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Abstract 
Nanoscale materials characterization often uses highly energetic probes which can rapidly damage beam-sensitive materials, such as hybrid 
organic–inorganic compounds. Reducing the probe dose minimizes the damage, but often at the cost of lower signal-to-noise ratio (SNR) in 
the acquired data. This work reports the optimization and validation of principal component analysis (PCA) and nonnegative matrix 
factorization for the postprocessing of low-dose nanoscale characterization data. PCA is found to be the best approach for data denoising. 
However, the popular scree plot-based method for separation of principal and noise components results in inaccurate or excessively noisy 
models of the heterogeneous original data, even after Poissonian noise weighting. Manual separation of principal and noise components 
produces a denoised model which more accurately reproduces physical features present in the raw data while improving SNR by an order of 
magnitude. However, manual selection is time-consuming and potentially subjective. To suppress these disadvantages, a deep learning-based 
component classification method is proposed. The neural network model can examine PCA components and automatically classify them with 
an accuracy of >99% and a rate of ∼2 component/s. Together, multivariate analysis and deep learning enable a deeper analysis of nanoscale 
materials’ characterization, allowing as much information as possible to be extracted. 
Key words: convolutional neural network, energy-dispersive X-ray spectroscopy, materials’ characterization, principal component analysis, scanning 
transmission electron microscopy 

Introduction 
Materials’ characterization is an essential activity to under-
stand the relationship between a material’s structure, proper-
ties, processing, and performance (Burnett & Withers, 2019). 
As nanomaterials and nanostructured devices become increas-
ingly relied upon for various applications in our daily life, the 
importance of nanoscale materials’ characterization has risen 
accordingly. Many characterization techniques can reach a 
spatial resolution in the nanometer scale by using a tightly fo-
cused probe beam composed of photons, ions, neutrons, pro-
tons, or electrons. To generate a high signal count from the 
specimen, such a beam must contain a sufficient number of 
probe particles within its narrow diameter. This parameter is 
called dose, defined as the number of probe particles per 
unit of beam area and expressed in units of particle/nm2. If 
the dose is too low, the signal-to-noise ratio (SNR) in the ob-
tained data might also be too low and the measurement uncer-
tainty too high, rendering the data statistically insignificant. 

This minimum dose requirement becomes an impediment 
when the material under scrutiny is easily damaged by the 
probe particles (beam-sensitive), such as metal–organic frame-
works or organic–inorganic hybrid halide perovskites (Chen 

et al., 2020; Ilett et al., 2020). In such materials, the energy de-
posited by an intense probe beam through inelastic probe 
particle-matter scattering is likely enough to induce decom-
position and structural degradation (Henderson, 1995). For 
this reason, when working on beam-sensitive materials, one 
cannot simply increase the probe dose to obtain a higher signal 
count. Rather, the possible solutions are more efficient signal 
detectors or postprocessing of the data to improve its SNR 
(Schlossmacher et al., 2010; Mohan et al., 2020; Zhang 
et al., 2020). Of these two, the latter is almost always cheaper 
and more accessible. However, postprocessing may also intro-
duce artifacts or obscure genuine features in the data if it is not 
properly executed or otherwise unsuitable for the data type. 
Therefore, postprocessing algorithms must be carefully ap-
plied to the raw data to ensure that any extracted conclusions 
are valid. 

A particularly powerful approach for nanoscale character-
ization of beam-sensitive materials is to combine spectrum im-
aging and postprocessing by multivariate analysis (MVA). 
Spectrum imaging is the acquisition of three-dimensional 
(3D) data cubes where two of the axes (navigation axes) cor-
respond to a two-dimensional (2D) region of interest on the 
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specimen, while the other (signal axis) represents a list of ac-
quired data. As the probe scans through the 2D area, an energy 
spectrum, diffractogram, or other data types is obtained from 
each probed spot, stored in the signal axis, and associated with 
the corresponding pixel in the navigation axes. In nanoscale 
characterization with modern instruments, the number of 
data points in a single spectrum image can easily reach the or-
der of 108. Although each of these data points is acquired sep-
arately, they are very likely to share similar characteristics 
with one another. For example, parts of the specimen that 
are mapped in adjacent pixels have a high likelihood of having 
the same composition and structure (surfaces and interfaces 
being the obvious exceptions). The high number of related 
data points makes spectrum images ideal for processing with 
MVA algorithms such as principal component analysis 
(PCA) and nonnegative matrix factorization (NMF), which 
work by finding relationships between variables and lever-
aging them to extract meaningful patterns and information 
from a dataset. 

The general principles of PCA and NMF are well known 
and are summarized in the Supporting Information. Briefly, 
PCA finds a set of orthogonal components (linear combina-
tions of the data’s variables) which account for most of the ori-
ginal data’s variance (Pearson, 1901). These are called 
principal components, while all the other components are con-
sidered noise and discarded. NMF works similarly but repla-
ces the constraint of orthogonality with nonnegativity 
(Paatero & Tapper, 1994; Lee & Seung, 1999). Despite their 
wide use, there are subtle nuances involved in their application 
which deserve further refinement. For example, the discrimin-
ation between principal and noise components in PCA is nor-
mally performed automatically using the elbow point in a 
scree plot (Supplementary Fig. 1a). While this method is 
straightforward in principle, it may not necessarily be easy 
or accurate in practice. Then, if the elbow point approach is 
indeed nonideal, another method may be needed to identify 
the principal components more accurately. Furthermore, the 
suitability of the elbow point to choose the number of output 
NMF components should also be assessed. Finally, for the pur-
pose of denoising, it is not always clear whether the denoised 
dataset should be constructed using PCA or NMF components 
to model the original data most closely and obtain accurate 
analysis results. 

