauma (Hatsell et al., 2003). Cystatin A is a 

cysteine protease inhibitor of cathepsins B, H and L, frequently dysregulated in a 

variety of cancers, facilitating tumour invasion and metastasis through cleavage of 

cell-to-cell junctions (Strojan et al., 2000). CAST LOF mutations lead to a new clinical 

entity, named PLACK syndrome characterised by peeling skin, leukonychia, acral 

punctate keratoses, cheilitis and knuckle pads with milia. Calpastatin is a specific 

protease inhibitor of calpains, intracellular cysteine proteases that require calcium 

or epidermal growth factor for their catalytic activity, and have been related to a 
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variety of processes such as the growth, migration and death of keratinocytes 

(Carragher and Frame, 2004).  

Based on previous observations on the mechanisms of action of these protease 

inhibitors and their target proteases in other disorders, it is expected that the 

disease phenotypes observed are the result of the indirect regulation of epidermal 

homeostasis through the target proteases and perhaps through desmosome 

assembly and function.  

The four sub-hypotheses addressed in this thesis are: (1) unrelated non-syndromic 

ARVC patients harbour disease-associated mutations in genes encoding for 

desmosome-associated proteins essential for cardiomyocyte adhesion and function; 

(2) independent patients with hypotrichosis and hypotrichosis with PPK, 

presenting with a similar clinical phenotype, harbour mutations in genes encoding 

for desmosome-associated proteins important in keratinocyte intercellular 

adhesion; (3) and (4) LOF mutations in CSTA and CAST  lead to dysregulation of 

activity of their target proteases leading to disruption of epidermal homeostasis 

through dysregulation of desmosome assembly and/or activity. 
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1.6. Aims of this study 

In order to test the first hypothesis, genetic analyses were undertaken: 

1. Identification of desmosomal gene variants by custom capture array and  

HaloPlex targeted resequencing in patients with non-syndromic ARVC; 

2. SNP array and exome capture analysis in patients with hypotrichosis and 

PPK; 

3. Validation of variants and assignment to corresponding patients by PCR and 

conventional sequencing techniques; 

4. Sanger sequencing analysis of DSG4 and CSTA genes in patients with 

hypotrichosis and acral peeling skin syndrome. 

 

In order to test the second hypothesis the following approaches were carried out: 

1. Analysis of expression of CSTA, CSTA target proteases and CAST in skin 

(control and/or patient) and immortalised keratinocytes by immuno-microscopy 

and western blotting; 

2. siRNA technology was used to mimic the LOF mutations in CSTA  and CAST; 

3. Observations on the effects of CSTA and CAST knockdown on intercellular 

adhesion and migration in keratinocyte monolayers by mechanical stretch, dispase-

based dissociation assay and scratch assay; 

4. Examination of cell death in CAST knockdown monolayers; 

5. Analysis of desmosomal proteins following CSTA and CAST knockdown by 

immunocytochemistry and/or western blotting; 

6. Examination of cathepsin expression in CSTA knockdown cell monolayers 

following mechanical stretch. 
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2.1. Chemicals and tissue culture consumables 

All chemicals were purchased form Sigma-Aldrich (St. Louis, MO) and all laboratory 

consumables were purchased from Fisher (Leicestershire, UK), unless otherwise 

stated. 

2.2. Molecular Biology I – DNA and RNA methods 

2.2.1. Patient samples  

All patient samples, processed as described in the following chapters were received 

as blood or genomic DNA, are enumerated in Appendix Table A1., together with the 

country of origin and screening method. The projects presented in this thesis were 

approved by the Clinical Research Ethics Committee of the Peking University First 

Hospital, East London and City Health Authority Research Ethics Committee, 

Western Institutional Review Board, Health Research Council of New Zealand and 

the Institutional Review Board of the University Hospital of Munster, which all 

comply with all principles of the Helsinki Accord, and all patients enrolled gave their 

informed consent. 

2.2.2. Extraction of DNA from blood 

DNA was extracted from whole blood samples using the QIAamp DNA blood 

midi/maxi kit (QIAGEN) following the manufacturer’s specifications. Briefly, 200 µl 

proteinase K was mixed with 1-2 ml blood. 2.4 ml buffer AL were added and mixed 

by inversion of the tube, followed by incubation for 2 min. The tubes were incubated 

at 700C for 10 min, and mixed by inversion 10 times with 2 ml 96-100% ethanol. 

The above mixture was added onto the QIAamp Midi column placed in a 15 ml 

centrifuge tube and spun at 3000 rpm for 3 min. The column was firstly washed with 

2 ml of buffer AW1 followed by 2 ml buffer AW2 and spun between washes at 5000 

rpm for 1 min after the AW1 buffer and 15 min after the AW2 buffer. 300 µl buffer 

AE were added onto the membrane of the Midi column and incubated at room 

temperature for 5 min followed by centrifugation at 5000 rpm for 2 min.  DNA was 

resuspended in 200-300 µl distilled water by centrifugation at 5000 rpm for 3 min. 
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2.2.3.  RNA isolation from cells 

Total RNA was isolated from cultured cells at 80-90% confluency, using the RNeasy 

mini kit (Qiagen) according to the manufacturer’s specifications. Briefly, cells were 

washed in phosphate buffered saline (PBS), and subsequently pelleted and lysed 

directly by the addition of disruption buffer. The lysates were transferred to mini 

columns and washed several times with several ethanol supplemented buffers in 

order to remove any residues. RNA was resuspended in 30 µl RNase-free water. 

2.2.4. Nucleic acid quantification 

Nucleic acid concentration was measured by NanoDrop ND-1000 

Spectrophotometer (Thermo Fisher Scientific, Waltham, MA), according to the 

manufacturer’s specifications. An assessment of nucleic acid purity was achieved by 

determining the ratios of spectrophotometric absorbance of the sample at 

260/230nm and 260/280nm. Pure preparations of DNA and RNA have an 

A260/A280 ratio of approximately 1.8 and 2.0, respectively, and an A260/A230 

ratio of approximately 2.2. 

2.2.5. Polymerase Chain Reaction (PCR) 

2.2.5.1. Primer design 

All primers were purchased from Sigma-Aldrich (Appendix B). Specific primer pairs 

were designed either to PCR amplify or sequence the regions of interest, using 

Primer3 software (v.0.4.0). The oligonucleotide length varied from 18 to 24 bp 

depending on the GC content, which ranged from 45-65%. The annealing 

temperature (AT) for each primer pair was initially optimised using a gradient PCR 

with temperatures varying between 550-650C and the optimum AT was then used 

for further screening. 

2.2.5.2. Genomic PCR for mutation screening 

PCRs for the screening of all mutations described in this report were performed 

using either the GoTaq DNA Polimerase (Promega, UK) or the BioTaq PCR Kit 

(Bioline, UK). Briefly 25 µl PCR reaction comprised: 5 µl of 5x (2.5 µl of 10x) reaction 
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buffer, 1.5 µl of 25 mM (0.75 µl of 50 mM) MgCl2, 0.25 µl of 5 U/µl of Taq enzyme; 

200 µM of each nucleotide (Bioline, UK); 1 µM of each primer and 20-30 ng of 

template DNA. Reactions were incubated on a DNA engine Tetrad 2 Peltier 

Thermocycler (MJ Research) and the cycling conditions consisted of 950C for 5 min, 

followed by 35 cycles of 950C for 30 s, optimised primer annealing temperature for 

30 s and 720C for 30 s, with a final extension step at 720C for 10 min and incubation 

at 40C for 10 min. In addition to patient DNA, control DNA was used to amplify 

desired sequences. Resulting PCR products were resolved on DNA agarose gel 

electrophoresis (as described in section 2.2.6.) or digested using restriction digest 

enzymes (as described in section 2.2.12.). 

2.2.5.3. Reverse Transcription-PCR (RT-PCR) 

RNA extracted as previously described in section 2.2.3. was used to make cDNA by 

RT-PCR. Briefly, 50 ng of RNA were added to 0.64 µl random hexamers (200 µM), 1 

µl dNTPs (10 mM) made up to 12 µl final volume with dH2O. The reactions were 

incubated at 650C for 5 min, chilled on ice and 4 µl of 5x first strand buffer, 2 µl of 

0.1 M DTT and 1 µl RNase OUT (all Invitrogen, California, USA) were added to the 

reaction. The mixtures were then incubated at 250C for 2 min before 1 µl (200 units) 

of superscript II reverse transcriptase (RT) (Invitrogen) was added. A negative 

control was simultaneously prepared using RNase free water instead of the enzyme. 

Samples were incubated at 420C for 50 min, followed by heat inactivation at 700C 

for 15 min. One µl of cDNA was added to a standard PCR. The primer binding sites 

for RT-PCR primers are located in the exons and apart from cDNA amplification they 

would also amplify genomic DNA with short intronic sequences.  

2.2.6. Agarose Gel Electrophoresis 

Agarose gels were used to identify and separate PCR products and restriction digest 

fragments. For separation of fragments shorter than 800 bp, 1.5% (w/v) agarose 

(Bioline, London, UK) gels were prepared. Briefly, the agarose was melted in the 

appropriate volume of Tris-Borate-EDTA buffer and 0.5 µg/ml of ethidium bromide 

or 10 µl of 10,000x PAGE GelGreen (Biotium) were added to the solution. The clear 

mixture was poured into a gel tray with a suitable comb to form the sample wells, 
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and left to solidify. The gel was flooded with TBE in an electrophoresis tank. For 

detection of fragments longer than 800 bp, 1% (w/v) agarose gels were prepared in 

a similar way. DNA samples were mixed with 6 x Orange G DNA loading buffer and 

loaded on the gel alongside a 1 Kb Plus DNA ladder (10% (v/v) (Invitrogen), 16% 

(v/v) loading buffer). Samples were electrophoresed at a constant voltage of 80-120 

V. DNA was visualised and photographed under UV transillumination (MultiImage 

Light Cabinet, Alpha Innotech Corporation; pictures printed on Sony P-D890).  

2.2.7. Sanger Sequencing 

Sequencing was performed using the BigDye Terminator v3.1 Cycle Sequencing Kit 

(Applied Biosystems, Foster City, CA). The optimal amount of PCR product (0.5-3 µl) 

was incubated with 6 µl ExoSAP-IT (Affymetrix) at 370C for 45 min followed by 800C 

for 15 min and 40C for 5 min; this enzymatic reaction eliminated any unincorporated 

primers and dNTPs. Clean sequences were then added to a reaction containing 1 µl 

of BigDye® Terminator Master mix v3.1, 3 µl of better buffer (Microzone, Ottawa, 

Canada), 1 µl of 10 µM specific forward or reverse primer and ddH2O up to a final 

volume of 11.5 µl. Cycling conditions consisted of 25 cycles at 960C for 30 s, 580C for 

15 s, 600C for 1 min, followed by a final incubation at 40C for 10 min. 

The reaction products were precipitated with ethanol and EDTA. Briefly, 2.5 µl of 

125 mM EDTA and 30 µl of ice cold absolute ethanol were added to the sequencing 

reaction and incubated on ice for 10 min. The mixture was centrifuged at 4000 rpm 

at 40C for 20 min; the pellet was washed with 125 µl 70% ethanol and incubated on 

ice for another 2 min, then centrifuged for 5 min at 4000 rpm. Precipitated DNA was 

air dried at room temperature (RT) or on the hot block at 620C for 10 s. Precipitated 

products were resuspended in 10 µl HiDi formamide (Sigma-Aldrich, UK), incubated 

at 950C for 3 min and on ice for 3 min, centrifuged for 2 min to remove any air 

bubbles and loaded on the ABI Prism 3130xl Genetic Analyser (Applied Biosystems, 

Life Technologies, USA). Traces were visualised using the Chromas LITE v 2.01 

software (Free software from Technelysium Pty Ltd). The DSP plasmids obtained 

following site-directed mutagenesis were sequenced using the Sanger sequencing 

service offered by Source BioScience (Source BioScience LifeSciences, UK). 



78 

 

2.2.8. Capture array 

For this experiment a customised 385K Sequence Capture Array (NimbleGen, 

Roche) was designed. All enzymes and reagents used for this procedure were 

purchased from New England Biolabs (NEB, UK) unless otherwise stated. Adapters 

and Primers used in the final reaction were custom made by Sigma-Aldrich. The 

manufacturer’s protocol was used with a few modifications described below. 

2.2.8.1. Quant-iT PicoGreen DNA quantification 

DNA was quantified using the Quant-iT PicoGreen dsDNA kit (Invitrogen) following 

the manufacturer’s instructions, and was run on the FLUOstar OPTIMA fluorescence 

plate reader (BMG Labtech). 

2.2.8.2. Preparing the DNA pool 

Equal amounts of genomic DNA from all patients were pooled to a final DNA 

concentration of 20 µg which was split into 4 lo-bind tubes. ddH2O was added up to 

a final volume of 100 µl. DNA was fragmented using the Bioruptor UCD-200 (Life 

Technologies) at 40C for 10 min on high, this step was repeated 3 times, replacing 

the ice and spinning tubes after each 10 min burst. Size was confirmed by running 1 

µl of each DNA pool on a Bioanalyzer 7500 chip (Agilent Technologies), using the 

Agilent 2100 Bioanalyzer (Agilent Technologies), following the manufacturer’s 

specifications. The 4 samples were then cleaned using the QIAquick PCR purification 

kit (Qiagen, UK), and each sample was eluted in 30 µl of buffer EB into new lo-bind 

tubes.  

The end repair, adenylation of 3’ ends, ligation of adapters and SPRI bead 

(Invitrogen) purification were performed as per manufacturer’s specifications. 

After the end repair and adenylation of 3’ ends reactions the samples were purified 

using the QIAquick PCR purification kit; 1.2 µl of each sample were kept before each 

purification and run on the Bioanalyzer 7500 chip. After the final purification using 

AMPure XP beads (Beckman Coulter), sample concentration was read on the 

NanoDrop. Only 5 µg of DNA pool were needed to hybridise to the capture array. At 

this point DNA samples were stored at -200C.  
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2.2.8.3. Hybridisation to array 

All volumes prepared in this step are given for the 385K array. 100 µl of 1 mg/ml 

Cot-1 DNA (Invitrogen) were added to the sample to be hybridised, then the mixture 

was fully dried in a DNA concentrator (Divac 2.4 l DNA Concentrator) at 600C. DNA 

was rehydrated with 4.8 µl of ddH2O. Samples were then incubated on the heat block 

at 700C for 10 min to fully solubilise the DNA. 8 µl of 2x SC Hybridisation buffer and 

3.2 µl of SC Hybridisation Component A were added to the mixture and incubated 

on the hot block at 950C for 10 min to denature the DNA. The sample was centrifuged 

at maximum speed for 30 s and hybridised to array within 15 min of denaturation. 

The capture array slide was prepared and loaded as per manufacturer’s 

specifications. The reaction was incubated at 420C for 64-72 h. 

2.2.8.4. Washing and eluting hybridised DNA 

Wash and elution buffers were prepared 2 days in advance as per manufacturer’s 

specifications and the buffers which needed a specific temperature were incubated 

at 47.50C until temperature was equilibrated. DNA was eluted at RT immediately 

after the washing steps, by pipetting 425 µl of 125 mM fresh NaOH through the top 

of the elution chamber. Eluted DNA was collected into a new lo-bind 1.5 ml tube and 

any remaining 125 mM NaOH which did not fit into the elution chamber was added 

to the eluted DNA. 16 µl of 20% acetic acid was mixed with 500 µl Qiagen buffer PBI 

and the mixture was added to the eluted DNA. The solution was pipetted to a single 

QIAquick column and centrifuged for 1 min at 13000 rpm. 750 µl of buffer PE was 

used to wash the column before replacing the collection tube with a fresh 1.5 ml 

tube and resuspending the DNA in 50 µl of buffer EB. 

2.2.8.5. Post capture LM-PCR 

The LM-PCR reaction mix was prepared for 13 reactions, 2 reactions with DNA and 

SYBR green I dye (Invitrogen) at 1x concentration, 2 reactions with SYBR green I 

dye at 1x concentration and no DNA and 10 reactions with DNA and no SYBR green. 

A 1x reaction contained 10 µl of 5x Phusion Buffer, 1 µl of 10 mM dNTPs, 1 µl of each 

homemade Primer PE 1.0 and 2.0 (25 µM) (Sigma-Aldrich), 1 µl of 1x SYBR green, 

0.5 µl Phusion polymerase, 4 µl eluted DNA and ddH2O up to 50 µl reaction. 
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Reactions were run on the Rotor Gene-3000 (Corbett Research, Australia) using the 

following cycling programme: 980C for 30 s, 980C for 10 s, 650C for 30 s and 720C for 

30 s (results were collected at this step). The reactions were terminated before 

amplification reached plateau curve. 

Two pools were made from the 10 reactions without SYBR green and diluted with 

1250 µl Qiagen PBI buffer. The mixtures were then purified using the QIAquick PCR 

purification kit (Qiagen, UK) and eluted with 50 µl buffer EB. The two resulting pools 

were mixed together and DNA concentration was quantified on the NanoDrop 

before being sent for Next Generation Sequencing performed by the Genome Centre 

on the Illumina Genome Analyser IIx (Illumina, San Diego, USA). 

2.2.9. Exome capture 

Paired end PCR primers and adapters were purchased from Sigma, library 

preparation kit components for exome sequence capture and subsequent Illumina 

GAllx paired end sequencing were purchased from NEB.  

2.2.9.1.  Preparing the DNA pool 

DNA was quantified and fragmented as described above (2.1.8.1. and 2.1.8.2.) with 

some changes. The samples were pooled to a final concentration of 5 µg and ddH2O 

was added up to 80 µl. End repair, adenylation to the 3’ end and ligation of adaptors 

reactions were performed as previously described, and reactions were cleaned 

using a QIAquick PCR purification kit (Qiagen). Final purification, before 

hybridisation, was performed using AMPure XP beads (Beckman Coulter). DNA was 

resuspended in 100 µl molecular biology water.  1.2 µl of each reaction before 

purification steps was run on the Agilent Bioanalyzer 7500 chip (Agilent) as per 

manufacturer’s specifications. Samples were quantified on the NanoDrop 

(NanoDrop Spectrophotometer ND-1000, Software NanoDrop 1000 version 3.7.1.) 

and stored at -200C until hybridisation. 

2.2.9.2. Hybridisation to beads 

1 µg pooled DNA was mixed with 100 µl of 1 mg/ml Cot-1 DNA and 1 µl of each 1000 

µM PE-HE1 and PE-HE2 oligos. The mixture was dried in a SpeedVac DNA 
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concentrator at 600C. To each dried library, 7.5 µl of 2x SC Hybridisation buffer and 

3 µl of SC Hybridisation component A were added. Samples were vortexed and 

centrifuged at maximum speed for 10 s then incubated in a 950C hot block for 10 

min to denature DNA. The sample was then centrifuged and transferred to a 0.2 ml 

PCR tube and incubated on a thermal cycler at 470C for 64-72 h. 

2.2.9.3. Washing and eluting hybridised DNA 

Wash buffers and Streptavidin Dynabead elution buffer were prepared in advance 

and equilibrated at the required temperature. Streptavidin Dynabeads M-270 

(Invitrogen) were prepared as per manufacturer’s indications and used 

immediately. DNA was washed and eluted onto the Streptavidin Dynabeads 

following the manufacturer’s instructions and resuspended in 50 µl PCR-grade 

water (Sigma). Hybridised DNA was stored at -200C post-bead clean-up. 

2.2.9.4. Amplification of hybridised DNA sequences 

Amplification protocol, cycling conditions and post LM-PCR clean-up steps were 

identical to the ones described in section 2.1.8.5. Next Generation Sequencing was 

performed by the Genome Centre on the Illumina Genome Analyser IIx (Illumina, 

San Diego, USA). 

2.2.10. HaloPlex Target Enrichment System 

For this experiment all target sequences were specifically prepared to cover 

required regions of interest (Table 2.1.). All restriction enzymes and reagents used 

for this procedure were purchased from Agilent Technologies unless otherwise 

stated. The manufacturer’s protocol was used with a few modifications described 

below. 
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Gene Coverage Source 

ADAM17 99.7 % CCDS1665.1, User modified 

DES 93.5 % CCDS33383.1, User modified 

DSC2 98.7 % NM_024422, NM_004949, User modified 

DSG2 97.7 % CCDS42423.1, User modified 

DSP 99.1 % CCDS47368.1, CCDS4501.1, User modified 

JUP 99.8 % NM_002230, NM_021991, User modified 

PKP2 97.5 % CCDS31771.1, CCDS8731.1, User modified 

TMEM43 99.4 % CCDS2618.1,User modified 

Table 2.1. Sequence coverage of selected genes and source information.  

2.2.10.1. Restriction enzyme digestion 

Initially all DNA samples were diluted to 20 ng/µl in a final volume of 45 µl (900 ng). 

Enrichment Control DNA (ECD) was also included in this step. A restriction enzyme 

mix was prepared by mixing 8 different sets of restriction enzymes. 5 µl of DNA from 

each patient were mixed with 5 µl from each of the 8 restriction enzyme mixtures, 

mixed gently and incubated at 370C for 4 h followed by an inactivation incubation at 

800C for 20 min. Each restriction digest reaction was verified on a 2% agarose gel 

prepared as previously described. The 8 restriction digests from the same sample 

were pooled together.  

2.2.10.2. Hybridisation to HaloPlex probes 

Each digested sample pool was mixed with 65 µl hybridisation buffer, 14 µl HaloPlex 

Probes and 1 µl primer cassette, then incubated overnight on a thermal cycler on 

the following program: 950C for 10 min, 750C for 30 min, 680C for 30 min, 620C for 

30 min, 550C for 30 min, 460C for 10 min and 80C forever. 

2.2.10.3. Solid phase capture and DNA ligation 

Using a magnetic plate (Life Technologies), the storage buffer of 20 µl of magnetic 

beads was removed and 40 µl of capture solution was added over the remaining 

beads and incubated at RT for 15 min. The supernatant was removed and 100 µl 

wash solution was added to each reaction and incubated in a thermal cycler at 460C 
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for 10 min. The supernatant was removed and the beads were resuspended in 47.5 

µl ligation solution and 2.5 µl DNA ligase and incubated at 550C for 10 min. Finally 

the supernatant was removed. 

2.2.10.4. Enrichment by PCR 

To each sample 22.5 µl Haloase A Buffer, 0.5 µl Haloase A1 and 2 µl Haloase A2 were 

added and the mix was incubated in a thermal cycler at 370C for 30 min. The 

supernatant was then removed and 21.5 µl Haloase B Buffer were added and the 

mix was incubated in a thermal cycler at 800C for 20 min. The reactions were then 

cooled down to RT and 3.5 µl Haloase B enzyme were added; the mix was incubated 

in a thermal cycler at 370C for 30 min. The PCR mix was prepared as detailed in 

Table 2.2. 20 µl of PCR master mix were distributed to 0.2 µl tubes and 10 µl of the 

appropriate barcode primer from the 96-barcode plate were added. Using the 

magnetic plate 20 µl of the supernatant from the Haloase B reaction were added to 

the corresponding PCR reaction and incubated on a thermal cycler as follows:  980C 

for 30 s, 17 cycles at 980C for 10 s, 650C for 30 s, 720C for 30 s, followed by 720C for 

5 min and 80C forever.  

 

Reagent Concentration 1x 

Phusion HF Buffer 

(Thermo Scientific) 

5x 6 µl 

dNTP 25 mM 0.4 µl 

PCR Primer 1.0 25 µM 1 µl 

Phusion HotStart II 

(Thermo Scientific) 

2 U/µl 0.5 µl 

ddH2O --------- 12.1 µl 

Total volume: 20 µl 

Table 2.2. HaloPlex Enrichment PCR Mix. 
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2.2.10.5. HaloPlex Cleanup 

Following the PCR reaction, 40 µl of each reaction were mixed with 60 µl of 1.5x 

(v/v) Agencourt Ampure XP beads (Beckman Coulter) and incubated at RT for 10 

min. The supernatant was removed after separation on a 96-well magnetic plate and 

200 µl freshly prepared ethanol were added to each reaction without removing the 

reactions from the magnetic plate. The mix was incubated at RT for 1 min and the 

step was repeated one more time. Following the ethanol wash the samples were air 

dried and 40 µl Tris-HCl buffer (10mM pH 8.0) were added to each reaction and 

incubated at RT for 10 min to elute DNA. Reactions were placed on the magnetic 

plate and when the liquid was clear the supernatants were transferred to new tubes. 

Quality was assessed using a High Sensitivity DNA Bioanalyzer chip (Agilent 

Technologies), as per the manufacturer’s specifications. Following quality control 

peak analysis was performed by the Genome Centre prior to Next Generation 

Sequencing of samples, also by the Genome Centre on the Illumina Genome Analyser 

IIx (Illumina, San Diego, USA). 

2.2.11. Analysis of next generation sequencing data 

Raw paired end FASTQ reads were aligned against the reference genome sequence 

(Hg19). Unique homozygous changes were identified by filtering the resultant data 

set against variations reported on dbSNP (www.ncbi.nlm.nih.gov/snp/) and the 1000 

genome project (www.1000genomes.org/). Initial sequence analysis, including soft 

clipping, adapter trimming, and quality calibration options were performed by Dr 

Vincent Plagnol (University College London, UK) or Dr Michael Barnes (William 

Harvey Research Institute) and subsequently examined using the Integrative 

Genomics Viewer (IGV, Broad Institute). 

2.2.12. Restriction enzyme digest 

Restriction enzyme digests were used to confirm the presence of mutations in 

patient against control genomic DNA samples and to specifically linearise plasmid 

vectors to confirm the presence of the required DNA constructs in the desired 

orientation prior to site-directed mutagenesis experiments. Digests were 

performed according to the manufacturer’s specifications. Generally, the required 
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quantity of DNA (between 1-2 µg of plasmid DNA or 5 µl of PCR amplified DNA) was 

incubated with 1 µl of the suitable restriction endonuclease (New England Biolabs, 

Ipswich, MA) and 1 µl of the appropriate 10x reaction buffer in a final volume of 10 

µl. Where necessary, the reaction was scaled up to a larger final volume and when 

more than one enzyme was used in the same reaction the total volume of enzyme 

did not exceed 1/10 of the final reaction volume. The reactions were incubated on 

the DNA engine Tetrad 2 Peltier Thermocycler (MJ Research) on the following 

program: 4 h at 370C, 20 min at 650C and a final incubation at 40C. The restrictions 

digests were verified on a 1% agarose gel as previously described in section 2.2.6. 

2.3. Molecular Biology II – DSP cloning strategies 

 

2.3.1. DSP clone amplification on agar plates 

 

DSP I Piece number Clone number 

1 + 2 + 3a C2 

1 + 2 C5 

1 + 2 + 3a + 3 (complete seq) C2 

1 C7 

2 C8 

1 + 2 + 3a + 3 (complete seq) C1 

1 + 2 + 3a + 3 (complete seq) C8 

2 + 3a C12 

3 C8 

1 C8 

1 + 2 + 3a + 3 (complete seq) C3 

2 + 3a C5 

2 C5 

Table 2.3. Summary of the DSP I clones used for site-directed mutagenesis and have 

been cloned by Dr Rita Cabral. 
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2.3.2. Small scale plasmid preparation 

Small scale plasmid DNA preparations were obtained using the QIAprep Miniprep 

kit (Qiagen) according to the manufacturer’s specifications, with some 

modifications. Briefly, a single colony was picked from a freshly streaked selective 

plate and grown in 5 ml LB broth (Invitrogen) containing 50 µg/ml of ampicillin for 

16-18 h at 370C. Cell cultures were transferred to 1.5 ml tubes and pelleted by 

centrifugation for 5 min at 13,000 rpm and the pellet was re-suspended in cell re-

suspension solution. Cells were lysed and then the lysis buffer was neutralised. The 

lysate was centrifuged at 13,000 rpm for 10 min and the supernatant was applied 

to a mini column. The column was firstly centrifuged at 13,000 rpm for 1 min, then 

washed twice with column wash solution and centrifuged for 1 min at 13,000 rpm 

after each wash. The plasmid DNA was eluted from the column with 50 µl of 

nuclease-free ddH2O by centrifugation at 13,000 rpm and stored at -200C. 

