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A SIMPLE POLYNOMIAL-TIME APPROXIMATION ALGORITHM FOR THE TOTAL

VARIATION DISTANCE BETWEEN TWO PRODUCT DISTRIBUTIONS

WEIMING FENG, HENG GUO, MARK JERRUM, JIAHENGWANG

Abstract. We give a simple polynomial-time approximation algorithm for the total variation distance

between two product distributions.

1. Introduction

�e total variation (TV) distance is a fundamental metric to measure the difference between two
distributions. It is essentially the !1 distance. Unlikemany other quantities for similar uses, such as the
relative entropy and the j2-divergence, the TV distance does not tensorise over product distributions.
In fact, it was discovered recently that, somewhat surprisingly, exact computation of the total variation
distance, even between product distributions over the Boolean domain, is#P-hard [1].

�is leaves open the question of approximation complexity of the TV distance. In [1], the authors
give polynomial-time randomised approximation algorithms in two special cases over the Boolean
domain, when one of the distribution has marginals over 1/2 and dominates the other, or when one of
the distribution has a constant number of distinct marginals. �eir method is based on Dyer’s dynamic
programming algorithm for approximating the number of knapsack solutions [2].

In this note, we give a simple polynomial-time approximation algorithm for total variation distance
between two product distributions. Our algorithm is based on the Monte Carlo method and does not
have further restrictions.

�eorem 1.1. Let [@] = {1, 2, . . . , @} be a finite set. �ere exists an algorithm such that given two

product distributions %,& over [@]= and parameters Y > 0 and 0 < X < 1, it outputs a random value 3̂ in

time $ ( =
2

Y2
log 1

X
) such that (1 − Y)3TV (%,&) ≤ 3̂ ≤ (1 + Y)3TV (%,&) holds with probability at least

1 − X.

Our algorithm can also handle the case where each coordinate has a different domain size without
any change. In �eorem 1.1, the input product distributions are given by the marginal probability
for each coordinate and each 2 ∈ [@] in binary. �e stated running time assumes that all arithmetic
operations can be done in $ (1) time.

To approximate the TV distance, the naı̈ve Monte Carlo algorithm works well when the two distri-
butions are sufficiently far away. However, when the TV distance is exponentially small, naı̈ve Monte
Carlo may require exponentially many samples to return an accurate estimate. Our idea is to consider
a distribution that can be efficiently sampled from and yet boosts the probability that the two distribu-
tions are different. Ideally, we would want to use the optimal coupling, but that is difficult to compute.
We use instead the coordinate-wise greedy coupling as a proxy, where each coordinate is coupled
optimally independently. We further condition on the (potentially very unlikely) event that the two
samples are different. Normally, conditioning on an unlikely event is a bad move since computational
tasks would have become hard. However, here they are still easy thanks to the independence of the
coordinates under the coupling. With this conditional distribution, our estimator is the ratio between
the probabilities of the assignment in the optimal coupling and in the greedy coupling. We show that
this estimator is always bounded from above by 1 and its expectation is at least 1/=. �is means that
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the standard Monte Carlo method will succeed with high probability using only polynomially many
samples.

One remaining question is if a deterministic approximation algorithm exists for the TV distance.
�e answer might be positive, because of the connection with counting knapsack solutions established
by Bha�acharyya, Gayen, Meel, Myrisiotis, Pavan, and Vinodchandran [1], and the deterministic ap-
proximation algorithm for the la�er problem by Štefankovič, Vempala, and Vigoda [4] and by Gopalan,
Klivans, and Meka [3], independently.

2. Preliminaries

LetΩ be a (finite) state space, and % and & be two distributions over Ω. �e total variation distance
is defined by

3TV (%,&) :=
1

2

∑

l∈Ω

|%(l) −& (l) | .

It satisfies the following:

• for any event � ⊆ Ω, 3TV (%,&) ≥ |%(�) −& (�) |;
• for any coupling C between % and &, 3TV (%,&) ≤ PrC [- ≠ . ], where - ∼ % and . ∼ &.

In particular, there exists an event �$ and an optimal couplingO such that 3TV (%,&) = |%(�$) −& (�$) | =

PrO [- ≠ . ]. Optimal couplings are not necessarily unique. For any optimal coupling O, it holds that

∀l ∈ Ω, PrO [- = . = l] = min{%(l), & (l)}.(1)

�e above equation holds because (1) for any valid coupling C, it holds that PrC [- = . = l] ≤

min{%(l), & (l)}; (2) to achieve the optimal coupling, every l must achieve the equality. We have

PrO [- = l ∧. ≠ -] = PrO [- = l] − PrO [- = . = l] = max{0, %(l) −& (l)}.(2)

3. Algorithm

From now on we consider only product distributions. Let Ω = [@]= be the state space, where
[@] = {1, . . . , @} is a finite set. Let % = %1 ⊗ %2 ⊗ · · · ⊗ %= and & = &1 ⊗&2 ⊗ · · · ⊗&= be two product
distributions. Let O be an (arbitrary) optimal coupling between % and &.