In this article, we report the optimization and validation of 
PCA and NMF for the postprocessing of multidimensional 
materials’ characterization data acquired with minimum 
probe dose. Specifically, PCA and NMF were performed on 
nanoscale cross-sectional energy-dispersive X-ray spectros-
copy (EDX) data of organic–inorganic hybrid halide perovsk-
ite solar cells (PSCs) acquired in a scanning transmission 
electron microscope (STEM). This dataset was chosen due to 
the massive research interest on PSCs and because it is well 
known that halide perovskites contain nanoscale compos-
itional heterogeneities which affect their optoelectronic prop-
erties and stability (Tennyson et al., 2019; Chen & Zhou, 
2020; Doherty et al., 2020). The recent advent of halide per-
ovskites containing up to seven different ions, combined 
with the ease of ion migration in halide perovskites, provide 
additional motivation to understand the compositional land-
scape of PSCs (Azpiroz et al., 2015; Eames et al., 2015;  
Haruyama et al., 2015; Saliba et al., 2016). The stages of 
MVA optimization performed in this work include (a) proper 
discrimination between principal and noise components in 

PCA, (b) choosing the right number of output components 
for NMF, and (c) comparison between denoised models con-
structed from PCA or NMF components. Of the two investi-
gated algorithms, we find that PCA is the best option for 
data denoising, while NMF works well to decompose the 
data into components easily attributable to physical features. 
Furthermore, we show that the elbow point method produced 
PCA-denoised models that are either inaccurate or unneces-
sarily noisy when the specimens are highly heterogeneous. 
Rather, manual separation between the principal and noise 
components produce denoised models which faithfully repli-
cate features contained in the original data while maximizing 
SNR. However, manual sorting through hundreds of PCA 
components can be very laborious, time-intensive, and can po-
tentially introduce subjectivity into the component selection. 
We solve this problem by demonstrating how deep learning- 
based convolutional neural network (CNN) can be used to 
automate the selection of principal components. Our CNN 
workflow can accurately identify principal components in a 
fast and bias-free manner, resulting in optimum data 
denoising. 

The powerful combination of MVA algorithms and CNN 
can help us sieve through the vast amounts of data produced 
in nanoscale characterization through denoising or decompos-
ition into physically meaningful components. In the context of 
beam-sensitive materials, having an automated and reliable 
data denoising is especially invaluable as it enables data acqui-
sition using far lower probe doses than what would be re-
quired otherwise, and thus reduces specimen damage 
(Kosasih et al., 2020). 

Materials and Methods 
Perovskite Solar Cell Fabrication 
The precursor solution for CH3NH3PbI3 devices was pre-
pared by dissolving equimolar concentrations (1.5 mol/dm3) 
of PbI2 and CH3NH3I in a mixed solvent of N, 
N-dimethylformamide (DMF) and dimethylsulfoxide (9:1.1, 
volume ratio). The solution was stirred at 60°C for 1 h and 
was passed through a 0.45 μm polytetrafluoroethylene filter 
before use; 40 μL precursor solution was dropped onto 
each substrate and spun at 4,000 RPM for 30 s. At the 7th 
second, 0.5 mL diethyl ether was dripped onto the spinning 
substrate. The control CH3NH3PbI3 films were then an-
nealed on a hot plate at 100°C for 20 min. The aerosol- 
treated CH3NH3PbI3 films were preannealed at 100°C for 
2 min to dry most of the solvent prior to aerosol treatment. 
Films were then placed within the preheated reactor, with 
the temperature set at 100°C. The treatment was carried 
out by flowing aerosolized DMF into the reactor at 
0.5 dm3/min for 5 min. The aerosol was generated using a 
piezoelectric generator. The substrates were placed in the cen-
tral section of the reactor, approximately 4 cm from the aero-
sol inlet. After 5 min have elapsed, the aerosol flow was 
switched to N2 and the samples were left on the heated 
graphite block for a further 5 min at the same temperature 
to sweep out the remaining DMF in the chamber. Samples 
were left to cool, then placed into a glovebox for thermal an-
nealing at 100°C for 20 min. 

All devices were fabricated on ITO-coated glass substrates 
sequentially cleaned in acetone, isopropanol, and deionized 
water (using ultrasonics) for 10 min followed by an N2 dry. 
Prior to deposition, the substrates were treated by oxygen  
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plasma for 10 min. Poly(N,N′-bis-4-butylphenyl-N,N′-bi-
sphenyl)benzidine (PolyTPD, 0.25 wt% in chlorobenzene) 
was spin coated onto the ITO at 5,000 RPM for 20 s as the 
hole transport layer. After drying for 1 min, Poly[(9,9- 
bis(3′-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7- 
fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN-Br, 0.05 wt% in 
methanol) was spin coated onto the hole transport layer at 
5,000 RPM for 15 s as an interfacial modifier to reduce surface 
hydrophobicity. Solutions of the electron transport layer were 
prepared by dissolving 30 mg/mL phenyl-C61-butyric acid me-
thyl ester (PCBM) in chlorobenzene. The solution was stirred 
at 40°C for 1 h and filtered through a 0.45 μm polytetrafluoro-
ethylene filter before use. The PCBM solution was spin coated 
on to CH3NH3PbI3 films at 2,000 RPM for 45 s. An ultra-thin 
interfacial dipole layer was prepared by spin coating a batho-
cuproine solution (0.5 mg/mL in methanol) on top of the 
PCBM layer at 4,000 RPM for 30 s. Finally, the devices 
were completed by thermally evaporating 100 nm of Cu at a 
rate of 1 Å/s and a base pressure of 5 × 10−6 mbar. 