2.3.3. Site-directed mutagenesis 

Site-directed mutagenesis (SDM) was performed using the QuikChange II XL site-

directed mutagenesis kit (Agilent Technologies), as per the manufacturer’s 

specifications. Briefly for the control reaction, 10 ng of pWhitescript 4.5 kb control 

plasmid were incubated with 5 µl of 10x reaction buffer, 125 ng of each control 

primers, 1 µl of dNTP mix, 3 µl of QuikSolution reagent and 1 µl of PfuUltra HF DNA 

polymerase (2.5 U/µl) and ddH2O water up to 50 µl final volume. For the test 

reactions, 10 ng of plasmid DNA were used for each reaction together with specific 

primers (Table 2.4.). The reactions were incubated for 1 cycle at 950C for 1 min, for 

18 cycles at 950C for 50 s, 600C for 50 s, 680C for 14 min (varies according to plasmid 

size, 1 min per kb of plasmid), for 1 cycle at 680C for 7 min and for 1 cycle at 370C 

for 2 min. SDM products were incubated with 1 µl DpnI (10 U/µl) restriction digest 

enzyme for 1 h at 370C in order to linearise plasmid and verify, by Sanger 

sequencing, whether SDM was successful. 
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Genetic 

variation 

Primer 

name 

Primer sequence 

DSP 11G>C 

(ARVC) 

G63C AGGTGCAGAACTTGGTAAACAACTCTAAGAAGA

TTGTACAG 

DSP 11G>C 

(ARVC) 

G63C -

antisense 

CTGTACAATCTTCTTAGAGTTGTTTACCAAGTT

CTGCACCT 

DSP 12C>T 

(hypotrichosis 

and PPK) 

 

C113T 

 

CGTGACGGGCCTGGGAGGCGTTG 

DSP 12C>T 

(hypotrichosis 

and PPK) 

C113T - 

antisense 

 

CAACGCCTCCCAGGCCCGTCACG 

Table 2.4. Primers used for site-directed mutagenesis of novel gene variations in DSP 

identified in patients with ARVC and hypotrichosis and PPK. 

2.3.4. Transformation of chemically competent bacterial cells 

Following restriction digest with DpnI, as described in section 2.3.3., the confirmed 

required constructs were used to transform chemically competent E. coli cells. The 

chemical transformation protocol was performed using XL10-Gold ultracompetent 

E. coli cells (Agilent Technologies), according to the manufacturer’s instructions. 

Briefly, 2 µl of each construct generated by SDM were mixed with XL10-Gold 

ultracompetent E. coli cells and β-mercaptoethanol. Following an incubation of 30 

min on ice, cells were heat-shocked for 30 s at 420C and then immediately 

transferred to ice for another 2 min. After addition of 1 ml of RT LB-broth, cells were 

incubated with shaking at 225-250 rpm at 370C for 1 h to allow expression of the 

antibiotic resistance genes. After the 1 h incubation cells were centrifuged for 5 min 

at 13,000 rpm and resuspended in 100 µl LB-broth. Cells were then plated on a pre-

warmed LB agar plate containing 50 µg/ml ampicillin. Inoculated agar plates were 

incubated at 370C overnight (minimum 16 h). 
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2.4. Molecular Biology III – Protein Methods 

2.4.1. Antibodies 

Primary antibodies used for western blotting and microscopy and associated 

information and working dilutions are listed in Appendix C, Table C1. 

2.4.2.  Immunocytochemistry 

Immunocytochemistry was performed both on cells plated on coverslips as well as 

on cells plated on Flexcell membranes following mechanical stretch. Cells were 

plated on coverslips at approximately 80% confluency in 12-well plates and grown 

overnight at 37°C. Cells were washed twice in PBS and fixed either in ice-cold 

methanol : acetone (1:1) or in 4% paraformaldehyde (PFA). Following fixation, cells 

were washed three times in PBS, then permeabilised in 0.1% Triton X-100 in PBS 

(PBST) for 5 min at RT (PFA fixed cells only), and finally blocked with 3% BSA in 

PBS (blocking buffer) for 30 min at RT. The cell-containing coverslips/membranes 

were then inverted onto a 50 µl drop of primary antibody-containing blocking buffer 

at the appropriate dilution and incubated for 2 h at RT or 40C overnight. Cells were 

washed three times in PBS and then incubated with the appropriate Alexa Fluor 

488- (green) conjugated goat anti-rabbit, mouse or guinea pig IgG secondary 

antibody (Invitrogen), at a 1:800 dilution in PBS, for 1 h at RT. Cells were washed 

twice in PBS, incubated in DAPI (nuclear stain at 100 ng/ml) for 2 min at RT and 

washed three times in PBS. Cells were mounted with Immu-mount (Thermo Fisher 

Scientific). 

Immunofluorescence images were acquired with a Zeiss LSM 510 and Zeiss LSM 710 

laser scanning confocal microscopes (Carl Zeiss Ltd, Hertfordshire, UK) and 

processed using the LSM image browser (Zeiss). 
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2.4.2.1. Methanol-Acetone fixation 

Cells were washed twice with PBS and fixed in ice cold methanol:acetone (50:50) 

for 5 min at -20°C. This fixation method was used for staining with all primary 

antibodies targeting membranous proteins. If cells were not used immediately they 

were left to air dry following fixation and stored at -200C until use. 

2.4.2.2. Paraformaldehyde fixation  

A fresh solution of 4% PFA in PBS was prepared (described below), aliquoted and 

stored at -200C and defrosted prior to each use. To this end, 2 g of PFA were 

dissolved in approximately 40 ml of boiling ddH2O containing 20 µl of 2 M NaOH. 

The solution was cooled to RT and 5 ml of 10 x PBS were added. Water was added 

to a final volume of 50 ml. Cells were washed twice with PBS and fixed in 4% PFA 

for 20 min. This fixation method was used for staining with the primary antibodies 

targeting non-membranous proteins. 

2.4.3. Immunohistochemistry 

Immunohistochemistry was performed on frozen sections of normal and palm skin. 

Briefly, frozen skin sections were air-dried at RT for 1 h, then fixed with 4% PFA in 

PBS for 20 min or briefly in methanol:acetone (50:50) at RT and permeabilised in 

0.1% Triton X-100 in PBS (PBST) for 5 min at RT, and finally blocked with 3% BSA 

in PBS (blocking buffer) for 30 min at RT. Sections were then incubated with 100-

150 µl of primary antibody for 2 h at RT or at 40C overnight. Sections were then 

washed three times in PBS and then incubated with the appropriate Alexa Fluor 

488- (green) conjugated goat anti-rabbit, mouse or guinea pig IgG secondary 

antibody (Invitrogen), at a 1:800 dilution in PBS, for 1 h at RT. Cells were washed 

twice in PBS and incubated with DAPI (nuclear stain at 100 ng/ml) for 2 min at RT 

prior to washing three times in PBS. Stained skin sections were mounted with 

Immu-mount (Thermo Fisher Scientific). Immunofluorescence images were 

acquired with the same apparatus as described for immunocytochemistry 

visualization. 
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2.4.4. Western Blotting 

2.4.4.1. Protein preparation from cell extracts 

Whole-cell protein extracts were prepared from HaCaT keratinocytes when 

approximately 90% confluent. The cells were washed in ice-cold PBS before lysis 

and then detached with boiling SDS sample buffer. Cells were scraped and the cell 

lysates were transferred to microcentrifuge tubes and heated to 95°C for 5 min 

before being spun briefly and stored at -200C.   

2.4.4.2. SDS-polyacrylamide gel electrophoresis (PAGE) and transfer 

Briefly, a separating polyacrylamide gel mixture (10-12% depending on protein 

size) was prepared and poured between two glass plates and 0.75 mm spacers in a 

gel electrophoresis apparatus (BioRad, Hemel Hempsted, UK). The gel mixture was 

overlaid with 1 ml of isopropanol, and left to polymerise at RT for approximately 20 

min. When the gel was polymerised, the isopropanol was removed. A 5% stacking 

gel mixture was prepared and cast with sample combs over the resolving gel, and 

left to polymerise at RT for approximately 30 min. Between 10-20 µl of protein 

sample as well as 6-10 µl of full-range Rainbow molecular weight marker (GE 

Healthcare) were loaded on the SDS-polyacrylamide gel. The gel was run at 12 

mA/gel in running buffer until the desired separation was obtained. 

Proteins were transferred onto a Hybond–C Extra nitrocellulose membrane (GE 

Healthcare) in a wet transfer electrophoretic cell (BioRad) with transfer buffer, 

usually at 300 mA/tank for 1.5 h (or 100 mA/tank overnight). Quality of loading for 

each transfer was assessed by staining of the membrane with Ponceau Red stain 

solution for 5 min, followed by de-stain in ddH2O and a final wash in Tris-Buffered 

Saline–Tween 20 (TBS-T). 

2.4.4.3. Pre-cast gradient SDS-polyacrylamide gels and transfer 

Whole cell lysates were resolved on NuPAGE Novex 4-12% Bis-Tris Mini Gels for 

NuPAGE Novex 3-8% Tris-acetate Mini Gels (Invitrogen), when western blotting for 

DSP according to the manufacturer’s specifications. Approximately 10-20 μl of 

protein sample and 10-12 μl of High Mark Pre-stained Molecular Weight Marker 
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(Invitrogen) were loaded on the pre-cast SDS-polyacrylamide gels. The gel was run 

at 24 mA/gel until the desired separation was obtained. Proteins were subsequently 

transferred onto a Hybond – C Extra nitrocellulose membrane (GE Healthcare, 

Buckinghamshire, UK) in a wet transfer electrophoretic cell (Invitrogen) with 

transfer buffer, usually at 300 mA/tank for 1.5 h (or 100 mA/tank overnight). 

Quality of loading/transfer was assessed by staining of the membrane with Ponceau 

Red stain solution for 5 min, followed by de-stain in ddH2O and a final wash in TBS-

T. 

2.4.4.4. Immunoblotting and visualisation 

Non-specific antibody binding to the membrane was prevented by incubating the 

membrane in 10% (w/v) non-fat milk diluted in TBS-T or 5% (w/v) BSA diluted in 

TBS-T for 30 min at RT. Blocked membranes were incubated at RT for 2 h or at 40C 

overnight in 5% (w/v) non-fat milk TBS-T or 5% (w/v) BSA TBS-T containing the 

appropriate primary antibody at the suitable dilution. Following three 5 min washes 

in TBS-T, membranes were incubated in TBS-T containing the appropriate 

peroxidase-conjugated anti-mouse or anti-rabbit immunoglobulins (Dako, Ely, 

Cambridgeshire, UK), for 1 h at RT. Membranes were subsequently washed again as 

described above, incubated in ECL, ECL Plus solution (Amersham, GE Healthcare, 

Buckinghamshire, UK) or ECL Immobilon (Merck Millipore, UK) for 3 min, sealed in 

a plastic sheet, and exposed to chemiluminescence sensitive film (GE Healthcare).  

2.4.4.5. Stripping membranes for antibody re-probing 

Western blotting membranes were incubated in stripping buffer, prepared in house, 

at 500C-550C for 30 min. Membranes were then washed 3 times in TBS-T and 

developed as described above to check efficiency of stripping. For use the 

membrane was firstly blocked in the appropriate blocking buffer, 10% milk in TBS-

T or 5% BSA in TBS-T, before proceeding with incubation with primary antibody 

and the steps described above.  
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2.5. Cell Methods 

2.5.1. Cell culture conditions 

The HaCaT spontaneously immortalised human keratinocyte cell line was cultured 

in DMEM : Ham’s F12 or DMEM (Sigma-Aldrich, UK) supplemented with 10% (v/v) 

FBS (Biosera), 2 mM L-glutamine (Biosera), 100 U/ml penicillin, 100 µg/ml 

streptomycin and 1% RM+ or no RM+ when DMEM was used. Cells were maintained 

at 370C in a 5% CO2 humidified incubator. When 80-90% confluent cells were 

washed in PBS and incubated in a mixture of one part 10% trypsin-EDTA and two 

parts PBS at 370C until detached. The reaction was stopped using complete medium, 

cells were pelleted by centrifugation at 1200 rpm for 5 min and re-suspended in 

complete medium. Approximately 2 million cells were then transferred to a new 

flask. Growth medium was changed every 3 days.  All in vitro studies presented in 

this thesis used cells passaged for no more than 30 passages. 

2.5.2. Cryopreservation of cells 

For cryopreservation, 80-90% confluent cells were detached from the culture dish 

with trypsin-EDTA as described (section 2.3.1), pelleted by centrifugation and 

resuspended in 90% FBS:10% DMSO. Vials were frozen slowly at -80°C for at least 

24 h and then transferred into vapour-phase nitrogen for long term storage. When 

a new cell culture was started, vials were defrosted quickly, in order to minimise 

cell death, and mixed with complete medium. The resuspended cells were pelleted 

at 1200 rpm for 5 min and reseeded into a flask with complete medium.  

2.5.3. Mycoplasma testing 

All cell cultures were tested using the MycoAlert™ Mycoplasma Detection Kits LT07-

418 and MycoAlert Assay Control Set LT07-518 (Cambrex) as per manufacturer’s 

specifications. Briefly, the reagent and substrate buffers and the positive and 

negative controls were thawed to RT.  1.5 ml of cell culture medium, kept on cells 

for 72 h,  was cleared by centrifuging at 1500 rpm for 5 min. 100 µl of cleared 

supernatant from each sample was transferred to a well of a 96-well plate and 

incubated for 5 min with 100 µl of MycoAlert reagent. The plate was read in the plate 
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reader on the luminescence program (Bio-Tek Synergy HT Multi-Detection 

Microplate Reader, KC4 version 3.4 REV. 18). 100 µl of MycoAlert substrate was 

added to each sample and incubated for 10 min. After the 10 min incubation the 

plate was read on the luminescence program and the ratio between the second 

reading and the first reading was calculated. A ratio less than 1 was indicative of 

uninfected cells. 

2.5.4. Transient siRNA mediated knockdown 

Transfection conditions were optimised using siGLO Cyclophilin B Control siRNA 

(Thermo Fisher Scientific). For transient down-regulation siRNA OnTarget plus 

SmartPool (Dharmacon) was used to target all possible splice variants. Table 2.5. 

summarises the characteristics of these siRNAs. 

Transfections were performed in RNase-free conditions according to the 

DharmaFECT general transfection protocol (Dharmacon) and optimised for a 6-well 

plate format. HaCaT cells were plated at a density of 2x105 cells per well of a 6-well 

plate and incubated in complete medium at 37°C, 24 h prior to siRNA transfection. 

In separate polystyrene tubes, 10 µl of CSTA siRNA (200 nM final 

concentration)/10-20 µl of CAST siRNA (200-400 nM final concentration)/10 µl of 

DSP I/II (200 nM final concentration) and 6 µl of DharmaFECT were mixed in serum- 

and antibiotic-free media, up to 200 µl per reaction and incubated at RT for 5 min. 

The siRNA-containing medium was added to the tube containing the DharmaFECT, 

mixed and incubated for 20 min at RT. Complete antibiotic-free media was added to 

the mix (transfection media). The culture media was then removed from the cells in 

the 6-well plate and 2 ml of transfection media were added to each well. Cells were 

incubated in transfection media for approximately 24 h at 37°C and then this media 

was replaced by complete medium. Cells were maintained in this media for 2-10 

days and subsequently harvested for experiments. Cells transfected with a pool of 

non-targeting (NT) siRNAs (OnTarget plus siControl non-targeting pool; Thermo 

Fisher Scientific) were used as a negative control.  
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 siRNA siRNA sequence Target 

mRNA 

Position in 

target 

mRNA# 

 

CSTA 

siRNA 

pool 

si1 GGAGAUUGUUGAUAAGGUU  

 

 

CSTA 

180 - 198 

si2 ACAAAUGAGACUUACGGAA 220 - 238 

si3 GUACGAGCAGGUGAUAAUA 298 - 316 

si4 AAUGAGGACUUGGUACUUA 358 - 376 

 

CAST 

siRNA 

pool 

si1 UGACAAAGACCUCGAUGAU  

 

 

CAST 

1623 - 

1641 

si2 UAAACUCUCUGACAGUCUA 1650 - 

1668 

si3 GACACUAUCCCACCUGAAU 1768 - 

1786 

si4 GCGAAGGAUUCAGCAAAGA 2008 - 

2026 

DSP I/II 

siRNA 

 

siI/ II 

 

AACCCAGACTACAGAAGCAAT 

 

DSPI/II 

 

1633-1653 

Table 2.5. Characteristics of the siRNAs used. #Position of siRNAs according to NCBI 

reference sequences NM_005213.3 for CSTA, NM_173060 for CAST and NM_004415.2 

for DSPI.  

2.6. Adhesion assays 

2.6.1. Dispase-based assay 

Cells were grown to a high density and treated in cell culture flasks, then detached 

using 10% trypsin-EDTA (diluted 1:3 with PBS) and reseeded at a density of 3 x 106 

cells/ml in 60 mm dishes. After 24 h cells were washed once in Ca2+ and Mg2+ 

enriched PBS before being incubated with 5 mg/ml dispase. Ca2+ and Mg2+ enriched 

PBS was used in order to preserve intercellular connections intact upon exposure 
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to dispase. After 20 min incubation, pellets were gently transferred to 15 ml tubes 

containing 5 ml PBS with Ca2+ and Mg2+. Tubes were inverted rapidly 10-20 times 

(until breakage was observed) then the fragments were transferred back into the 

corresponding dishes and counted under a dissecting microscope. 

2.6.2. Flexcell adhesion assay 

The Flexcell FX-4000 Tension System (Flexcell, Hillsborough, NC) is a computer-

regulated bioreactor that uses vacuum pressure to apply cyclic or static strain to 

cells cultured on flexible-bottomed culture plates. This system was used to subject 

cell monolayers to mechanical stress. HaCaT cells were grown to approximately 

90% confluency on BioFlex 6-well plates (Flexcell) which contain a rubber 

membrane coated with pronectin in each 35 mm well. Each plate was placed over 

the loading station containing 6 planar faced cylinders or posts. Each post (25 mm) 

is centred beneath the rubber membrane of each 35 mm well. Cells were subjected 

to cyclic mechanical stretch with a frequency of 5 Hz (i.e. five cycles of stretch and 

relaxation per second) and an elongation of amplitude ranging from 11 to 14% (i.e. 

increase in diameter across the silicone membrane from 11 to 14%). Cells were 

stretched for different periods of time, between 0 h (non-stretched) and 4 h, and 

then prepared for immunocytochemistry as described. In order to stain the cells 

contained in each well of the 6-well dish with more than one antibody, the flexible 

rubber membrane was cut into 8 triangular segments with a scalpel. Each of these 

cell-containing segments was stained with a different antibody. 

2.7. Wound-healing assay 

Cells were plated and treated in 6-well plates and left to reach confluency (time-

course permitting). The medium was removed and cells were incubated at 370C, 5% 

CO2 for 2 h in Mitomycin C (10 µg/ml) diluted in complete medium to inhibit cellular 

proliferation. After 2 h the medium with Mitomycin C was removed and cells were 

washed 3 times in PBS. Using the top of the plate as a ruler and a P1000 tip the cell 

monolayers were scratched in the shape of a cross connecting the well edges. The 

cells were washed 3 times in PBS to remove any debris and complete medium was 

added. Pictures were taken at various time points using either a simple microscope 
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(Nikon Eclipse TE 2000-S and Nikon Digital Sight) or by Timelapse (Timelapse Epi 

inverted – TES, Zeiss), as per manufacturer’s specifications. 

2.8. Enzyme-Linked Immunosorbent Assay (ELISA) 

All reagents were purchased from R&D Systems except for PBS, wash buffer, reagent 

diluent and stop solution which were made in house. The assay was performed as 

per manufacturer’s instructions. Briefly, complete medium was removed from cells 

after 72-96 h and spun at 1200 rpm for 5 min. The supernatant was moved to fresh 

tubes and kept at -800C until use. Capture antibody was diluted to a suggested 

concentration (as per manufacturer’s specifications) in PBS and each well of a 96-

well plate was coated with 100 µl and incubated overnight. The next day the capture 

antibody was removed and the plate was washed 3 times in wash buffer and blotted 

against clean paper towels to remove all liquid. 300 µl of reagent diluent were added 

to each well and the plate was incubated at RT for 1 h. The wash step described 

above was repeated 3 times. 100 µl of sample or standard diluted in reagent diluent 

were added to the corresponding well and the plate was incubated at RT for 2 h. 

This step was repeated 3 times. 100 µl detection antibody, diluted in reagent diluent 

were added to each well and the plate was incubated at RT for 2 h. The wash step 

was repeated 3 times. 100 µl of the working dilution (suggested by the 

manufacturer) of streptavidin-HRP were added to each well and the plate was 

incubated in the dark at RT for 20 min. Wash step was repeated 3 times. 100 µl of 

substrate solution were added to each well and the plate was incubated in the dark 

at RT for 20 min. 50 µl stop solution were added to each well and mixed by gentle 

tapping. The optical density of the reactions was read using a plate reader (Bio-Tek 

Synergy HT Multi-Detection Microplate Reader, KC4 version 3.4 Rev. 18) set to 450 

nm with a wavelength correction set to 540 nm. 

2.9. Fluorescence-Activated Cell Sorting (FACS) 

All media, wash buffers and cells have been kept for apoptosis analysis by FACS. 

Cells plated in 6-well plates were detached using trypsin-EDTA as previously 

described and all buffers used for each well were mixed in separate tubes. Tubes 

were pelleted by centrifugation at 1500 rpm for 5 min and the supernatants were 
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discarded. The pellet was resuspended in 400 µl Annexin V binding buffer and 

moved into FACS tubes. 1.7 µl Annexin V–FITC were added to the cell – buffer mix 

and incubated at RT for 15 min. 16 µl DAPI (200 ng/ml) were added to each tube. 

30,000 events were analysed for each tube. Cells were counted and the percentage 

of early and late apoptotic death in each cell group was analysed using (BD 

FACSCanto II Flow Cytometer, BD Biosciences and FlowJo software, Tree Star Inc.).  

2.10. Statistical analysis 

The tools used were the two-tailed, paired t-test on Microsoft Excel. p<0.05 was 

significant (*); p<0.01 was highly significant (**); p<0.001 was very highly 

significant (***). 
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3.1. Introduction 

A variety of mutations have been identified in genes encoding desmosomal proteins 

as the underlying cause of an array of cardio-cutaneous syndromes (Brooke et al., 

2012). Studies have been performed to try and elucidate the disease mechanisms 

behind these mutations using both in vivo and in vitro methods. However, it is still 

unclear why distinct mutations in the same desmosomal gene lead to different 

phenotypes and how mutations in different genes lead to similar phenotypes.  

The focus of this chapter is the molecular analysis and identification of novel 

desmosomal mutations in patients clinically diagnosed with Arrhythmogenic Right 

Ventricular Cardiomyopathy/Dysplasia (ARVC/D), and secondly the genetic 

diagnosis of patients with hypotrichosis, hypotrichosis and PPK or acral peeling skin 

syndrome (APSS). In the latter patient cohort, mutations in protease-inhibitors were 

identified and shown to regulate aspects of desmosomal cell adhesion. Patient DNA 

was analysed using a number of different genetic techniques including custom 

capture array, HaloPlex targeted resequencing, exome capture and conventional 

Sanger sequencing. The following sections describe these different sequencing 

approaches and the novel mutations identified.  

3.2. Results 

3.2.1. Capture array and HaloPlex targeted resequencing in patients 

with ARVC 

Forty-nine patients were recruited from Barts and The London NHS Trust and from 

two collaborating centres, Bristol Heart Institute and the Cardiac Inherited Disease 

Group based in Auckland, New Zealand (Dr Dominic Abrams). Specific information 

on patient demographics is presented in Appendix A. Clinicopathological data was 

not available for patients seen in New Zealand.  The vast majority of patients 

recruited fulfilled diagnostic criteria for the condition, either using standard or 

modified ARVC criteria, or presented with an increasingly recognised variant of 

ARVC, namely predominant left ventricular involvement. The family pedigree below 

is representative for patient ARVC 2010 0009 (Figure 3.1.). 
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Figure 3.1. Pedigree structure of a family investigated in the ARVC study, where other 

family members have been diagnosed with ARVC. Filled symbols represent affected 

family members (diagnosed in this study ARVC 2010 0009). Squares represent male and 

circles represent female individuals. (*) represent patients treated at another hospital and 

(#) represent patients screened with nothing abnormal detected (NAD). No other members 

from this family have been screened in this study. 
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3.2.1.1. Illumina custom capture array  

Twelve patient DNA samples were analysed on the 385K sequence capture array 

containing genomic DNA sequences from five different desmosomal genes that are 

known to be involved in ARVC namely: DSP, PKP2, JUP, DSC2 and DSG2. Following 

PCR enrichment, samples were run on the Illumina Genome Analyser IIx (GAIIx) at 

the QMUL Genome Centre, London.  Raw 76 bp paired-end FASTQ reads were 

aligned against the reference genome sequence (Hg19). Unique sequence variants 

were identified by filtering the resultant data set against variations reported on 

dbSNP (www.ncbi.nlm.nih.gov/snp/) and the 1000 genome project database 

(www.1000genomes.org/). Initial sequence analysis, including soft clipping, adapter 

trimming, and quality calibration options were performed by Dr Vincent Plagnol at 

University College London.  

Following initial analysis, the BAM files corresponding to the unique homozygous 

changes were aligned in the Integrative Genomics Viewer (IGV) against the genomic 

reference sequence (bottom of each IGV window); the IGV layout for six of the 

confirmed likely ARVC-associated DNA variants are shown in Figure 3.2. A-F. The 

centre of each alignment shows a variant present in the heterozygous state. Due to 

the DNA pooling strategy, it was unknown at this stage which patients harboured 

these specific sequence variants. The percentage of reads for each variation was 

analysed. A percentage of variation reads of approximately 4% was representative 

for a heterozygous variation and a multiple of 4%, such as 8%, 16%, was 

representative for a homozygous variation or a heterozygous variation present in 

more than one patient. This was indicative of a real or false call prior to Sanger 

sequencing analysis. 
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Figure 3.2.  IGV layout of NGS results following a targeted-capture array of ARVC 

patients. Data was analysed for a high number of variation reads and aligned against the 

Human Reference Genome version 19 (GRCh37/Hg19). A percentage of reads of 

approximately 4% was indicative of a variation affecting one allele only whilst a multiple of 

4% (such as 8%, 16%) was indicative of a number of alleles being affected. (A) to (F) are 

the representations (as seen in IGV) of NGS data corresponding to affected ARVC patients: 

(A) NM_001008844:c.G1323C:p.K441N in DSP, (B) IVS11-1G>C in PKP2 and (C) 

IVS12+1G>A in PKP2. 
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Figure 3.2.  IGV layout of NGS results following a targeted-capture array of ARVC 

patients (continued). Data was analysed for a high number of variation reads and aligned 

against the Human Reference Genome version 19 (GRCh37/Hg19). A percentage of reads of 

approximately 4% was indicative of a variation affecting one allele only whilst a multiple of 

4% (such as 8%, 16%) was indicative of a number of alleles being affected. (A) to (F) are 

the representations (as seen in IGV) of NGS data corresponding to affected ARVC patients: 

(D) NM_001005242:c.G870A:p.W290X in PKP2, (E) NM_024422:c.T2194G:p.L732V in 

DSC2, (F) NM_001943:c.C874T:p.R292C in DSG2. 
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3.2.1.2.  Genetic screening of DSP, PKP2, JUP, DSC2 and DSG2 genes in patients 

clinically diagnosed with ARVC following custom capture array 

Preliminary data analysis, selecting against read depth, gene of interest and 

percentage of reads, revealed nine likely disease-causing mutations in the twelve 

sequenced patients (Table 3.1.).  

Sanger sequencing was performed to confirm each of the sequence variants and to 

identify the specific patients harbouring these variants. Three were identified as 

false positive variants and six were confirmed in five patients as follows (Figure 

3.3.):   

i) a heterozygous transversion from guanine to cytosine at coding position 

1323 of DSP, which changes a lysine amino acid codon to an asparagine 

amino acid (c.G1323C:p.K441N) in patient ARVC 2010 0006; 

ii) two heterozygous transversions from a guanine to cytosine and guanine 

to adenine, respectively, predicted to affect the splice sites of exons 11 

(IVS11-1G>C) and 12 (IVS12+1G>A, rs111517471 – Minor Allele 

Frequency (MAF): < 0.01) of PKP2 in patients ARVC 2010 0006 and ARVC 

2010 0009; 

iii) a heterozygous transversion from guanine to adenine at coding position 

870 of PKP2, which changes a tryptophan amino acid codon to a STOP 

codon (c.G870A:p.W290X) in patient ARVC 2010 0004; 

iv) a homozygous transversion from thiamine to guanine at coding position 

2194 of DSC2, which changes a leucine amino acid codon to a valine 

amino acid (c.T2194G:p.L732V; Mutation L732V) in patient ARVC 2010 

0010; 

v) a heterozygous transversion from cytosine to thiamine at coding position 

874 of DSG2, which changes an arginine amino acid codon to a cysteine 

amino acid (c.C874T:p.R292C; Mutation R292C) in patient ARVC 2010 

0005;  

vi) No variations were found in these five genes in the other seven patients, 

by capture array.  
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Patient Gene Chr. Exon Variation 
Reads 

(%) 
Novel (Y/N) 

ARVC 

2010 

0006 

DSP 6 11 
NM_001008844: 

c.G1323C:p.K441N 
4.17 N 

ARVC 

2010 

0006 

PKP2 12 N/A IVS11-1G>C 3.11 N 

ARVC 

2010 

0009 

PKP2 12 N/A IVS12+1G>A 5.19 rs111517471 

False 

positive 
PKP2 12 10 

NM_001005242: 

c.T1900G:p.W634G 
17.88 N/A 

ARVC 

2010 

0004 

PKP2 12 3 
NM_001005242: 

c.G870A:p.W290X 
4.11 N 

False 

positive 
PKP2 12 3 

NM_001005242: 

c.A742C:p.T248P 
7.36 N/A 

ARVC 

2010 

0010 

DSC2 18 14 
NM_024422: 

c.T2194G:p.L732V 
3.69 

Mutation 

L732V 

ARVC 

2010 

0005 

DSG2 18 8 
NM_001943: 

c.C874T:p.R292C 
3.29 

Mutation 

R292C 

False 

positive 
DSG2 18 15 

NM_001943: 

c.A2568C:p.K856N 
23.87 N/A 

Table 3.1. NGS results following a targeted-capture array on ARVC patients. Data 

analysis has revealed 9 likely disease causing mutations in 12 patients, out of which 3 were 

false positive calls. Table 3.1 above contains details of the possible affected genes and 

variations as well as details of patients affected and confirmed by Sanger sequencing. 

