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Programme 

Location:  Arts 2 Theatre – QMUL Mile end campus 
Zoom: https://qmul-ac-uk.zoom.us/j/89668766939 

10:00 Welcome – Andrew McPherson 

10:10 

KEYNOTE 

 "On generative modelling and iterative refinement", Sander Dieleman- (Research Scientist 
at DeepMind)  

11:10 Break (Coffee break) 

11:30 
 “Improving Chord Sequence Graphs with Transcription Resiliency and a Chord Similarity 
Metric”, Jeff Miller, Vincenzo Nicosia and Mark Sandler (Queen Mary University of 
London, UK) 

11:45 
“Bringing the concert hall into the living room: digital scholarship of small-scale arrangements 
of large-scale musical works”, David Lewis and Kevin R. Page (University of Oxford e-
Research Centre, UK) 

12:00 “Leveraging Music Domain Knowledge in Symbolic Music Modeling”, Zixun Guo and 
Dorien Herremans (ISTD, Singapore University of Technology and Design, Singapore) 

12:15  

“Large-Scale Pretrained Model for Self-Supervised Music Audio Representation Learning”, 
Yizhi Li (University of Sheffield, UK), Ruibin Yuan (Beijing Academy of Artificial 
Intelligence, China, and Carnegie Mellon University, PA, USA) , Ge Zhang (Beijing 
Academy of Artificial Intelligence, China and University of Michigan Ann Arbor, USA) , 
Yinghao Ma (Queen Mary University of London, UK), Chenghua Lin (University of 
Sheffield, UK) , Xingran Chen (University of Michigan Ann Arbor, USA), Anton Ragni 
(University of Sheffield, UK), Hanzhi Yin (Carnegie Mellon University, PA, USA), Zhijie 
Hu (HSBC Business School, Peking University, China), Haoyu He (University of 
Tübingen & MPI-IS, Germany), Emmanouil Benetos (Queen Mary University of London, 
UK), Norbert Gyenge (University of Sheffield, UK), Ruibo Liu (Dartmouth College, NH, 
USA) and Jie Fu (Beijing Academy of Artificial Intelligence, China)  

12:30 Announcements 

12:45 Lunch - Poster Session 

https://qmul-ac-uk.zoom.us/j/89668766939
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12:45 Lunch - Poster Session 

14:15 
“Time-Frequency Scattering in Kymatio”, Cyrus Vahidi (Queen Mary University of 
London), Vincent Lostanlen, Han Han, Changhong Wang (Queen Mary University of 
London ) and György Fazekas (Queen Mary University of London) 

14:30 “Working for the AI Man: Algorithmic Rents, Accumulation by Dispossession and Alien 
Power”, Hussein Boon (University of Westminster, UK) 

14:45 “Remarks on a Cultural Investigation of Abstract Percussion Instruments”, Lewis 
Wolstanholme and Andrew McPherson (Queen Mary University of London, UK) 

15:00 
“Beat Byte Bot: a bot-based system architecture for audio cataloguing and proliferation with 
neural networks and Linked Data”, J. M. Gil Panal (E.T.S.I. Informática, University of 
Málaga, Spain and Luís Arandas (INESC-TEC, University of Porto, Portugal) 

15:15 Break 

15:30 “Symmetries and Minima in Differentiable Sinusoidal Models”, Ben Hayes, Charalampos 
Saitis, György Fazekas (Queen Mary University of London) 

15:45 
“Affordances of Generative Models of Raw Audio to Instrumental Practice and 
Improvisation”, Mark Hanslip (School of Arts and Creative Technologies, University of 
York) 

16:00 
“Practical Text-Conditioned Music Sample Generation”, Scott H. Hawley (Belmont 
University, USA and Harmonai), Zach Evans, C.J. Carr (Harmonai), and Flavio 
Schneider (Harmonai). 

16:15 Close - Simon Dixon 

* - There will be an opportunity to continue discussions after the Workshop in a nearby Pub/Restaurant for those in London.
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Keynote Talk 

Sander Dieleman - Research Scientist at DeepMind 

Tittle: On generative modelling and iterative refinement 

Abstract:  

The field of generative modelling has seen a significant upheaval in the past few years. In the 
audiovisual domain, adversarial approaches have been all but replaced by diffusion models, resulting 
in a step change in quality improvements and even mainstream adoption. In this talk, I will argue that 
iterative refinement is the key to generative modelling at scale, discuss some other innovations behind 
recent quality improvements, and consider the implications for audio and music generation. 

Bio: 

Sander Dieleman is a Research Scientist at DeepMind in London, UK, where he has worked on the 
development of AlphaGo and WaveNet. He obtained his PhD from Ghent University in 2016, where 
he conducted research on feature learning and deep learning techniques for learning hierarchical 
representations of musical audio signals. His current research interests include representation learning 
and generative modelling of perceptual signals such as speech, music and visual data. 

Announcements 

1. AIM CDT 2023-2024 call open: https://www.aim.qmul.ac.uk/apply/
Based at the Centre for Digital Music at QMUL the AIM CDT offers 12+ Fully-funded PhD
studentships to start September 2023. The call is open to UK Home and International student and
covers fees and a stipend for four years. The application deadline is 31 January 2023

2. COMPEL- the Computer Music Preservation Electronic Library! http://compel-dev.vtlibraries.net/
COMPEL is an electronic music database project from Virginia Tech. They collect data about
people (composers, performers, and other contributors); compositions; specific performances; and
instruments. The database is intended to serve performers, composers and researchers into the field
of computer music

https://www.aim.qmul.ac.uk/apply/
http://compel-dev.vtlibraries.net/
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Posters  
 

1 “Which car is moving? A listening approach using distributed acoustic sensor systems”, Chia-Yen 
Chiang and Mona Jaber (Queen Mary University of London) 

2 " YourMT3: a toolkit for training multi-task and multi-track music transcription model for 
everyone", Sungkyun Chang, Simon Dixon and Emmanouil Benetos (Queen Mary University 
of London) 

3 “Supervised Contrastive Learning for Musical Onset Detection”, James Bolt and György Fazekas 
(Queen Mary University of London) 

4 “Computational Modelling of Expectancy-Based Music Cognition of Timbre Structures”, Adam 
Garrow and Marcus Pearce (Queen Mary University of London) 

5 “Self-supervised Learning for Music Information Retrieval” Yinghao Ma and Emmanouil 
Benetos (Queen Mary University of London) 

6 "Performance Rendering for Automatic Music Generation Pipelines", Tyler McIntosh and Simon 
Dixon (Queen Mary University of London) 