Scanning Transmission Electron Microscopy 
Cross-sectional lamellae of the PSCs were prepared with an 
FEI Helios Nanolab Dualbeam FIB/SEM following a standard 
procedure described elsewhere (Kosasih et al., 2020, 2022). 
The lamellae were immediately transferred into an FEI 
Tecnai Osiris STEM, minimizing air exposure to ∼2 min. 
The STEM was operated at a 200 kV acceleration voltage 
and fitted with a Bruker Super-X silicon drift detector system 
for acquisition of EDX spectroscopy data, with a total collec-
tion solid angle of ∼0.9 sr. STEM images were acquired in 
high-angle annular dark field mode using a Fischione detector, 
with a beam current of ∼250 pA and a dwell time of 1 μs/pixel. 
STEM–EDX data was obtained with a beam current of 
∼140 pA, a dwell time of 40 ms/pixel, a spectral resolution 
of 5 eV/channel, and a spatial sampling of 10 nm/pixel as pre-
viously optimized elsewhere (Kosasih et al., 2020). PCA and 
NMF of STEM–EDX data was performed in HyperSpy, an 
open source Python package for multidimensional data ana-
lysis (de la Peña et al., 2020). STEM–EDX data was spectrally 
rebinned to a resolution of 20 eV/channel prior to application 
of PCA and NMF to improve the SNR. Prior to PCA, 
Poissonian noise in the data was normalized using a weighting 
algorithm developed by Keenan & Kotula (2004). PCA was 
executed using the singular value decomposition algorithm 
on the weighted data (HyperSpy, n.d.a, n.d.b). In HyperSpy, 
NMF was performed using scikit-learn’s default NMF algo-
rithm (Scikit Learn, n.d.). Quantitative elemental analysis of 
the denoised models was also performed in HyperSpy using 
the Cliff–Lorimer method (Cliff & Lorimer, 1975). The 
MVA code may be found at https://github.com/FanzhiSu/ 
Deep-Learning-assisted-Multivariate-Analysis.git. 

Image PreProcessing for Deep Learning Model 
The preprocessing procedure started with manual classifica-
tion of the first 100 PCA component scores into principal 
and noise ones. These 100 PCA scores of size 652 × 988 pixels 
were then de-stacked to 400 score images of smaller sizes, cor-
responding to the four EDX scan areas per stack as shown in  
Figure 1. This was done to address the data insufficiency prob-
lem by increasing the dataset size and also to show that the 
model’s utility is not limited only to data stacks composed of 

dissimilar specimens. Score images in the minority class (prin-
cipal components) were over-sampled by 14 times through 
offline data augmentation by randomly changing the image 
brightness and grayscale, horizontal and vertical flipping, 
and random rotations by 45°. Subsequently, the balanced da-
taset was resized to size 100 × 100 pixels to accelerate the 
training process and equalize the image dimensions. The re-
sized images were normalized over the original dataset to sta-
bilize the training process and further augmented on-the-fly 
with random cropping of the images to size 80 × 80 pixels. 
The preprocessed dataset was divided into training and testing 
sets with a ratio of 7:3. 

Neural Network Architecture 
The neural network consists of five hidden layers with a fully 
convolutional network as the backbone (see also  
Supplementary Fig. 8). It includes the following layers in or-
der: 3 × 3 2D convolutional layer accepting 3 color channels 
and outputting 10 color channels, Max-Pool layer, rectified 
linear unit (ReLU) activation function, 3 × 3 2D convolutional 
layer accepting 10 color channels and outputting 200 color 
channels, Max-Pool layer, ReLU activation function, and 2 
fully connected dense layers with softmax activation function 
for classification and extracting probability. The input dimen-
sion was set as 80 × 80. The network was trained with Adam 
optimizer and a learning rate of 5 × 10−4 for 10 iterations with 
a batch size of 10. Cross entropy loss was used as the loss func-
tion. All network training was conducted on a single Nvidia 
GeForce RTX 3070 GPU. The relevant code may be found 
at https://github.com/FanzhiSu/Deep-Learning-assisted-Multi 
variate-Analysis.git. 

Neural Network Evaluation 
To evaluate the CNN model’s prediction accuracy, multiple 
evaluation metrics were employed: 

(a) True positive (TP): the model correctly predicts a posi-
tive class (1); 
True negative (TN): the model correctly predicts a nega-
tive class (0); 
False positive (FP): the model predicts a positive class (1) 
by mistake; 
False negative (FN): the model predicts a negative class 
(0) by mistake.  

(b) Accuracy: the fraction of correct predictions over total 
predictions. It ranges from 0 to 1, with higher values in-
dicating a better model. The accuracy can be calculated 
as 

accuracy =
TP + TN

TP + TN + FP + FN   

(c) Sensitivity and specificity: these are two parameters used 
to evaluate model overfitting. They range from 0 to 1, 
with higher values indicating a better model. 
Sensitivity: the probability that the model predicts a 
positive class (1) given that the case is actually a positive 
class: 

sensitivity =
TP

TP + FN  
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Specificity: the probability that the model predicts a 
negative class (0) given that the case is actually a negative 
class: 

specificity =
TN

FP + TN   

(d) Positive predicted value (PPV): the probabiliy that the 
model predicts a positive class (1) correctly: 

PPV =
TP

FP + TP   

(e) Negative predicted value (NPV): the probabiliy that the 
model predicts a negative class (0) correctly: 

NPV =
TN

FN + TN   

PPV and NPV range from 0 to 1, with higher values indicat-
ing a better model. 