 



106 

 

 

Figure 3.3.  Confirmation of mutations in the DSP, PKP2, DSG2 and DSC2 genes of five 

affected individuals. Electropherograms of control and patient genomic DNA sequences. 

(A) Sequencing of patient DNA revealed a heterozygous transversion from guanine to 

cytosine at coding position 1323 of DSP, which changes a lysine amino acid codon to an 

asparagine amino acid (c.G1323C:p.K441N). (B) and (C)  Sequencing of patient DNA 

revealed two heterozygous transversions, from a guanine to cytosine and guanine to 

adenine, respectively, believed to affect the splice sites of exons 11 (IVS11-1G>C) and 12 

(IVS12+1G>A) of PKP2. (D) Sequencing of patient DNA revealed a heterozygous 

transversion from guanine to adenine at coding position 870 of PKP2, which changes a 

tryptophan amino acid codon to a STOP codon (c.G870A:p.W290X). 
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Figure 3.3. Confirmation of mutations in the DSP, PKP2, DSG2 and DSC2 genes of five 

affected individuals (continued). Electropherograms of control and patient genomic DNA 

sequences. (E) Sequencing of patient DNA revealed a homozygous transversion from 

thiamine to guanine at coding position 2194 of DSC2, which changes a leucine amino acid 

codon to a valine amino acid (c.T2194G:p.L732V). (F) Sequencing of patient DNA revealed 

a heterozygous transversion from cytosine to thiamine at coding position 874 of DSG2, 

which changes an arginine amino acid codon to a cysteine amino acid (c.C874T:p.R292C). 

Genomic DNA from an unaffected individual was used as control. 
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3.2.1.3. HaloPlex targeted enrichment system 

Given that the molecular analysis of a higher number of ARVC diagnosed patients 

had to be performed and due to the large volume of Sanger sequencing required for 

variant confirmation with the previous targeted capture method, a HaloPlex 

targeted enrichment system was used for targeted NGS. This technique offered the 

possibility to screen up to 96 patients using unique barcodes which would speed up 

the confirmation process. 

Forty eight genomic DNA samples were analysed on the HaloPlex target enrichment 

system. This system was specifically designed to cover 120 target regions, where 

each region was separated by another region by at least one base, with a total target 

region size of 36978 bp, covered by an average 98.5%. Custom designed probes 

covered eight genes associated with ARVC: DSP, JUP, PKP2, DSG2, DSC2, DES, 

ADAM17 and TMEM43. The patient samples screened using this system were as 

follows: thirty-seven new patients from the UK and NZ, seven patients screened on 

the capture array and in which no mutations were found, two patients with an 

unknown, possibly desmosome-related disorder and two control patients screened 

on the capture array and in which novel mutations were identified by custom 

capture array (ARVC 2010 0006 and ARVC 2010 0010).  

Following enrichment PCR, samples were run on the Illumina Genome Analyser IIx 

(GAIIx) at the QMUL Genome Centre.  Raw 100 bp paired-end FASTQ reads were 

aligned against the reference genome sequence (Hg19). Unique homozygous 

changes were identified by filtering the resultant data set against variations 

reported on dbSNP (www.ncbi.nlm.nih.gov/snp/) and the 1000 genome project 

database (www.1000genomes.org/). Initial sequence analysis, including the soft 

clipping, adapter trimming, and quality calibration options was performed by Dr 

Michael Barnes at the William Harvey Research Institute.  Following initial analysis 

the remaining calls were filtered by read depth, gene specificity and coverage as 

described above (Figure 3.4.). Seventeen possible disease-associated variations 

were identified with the majority in the PKP2 gene, with one call in ADAM17 and two 

in DSP. All these variations appeared to be novel (Table 3.2.). The two variations in 

patients ARVC 2010 0006 and ARVC 2010 0010 were also confirmed.  
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Figure 3.4. Diagram of percentage variation reads for ARVC patients analysed on the 

HaloPlex targeted resequencing system. NGS data was aligned and analysed against the 

Human Reference Genome version 19 (Hg19). Index numbers 1 to 48 represent the number 

for each patient analysed. The four real sequence variants confirmed by Sanger sequencing 

correspond to index numbers 5 (c.T1926A:p.Y642X), 17 (c.C5299T:p.R1767C), 42 

(c.G1939A:p.A647T) and 48 (c.A148C:p.T50A). 

 

 

 

 

 

 

 

 



110 

 

Patient Gene Exon Variation 

Reads 

(<2% poor, 

>2% good) 

Real 

(Y/N) 

 

9305427 

 

DSP 24 
NM_001008844:c.C5299T: 

p.R1767C 
Good Y 

RY8012 PKP2 4 
NM_001005242:c.C1162T: 

p.R388W 
Good N 

OG0660 PKP2 11 
NM_001005242:c.T2193C: 

p.V731V 
Poor N 

FP9310 PKP2 2 
NM_004572:c.413delC: 

p.G99Q 
Good N 

ARVC 

2011 

0020A 

PKP2 2 
NM_001005242:c.T332C: 

p.L111P 
Poor N 

LW9068 PKP2 9 
NM_001005242:c.T1926A: 

p.Y642X 
Good Y 

CM4130 PKP2 9 
NM_001005242:c.G1939A: 

p.A647T 
Poor Y 

LU4246 PKP2 12 
NM_004572:c.2469delT: 

p.Y786L 
Poor N 

ARVC 

2011 

0022 

PKP2 14 
NM_001005242:c.C2479A: 

p.R827R 
Poor N 

LV7711 PKP2 5 
NM_001005242:exon5:c.1170

+1G>A 
Poor N 

OG0660 PKP2 10 
NM_001005242:c.C2120A: 

p.S707X 
Poor N 

WN2786 PKP2 6 
NM_001005242:c.C1539T: 

p.N513N 
Good N 

LI8308 ADAM17 8 
NM_003183:c.1139delA: 

p.E319G 
Poor N 

LH5926 PKP2 1 
NM_001005242:c.A148C: 

p.T50A 
Poor Y 
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LH5926 PKP2 12 
NM_001005242:c.C2407G: 

p.L803V 
Poor N 

LH5930 DSP 23 
NM_004415:c.G5078T: 

p.S1693I 
Poor N 

WN2786 PKP2 12 
NM_001005242:c.A2176G: 

p.T726A 
Good N 

Table 3.2. NGS results following a HaloPlex targeted resequencing system on ARVC 

patients. Data analysis has revealed 17 likely ARVC-causing mutations in 44 ARVC patients, 

out of which 4 were real calls. Table above contains details of the possible affected genes 

and variations as well as details of patients affected and confirmed by Sanger sequencing. 
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3.2.1.4. Genetic screening of DSP, PKP2, JUP, DSC2, DSG2, DES, TMEM43 and ADAM17 

genes in patients clinically diagnosed with ARVC following HaloPlex targeted 

resequencing 

Confirmation analysis by PCR and Sanger sequencing of the variations described in 

Table 3.2. dismissed thirteen calls as false positive and confirmed four novel 

variants in four unrelated patients (Figure 3.5.). Sequencing of patient DNA revealed 

a heterozygous transversion from guanine to adenine at coding position 1939 of 

PKP2, which changes an alanine amino acid codon to a threonine amino acid 

(c.G1939A:p.A647T) in patient CM4130 (Figure 3.5.); a homozygous transversion 

from adenine to cytosine at coding position 148 of PKP2, which changes a threonine 

amino acid codon to an alanine amino acid (c.A148C:p.T50A) in patient LH5926 

(Figure 3.5.); a heterozygous transversion from a thymine to adenine at coding 

position 1926 of PKP2, which changes a tyrosine amino acid codon to a STOP codon 

(c.T1926A:p.Y642X) in patient LW9068 (Figure 3.5.) and a heterozygous 

transversion from cytosine to thymine at coding position 5299 of DSP, which 

changes an arginine amino acid to a cysteine amino acid (c.C5299T:p.R1767C; 

rs28931610) in patient 9305427. Patient 9305427 has a cutaneous syndrome - and 

this heterozygous variant has previously been associated with a Skin Fragility – 

Woolly Hair Syndrome (Dimas et al., 2008). 
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Figure 3.5. Confirmation of mutations in the PKP2 gene in three affected individuals. 

Electropherograms of patient genomic DNA sequences. Sequencing of patient DNA reveals 

a heterozygous transversion from guanine to adenine at coding position 1939 of PKP2, 

which changes an alanine amino acid codon to a threonine amino acid (c.G1939A:p.A647T) 

in patient CM4130; a homozygous transversion from adenine to cytosine at coding position 

148 of PKP2, which changes a threonine amino acid codon to an alanine amino acid 

(c.A148C:p.T50A) in patient LH5926 and a heterozygous transversion from thymine to 

adenine at coding position 1926 of PKP2, which changes a tyrosine amino acid codon to a 

STOP codon (c.T1926A:p.Y642X) in patient LW9068. 
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3.2.2. SNP array and exome analysis reveal DSP mutation in patients 

with hypotrichosis and PPK 

Three siblings from a consanguineous Pakistani family (Figure 3.6. A) were clinically 

examined at Birmingham Children’s Hospital. The patients, aged between seven 

months and ten years at the time of examination, had comparable hair and skin 

phenotypes, which consisted of hypotrichosis of the head, eyebrows and eyelashes, 

and diffuse, erythematous non-transgradiens palmoplantar keratoderma, (Figure 

3.6. B). After ritual shaving, their hair regrew sparse, short and woolly with 

perifollicular erythema. The middle boy was also atopic and had more marked PPK 

and hypotrichosis. No other observations were noted and otherwise they appeared 

healthy. Cardiac assessment, echocardiograph and electrocardiography were 

performed and did not reveal any cardiac abnormalities. The parents and older 

sister were unaffected. 

Due to the similarity of this phenotype to the cutaneous observations made in 

patients with desmosomal mutations, a mutation affecting a desmosome-associated 

protein was expected. The genetic analysis of patients 656 and 657, together with 

their unaffected parents is described in this subchapter. 
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Figure 3.6. Pedigree structure of Pakistani family investigated in this study and 

clinical phenotype of affected patients showing the hypotrichosis and PPK. (A) Filled 

symbols represent affected family members (656, 657 and a younger clinically examined 

sibling) and unaffected family members tested as controls (parents 658 and 655 and an 

older clinically examined sibling). Squares represent male and circles represent female 

individuals. (B) Clinical phenotype of two older affected siblings. Hypotrichosis of the scalp 

(656A and 657A), eyebrows and eyelashes (656B and 657B) in older and middle siblings 

and diffuse, non-transgrediens plantar keratoderma with fissuring in middle aged patient 

(657 C1 and C2). 
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3.2.2.1. SNP genomic mapping 

Given the apparent recessive mode of inheritance and consanguinity, a genome 

wide search for regions of common ancestry (homozygosity) was carried out 

previously by our group in collaboration with Dr Charles Mein from the QMUL 

Genome Centre. Common regions of genomic homozygosity were identified using 

the Illumina HumanHap550v3_A Genotyping BeadChip SNP mapping array and size 

range of clocks of homozygosity common to both patients were identified on 

chromosomes 1, 4, 5, 6, 11 and 14 (Table 3.3.). Because these regions of 

homozygosity were too large to explore, exome sequencing was performed on 

genomic DNA from one of the affected siblings. 
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Chromosom

e 

Start End 
Size 

CSID Position CSID Position 

1 10801043 
18967299

0 

1049472

3 

19347250

4 
3,691,286 

4 
cnvi001205

2 
45038666 2680758 56992092 

11,953,42

6 

5 12521501 31966942 37353 58647773 
26,680,83

1 

6 887509 6827116 669036 10620308 3,793,192 

11 1852755 13953262 2702703 19357949 5,404,687 

14 11543947 22573861 
1049831

3 
29468627 6,894,766 

Table 3.3. SNP Genomic Mapping analysis on siblings with hypotrichosis and PPK. 

Data analysis has revealed large homozygous SNP regions on chromosomes 1, 4, 5, 6, 11 

and 14. Table 3.3 shows the start and end positions and Chromosomal-SNP ID (CSID) 

together with the size of the homozygous SNP regions. 
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3.2.2.2. Exome capture 

Genomic DNA from one of the siblings clinically diagnosed with hypotrichosis and 

PPK was analysed on the SeqCap EZ Human Exome Library v2.0. This assay covered 

approximately 20,000 genes in the human genome, with gene information taken 

from the following sources: NCBI Reference Sequence RefGene from UCSC - January 

2010, CCDS from NCBI - September 2009, miRNAs from miRBase - version 14, 

September 2009 and customer inputs. A total of 44.1 Mb regions were covered in 

this assay (www.nimblegen.com).  

Following enrichment PCR, samples were run on the Illumina Genome Analyser IIx 

at the QMUL Genome Centre.  Raw 72 bp paired-end FASTQ reads were aligned 

against the reference genome sequence (Hg19). Unique homozygous changes were 

identified by filtering the resultant data set against variations reported on dbSNP 

(www.ncbi.nlm.nih.gov/snp/) and the 1000 genomes project 

(www.1000genomes.org/). Sequence analysis, including the soft clipping, adapter 

trimming, and quality calibration options was performed by Dr Vincent Plagnol at 

University College London.  

Table 3.4. presents details of the possible disease-associated genes together with 

the associated homozygous variation call and percentage depth for each variation.  

The novel identified DSP variant, c.C1493T:p.P498L, presented the highest 

percentage read depth (also covered in one of the regions of homozygosity 

identified in the SNP array data) and appeared to be the most likely disease-

associated mutation. Confirmation Sanger sequencing was performed on patient 

and control genomic DNA. 
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Gene Chromosome Variation Depth (%) 

MAP3K11 11 NM_002419:c.C1876A:p.P626T 7 

RAD9A 11 NM_004584:c.A1028T:p.E343V 33 

C14orf21 14 NM_174913:c.A1417G:p.M473V 17 

DCAF16 4 NM_017741:c.A124G:p.M42V 66 

ACSL6 5 NM_015256:c.A1913G:p.Q638R 130 

DSP 6 NM_001008844:c.C1493T:p.P498L 214 

Table 3.4. NGS results following a genome wide exome analysis on one patient with 

hypotrichosis and PPK. Taken together, the SNP array and exome data analyses have 

revealed six likely homozygous disease-causing mutations. Table 3.4 above contains details 

of the possible affected genes and variations as well as details of variation read depth. 
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Further analysis by PCR (Figure 3.7. A) followed by Sanger sequencing confirmed 

this autosomal recessive mutation from a cytosine to a thymine at coding position 

1493 of DSP, which changes a proline amino acid codon to a leucine amino acid 

(c.C1493T:p.P498L) in both affected siblings (Figure 3.7. B). Parents were 

heterozygous carriers for this mutation and genomic DNA from an unrelated 

individual, used as control, was wild type for this change (Figure 3.7. C). The 

remaining affected and unaffected siblings have not been screened.  
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Figure 3.7. Confirmation of mutations in the DSP gene of two affected siblings. 

Electropherograms of control, unaffected parents and patients genomic DNA sequences. (A) 

PCR of control, unaffected parents and patients genomic DNA covering the DSP variation as 

seen on agarose DNA gel electrophoresis.  (B) Sequencing of patient DNA reveals 

homozygous transversion from cytosine to thymine at coding position 1493 of DSP, which 

changes a proline amino acid codon to a leucine amino acid (c.C1493T:p.P498L) in both 

siblings (657 and 656). (C) Parents (655 and 658) of affected individuals are heterozygous 

for this variation. Genomic DNA from an unaffected individual was used as control. 
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3.2.3. Candidate gene analysis in patients with Acral Peeling Skin 

Syndrome 

Two sisters aged 4 and 6 years, born from non-consanguineous parents, presented 

with a history of skin peeling on the hands and feet since 6 months of age (Figure 

3.8. A). The peeling was notably worse following sweating, friction and immersion 

in water with development of maceration. Clinical examination revealed superficial 

peeling on the palms and soles, which extended onto the dorsal surfaces (Figure 3.8. 

B). Wrinkling and maceration of the palmoplantar skin after contact with water was 

noted. One sister also had atopic eczema and sinusitis due to confirmed house dust 

mite allergy. The other sister had ichthyosis vulgaris. Both had asthma and high 

hypermetropia.  

The observed cutaneous phenotype resembles acral peeling skin syndrome (APSS), 

which is a rare autosomal recessive condition characterised by asymptomatic 

peeling of the skin of the hands and feet. APSS has been described in association 

with mutations in TGM5 gene, which encodes for Transglutaminase 5. Initial 

screening for mutations in Keratin 5 (KRT5) and 14 (KRT14), underlying 

Epidermolysis Bullosa Simplex (EBS), and in TGM5, underlying APSS, was negative.  
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Figure 3.8. Pedigree structure of the family investigated in this study and clinical 

features showing distinct phenotype of skin fragility and exfoliation. (A) Filled 

symbols represent affected family members (KL and SL). Squares represent male and 

circles represent female individuals. (B) Clinical phenotype of the two affected patients. 

Peeling skin on hands and feet.   
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3.2.3.1. Screening of CSTA by Sanger sequencing  

As no mutations were identified in these patients following genetic testing of the 

KRT5, KRT14 and TGM5 genes, it was decided that the CSTA gene encoding cystatin 

A should be screened, as CSTA mutations had recently been identified with APSS 

(Krunic et al., 2013). PCR analysis of genomic DNA from these patients, followed by 

DNA electrophoresis for visualisation under UV light (Figure 3.9 A) were performed. 

Due to repeated absence of DNA amplification across exon 1 of CSTA in the two 

tested patients, two new primer pairs flanking this exon were designed in order to 

avoid any polymorphisms that would interfere with the annealing process. DNA 

electrophoresis with the new primer pairs, designed to amplify exon 1 in two 

sequences, showed the absence of amplicons in both patients (Figure 3.9 B) which 

suggested the existence of a large deletion covering all 66 bp of exon 1 and possibly 

fragments of the flanking introns. This large deletion of 66 bp at the cDNA level, 

which includes the START codon, leads to a deletion of 22 amino acids at the protein 

level, this most likely resulting in loss of CSTA expression.  

DNA amplification of exon 2 of CSTA, followed by Sanger sequencing revealed the 

existence of a polymorphism, a heterozygous transversion from cytosine to thymine 

at coding position 154 of CSTA, which does not alter the tyrosine amino acid 

(c.C154T:p.Y34Y; rs17589). This polymorphism was also detected in the control 

genomic DNA (Figure 3.9. C). Exon 3 of CSTA was wild type in both affected siblings 

(Table 3.5.). 
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Figure 3.9. Confirmation of mutations in the CSTA gene of two affected individuals. (A) PCR with control and patients genomic DNA targeting all exons 

of the CSTA gene as seen on agarose DNA gel electrophoresis. (B) PCR on control and patients genomic DNA with two primer sets covering exon 1 in two 

halves as seen on agarose DNA gel electrophoresis. (C) Sequencing of exon 2 of patient genomic DNA reveals a heterozygous transversion from cytosine to 

thymine at coding position 154 of CSTA, which does not alter the tyrosine amino acid (c.C154T:p.Y34Y). This variation is a polymorphism previously 

identified in the healthy control population (rs17589 – MAF: 0.3928). Genomic DNA from an unaffected individual was used as control and presents the same 

variation in exon 2 as patient genomic DNA.  
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Exon Variation SNP reference 

number 

Genotype 

1 c.1_66del:p.1_22del  Novel Homozygous 

2 c.C154T:p.Y34Y rs17589 Homozygous 

3 Wild type N/A Wild Type 

Table 3.5. Sanger sequencing analysis on two patients with Acral Peeling Syndrome 

due to CSTA mutation. Table above contains details of the affected exons of the CSTA gene 

with variation description.  
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3.2.4. Candidate gene analysis in a patient with hypotrichosis 

3.2.4.1. Screening of DSG4 by Sanger sequencing 

Initial screening of this patient, which included PCR amplification of several exons 

of DSG4 previously deleted in patients with hypotrichosis (Kljuic et al., 2003a), 

revealed no homozygous deletions in these exons.  

Analysis of all fifteen exons of DSG4 subsequently revealed 3 homozygous changes 

in exons 4, 5 and 12 as follows: a homozygous transversion from guanine to adenine 

at coding position 258 in exon 4, which does not alter the arginine amino acid 

(c.G258A:p.R86R; rs16959856), a homozygous transversion from cytosine to 

thymine at coding position 495 in exon 5, which does not alter the serine amino acid 

(c.C495T:p.S165S; rs9956865) and a homozygous transversion from adenine to 

cytosine at coding position 1930 in exon 12, which changes an isoleucine amino acid 

into a leucine amino acid (c.A1930C:p.I644L; rs4799570) (Figure 3.10.). 

It is believed that these homozygous variations are non-disease causing 

polymorphisms, as they have also been observed in control genomic DNA from an 

unaffected individual and were found in the genome database (Table 3.6.). 
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Exon 

 

Variation 

SNP 

reference 

number 

 

MAF 

 

Genotype 

4 c.G258A:p.R86R rs16959856 0.2794 Homozygous 

5 c.C495T:p.S165S rs9956865 0.1951 Homozygous 

12 c.A1930C:p.I644L rs4799570 0.0341 Homozygous 

Table 3.6. Sanger sequencing analysis of a patient with hypotrichosis. Table above 

contains details of the affected exons of the DSG4 gene with variation description. Variation 

details were extracted using the NCBI reference genome NM_001134453. 

 

 

 

 



129 

 

 

Figure 3.10. DSG4 mutation analysis by Sanger sequencing of affected individual. 

Sequencing of DSG4 in patient genomic DNA revealed (A) a homozygous transversion from 

guanine to adenine at coding position 258 in exon 4, which does not alter the arginine amino 

acid (c.G258A:p.R86R; rs16959856), (B) a homozygous transversion from cytosine to 

thymine at coding position 495 in exon 5, which does not alter the serine amino acid 

(c.C495T:p.S165S; rs9956865) and (C) a homozygous transversion from adenine to 

cytosine at coding position 1930 in exon 12, which changes an isoleucine amino acid into a 

leucine amino acid (c.A1930C:p.I644L; rs4799570). 
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3.3. Discussion 

The principal goal of the work described in this chapter was the identification of 

novel and previously disease-associated genetic mutations in patients clinically 

diagnosed with ARVC from the UK and New Zealand.  

During the course of this study, three additional families with members diagnosed 

with hypotrichosis, hypotrichosis and PPK or APSS, all characterised by hair and/or 

cutaneous abnormalities, were screened for mutations in the disease associated 

genes DSG4 and CSTA for hypotrichosis and APSS patients, respectively, with a novel 

disease causing mutation in DSP identified in patients with hypotrichosis and PPK. 

3.3.1. Candidate gene approach in patients with ARVC reveals novel and 

known disease-associated mutations 

A total of forty-nine patients clinically diagnosed with ARVC were screened for 

mutations in the known and possibly disease associated genes DSP, DSC2, DSG2, 

PKP2, JUP, DES, TMEM43 and ADAM17. Following Sanger sequencing, nine variations 

in eight patients have been confirmed as real calls, in the DSP, PKP2, DSC2 and DSG2 

genes.  

As disease-causing mutations were identified in only 16% of the patients screened, 

we suggest that the lack of candidate identification in the remaining 84% may be 

related to phenotypic errors, incomplete sensitivity of the mutation screening 

techniques, presence of mutations in non-analysed sequences in some cases due to 

poor gene coverage and very likely the yet undefined genes. Distribution of the full 

disease associated genes out of the 49 patients was as follows: DSP, 11%; DSC2, 

11%; DSG2, 11% and PKP2, 67%.  

These results differ from previous reports in which 50-70% of ARVC-related 

mutations identified were in genes encoding for desmosomal components (Brooke 

et al., 2012), compared to only 16% in our reports. Regardless of the low percentage 

diagnosis rate, our results support previous statistic data revealing mutations in 

PKP2 as responsible for approximately 70% of desmosome related ARVC cases. This 

difference could be attributed to slightly different methods of patient recruitment 
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with 66% of mutations identified in twenty-four UK patients and only 33% 

identified in twenty-five New Zealand patients.  

Out of six variations identified in PKP2, five mutations were heterozygous and one 

was homozygous as follows: two heterozygous transversions believed to affect the 

splice sites of exons 11 (IVS11-1G>C) and 12 (IVS12+1G>A; rs111517471), a 

heterozygous transversion which changes a tryptophan amino acid codon to a STOP 

codon (c.G870A:p.W290X), a heterozygous transversion which changes an alanine 

amino acid codon to a threonine amino acid (c.G1939A:p.A647T), a heterozygous 

transversion which changes a tyrosine amino acid codon to a STOP codon 

(c.T1926A:p.Y642X) and a homozygous transversion which changes a threonine 

amino acid codon to an alanine amino acid (c.A148C:p.T50A). 

The IVS11-1G>C mutation at the splice site of exon 11 of PKP2 was identified 

together with a heterozygous transversion in DSP, which changes a lysine amino 

acid codon to an asparagine amino acid (c.G1323C:p.K441N) leading to what is 

called a double heterozygote. Based on a study by Bauce et al., exon 11 skipping in 

RNA transcripts and the possible generation of a premature STOP codon following 

the PKP2 mutation could prove highly pathogenic (Bauce et al., 2010). With regards 

to the DSP variant, whether this has any subsequent effect on protein structure 

and/or its function is unknown. 

Two additional variations, previously reported, were identified as follows: a 

homozygous transversion in DSC2, which changes a leucine amino acid codon to a 

valine amino acid (c.T2194G:p.L732V), and a heterozygous transversion in DSG2, 

which changes an arginine amino acid codon to a cysteine amino acid 

(c.C874T:p.R292C). Mutation L732V identified in DSC2, reported in the Exome 

Sequencing Project (ESP) database and predicted by PolyPhen as benign, was 

previously described by Bhuiyan et al. in conjunction with a DSG2 mutation V392I, 

which suggested that perhaps a single mutation is less likely to cause a full-blown 

ARVC phenotype (Bhuiyan et al., 2009). Variant R292C in DSG2 confirmed as 

heterozygous within this chapter has previously only been described in the 

homozygous state (Sato et al., 2012), or in association with a synonymous mutation 

in DSP, D782D, dismissed by Cox et al. as silent after initially being listed as likely 
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pathogenic based on Sorting Intolerant From Tolerant (SIFT) and PolyPhen and its 

absence in the control population (Cox et al., 2011). Variant R292C has also 

previously been described as a double heterozygote associated with variation S194L 

in DSG2 and R577DfsX5 in PKP2 (Nakajima et al., 2012). Despite confirmation of 

these two variations in DSC2 and DSG2 by Sanger sequencing, a causatory effect 

between these mutations and ARVC requires segregation studies and perhaps 

analysis of these affected patients by exome sequencing which may reveal 

alternative causative gene variants.  

3.3.2. Candidate gene analysis in patients with hypotrichosis with and 

without PPK 

3.3.2.1. Novel DSP variant identified in siblings with hypotrichosis and PPK 

The three affected siblings of Pakistani origin, diagnosed with hypotrichosis and 

PPK, presented with comparable hair and skin phenotypes consisting of 

hypotrichosis of the head, eyebrows and eyelashes, together with diffuse, 

erythematous non-transgradiens PPK. Cardiac assessment, echocardiograph and 

electrocardiography were performed and did not reveal any cardiac abnormalities 

in our patients.  

SNP array homozygoisty mapping of two of the affected siblings followed by exome 

sequencing  of one of the affected patients revealed a homozygous variant in exon 

12 of DSP, c.C1493T:p.P498L mapping within a large region of homozygosity on 

chromsome 6. This call was also confirmed in a second affected sibling and in 

parents who were heterozygous carriers. Due to the age of the third affected sibling, 

and no DNA sample having been collected from the unaffected sibling, these 

individuals have not been tested. 

Two significant studies linking mutations in DSP to skin disorders reported an 

autosomal dominant nonsense (p.Q331X) and splice site (939+1G>A) mutations 

leading to haploinsufficiency (Armstrong et al., 1999, Whittock et al., 1999). These 

genetic variations suggest that protein dosage could perhaps be critical for skin 

integrity. Also, the first recessive DSP mutation, identified by Norgett et al., 
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associated with the Carvajal syndrome leads to truncation of the protein and loss of 

cell adhesion and collapsed IF network (Norgett et al., 2000).  

We suggest that due to its position in the protein sequence, the recessive DSP 

variation described in this chapter could possibly affect the normal structure and 

conformation of the amino-terminus of the protein, involved in binding PG and PKPs 

and, therefore, destabilise the formation of the desmosomal complex and, indirectly, 

the tethering of IF network to the plasma membrane. 