7 “Explainability in End-User Creative Artificial Intelligence”, Ashley Noel-Hirst and Nick Bryan-
Kinns (Queen Mary University of London) 

8 " Real-time timbre mapping for synthesized percussive performance", Jordan Shier (Queen Mary 
University of London), Andrew Robertson (Ableton), Andrew McPherson and Charalampos 
Saitis (Queen Mary University of London) 

9 “Machine Learning of Physical Models for Voice Synthesis”, David Südholt and Joshua Reiss 
(Queen Mary University of London) 

10 "Using Signal-informed Source Separation (SISS) principles to improve instrument separation 
from legacy recordings ", Louise Thorpe, Emmanouil Benetos and Mark Sandler (Queen Mary 
University of London) 

11 “Personalised music descriptors: valuing user perspective”, Yannis Vasilakis (Queen Mary 
University of London), Rachel M Bittner (Spotify), Johan Pauwels (Queen Mary University 
of London) 

12 "Learning Music Representations using Coordinated based Neural Network", Ningzhi Wang and 
Simon Dixon (Queen Mary University of London) 

13 “User-Driven Music Generation in Digital Audio Workstations”, Alexander Williams (Queen 
Mary University of London), Stefan Lattner (Sony SCL) and Mathieu Barthet (Queen Mary 
University of London) 

14 "Conditioning in Variational Diffusion Models for Audio Super-Resolution", Chin-Yun Yu 
(Queen Mary University of London) Sung-Lin Yeh (University of Edinburgh) György 
Fazekas (Queen Mary University of London) Hao Tang (University of Edinburgh)   
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Improving Chord Sequence Graphs with Transcription Resiliency 
and a Chord Similarity Metric

Jeff Miller∗1 , Vincenzo Nicosia2 and Mark Sandler1

1Centre for Digital Music, Queen Mary University of London, United Kingdom, j.k.miller@qmul.ac.uk
2School of Mathematical Sciences, Queen Mary University of London, United Kingdom

Abstract—

We present an improved Chord Sequence Graph
schema which is more resilient to discrepancies between
sources. We also propose a musically-informed metric for
measuring chord similarity within a collection.

I. CHORD SEQUENCE GRAPHS

Chord Sequence Graphs (CSGs) are a useful tool for
modelling multiple chord sequences as a single, time-
aligned, directed graph. [1] Chord sequences, collected from
multiple sources in symbolic and/or audio domains, can re-
veal patterns and provide insights into harmonic practice
which might remain undetected at smaller scales. CSGs
can be applied to various musicological questions, such as
1) How do different versions of the same song (i.e. covers)
compare harmonically? 2) How do different musicians har-
monise a piece of music? 3) How does a musician vary their
chord choices between performances of a song or piece? Fi-
nally - and importantly - 4) How similar or dissimilar are the
harmonic sequences of two different pieces of music?

II. TRANSCRIPTION ISSUES AND CSG IMPROVEMENTS

Differences in chord descriptions, vocabularies, and
transpositions can make it difficult to compare transcriptions
from varied sources. A collection of notes might be de-
scribed by different chord names, or chord extensions may
be ignored and described as simpler chord types. Perhaps
most problematically, similar or identical harmonic patterns
can appear to be unrelated when played in different keys. [2]

We propose a revised CSG model which mitigates many
of these concerns by replacing text-based chord labels with
pitch class profile (PCP) vectors. A suitable chord vocabu-
lary is chosen and mapped to PCPs; these become the data
elements represented by nodes in the chord sequence graph,
facilitating mathematical manipulation of graph data. Di-
rected edges in the graph represent transitions from a chord
(N) to the following chord in a sequence (N+1); the weights

∗Research supported by EPSRC grant EP/R512072/1 and the British
Broadcasting Corporation through an Industrial CASE studentship in col-
laboration with the BBC Audio Research Partnership.

of nodes and edges represent the prevalence of chords and
transitions at each relevant point across the original body of
chord sequences.

III. CHORD SET COHERENCE METRIC

The introduction of a musically-informed method for de-
scribing the relative similarity within a set of chords would
improve the CSG schema and augment the representative and
analytic power of the model. Such a metric could describe
the degree of similarity within a set of chords but need not
describe the qualities of the chords themselves. Rather, it
could describe the proximity of the chords relative to one an-
other in a harmonically descriptive space. Each set would be
considered in isolation; i.e., the relative position of one set to
another within this space would be unimportant. We refer to
this metric as the Chord Set Coherence (CSC).

The CSC metric could be applied to a chord sequence
graph in several ways. Calculating the CSC for a time frame
would produce a value describing all choices of chords at that
point in the music. If every musician played the same chord
at that point, the coherence would be high, indicating that
the various chords chosen sounded similar to one another.
A very low coherence would indicate that most musicians
chose chords which did not sound like each other.

A profile of successive CSC values could be used to de-
scribe the harmonic content of the musical collection at a
highly abstract analytical level. Likewise, by applying the
CSC metric to a singular chord sequence, a coherence value
could be calculated for an individual song. By aggregating
these values into a coherence profile for a collection of songs
with different chord sequences, one could analyse musicians
or genres.

IV. REFERENCES

[1] J. Miller, V. Nicosia, and M. Sandler, “Discovering Common Practice:
Using Graph Theory to Compare Harmonic Sequences in Musical
Audio Collections,” in 8th International Conference on Digital
Libraries for Musicology. New York, NY, USA: ACM, jul 2021, pp.
93–97. [Online]. Available: https://dl.acm.org/doi/10.1145/3469013.
3469025

[2] J. Pauwels, K. O’Hanlon, E. Gómez, and M. B. Sandler, in 20th In-
ternational Society for Music Information Retrieval Conference, Delft,
Holland.
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Bringing the concert hall into the living room: digital scholarship of
small-scale arrangements of large-scale musical works

David Lewis and Kevin R. Page

University of Oxford e-Research Centre, UK
[david.lewis|kevin.page]@oerc.ox.ac.uk

Abstract— We present a study into nineteenth century
arrangements of operatic and orchestral works for do-
mestic use, supported by tools designed to support digi-
tal musicological research. These tools are built on web
standards – Linked Data (particularly Web Annotations),
IIIF and MEI – along with a new ontology designed to
support the annotation of musical materials that appear
in different forms across different resources.

Index Terms— Digital musicology, Linked Data, On-
tologies, IIIF, Music Encoding

Before the twentieth century, and the rise of both afford-
able concert tickets and technological innovations in music
recording and broadcast, people’s access to performances of
orchestral music and opera was limited by geographical and
financial factors. Even for those who lived within reach of
concert venues and for whom the cost of tickets was not a
barrier, repeated, on-demand listening to any individual work
was impossible.