Results and Discussion 
In this study, two PSCs are used as a case study to find out how 
PCA and NMF can be best applied for data analysis. The first 
device is a spin-coated CH3NH3PbI3 (MAPbI3) PSC (control) 
and the second is a spin-coated MAPbI3 PSC which was sub-
sequently exposed to aerosolized DMF (aerosol-treated) as de-
scribed in the Materials and Methods section. The scan areas 
mapped in this stack are shown in Figure 1, with the boundar-
ies between scan areas marked by dashed green lines. The top 
two areas are from the control specimen, while the bottom two 
areas come from the aerosol-treated specimen. Each scan area 
contains four major layers, namely tin-doped indium oxide 
(ITO), MAPbI3, PCBM, and copper. 

The spin coating step was performed in exactly the same 
manner for both devices. Importantly, an annealing step was 
performed after spin coating for the control device, but it 
was delayed until after the aerosol treatment for the aerosol- 
treated device (Du et al., 2021). Previous research has shown 

that an annealing step of the same duration and temperature 
leads to CH3NH3I (MAI) loss through the perovskite grain 
boundaries, resulting in PbI2 formation in the vicinity of those 
grain boundaries (Du et al., 2017). This also happened in the 
control device examined here, as indicated by the presence of 
bright grains next to the perovskite grain boundaries (cyan ar-
rows and dashed orange lines in the top half of Fig. 1). These 
bright grains are shown below to be PbI2. On the other hand, 
those grains are absent in the aerosol-treated device (bottom 
half of Fig. 1). This is because the aerosol treatment fostered 
further perovskite grain growth through solvent vapor- 
assisted Ostwald ripening, leading to a lower concentration 
of grain boundaries (Du et al., 2021). MAI loss and PbI2 for-
mation were thus suppressed. Consequently, the aerosol- 
treated device exhibits a thicker perovskite film and should 
be richer in C and N relative to the control sample due to 
the inhibited MAI loss. If properly constructed (using either 
PCA or NMF), a denoised STEM–EDX model should show 
the presence of PbI2 in the control device and the difference 
in C and N concentrations between both devices. Therefore, 
these two features are used to evaluate the suitability of PCA 
and NMF for multidimensional data postprocessing. 

We firstly used focused ion beam milling to extract four 
electron-transparent cross-sectional lamellae from the two 
PSCs. Then, we acquired STEM–EDX spectrum images from 
these lamellae and processed them in HyperSpy, an open 
source Python library for multidimensional data analysis (de 
la Peña et al., 2020). Before PCA can be performed on the 
spectrum images, it is necessary to apply a noise scaling oper-
ation on them. This is because EDX data acquisition is essen-
tially a particle counting procedure, meaning the distribution 
of its measurement noise is Poissonian. Meanwhile, many 
PCA algorithms assume a Gaussian noise distribution in the 
data. Therefore, we firstly processed the spectrum images us-
ing a weighting procedure developed by Keenan & Kotula 
(2004) to ensure that our data is amenable to PCA. This 
Poissonian noise weighting method is appropriate to use as 
neither the mean spectrum nor the mean image of our dataset 
are sparse (Supplementary Fig. 2). Then, PCA and NMF are 

Fig. 1. A stack of four high angle dark field STEM images showing where the STEM–EDX scans were performed for each PSC cross section. The top 
(bottom) two scan areas are from the control (aerosol-treated) PSC. This arrangement of scan areas is used throughout this article. Dashed green lines 
mark the boundaries between scan areas. Dashed orange lines highlight some of the perovskite grain boundaries. Cyan arrows mark grains of a secondary 
phase in the perovskite film. Dashed yellow circle marks a damaged area where the focused electron beam was unintentionally parked for a few seconds. 
Scale bar represents 1 μm.   
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performed in HyperSpy as well, using the singular value de-
composition algorithm for PCA. 

Determination of Principal Components from PCA 
and NMF 
The most critical step in PCA denoising is the selection of com-
ponents used to build the denoised model. The conventional 
approach is to use a scree plot, with components appearing be-
fore the elbow point considered as principal components and 
included in the model, while the rest are considered noise and 
discarded (Fig. 2; Supplementary Fig. 1a; Cattell, 1966; Zhu 
& Ghodsi, 2006). The primary advantage of this approach 
is the removal of bias or subjectivity in component choice, as 
a scree plot ranks components entirely based on statistical 
variance. However, this method is also more of an empirical 
guidance than an exact rule. For instance, it is reasonable to 
suspect that the elbow point method will eventually fail as 
specimens get more heterogeneous. This is because genuine 
spectral features which are only present in a few pixels may 
contribute a smaller portion of the data’s overall variance 
compared to spectral noise which appear in many pixels, or 
which is related to very intense X-ray peaks. To provide an ex-
ample in the context of PSCs, the component which represents 
small, localized inclusions such as PbI2 grains is likely to be 
ranked lower in the scree plot than components showing noise 
from the organic transport layer’s C–Kα peak or the electrode’s 
metal peaks. Therefore, it is of great interest to investigate 
whether the elbow point approach can be used to accurately 
identify components containing real features for heteroge-
neous specimens. 

PCA was performed on the stack of STEM–EDX spectrum 
images described above, and the resulting components were 
ranked in the scree plot shown in Figure 2. At first glance, se-
lecting the principal components seems straightforward, as the 
first four components (marked by a dashed red ellipse in Fig. 2) 
clearly have far higher variances than the rest. Furthermore, it 
looks like the variance quickly plateaus after component 
4. Therefore, the standard elbow point method identifies 
four principal components and discards the rest as noise. 
However, zooming in on the scree plot (inset in Fig. 2) reveals 
a secondary elbow point where components 5–16, marked by 
the dashed green ellipses in Figure 2, also show relatively high 
variances. 