3.3.2.2. Whole gene analysis reveals DSG4 mutation in patient with hypotrichosis 

One other genetic diagnosis described in this chapter was performed in a patient 

clinically diagnosed with hypotrichosis, presenting with typical clinical disease 

characteristics as described above, but without any cardio-cutaneous implication.  

Initial analysis of this patient, which included PCR amplification of several exons of 

DSG4 previously found to be deleted in patients with hypotrichosis, leading to loss-

of-function of DSG4 (Kljuic et al., 2003a), revealed no obvious changes in these 

exons. Exon sequencing revealed three known variations in exons 4, 5 and 12 as 

follows: a homozygous transversion which does not alter the arginine amino acid 

(c.G258A:p.R86R; rs16959856), a homozygous transversion which does not alter the 

serine amino acid (c.C495T:p.S165S; rs9956865) and a homozygous transversion 

which changes an isoleucine amino acid into a leucine amino acid 

(c.A1930C:p.I644L; rs4799570). 

The first two variations identified in exons 4 and 5, rs16959856 and rs9956865 

respectively, with a MAF of 0.28 and 0.19 would not alter the protein conformation 

due to these variations being synonymous, and are unlikely to be disease-causing 

based on the high (> 1%) MAF. The last variation present in exon 12, rs4799570, 

with a MAF of 0.03 appears as tolerated in SIFT and as benign in PolyPhen despite 

the amino acid change and a MAF < 1%. 

Based on these findings we believe that further genetic analysis would be required 

to accurately diagnose this patient. One possible technique would be exome 

sequencing which would reveal multiple genetic candidates, including any 

alternative variants in DSG4 missed in the initial screening analysis, followed by 
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conventional Sanger sequencing for mutation confirmation and ideally recruitment 

of family members for segregation study. 

3.3.3. APS syndrome due to novel deleterious CSTA mutation 

We describe here two siblings, from a non-consanguineous family, which present 

phenotypical characteristics resembling those of APSS and EBS patients. APSS, as 

previously described by Cassidy et al. is characterised by noninflammatory acral 

peeling skin with peeling accompanied by erythema (Cassidy et al., 2005, Shwayder 

et al., 1997, Hashimoto et al., 2000). The abnormality is exacerbated by elevated 

ambient temperature and humidity. Histological observations, showing that the 

breakage takes place in the superficial layers of the epidermis, make it 

distinguishable from EBS where peeling begins in the basal layer.  

Cassidy et al. are also the first to link APSS to a homozygous missense mutation is 

TGM5 (Cassidy et al., 2005), the gene encoding transglutaminase 5, whereas EBS has 

been linked to mutations in the KRT5 and KRT14 genes encoding for keratin proteins  

(Chan et al., 1993, Chen et al., 1993). Initial genetic testing of the affected siblings 

for mutations in these three candidate genes, revealed wild type TGM5, KRT5 and 

KRT14 genes. 

Blaydon et al. reported two independent families diagnosed with exfoliative 

ichthyosis linked to loss-of-function mutations in the gene CSTA encoding the 

protease inhibitor cystatin A (Blaydon et al., 2011b). The clinical phenotype of these 

patients, characterised by peeling of skin on palms and soles worsened upon 

mechanical stress and humidity (Hatsell et al., 2003), and resembled that of the 

patients described in this chapter which led us to consider CSTA as a possible 

candidate for APSS in these patients.  

Genetic analysis of CSTA in the two affected siblings revealed two variants in exons 

1 and 2. One of these variants was a previously reported polymorphism in exon 2, 

c.C154T:p.Y34Y described under rs17589 – MAF of 0.40, and a deletion covering 

exon 1 c.1_66del:p.1_22del and possibly part of the intronic flanking regions. This 

deletion covers the START codon and affects both splice variants of CSTA, most 

likely leading to almost complete loss of expression, and any expressed protein 
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would lack the N-terminal domain required for the specific inhibition of the target 

cathepsins. These findings could be addressed further by analysis of patient skin 

biopsies and in vitro analysis using siRNA mediated-knockdown of CSTA. 

3.4. Summary 

In this chapter we describe a number of molecular techniques used to identify 

possible disease-associated mutations in genes encoding desmosome-associated 

proteins and in CSTA, the gene encoding the protease inhibitor cystatin A, thought 

to be involved in desmosomal regulation (discussed in Chapter 4). The majority of 

screened patients were clinically diagnosed with ARVC without cutaneous or hair 

abnormalities.  

In parallel, in two independent studies, siblings diagnosed with hypotrichosis and 

PPK presented with a novel homozygous mutation in DSP, the gene encoding the 

desmosomal protein desmoplakin, and a patient diagnosed with hypotrichosis 

without cutaneous abnormalities was found to present three polymorphisms in 

DSG4, the gene previously linked to this disorder. We discuss here the importance 

of segregation studies for an accurate genetic diagnosis and also consider other 

broader genome analysis for novel disease-causing mutations in unidentified 

disease-associated genes. 

The possible reasons behind the variety of mutations affecting different genes 

leading to the same disorder and mutations affecting the same gene leading to 

different disorders, together with limitations of genetic testing techniques will be 

addressed in more detail in Chapter 6. 
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Functional analysis of loss-of-function 

mutations in the protease inhibitor 

Cystatin A 
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4.1. Introduction 

The focus of this chapter was to investigate the functional aspects of recessive loss-

of-function (LOF) mutations in the gene encoding the protease inhibitor cystatin A 

(CSTA). Homozygous LOF mutations in CSTA are associated with the skin disorder 

exfoliative ichthyosis. The following introductory section describes the clinical and 

genetic aspects of this disorder. Part of the findings presented in this chapter have 

been published by our group (Blaydon et al., 2011b). 

4.1.1. Loss-of-function mutations in CSTA result in exfoliative ichthyosis 

Hatsell et al. previously described a large, consanguineous Bedouin family with five 

members presenting with exfoliative ichthyosis characterised by dry, scaly skin 

over most of their body with nonerythematous peeling of skin on their palms and 

feet, exacerbated by moisture and minor trauma (Hatsell et al., 2003). Recently, our 

group identified a homozygous LOF mutation in CSTA underlying this disorder in 

the previously described Bedouin family. In addition, we reported another 

homozygous CSTA mutation in a consanguineous Turkish family (Blaydon et al., 

2011b). The affected family members from this Turkish family presented a similar 

clinical phenotype as the initially described Bedouin family.  

Genetic screening of the CSTA gene in affected individuals from the two families 

revealed a homozygous 3’ splice-site variant (c.67-2A>T) in the Bedouin family and 

a homozygous nonsense mutation (c.256C>T) in the Turkish family (Blaydon et al., 

2011b). Electron microscopy of patient skin biopsies showed widening of 

intercellular spaces in the basal/suprabasal layers of the epidermis together with 

thickening of the keratin intermediate filaments. Analysis of splicing using a CSTA 

minigene construct revealed that the splice-site mutation, segregating with the skin 

disorder in  the Bedouin patient, leads to skipping of the first 12 base pairs of exon 

2 in CSTA, resulting in an in-frame deletion of four amino acids in the protein 

sequence of CSTA. In silico modelling supports these observations, revealing that the 

CSTA splice-site mutation would bring conformational changes which would affect 

the protease-binding and inhibitory role of CSTA. Furthermore, in vitro analysis 

revealed very low level expression of the variant protein, possibly due to low 
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efficiency of the mutant splice site or instability of the variant protein (Blaydon et 

al., 2011b, Gupta et al., 2015). 

4.1.2. Summary 

This chapter is based on the association of LOF mutations in CSTA with exfoliative 

ichthyosis and focuses on the effect of CSTA depletion on keratinocyte cell-cell 

adhesion and migration to investigate a possible mechanism of action through 

desmosome-associated proteins. The importance of protease inhibitors and the 

target proteases in tissue integrity is once more highlighted through this work. 

4.2. Results 

4.2.1. Functional analysis of loss-of-function mutations in CSTA 

Throughout this chapter the influence of CSTA LOF mutations on the expression and 

activity of the inhibited proteases and their subsequent targets was investigated. 

The patient phenotype was modelled in HaCaT cells, a spontaneously immortalised 

keratinocyte cell line, using the ON-TARGETplus SMART Pool siRNA targeting all 

isoforms of CSTA. 

4.2.1.1. Immunofluorescence of CSTA and the target proteases in the skin and 

immortalised HaCaT keratinocytes 

Immunostaining of CSTA in normal interfollicular (Figure 4.1. Ai) and palm skin 

(Figure 4.1. Bi) showed that CSTA is expressed throughout all layers of the 

epidermis with a cytoplasmic diffuse localisation and higher expression levels in the 

granular layer. In palm skin, CSTA appeared as bright granulations throughout the 

thick stratum corneum (Figure 4.1. Bi). Immunostaining of the target proteases of 

CSTA, cathepsins B, H and L in normal skin showed expression throughout all layers 

of the epidermis (Figure 4.2. Ai-Ci). Due to the lack of patient material for an in depth 

study of this condition, the HaCaT cell line was used to mimic the CSTA LOF 

phenotype. CSTA (Figure 4.1. Ci) and the three target cathepsins (Figure 4.2. Aiii-

Ciii) were also investigated in the immortalised HaCaT cell line. 
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Figure 4.1. Immunofluorescence of CSTA. Immunohistochemistry (IHC) with an anti-

CSTA antibody on frozen facelift skin sections (A) and frozen palm skin (B) from control 

individuals in the absence (Ai and Bi) and presence (Aii and Bii) of DAPI nuclear stain, 

showed protein expression throughout all layers in both facelift and palm skin with a 

granular aspect in palm skin. ICC with the same anti-CSTA antibody in HaCaT cells, in the 

absence (Ci) and presence (Cii) of DAPI nuclear stain, showed a diffuse cytoplasmic pattern 

of expression. Negative controls are shown in (Aiii) for IHC and (Ciii) for ICC. All IHC images 

were taken at 20 X magnification and Immunocytochemistry (ICC) images at 40 X 

magnification. IHC imaging was carried out on the Zeiss Meta 710 confocal microscope and 

ICC imaging was carried out on the LSM 510 confocal microscope. NS – Normal Skin; PS – 

Palm Skin. CSTA staining is shown in green and DAPI in blue (Scale bar – 50 µm for A-B and 

20 µm for C). 
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Figure 4.2. Immunofluorescence of the target proteases of CSTA. IHC with anti-

cathepsins B (A), H (B) and L (C) antibodies on frozen facelift skin sections from control 

individuals in the absence (Ai, Bi and Ci) and presence (Aii, Bii and Cii) of DAPI nuclear 

stain, showed protein expression throughout all layers of the epidermis. ICC with the same 

antibodies in immortalised HaCaT cells, in the presence (Aiii, Biii and Ciii) of DAPI nuclear 

stain, showed good levels of expression with a diffuse localisation pattern similar to 

observations made in skin sections. Negative controls are shown in (D and E) for IHC and 

(F) for ICC. All IHC and ICC images were taken at 40 X magnification. Imaging was carried 

out on the LSM 510 confocal microscope. NS – Normal Skin. Cathepsins B, H and L staining 

is shown in green and DAPI in blue (Scale bar – 20 µm). 
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4.2.1.2. Transient siRNA knockdown of CSTA isoforms in HaCaT keratinocytes mimics 

CSTA LOF mutation  

The two identified CSTA LOF mutations target both isoforms of CSTA. To mimic 

homozygosity for these LOF mutations, a pool of four siRNAs targeting all mRNAs 

was purchased from Dharmacon (GE Healthcare). The sequences and targeting sites 

of this functional siRNA pool are found in Table 2.5. A number of optimisations were 

performed prior to the siRNA experiments described in this chapter, including 

optimisation of transfection conditions and time course analysis of CSTA 

knockdown in HaCaT cells. Optimisation of transfection conditions was carried out 

to find the highest transfection efficiency with reduced cell death. The concentration 

of the siRNA pool was varied to determine the lowest concentration resulting in 

significant down-regulation of CSTA, in order to reduce off-target effects. A time 

course analysis was performed to determine the duration of CSTA down-regulation. 

These optimisations are described in Appendix F.1. 

The CSTA siRNA pool (Figure 4.3. E) reduced CSTA expression by 85% in HaCaT 

cells. Cells transfected with the CSTA siRNA pool were designated as CSTA siRNA 

HaCaT cells (Figure 4.3. B). A pool of four non-targeting (NTP) siRNAs was used as 

a negative control (NTP siRNA cells; Figure 4.3. A).  
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Figure 4.3. Immunocytochemistry and western blot of CSTA in HaCaT cells following 

siRNA transfection to mimic CSTA LOF mutations. ICC with an anti-CSTA antibody in 

HaCaT cells transfected with a pool of NTP siRNA (A) or CSTA siRNA (B) for 72 h in the 

absence (Ai and Bi) and presence (Aii and Bii) of DAPI as nuclear marker (in blue). A 

reduction in the CSTA (in green) protein levels can be seen in the CSTA siRNA treated cells 

compared to control cells. siRNA targeting cyclophilin B (C; in red) was used as control of 

transfection. Negative control for ICC is depicted in (D). (E) Total protein from HaCaT cell 

lysates 72 h after transfection with CSTA siRNA (lane 1) and NTP siRNA (lane 2) was 

incubated with an anti-CSTA antibody. Tubulin was used as a loading control. Knockdown 

of CSTA mimics the LOF mutations observed in patients. Imaging was performed with an 

LSM 510 confocal microscope and images were taken at 63 X magnification (Scale bar – 20 

µm). 

 



143 

 

4.2.1.3. Influence of CSTA LOF mutations on HaCaT intercellular adhesion 

To investigate the effects of mechanical stress in CSTA siRNA transfected HaCaT 

cells, the FX-4000TM Cell Stretcher was used. This assay was performed using 

conditions previously optimised within the group for the same cell line, in order to 

assess intercellular adhesion (Cabral et al., 2012b). Experimental conditions where 

NTP control cells showed some degree of mechanical stress but remained attached 

to the culture dish were used for the assays described in this chapter. Under these 

conditions and following the electron microscopy observations in patient skin, it 

was predicted that CSTA knockdown cells will have altered cell-cell adhesion 

properties compared with NTP cells.  

CSTA siRNA transfected cells together with NTP siRNA transfected cells as control, 

were subjected to mechanical stretch at a frequency of 5 Hz (five cycles of stretch 

and relaxation per second) and an elongation of amplitude ranging from 10% to 

14% (increase in diameter across the silicone deformable membrane from 10% to 

14%). Cells were stretched for 0 h (non-stretched) and 4 h. Western blots of CSTA 

siRNA HaCaT cell lysates were performed, as previously described, to confirm that 

CSTA knockdown was achieved prior to the stretch assay.  

Immunocytochemistry of CSTA siRNA-treated cells was performed using an 

antibody raised against keratin 14 (in green) (Figure 4.4.). After 4 h stretch, under 

lower magnification, the NTP cell sheet (Figure 4.4. Ai) appeared intact in 

comparison to the CSTA siRNA-transfected cells where the cell monolayer was 

significantly disrupted (Figure 4.4. Bi). Under higher magnification, in NTP cells, the 

keratin intermediate filaments appeared normal, however, despite minor 

intercellular widening of intercellular spaces these cells still appeared connected to 

each other through intercellular junctions (Figure 4.4. Aii). By comparison, in the 

CSTA siRNA cells, widening of intercellular spaces (arrows) was observed together 

with thickening of the keratin filaments and in some cases these filaments were 

retracted towards the nucleus (stars) (Figure 4.4. Bii). 

These results suggest that in contrast to NTP cells, which showed a minor increase 

in intercellular spaces proportional to the exposure to mechanical stretch and no 
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obvious changes to the keratin filaments, CSTA siRNA cells exhibited thicker and 

retracted filaments and wider intercellular spaces. 

To independently assess and quantify the effects of the CSTA LOF mutation on cell 

adhesion, a dispase-based adhesion assay was performed (three independent siRNA 

experiments with each tested condition in triplicate) (Figure 4.4. C). The cells 

simulating the CSTA LOF mutation showed a much larger, statistically significant, 

decrease in cell-cell adhesion (indicated by a large number of monolayer fragments 

produced upon agitation). Additionally, weakened intercellular adhesion could be 

visualised upon detachment of the cell monolayer from the tissue culture dish by 

the degree of elastic condensation of the cell sheet. The CSTA siRNA monolayer acted 

identically to the DSP I/II siRNA treated cells, used as control for impaired cell-cell 

adhesion, as previously described by Cabral et al., 2012. In contrast, the NTP cell 

sheet broke into only a small number of fragments. These results are consistent with 

observations made in the stretch-immunofluorescence assay (Figure 4.4. A), 

suggesting a role for CSTA in regulation of intercellular adhesion.  
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Figure 4.4. Mechanical stress causes reduced cell-cell adhesion and increased IF 

instability in CSTA siRNA treated HaCaT cells. NTP control HaCaT cells (Ai and Aii) and 

CSTA siRNA cells (Bi and Bii) mimicking the LOF mutation were subjected to cyclic 

mechanical stress at a frequency of 5 Hz and amplitude of 10-14% using the Flexcell FX-

4000 Tension System for 0 h (non-stretched; Appendix F.2.) and 4 h. ICC with an anti-

Keratin 14 antibody revealed that after 4 h stretch, the CSTA siRNA cells display thicker and 

more compact keratin IFs (Bii; stars) retracted towards the nuclei. Large intercellular gaps 

(Bii; arrows) were observed predominantly in CSTA siRNA, particularly after 4 h stretch, 

suggesting an adhesion defect. Keratin 14 – in green; DAPI – in blue. Imaging was performed 

on the LSM 510 confocal microscope and images taken at 10 X (Ai and Bi) and 63 X 

magnification (Aii and Bii) (Scale bar – 100 µm for Ai and Bi; 20 µm for Aii and Bii).  
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Figure 4.4. Mechanical stress causes reduced cell-cell adhesion and increased IF 

instability in CSTA siRNA treated HaCaT cells (continued). (C) A dispase-based 

dissociation assay was performed to assess intercellular adhesion by the degree of cell 

monolayer integrity upon mechanical stress. CSTA siRNA cells showed a significant increase 

in the number of monolayer fragments produced upon agitation, suggesting a statistically 

significant decrease in cell-cell adhesion, similar to the one observed for DSPI/II siRNA 

treated cells (*** - p≤0.05) (n=9).  
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4.2.1.4. Migration is not impaired in CSTA knockdown keratinocytes 

A scratch assay was performed to investigate the effects of CSTA LOF mutations on 

cell migration. Three independent knockdown experiments were performed with 

three repeats per experiment for each siRNA condition. After applying a scratch 

throughout the CSTA siRNA and NTP siRNA cell monolayers, both vertically and 

horizontally in a cross shape, pictures were taken at set time intervals, 0 h, 24 h and 

48 h (Figure 4.5. A), in order to assess and compare the time and speed of scratch 

closure in CSTA siRNA cells compared to control cells. Light microscopy showed 

normal cell migration in CSTA siRNA cells after 48 h comparable to control, and in 

order to quantify this, the size of the scratch wound was measured for all time 

intervals. No statistically significant difference was observed, indicative of a normal 

scratch closure pattern and normal migration process (Figure 4.5. B). Scratch 

measurements were made using Image J software and resulting scratch 

measurements are given as arbitrary numbers from a maximum set number.  
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Figure 4.5. “Wound-healing” assay shows normal wound closure after 48 h. (A) 

Scratch assay to assess migration by the degree of scratch closure after 24 h and 48 h. (B) 

No significant difference was observed between NTP siRNA and CSTA siRNA treated cells 

suggesting that there is no significant reduction in cell migration and scratch closure (n=9). 
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4.2.1.5. Observations on the expression of CSTA target proteases 

Following observations on the intercellular adhesion levels in cells mimicking the 

CSTA LOF phenotype, we decided to assess the expression of the CSTA regulated 

proteases, cathepsins B and L, in CSTA siRNA-treated cells. Cathepsin H was not 

analysed further due to the low expression observed in the immortalised HaCaT cell 

line. The levels of secreted and intracellular protein were analysed in cell culture 

supernatants by ELISA and total protein lysates by western blotting. A number of 

optimisations for the analysis of cell culture supernatants were performed in order 

to identify the optimal sample dilutions that would give a clear reading on the 

luminescence plate reader. Due to the difference in observations following the 

mechanical stretch and wound-healing assays it was decided that expression of the 

target cathepsins should be analysed in CSTA siRNA-treated cells following both of 

these assays.  

The expression levels of both cathepsins increased upon scratch-wound in both 

control and CSTA siRNA-treated cells with no significant difference between the two 

conditions. In mechanically stretched cell monolayers the expression of cathepsins 

B and L presented a slight decrease after 1 h stretch but did not alter significantly 

after 4 h stretch in comparison to non-stretched cells (Figure 4.6. A). A significant 

difference was observed between the two proteases in their secreted levels with 

cathepsin B being secreted at significantly higher levels compared to cathepsin L, 

following both wound-healing and mechanically-induced stress. This observation 

was confirmed by western blotting of total protein lysates of CSTA siRNA and NTP 

siRNA cells. Cathepsin B appeared to be expressed in higher levels in comparison to 

cathepsin L, the observed difference in secretion levels could be interpreted as being 

due to a difference in baseline expression levels in HaCaT cells (Figure 4.6. B). 

Cathepsin expression in stretched cells was assessed in triplicate and in scratched 

cells in duplicate; optical density analysis for the remaining two and respectively 

one repeat(s) is included in Appendix F.3.  
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Figure 4.6. ELISA and total protein analysis show unchanged cathepsin B and L levels in culture supernatants and total protein cell lysates. (A) 

ELISA assay to assess the levels of secreted cathepsins B and L in culture supernatants post scratch-wound (0 h, 6 h, 16 h and 20 h post wound) or mechanical 

stretch (for 0 h, 1 h and 4 h) in CSTA siRNA compared to NTP siRNA. No significant difference was observed between CSTA siRNA and control cells (n = 1). 

(B) Total protein cell lysates from HaCaT cells incubated for 72 h with CSTA siRNA and NTP siRNA were blotted and incubated with anti-cathepsin L, 

cathepsin B and CSTA antibodies to check the levels of expression of these proteins. No difference in expression between the two cathepsins was seen 

between control and CSTA siRNA cells.
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4.2.1.6. Influence of CSTA LOF mutations on the expression levels of desmosome-

associated proteins  

The aim of this section was to analyse the expression and localisation of 

desmosome-associated proteins before and after mechanical stretch in CSTA siRNA 

cells compared to NTP control. This analysis was performed in order to get details 

about a possible mechanism of action of the target proteases inhibited by CSTA, 

cathepsins B and L, which possibly could impact on desmosome function.  

Total protein cell lysates from HaCaT cells mimicking the LOF CSTA mutations and 

from control cells were obtained and analysed by western blotting. Antibodies 

targeting DSP, DSC2, DSC3, DSG2, DSG3, PG and PKP2 were used together with anti-

vinculin and anti-GAPDH antibodies as loading controls. Three independent siRNA 

knockdown experiments were conducted and replicate western blots were carried 

out for each protein in each experiment. Densitometry measurements of western 

blots were calculated using an image analysis program (Image J, v1.47v) and are 

graphically depicted in Figure 4.7. B for DSG3, which was consistent between 

repeats, and Appendix F.4. for all of the other proteins analysed. 

A key observation was that DSG3 protein levels showed an increase in expression 

levels following CSTA siRNA knockdown (Figure 4.7. B). Protein levels were 

normalised against the loading control band, GAPDH, and are presented as a fold 

change from NTP control for the western blot for DSG3 in Figure 4.6. A. Variable 

results were observed for DSG2 and DSP expression levels between the three 

independent experiments, and further repeats would be necessary to draw a 

conclusion. No detectable differences were observed in the expression levels of the 

other desmosome-associated proteins, DSC2, DSC3, PG and PKP2, between CSTA 

siRNA cells and NTP control cells, in any of the independent knockdown 

experiments. All three independent knockdown experiments showed consistent 

results for the expression level of DSG3, which was increased in CSTA siRNA cells 

compared to NTP cells. Figure 4.7. B shows densitometry analysis results of protein 

levels of DSG3 calculated from the western blot shown in Figure 4.7. A. The 

remaining two independent knockdown experiments have been included in 

Appendix F.4. together with their densitometric analysis.  
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Figure 4.7. Protein levels of desmosomal proteins following CSTA knockdown show 

that DSG3 expression levels are increased in CSTA siRNA treated cells. (A) Total 

protein cell lysates from CSTA siRNA and NTP HaCaT cells, non-stretched and stretched for 

4 h, were blotted and incubated with anti-DSP, DSC2, DSC3, DSG2, DSG3, PG or PKP2 to 

check the levels of expression of these proteins. (B) Protein levels of DSG3 calculated from 

densitometry measurements of the western blot image and normalised to loading control 

(GAPDH). Total DSG3 expression levels are presented as a fraction of the total DSG3 levels 

of NTP cells; standard error bars are shown on the protein analysis graph included in 

Appendix F.4. No change was observed for DSC2, DSC3, DSG2, PKP2 and PG. DSP gave 

variable results and will need to be analysed further (n = 3 blots; densitometry analysis in 

Appendix F.4.). 
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Following these observations on western blotting, immunocytochemistry of CSTA 

siRNA-treated cells in comparison to NTP control was performed for DSG3, DSP and 

DSG1/2. Unfortunately, the anti-DSG3 antibody did not work well by this method 

(data not shown). 

Immunocytochemistry using an anti-DSP antibody on NTP siRNA (Figure 4.8. A and 

C) and CSTA siRNA (Figure 4.8. B and D) treated cells, both in non-stretched and 

after 4 h stretch conditions, showed similar expression levels in non-stretched CSTA 

siRNA and in NTP control cells. However, following 4 h stretch there appears to be 

an up-regulation of DSP expression together with an evident increase in DSP levels 

in the cytoplasmic compartment of cells treated with CSTA siRNA (Figure 4.8. D). 

Staining using an antibody targeting both DSG1 and 2 on siRNA-treated cells showed 

up-regulation in protein expression together with an aberrant expression of these 

cadherins in the cytoplasmic compartment of CSTA siRNA-treated cells (Figure 4.9. 

A), following 4 h mechanical stretch, compared to NTP control treated under the 

same conditions (Figure 4.9. B).  
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Figure 4.8. Immunocytochemistry of DSP in HaCaT cells following siRNA transfection and mechanical stretch. ICC with an anti-DSP (in green) 

antibody in HaCaT cells transfected with a pool of NTP siRNA (A and C) or CSTA siRNA (B and D) both in non-stretched (A and B) and post 4 h stretch (C and 

D) in the absence (Ai-Di) and presence (Aii-Dii) of DAPI as nuclear marker (in blue). Similar protein levels can be observed for non-stretched NTP and CSTA 

siRNA treated cells (A and B). CSTA siRNA treated cells post 4 h stretch present with an increased DSP expression and a more significant cytoplasmic 

appearance (D) than NTP control (C). Imaging was performed with the Zeiss Meta 710 confocal microscope and images were taken at 100 X magnification 

(Scale bar – 20 µm).
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Figure 4.9. Immunocytochemistry of DSG1/2 in HaCaT cells following siRNA 

transfection and mechanical stretch. ICC with an anti-DSG1/2 (in green) antibody in 

HaCaT cells transfected with a pool of NTP siRNA (A) or CSTA siRNA (B) post 4 h stretch in 

the absence (Ai and Bi) and presence (Aii and Bii) of DAPI as nuclear marker (in blue). 

CSTA siRNA treated cells post 4 h stretch present with an increased DSG1/2 expression and 

a slightly increased cytoplasmic appearance (B) than NTP control (A). Imaging was 

performed with the LSM 510 confocal microscope and images were taken at 100 X 

magnification (Scale bar – 20 µm). 

 

 

 

 

 



156 

 

4.3. Discussion 

The main focus of the work described in this chapter was the in vitro analysis of the 

mechanism of action by which CSTA LOF mutations lead to exfoliative ichthyosis, 

possibly via regulation of desmosome assembly and migration towards the upper 

layers of the epidermis. We describe for the first time the importance of CSTA in the 

basal-suprabasal layers of the epidermis, with a previously unknown role and 

possibly a novel mechanism of action. Part of the results presented here have been 

published by Blaydon et al. (Blaydon et al., 2011b). 

4.3.1. Expression of cystatin A in normal skin and in vitro cell model 

CSTA was previously described as an intracellular protease inhibitor, despite being 

identified in sweat and in medium from cultured keratinocytes, with functions 

limited to its involvement in the upper layers of the epidermis, including its role in 

protection against dust mite allergens Der p 1 and Der f 1 and also associated with 

psoriasis and atopic dermatitis linked to a defective skin barrier (Kato et al., 2005, 

Vasilopoulos et al., 2007, Vasilopoulos et al., 2008). No studies have looked at the 

role played by CSTA in the lower layers of the epidermis, prior to our research 

findings linking CSTA LOF mutations to the skin disorder exfoliative ichthyosis 

(Blaydon et al., 2011b). 

Staining of CSTA in normal facelift and palm skin revealed a diffuse cytoplasmic 

localisation and expression throughout all layers of the epidermis, with increased 

expression in the granular layer and distinct granulation-like formations mostly in 

the stratum corneum of palm skin which could perhaps be explained as CSTA-

transporting vesicles, possibly due to its function in anti-allergenic protection. 