These factors gave rise to a huge market in musical ar-
rangements (or ‘translations’, as Beethoven called them),
where orchestral works were reworked for fewer instruments.
These reductions also allowed audience members to prepare
for a concert more thoroughly, by playing through the music
they would be hearing in advance. More dramatic changes
to the source were also common in arrangements, however,
including prècis, setting the melody to words, or freely com-
posing a theme and variations or a fantasia around the source.

Despite their significance in how music was heard and
understood – and financially in the music industry itself – ar-
rangements are relatively little-studied. The lower status of
arranged works has affected musicological discourse and, to
some extent, library acquisitions, leaving suitable materials
for study widely distributed and they have been seldom col-
lected into scholarly editions.

With the rise of library digitisation and publication
through IIIF, it has become practical to support the painstak-
ing task of finding, comparing and analysing these arrange-
ments, using decentralised tools, built on web standards such
as Linked Data. Starting with a musicological investiga-
tion of musical arrangements in review and edition in The
Harmonicon, a music periodical of the 1820s and 30s, we

illustrate how research of this kind has been supported us-
ing an application developed for the Beethoven in the House
project. This application allows a scholar to record obser-
vations about the musical and practical decisions being made
by editors whilst, in the process, creating a reusable Research
Object[1] that can be published with any scholarly outcomes.
Saving these annotations in Solid Pods[2] allows observa-
tions about public resources to be kept privately by a scholar,
or published at a time and in a way that matches their needs.

To support musicological investigation of different ver-
sions of a piece of music, we have used the Music Annota-
tion Ontology[3], which uses a FRBR-based model to allow
comparable passages in different arrangements – evidenced
by images, MEI editions or recordings – to be addressed
as a single conceptual entity. These can be used simply to
indicate where parallel passages occur, for example to sup-
port side-by-side browsing, but also to attach annotations at
the appropriate level of abstraction to discuss shared musical
concepts or instrumentation decisions.

I. ACKNOWLEDGMENTS

This research was undertaken by the project ‘Beethoven
in the House: Digital Studies of Domestic Music Arrange-
ments’, supported in the UK by the Arts and Humanities
Research Council (AHRC), project number AH/T01279X/1.
We gratefully acknowledge the contributions of our project
partners at the University of Paderborn, and the Beethoven-
Haus Bonn, and in particular of Johannes Kepper and Mark
Saccomano for development of the annotation application.

II. REFERENCES

[1] K. R. Page, B. Fields, D. D. Roure, T. Crawford, and J. S. Downie,
“Capturing the workflows of music information retrieval for repeatabil-
ity and reuse,” Journal Intelligent Information Systems, vol. 41, no. 3,
pp. 435–459, 2013.

[2] D. M. Weigl, W. Goebl, A. Hofmann, T. Crawford, F. Zubani, C. C. S.
Liem, and A. Porter, “Read/write digital libraries for musicology,”
in 7th International Conference on Digital Libraries for Musicology.
New York, USA: Association for Computing Machinery, 2020, p.
48–52.

[3] D. Lewis, E. Shibata, M. Saccomano, L. Rosendahl, J. Kepper, A. Han-
kinson, C. Siegert, and K. Page, “A model for annotating musical ver-
sions and arrangements across multiple documents and media,” in Pro-
ceedings of the 9th International Conference on Digital Libraries for
Musicology. New York, USA: Association for Computing Machinery,
2022, p. 10–18.
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Leveraging Music Domain Knowledge for Symbolic Music Modeling

Zixun Guo∗1 and Dorien Herremans1

1ISTD, Singapore University of Technology and Design, Singapore, nicolas.guozixun@gmail.com

Abstract—Compared to the absolute musical at-
tributes (e.g., pitch), the relative musical attributes (e.g.,
interval) contribute even more to human’s perception of
musical motifs and structures. To represent both at-
tributes in a shared embedding space, we propose the
Fundamental Music Embedding (FME) for symbolic mu-
sic based on a bias-adjusted sinusoidal encoding within
which the fundamental musical properties are explicitly
preserved. Taking advantage of the proposed FME, we
further propose a novel attention mechanism based on
the relative index, pitch and onset embeddings (RIPO at-
tention) such that the musical domain information can
be integrated into symbolic music models. Experimental
results show that our proposed model outperforms the
state-of-the-art transformers in melody completion and
generation tasks both subjectively and objectively.

I. METHOD

We represent a basic symbolic music sequence with
length n using the vector representation of pitch, dura-
tion and onset: P : {p1, ..., pn}, D : {d1, ..., dn}, O :
{o1, ..., on}. More generally, these event tokens are defined
as fundamental music tokens (FMTs) F : {f1, ..., fn}. The
relative attribute of FMT is defined as dFMT: ∆F . The
proposed Fundamental Music Embedding (FME) FME :
Rn×1 → Rn×d is shown in Eq 1-3 where B and
[bsink

, bcosk ] represent a base value and a trainable bias vec-
tor respectively. The embedding function for dFMT is de-
fined as the Fundamental Music Shift (FMS) and is shown
in Eq 4-5. Several fundamental music properties can be ob-
served in the embedding space. For instance, the L2 distance
between pitches in the FME conveys the musical interval (but
this cannot be guaranteed using one-hot or word embedding).

We further propose a novel attention mechanism in Fig 1
that uses relative index, pitch and onset embeddings (RIPO
attention) and incorporates FME. RIPO attention is able to
effectively tackle the issue mentioned in [2] that the relative
pitch and onset embeddings can not be efficiently utilized
beyond the JSB chorale dataset.

wk = B− 2k
d (1)

Pk(f) = [sin(wkf) + bsink
, cos(wkf) + bcosk ] (2)

FME(f) = [P0(f), ..., Pk(f), ...P d
2−1(f)] (3)

∗Zixun Guo is a Senior Research Assistant funded by Singapore’s MOE
under Grant No. MOE2018-T2-2-161; The full paper of this work [1] has
recently been accepted at AAAI 2023.

Figure 1: RIPO attention layer.

Ak(∆f) = [sin(wk∆f), cos(wk∆f)] (4)

FMS(∆f) = [A0(∆f), ..., Ak(∆f), ...A d
2−1(∆f)] (5)

II. RESULTS

We compare our model with the state-of-the-art (SOTA)
music models: Music Transformer [2] and Compound Word
Transformer [3] in a melody completion and generation task.
Table 1 shows that our model outperforms the SOTA models
both using analytical metrics as well as in a listening test.
Readers are encouraged to check the entire evaluation section
in the original paper [1].