The distribution maps and spectra of components 1–4 
are displayed in Figure 3. As expected from their very 
high variance, they show genuine physical features from 
the specimen and are indeed principal components. On 
the other hand, components 5–16 are a mix of real features 
and noise. Components 8 and 10 (Fig. 4) appear to correl-
ate with a compositional difference between the control 
and aerosol-treated specimens, which is exactly the kind 
of useful information one would wish to find out by per-
forming nanoscale characterization. Component 16 
(Fig. 4) contains information on nanoscale heterogeneity 
as it shows small areas in the perovskite layer which are 
Pb-rich and I-poor compared to their surroundings. 
Components 8, 10, and 16 should be classified as principal 
components since their scores clearly have a nonrandom 
distribution of values and their loadings feature peaks 
and valleys whose energies correspond to X-ray lines of 
relevant elements. In contrast, the scores of components 
5–7, 9, and 11–15 only show random distributions and 
their loadings are dominated by spikes instead of peaks 
and valleys (Supplementary Fig. 3). Therefore, these com-
ponents can rightfully be considered noise. Importantly, 
principal components 8, 10, and 16 are interspersed with 
noise components 5–7, 9, and 11–15 in the scree plot. 
This shows that principal component selection should not 
be based entirely on variance ranking. 

Normally, the number of principal components identified 
by the standard elbow point method in PCA (4 in this case) is 
fed into the NMF algorithm as p, or the desired number of 
output NMF components. However, the preceding discus-
sion has shown that (a) there may be a secondary elbow 
point in the scree plot and (b) principal and noise compo-
nents may be mixed between the first and second elbow 
points. Therefore, the next step is to examine the product 
of the NMF procedure while varying p from 4 to 16.  
Figure 5 shows the resulting components when p = 4. All 
four components show real features of the specimens, with 
scores that correlate well with the dark field images 
(Fig. 1) and loadings showing peaks attributable to X-ray 
lines. Components 1–4 show the perovskite layer (including 
the heterogeneities within), the copper electrode, the ITO 
layer, and the PCBM layer, respectively. Components 1 
and 3 also show copper peaks from the copper sample half- 
grid. It is clear that NMF loadings are more directly 

Fig. 2. Scree plot from the PCA procedure applied to the stack of STEM–EDX spectrum images. The inset shows a zoomed-in version where the second 
elbow point becomes clearly apparent. Dashed red ellipse marks the first four components appearing before the first elbow point. Dashed green ellipses 
mark components 5–16 appearing after the first but before the second elbow point.   
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comparable to the raw EDX data than PCA components. 
Both peak positions and peak intensities can be readily inter-
preted and assigned to specific X-ray lines. 

When p is set to 16, only the first four components show 
physical features, while the rest consists of mostly noise. 
These four components (Fig. 6) appear similar to those shown 
in Figure 5, but there are some important differences. Most 
notably, the peaks attributable to Cu–Kα (8.04 keV) and Kβ 
(8.90 keV) in components 1–3 are greatly diminished, the 
O–Kα peaks (0.53 keV) disappear from the ITO and PCBM 
components, and the C–Kα signal (0.27 keV) in component 
4 changed from a typical EDX peak into a very narrow spike. 
These changes occur because the signal corresponding to those 
peaks were assigned to the other 12 components instead, 
which can be grouped into three types as shown in  
Supplementary Figure 4. The first type (component 10,  
Supplementary Fig. 4) includes the Cu–Kα and Kβ signal 

missing from components 1–3. The second (components 5– 
7, 9, 11, 12, Supplementary Fig. 4) are sharp C–Kα spikes at 
energies surrounding 0.27 keV, suggesting that the C–Kα 
peak’s signal count was split into several components. 
Finally, the third type (components 8, 13–15, Supplementary 
Fig. 4) contains the O–Kα signal which should have been pre-
sent in the ITO and PCBM components. Comparing the com-
ponents produced by p = 4 and p = 16, the former produces 
the more physically meaningful set of results because of the 
differences described above. For example, there is no physical 
basis for the separation of the O–Kα peak from the ITO and 
PCBM components. Indeed, its absence from those compo-
nents when p = 16 (Fig. 6) means the loadings of those compo-
nents no longer accurately represent ITO and PCBM, both of 
which are known to contain oxygen. Therefore, it can be con-
cluded that the standard elbow point method is still useful to 
infer the most appropriate p for NMF from a PCA scree plot. 

Fig. 3. PCA principal components (1–4) appearing before the first elbow point in the scree plot shown in Figure 2. These components represent genuine 
physical features in the specimen. Dashed green lines mark the boundaries between scan areas. Scale bar represents 1 μm.   
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Construction of Denoised Model from PCA and NMF 
Components 
The previous section has shown that the elbow point method 
is not necessarily the best way to sort out the principal and 
noise components in PCA. While this is a useful finding, iden-
tification of the principal components is usually not the final 
goal of data postprocessing. Rather, it is merely an intermedi-
ate step required to construct a denoised model of the raw 
data, on which further analysis can be performed. Therefore, 
it is important to investigate how the choice of principal com-
ponents affects the denoised models produced through MVA. 

