Supporting Information

Structural evolution and coexistence of ferroelectricity and antiferromagnetism in Fe, Nb co-doped BaTiO₃ ceramics

Zimeng Hu^a, Vladimir Koval^b, Yajun Yue^c, Man Zhang^a, Chenglong Ji^{d*}, Isaac Abrahams^{c*}, Haixue Yan^{a*}

^a School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom

^b Institute of Materials Research, Slovak Academy of Sciences, Kosice 04001, Slovakia
^c Department of Chemistry, Queen Mary University of London, Mile End Road, London E1
4NS, United Kingdom
^d Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University,

Lanzhou, 730000, P. R. China

* Corresponding Author,

C Jia: <u>cljia@lzu.edu.cn</u>

I. Abrahams: i.abrahams@qmul.ac.uk

H.Yan: <u>h.x.yan@qmul.ac.uk</u>

Fig. S1. Fitted X-ray powder diffraction profiles for BTFN compositions: (a) x = 0.01, (b) x = 0.03, (c) x = 0.05, (d) x = 0.07, and (e) x = 0.10. Observed (black crosses), calculated (red solid line), background (blue solid line) and difference (green solid line) profiles are shown along with the Bragg peak positions (yellow and purple markers).

Sample	BTFN1	BTFN3	BTFN5		BTFN7		BTFN10		
Phase	Tetragonal	Tetragonal	Tetragonal	Cubic	Tetragonal	Cubic	Tetragonal	Cubic	
Space group	P4mm	P4mm	P4mm	Pm-3m	P4mm	Pm-3m	P4mm	Pm-3m	
Weight fraction	100%	100%	96.6(1)%	3.4(2)%	95.8(2)%	4.2(2)%	79.4(4)%	20.6(1)%	
Lattice parameters (Å)	a = 3.9994(5)	a = 4.0040(6)	a = 4.0080(1)	a = 4.0356(5)	a = 4.0101(1)	a = 4.0354(5)	a = 4.0076(1)	a = 4.0338(1)	
	c = 4.0341(8)	c = 4.0257(5)	c = 4.0208(1)		c = 4.0209(1)		c = 4.0197(2)		
Volume (Å ³)	64.529(2)	64.541(3)	64.592(5)	65.726(28)	64.661(5)	65.718(28)	64.561(4)	65.637(27)	
^a R-factors	wRp = 0.0397	wRp = 0.0386	wRp = 0.0316		wRp = 0.0311		wRp = 0.0426		
	Rp = 0.0295	Rp = 0.0284	Rp = 0.0244		Rp = 0.0241		Rp = 0.0326		
	$R_{exp} = 0.0244$	$R_{exp} = 0.0241$	$R_{\text{exp}} = 0.0234$		$R_{exp} = 0.023$		$R_{exp} = 0.0384$	4	
	$\chi^2 = 2.655$	$\chi^2 = 2.580$	$\chi^2 = 1.831$		$\chi^2 = 1.840$		$\chi^2 = 2.260$		
No. of reflections	92	92	92	44	92	44	94	44	
No of variables	27	25	27		25		28		
No. of data points	3490	3490	3490		3490		3490		

Table S1. Crystal and re	finement parameters	for $BaTi_{1-x}$	$(Fe_{0.5}Nb_{0.5})_xO_3$	ceramics $(0.01 \le 3)$	$x \le 0.10$).
···· · · · · · · · · · · · · ·		1 A	(-0.5 - 0.5) A - 5		

^aFor definition of R-factors see Reference [1].

Fig. S2. Variation of phase fraction (wt%) in BTFN ceramics on doping.

Fig. S3. Fitted Fe 2p XPS spectra for $BaTi_{1-x}(Fe_{0.5}Nb_{0.5})_xO_3$ ceramics: (a) BTFN1, (b) BTFN3, (c) BTFN5, (d) BTFN7, and (e) BTFN10.

	BTFN1	BTFN3	BTFN5	BTFN7	BTFN10
$Fe^{2+} 2p_{3/2} (eV)$	709.95	709.95	709.95	709.95	709.20
$Fe^{3+} 2p_{3/2} (eV)$	710.95	710.95	710.95	710.95	710.95
Fe ²⁺ :Fe ³⁺	0.09(2)	0.18(6)	0.22(4)	0.33(2)	0.40(5)
O _{latt} (eV)	529.28	529.30	529.60	529.68	529.78
O _{vac} (eV)	530.80	530.90	531.18	531.28	531.38
O _{abs} (eV)	531.78	531.60	531.88	532.08	532.18
Ovac:Olatt	0.049(4)	0.052(2)	0.067(5)	0.078(7)	0.095(2)
$Nb^{5+} 3d_{5/2} (eV)$	207.09	207.19	206.97	207.17	207.03
Nb ⁵⁺ 3d _{3/2} (eV)	209.92	209.99	209.74	209.93	209.80

Table S2. Binding energies and Fe^{2+} : Fe^{3+} and O_{vac} : O_{latt} ratios, as obtained from the Fe 2p and O1s XPS spectra for $BaTi_{1-x}(Fe_{0.5}Nb_{0.5})_xO_3$ ceramics.

Fig. S4. Fitted Nb 3d XPS spectra for $BaTi_{1-x}(Fe_{0.5}Nb_{0.5})_xO_3$ ceramics: (a) BTFN1, (b) BTFN3, (c) BTFN5, (d) BTFN7, and (e) BTFN10.

Fig. S5. *M*-*H* loops for BaTi_{1-x}(Fe_{0.5}Nb_{0.5})_xO₃ (0.01 $\le x \le 0.10$) ceramics at room temperature.

Reference:

[1] A.C. Larson, R. Von Dreele, Program GSAS, General Structure Analysis System, Los Alamos National Laboratories, Los Alamos. (1994).