Table 1: Model comparison. MT, LT, WE, OH, KL, ISR, AR stand for music
transformer and linear transformer, word embedding, one-hot encoding, KL
divergence, in-scale ratio, and arpeggio ratio respectively.

objective evaluation subjective evaluation

Model test loss KLp KLd ISR AR overallrating

MT+OH 2.405 0.015 0.035 0.969 0.038 2.80

LT+WE 2.943 0.026 0.040 0.971 0.032 -

RIPO+FME (ours) 2.367 0.011 0.024 0.981 0.049 3.57

III. REFERENCES

[1] Z. Guo, J. Kang, and D. Herremans, “A domain-knowledge-inspired
music embedding space and a novel attention mechanism for symbolic
music modeling,” in Proc. of the AAAI Conf. on Artificial Intelligence,
2023.

[2] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, I. Simon, C. Hawthorne,
N. Shazeer, A. M. Dai, M. D. Hoffman, M. Dinculescu, and D. Eck,
“Music transformer,” in Proc. of the Int. Conf. on Learning Representa-
tions, 2019.

[3] W.-Y. Hsiao, J.-Y. Liu, Y.-C. Yeh, and Y.-H. Yang, “Compound word
transformer: Learning to compose full-song music over dynamic di-
rected hypergraphs,” in Proc. of the AAAI Conf. on Artificial Intelli-
gence, 2021.
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Large-Scale Pretrained Model for Self-Supervised Music Audio
Representation Learning

Yizhi Li1* , Ruibin Yuan2,4*, Ge Zhang2,5*, Yinghao Ma3*, Chenghua Lin1† ,
Xingran Chen5, Anton Ragni1, Hanzhi Yin4, Zhijie Hu6, Haoyu He7,

Emmanouil Benetos3, Norbert Gyenge1, Ruibo Liu8, Jie Fu2†

1Department of Computer Science, University of Sheffield, UK {yizhi.li, c.lin}@sheffield.ac.uk
2Beijing Academy of Artificial Intelligence, China fujie@baai.ac.cn

3Centre for Digital Music, Queen Mary University of London, UK yinghao.ma@qmul.ac.uk
4School of Music, Carnegie Mellon University, PA, USA

5University of Michigan Ann Arbor, USA
6HSBC Business School, Peking University, China

7University of Tübingen & MPI-IS, Germany
8Dartmouth College, NH, USA

Abstract— Self-supervised learning technique is an
under-explored topic for music audio due to the chal-
lenge of designing an appropriate training paradigm. We
hence propose MAP-MERT, a large-scale music audio
pre-trained model for general music understanding. We
achieve performance that is comparable to the state-of-
the-art pre-trained model Jukebox using less than 2% of
parameters.

Index Terms— Self-supervised learning, Music represen-
tation learning, Music information retrieval

I. INTRODUCTION

Deep learning is undergoing a paradigm shift with the
rise of large-scale pre-trained models. In recent years, self-
supervised learning (SSL) has achieved significant results in
domains like computer vision, natural language processing,
and speech processing. SSL leverages large-scale unlabelled
data to obtain general representations, which could benefit a
wide range of resource-restricted downstream tasks.

Although such a large-scale pre-training paradigm is of
potential to improve annotation-limited music information
retrieval (MIR) tasks, it is not well-studied in the commu-
nity. Jukebox, the state-of-the-art SSL model learns music
representations by reconstructing the raw audio [1, 2]. But
it can barely be fine-tuned or efficiently adapted to more
downstream tasks due to the enormous number of 5 billion
parameters. To this end, we propose a novel representation
learning method for music understanding.

Inspired by HuBERT [4], we obtain discrete pseudo la-
bels by K-Means to conduct the mask prediction pre-training.
Apart from only focusing on distinguishing sound textures
like HuBERT, we use additional Chroma-based pseudo labels
and design a CQT reconstruction task to help Mu-BERT learn
the significant pitch information for music tasks. Moreover,

* The authors contributed equally to this work.
† Corresponding authors.

Approach MTT GTZAN GS EMO AverageAUC AP Acc Score R2Arousal R2Valence

CHOI 89.7 36.4 75.9 13.1 67.3 43.4 51.9
MUSICNN 90.6 38.3 79.0 12.8 70.3 46.6 53.7

CLMR 89.4 36.1 68.6 14.9 67.8 45.8 50.8
Music2Vec [3] 89.5 35.9 76.6 50.1 69.4 57.4 63.2
Jukebox (5B) 91.5 41.4 79.7 66.7 72.1 61.7 69.9
MERT (90M) 90.8 38.4 80.7 67.0 71.2 52.1 66.7

Table 1: Preliminary Results on MIR Tasks. The baseline results (except
Music2Vec) and probing protocol are adopted from JukeMIR [2]. All results
are produced with probing settings. Our model with 768-D representations
under the probing setting achieves performances comparable to the SOTA
Jukebox with 4800-D representations on the auto-tagging, genre classifica-
tion, key detection and emotion regression tasks.

we explore and analyse masking strategies and data augmen-
tation techniques appropriate for music audio pre-training.
To conclude, the aim and potential innovations of this work
include:

1. developing self-supervised methods for music under-
standing;

2. providing a general music pre-trained model with train-
able size; and

3. establishing a user-friendly and extendable MIR bench-
mark.

II. REFERENCES

[1] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and
I. Sutskever, “Jukebox: A generative model for music,” arXiv preprint
arXiv:2005.00341, 2020.

[2] R. Castellon, C. Donahue, and P. Liang, “Codified audio language model-
ing learns useful representations for music information retrieval,” arXiv
preprint arXiv:2107.05677, 2021.

[3] Y. Li, R. Yuan, G. Zhang, Y. MA, C. Lin, X. Chen, A. Ragni, H. Yin,
Z. Hu, H. He, et al., “Map-music2vec: A simple and effective baseline
for self-supervised music audio representation learning,” in ISMIR 2022
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Time–Frequency Scattering in Kymatio
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Abstract— We present a differentiable and GPU-
enabled implementation of time–frequency scattering in
Kymatio, an open-source package for wavelet scattering
and deep learning in Python. We outline Kymatio’s archi-
tecture and the algorithm’s key software implementation
details and encourage its use in music signal processing.