Five denoised spectrum images (SIs) were constructed to 
model the raw STEM–EDX dataset introduced above. These 
are named PCA 4, PCA 16, PCA M, NMF 4, and NMF 16. 
The PCA 4 model was built using principal components iden-
tified by the standard elbow point method, namely PCA com-
ponents 1–4. The PCA 16 model includes 16 PCA components 
located before the secondary elbow point. Manual selection of 
principal components was used to assemble the PCA M model, 
which includes components 1–4, 8, 10, and 16. Finally, the 
NMF 4 and NMF 16 models were set up with all components 
produced via NMF run with p = 4 and p = 16, respectively. In 
all cases, the components were not subjected to inverse noise 
scaling before they were used to construct the denoised mod-
els. Inverse scaling is not necessary for our purposes as EDX 
data quantification only requires the relative background- 

corrected intensities between X-ray peaks of interest, not their 
absolute counts. However, we note that for applications 
where the absolute signal counts are needed, the inverse noise 
scaling step should be performed. Each denoised model was 
then subjected to peak intensity extraction and Cliff– 
Lorimer quantification to obtain quantified elemental maps 
(Cliff & Lorimer, 1975). The relevant X-ray peaks here are 
Pb–Lα (10.5 keV), I–Lα (3.94 keV), C–Kα (0.27 keV), and N– 
Kα (0.39 keV). 

The chemical maps and distribution profiles are shown in  
Supplementary Figures 5–7 for Pb, I, and C, and in Figures 7– 
9 for N, I/Pb ratio, and N/Pb ratio, respectively. The distribution 
profiles were produced by grouping all pixels in each map into 
bins based on their value, and then counting the number of pix-
els in each bin. The bin widths are 1 at% for the elemental maps 
and 0.05 for the ratio maps. All five models indicate slightly low-
er concentrations of the inorganic elements Pb (Supplementary 
Fig. 5) and I (Supplementary Fig. 6) in the aerosol-treated sam-
ple. For both elements, the PCA 4 and NMF 4 models have the 
least amount of noise as expected from their low number of 
components, with their distribution profiles dropping sharply 
at the high concentration end. PCA 16 has the noisiest maps 
as indicated by its wide distribution profiles. PCA M model re-
sults in visibly less noisy maps and narrower distribution profiles 
compared to PCA 16. Importantly, the control sample maps 
produced from PCA 16 and M show Pb-rich areas which are 

Fig. 4. PCA principal components (8, 10, 16) appearing between the first and second elbow points in the scree plot shown in Figure 2. These components 
represent genuine physical features in the specimen, but would have been excluded from the denoised model if the first elbow point had been taken as 
the boundary between principal and noise components. Dashed green lines mark the boundaries between scan areas. Scale bar represents 1 μm.   

Felix Utama Kosasih et al.                                                                                                                                                                                    7 
D

ow
nloaded from

 https://academ
ic.oup.com

/m
am

/advance-article/doi/10.1093/m
icm

ic/ozad033/7093622 by Q
ueen M

ary U
niversity of London user on 16 April 2023

http://academic.oup.com/mam/article-lookup/doi/10.1093/micmic/ozad033#supplementary-data
http://academic.oup.com/mam/article-lookup/doi/10.1093/micmic/ozad033#supplementary-data
http://academic.oup.com/mam/article-lookup/doi/10.1093/micmic/ozad033#supplementary-data
http://academic.oup.com/mam/article-lookup/doi/10.1093/micmic/ozad033#supplementary-data


attributable to PCA component 16 (Fig. 4). The effect of includ-
ing this component is most obvious in the I/Pb ratio maps 
(Fig. 7). The PCA 4 and both NMF models produce very sharp 
distribution profiles with perfectly uniform perovskite layers 
where every single pixel has practically the same I/Pb ratio, 
even where the perovskite was damaged in the bottom scan 
area. However, this is not an accurate portrayal of the speci-
mens. The PCA 16 and M maps clearly show areas where the lo-
cal I/Pb ratio is lower. The shape and location of these areas can 
be matched to features visible in the dark field images (Fig. 1) 
and in PCA component 16 (Fig. 4), proving that they are real fea-
tures rather than noise. 

As for the organic elements, the C maps and distribution 
profiles (Supplementary Fig. 7) are largely similar for the five 
models. The higher C concentration in the aerosol-treated 
sample is visible in all cases, as is the high C content in the 
damaged perovskite area, which is expected due to perovskite 
vaporization and C deposition by prolonged exposure (a few 

seconds) to the focused electron beam. On the other hand, 
the N (Fig. 8) and N/Pb ratio (Fig. 9) distributions illustrate 
the differences between the five denoised models very well. 
The PCA 4 and both NMF models do not show higher N con-
tent and N/Pb ratio in the aerosol-treated sample as PCA 16 
and M do. Furthermore, PCA 4, NMF 4, and NMF 16 also 
suggest that both the N and N/Pb distributions are uniform 
throughout the perovskite layer. Meanwhile, the PCA 16 
and M maps show a thin strip at the top of the perovskite layer 
(near the perovskite–PCBM interface) where the N concentra-
tion and N/Pb ratio is lower than the rest of the perovskite. 
This is in excellent agreement with the dark field images 
(Fig. 1) which appear brighter at the same locations, indicating 
that there are fewer light atoms or more heavy atoms there. 
These differences are attributable to the inclusion of PCA com-
ponents 8, 10, and 16 (Fig. 4) in the denoised model. 
Comparing the PCA 16 and M maps, the high noise in the 
PCA 16 maps obscures features with low N content to the 

Fig. 5. NMF components when p = 4. Dashed green lines mark the boundaries between scan areas. Scale bar represents 1 μm.   
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point that they are hardly visible. PCA M produces the most 
accurate N and N/Pb maps, correctly showing higher N con-
tent in the aerosol-treated sample, lower N content at the per-
ovskite/PCBM interface in the control sample, and the N-poor 
features distributed in the perovskite layer. 

