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Abstract: Sporadic Alzheimer’s disease (sAD) represents a serious and growing worldwide eco-
nomic and healthcare burden. Almost 95% of current AD patients are associated with sAD as
opposed to patients presenting with well-characterized genetic mutations that lead to AD predispo-
sition, i.e., familial AD (fAD). Presently, the use of transgenic (Tg) animals overexpressing human
versions of these causative fAD genes represents the dominant research model for AD therapeutic
development. As significant differences in etiology exist between sAD and fAD, it is perhaps more
appropriate to develop novel, more sAD-reminiscent experimental models that would expedite the
discovery of effective therapies for the majority of AD patients. Here we present the oDGal mouse
model, a novel model of sAD that displays a range of AD-like pathologies as well as multiple
cognitive deficits reminiscent of AD symptomology. Hippocampal cognitive impairment and
pathology were delayed with N-acetyl-cysteine (NaC) treatment, which strongly suggests that
reactive oxygen species (ROS) are the drivers of downstream pathologies such as elevated amyloid
beta and hyperphosphorylated tau. These features demonstrate a desired pathophenotype that
distinguishes our model from current transgenic rodent AD models. A preclinical model that
presents a phenotype of non-genetic AD-like pathologies and cognitive deficits would benefit the
sAD field, particularly when translating therapeutics from the preclinical to the clinical phase.

Keywords: sporadic Alzheimer’s disease; D-galactose; cognitive deficits; neurodegeneration;
advanced glycation end products; oxidative stress; amyloid beta

1. Introduction

sAD is characterized by a progressive loss of cognitive function precipitating from
multiple pathologies and is fast becoming an economic burden worldwide. The etiology
of sAD is the result of multifaceted interactions among numerous genetic, epigenetic,
proteostatic, and environmental factors [1–7]. Approximately 95% of AD patients develop
the disease in a sporadic manner, while the remaining cases are associated with familial
genetic mutations [2]. Multiple disease pre-disposing genes responsible for the less common
fAD are known and have been utilized to produce Tg animal models [8]. Although these
models are valuable tools for investigating the pathological mechanisms of AD, they
all share a common flaw in that their etiology is representative of fAD, with pathology
driven by mutant protein expression, which allows significant pathologies to precipitate in
adolescence and thus may not best reproduce the etiopathology of sAD.

Clinical success for AD treatment is dependent on early pharmacological interven-
tion [9]. In recent years however, multiple large-scale AD therapeutic efforts have failed,
in part potentially due to the pre-clinical insufficiencies of standard Tg model-based
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pipelines [10–13]. Given the lack of genetic mutation correlation with the majority of
patients with AD, perhaps the most pragmatic way forward to improve drug discovery
and development is the creation of effective AD model organisms that do not rely on
this standard approach. Certain groups have attempted to address this issue by admin-
istering Aβ [14] or streptozotocin (STZ) [15] directly into the brains of rodents to induce
AD-related pathology. Although these Aβ and STZ models display AD-like pathologies
and cognitive deficits, they require intricate and time-consuming surgical interventions.
The Aβ model shares similarities with certain Tg models in that the pathologies precip-
itate as a result of excessive toxic Aβ build up. These data thus question the validity
of whether this is a true sAD model, as it does not address the physiological processes
that are responsible for this initial rise of Aβ in sAD [16,17]. The STZ model attempts to
address this issue by negatively affecting energy homeostasis in the brain, which leads
to AD-like pathologies. Although this model displays elevated hyperphosphorylated
tau (p-tau), oxidative stress, and neuroinflammation, Aβ accumulation is sparse, and
the pathology initiates in the cortex before spreading to the hippocampus [18–20]. This
contradicts clinical observations, where pathologies typically originate in hippocampal
regions before spreading throughout the brain [18,20]. The limited Aβ accumulation
and cortical seeding of pathologies question the utility of this approach to modeling
sAD. A murine model that better represents sAD is a critical requirement to enable
successful translation of preclinical drug discovery to clinical research.

We report here on the development of a novel murine model, the oDGal model,
which recapitulates behavioral alterations as well as a host of pathologies that typify
general AD pathologies. Chronic D-galactose administration via intraperitoneal injec-
tion has previously been shown to accelerate natural aging in certain mouse strains [21].
D-galactose is a physiological nutrient catabolized to produce UDP-galactose, a sub-
strate for AGE (advanced glycation end-products). AGE accumulation, a common
feature of aging, is elevated in many peripheral and neurodegenerative diseases and
is predicted to accelerate oxidative damage [22–24]. Here, we validate and optimize
chronic oDGal administration via a less invasive route, i.e., drinking water, using
C57Bl6/j mice, a favored mouse strain in the neuroscience community. Employment of
this paradigm facilitates the creation of multiple AD-relevant features that appear to
seed and spread in a similar pattern to that observed in clinical AD cases. The novel oral
dosing regimen makes the model simple and affordable to run. Importantly, with re-
spect to future drug discovery efforts, the oDGal-induced cognitive deficit was reversed
with drugs currently prescribed for, or in trial for, sAD. Moreover, the cognitive decline
and onset of pathology were delayed following antioxidant treatment, which strongly
implies ROS as the mechanistic driver of downstream pathologies. This feature further
reinforces how well the model aligns with more recent data concerning the etiology of
sAD [25–27] as opposed to genetically-induced fAD.