I. TIME–FREQUENCY SCATTERING IN KYMATIO

Joint time–frequency scattering (jTFS) is a convolutional
operator in the time-frequency domain. It extracts joint spec-
trotemporal modulations from audio signals at multiple res-
olutions, serving as a computational surrogate for auditory
similarities between sounds [1]. A new Python-based imple-
mentation of jTFS was introduced in [2], highlighting its po-
tential for auditory modelling and differentiable computing
in MIR-related tasks. We present an extension to the Kyma-
tio software to support jTFS for 1D signals.

Kymatio1 [3] supports differentiable wavelet scatter-
ing, with a focus on portability across modern deep learn-
ing frameworks (Torch, TensorFlow, Jax, Keras, Numpy).
Each framework has its particular lexis for tensor opera-
tions, hence Kymatio makes use of backends that implement
framework-specific primitive operations. Kymatio’s core
scattering functionality is backend-agnostic and exposed to
the user via a consistent frontend API.

To implement jTFS, we reuse Kymatio’s existing archi-
tecture and core routines for filterbank design and scattering
path computation. Yet previously, the API was restricted to
a single type of filterbank; the specification of a filterbank’s
parameters and its generation were coupled. Definition of
alternative filterbanks was challenging without a major re-
design of the core routines. We have redesigned the API
to be agnostic to filterbank design. Users can define a fil-
terbank function that yields centre frequencies ξ and band-
widths σ for filterbank construction. Similarly, we yield the
computed scattering paths from a generator to allow for con-
ditional computation of scattering paths.

∗Researcher at the UKRI CDT in AI and Music, supported jointly by the
UKRI (grant number EP/S022694/1) and Music Tribe

†Atlanstic2020 grant on Trainable Acoustic Sensors (TrAcS)
1https://github.com/kymatio/kymatio

In contrast to time scattering, it is necessary to compute
the first-order scattering transform in a breadth-first manner
in order to perform frequency scattering. To minimise the
memory overhead incurred by storage of intermediate sig-
nals, we compute second-order temporal scattering coeffi-
cients depth-first prior to subsequent frequency scattering.

Listing I shows an example of the user interface to the
core jTFS functionality. We expose necessary parameters for
most applications while retaining user-friendliness. We refer
the reader to the Kymatio documentation for explanations of
the keyword arguments. Our implementation supports both
vector ("time") and 3D ("joint") output formats. These
are a 2-tuple (path, time) and 3-tuple (path, freq, time

) respectively. The latter allows jTFS to serve as a feature
extractor for 2D convolutional neural networks.

1 import torch
2 from kymatio.torch import TimeFrequencyScattering
3 jtfs = TimeFrequencyScattering(J=8, J_fr=6, Q=12,
4 shape=8192, Q_fr=1,
5 format="time")
6 Sx = jtfs(torch.randn(8192))
7 print(Sx.shape) # (122, 32)

II. CONCLUSION

The Kymatio software offers a user-friendly, robust and
efficient implementation of the time–frequency scattering
transform. It is portable across modern deep learning frame-
works, paving the way for usage in music information re-
trieval and auditory perception research. In future work
we will investigate efficiency optimisations and alternative
wavelet filterbanks.
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Abstract— This paper discusses AI, its effects on the 

production condition of users and conditions of alienation made 

possible by AI music applications. 

I. INTRODUCTION 

This paper places the AI application AIVA under the 
Marxist lens as a means to stimulate discussion of capitalist 
practices in AI and the humans behind them. Esling’s keynote 
DMRN+15 [1] described some concerns about AI as somehow 
“unhinged”. Yet Esling ignores how AI changes the conditions 
of production which is a core aspect of capitalism usually 
leading to the establishment of ‘new’ practices, usually for 
enrichment purposes. Esling’s reliance upon slippery terms 
such as “natural continuity” in the Hobsbawmian sense is an 
“attempt to establish continuity with a suitable historic past” 
where claims of “continuity with it [this suitable historic past] 
is largely factitious.” [2] 

II. ALIENATION 1: NOT OWNING THE MEANS OF 

PRODUCTION 

Fisher states the process of alienation as "both a pre-
condition for exploitation and the result thereof. "[3] The 
charging of subscriptions (algorithmic rents [4]), removes the 
ability of users to own the means of production especially 
where AIVA also restricts users at the free and standard tiers 
from monetizing their labor efforts. Therefore AIVA changes 
the production condition at those levels where the only 
solution for users is higher rents where these restrictive 
conditions do not apply. 

III. ALIENATION 2: CONTROLLING PRODUCTION 

AIVA also benefits from human user production activity, 

at all subscription levels as this work is also ingested by the 

machine, thus, the machine learns from this unpaid labor. In 

effect this makes it difficult for any user to obtain a novel 

compositional or production advantage due to these 

improvements reflected throughout the machine as a ‘benefit’ 

for all users, including the company. 

IV. ALIENATION 3:  ACCUMULATION BY DISPOSSESSION 

Free and standard users also do not own their own 

copyrights which AIVA assigns to their AI. Therefore, free 

 
*Hussein Boon is with the University of Westminster and is a member of 

the Black Music Research Unit (BMRU). 

and standard rate users are dispossessed of their copyrights, 

which are accumulated for revenue generation opportunities 

such as synchronization, also revealing AIVA as a competitor 

in the creative space. 

V. ALIENATION 4:  COMPOSING WITH INFLUENCE 

The final act of dispossession is via AIVA’s composing 

with influence (CWI) option. CWI is AIVA’s means to deal 

with issues observed by Huang et al. [5]. Users at all tiers are 

encouraged to use CWI which either alienates existing rights 

holders, or for users to alienate their own rights by using their 

own piece as influence. The overall effect is that CWI music 

at the free or standard tiers will be owned by AIVA and all 

CWI music will also be ingested by the machine for the 

‘benefit’ of all i.e. AIVA.  

VI. ALIEN POWER:  CONCLUSION 

This paper’s examples satisfy Braverman’s definition of 

alien power “the machines must not be the property of the 

producer, nor of the associated producers, but of an alien 

power.” [6] There is sufficient evidence that these changes to 

production conditions are significant, neither neutral nor 

“unhinged”. 
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Abstract— As a part of my larger body of work, I have
been developing numerous digital tools to aid in the cre-
ative exploration and simulation of abstract percussion
instruments. To further understand the creative impli-
cations of these abstract percussion instruments, I have
curated a study which encourages participants to exhibit
their practical intuition towards both familiar and unfa-
miliar percussive sonorities. The aim of this approach is
to ascertain a deeper understanding of the cultural and
semantic distance between abstract digital musical in-
struments and the more traditional musical instruments
that they represent.