Differences in the accuracy and noise level of elemental 
maps produced from the five denoised models are summarized 
in Table 1. Overall, it is concluded that PCA with manual se-
lection of the principal components is the best approach to 
construct the denoised model of the original dataset. This 
method accurately reproduces the existence of small heteroge-
neities in the specimen without including excessive noise. 

Selection of PCA Components with Deep Learning 
The superiority of manual classification of PCA components 
in terms of the associated denoised model’s accuracy and noise 
level does not negate the fact that it reintroduces the possibility 

of operator bias, the absence of which is a strong point in favor 
of the elbow point method. Furthermore, manual selection can 
also be very laborious and time-consuming, as PCA can easily 
produce hundreds of components. To ameliorate these prob-
lems, we developed a novel workflow based on a 
VGGnet-inspired CNN to automate the principal component 
selection process (Simonyan & Zisserman, 2014). 

Two critical challenges in the application of CNNs for elec-
tron microscopy data analysis are data insufficiency and class 
imbalance. The dataset used for image classification tasks 
needs to contain images and their corresponding class labels. 
Creating a training dataset with thousands of labeled images 
is often not feasible in electron microscopy (Siddique et al., 
2021). Furthermore, in the context of PCA, there is a far great-
er number of noise components than principal components. 
Therefore, the dataset suffers from severe class imbalance, 
which can lead to deep learning model over-fitting. 

Fig. 6. The first four NMF components when p = 16. These components are noticeably dissimilar compared to the p = 4 case shown in Figure 5, 
highlighting the importance of choosing the correct p value. Dashed green lines mark the boundaries between scan areas. Scale bar represents 1 μm.   
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Our workflow, which was specially designed to overcome 
the two issues just described, is illustrated in Supplementary 
Figure 8 and described in detail in the Materials and 
Methods section. First, we performed PCA on the stack of 
EDX spectrum images discussed above and produced the 
scores of PCA components 1–100 in the form of 8-bit 
RGB (red, green, blue) images. This image format was chosen, 
as CNNs often make predictions based on color information, 
especially if the model is trained from scratch, which is the case 
here (Singh et al., 2020). We manually labeled them as either 

signal (principal components) or noise (noise components) 
based on spatial correlation of the features shown in the score 
images, or lack thereof. Then, we de-stacked each of the scores 
into four separate images, each corresponding to a different 
PSC (according to the EDX scan area boundaries shown in  
Fig. 1) in order to increase the size of our training and testing 
data. For each of the 400 score images, we normalized the 
RGB values in the pixels and calculated the means (μ) and 
standard deviations (σ) of the three RGB color distribution 
across all pixels. Then, the RGB values in each pixel were 

Fig. 7. (a) Distributions of I/Pb ratio and (b–e) quantified I/Pb ratio maps extracted from the (b) PCA 4, (c) PCA 16, (d) PCA M, (e) NMF 4, and (f) NMF 16 
denoised models. Only the PCA 16 and PCA M models produce accurate ratio maps, while most of the spatial heterogeneity is lost in the other models. 
The I/Pb ratio maps were spatially rebinned by a factor of 2 to reduce noise. Scale bar is 1 μm.   
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standardized as follows: 

Rstd =
R − μR

σR
, Gstd =

G − μG

σG
, Bstd =

B − μB

σB 

This was done to reduce the high numerical variation in the 
RGB color distributions by narrowing the range of possible 
values from 0 to 255 to approximately −6 to +8 
(Supplementary Fig. 9). Doing so reduces the data com-
plexity and accelerates the model training process. An ex-
ample of a de-stacked score image and the histogram of 

its RGB value distribution before and after the normaliza-
tion and standardization steps is shown in Supplementary 
Figure 9. 

Because the number of noise score images (93) is much higher 
than the signal ones (7), there is significant class imbalance be-
tween the majority (noise) and minority (signal) data classes. To 
solve this problem, the signal score images are oversampled 
with offline data augmentation (Afzal et al., 2019). We over-
sampled the minority class by 14 times, such that it contains ap-
proximately the same number of score images as the majority 

Fig. 8. (a) Distribution of N concentration and (b–e) N maps extracted from the (b) PCA 4, (c) PCA 16, (d) PCA M, (e) NMF 4, and (f) NMF 16 denoised 
models. Only the PCA M model produces an accurate map that shows localized areas with lower N content. Scale bar is 1 μm.   
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class (see Supplementary Fig. 10). To illustrate the impact of 
data augmentation, we trained and evaluated our CNN on 
both the imbalanced and the augmented score image datasets.  
Table 2 summarizes the CNN evaluation results for the two da-
tasets. To judge the performance of the CNN workflow, we 
used several parameters as defined in the Materials and 
Methods section, namely TP fraction, TN fraction, FP fraction, 
FN fraction, accuracy, sensitivity, specificity, PPV, NPV, and 
processing time. As shown by the TP and FP fractions, when 
trained with the imbalanced image dataset, the model is 

extremely over-fitted and therefore strongly biased toward pre-
dicting the majority class only. Due to this bias, the model pro-
duced excessively high TN and FN fractions even though it still 
reached an accuracy of ∼95%. In contrast, our CNN model at-
tained an accuracy of >99% when trained with the augmented 
score images. In addition, the sensitivity value increased dra-
matically from 0.000 for the imbalanced score images to 
0.984 after training the model with the augmented image data-
set. This excellent performance suggests that the class imbal-
ance problem has been tackled and the model is no longer 

Fig. 9. (a) Distribution of N/Pb ratio and (b–e) N/Pb ratio maps extracted from the (b) PCA 4, (c) PCA 16, (d) PCA M, (e) NMF 4, and (f) NMF 16 denoised 
models. Only the PCA M model produces an accurate map that shows localized areas with lower N/Pb ratio. The N/Pb ratio maps were spatially rebinned 
by a factor of 2 to reduce noise. Scale bar is 1 μm.   
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biased. The high PPV (1) and NPV (0.95) scores of the CNN 
model trained on the augmented image dataset indicate that it 
is a reliable predictor of whether a PCA component should be 
classified as a principal or a noise component. It is also worth 
mentioning that the end-to-end deep learning model reached 
the >99% accuracy value after a short training time of only 
46.3 s. The training step only needs to be done once in order 
to find the weight coefficients of the neural network model, 
which then can be applied many times more quickly to similar 
datasets without further training. 