Let C be the coordinate-wise greedy coupling. Namely, for each coordinate 8 and 2 ∈ [@], PrC [-8 =

.8 = 2] = min{%8 (2), &8 (2)}, and the remaining probability can be assigned arbitrarily as long as C is
a valid coupling (but each coordinate is independent). In other words, for each 8 ∈ [=], C couples %8

and &8 optimally and independently. Note that

PrC [- ≠ . ] = 1 − PrC [- = . ] = 1 −

=∏

8=1

(1 − 3TV (%8, &8))(3)

can be computed exactly.
Consider the distribution c such that

c(l) := PrC [- = l | - ≠ . ].(4)

We may assume % and & are not identical, as otherwise the algorithm just outputs 0. �is makes sure
that the distribution c is well-defined. �e following lemma shows that we can draw random samples
from c efficiently.

Lemma 3.1. We can sample from the distribution c in $ (=) time.

Proof. We draw a random sample l ∈ [@]= from c index by index. In the :-th step, where 1 ≤ : ≤ =,
we sample l: ∈ [@] from c: (· | l1, l2, . . . , l:−1), which is the marginal distribution on the :-th
variable conditional on the values of the first : − 1 variables being l1, l2, . . . , l:−1. By definition,

c: (l: | l1, l2, . . . , l:−1) =
Pr-∼c [∀1 ≤ 8 ≤ :, -8 = l8]

Pr-∼c [∀1 ≤ 8 ≤ : − 1, -8 = l8]
.
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Asl1, . . . , l:−1 are sampled from themarginal distribution of c, the denominator is positive. We show
how to compute the numerator next, and the denominator can be computed similarly. By definition

Pr-∼c [∀1 ≤ 8 ≤ :, -8 = l8] = Pr(-,. )∼C [∀1 ≤ 8 ≤ :, -8 = l8 | - ≠ . ]

(by Bayes’ law) =
(
1 − Pr(-,. )∼C [- = . | ∀1 ≤ 8 ≤ :, -8 = l8]

)
·

∏:
8=1 %8 (l8)

1 −
∏=

8=1 (1 − 3TV (%8, &8))
.

In the coupling C, every pair of -8 and .8 is coupled optimally and independently. We have

Pr(-,. )∼C [- = . | ∀1 ≤ 8 ≤ :, -8 = l8] =

:∏

8=1

PrC [-8 = .8 = l8]

PrC [-8 = l8]

=∏

8=:+1

PrC [-8 = .8]

(by (1)) =

:∏

8=1

min{%8 (l8), &8 (l8)}

%8 (l8)

=∏

8=:+1

(1 − 3TV (%8, &8)).(5)

Combining the two equations, we can computePr-∼c [∀1 ≤ 8 ≤ :, -8 = l8], and thus we can compute
and sample from c: (· | l1, l2, . . . , l:−1). When sampling from the distribution c, we pre-process∏=

8=:+1 (1 − 3TV (%8, &8)) for all : , and maintain the prefix products
∏:

8=1 min{%8 (l8), &8 (l8)} and∏:
8=1 %8 (l8). �is way, each conditional marginal distribution can be computed with$@ (1) incremen-

tal cost. Hence, the total running time is $@ (=), where $@ (·) hides a factor linear in @. �

Let l be a random sample from c. Now consider the following estimator:

5 (l) :=
PrO [- = l ∧ - ≠ . ]

PrC [- = l ∧ - ≠ . ]
=
max{0, %(l) −& (l)}

PrC [- = l ∧ - ≠ . ]
,(6)

where the second equality is due to (2). �is estimator 5 is well-defined, because when PrC [- =

l ∧ - ≠ . ] = 0, c(l) = 0 as well and l will not be drawn.
In fact, if c(l) = 0, or equivalently PrC [- = l ∧ - ≠ . ] = 0, it must be that max{0, %(l) −

& (l)} = 0. �is is because PrC [- = l ∧ - ≠ . ] = 0 implies that either PrC [- = l] = %(l) = 0

or PrC [- ≠ . | - = l] = 0. In the first case, max{0, %(l) − & (l)} = 0. In the second case
PrC [. = l | - = l] = 1, which implies that & (l) ≥ %(l), and max{0, %(l) −& (l)} = 0 as well.

Lemma 3.2. For any l ∈ Ω with c(l) > 0, 5 (l) can be computed in $ (=) time.

Proof. Note that

PrC [- = l ∧ - ≠ . ] = %(l) PrC [- ≠ . | - = l] = %(l) (1 − PrC [- = . | - = l]).