Index Terms— digital musical instruments, arbitrarily
shaped drums, creative research, practice based research

I. BACKGROUND & MOTIVATION

As both an artist and a researcher, I am often working to-
wards the fruition of my own creative ideas, utilising and
developing upon a reflexive [1] and process [2] oriented un-
derstanding. This self driven approach seems to underpin
a majority of the current developments and explorations of
digital musical instruments [3], and is interwoven amongst
many contemporary artistic narratives [4]. The rational be-
hind the study presented here is to extend beyond this view-
point, whilst examining the sentiments and idioms of the dig-
ital musical instruments I have created from outside of my
own cultural perspective. This project aims towards gener-
ating research through art and research for art [5] which
serves to recontextualise and redefine my own epistemic di-
rectives in design and creativity.

II. METHODOLOGY

For this study, participants were approached by invite only
to compose a piece of music using a sample library of
2000 arbitrarily shaped drums [6]. The drums were all of
varying shapes and size, and were generated using a two-
dimensional physical model, with each drum being sampled
in five unique strike locations. Participants were encouraged

∗Research supported by UK Research and Innovation, EPSRC grant
EP/S022694/1.

to compose freely, and in a way that felt familiar and natu-
ral to them, using whatever means they felt most comfortable
with. The only limitation imposed upon them were the five
briefs shown below, which served to focus their attention pri-
marily on composing music with percussion instruments.

1. Compose only with the sounds contained in the sample pack,
without employing audio manipulation or effects.

2. Compose only with the sounds contained in the sample pack,
allowing for audio manipulation or effects.

3. Compose with the sounds contained in the sample pack,
without the use of audio manipulation or effects, but with the
inclusion of any other live/acoustic percussion performance.

4. Compose with the sounds contained in the sample pack,
where audio manipulation and effects are allowed, with the
inclusion of a live/acoustic percussion performance.

5. Compose with the sounds contained in the sample pack and
any other percussive sounds or effects that the practitioner
desires.

Once each participant had finished their composition,
they were interviewed for approximately one hour. The first
half of the interview was dedicated to the participant’s cul-
tural impression of percussion instruments in general, ques-
tioning their semantic, idiomatic and functional role in an
open musical context. The second half of the interview fea-
tured a critical examination of the percussion instruments
used as part of this study, in comparison with the formal char-
acteristics previously outlined. The interview would then
conclude with an analysis of each participant’s composition,
assessing its material and form alongside the practicalities
and affordances used to create it.
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Abstract— This article presents a preliminary study
on the usefulness of Web 3.0 accessible information re-
garding musical instrument recognition (MIR) and dig-
ital audio analysis through neural networks (NN). We
present a bot-based modular architecture prototype in-
spired by previous research [1], where we develop a com-
plementary module composed of a two-part process: 1) a
deep learning (DL) sound processing algorithm; and 2) a
service for audio tagging that can be used as a platform to
study model usage. We integrate all of the code through a
Virtuoso Universal Server instance to deal with SPARQL
queries and contextualise positive or negative results of
(e.g.) prediction.

Index Terms— Bot, Telegram, Semantic Web, Deep
Learning

I. INTRODUCTION

One of the biggest challenges in Web 3.0 is to keep up
with accurate and truthful behaviour in terms of information
[2, 3]. Millions of data points need to be ordered and struc-
tured for better understanding, of both humans and divergent
algorithms [4]. This research tries to assess quality, valid-
ity and reliability of information obtained through deep NN
on audio signals [5]. For this we built on the already pro-
posed architecture (Fig. 1) Beat Byte Bot [1] and developed
it into an open source platform1 that can be used to study
deep NN accuracy [6, 7]. The architecture uses Telegram
Bot API [8, 9] and allows for a bot to search and analyse
audio files on group chats. With this new research, we are
now able to run those files through Tensorflow.js [10] audio
models and link their usage and generated data to a semantic
knowledge graph [11]. We also document experiences with
mtt-musicnn and mtt-vgg [12] where we integrate with Virtu-
oso [13] for Linked Data semantic queries using a SPARQL
endpoint [14].

II. METHODOLOGY

Our methodology starts by running an uploaded audio
file into the system where inference occurs and leads to stor-
ing the information generated on a graph with custom objects

1https://github.com/gilpanal/b8b_virtuoso

to deal with the ontology [15, 16]. Both of the used models
are compatible with the library Essentia.js [17] and trained
with the MagnaTagATune dataset, the one used for our test-
ing [18]. Different subsets of samples within the MagnaTa-
gATune audio dataset have been validated for content and
comparing the output of the classifiers with the manual an-
notations made on the original dataset. Each file processed
by the system has been translated into a new entry in the
knowledge graph, so that each audio track has an associated
prediction, a series of labels and parameters that provide in-
formation of the inference process [19].

III. RESULTS AND CONCLUSIONS

Through script testing we verified the direct influence
of manual annotations on the dataset and how certain errors
in sound identification can translate into inaccuracies in the
models [20]. Those errors can cause one instrument classi-
fication failure, e.g., between the cello and the violin. We
found that the accuracy of both models tends to be equiva-
lent, albeit inaccuracy of classification between on the harp
(40%) and the guitar. We also emphasise that the seman-
tic gap phenomenon also happens when classifying human
voice in this context. Trying to tackle issues of accuracy we
propose to use within our architecture Linked Data method-
ologies to derive a more meaningful and semantic relation-
ship with the audio source. By previous results, we believe
this can lead to more precise outcomes [21].

IV. FUTURE RESEARCH

We plan to amplify the current bot-based ecosystem to in-
clude cross validation through Linked Open Data databases
to complement NN misleading results [22]. That can be
tamed by providing more information in a graph, as more
elaborated analysis and vocabularies are required. In this
regard we build on the philosophy of reliable entities such
as MusicBrainz or DBPedia [23] [24], and the Solid ”Social
Linked Data” project that can be taken into account for future
experiments in the same line [25].

V. REFERENCES
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Figure 1: Block diagram to represent the system architecture, built on top of previous research. In grey are the main modules of the system, including the
Telegram server, in blue the user connection point -mobile or desktop- and in green the infrastructure for each module.
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[2] A. Rettinger, U. Lösch, V. Tresp, C. d’Amato, and N. Fanizzi, “Mining
the semantic web,” Data Mining and Knowledge Discovery, vol. 24,
no. 3, pp. 613–662, 2012.

[3] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web. a new
form of web content that is meaningful to computers will unleash a
revolution of new possibilities,” Scientific American, vol. 5, 2001.

[4] V. Tresp, M. Bundschus, A. Rettinger, and Y. Huang, “Towards ma-
chine learning on the semantic web,” in Uncertainty reasoning for the
Semantic Web I. Springer, 2006, pp. 282–314.