Our CNN model outputs not only its prediction (signal or 
noise) for each PCA component score but also the degree of 
confidence with which it made that prediction. To illustrate 
the utility of this feature, three representative PCA scores are 

shown in Table 3. The first digit in the score code refers to 
the PCA component index a particular scan area’s score image 
was de-stacked from, while the second digit is that scan area’s 
order in the original score stack, counted from the top. 
Compared with score 5_1, the neural network is clearly 
more confident when classifying score 1_1, as expected due 
to the latter exhibiting much more apparent features. Score 
8_2 is an example of an interesting case. The stacked compo-
nent 8 is clearly a principal component due to the apparent 
changes in signal intensity from one scan area to the next 
(see Fig. 4). However, this intensity variation is lost during 
the de-stacking step in score image preprocessing, so score 
8_2 does not possess significant signal variation within its 
scan area and the CNN correctly classifies it as noise. This 
strongly suggests that our model is robust and capable of ac-
curate PCA component classification even when data does 
not come from a number of a priori dissimilar specimens. 

Conclusion 
Nanoscale materials’ characterization is an invaluable tool in 
materials science, but it is not without its limitations. One of 
these is the likelihood of specimen damage in beam-sensitive 
materials induced by the high-energy and high-intensity probe 
beams. Therefore, it is crucial that the probe dose is minimized 
to suppress beam-induced damage and ensure that valid con-
clusions can be drawn from the characterization data. Dose 
minimization would also reduce the signal count and hence 
measurement accuracy, but this disadvantageous effect can 
be ameliorated using MVA algorithms and CNN. This work 
reports the optimization and validation of PCA and NMF 

Table 1. Classification of Accuracy (A) and Noise Level (N) of the Quantified Elemental and Ratio Maps 
Produced from the Five Denoised Models. 

A is classified as either accurate (green) or not (red), while N is ranked as low noise (green), medium 
(yellow), and high noise (red).  

Table 2. Summary of the Model Evaluation Results When Training the 
Model with the Imbalanced and Augmented Loading Images. 

Evaluation Parameter Imbalanced Dataset Augmented Dataset  

TP fraction 0.0% 55.0% 
TN fraction 95.0% 44.1% 
FP fraction 0.0% 0.0% 
FN fraction 5.0%  0.9% 
Accuracy 95.0% 99.1% 
Sensitivity 0.000 0.984 
Specificity 1 1 
PPV N/A 1 
NPV 0.95 0.99 
Time taken 27.6 s 46.3 s 

TP, true positive; TN, true negative; FP, false positive; FN, false negative; 
PPV, positive predicted value; NPV, negative predicted value.  

Table 3. Examples of PCA Loadings and the Confidence with Which the Trained CNN Model Predicted Their Classification as Signal or Noise. 

Code Score Prediction Confidence Predicted Label Ground Truth  

1_1 Noise: 0.4%  
Signal: 99.6% 

Signal Signal 

5_1 Noise: 76.7%  
Signal: 23.3% 

Noise Noise 

8_2 Noise: 80.0%  
Signal: 20.0% 

Noise Signal   
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for postprocessing of multidimensional characterization data 
acquired from heterogeneous beam-sensitive specimens. We 
conclude that NMF works well for data decomposition into 
components that are easily recognizable as physical features. 
However, PCA should be performed first, such that the pro-
duced scree plot can be used to determine the number of out-
put NMF components. For data denoising, we find that the 
oft-used approach of scree plot-based separation between 
principal and noise components in PCA leads to suboptimal 
denoised models, even after the Poissonian noise distribution 
in the original dataset has been scaled. Manual selection of 
principal components provides a better balance between the 
necessity of recognizing real physical features and maximizing 
SNR, but is time-consuming and may enable operator bias. To 
obtain a fast, automated, and bias-free principal component 
selection, we present a VGG-inspired five-layer CNN model. 
Our results indicate that the deep learning-based method rec-
ognizes principal components accurately in a short computa-
tion time (∼2 components/s even when trained from 
scratch). The principal components identified by CNN can 
then be used to construct an accurate denoised model of the 
original data. The combined MVA–CNN workflow presented 
here can be useful not only for STEM–EDX but also for other 
nanoscale characterization techniques whose data is amenable 
to MVA, such as optical spectroscopy, electron energy loss 
spectroscopy, X-ray absorption spectroscopy, scanning probe 
microscopy, secondary ion mass spectroscopy, and more 
(Mak et al., 2014; Kannan et al., 2018; Trindade, 2018). 
Due to data limitation, we have not tested our model on sig-
nals produced from those techniques. However, the trained 
weights in the neural network can be directly used for transfer- 
learning with the same network architecture when totally 
different types of signals are provided. With the new dataset, 
accurately retraining the network from scratch with the 
same steps as summarized in this work can be done at a rate 
as quickly as ∼2 components/s. We believe the proposed ap-
proach can provide an intuitive way to link artificial intelli-
gence with materials’ characterization. 

Supplementary Material 
To view supplementary material for this article, please visit  
https://doi.org/10.1093/micmic/ozad033. 
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