Since c(l) > 0, it holds that %(l) > 0. Using (5), we have

5 (l) = max



0,

1 −
& (l)
% (l)

1

% (l)
PrC [- = l ∧ - ≠ . ]



= max



0,

1 −
∏=

8=1
&8 (l8 )
%8 (l8 )

1 −
∏=

8=1
min{%8 (l8 ) ,&8 (l8 ) }

%8 (l)



,

which can be computed in $ (=) time. �

Lemma 3.3. We have the following:

Ec 5 =
PrO [- ≠ . ]

PrC [- ≠ . ]
;(7)

1

=
≤ Ec 5 ≤ 1.(8)

Moreover, for any l ∈ Ω with c(l) > 0,

0 ≤ 5 (l) ≤ 1,(9)

and it holds that

Varc 5 ≤ Ec 5 .(10)
3



Proof. For (7), Let Ω+ = {l ∈ Ω | c(l) > 0}. �en,

Ec 5 =
∑

l∈Ω+

c(l) ×
PrO [- = l ∧ - ≠ . ]

PrC [- = l ∧ - ≠ . ]

=

∑

l∈Ω+

PrC [- = l ∧ - ≠ . ]

PrC [- ≠ . ]
×
PrO [- = l ∧ - ≠ . ]

PrC [- = l ∧ - ≠ . ]

=

∑
l∈Ω+

PrO [- = l ∧ - ≠ . ]

PrC [- ≠ . ]
=
PrO [- ≠ . ]

PrC [- ≠ . ]
,

where in the last equation we used the aforementioned fact that c(l) = 0 implies max{0, %(l) −

& (l)} = 0.
For (8), as O is the optimal coupling, PrO [- ≠ . ] ≤ PrC [- ≠ . ]. For the other direction, notice

that O projected to coordinate 8, denoted O8 , is a coupling between %8 and &8 . �us,

PrO [- ≠ . ] ≥ max
1≤8≤=

PrO8
[-8 ≠ .8] ≥ max

1≤8≤=
3TV (%8, &8) ,

On the other hand, by the union bound,

PrC [- ≠ . ] ≤

=∑

8=1

PrC8 [-8 ≠ .8] =

=∑

8=1

3TV (%8, &8) ≤ = max
1≤8≤=

3TV (%8, &8) .

For (9), the lower bound is trivial. For the upper bound, we only need to consider l ∈ Ω+ such that
%(l) > & (l). In this case

5 (l) =
max{0, %(l) −& (l)}

PrC [- = l ∧ - ≠ . ]
=

%(l) −& (l)

PrC [- = l] PrC [- ≠ . | - = l]

=
%(l) −& (l)

%(l) (1 − PrC [- = . | - = l])
=

1 −
& (l)
% (l)

1 − PrC [- = . | - = l]
.

Since C couples each coordinate independently,

PrC [- = . | - = l] =

=∏

8=1

min{%8 (l8), &8 (l8)}

%8 (l8)
≤

=∏

8=1

&8 (l8)

%8 (l8)
=
& (l)

%(l)
.

�is finishes the proof of (9).
For (10), since 0 ≤ 5 (l) ≤ 1 for all Ω ∈ Ω+, 5 (l)

2 ≤ 5 (l) and thus Ec 5 2 ≤ Ec 5 . We have

Varc 5 = Ec 5 2 − (Ec 5 )2 ≤ Ec 5 2 ≤ Ec 5 . �

Lemma 3.3 implies that standard Monte Carlo method can be used to accurately estimate Ec 5 =
PrO [-≠. ]
PrC [-≠. ]

. To implement the Monte Carlo algorithm, we use Lemma 3.1 and Lemma 3.2.

To be more specific, our approximate algorithm is to compute the median of means. �e input con-
tains the descriptions of 2= distributions %1, %2, . . . , %=, &1, &2, . . . , &= together with two parameters
Y > 0 and 0 < X < 1. �e algorithm proceeds as follows:

• for each 8 from 1 to < = ⌈10=
Y2

⌉, independently sample l8 ∼ c and let

� =
1

<

<∑

8=1

5 (l8);

• use independent samples to compute � for B = 10⌈log 1

X
⌉ times to get �1, �2, . . . , �B and let

�̂ = Median{�1, �2, . . . , �B};

• output the value 3̂ = (1 −
∏=

8=1 (1 − 3TV (%8, &8)))�̂.

We claim that

Pr [|� − Ec 5 | ≥ Y Ec 5 ] ≤
1

10
.(11)
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Assuming that (11) holds, by the Chernoff bound, it holds that

Pr

[����̂ − Ec 5

��� ≥ Y Ec 5
]
≤ X.

Using (7) in Lemma 3.3 and (3), we have

Pr

[���3̂ − 3TV (%,&)

��� ≥ Y3TV (%,&)
]
= Pr

[����̂ − Ec 5

��� ≥ Y Ec 5
]
≤ X.

By Lemma 3.1 and Lemma 3.2, the total running time is $ (=<B) = $ ( =
2

Y2
log 1

X
). �is proves �eo-

rem 1.1.
Finally, we prove the claim (11). Note that the expectation and the variance of the random variable

� satisfy that E � = Ec 5 and Var � =
1

<
Varc 5 . By Chebyshev’s inequality,

Pr [|� − Ec 5 | ≥ Y Ec 5 ] = Pr [ |� − E � | ≥ Y E �] ≤
Var �

Y2(E �)2
=

Varc 5

<Y2(Ec 5 )2

≤
1

<Y2Ec 5
≤

=

<Y2
≤

1

10
.(by (10), (8), and < = ⌈10=

Y2
⌉)
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