[5] P. Kasnesis, N.-A. Tatlas, S. A. Mitilineos, C. Z. Patrikakis, and S. M.
Potirakis, “Acoustic sensor data flow for cultural heritage monitoring
and safeguarding,” Sensors, vol. 19, no. 7, p. 1629, 2019.

[6] A. Solanki and S. Pandey, “Music instrument recognition using deep
convolutional neural networks,” International Journal of Information
Technology, pp. 1–10, 2019.

[7] V. S. Kadandale, “Musical instrument recognition in multi-instrument
audio contexts,” Ph.D. dissertation, MSc thesis, Universitat Pompeu
Fabra, 2018.

[8] T. Khaund, M. N. Hussain, M. Shaik, and N. Agarwal, “Tele-
gram: Data collection, opportunities and challenges,” in Annual In-
ternational Conference on Information Management and Big Data.
Springer, 2020, pp. 513–526.

[9] D. Korotaeva, M. Khlopotov, A. Makarenko, E. Chikshova, N. Start-
seva, and A. Chemysheva, “Botanicum: a telegram bot for tree clas-
sification,” in 2018 22nd Conference of Open Innovations Association
(FRUCT). IEEE, 2018, pp. 88–93.

[10] D. Smilkov, N. Thorat, Y. Assogba, C. Nicholson, N. Kreeger, P. Yu,
S. Cai, E. Nielsen, D. Soegel, S. Bileschi, et al., “Tensorflow. js:
Machine learning for the web and beyond,” Proceedings of Machine
Learning and Systems, vol. 1, pp. 309–321, 2019.
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Abstract— Recent work has enabled direct optimisa-
tion of unconstrained sinusoidal model frequencies by
gradient descent, with applications in audio analysis
and synthesis via differentiable digital signal process-
ing. However, two challenges continue to impede fur-
ther progress. First, we observe that the solution space is
symmetric under permutation, leading to a phenomenon
known as the responsibility problem when training neu-
ral network controllers. Second, in the case where rela-
tive model frequencies are constrained, we observe that
an inability to exploit this symmetry induces a class of
local minimum that can prevent convergence. In this ab-
stract we describe these symmetries and minima. In our
talk, we will discuss possible approaches to circumvent-
ing them and present early experimental results.

Index Terms— differentiable signal processing, ma-
chine learning, parameter estimation

I. SYMMETRY

The surrogate model described in [1] allows the fre-
quency parameters of a sinusoidal model to be optimized by
gradient descent by extending its parameters to the complex
domain:

sn(z) = Re (zn) = |z|n cosn∠z. (1)

We consider the mean-squared error loss of our model under
parameters z ∈ RK and some target signal y ∈ RN :

L(y, z) =
N∑

n=1

(
yn −

K∑
k=1

sn(zk)

)2

(2)

It is clear that due to the summation over z, the function L
is symmetric under permutations {π1, . . . , πK!} of z. When
z is the output of a neural network, this leads to the respon-
sibility problem, as described by Zhang et al. [2]. Briefly
summarised, the ordered nature of a neural network’s outputs
causes a discontinuous partitioning of its output space when
trained with an orderless objective. This generally prevents
convergence in such problems.

II. MINIMA IN CONSTRAINED MODELS

We define a constrained sinusoidal model as:
∗Ben Hayes is supported by UK Research and Innovation [grant number

EP/S022694/1].

xn =

K∑
k=1

αk cos c(ω, k)n, (3)

where α and ω are, respectively, the independent amplitude
and frequency parameters. The function c defines a relation-
ship between the independent frequency parameter and the
true component frequencies. It is straightforward to show
that signals produced by a harmonic model or through am-
plitude and frequency modulation can be expressed in this
way.

We observe that, despite the summation across values of
k, such a model is not symmetric under permutations of ω.
Further, the dependence of true component frequencies on
k imposes an effective ordering on frequency components.
Thus, when optimsing such a model using the surrogate from
Eqn 1, local minima occur for values of ω where there exists
a k such that c(ω, k) ∈ {ω̂j | j = 1, . . . , J} where ω̂ is the
vector of ground truth component frequencies.

In other words, a gradient based optimiser will become
stuck when any of the model’s true frequency components
match with any of the frequency components of the target
signal, even if other components remain unmatched. Whilst
an unconstrained model would exploit the symmetry of the
objective space to match the remaining components with its
free parameters, the ordering imposed by constraint c pre-
vents this in the constrained model.

III. CONCLUSION

Building on our recent work on sinusoidal frequency op-
timisation, we present two related challenges in optimising
differentiable sinusoidal models by gradient descent. Re-
solving these issues would be of particular benefit in dif-
ferentiable digital signal processing, with direct applications
in neural music and speech synthesis. In our talk, we will
present our work to date on candidate solutions and discuss
directions for future research.
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Abstract 

Neural network architectures for generative modelling of raw audio are fast 

evolving, but their creative applications remain the preserve of very few artists. 

Part of my research* as a PhD candidate has been to investigate their usefulness 

to my long-standing practice as an improvising saxophonist with a view to 

generating wider knowledge of their potential utility to others. I will showcase 

outputs of my practice-based research, including raw audio datasets spawned 

from various aspects of my practice and samples generated from models of these 

data. I will then discuss the musical value of these outputs. My research finds 

generative models of raw audio to be of particular value as assistive technologies 

for the practice of improvisation, as agents for musical human-computer 

interaction and naturally as engines for sample-based musics. This work 

motivates future studies on their usefulness to other practitioners of improvised 

music, researcher-practitioners interested in interactivity and musicians working 

with sampling. 