To study further the effect of CSTA LOF mutations and due to the lack of patient skin 

biopsy material, we have manipulated CSTA expression in HaCaT keratinocytes. ICC 

confirmed observations made on staining of normal epidermis, showing a diffuse 

cytoplasmic expression of CSTA in the above mentioned cell line. 
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4.3.2. CSTA transient down-regulation leads to impaired intercellular 

adhesion but normal cell migration 

To model the phenotype observed in patients with exfoliative ichthyosis in vitro, we 

used the HaCaT cell line coupled with siRNA mediated knockdown of CSTA. This 

experiment was performed together with the use of an NTP knockdown control and 

siRNA targeting the cyclophilin B gene (siGlo) as transfection control. A robust CSTA 

knockdown with a significant protein reduction was obtained which remained low 

between 48 h and 136 h, which was as long as we needed for any of the analyses 

executed. No obvious effect on cell viability was observed. 

One specific phenotypical characteristic of exfoliative ichthyosis is epidermal 

peeling on areas exposed to mechanical stress and increased humidity such as the 

palmoplantar regions and the neck area. By electron microscopy, as reported by 

Blaydon et al., widening of the intercellular spaces and thickening of the keratin 

filaments in the lower layers of the epidermis in patient skin was observed (Blaydon 

et al., 2011b). These observations were replicated in vitro in CSTA knockdown 

monolayers by subjecting them to cycling mechanical stretch. Similarly to EM 

observations, clear widening of the intercellular spaces was noted in CSTA 

knockdown cells post-stretching together with breakage of the cell sheet into a 

larger number of fragments compared to NTP control and thickening of the keratin 

intermediate filaments together with retraction from the plasma membrane 

towards the nucleus. A dispase-based dissociation assay performed on CSTA 

knockdown monolayers versus NTP control strenghtened the observations made by 

mechanical stretch assay highlighting yet again a significant dysregulation in 

intercellular adhesion.  

Our hypothesis is that this dysregulation of intercellular adhesion, mostly as its seen 

together with thickening of keratin filaments and their retraction towards the 

nucleus, could possibly be due to an indirect mechanism targeting some of the 

adhesive intercellular structures, most likely the desmosomes responsible for 

binding keratin filaments to the plasma membrane. This mechanism will be 

discussed further. 
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The target proteases of CSTA, cathepsins B, H and L, are observed to be frequently 

upregulated in cancer, and appear to facilitate tumour invasion and metastasis 

through cleavage of cell-cell adhesion junctions (Strojan et al., 2000). This 

observation, in conjunction with the observations of the dysregulated intercellular 

connections in stretched CSTA knockdown monolayers, cell migration in CSTA 

siRNA treated cell monolayers by the scratch assay was assessed. However, no 

change in the rate of cell migration was noted following CSTA knockdown in 

comparison to NTP control. 

4.3.3. Cathepsin B expression appears significantly upregulated 

following scratch assay, compared to cathepsin L expression 

A study by Strojan et al., looking at patients with squamous cell carcinoma (SCC) of 

the head and neck has observed that decreased expression of CSTA correlates with 

increased activity of the target proteases, cathepsins B, H and L (Strojan et al., 2000). 

In addition, reduced expression of CSTA was observed in SCC of the head and neck 

(Anicin et al., 2013). Another analysis by Li et al., looking at laryngeal cancer patients 

has reported that in in vitro conditions down-regulation of cathepsin B together 

with up-regulation of CSTA expression significantly inhibited the migration, 

invasion and proliferation of laryngeal cancer cells (Li et al., 2011). 

Two in vitro studies looking at cathepsin B secretion following scratch assays in 

HaCaT monolayers have revealed that following wounding these cells secreted 

increased levels of cysteine protease cathepsin B, which was present in vesicles 

within cellular protrusions forming cell-cell contact sites (Buth et al., 2004, Buth et 

al., 2007). It is, therefore, believed that cysteine proteases contribute to the 

remodeling of the extracellular matrix and thus the loss or decreased expression of 

cysteine protease inhibitors could lead to uncontrolled breakage of intercellular 

connections, as observed in the stretch and dispase-based analyses performed in 

this thesis. 

The expression of cathepsins B and L in CSTA siRNA treated cell monolayers in 

comparison to NTP control cells revealed overall higher endogenous levels of 

cathepsin B expression compared to cathepsin L, independent of treatment 
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conditions, with a significant increase in expression of both cathepsins following the 

application of a scratch wound. No significant change was observed for 

mechanically stretched monolayers for either of the cathepsins.  

These findings confirm the studies reported by Buth et al., which have also used 

HaCaT cells in their experiments. This analysis could be replicated in other 

keratinocyte cell lines which may present with different baseline cathepsin 

expression levels.  

4.3.4. Dysregulation of desmosome-associated proteins in CSTA 

knockdown cells following mechanical induced stress 

A number of studies have reported an overexpression of cathepsin B mRNA, 

increased cathepsin B staining and elevated cathepsin B activity in different human 

cancers; these leading to degradation of components of the basement membrane 

and extracellular matrix, both intracellularly and extracellularly in a cell type-

dependent manner (Yan et al., 1998, Kos et al., 2014). However, there are no reports 

associating directly cathepsin activity to desmosome regulation.  

However, insights into protease regulation are emerging from the studies of genetic 

skin diseases. For example, Netherton syndrome is associated with mutations in 

SPINK5 encoding LEKTI-1 which targets the proteases KLK5, KLK7 and KLK14 

(Deraison et al., 2007) ultimately leading to DSG1 degradation and desmosome 

cleavage with detachment of the stratum corneum (D'Alessio et al., 2013, 

Hovnanian, 2013). Inhibition of these proteases by SPINK6 and SPINK9, is 

reportedly leading to desquamation through their action on DSG1, DSC1 and 

corneodesmosin (Meyer-Hoffert et al., 2009, Meyer-Hoffert et al., 2010, Brattsand et 

al., 2009).   

Another study reporting a syndrome of severe skin and bowel inflammation, 

increased susceptibility to infection and cardiomyopathy, associated with ADAM17 

LOF mutations, revealed an increase in DSG2 protein expression, implying a 

reduction in DSG2 shedding by ADAM17 (Blaydon et al., 2011a). By contrast, 

patients with tylosis with oesophageal cancer (TOC), characterized by PPK, 

follicular papules and oral keratosis (Ellis et al., 1994, Hennies et al., 1995, Stevens 
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et al., 1996), linked to mutations in the RHBDF2 gene, encoding for iRHOM2 

(Blaydon et al., 2012, Saarinen et al., 2012), present with immature desmosomes 

lacking the electron dense midlines (Brooke et al., 2014). Furthermore, in vitro 

studies in TOC patient derived keratinocyte cell lines revealed a dramatic increase 

in the iRHOM2-mediated processing and activity of ADAM17, together with an 

increase in processing of DSG2 (Brooke et al., 2014). 

In Pemphigus vulgaris (PV), an acquired skin disorder affecting the basal layers of 

the epidermis, DSG3 autoantibodies lead to internalization of this protein, 

impairment of correct desmosome assembly, with deficient Ca2+-independent 

desmosome formation ultimately leading to severe blistering (Cirillo and Al-Jandan, 

2013). A more recent study has revealed that enhanced expression of PKP1 protects 

keratinocytes from PV IgG-induced intercellular loss of adhesion, by clustering 

DSG3 to DSP through the PG binding tail of DSP and enabling the formation of Ca2+-

independent desmosomes in a hyperadhesive state (Tucker et al., 2014). The 

significant difference between PV and Pemphigus foliaceus (PF), characterized by 

superficial blisters due to autoantibodies targeted against DSG1 (Ishii et al., 1997), 

highlights the important role played by DSG3 in the more basal layers of the 

epidermis, where DSG1 is not present and cannot therefore compensate for the anti-

DSG3 autoantibodies in PV, through the so-called DSG compensation theory 

(Shirakata et al., 1998). 

The complex interaction between DSG3 and PG has also been studied in SCC of the 

head and neck (HNC) by Chen et al., showing that DSG3 is overexpressed in HNC and 

the degree of overexpression is associated with clinico-pathologic features. 

Silencing of DSG3 significantly suppressed carcinogenic potential in cellular and in 

vivo animal studies by reducing cell growth, cell migration and invasion abilities 

through PG translocation to the nucleus and reduction in tumoral target gene 

expression (Chen et al., 2007, Chen et al., 2013). 

Following the observations of dysregulation of adhesion in CSTA LOF cells following 

mechanical stretch, the expression and localisation of most of the desmosomal 

proteins expressed in the basal/suprabasal layers of the epidermis, where widening 

of the intercellular spaces was noted in patient skin, was investigated. 
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Total protein analysis from stretched CSTA siRNA treated cells revealed an up-

regulation in DSG3 expression in siRNA treated cells independent of mechanical 

stress. DSP and DSG1/2 expression appeared increased in siRNA treated cells but as 

the expression levels varied between experiments we believe that these results 

should be replicated further. No changes in expression levels were noted for the 

other desmosomal proteins analysed.  

However, immunocytochemical staining of DSP and DSG1/2 in cell monolayers, 

under the above mentioned conditions, revealed an apparent up-regulation of 

expression with a clear change in localisation to the cytoplasmic compartment 

compared to a membranous localisation in NTP cells. This suggests that CSTA could 

possibly regulate cell-cell adhesion via desmosomes through its target proteases. 

Staining of the other desmosomal components could also be investigated. 

4.4. Summary 

This chapter investigated a role for the protease inhibitor CSTA in the 

basal/suprabasal layers of the epidermis. CSTA and its target cathepsins, B, H and L 

appear to be expressed throughout all layers of the epidermis and in a keratinocyte 

cell line. A robust CSTA knockdown mimicking the LOF mutations, coupled with 

mechanical stretch and a dispase-based dissociation assay has revealed a significant 

reduction in intercellular adhesion levels, but no change in cell migration by scratch 

assay. We believe that a possible mechanism of action of this protease inhibitor 

could indirectly target desmosome assembly and remodelling through the target 

proteases of CSTA. This hypothesis is supported by observations showing that DSG3 

appears overexpressed in CSTA siRNA treated monolayers independent of 

mechanical stress, and that DSG1/2 and DSP appear to re-localise to the cytoplasm 

following mechanical stretch suggesting that breakage of the keratin filaments could 

also result from dysregulation of the desmosomal complex. 
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5.1. Introduction 

In this chapter, the functional aspects of loss-of-function mutations in the CAST gene, 

encoding the protease inhibitor calpastatin, are explored.  Our group identified LOF 

CAST mutations associated with a novel clinical entity which we have named PLACK 

(PSS with Leukonychia, Acral punctate keratoses, Cheilitis and Knuckle pads) 

syndrome. The following introductory section describes the clinical and genetic 

aspects of this condition.  

5.1.1. CAST LOF mutations linked to PLACK syndrome 

We identified LOF mutations in CAST, the gene encoding for the protease inhibitor 

calpastatin, as the genetic cause of the autosomal recessive skin disease PLACK 

syndrome. Three unrelated families were included in this study. One affected 

individual (PK1) from a Chinese consanguineous family presented as an adult with 

generalised skin peeling and a history of superficial acral blistering in childhood, as 

well as the features above. A second affected individual (PK2) from a Nepalese 

family developed acral punctate keratoses and cheilitis at the age of 1, acral and limb 

superficial peeling at the age of 3, as well as leukonychia (Figure 5.1. B). Punctate 

lesions on the dorsum of the hands coalesced into knuckle callosities with milia. Two 

affected siblings (PK3 and PK4) were previously described as having a recessive 

form of pachyonychia congenital. Further clinical investigation revealed a history of 

blistering and peeling of skin from the age of about 3 months on the hands, feet, 

knuckles, elbows and knees, leukonychia, leukokeratosis, angular cheilitis, papules 

on the extensor surface of the fingers and toes, and punctate palmar keratosis and a 

plantar keratoderma (Haber and Rose, 1986). Exome sequencing of the four affected 

individuals revealed homozygous LOF mutations in CAST, which segregated with 

the disorder in all families: 

PK1: frameshift mutation (c.607_608insAfs, p.I203Nfs*8), 

PK2: nonsense mutation (c.A232T, p.K78X),  

PK3 and PK4: frameshift mutation (c.1750delG, p.Val584Trpfs*37).  
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All three mutations were predicted to lead to complete loss of expression of CAST. 

Calpastatin is a specific protease inhibitor of calpains, intracellular cysteine 

proteases that require calcium or epidermal growth factor for their catalytic 

activity. The calpains have been related to a variety of processes such as the growth, 

migration and death of keratinocytes (Carragher and Frame, 2004).  

In this chapter we focus on the genetic and functional analysis of the LOF mutations 

by using siRNA to knockdown CAST expression in the immortalised keratinocyte cell 

line HaCaT. Some of the results presented in this chapter are included in Lin et al. 

(Lin et al., 2015). 
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Figure 5.1. PLACK syndrome in PK2 homozygous for p.K78X. (A) Clinical features of 

PK2 are shown, including skin peeling (iii), cheilitis (iv), punctate keratosis of the soles (i), 

blistering (ii), leukonychia (v), and knuckle pads with hyperkeratotic micropapules (v). (B) 

Family pedigree of PK2 (Square – Male; Circle – Female; Filled symbol – PK2 homozygous 

for p.K78X in CAST). 
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5.1.1. Summary 

Briefly, the identification of three CAST LOF mutations leading to a new clinical 

entity, which we suggest to be named PLACK syndrome, is described in this thesis. 

The histological and ultrastructural characteristics of affected skin biopsies are 

presented together with the in vitro analyses of adhesion, cell viability and 

migration, and desmosome regulation following siRNA-mediated knockdown of 

CAST in HaCaT cells. 

5.2. Results 

5.2.1. Functional analysis of LOF mutations in CAST 

This chapter describes the genetic analysis of patient PK2 who harbours the 

homozygous p.K78X CAST mutation, and investigates the effects of the CAST LOF 

mutation on epithelial integrity. The affected phenotypical characteristics were 

mimicked in an immortalised keratinocyte cell line using the ON-TARGETplus 

SMART Pool siRNA targeting all isoforms of CAST. 

5.2.1.1. CAST LOF mutation identified in PK2  

Given that the clinical phenotype was complex and no disease-associated genes 

were known for this condition, an exome capture was performed on affected 

genomic DNA. Exome sequencing revealed a homozygous nonsense mutation 

(c.A232T, p.K78X) in CAST as the likely underlying genetic cause of the syndrome. 

Sanger sequencing of affected DNA, performed by Dr Claire Scott, confirmed the 

existence of a change from adenine to thymine at the genomic DNA level, which 

changes a lysine amino acid into a STOP codon at the protein level. Control genomic 

DNA was wild type and parent DNA was heterozygous for this mutation (Figure 

5.2.).  
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Figure 5.2. Confirmation of p.K78X mutation in the CAST gene of PK2. 

Electropherograms of wild type control, heterozygous parent of PK2, and PK2 genomic DNA 

sequences. Sanger sequencing revealed a homozygous transversion from adenine to 

thymine at coding position 232 of CAST, which changes a lysine amino acid to a STOP codon 

at the protein level (c.A232T:p.K78X). Genomic DNA from a non-affected individual was 

used as wild type control. Sanger sequencing was performed by Dr Claire Scott.  
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5.2.1.2. Histological and immunohistochemical observations of PK2 skin 

Histological examination of a non-lesional skin biopsy from PK2, homozygous for 

p.K78X in CAST, showed minor thickening of the basal layer and widening of 

intercellular spaces in the basal and suprabasal layers of the epidermis (Figure 5.3. 

B), in comparison to control skin (NS) (Figure 5.3. A).  

Immunohistochemistry of paraffin embedded skin from PK2 with an antibody 

raised against calpastatin showed a significant reduction in protein expression in 

skin from PK2 (Figure 5.3. D), compared to bright cytoplasmic staining throughout 

all layers of the epidermis in normal control skin (Figure 5.3. C). 
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Figure 5.3. Haematoxilin and Eosin (H&E) and immunohistochemistry staining of 

PK2 skin biopsy. H&E stain of normal skin (NS; A) and skin from PK2 (B) revealed widened 

intercellular spaces in the basal - suprabasal layers in affected skin in contrast to NS. H&E 

was performed by Mr Benjamin Fell. IHC with an anti-calpastatin antibody (in green) 

showed normal expression of calpastatin throughout all layers of normal skin (NS, C) and 

protein absent from all layers in affected skin (p.K78X; D), in the presence of DAPI as 

nuclear marker (in blue). IHC was performed by Dr Claire Scott. Imaging of H&E staining 

was carried out on the Nikon Eclipse TE 2000-S and Nikon Digital Sight at 10 X 

magnification. IHC imaging was carried out on the Zeiss Meta 710 confocal microscope and 

images were taken at 40 X magnification. NS – Normal skin; PK2 – Affected skin (Scale bar 

–20 µm for C and D). 
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5.2.1.3. Transient siRNA down-regulation of CAST isoforms in HaCaT keratinocytes  

To determine the functional consequences of CAST LOF mutations in vitro, siRNA-

mediated knockdown of CAST was performed in HaCaT cells, using a specific pool of 

four siRNAs (ON-TARGETplus Human CAST siRNA SMARTpool, GE Healthcare 

Dharmacon). The sequences and targeting sites of this functional siRNA pool are 

found in Table 2.5. NTP siRNA (ON-TARGETplus Non-Targeting Pool, GE Healthcare 

Dharmacon) was used as a control.  

A number of optimisations were performed prior to the siRNA-based experiments 

described in this chapter, including optimisation of transfection conditions and time 

course analysis of CAST down-regulation. Optimisation of transfection conditions 

was carried out to find the highest transfection efficiency while maintaining cell 

viability (as described in section 5.2.1.5.). The concentration of the siRNA pool was 

varied to determine the lowest concentration resulting in down-regulation of CAST 

with minimised risk of off-target effects. The time course analysis was performed to 

determine the duration of the CAST down-regulation. These optimisations are 

described in Appendix G.1. 

Immunocytochemistry performed with an anti-calpastatin antibody on CAST siRNA-

treated cells and NTP control cells (Figure 5.3.), revealed down-regulation of 

calpastatin in CAST siRNA monolayers compared to a cytoplasmic expression in NTP 

cells (Figure 5.3. B). Western blots of CAST siRNA-treated HaCaT cell lysates were 

performed, as previously described, to confirm that CAST knockdown was achieved 

prior to any other analysis (Figure 5.4. C). A CAST knockdown was obtained which 

down-regulated all CAST isoforms by 50-65% in HaCaT cells. 

To investigate in vitro the effects of mechanical stress in CAST siRNA transfected 

HaCaT cells, the FX-4000TM cell stretcher was used as previously described for the 

CSTA siRNA studies in HaCaT cells (Chapter 5.2.1.3.). CAST siRNA transfected cells  

together with NTP siRNA transfected cells as control, were subjected to mechanical 

stretch at a frequency of 5 Hz (five cycles of stretch and relaxation per second) and 

an elongation of amplitude ranging from 10% to 14% (increase in diameter across 

the silicone deformable membrane from 10% to 14%). Cells were stretched for 4 h.  
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Staining of non-stretched and 4 h-stretched CAST siRNA-treated cell monolayers 

and control cells, using an anti-keratin 14 antibody, revealed widening of the 

intercellular spaces in CAST siRNA cells independent of mechanical stress, together 

with breakage of intercellular junctions (Figure 5.4. Ei and Eii) compared to NTP 

treated cells where after 4 h stretch these connections appeared disrupted but not 

broken (Figure 5.4. Dii). 

 

 

 

 

 

 

 

 

 

 



172 

 

 

Figure 5.4. CAST siRNA transfection and mechanically induced stress on knockdown 

cell monolayers. HaCaT cells transfected with a pool of CAST siRNA (B) and NTP siRNA (A) 

for 72 h were stained with an anti-calpastatin antibody (in green) in the absence (Ai and 

Bi) and presence (Aii and Bii) of DAPI (in blue) as nuclear marker. A reduction in the 

calpastatin protein levels can be seen in CAST siRNA treated cells compared to NTP siRNA 

cells; this was confirmed by western blotting of total cell lysates (C). A reduction in CAST 

levels can be observed for the CAST siRNA treated cells (lane 2). GAPDH was used as a 

loading control. Imaging was performed on the Zeiss Meta 710 confocal microscope and 

images taken at 40 X magnification (A and B) (Scale bar – 20 µm).  
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Figure 5.4. CAST LOF by siRNA transfection and mechanically induced stress on 

knockdown cell monolayers (continued). NTP control HaCaT cells (Di and Dii) and CAST 

siRNA cells (Ei and Eii) mimicking the LOF mutation were subjected to cyclic mechanical 

stress at a frequency of 5 Hz and amplitude of 10-14% using the Flexcell FX-4000 Tension 

System for 0 h (non-stretched, Di and Ei) and 4 h stretch (Dii and Eii). ICC with an anti-

keratin 14 antibody revealed that CAST siRNA cells display large intercellular gaps (*) both 

before and after 4 h stretch, suggesting an adhesion defect independent of mechanical stress 

(Ei and Eii). Keratin 14 filaments appeared stretched, but not broken, in NTP treated cells 

following 4 h stretch (arrows). Keratin 14 – in green; DAPI – in blue. Imaging was performed 

on the Zeiss Meta 710 confocal microscope and images taken at 63 X magnification (D and 

E) (Scale bar – 20 µm).  
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5.2.1.4. Cell migration appears normal in CAST knockdown keratinocytes 

To investigate the effects of the CAST LOF mutations on cell migration and “wound-

healing”, a scratch assay was performed as previously described for the CSTA siRNA 

treated cells. After applying a scratch throughout the CAST siRNA and NTP cell 

monolayers pictures were taken at set time intervals, up to 24 h post-scratch in 

order to assess and compare the time and speed of scratch-wound closure in CAST 

siRNA cells compared to control cells. Pictures taken at the 0 h, 12 h and 24 h time 

points showed no significant differences in cell migration in CAST siRNA cells after 

24 h compared to control (Figure 5.5. A). In order to quantify this, the size of the 

scratch was measured for these three time intervals. Analysis of measurements of 

areas migrated between the 0 h, 12 h and 24 h time points showed no significant 

difference, indicative of a normal cell migration pattern and normal scratch-wound 

healing process (Figure 5.5. B). The graphical representation below illustrates the 

analysis of three independent siRNA knockdown experiments (n = 8). Scratch 

measurements were made with Image J software and resulting scratch 

measurements are given as arbitrary numbers from a maximum set number. 
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Figure 5.5. “Wound-healing” assay showed normal cell migration after 24 h. (A) 

Scratch-wound assay to assess migration by the degree of scratch closure after 24 h. (B) No 

significant difference was observed between NTP siRNA and CAST siRNA treated cells 

suggesting that there is no obvious difference in cell migration and scratch closure (n = 8). 
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5.2.1.5. Analysis of cell viability in CAST siRNA treated cells  

Previous studies have reported calpastatin and the target proteases as being 

implicated in growth, migration and apoptotic cell death (Carragher and Frame, 

2004). We have analysed the percentage of early and late apoptosis in CAST siRNA 

cells in comparison to NTP control. CAST LOF cells were stained with annexin V – 

FITC. One siRNA knockdown assay was performed, with three samples for each 

condition analysed by FACS. Two representative images for the NTP and CAST siRNA 

samples are shown in Figure 5.6. A, together with the graphical representation of 

the statistical analysis of the three samples from the one siRNA knockdown (Figure 

5.6. B). No statistically significant difference was observed between CAST siRNA and 

the control cells. This is indicative of normal apoptotic cell death in CAST knockdown 

cells.  
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Figure 5.6. Apoptosis analysis by FACS in CAST siRNA treated cells. (A) Dot plot of 

readings for NTP and CAST siRNA treated cells. A number of 30,000 events were allowed 

for each repeat. Gates were used initially to exclude debris and then to separate between 

living, apoptotic and dead cells. (B) Representation of cell death analysis in NTP and CAST 

siRNA treated cells. The columns represent the percentage of live, apoptotic and dead cells. 

A normal level of apoptotic cell death was observed for CAST siRNA treated cells, similar to 

control. 
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5.2.1.6. Expression of desmosome-associated proteins in skin from PK2 homozygous for 

a CAST LOF mutation 

Due to the cell adhesion defect in CAST LOF skin, the expression and localisation of 

some of the desmosome-associated proteins was analysed. Immunofluorescence 

was performed with anti-DSG2 (Figure 5.7.), DSG3 (Figure 5.8.) and DSP I/II (Figure 

5.9.) specific antibodies in non-lesional skin sections from PK2 and control skin.  In 

normal epidermis DSG2 appeared with a diffuse cytoplasmic and membranous 

localisation (Figure 5.7. A), while DSG3 and DSP presented with a membranous 

localisation (Figure 5.8. A and 5.9. A). In affected skin, DSG2 appeared to present 

with an expression profile similar to control skin, with areas of increased expression 

in the basal layer (Figure 5.7. B). Staining of DSG3 and DSP showed a significant 

increase in protein expression, with both a plasma membrane and cytoplasmic 

localisation pattern (Figure 5.8. B and 5.9. B), in comparison to the specific 

membranous pattern in control skin. Staining of DSP in affected skin also 

highlighted intercellular gaps in the basal/suprabasal layers as seen by histological 

analysis (Figure 5.9. Bi). 
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Figure 5.7. Immunofluorescence of DSG2 in skin sections from PK2. IHC with an anti-

DSG2 antibody (in green) in control skin (A) and skin sections from PK2 (B) in the absence 

(Ai and Bi) and presence (Aii and Bii) of DAPI as a nuclear marker (in blue), revealed areas 

of increased protein expression (arrows) in the basal layer of affected skin compared to 

control skin. Imaging was performed with the Zeiss Meta 710 confocal microscope and 

images were taken at 20 X magnification (A and B) and 10 X magnification for negative 

control (C) (Scale bar – 20 µm for A and B and 50 µm for C). 
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Figure 5.8. Immunofluorescence of DSG3 in skin sections from PK2, homozygous for 

p.K78X, and control skin. IHC with an anti-DSG3 antibody (in green) in control skin (A) 

and skin sections from PK2 (B) in the absence (Ai and Bi) and presence (Aii and Bii) of 

DAPI as a nuclear marker (in blue), revealed a significant increase in protein expression in 

the basal/suprabasal layers of the epidermis in affected skin compared to control skin. A 

change from a typical membranous localisation to a both membranous and cytoplasmic 

localisation of this protein was also noted (lower exposure of DSG3 in Appendix G.2.). 

Imaging was performed with the Zeiss Meta 710 confocal microscope and images were 

taken at 20 X magnification (A and B) and 10 X magnification for negative control (C) (Scale 

bar – 20 µm for A and B and 50 µm for C). 
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Figure 5.9. Immunofluorescence of DSP in skin sections from PK2, homozygous for 

p.K78X and control skin. IHC with an anti-DSP antibody (in green) in control skin (A) and 

skin sections from PK2 (B) in the absence (Ai and Bi) and presence (Aii and Bii) of DAPI as 

nuclear marker (in blue), revealed a significant increase in protein expression in all layers 

of the epidermis in affected skin compared to control skin. A change from a typical 

membranous localisation to a both membranous and cytoplasmic localisation of this protein 

was also noted, together with more apparent intercellular spaces in the basal/suprabasal 

layers. Imaging was performed with the Zeiss Meta 710 confocal microscope and images 

were taken at 20 X magnification (A and B) and 10 X magnification for negative control (C) 

(Scale bar – 20 µm for A and B and 50 µm for C). 
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5.2.1.7. Desmosome-associated proteins appear affected by CAST LOF mutations 

Following observations on the altered expression and localisation of the 

desmosome-associated proteins DSG2, DSG3, and DSP I/II in affected skin, these 

proteins were investigated in CAST siRNA-treated cells before and after 4 h 

mechanically-induced stress.  

Total protein cell lysates from NTP and CAST siRNA-treated HaCaT cells were 

obtained and analysed by western blotting. Antibodies targeting DSG2, DSG3, PG 

and DSP I/II were used together with anti-vinculin and anti-GAPDH antibodies as 

loading controls (Figure 5.10. A). Independent siRNA knockdown experiments were 

conducted and replicate western blots were carried out for each protein. 

Densitometry measurements of western blots were calculated using an image 

analysis program (Image J, v1.47v) and are graphically depicted in Figure 5.10. B 

and C for DSG2 and DSG3, which were consistent between repeats, and in Figure 

5.10. D for DSP II and Appendix G.3. for PG which appeared with more variability 

between repeats but with similar expression levels between CAST siRNA and NTP 

treated cells.  

