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In Greek mythology, Tithonus was granted eternal life, but not eternal youth, leading to 31 
his prolonged suffering. What we hope in the 21st century is that slowing the rate of the ageing 32 
process will extend both life expectancy and healthspan; so a longer life in good health. Limiting 33 
daily food consumption, for example, by caloric restriction or intermittent fasting, has been 34 
shown to lengthen lifespan and postpone age-associated changes in various animal models. 35 
Enhanced lifetime has been observed in mice with an extended daily period of fasting, 36 
regardless of diet composition or overall caloric intake (1). This effect was reproduced in rhesus 37 
monkeys, an excellent model for human ageing, highlighting a favourable impact on age-related 38 
illnesses, in addition to overall survival (2).  39 
 An emerging body of evidence suggests that inhibition of the growth hormone/insulin-40 
like growth factor 1 (GH/IGF-1) signalling pathway promotes longevity. First, an inverse 41 
correlation has been observed between plasma IGF-1 levels and average lifespan in mice (3). 42 
Various models of GH/IGF-1 deficiency (Ames – Prop1 mutation, Snell – Pou1f1/PIT1 mutation, 43 
Little – GH deficient or GH-releasing hormone (GHRH) deficient mice – leading to GH/IGF-1 44 
deficiency, as well as a GH receptor knockout model – leading to IGF-1 deficiency), manifest 45 
improved insulin sensitivity and live longer than their wild-type littermates (4,5). Conversely, a 46 
transgenic mouse model with high circulating GH levels and acromegaly-like phenotype shows 47 
substantially reduced lifespan (6). Caloric restriction can further extend lifespan in some, but 48 
not all, models of GH/IGF-1 deficiency. However, would caloric restriction in GH excess models 49 
extend the shortened lifespan? 50 
 Although there is no shortage of molecular theories explaining ageing, a new paper 51 
published in Nature by Cédric Debès and colleagues (7) widens our scope by revealing a key role 52 
for the speed of transcriptional elongation. These authors studied the kinetics of transcription 53 
during ageing of five different species: roundworm (Caenorhabditis elegans), fruit fly (Drosophila 54 
melanogaster), mouse (Mus musculus), rat (Rattus norvegicus) and human (Homo sapiens). They 55 
observed that the speed of transcriptional elongation (catalysed by DNA-dependent RNA 56 
polymerase II) uniformly increased with age. This intriguing finding held for all five species and 57 
tissue types investigated, including the brain, hypothalamus, liver, kidney, whole blood, and 58 
could be mimicked in senescent (vs. proliferating) human umbilical vein endothelial cells and 59 
foetal lung fibroblasts. They recognised that in senescent cells, reduced nucleosome density (i.e., 60 
longer distances between DNA wrapped around histones) parallels the increased speed of 61 
elongation. Since for active transcription DNA needs to be uncoiled to provide access to 62 
transcriptional regulators and RNA polymerase II, the observation of reduced nucleosome 63 
density in senescent cells raised the hypothesis that increased inter-nucleosome distances with 64 
ageing could be responsible for increased rate of RNA elongation. This idea is consistent with loss 65 
of canonical histones and their gradual replacement with histone variants (possessing altered 66 
functional properties) with age (8). Overexpression of canonical histone genes in fruit fly indeed 67 
reduced entry into senescence and decelerated transcriptional elongation, suggesting a 68 
regulatory role for nucleosome density and ensuing chromatin accessibility. Intriguingly, 69 
established longevity-promoting interventions (inhibition of insulin/IGF-1 signalling in 70 
roundworms and flies, as well as dietary restriction in mice) tended to reduce age-related RNA 71 
polymerase II elongation speed. Mechanistically, reduced fidelity of transcription and increased 72 
inaccuracy of pre-mRNA splicing events are potential consequences of increased elongation 73 
speed. Increased rates of mistakes in transcription and splicing at higher speed of RNA 74 
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polymerase II was confirmed by enhanced formation of circular RNAs, retention of introns, 75 
erroneous splicing events, as well as increased mismatch occurrence, resulting in an overall 76 
decline in the quality of RNA production. All of these molecular proof-of-concept endpoints 77 
suggest impaired proofreading capacity of RNA polymerase II at an increased speed of 78 
elongation.  79 

The increased elongation speed observed in aging animals and senescent cells along with 80 
its reversal through reducing food intake or inhibiting the GH/IGF-1 pathway raises a few points. 81 
A particularly pressing question for endocrinologists is about what happens the other way round. 82 
Would excessive insulin or GH/IGF-1 signalling lead to increased RNA polymerase elongation 83 
speed? In animal models with an acromegaly-like condition, would we observe increased 84 
elongation speed, reduced fidelity of transcription and increased rate of impaired splicing 85 
events? Could these disease states be interpreted as accelerated ageing bound together through 86 
rushed and faulty transcript elongation? Transgenic mice with GH excess have a shorter lifespan 87 
(6); is this related to accelerated transcript elongation? Could faster transcription elongation be 88 
relevant in cancer, ultimately producing malfunctioning proteins – considering the proteostasis 89 
hypothesis of cancer and ageing? Apart from general life-extending interventions (e.g., caloric 90 
restriction), are there ways to slow down transcription elongation, or to restore nucleosome 91 
density in ageing cells? Should we expect of such interventions to increase not just lifespan but 92 
also healthspan, and reduce, or at least delay, age-related pathologic conditions? Would these in 93 
vivo data from fruit fly and roundworms be true in non-human primates? Finally, would the 94 
longer lifespan observed in animal models with reduced GH/IGF-1 signalling and the lack of 95 
certain diseases in GH receptor and GHRH receptor deficient mice and patient groups indicate a 96 
gain of certain health benefits? And as a corollary, would GH replacement in GH deficient 97 
individuals cancel out the health benefits of normalised GH action through increasing 98 
transcriptional elongation speed? Further research into this novel and exciting mechanism is 99 
likely to shed light on key aspects of healthy aging in humans.   100 
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