 

MODEL ARCHITECTURES USED 

While recent advancements in generative modelling of raw audio such as RAVE [1] show 

impressive output fidelity, priorities of my work include practicality of training and likelihood 

of engagement from musicians. I have therefore opted for two longer-established methods, 

SampleRNN [2] and WaveGAN [3]. Both are trainable within a small number of hours on a 

single GPU, are well-documented with stable, up-to-date implementations [4][5], are 

straightforward to understand and train, and show distinct characteristics of outputs owing to 

their divergent processes. I expect the findings of my work to be applicable to alternative model 

architectures anyway. 
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Practical Text-Conditioned Music Sample Generation

Scott H. Hawley1,21 and Zach Evans, C.J. Carr, and Flavio Schneider2

1Chemistry and Physics Department, Belmont University, USA, scott.hawley@belmont.edu
2Harmonai

Abstract— We present a system whereby produc-
ers and composers can generate new short musical au-
dio sound samples and foley effects by fine-tuning a
text-conditioned generative diffusion model on their own
sound libraries. Inference proceeds by users typing a de-
scription of the sound they would like to hear by sup-
plying a ”fake” full file path of a conceivable sound as it
might appear in a library of sound samples. This model
is capable of generating stereo or mono at high sample
rates (e.g. 48 kHz), can run locally on small GPUs or Ap-
ple Silicon, and offers high-quality examples. This sys-
tem is intended as a practical tool for music creators to
be able to generate new sounds, while avoiding copyright
infringement or other IP issues. We present an overview
of such a system currently in operation, which will be re-
leased soon.
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Which car is moving? A ’listening’ approach using distributed
acoustic sensor systems
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Abstract— Identifying the type, size, and occupancy
level of moving vehicles is a crucial problem in intelli-
gent transportation systems (ITS) as it enables the mod-
eling of motorised traffic and, therefore, the conception
and optimisation of sustainable mobility solutions. Com-
puter vision is the most promising solution as it captures
all the required details for ITS precise modeling. How-
ever, the method suffers from occlusion, adverse weather
and visibility conditions and, more importantly, privacy
intrusion. This project examines distributed acoustic sen-
sor (DAS) systems as an alternative data source in which
moving traffic is ’listened to’ instead of watched.

I. DAS TECHNOLOGY AND DATASET

A DAS system contains a interrogator and an optical fi-
bre. The interrogator locates signals by travel time within
fiber (similar to RADAR) and collects back-scattered light
reflected by an optical fibre when it is deformed by acoustic
vibrations (see Figure 1). Each point on the optical fibre can
be used as a sensing unit to achieve continuous detection of
acoustic event along the length of the fibre (up to 50km).

In a controlled field trial, DAS data was collected on a
4.8km road stretch equipped with a DAS system. Five differ-
ent cars were driven in a predefined order in both directions
of the road. In a two-dimensional signal-displacement map
(see Figure 2(Top-left)), the x-axis indicates the time in fibre
shots, where one shot s is equivalent to 1/1000.04 seconds.
The y-axis shows the position along the fibre in bins where
one bin b is equivalent to 0.68 metres. The color intensity
of each pixel, at bin b and shot s, shows the strength of dis-
placement in radians [rad].

Figure 1: DAS system

II. PROPOSED METHODOLOGY AND RESULTS

We posit that each passing vehicle generates a unique
DAS signature (sequence of displacements) that is repeated
in different experiments with various speeds, occupancy, and
other conditions. To this end, we propose a one dimensional

Figure 2: (Top-left) A two-dimensional recording of DAS signals in which
the signal captured at b=205 is shown as displacement in [rad] over time
in the top-right figure. (Bottom) 1D-CNN architecture used for DAS signal
classification. Number of filters, filter size, stride and dimension for each
layer are presented.

convolution neural network (1D-CNN) in Figure 2(Bottom)
to solve two classification problems: (1) identify one of five
cars and (2) estimate the car size as Large and Small [1].

Results of problem (1) and (2) are shown in Table 1. Two
conclusions are drawn. Firstly, each car has a unique signa-
ture that is not affected by the speed, as seen from the results
of (1). Secondly, the DAS signal contains information about
the car size (related to weight) in addition to that of the car
type, as seen from the results of (2).

speed/
Accuracy 30 40 50 60 70 JS

(1) mean 0.91 0.89 0.94 0.96 0.93 0.913
SD 0.01 0.02 0.004 0.01 0.009 0.008

(2) mean 0.97 0.89 0.93 0.97 0.96 0.926
SD 0.009 0.01 0.001 0.007 0.009 0.007

Table 1: The accuracy results of problems (1) and (2) for specific speeds (in
km/h) and for joint speeds JS where samples of all five speeds are mixed.
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YourMT3: a toolkit for training multi-task and multi-track
music transcription model for everyone

Sungkyun Chang, Simon Dixon and Emmanouil Benetos

Centre for Digital Music, Queen Mary University of London, UK

Abstract— This work-in-progress presents a compact
toolkit for reproducing the training of T5-based multi-
instruments and multi-track transcription models on
multiple MIR tasks. We plan to release our code in early
2023 at https://3.ly/amamR.

Index Terms— automatic music transcription, music in-
formation retrieval, transformers, multi-task learning

I. INTRODUCTION

In recent years, multi-task learning approach [1, 2]
has shown significant performance gains in multi-track
and multi-instrument automatic music transcription (AMT).
However, the training was not easy to reproduce due to the
more complex structure required for data processing and task
management compared to previous works for single-task and
single-instrument AMT [3] or symbolic music generation
[4]. In this work, our goal is to present an easy toolkit for
training multi-task music transcription models [1, 2].

II. YOURMT3

The proposed toolkit in Figure 1 consists of two main
components: task and trainer. Listed below are some design
considerations to simplify training in the context of multi-
task learning on audio and symbolic music data.

Defining an MIR Task: A task is simply definable with a
set of MIDI tokenizer, vocabulary, and an audio processor.
Vocabulary interacts with tokenizer, and together with audio
processor it configures the data-stream for mixing subtracks.

Builder: We provide a task builder that can import various
datasets through the mirdata library. All data are prepro-
cessed and written only once into our format.

Data Streaming I/O: Our requirement is to have instant ac-
cess to partial segments at specific timings from a large num-
ber of multi-track audio and MIDI files. For this we record
note events in small separate segments and merge them on
load. For piano rolls, we pre-load compressed sparse matrix.

Trainer: Our models are primarily based on T5 from the
huggingface library, which has an active community
among Transformer practitioners. Powered by Pytorch

Tokenizer

Vocabulary

AudioSubmixPolicy

PyPI: mirdata
(extended)

TaskID

🤗 Model

TaskBuilder

Trainer

DataStreamIO

LightningDataModule

Logger

TaskConfig

File

read

write

Figure 1: An overview of how to prepare a single MIR task (pink block),
and train (yellow block) a model on the task. The dotted line represents
preprocessing that runs only once during the task build, and the solid line
represents streaming of data during training.

Lightning 1 and DeepSpeed 2, a highly efficient train-
ing is expected on a single GPU, as well as multi GPUs.

III. LIMITATIONS

Compared to the generic data I/O 3 adopted by MT3
[1], our toolkit is more simplified with only music data in
mind. This design focus, however, can limit flexibility for
non-music data. Unlike previous MT3, this toolkit includes
a training code and on-the-fly audio processor with full ran-
domness. Despite these advantages, the inability to support
TPUs due to the CPU workloads can be another limitation.
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