DSG2, DSG3 and DSP II protein expression levels appeared increased following CAST 

siRNA knockdown, while PG expression appeared consistent and similar to 

expression in NTP control cells independent of mechanical stress.  Protein levels 

were normalised against the loading control band, GAPDH for DSG2 and DSG3 and 

vinculin for DSP I/II, and are presented as a fold change from NTP control for the 

western blots for DSG2, DSG3 and DSP II in Figure 5.10. A. No change in expression 

levels was observed for DSP I and PG (Appendix G.3.). Due to the variability in 

expression levels, despite an overall trend towards up-regulation, further repeats 

would be necessary together with protein quantification prior to western blotting, 

in order to draw a conclusion.  
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Figure 5.10. Up-regulation of DSG2, DSG3 and possibly DSP II in CAST siRNA treated 

cells. (A) Total protein cell lysates from CAST siRNA and NTP siRNA HaCaT cells, non-

stretched and stretched for 4 h, were blotted and incubated with anti-DSG2, DSG3, PG or 

DSP I/II to check the levels of expression of these proteins. (B-D) Protein levels of DSG2, 

DSG3 and DSP II calculated from densitometric measurements of the western blot images 

and normalised to loading controls (GAPDH for DSG2 and DSG3; Vinculin for DSP II). Total 

DSG2, DSG3 and DSP II expression levels are presented as a fraction of the total protein level 

in NTP siRNA cells; more repeats would be necessary for DSP II in order to include standard 

error bars. Densitometric analysis for PG and DSP I can be found in Appendix G.3. and are 

showing similar expression levels between CAST siRNA and NTP siRNA.  
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5.3. Discussion 

In this chapter, a new clinical entity named PLACK syndrome, and the research on 

three independent families presenting with mutations in the CAST gene, which 

encodes for the protease inhibitor calpastatin, are described as being linked to this 

disorder. The main focus of the work described was the characterisation of a skin 

biopsy from PK2, homozygous for CAST p.K78X and in vitro studies on desmosomal 

cell adhesion. Calpastatin and the target calpains appear to regulate cell adhesion in 

the basal/suprabasal layers of the epidermis.  

5.3.1. CAST LOF mutations linked to PLACK syndrome, a new clinical 

entity 

We identified three families with a complex type of peeling skin syndrome (PSS), 

which we have named PLACK syndrome due to the observed clinical phenotype 

characterised by PSS with leukonychia, acral punctate keratoses, cheilitis and 

knuckle pads (Lin et al., 2015).  

Two types of PSS have previously been described, acral PSS (APSS), involving the 

palmar, plantar and dorsal surfaces of the hands and feet (Shwayder et al., 1997, 

Hashimoto et al., 2000), associated with mutations in the TGM5 gene (Cassidy et al., 

2005), and generalized PSS (GPSS), which together with the characteristics 

described for APSS also presents with severe pruritus, food allergies and repeated 

episodes of angioedema, urticaria, and asthma (Oji et al., 2010, Mallet et al., 2013), 

and was associated with mutations in the CDSN gene (Oji et al., 2010). Recently 

Blaydon et al. (Blaydon et al., 2011b) and Krunic et al. (Krunic et al., 2013) described 

homozygous nonsense mutations in the CSTA gene associated with exfoliative 

ichthyosis and APSS respectively, while Cabral et al. (Cabral et al., 2012a) identified 

CHST8 as a novel gene linked to PSS. 

Through independent exome capture analyses, three distinct homozygous LOF 

mutations were identified in affected individuals from three PLACK families. All 

these mutations, c.607dup:p.Ile203Asnfs*8 in PK1, c.A424T:p.Lys142* in PK2 

(analysed in this chapter) and c.1750delG:p.Val584Trpfs*37 in PK3 and PK4, were 
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identified in the CAST gene and are predicted to encode for a truncated non-

functional protein.  

Calpastatin is a specific endogenous inhibitor of the classical calpains 1 and 2, also 

known as calpains µ (micro) and m (mili) (Corrado et al., 2006), on the basis of the 

calcium concentration required for their activation: a low concentration is needed 

for µ-calpain and a higher concentration needed for m-calpain (Ono and Sorimachi, 

2012).  

To investigate the consequences of the CAST LOF mutation p.K78X, immunostaining 

was performed with an anti-calpastatin antibody on non-lesional skin sections from 

PK2. This has revealed an almost complete absence of protein expression in all 

layers of the epidermis, in comparison to normal control skin where calpastatin was 

expressed throughout all layers of the epidermis and had a cytoplasmic appearance. 

Histologically, intercellular gaps in the basal/suprabasal layers of the epidermis 

were observed, together with what appears to be a thicker basal layer with specific 

apical oriented cells.  

5.3.2. Transient CAST down-regulation leads to disrupted intercellular 

adhesion in vitro 

To analyse further the consequences of the CAST LOF mutations in vitro, siRNA-

mediated knockdown of CAST using a specific siRNA pool was performed in the 

immortalised keratinocyte cell line HaCaT, with NTP siRNA used as control. 

Knockdown of CAST was obtained, which reduced calpastatin expression by 

approximately 50-65%. The level of knockdown was assessed by 

immunocytochemistry and/or total protein lysates by western blotting prior to any 

other analysis.  

Due to the observed cell adhesion defect in the basal/suprabasal layers in the 

epidermis from the affected individual, an in vitro mechanically-induced stress 

assay was used to investigate the role of calpastatin in keratinocyte adhesion in 

CAST siRNA and NTP siRNA-treated cells as control. Immunocytochemistry with a 

specific anti-keratin 14 antibody in non-stretched and 4 h-stretched cell monolayers 

revealed widened intercellular spaces both in the non-stretched and stretched CAST 
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knockdown cells, which suggests that this disruption happens independently of 

mechanical stress. In contrast, NTP cells presented with extended keratin 14 

filaments post-stretching but no disruption in intercellular adhesion prior to 

mechanical stress. The direct implication of calpastatin in intercellular adhesion has 

not, to our knowledge, been reported previously and a possible mechanism of action 

is discussed below. 

Independent studies looking at a variety of cancers have associated calpains, the 

specific targets of calpastatin, with adhesion, motility, invasion, cell-cycle 

regulation, cell spreading, apoptosis and myogenesis (Leloup et al., 2006). A recent 

study by Nassar et al., using a calpastatin overexpression mouse model observed 

changes in the wound-healing process in comparison to wild type mice. A significant 

delay in wound-healing was noted, associated with reduced proliferation and re-

epithelialisation, most prominently in the early stages of the wound-healing process 

(Nassar et al., 2012). 

To address the possible effects of the CAST LOF mutations on keratinocyte migration 

in vitro, a scratch assay was performed in CAST knockdown keratinocyte 

monolayers following inhibition of proliferation. NTP cells were used as a control 

and were treated in the same manner. Results showed a normal scratch-wound 

closure pattern, similar to the one observed for NTP control cells, which signifies a 

normal cell migration process. A CAST LOF 3D organotypic cell model or analysis of 

Cast KO mouse may give a more accurate view of any wound-healing and cell 

migration processes regulated by calpastatin. 

Tan et al. observed that in embryonic fibroblasts derived from Capn4 genetically 

disrupted mice, the calpain deficiency correlated with resistance to ER stress-

induced apoptosis, directly related to calpain requirement for activation of both 

caspase-12 and the ASK1-JNK cascade (Tan et al., 2006). Another in vitro study 

demonstrated that increased activity of m-calpain results in apoptosis of HaCaT 

cells, and that the activation of m-calpain is directly proportional to EGF 

concentration (Inoue et al., 2004). 

Analysis of lesional patient skin sections by TUNEL assay and TEM (performed by 

Dr Zhimiao Lin, Peking University First Hospital, Beijing, China) revealed a 
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significant increase in the number of apoptotic cells and apoptotic bodies formed, 

compared to normal control skin. To look at the consequences of CAST knockdown 

in vitro, FACS analysis of the cell cycle was performed in CAST siRNA treated cells 

against control NTP cells. The results from one knockdown experiment with each 

condition in triplicate were analysed and revealed similar percentages of cells in all 

stages of the cell cycle between CAST siRNA and NTP siRNA treated cells. 

TUNEL and TEM results suggest that analysis of apoptosis in skin sections from 

other PLACK patients and the use of a CAST LOF 3D cell model may reveal different 

results to the ones seen in cell monolayers, as the increase in apoptotic cell number 

in PK1 was in the suprabasal layers of the epidermis.  

5.3.3. Dysregulation in expression and appearance of desmosome-

associated proteins  

Observations in CAST LOF affected skin and in vitro studies, coupling CAST siRNA-

mediated knockdown with mechanically-induced stress, indicate a key role for 

calpastatin in intercellular adhesion. 

In order to address the possibility of a direct correlation between CAST LOF 

mutations and an increased calpain activity leading to excessive proteolysis of 

epidermal desmosomal components, the expression and localisation of some of 

these proteins in affected skin sections and in CAST siRNA keratinocytes was 

analysed.  

Staining of skin sections from PK2, homozygous for p.K78X, with anti-DSG2, DSG3 

and DSP I/II specific antibodies, revealed an apparent up-regulation of DSG2 

expression in areas of the basal layer of the epidermis and a significant up-

regulation of DSG3 and DSP I/II in all layers of the epidermis. Aberrant localisation 

of these proteins to the cytoplasmic compartment was observed, when compared to 

normal control skin where DSG3 and DSP I/II appeared mainly expressed at the 

plasma membrane. Furthermore, western blotting of total protein lysates from CAST 

knockdown cells revealed a general trend towards up-regulation of DSG2, DSG3 and 

DSP II independent of mechanical stress when compared to NTP cells. Any variation 

in the levels of up-regulation of DSG2, DSG3 and DSP II between CAST knockdown 
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repeat experiments, may be due to variations in CAST knockdown levels and could 

be addressed by quantification of total protein levels prior to western blotting. 

These observations could suggest that the reduction in expression of calpastatin due 

to CAST LOF mutations directly correlates with an increase in the concentration of 

active calpains. This in turn could lead to proteolysis of DSG2, DSG3 and DSP II in 

the affected individuals, resulting in acantholysis and impaired resistance of the 

epidermis to mechanical stretch, seen in affected individuals as blistering and skin 

peeling.  

As calpain-mediated proteolysis of talin and focal adhesion kinase (FAK) reportedly 

leads to regulation of adhesion dynamics (Franco et al., 2004, Chan et al., 2010), 

these proteins could be analysed in PK patient skin and CAST siRNA transfected 

keratinocytes. 

5.4. Summary 

To summarise, this chapter described the features of a new clinical entity named 

PLACK syndrome, characterised by PSS, leukonychia, acral punctate keratosis, 

cheilitis and knuckle pads. Through three independent exome capture analyses of 

the three families, our group identified autosomal recessive mutations in CAST, 

leading to LOF of calpastatin, the only known inhibitor of calpains. 

CAST knockdown mimicking the LOF mutations, coupled with mechanical stretching 

revealed reduction in intercellular adhesion levels independent of mechanical 

stress. No change in cell migration or cell cycle was seen by scratch assay or FACS 

analysis. A possible mechanism of action following CAST LOF mutations could be 

through increased calpain activity leading to the proteolysis of desmosome-

associated proteins, as indicated by the in vivo and in vitro observations showing up-

regulation and aberrant localisation of DSG2, DSG3 and DSP II.  
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6.1. Background 

Desmosomes are complex macromolecular structures, playing both structural and 

signalling roles in bordering cells. Although the precise role of desmosomes as 

adhesion structures and signalling centres is not yet fully understood, it is widely 

accepted that their correct assembly and function is crucial in desmosome-

presenting tissues such as the skin and myocardium. It has been well acknowledged 

in a number of studies that dysregulation of desmosome assembly and function, due 

to genetic variations in desmosomal genes, leads to an array of conditions featuring 

cardio-cutaneous phenotypes including some with hair abnormalities including 

woolly hair or alopecia. 

The two main focuses of this thesis were, firstly, the genetic analysis of patients 

clinically diagnosed with ARVC or genodermatoses, resulting in the discovery of 

novel and previously disease-linked mutations in genes encoding for desmosome-

associated proteins, and secondly, the in vitro analysis of loss-of-function (Loffek et 

al.) mutations in two genes encoding for the protease inhibitors, cystatin A and 

calpastatin, leading to the skin disorders exfoliative ichthyosis and PLACK 

syndrome respectively. The molecular mechanisms behind mutations affecting the 

desmosomal complex, either directly through changes in desmosomal proteins or 

indirectly affecting proteins involved in desmosome regulation, are continuously 

being uncovered and highlight the importance of these structures in desmosome-

bearing organs. 

6.2. Genetic heterogeneity in ARVC and genodermatoses 

6.2.1.  PKP2 is the major affected desmosome-associated protein in 

ARVC 

A number of dominant and recessive mutations identified to date in genes encoding 

for the desmosome-associated proteins DSP, DSC2, DSG2, PKP2 and PG lead to non-

syndromic ARVC.  

PKP2 mutations account for a significant number of ARVC cases (Sen-Chowdhry et 

al., 2010), and were initially identified following a large study by Gerull et al. who 
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uncovered 25 different novel PKP2 mutations in 32 probands out of a total of 120 

patients, ranging from missense and nonsense to insertion, deletion and splice-site 

mutations, most of which affected the C-terminus end of the protein, while the 

others were scattered throughout the gene (Gerull et al., 2004). Both founder and 

recurrent mutations were identified up to date (van der Zwaag et al., 2010). The 

recurrent mutations suggest the presence of “hot spot” mutagenic regions in PKP2 

(Gerull et al., 2004, Dalal et al., 2006), the frequency in C>T mutations pointing at 

the CpG hot spots as targets of spontaneous mutations (Awad et al., 2008a). 

Here, six dominant and recessive variations in PKP2, ranging from splice-site of 

exons 11 (IVS11-1G>C) and 12 (IVS12+1G>A; rs111517471) to nonsense 

(c.G870A:p.W290X and c.T1926A:p.Y642X) and missense (c.G1939A:p.A647T and 

c.A148C:p.T50A) mutations were identified. Bauce et al. have shown that skipping 

of exon 11 in RNA transcripts and the possible generation of a premature STOP 

codon following the PKP2 mutation could prove highly pathogenic (Bauce et al., 

2010). The rs111517471 variation, with a minor allele frequency of less than 0.01, 

has also previously been associated with ARVC and is believed to be highly 

pathogenic (Scherer et al., 2006). We suggest that the two missense mutations 

identified by our studies would lead to conformational changes through single 

amino acid modifications while the two nonsense mutations would lead to more 

severe truncations of the PKP2 protein structure, which in turn would most likely 

affect desmosome assembly and function. Truncating mutations are thought to lead 

to haploinsuficiency because of their instability (Joshi-Mukherjee et al., 2008).  

Co-immunoprecipitation and yeast two hybrid system studies have reported direct 

interactions between PKP2 and other desmosome-associated proteins such as DSP, 

PG, DSC1a and 2a, DSG1 and 2, some of which are of high importance in cardiac 

desmosomes (Bonne et al., 1999, Chen et al., 2002). Additional interactions have 

been reported with the intermediate filaments (Hofmann et al., 2000) and β-catenin 

regulating its signalling activity (Chen et al., 2002). Thus mutant or reduced (due to 

haploinsufficiency mutation) PKP2 is likely to impair its association with other 

desmosomal proteins and their assembly in the heart, thus leading to cardiomyocyte 

adhesion problems. PKP2 is the only isoform in the heart, while in the epidermis is 

found to be expressed together with PKP1 and 3, which could perhaps compensate 
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for the PKP2-deficiency; this could possibly explain the non-syndromic phenotype 

in ARVC patients. This hypothesis is also supported by a Pkp2 knockout mouse 

model which resulted in lethal cardiac damage at mid-gestation, characterised by 

defective intercellular adhesion at the intercalated disks and blood loss into the 

pericardial cavity, associated with a reduction in expression of DSP and PG 

(Grossmann et al., 2004).  

Another hypothesis, supported by a number of in vitro siRNA studies on rat and 

human cardiomyocytes, associates ARVC-linked PKP2 mutations with a 

redistribution of connexins (Oxford et al., 2007, Pieperhoff et al., 2008), in particular 

with abnormalities in total connexin 43 (Cx43) expression which appears to be a 

consistent feature in patients with advanced ARVC (Antoniades et al., 2006, Fidler 

et al., 2009, Kannankeril et al., 2006, Lahtinen et al., 2008, Asimaki et al., 2009). In 

an independent study using neonatal rat ventricular myocytes, Joshi-Mukherjee et 

al. have shown that the p.Arg79X nonsense mutation in Pkp2 led to a reduction in 

Cx43 expression and the failure of the two proteins to interact (Joshi-Mukherjee et 

al., 2008).  

In desmosome-containing epithelial cells, PKP2 appears to be associated with DSP 

and together migrate from the cytoplasmic compartment to the plasma membrane 

during desmosome assembly (Godsel et al., 2005). These observations together with 

an in vitro study on PKP2-deficient cells, showing that DSP-PKCα complexes 

dissociate while DSP remains anchored to the intermediate filaments failing to reach 

the plasma membrane (Bass-Zubek et al., 2008). 

6.2.2. Disease heterogeneity associated with DSP mutations 

The most frequent genes mutated in ARVC except for PKP2 are DSP (10-15% of 

diagnosed cases) and DSG2 (10-15% of diagnosed cases) (Pilichou et al., 2006) and 

represent the “big 3” target genes (Sen-Chowdhry et al., 2010), with compound and 

double heterozygotes having been reported in up to 33% of genetically diagnosed 

cases.  

Here, a double heterozygote presenting one of the PKP2 mutations (IVS11-1G>C) 

presented above, together with a heterozygous transversion in exon 11 of DSP, 
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c.G1323C:p.K441N, is presented. Also, during the course of the ARVC study, genetic 

screening of two siblings with hypotrichosis and PPK revealed a homozygous 

mutation in exon 12 of DSP, c.C1493T:p.P498L. This phenotypical exclusivity 

resulting from mutations in the same gene is a matter of intense controversy and 

high interest, mostly as ARVC diagnosis is proving to be extremely difficult and 

variable despite the existing guidelines. 

A number of cardio-cutaneous syndromes with varying degrees of severity have 

been reported since the first linkage of DSP mutations with an exclusively cutaneous 

disorder, autosomal dominant SPPK (Armstrong et al., 1999, Whittock et al., 2002), 

and with the autosomal recessive Carvajal syndrome, a cardio-cutaneous phenotype 

coupled with hair abnormalities (Norgett et al., 2000). In SPPK, the dominantly 

inherited mutations were LOF suggesting that the mechanism of action was 

haploinsufficiency and that protein dosage was key in the stressed areas of the skin 

such as the palm and sole, a hypothesis confirmed by histology findings (Armstrong 

et al., 1999). In comparison, the homozygous DSP mutation linked to the Carvajal 

syndrome would lead to the loss of the IF-binding site and impaired cell adhesion 

with the collapse of the IF network (Huen et al., 2002, Getsios et al., 2004). The first 

case of non-syndromic ARVC linked to mutations in DSP was reported by Rampazzo 

et al. who noted that the missense DSP mutation was affecting the PG-binding 

domain of DSP (Rampazzo et al., 2002). It is well accepted now that the DSP isoforms 

have different functions and are differentially expressed in desmosome-presenting 

tissues, with DSP II expressed at very low levels in the heart (Uzumcu et al., 2006), 

while having a more significant role than DSP I in maintaining keratinocyte adhesion 

in the epidermis (Cabral et al., 2012b). 

Similarly to the mutation identified by Rampazzo et al., it is believed that the ARVC-

linked DSP mutation identified in this study (p.K441N) would affect the N-terminal 

end of all DSP isoforms and thus destabilise the binding of DSP to PG and PKPs, and 

at the same time the tethering of the intermediate filaments to the plasma 

membrane. It is yet unclear why no cutaneous phenotype was described in this 

patient, unless any existing skin modifications are very subtle compared to the 

cardiac manifestations aggravated by the PKP2 mutation. Skipping of PKP2 exon 11 

in mRNA transcripts and the possible generation of a STOP codon could prove highly 
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pathogenic (Bauce et al., 2010), but at the same time Xu et al. have shown that in 

42% of their affected individuals a second mutation in another desmosomal gene 

was needed to cause overt clinical disease (Xu et al., 2010), therefore the question 

of whether the DSP missense mutation contributes to the severity of the phenotype 

can only be clarified by in vitro studies. As mentioned before, a compensatory 

mechanism would be possible in the epidermis where PKP2 is expressed together 

with PKP1 which can promote desmosome formation by recruiting desmosomal 

proteins at the plasma membrane and within desmosomes (Wahl, 2005, 

Bornslaeger et al., 2001), and is able to bind to DSP, DSG1, DSC1, actin and keratin 

intermediate filaments (Hatzfeld et al., 2000, Hofmann et al., 2000, Kapprell et al., 

1988, Smith and Fuchs, 1998), thus explaining why no cutaneous phenotype is seen 

in this patient.  

In comparison, the second recessive missense DSP mutation (p.P498L) identified in 

siblings with hypotrichosis and PPK appears exclusive to the hair and palmoplantar 

areas exposed to mechanical stress. Due to the oldest sibling being only 11 years old 

at the time they were seen in clinic, we cannot completely exclude the possibility of 

any cardiac abnormalities appearing in the future. Clinically, it is important to 

regard PPK in combination with woolly hair or alopecia as a “warning signal” for the 

development of cardiomyopathy, as suggested by Norgett et al. (Norgett et al., 

2006). Whittock et al. have described a similar but more severe form of 

palmoplantar keratoderma and woolly hair associated with skin fragility due to 

compound heterozygous mutations in DSP. Each of the two patients described in 

their study was heterozygous for nonsense and missense mutations, transcript 

analysis demonstrating that the nonsense allele was probably degraded via the 

nonsense-mediated mRNA decay, and that each affected individual was in essence 

homozygous for the missense mutation in the N- or C-terminal domains (Whittock 

et al., 2002). It is possible that homozygosity for p.P498L could affect the formation 

of the protein secondary structure in the absence of wild-type DSP. These changes 

may affect binding of DSP to the intermediate filaments and/or other desmosomal 

proteins, such as PG and PKP1 (Kurzen et al., 1998), which represent the main 

armadillo members present in the hair follicle, explaining why in most recessive 

desmosomal diseases hair is absent or woolly. Mice expressing a truncated PG, 
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lacking its armadillo repeats, showed stunted hair growth indicating that PG 

supresses epithelial proliferation and hair growth in vivo (Charpentier et al., 2000). 

It is therefore likely that the functionally impaired DSP may lead to a reduction in 

PG and/or PKP1 levels, leading to the woolly hair phenotype seen in our patients. 

6.2.3. The importance of segregation studies is highlighted through 

mutations in cadherin genes linked to non-syndromic ARVC and 

hypotrichosis 

Dominant (Pilichou et al., 2006) and recessive (Syrris et al., 2007) DSG2 mutations 

are described in up to 15% of non-syndromic ARVC genetically diagnosed cases. The 

role of DSC2 is unclear, although a recessive 1-base pair deletion mutation in DSC2 

has been linked to ARVC with mild PPK and woolly hair (Simpson et al., 2009b). 

Mutation L732V identified in DSC2, and predicted by PolyPhen as benign, was 

previously described by Bhuiyan et al. in conjunction with a DSG2 mutation V392I 

(Bhuiyan et al., 2009).  

Following the genetic analysis on patients with ARVC, two previously reported 

variations, a heterozygous mutation in DSG2, c.C874T:p.R292C (R292C), and a 

homozygous mutation in DSC2, c.T2194G:p.L732V (L732V) were identified. Variant 

R292C in DSG2, heterozygous in our ARVC case has previously been described as 

homozygous (Sato et al., 2012), or in association with a synonymous probably non-

pathogenic mutation in DSP, D782D, (Cox et al., 2011). R292C has also been 

described in heterozygosity with S194L in DSG2 and R577DfsX5 in PKP2 (Nakajima 

et al., 2012).  

In a parallel study the genetic anaysis of a patient clinically diagnosed with 

hypotrichosis with no cardio-cutaneous phenotype was performed. A variety of 

mutations in DSG4, including frameshift, splice-site, missense and nonsense have 

been linked to the autosomal recessive hair conditions Monilethrix and 

hypotrichosis (Schaffer et al., 2006, Zlotogorski et al., 2006, Shimomura et al., 2006). 

In our patient, three known substitutions were identified in exons 4 

(c.G258A:p.R86R; rs16959856), 5 (c.C495T:p.S165S; rs9956865) and 12 

(c.A1930C:p.I644L; rs4799570) of DSG4. It is believed that the first two synonymous 
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changes in exons 4 and 5 would not alter the secondary protein conformation of 

DSG4 and therefore they are unlikely to be disease-associated. With regards to the 

third mutation in exon 12, despite the amino acid change, this change appears as 

tolerated in SIFT. Thus, the genetic basis of hypotrichosis in this patient is still to be 

identified. 

Even though previous studies have linked mutations in the desmosomal cadherin 

genes DSC2, DSG2 and DSG4 with the above mentioned disorders, the importance of 

segregation studies, particularly for DSC2 proposed mutations, and screening for 

mutations in yet unknown disease-associated genes is highlighted again as a basic 

requirement before establishing a causatory effect.    

6.2.4. Genetic testing limitations in ARVC diagnosis 

ARVC is a particularly heterogeneous disorder characterised by myocardial 

degeneration and fibrofatty replacement, mostly affecting the right ventricle, but in 

some cases extending to the left ventricle and the interventricular septum, 

culminating in ventricle failure, frequent arrhythmias and sudden cardiac death. 

The original International Task Force Criteria (TFC) for ARVC diagnosis was 

established in 1994 (McKenna et al., 1994) in the absence of a gold standard criteria, 

and was updated in 2010 to include quantitative parameters for improving 

diagnostic sensitivity while maintaining specificity (Marcus et al., 2010). 

The estimated prevalence of ARVC in the general population is 1:2000 to 1:5000 

(Corrado et al., 2006a), with men more frequently affected than women, at a ratio of 

up to 1:3 (Azaouagh et al., 2011), and most likely to manifest in the young, 

competing athletes and individuals previously resuscitated from sudden cardiac 

death. These numbers appear to be study- and population-specific, with 

Mediterranean countries, such as Spain and France reaching 1:1000 disease 

prevalence (Sen-Chowdhry et al., 2010), while in Italy ARVC is responsible of up to 

26% of sudden cardiac deaths (Corrado et al., 1990). These statistics support one of 

our hypotheses by which the low percentage of disease-causing mutations, 

identified in only 16% of the total number of screened patients, with 66% identified 

in patients seen in the UK and 33% in patients seen in New Zealand, could be 
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attributed to slightly different methods of patient recruitment and perhaps stricter 

phenotypic parameters applied in differentiating between ARVC and other heart 

disorders in the UK. 

Another variable in disease diagnosis is age of onset, as shown by independent 

studies looking at patients with PKP2 mutations which have presented conflicting 

data. A Japanese study reported a significantly earlier age of onset in their patients 

(Andreasen et al., 2013), compared to a later age of onset reported by Alcalde et al. 

in their Spanish patient cohort (Alcalde et al., 2014). Alcalde et al. have also shown 

that in their patient cohort with familial ARVC, patients presenting missense 

mutations in PKP2 had an earlier age of disease onset (Alcalde et al., 2014).  

Genetic variability and the yet incomplete genotype-phenotype associations, with 

only up to 50% of ARVC cases linked to mutations in the cardiac desmosomal genes 

DSP (10-15%), JUP, PKP2 (40% and up to 70% in familial ARVC), DSG2 (10-15%) 

and DSC2 (approximately 1%), add to the variability resulted from the clinical 

diagnosis of ARVC in the general population. Following our genetic analyses, the 

percentages of possibly disease-associated desmosomal genes were DSP, 11%; 

DSC2, 11%; DSG2, 11% and PKP2, 67%, support previous statistics regardless of the 

low percentage diagnosis rate.  

Other non-desmosomal genes where mutations have been linked to ARVC are the 

transforming growth factor (TGF-β3), which encodes for a cytokine-stimulating 

fibrosis and is believed to modulate cell adhesion (Beffagna et al., 2005), and the 

transmembrane protein TMEM43, which functions as a response element for the 

adipogenic transcription factor PPAR gamma, which may explain the fibrofatty 

replacement of the myocardium (Merner et al., 2008). Another gene initially 

associated with ARVC was the human ryanodine receptor 2 (RYR2), which induces 

the release of calcium from the myocardial sarcoplasmic reticulum (Bauce et al., 

2000), but since publication it is more likely to be a phenocopy rather than true 

ARVC (Basso et al., 2012). We have included TMEM43 in one of our genetic analyses 

on 39 of our patients, but no mutations were found in this gene.  

A number of gene candidates with increasing interest are several desmosomal 

components and related proteins, such as plectin (PLEC) and pinin (PNN) (Sen-
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Chowdhry et al., 2010), which have already been under investigation for their link 

to human dermatoses, desmin (DES), striatin (STRN), titin (TTN), lamins A (LMNA) 

and C (LMNC), more commonly associated with DCM (Taylor et al., 2011, van 

Tintelen et al., 2009, Merner et al., 2008, Klauke et al., 2010, Meurs et al., 2010, 

Quarta et al., 2011), and NFκB interacting protein 1 (PPP1R13L or iASPP) which has 

been identified in cattle/mice with ARVC and woolly haircoat syndrome (Simpson 

et al., 2009a, Herron et al., 2005). Nevertheless, the multitude of genetic studies have 

shown that from individuals with a desmosomal mutation, only 30-50% fulfil 

clinical diagnostic criteria (Towbin, 2008), and that modifier genes could play a 

great role in the variation between individuals, even within the same family.  

Another complexity of genetic testing in families is the presence of compound or 

digenic mutations, a characteristic of diseases with low penetrance (Xu et al., 2010). 

We have identified in our genetic studies one such case of a digenic ARVC patient, 

presenting a mutation in PKP2 and a second mutation in DSP, making it difficult to 

decide whether a “second” variant is sufficient to cause disease and making 

genotype-phenotype correlation difficult if only one allele is analysed.  

In addition to the likelihood of, as yet, unidentified genes for ARVC, the incomplete 

sensitivity of the mutation screening techniques used such as the presence of 

mutations in non-analysed sequences in some cases may contribute to the absence 

of unidentified mutations.  

With regard to highly heterogeneous disorders, like ARVC, mutation screening has 

improved considerably from the laborious, time consuming and ultimately 

expensive conventional PCR and Sanger sequencing techniques, while whole 

genome analysis is becoming an option when faced with the possibility of zooming 

on a region of interest as a more attractive and cost saving technique, mostly as a 

greater number of samples can be screened together. Array-based sequence capture 

using a 385K Roche NimbleGen and the HaloPlex target enrichment system were 

performed on 49 ARVC diagnosed patients to screen for mutations in eight disease-

associated genes, DSP, JUP, PKP2, DSC2, DSG2, DES, TMEM43, and the possibly 

disease-associated gene ADAM17.  
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While array-based sequence capture systems have been used successfully in the 

discovery of novel variants linked to a number of disorders, ultimately Sanger 

sequencing was required for the confirmation and allocation of mutations to specific 

samples thus making the process time consuming and laborious when the genetic 

diagnosis of a larger set of samples is needed. Less than a dozen studies have been 

published in the last two years, using the HaloPlex target enrichment system, on 

disorders such as cystic fibrosis (Nakano and Tluczek, 2014), chronic lymphocytic, 

acute lymphoblastic and acute myeloid leukaemias (Sutton et al., 2014, Berglund et 

al., 2013, Bolli et al., 2014), primary immunodeficiencies (PIDs) (Stoddard et al., 

2014), the Usher syndrome (Aparisi et al., 2014), neurodegenerative disorders 

(Pihlstrom et al., 2014, Liu et al., 2014), breast, ovarian and colon cancers (Arvai et 

al., 2014, Mathot et al., 2013) and ARVC (Green et al., 2014). This system allowed 

the use of smaller DNA samples, while sample indexing facilitated posterior 

identification of the sample where a variant occurred, resulting in a more accurate 

estimation of allele frequencies. However some studies have reported that the 

presence of an index tag complicated experimental procedures and decreased 

capture specificity in inappropriately indexed samples (Nijman et al., 2010, Ramos 

et al., 2012). Bolli et al. have used HaloPlex to screen a set of AML patients, and 

showed that the two most important parameters affecting coverage of target 

regions are amplicon tiling and read length relative to amplicon length, which could 

give variable coverage to adjacent genomic regions (Bolli et al., 2014). These taken 

into consideration in ARVC genetic diagnosis, the mutational hotspots, such as the 

CpG regions in PKP2 and the N-terminus of DSP, should be checked by Sanger 

sequencing to ensure adequate coverage.  

In this study, all but two samples had a higher than 70% base coverage above a read 

depth of 15 X, a cut off which would reduce the probability of missing variants 

caused by sampling error. As two previously confirmed mutations were also found 

by HaloPlex, we speculate that the difference between the expected average 

percentage coverage of 98.5% and achieved percentage coverage could be due to a 

number of reasons such as:  

(i) variations in sample concentrations which would give a lower sample 

coverage, 
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(ii) the enzymatic fragmentation step which creates blocks of reads with the 

same start and end positions, thus if the distance between two restriction sites is 

longer than the read length, then coverage gaps will occur (Coonrod et al., 2014), 

(iii) a poorly performed adapter trimming step, 

(iv) the lowest anticipated and observed coverage was for PKP2 and despite the 

high number of mutations expected only three mutations were real calls in 37 ARVC 

samples, which could possibly be due to low coverage of mutational “hot spots” in 

this gene. 

Although no INDELS were identified in our study, it has previously been shown that 

this system is proving efficient at detecting this particularly difficult to distinguish 

variation (Aparisi et al., 2014, Bolli et al., 2014). 

In our case the identification of disease-causing mutations in genes already known 

to be implicated in ARVC has proven challenging, with a high potential for false 

negatives due to variable coverage, perhaps associated to high GC-content, highly 

homologous sequences or repeat regions. Moreover these techniques would only 

cover exonic regions included in the sequencing panel, while any intronic, promoter 

and regulatory regions would not be detected (Stoddard et al., 2014). Any novel 

variants should be considered in the context of a region-by-region coverage report 

and would still require validation by Sanger sequencing and functional assays to 

prove genotype-phenotype correlations, mostly as ARVC presents such a high 

genetic and phenotypical variability.  

If to these observations we add some important environmental factors, including 

sex, exercise, hormones, emotional stress, inflammation and the use of medicines, 

all of which play a role in disease expression (Sen-Chowdhry et al., 2010), it is 

understandable why genetic, epigenetic and environmental factors should be 

considered a package in ARVC diagnosis. 
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6.3. In vitro studies reveal a new role for cystatin A in basal 

epidermal adhesion 

The in vitro analyses presented in Chapter 4 are based on the first reported LOF 

CSTA mutations linked to autosomal-recessive exfoliative ichthyosis (Blaydon et al., 

2011b), and they reveal a previously unknown role for the protease inhibitor 

cystatin A in keratinocyte adhesion in the basal layers of the skin epidermis. 

Initially described as an intracellular cysteine protease inhibitor of several 

cathepsins, and later on reported in sweat and secreted in medium from cultured 

keratinocytes, CSTA was functionally limited to the upper layers of the epidermis, 

mostly associated with atopic dermatitis and psoriasis (Kato et al., 2005, 

Vasilopoulos et al., 2007, Vasilopoulos et al., 2008). Furthermore, 

immunohistochemistry on facelift and palm skin samples confirmed that CSTA was 

expressed throughout the epidermis (Blaydon et al., 2011b), supporting previous 

studies (Basel-Vanagaite et al., 2007). 

Using in silico splice-site predictor programs Blaydon et al. have described that the 

splice-site CSTA mutation identified in homozygosity in one of the exfoliative 

ichthyosis families, would lead to the loss of the 3’ splice-acceptor site and a much 

lower maximum entropy score for the mutant splice-site when compared to wild 

type. This would lead to a substantial reduction in protein expression and due to 

changes in protein conformation any expressed protein would most likely be 

dysfunctional (Blaydon et al., 2011b). Due to the lack of patient material for the 

study of these mutations, the immortalised keratinocyte cell line HaCaT together 

with siRNA based knockdown of CSTA, were used for all in vitro analyses described. 

Electron microscopy of the basal and suprabasal layers of patient epidermis and in 

vitro CSTA LOF 3D models have revealed widening of intercellular spaces and 

thickening of keratin filaments in these layers of patient skin, believed to be due to 

impaired intercellular adhesion and increased mechanical stress in the 

palmoplantar regions (Blaydon et al., 2011b). The CSTA knockdown 3D skin model 

described by Blaydon et al., demonstrated hyperkeratosis, parakeratosis and 

moderate epidermal hyperplasia together with a disturbance of the basal epidermal 
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architecture and without changes in epidermal barrier (Blaydon et al., 2011b). 

Further analyses described in Chapter 4, performed using the in vitro cell model 

HaCaT, as also revealed breakage of intercellular connections upon stretching of 

CSTA knockdown monolayers together with thickening and retraction of the keratin 

14 filaments toward the nucleus. Also, a significant reduction in keratinocyte 

adhesion was observed following treatment with either dispase, or in mechanically 

stressed CSTA knockdown monolayers, in contrast to control keratinocytes.  The 

histological and cell biology studies indicate that CSTA plays an important role in 

adhesion in the basal layers of the epidermis. If the change in keratin 14 filaments, 

observed in stretched CSTA knockdown monolayers, is considered together with the 

information that these intermediate filaments connect to the plasma membrane 

through desmosomes then it can be speculated that indirectly the CSTA LOF 

mutations contribute to the dysregulation of desmosome assembly or function, 

most probably through some of the target proteases, cathepsins B, H, L, S or V. 

A number of desmosome-associated proteins have been reported as targets of 

proteases, for example, in Netherton syndrome associated with mutations in SPINK5 

encoding LEKTI-1 which targets the proteases KLK5, KLK7 and KLK14 (Deraison et 

al., 2007), ultimately leading to DSG1 degradation and desmosome cleavage with 

detachment of the stratum corneum (D'Alessio et al., 2013, Hovnanian, 2013). 

Inhibition of these proteases by SPINK6 and SPINK9, is reportedly leading to 

desquamation through their action on DSG1, DSC1 and corneodesmosin (Meyer-

Hoffert, 2009, Meyer-Hoffert et al., 2010, Brattsand et al., 2009).   

In a syndrome of severe skin and bowel inflammation, associated with ADAM17 LOF 

mutations, Blaydon et al. revealed an increase in DSG2 protein expression, implying 

a reduction in DSG2 shedding by ADAM17 (Blaydon et al., 2011a). In contrast, 

patients with TOC (Ellis et al., 1994, Hennies et al., 1995, Stevens et al., 1996), linked 

to mutations affecting iRHOM2 (Blaydon et al., 2012, Saarinen et al., 2012), present 

with immature desmosomes lacking the electron dense midlines (Brooke et al., 

2014). Furthermore, in vitro studies in TOC patient derived keratinocyte cell lines 

revealed a dramatic increase in the iRHOM2-mediated processing and activity of 

ADAM17, together with an increase in processing of DSG2 (Brooke et al., 2014). 
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One possible mechanism of action, explaining the phenotypical limitation to the 

basal layers of the epidermis, would be that the cathepsins target specific 

desmosomal components which are differentially expressed throughout the skin. A 

particular difference between desmosomes of the basal layers and 

corneodesmosomes of the stratum corneum is the expression of DSG1 and DSC1 in 

the stratum corneum compared to the expression of DSG2 and 3 and DSC2 and 3 

decreasing towards the upper layers. This hypothesis can be discussed through 

differences between the autoimmune disorders PV and PF, where DSG3 and/or 1 

are differentially targeted by autoantibodies leading to severe blistering in PV 

(Cirillo and Al-Jandan, 2013) and superficial blisters in PF (Ishii et al., 1997). The 

important role played by DSG3 in the more basal layers of the epidermis, where 

DSG1 is not present and cannot therefore compensate for the anti-DSG3 

autoantibodies in PV, through the so called DSG compensation theory, is very well 

highlighted in these disorders (Shirakata et al., 1998). This hypothesis was partially 

tested by analysis of DSP and DSG1/2 in CSTA knockdown monolayers which have 

shown an up-regulation and aberrant localisation of these components in the 

cytoplasmic compartment of CSTA knockdown stretched cells, while an up-

regulation in DSG3 expression in siRNA treated cells was seen independent of 

mechanical stretch.  

Another difference between the various layers of the epidermis is the 

differentiation-specific expression of diverse keratins as keratinocytes migrate 

towards the upper layers, with keratins 5 and 14 expressed exclusively in the basal 

layers. Additional immunomicroscopy analysis of keratin 5 and keratins 1 and 10 

expressed in the upper layers of the epidermis, on CSTA LOF 3D models could 

perhaps clarify the extent of breakage of these filaments and possibly give an 

indication on whether breakage is taking place on the cytoplasmic side of the plasma 

membrane or intercellularly. 

The expression and activity of the target proteases inhibited by CSTA, cathepsins B, 

H and L, have mainly been analysed in the context of tumour progression, invasion 

and metastasis, where dysregulation of their expression and activity was reported 

to play a role (Strojan et al., 2000, Leinonen et al., 2007, Li et al., 2011, Anicin et al., 

2013). The analysis of cathepsin expression, before and after mechanical stretch or 
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“scratch-wound” of CSTA KD monolayers, has revealed normal expression levels for 

both cathepsins B and L in all conditions. The analysis of the activity of these 

proteases under the conditions described above should be performed to decipher 

the role played by these proteins in the mechanism of epidermal disruption.  

A study looking at neonatal and adult murine skin has shown exceptionally strong 

expression of Csta in neonatal skin during periods of keratinocyte proliferation and 

differentiation suggesting a critical role for this protein either in the promotion or 

regulation of these processes (Scott et al., 2007). Interestingly, in double Csta and 

Stfa2l1 knockout mice, no obvious phenotype such as epidermal peeling was 

observed, including no spontaneous tumours being formed in mice observed for up 

to 12 months (Bilodeau et al., 2009). These observations probably reflect 

differences in human and mouse skin.  

6.4. New clinical entity linked to LOF mutations in CAST 

In Chapter 5 of this thesis we described the clinical aspects and genetic analysis of 

three unrelated families, presenting loss-of-function mutations in CAST, the gene 

encoding for the protease inhibitor calpastatin, linked to a novel clinical entity 

which we have assigned the acronym PLACK (Lin et al., 2015). This syndrome is a 

complex form of generalised PSS, previously linked to mutations in the CDSN gene 

(Oji et al., 2010), and in our patients is accompanied by leukonychia, acral punctate 

keratoses, cheilitis and knuckle pads. The genetic and in vitro analyses, presented in 

the above mentioned chapter of this thesis are included in a study published by Lin 

et al., expanding the spectrum of cutaneous disorders linked to mutations in 

protease inhibitors (Lin et al., 2015).  

As demonstrated by previous studies, mutations in genes encoding for protease 

inhibitors can cause a number of genetic cutaneous disorders, such as SPINK5 in 

Netherton syndrome (Chavanas et al., 2000), SERPINB7 in Nagashima-type 

palmoplantar keratosis (Kubo et al., 2013), CSTA in exfoliative ichthyosis (Blaydon 

et al., 2011b), by mechanisms involving disruption of the skin barrier, impairment 

of keratinocyte adhesion and/or dysregulation of cell signalling. 



205 

 

It is predicted that the identified CAST mutations lead to changes in the 

conformational structure of CAST and as confirmed by immunomicroscopy and 

hematological analysis, on non-lesional patient skin, they also lead to a significant 

down-regulation in protein expression. In comparison, normal control skin showed 

expression of CAST throughout all layers of the epidermis. 

One additional aspect observed in CAST LOF skin was abnormally thicker 

basal/suprabasal layers with typically apical-oriented cells, indicative of a possible 

dysregulation in keratinocyte differentiation, perhaps explaining the 

hyperkeratosis seen in patient skin. A number of in vitro and in vivo mouse model 

studies have looked at the role of CAST and the target proteases, calpains 1 and 2, in 

skin disorders and the mechanisms associated. These studies have shown that: 

calpain 1 and CAST are involved in the processing of profilaggrin to filaggrin 

monomers and the processing of keratin filaments in cell differentiation (Yamazaki 

et al., 1997), calpain 2 is involved in the catabolism of filaggrin and filaggrin 2 during 

terminal differentiation (Hsu et al., 2011, Kamata et al., 2009), and an increase in 

calpain 2 activity leads to apoptosis (Inoue et al., 2004), in turn this leading to skin 

hyperkeratosis (Lin et al., 2012, Wang et al., 2015). Lin et al. have observed a 

significant increase in apoptotic cells in lesional skin from another CAST LOF patient 

included in the study (Lin et al., 2015). We suggest that an increase in the activity of 

calpains 1 and 2 in CAST LOF patients may trigger apoptosis by cleavage of pro- or 

anti-apoptotic proteins, as previously shown (Tan et al., 2006). This process has also 

been demonstrated in HaCaT cells where an increase in activity of calpain 2 resulted 

in increased programmed cell death (Inoue et al., 2004). However, the analysis of 

apoptotic cell death, in an in vitro model using HaCaT cells and siRNA mediated 

knockdown of CAST, has revealed a normal cell cycle when compared to control NTP 

cells. 

In the same CAST siRNA cell model, the analysis of the strength of keratinocyte 

adhesion was addressed, as some intercellular gaps were observed in non-lesional 

patient skin. This analysis has confirmed that, in vitro, breakage of intercellular 

connections happens independently of mechanical stress in CAST siRNA 

monolayers. This could perhaps explain why the PLACK phenotype seen in affected 

individuals is not limited to the palmoplantar regions. As the CSTA knockdown 
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model presented breakage of intercellular connections, the analysis of desmosomal 

proteins was performed. Staining of non-lesional skin revealed an apparent up-

regulation of DSG2 expression in areas of the basal layers of the epidermis and a 

significant up-regulation in the expression of DSG3 and DSP I/II in all layers of the 

epidermis, together with an aberrant localisation to the cytoplasmic compartment. 

In vitro analysis of CAST knockdown monolayers presented variable results and 

more repeat experiments would be required to draw a clear conclusion. The 

variability of the in vitro observations could be due to a relatively low level of 

knockdown, of 50-65%, in comparison to the expected level of 85%, which can be 

attributed to a high protein stability or extended half-life of calpastatin. An 

increased level of CAST knockdown could be achieved by double siRNA-mediated 

CAST knockdown or alternatively by permanent knockout using shRNA or the 

CRISPR-Cas9 system. Based on the observations gathered, it is suggested that the 

reduction in expression of calpastatin due to CAST LOF mutations directly correlates 

with an increase in the concentration of calpains, which in turn could lead to 

proteolysis of DSG2, DSG3 and DSP II in the affected individuals, resulting in 

acantholysis and impaired resistance of the epidermis to mechanical stretch, seen 

as blistering and skin peeling. As calpain-mediated proteolysis of talin and focal 

adhesion kinase (FAK) is reportedly leading to regulation of adhesion dynamics 

(Franco et al., 2004, Chan et al., 2010), these proteins could be analysed in patient 

skin and CAST siRNA keratinocytes. In order to better address these probabilities, 

activation of calpains by Ca2+ mobilisation, with ionomycin, or GF stimulation, with 

EGF, should be performed following siRNA mediated CAST knockdown and prior to 

analysis of expression and localisation of any possible target proteins of calpains. 

Calpain activity could be monitored by zymography following Ca2+ activation. 

Independent studies looking at a variety of cancers have associated calpains with 

adhesion, motility, invasion, cell-cycle regulation, cell spreading, apoptosis and 

myogenesis (Leloup et al., 2006). Interestingly,  in in vivo mouse models, the up-

regulation in expression of both calpains 1 and 2 in skin wound healing was 

reported (Zhao et al., 2009), while more recently, Nassar et al. using Cast 

overexpression mice have shown a delay in wound healing, re-epithelialisation and 

angiogenesis (Nassar et al., 2012). In contrast, a Cast knockout mouse model, which 
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showed increased activity of the target calpains 1 and 2, revealed no defect under 

normal conditions (Takano et al., 2005), although only slight behavioural changes 

have been seen in a stressful environment (Nakajima et al., 2008). The in vitro 

analysis described here showed a normal scratch-wound closure pattern, 

suggesting a normal cell migration process. An analysis on Cast knockout mouse 

epidermis or CRISPR-Cas9 CAST knockout 3D models may give a more accurate view 

of any wound-healing and cell migration processes regulated by CAST. These 

phenotypical differences seen between humans and mice indicate once again the 

difference in physiological functions, and that observations made on mouse models 

should be considered carefully. 

6.5. Conclusion 

Although it is possible that common pathways lead to a variety of desmosome-

associated genetic disorders, the understanding of the consequences of those initial 

mutations or different molecular mechanisms leading to a common phenotype are 

crucial in unveiling the array of functions each desmosome-associated protein is 

playing and how these functions are altered in disease. The importance of the 

differential expression of desmosomal proteins in different tissues, such as the skin 

and heart, is becoming another factor of great importance in understanding 

different molecular mechanisms, mostly as some desmosomal proteins appear to be 

part of more complex signaling cascades. Therefore, the same protein might be 

subject to different regulation, perform different functions and genetic variations 

might lead to different outcomes, despite possibly overlapping mechanisms of 

disease. Moreover, regulation of desmosome assembly and/or function appears to 

be an indirect target of mutations in protease inhibitors, linked to a number of 

cutaneous disorders characterized by impaired intercellular adhesion. 

In summary, this thesis explored the increasing significance of genetic analyses in 

disease diagnosis using high-throughput sequencing platforms, coupled with the 

importance of the careful consideration of any novel variants in the disease context.  

Well-designed functional assays are essential to confirm disease causality and to 

investigate genotype-phenotype correlations.  
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UK 385K Sequence Capture 

Array 

ARVC 

ARVC 2010 

0009 

UK 385K Sequence Capture 

Array 

ARVC 

ARVC 2010 

0010 

UK 385K Sequence Capture 

Array 

ARVC 

ARVC 2010 

0011 

UK 385K Sequence Capture 

Array 

ARVC 

ARVC 2010 

0012 

UK HaloPlex Targeted 

Resequencing 

ARVC 
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Patient study ID 

 

Country 

of origin 

of sample 

 

Screening technique 

 

Disease 

ARVC 2010 

0013 

UK HaloPlex Targeted 

Resequencing 

ARVC 

ARVC 2010 

0014 

UK HaloPlex Targeted 

Resequencing 

ARVC 

ARVC 2010 

0015 

UK HaloPlex Targeted 

Resequencing 

ARVC 

ARVC 2010 

0016 

UK HaloPlex Targeted 

Resequencing 

ARVC 

ARVC 2011 

0017 

UK HaloPlex Targeted 

Resequencing 

ARVC 

ARVC 2011 

0018 

UK HaloPlex Targeted 

Resequencing 

ARVC 

ARVC 2011 

0019 

UK HaloPlex Targeted 

Resequencing 

ARVC 

ARVC 2011 

0020A 

UK HaloPlex Targeted 

Resequencing 

ARVC 

ARVC 2011 

0020D 

UK HaloPlex Targeted 

Resequencing 

ARVC 

ARVC 2011 

0021 

UK HaloPlex Targeted 

Resequencing 

ARVC 

ARVC 2011 

0022 

UK HaloPlex Targeted 

Resequencing 

ARVC 

FP9310 NZ HaloPlex Targeted 

Resequencing 

ARVC 

LU4246 NZ HaloPlex Targeted 

Resequencing 

ARVC 

RN2662 NZ HaloPlex Targeted 

Resequencing 

ARVC 
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Patient study ID 

 

Country 

of origin 

of sample 

 

Screening technique 

 

Disease 

RY8012 NZ HaloPlex Targeted 

Resequencing 

ARVC 

CM4130 NZ HaloPlex Targeted 

Resequencing 

ARVC 

LI8441 NZ HaloPlex Targeted 

Resequencing 

ARVC 

LN2209 NZ HaloPlex Targeted 

Resequencing 

ARVC 

YP8962 NZ HaloPlex Targeted 

Resequencing 

ARVC 

CJ0829 NZ HaloPlex Targeted 

Resequencing 

ARVC 

LK7659 NZ HaloPlex Targeted 

Resequencing 

ARVC 

LH5926 NZ HaloPlex Targeted 

Resequencing 

ARVC 

LI8308 NZ HaloPlex Targeted 

Resequencing 

ARVC 

LH5930 NZ HaloPlex Targeted 

Resequencing 

ARVC 

NE2908 NZ HaloPlex Targeted 

Resequencing 

ARVC 

OG0660 NZ HaloPlex Targeted 

Resequencing 

ARVC 

LW9068 NZ HaloPlex Targeted 

Resequencing 

ARVC 

LJ6113 NZ HaloPlex Targeted 

Resequencing 

ARVC 
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Patient study ID 

 

Country 

of origin 

of sample 

 

Screening technique 

 

Disease 

LI7542 NZ HaloPlex Targeted 

Resequencing 

ARVC 

LI8325 NZ HaloPlex Targeted 

Resequencing 

ARVC 

MC5702 NZ HaloPlex Targeted 

Resequencing 

ARVC 

LH5931 NZ HaloPlex Targeted 

Resequencing 

ARVC 

WN2786 NZ HaloPlex Targeted 

Resequencing 

ARVC 

LV7711 NZ HaloPlex Targeted 

Resequencing 

ARVC 

FT6012 NZ HaloPlex Targeted 

Resequencing 

ARVC 

FT6011 NZ HaloPlex Targeted 

Resequencing 

ARVC 

9395171 UK HaloPlex Targeted 

Resequencing 

Unknown 

9305427 UK HaloPlex Targeted 

Resequencing 

Unknown 

BLGC DNA657 UK Exome capture hypotrichosis and 

PPK 

BLGC DNA656 UK Exome capture hypotrichosis and 

PPK 

BLGC DNA658 UK Control parent Parent of 

hypotrichosis and 

PPK patient 
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Patient study ID 

 

Country 

of origin 

of sample 

 

Screening technique 

 

Disease 

BLGC DNA655 UK Control parent Parent of 

hypotrichosis and 

PPK patient 

KL UK Sanger sequencing Acral Peeling 

Syndrome 

SL UK Sanger sequencing Acral Peeling 

Syndrome 

DK-2013-UNK-

04 

UK Exome capture PLACK Syndrome 

Control 

Genomic DNA 

UK Sanger sequencing N/A 

Table A. Patient samples with accompanying information. Forty-nine patients, 

diagnosed with ARVC, were recruited from Barts and The London NHS Trust and from two 

collaborating centres, Bristol Heart Institute and the Cardiac Inherited Disease Group based 

in Auckland, New Zealand (Dr Dominic Abrams). Two patients seen by Prof Edel O’Toole at 

the Royal London Hospital presented with unknown skin disorders. A family of four, were 

seen by Dr Celia Moss at the Birmingham Children’s Hospital and the affected patients were 

diagnosed with Hypotrochosis and PPK. Two patients seen by Dr Kapila Batta at the 

Watford General Hospital were diagnosed with Acral Peeling Skin Syndrome. One patient 

seen by Prof Edel O’Toole at the Royal London Hospital was diagnosed with a novel clinical 

entity PLACK syndrome. 
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Appendix B. Primers for mutation analysis 

B.1. Primers used for confirmation of capture array variants 

Gene 

(Exon) 

Forward primer seq (5’-3’) Reverse primer seq (5’-3’) AT 

(0C) 

Size 

(bp

) 

DSG2 

(15) 

AAGTTTGCCTGGGTCAAAAA ACTGGGAAGCTACTGCCAG

A 

56 157 

PKP2 

(10) 

TCCTTTTGTGTGTGGTCAGC CAGGCCCAATACTCACTGG

T 

57 209 

PKP2 

(3) 

TGTTAGCGACACCGTTTTTG GGAAGCCCTGTTCTGAGTG

A 

57 184 

PKP2 

(3) 

GCAACCTCTTGGAGAAGGAG CTCTCCTCCCGCTGGAAT 58 192 

PKP2 

(N/A) 

ATGCACGCGACCTTCTAAAC atcctgtttgctgccatgtt 58 184 

PKP2 

(N/A) 

gagcaagattccgtctcaaaa CTCGGGACTGTGTCAGGAA

T 

63 171 

DSP 

(11) 

TGCAGGTTGAAAATCTCCTC

T 

GTCTGGGTTACGAGGCTTC

A 

56 167 

Table B.1. Primers and cycling conditions used for sequencing of variations identified 

following the ARVC capture array. 
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B.2. Primers used to check for expression of cathepsins B and L by RT-PCR 

Gene 

(Exon) 

Forward primer sequence 

(5’-3’) 

Reverse primer sequence 

(5’-3’) 

AT 

(0C) 

Size 

(bp) 

CathB 

- 1,2,3 

CTAGGATCCGGCTTCCAAC CACCCAGGAAGGTACCACAT 62 212 

CathB 

- 8,9 

GGCCGAGATCTACAAAAACG CATTGTCACCCCAGTCAGTG 62 203 

CathL 

– 1 

GTCTTTTCAGGAGCCACTCG CGGTTCGTGGCTTGTTTACT ----- 177 

CathL 

– 2,3 

CTGGGAATTGCCTCAGCTAC TGAAGCTGTGTTTCCCTTCC 55 187 

Table B.2. Primers and cycling conditions used for RT-PCR of cathepsins B and L. 

 

B.3. Primers used to confirm DSP variation in hypotrichosis and PPK patients 

Exon Forward primer seq (5’-3’) Reverse primer seq (5’-3’) AT 

(0C) 

Size 

(bp) 

12 TTCATTTGAGGGGAAAAACG GCAAGGCATCGTGTGTCTAA 57 385 

Table B.3. Primers and cycling conditions used for sequencing of exon 15 of DSP to 

confirm variation in hypotrichosis and PPK patients and parents. 
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B.4. Primers used for confirmation of variations identified following HaloPlex targeted 

resequencing 

Gene 

(Exon) 

Forward primer seq (5’-3’) Reverse primer seq (5’-3’) AT 

(0C) 

DSP (23) CACCTGAGGGAAAAGCAGAG CATCAAGTGCTCCTTGGTCA 65 

PKP2 

(2) 

gcagGAAATCTTCACCGAAC ttgggaaaagtaaacactcaaaaa 61 

PKP2 

(14) 

gacttgaccctgggaagaaa GGTGTTTTCCTTTGGGGATT 64 

PKP2 

(9) 

tccttttgtgtgtggtcagC caggcccaatactcaTGGT 64 

PKP2 

(1) 

CCAGCTGAGTACGGCTACAT

C 

CTGCACCTGCTCCTGGAT 65 

PKP2 

(12) 

gcctcactcattctccctga ggccattattacctggctctg 64 

PKP2 

(4) 

GCTGCCATCCAGGATTTCT tttcagtgtgcaaagtcacca 65 

PKP2 

(11) 

caatctttttaatcaagtgttttgttt TTTTGGATTATGTTGTTCAATG

TG 

61 

PKP2 

(4) 

TCTGGAGCGAGCAGTGAGTA tgaaagtgtgttgcgctttg 58 

PKP2 

(10) 

GTGGCTCAGACAGTTGTCCA ccgactcacCAATTTCATTCT 65 

PKP2 

(6) 

TGCTTACGCTGACGGAGAAT cttctatcagggcagggtaca 64 

PKP2 

(12) 

ctgggcaacagagcaagatt CTCGGGACTGTGTCAGGAAT 65 

ADAM17 

(8) 

CGCATTCTCAAGTCTCCACA actgcttctgggtgtccatc 65 

Table B.4. Primers and cycling conditions used for confirmation of variations 

following HaloPlex targeted resequencing on patient genomic DNA. 
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B.5. Primers used for patient diagnosis screening of CSTA 

Exon Forward primer seq (5’-

3’) 

Reverse primer seq (5’-3’) AT 

(0C) 

Size 

(bp) 

1 cttgcccatttgttcatcct cctgaacaaagccacaaaca 61 431 

1A ttttccccatgcctctttgc CTCCTGGATTTCTGGAGTGGC

G 

65 200 

1B GTTCACTTTGGTTCCAGC

ATCCTG 

caaccacagcctttccacag 65 193 

2 tgaattcagcctaaagcaacaa tccaccacttggaaggaatc 63 454 

3 tttgtagacctgtggctctctc TGATGGTTATATTTATCAGCA

AGGA 

63 289 

Table B.5. Primers and cycling conditions used for patient diagnosis by PCR and 

Sanger sequencing of CSTA. 

B.6. Desmoplakin cDNA primers used for confirmation of site-directed mutagenesis 

Exo

n 

Forward primer seq (5’-3’) Reverse primer seq (5’-3’) Size 

(bp) 

1 CAACACCAACACCCAGCTC ATCAAGCAGTCGGAGCAGTT 522 

2 ACTCGGACGGCTACTGTCAA CAGGTCGGCTTTGATTTTGT 572 

3 TGGAGCAGCACATTAACAGC GCAGGGGTACTTCTTCCTGA 575 

4 TCTGAAAGAAAATGCTGCCTA TCATGGCCCTGATCTTCTCT 578 

5 GCAGTACTACGAAGCCATCTTG TGGTGAGAAGATCCCTGGTC 522 

6 CAGAAGATTCGCAGGCAGAT GCCAACAACGACTTCTTCAA 461 

7 CAGGCTCACTGAGGAGGAAA GGTATGTTCAGCAGAGTTTCCAG 570 

8 TTGCGCCAATTCAATTAAGG CCTTGCTTTCTGCAGTTGGT 580 

9 TGAGAAGATCACCCGACTGAC CTGCATGACCTGCTTCAGTT 577 

10 GAAGGCGAGCTGAAGAAAAC TCTCCTCTGTTCGCATCTGA 585 

11 CCACTGGCTCTGAGGTGTCT TTAACAATGGATGCCTGCTC 574 

12 CTCCTGCAAGAGGAAGAAGC CCTGTCTCAAATTTTCCCTCTC 587 

13 AGCTGCAGATCAGCAACAAC GGGCGCTGTCTGAGTTTATC 574 

14 AAGAGAGGTGCAGGCGTAAG TCTTGCCTGAAAATGGATCA 582 

15 TAGCTCGGGACCTCATTGAC TATGCCTGCTATGCAGCTTG 572 
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Exo

n 

Forward primer seq (5’-3’) Reverse primer seq (5’-3’) Size 

(bp) 

16 TGAGACCGTCCACTGTCAAT TCTTCAGTGTTGGGGTCAAA 583 

17 GGGGCTATTTCAATGAGGAA CGGGAGCTGCTAAAAACATC 577 

18 CAGCCTCACTCAATTTGCTG TTATCCTCCCATGCACTTCC 581 

19 AGCAGCAGAGGCAGTGAAAG AAGCACCGGGATTTTCTTTT 581 

20 GTCAGTTGGGAGTGGTTGCT TCCACACTCTGAAACTAAAGGAG

A 

513 

21 GGAGATAAAAATTAAATGGATC

ACTG 

TTTTTAATGGTATTTCTTCACAG

GT 

468 

Table B.6. Primers and cycling conditions for DSP I cDNA primers, used for 

verification of DSP I clones following site-directed mutagenesis. 

 

B.7. pCR II-TOPO specific primers used for amplification of inserted DSP fragment 

Exon Forward primer seq (5’-3’) Reverse primer seq (5’-3’) 

M13 GTAAAACGACGGCCAG CAGGAAACAGCTATGAC 

Table B.7. Primers used to verify the correct insertion of DSP cDNA in pCR II-TOPO 

and to check plasmid post site-directed mutagenesis. 
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Appendix C. Primary antibodies used for immunomicroscopy and 

western blotting 

Primary 

Antibody 
Clone Host 

WB 

dilution  

ICC 

dilution  
Source 

Mab anti-

CSTA 
--------- Ms 1:500 1:100 

Abcam 

(Cambridge, UK) 

Pab anti-

CSTA 
--------- Rb 1:500 1:50 Abcam 

Pab anti-

CAST 
H-300 Rb 1:1000 1:100 

Santa Cruz 

Biotechnology 

Mab anti-β-

actin 
AC-15 Ms 1:5000 --------- Sigma 

Pab anti-E-

cadherin 
HECD-1 Rb 1:1000 --------- Abcam 

Mab anti-

Tubulin 
DM1A Ms 1:10000 --------- Abcam 

Pab anti-

GAPDH 
--------- Rb 1:1000 --------- Abcam 

Pab anti-

Vinculin 
--------- Rb 1:1000 --------- Abcam 

Pab anti-

Lamin A 
--------- Rb 1:1000 --------- Abcam 

Mab anti-

LAMP1 
--------- Ms 1:1000 --------- Abcam 

Mab anti-

K14 
LL001 Ms --------- 1:100 CRUK 

Mab anti-

Pan-

cytokeratin 

AE1/AE

3 
Ms --------- 1:100 

Dako (Glostrup, 

Denmark) 

Mab anti-

Cath L 
33/2 Ms 1:200 1:50 Abcam 
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Primary 

Antibody 
Clone Host 

WB 

dilution  

ICC 

dilution  
Source 

Pab anti-

Cath B 
CA10 Rb 1:200 1:25 Abcam 

Mab anti-

Cath H 
--------- Ms --------- 1:25 Abcam 

Mab anti-

DSG1 

MCA22

71 
Ms 1:500 --------- AbD Serotec, Bio-Rad 

Mab anti-

DSG1/2 
DG3.10 Ms 1:500 1:250 

Progen 

(Heidelberg, Germany) 

Pab anti-

DSG2 
Ab10 Rb 1:10000 1:500 

Kind gift from Dr Mỹ 

Mahoney 

Pab anti-

DSC2 
--------- Rb 1:2000 --------- Progen 

Mab anti-

DSG 3 
5G11 Ms 1:200 --------- Abcam 

Mab anti-

DSG 3 
3G133 Ms 1:500 --------- Abcam 

Mab anti-

DSC3 
U114 Ms 1:250 --------- Progen 

Pab anti-

PKP2 
518 Rb 1:100 --------- Progen 

Mab anti-

PG 
5.1 Ms 1:1000 --------- 

AbD Serotec 

(Serotec, Kidlington, UK) 

Mab anti-

DSP I/II 
5-11F Ms 1:250 1:50 

Kind gift from Prof. 

David Garrod 

(Parrish et al., 1987) 

Table C. Primary antibodies used for western blotting and immunomicroscopy. 

Details of antibodies used, together with the source, clone and specific assay-specific 

dilutions.  
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Appendix D. Buffers 

Buffer Reagents 

RM+ 40μg/ml Hydrocortisone 

500μg/ml Insulin 

1μg/ml EGF 

10-8 (0.84 μg/ml) Cholera toxin 

500μg/ml Transferrin 

1.3μg/ml Lyothyronine (L4) 

Normal media (add to 

DMEM or DMEM-F12) 

10% (v/v) FBS  

2 mM L-glutamine  

100 U/ml Penicillin 

100 µg/ml Streptomycin 

1% RM+ 

TBE Buffer 9M Tris base 

9M Boric acid 

0.2M EDTA, pH 8.0 

DNA Loading Buffer 50% (v/v) Glycerol 

0.2% (w/v) Orange G 

Western Blotting 

Polyacrylamide Running 

Gel (10%) in 5 ml 

1.7 ml of Acrylamide mix [Protogel 30% (w/v) 

acrylamide : 0.8% (w/v) Bis-acrylamide 

stock solution (37.5:1)] 

1.9 ml of ddH2O 

1.3 ml of 1.5 M Tris, pH 8.8 

0.05 ml of 10% SDS 

0.05 ml of APS 

0.002 ml of TEMED 
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Buffer Reagents 

Western Blotting 

Polyacrylamide Stacking 

Gel (5%) in 1 ml 

0.17 ml of Acrylamide mix [Protogel 30% (w/v) 

acrylamide : 0.8% (w/v) Bis-acrylamide 

stock solution (37.5:1)] 

0.68 ml of ddH2O 

0.13 ml of 1.0 M Tris, pH 6.8 

0.01 ml of 10% SDS 

0.01 ml of APS 

0.001 ml of TEMED 

SDS Protein Loading 

Buffer 

0.100 M Tris-HCl, pH 6.8 

4% SDS 

20% Glycerol 

0.001% Bromophenol Blue 

1.44 M Beta-mercaptoethanol (10%) 

Western Blotting 

10x Running Buffer 

 

0.25M Tris base 

1.92M Glycine 

1% SDS 

Coomassie Stain 40% dH2O  

10% Acetic acid 

50% Methanol  

0.25% Coomassie Brilliant Blue R-250 

Ponceau Stain 20mg/ml Ponceau S 

0.3g Trichloroacetic acid 

Western Blotting 

10 x Transfer Buffer 

 

0.48M Tris base 

0.30M Glycine 

0.37% (w/v) SDS 

Add 20% (v/v) Methanol to 1 x Transfer Buffer 

Western Blotting 

10 x Transfer Buffer for 

DSP 

0.48M Tris base 

0.30M Glycine 

0.37% (w/v) SDS 

Add 5% (v/v) Methanol to 1 x Transfer Buffer  
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Buffer Reagents 

10 x TBS 

 

0.5M Tris-HCl, pH 7.5 

1.5M NaCl 

1 x T-TBS 

(Tween 20-TBS) 

 

0.05M Tris-HCl, pH 7.5 

0.15M NaCl 

0.1% (v/v) Tween-20 

Western Blotting 

Stripping Buffer 

62.5 mM Tris-HCl, pH6.8 

2% SDS 

0.7% β-Mercaptoethanol 

dH2O 

 

ELISA Wash Buffer, pH 

7.2-7.4 

0.05% Tween 20 

1 x PBS 

ELISA Reagent Diluent, pH 

7.2-7.4 

1% BSA 

1 x PBS 

ELISA Stop Solution 2N H2SO4 

Table D. Buffers used in Chapter 2 and the component reagents. 
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Appendix E. Generation of mutant DSP clones for in vitro analysis 

of ARVC and genodermatoses 

E.1. Selection of DSP constructs by restriction digest and sequencing 

This section is based on the identification of three novel mutations in the DSP gene 

in three individuals, as follows: one patient with cardiomyopathy, striate PPK and 

woolly hair; a second patient with cardiomyopathy and a third patient with 

hypotrichosis and PPK. The first patient, previously described by Norgett et al., 

presented with a heterozygous thirty base pair insertion in exon 14 of DSP, which 

would lead to a 10 amino acid insertion at the protein level (Norgett et al., 2006). 

The second patient, clinically diagnosed with cardiomyopathy and no cutaneous or 

hair phenotypes, was genetically analysed using a custom capture array, as 

described in Chapter 3, Table 3.1., and a novel heterozygous variation was identified 

in exon 11 of DSP (c.G1323C:p.K441N). The third patient together with two other 

siblings, were diagnosed with hypotrichosis and PPK and no obvious cardiac 

abnormalities at the time of examination. Exome analysis of this patient revealed a 

homozygous mutation in exon 12 of DSP (c.C1493T:p.P498L), which was confirmed 

in one other sibling and in heterozygous parents.  

As the 30 bp insertion mutation was previously cloned and stable mutant 

keratinocyte cell lines were generated by Dr Rita Cabral in our group, this section 

will focus on describing the cloning process for the second and third DSP mutations 

described above. 

A wild type DSP I cDNA clone was previously generated by Dr Rita Cabral, using 

three overlapping RT-PCR reactions using total RNA from primary normal human 

keratinocytes (NHK). Briefly, four cDNA fragments were PCR amplified and cloned 

individually into pCRII-TOPO vector, subsequently each fragment was extracted 

using restriction enzymes, and joined in a precise order due to common restriction 

sites. The final product which contained all fragments was then transfected into 

chemically competent E. coli cells, which were amplified and stored as glycerol 

stocks (Cabral et al., 2010b).  
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For the site-directed mutagenesis several DSP I clones which contain various pieces 

of the DSP I construct cloned into pCRII-TOPO were selected. A restriction digest 

with KpnI and NotI restriction enzymes which selectively cut at the ends of pCRII-

TOPO vector has confirmed the correct size fragments in selected clones. A fragment 

of approximately 4,000 bp was obtained for all clones and corresponds to the pCRII-

TOPO cloning vector. Alongside the fragment matching the size of the cloning vector, 

other fragments corresponding to the DSP I various piece combinations were 

observed as follows (Figure E.1.):  

lane 1 – final DSP I construct (pieces 1+2a+2b+3), digest failed;  

lane 2 – DSP I pieces 1+2a+2b, expected fragment of approximately 6,100 bp;  

lane 3 – DSP I piece 1, smear observed at approximately 4,000 bp which is the 

correct size for both the vector and DSP I piece 1;   

lane 4 – DSP I piece 3, expected fragment of approximately 3,600 bp;  

lane 5 – DSP I piece 2a, expected fragment of approximately 1,000 bp;  

lane 6 – DSP I pieces 2a+2b, expected fragment of approximately 2,000 bp;  

lane 7 – DSP I pieces 1+2a, expected fragment of approximately 5,200 bp;  

lane 8 – DSP I piece 2a, fragment of approximately 1,500 bp observed instead of the 

corresponding fragment of 1,000 bp;  

lane 9 – DSP I piece 1, smear observed at approximately 4,000 bp which is the 

correct size for both the vector and DSP I piece 1;  

lane 10 – DSP I pieces 2a+2b, expected fragment of approximately 2,000 bp;  

lanes 11, 12 and 13 – final DSP I constructs (pieces 1+2a+2b+3), expected fragment 

of approximately 9,700 bp was observed in all three lanes; all fragment sizes were 

determined by comparison to the 1 Kb plus ladder used as a size indicator.  
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Figure E.1.  Restriction digest with KpnI and NotI restriction enzymes on selected DSP 

I clones. 

The restriction digest observations were confirmed by Sanger sequencing of these 

clones, using the M13 (-20) forward and M13 reverse primers which anneal to the 

pCRII-TOPO cloning vector and sequence the inserted constructs (data not shown). 

Three clones which included fragment 1 of DSP I in pCRII-TOPO were selected. 

E.2. Site-directed mutagenesis and transformation of chemically competent bacterial 

cells 

Site-directed mutagenesis (SDM) is a technique that uses special custom made 

primers which include the desired change and are used to amplify the entire vector 

and insert, resulting in an identical vector which incorporates the desired mutation 

instead of the wild type sequence. SDM can be used to make single point mutations, 

replace amino acids and delete or insert single or multiple amino acids. The two 

primers anneal by complementarity to the region to be mutated and sequence the 

vector in both the forward and reverse directions.  

To further characterise the c.G1323C DSP mutation identified in the ARVC patient, 

and the c.C1493T DSP mutation identified in the hypotrichosis and PPK patient we 

have performed SDM on the selected DSP I clones which contain the required 

fragment 1 affected by these mutations (Figure E.2. A and B).  
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Figure E.2. Representation of annealing position of SDM primers with DSP c.G1323C 

(A) and DSP c.C1493T (B) mutations as expected post-SDM. 

DpnI restriction enzyme was used post-SDM to digest parental DNA vectors based 

on this enzyme’s specificity for methylated and hemimethylated DNA, thus selecting 

for mutation-containing newly synthesized vectors. These vectors were then 

transformed into chemically ultracompetent E. coli bacterial cells which were 

amplified and screened for the correct vector sequence expected following SDM 

(data not shown). All correctly amplified mutant vectors were sequenced further in 

order to eliminate any vectors which might have other mutations produced during 

the SDM process.  

Similarly to the 30 bp insertion mutant, the following steps would be to excise the 

mutated DSP clone from the pCRII-TOPO vector and insert it into pBABE-Puro 

retroviral expression vector which will be transfected into the immortalised 

keratinocyte cell line HaCaT. The mutant stable cell lines will be used for in vitro 

studies looking at the differences in expression and localisation of mutant DSP but 

also at the possible mechanisms of action behind the three DSP mutations, linked to 

the above mentioned cardio/cutaneous disorders. 
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Appendix F.  

F.1. Optimisations of CSTA siRNA mediated knockdown 

Prior to the CSTA siRNA-based analysis presented in Chapter 4, the transfection 

efficiency of the CSTA siRNA pool was assessed with varied cell densities and time 

points, in order to find the highest transfection and knockdown efficiency with the 

lowest cell death rate. Lipid-based transfections using the DharmaFECT transfection 

reagent (Thermo Fisher Scientific) were performed to deliver siRNAs into HaCaT 

cells.  

As shown in Figure F1.Ai., HaCaT cells were seeded at 2 x 105 and 4 x 105 cell 

densities and incubated with NTP siRNA and CSTA siRNA for 48 and 72 h. Western 

blotting of total cell lysates with an anti-cystatin A antibody revealed a significant 

reduction in cystatin A for both time points and cell densities, with a higher 

knockdown level achieved after 72 h (Figure F1.Aii.). As some of the analyses 

required extended time points we have used the same technique to check if the 

knockdown level was maintained up to 134 h. Cells were seeded at a 2 x 105 cell 

density and incubated with NTP and CSTA siRNA for 86, 110 and 134 h. Western 

blotting of total cell lysates revealed that the knockdown level was robust up to the 

longest analysed time point (Figure F1.Bi and Bii). These transfection conditions 

were used in all subsequent experiments. 
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Figure F.1. Optimisation of CSTA siRNA transfection in HaCaT cells. (Ai) Total protein 

from HaCaT cell lysates 48 h and 72 h after transfection with CSTA siRNA (lanes 3-4 and 7-

8) and NTP siRNA (lanes 1-2 and 5-6) was incubated with an anti-CSTA antibody (11 kDa). 

(Aii) Densitometric analysis of western blotting bands in (Ai) is showing a significant 

decrease in CSTA expression following CSTA siRNA-mediated knockdown, more 

accentuated after 72 h KD. Tubulin was used as a loading control (55 kDa). 
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Figure F.1. Optimisation of CSTA siRNA transfection in HaCaT cells (continued). (Bi) 

Total protein cell lysates after 86 h, 110 h and 134 h from CSTA siRNA (lanes 2, 4 and 6) and 

NTP siRNA cells (lanes 1, 3 and 5) were incubated with an anti-CSTA antibody. (Bii) 

Densitometric analysis of western blotting bands in (Bi) is showing a significant decrease 

in CSTA expression following CSTA siRNA-mediated knockdown, for all time points 

analysed. Tubulin was used as a loading control (55 kDa). 

F.2. Keratin 14 in non-stretched CSTA and NTP siRNA cells 

Immunocytochemistry of NTP and CSTA siRNA cells was performed using an 

antibody raised against keratin 14 (in green) (Figure F2.A and B). After 0 h stretch, 

under 100 X magnification, NTP cells (Figure F2.Aii) and CSTA siRNA treated cells 

(Figure F2.Bii) the intercellular connections and keratin filaments appeared intact.  
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Figure F.2. Keratin 14 in non-stretched CSTA KD cell monolayers. ICC with an anti-

keratin 14 antibody shows normal intercellular adhesion and keratin filaments in non-

stretched CSTA siRNA (A) cells in comparison to control NTP (B). Keratin 14 – in green; 

DAPI – in blue. Imaging was performed on the LSM 710 confocal microscope and images 

taken at 100 X (Scale bar – 20 µm).  

F.3. Analysis of expression of cathepsins B and L in siRNA-treated stretched and 

scratched monolayers 

The levels of secreted and intracellular cathepsins B and L were analysed in cell 

culture supernatants by ELISA following NTP and CSTA siRNA-treatment subjected 

to scratch and mechanical-stretch assays. The expression of the two cathepsins was 

initially analysed in NTP and CSTA siRNA treated cells prior to any stress being 

applied (Figure F3.A and B). The expression levels of both cathepsins increased 

upon scratch-wound in both control and CSTA siRNA cells with no significant 

difference between the two conditions (Figure F3.E and F). In mechanically-

stretched cell monolayers the expression of cathepsins B and L presented a small 
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decrease after 1 h stretch but did not alter significantly after 4 h stretch in 

comparison to non-stretched cells (Figure F3.C and D). A significant difference in 

secretion levels was observed between the two proteases, with cathepsin B being 

secreted at significantly higher levels compared to cathepsin L, following both 

scratch-wound and mechanically-induced stress assays. Cathepsin expression in 

stretched cells was assessed in triplicate and in scratched cells in duplicate; optical 

density analysis for the remaining two and respectively one repeat(s) is included 

below.  

 

Figure F.3. Expression of cathepsins B and L in CSTA KD cells following “scratch-

wound” and stretch assays. ELISA assay to assess the levels of secreted cathepsins B and 

L in culture supernatants post scratch-wound (0 h, 6 h, 16 h and 20 h post wound) or 

mechanical stretch (for 0 h, 1 h and 4 h) in CSTA siRNA compared to NTP siRNA. No 

significant difference was observed between CSTA siRNA and control cells. 
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Figure F.3. Expression of cathepsins B and L in CSTA KD cells following “scratch-

wound” and stretch assays (continued). ELISA assay to assess the levels of secreted 

cathepsins B and L in culture supernatants post scratch-wound (0 h, 6 h, 16 h and 20 h post 

wound) or mechanical stretch (for 0 h, 1 h and 4 h) in CSTA siRNA compared to NTP siRNA. 

No significant difference was observed between CSTA siRNA and control cells. 

F.4. Densitometric analysis of desmosome-associated proteins in CSTA siRNA treated 

cells  

Three independent CSTA knockdown experiments were performed and a number of 

western blots were carried out for each protein of interest. Antibodies targeting 

DSP, DSC2, DSC3, DSG2, DSG3, PG and PKP2 were used together with anti-vinculin 

or anti-GAPDH antibodies as loading controls. Densitometric measurements of 

western blots were calculated using an image analysis program (Image J, v1.47v) 

and are graphically depicted in Figure F4. No detectable differences were observed 

in the expression levels of DSG2, DSC2, DSC3, PG and PKP2, between CSTA siRNA 

cells and NTP control cells, in any of the independent knockdown experiments 

(Figure F4.C-G). Variable differences were seen for DSP (Figure F4.B) between 

independent knockdown experiments. DSG3 (Figure F4.A) presented a general 

trend of up-regulation of expression following CSTA knockdown in both stretched 
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and non-stretched cell monolayers with a small variability between independent 

knockdown experiments. The discrepancy between knockdown experiments could 

perhaps reflect the variability between western blots and a larger number of 

western blots for each knockdown repeat would be necessary to confirm the 

changes in the levels of expression of DSG3 and DSP.  

 

 

Figure F.4. Densitometric analysis of desmosomal proteins in CSTA KD cells. Protein 

levels of DSP, DSG3, DSC2, DSC3, PG and PKP2 calculated from densitometry measurements 

of western blot images and normalised to loading controls (Vinculin for DSP or GAPDH for 

all other proteins). Desmosome-associated protein expression levels are presented as a 

fraction of the total protein expression levels of non-stretched NTP cells. (A) DSG3 (n = 3) 

presented with a general trend of up-regulation in all knockdown repeats with different 

expression values, as seen through the standard error bars. (B) DSP (n = 3) gave variable 

results and will need to be analysed further. 
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Figure F.4. Densitometric analysis of desmosomal proteins in CSTA KD cells 

(continued). Protein levels of DSP, DSG2, DSG3, DSC2, DSC3, PG and PKP2 calculated from 

densitometry measurements of western blot images and normalised to loading controls 

(Vinculin for DSP or GAPDH for all other proteins). Desmosome-associated protein 

expression levels are presented as a fraction of the total protein expression levels of non-

stretched NTP cells. (C-G) No differences in expression were observed for DSG2, DSC2, 

DSC3, PKP2 and PG in CSTA KD cells compared to control (n = 3 for PKP2 and n = 2 for all 

other proteins). 
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Appendix G.  

G.1. Optimisation of CAST siRNA transfection 

A series of optimisations of CAST siRNA transfection were performed prior to the 

siRNA-based analyses presented in Chapter 5. The knockdown efficiency of the CAST 

siRNA pool was assessed over a number of time points by western blotting of total 

protein lysates.  Similarly to the CSTA siRNA transfections, the DharmaFECT 

transfection reagent was used to deliver siRNAs into HaCaT cells and CSTA siRNA 

was used as control of knockdown efficiency.  

Densitometric analysis of calpastatin following CAST knockdown, in comparison to 

NTP control, revealed a reduction in calpastatin for all of the time points analysed, 

significantly increasing after 72 h (Figure G1). As some of the CAST knockdown-

based analyses required extended time points we have checked if the knockdown 

level was maintained up to 120 h. These transfection conditions were used in all 

subsequent in vitro experiments. 
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Figure G.1. Densitometric analysis of CAST siRNA knockdown. Total protein lysates 

from CAST siRNA and NTP siRNA treated cells were incubated with an anti-calpastatin 

antibody. Calpastatin expression decreased significantly after 72 h. 

G.2. DSG3 expression in PK2 skin biopsies 

Due to the cell adhesion defect in CAST LOF skin, the analysis of the expression and 

localisation of the desmosome-associated proteins DSG2, DSP and DSG3 was 

performed in patient skin. Figure G2. shows the expression and localisation of DSG3 

in patient skin (Figure G2.B) in comparison to normal control skin (Figure G2.A.). 

The immunohistochemistry picture of calpastatin in PK2 skin is taken at a lower 

exposure than the one presented in figure 5.8. (Chapter 5), and it better shows a 

change in localisation of DSG3 from a predominantly membranous compartment to 

both a plasma membrane and cytoplasmic localisation. 
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Figure G.2. Immunofluorescence of DSG3 in skin sections from PK2. IHC with an anti-

DSG3 antibody (in green) in control skin (A) and skin sections from PK2 (B) in the absence 

(Ai and Bi) and presence (Aii and Bii) of DAPI as nuclear marker (in blue), revealed a 

significant increase in protein expression in affected skin compared to control skin. A 

change from a typical membranous localisation to a both membranous and cytoplasmic 

localisation of this protein was also noted. Imaging was performed with the Zeiss Meta 710 

confocal microscope and images were taken at 20 X magnification (A and B) (Scale bar – 20 

µm for A and B). 

G.3. Desmosome-associated protein expression in CAST siRNA cells 

Following observations on the altered expression and localisation of the 

desmosome-associated proteins DSG2, DSG3, and DSP I/II in affected skin, these 

proteins were investigated in CAST siRNA-treated cells before and after 4 h 

mechanically-induced stress. Total protein cell lysates from NTP and CAST siRNA-

treated HaCaT cells were analysed by western blotting with antibodies targeting PG 
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and DSP I. Densitometric measurements of western blots were calculated as 

previously described, and are graphically depicted in Figure G3. for DSP I and Figure 

G4. for PG. Both proteins appeared to have similar expression levels between CAST 

siRNA and NTP treated cells.  

 

 

Figure G.3. Expression of DSP I in CAST KD cells. Total protein cell lysates from CAST 

siRNA and NTP siRNA HaCaT cells, non-stretched and stretched for 4 h, were blotted and 

incubated with an anti-DSP I antibody. Protein levels of DSP I were calculated from 

densitometric measurements of the western blot images, normalised against vinculin as 

loading control and are presented as a fraction of the total protein levels in NTP siRNA cells 

(n = 1). 
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Figure G.3. Expression of PG in CAST KD cells (continued). Total protein cell lysates from 

CAST siRNA and NTP siRNA HaCaT cells, non-stretched and stretched for 4 h, were blotted 

and incubated with an anti-PG antibody. Protein levels of PG were calculated from 

densitometric measurements of the western blot images, normalised against GAPDH as 

loading control and are presented as a fraction of the total protein levels in NTP siRNA cells 

(n = 3). 

 

 

 

 

 

 