2. Results
2.1. oDGal Induces Neuronal Hypometabolism

Brain hypometabolism has long been linked with AD pathology and has become a
useful tool for predicting AD progression in the clinic [28,29]. To investigate neuron-specific
mitochondrial integrity, synaptosomes were isolated following 8 weeks of 4 g/kg oDGal
treatment for analysis on a Seahorse. We see from these data that oDGal significantly
impairs basal mitochondrial function in both the hippocampal (Figure 1A) and the cortical
synaptosomes (Figure 1B). ATP production is significantly impaired in the hippocampal
(Figure 1C) but not the cortical (Figure 1D) synaptosomes. We do, however, see a significant
decrease in ATP from whole tissue lysate obtained from the frontal cortex, hippocampus,
cortex, and cerebellum after 8 weeks of 4 g/kg oDGal treatment (Figure 1E). The dramatic
reduction in ATP in whole tissue lysate indicates that oDGal treatment affects the energy
homeostasis of various supporting cells in the brain more severely than neurons.
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over 8 weeks with vehicle or 4 g/kg oDGal. (C) Hippocampal and (D) cortical ATP production rates 
measured in synaptosomes isolated from mice dosed chronically over 8 weeks with vehicle or 4 g/kg 
oDGal. (E) Representation of ATP content in cortex, frontal cortex, hippocampus, and cerebellar ho-
mogenate fractions for mice dosed chronically over 8 weeks with vehicle or 4 g/kg oDGal. Data are 
presented as a mean ± SEM percentage vehicle, unpaired two-tailed student t-test, Asterix (*) repre-
sent significant changes: **** p < 0.0001, *** p = 0.0002, ** p = 0.0075, * p = 0.032; ns = non-significant, 
n = 10 vehicle and n = 10 oDGal mice. 

2.2. oDGal Increases AGE Products and Oxidative Stress 
Following 8 weeks of oral dosing, both oDGal groups (2 g/kg or 4 g/kg oDGal) exhib-

ited a dose-dependent increase in soluble AGE in the cortex and frontal cortex (Figure 2A). 
Elevations in insoluble AGE were also observed in the cortex (Figure 2B). No change in 

Figure 1. oDGal induces brain hypometabolism. (A) Hippocampal and (B) cortical basal mitochon-
drial oxygen consumption rate measured in synaptosomes isolated from mice dosed chronically
over 8 weeks with vehicle or 4 g/kg oDGal. (C) Hippocampal and (D) cortical ATP production
rates measured in synaptosomes isolated from mice dosed chronically over 8 weeks with vehicle
or 4 g/kg oDGal. (E) Representation of ATP content in cortex, frontal cortex, hippocampus, and
cerebellar homogenate fractions for mice dosed chronically over 8 weeks with vehicle or 4 g/kg
oDGal. Data are presented as a mean ± SEM percentage vehicle, unpaired two-tailed student t-test,
Asterix (*) represent significant changes: **** p < 0.0001, *** p = 0.0002, ** p = 0.0075, * p = 0.032;
ns = non-significant, n = 10 vehicle and n = 10 oDGal mice.

2.2. oDGal Increases AGE Products and Oxidative Stress

Following 8 weeks of oral dosing, both oDGal groups (2 g/kg or 4 g/kg oDGal) exhib-
ited a dose-dependent increase in soluble AGE in the cortex and frontal cortex (Figure 2A).
Elevations in insoluble AGE were also observed in the cortex (Figure 2B). No change in
hippocampal soluble AGE levels was evident for either oDGal dose group relative to vehi-
cle. There was, however, a significant increase in insoluble AGE in the hippocampus of the
4 g/kg oDGal group (Figure 2B). Only soluble AGE levels were elevated in the cerebellum
of the 4 g/kg oDGal group (Figure 2A), while insoluble AGE levels were undetectable. In
addition to exerting effects on AGE levels, oDGal treatment dose-dependently elevated pro-
tein carbonyl (PC) levels, a measure of ROS, in the cortex, frontal cortex, and hippocampus
(Figure 2C). oDGal did not affect PC levels in the cerebellum, and a similar lack of oxidative
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damage in the cerebellum has been reported in the clinic for sAD patients [30–32]. An
increase in the activity (Figure 2D) of BACE1 in the cortex, frontal cortex, and hippocampus
of oDGal treated animals was also noted.
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tiple comparison test, * p <0.05, ** p < 0.005, *** p < 0.0005. (D) Representation of BACE1 activity 

Figure 2. Chronic oDGal treatment elevates AGE, ROS, and BACE1 activity in the brain. (A) AGE
levels in the soluble cortex, frontal cortex, hippocampus, and cerebellum fractions for mice dosed
chronically over 8 weeks with vehicle, 2 g/kg oDGal or 4 g/kg oDGal. Cortex (F(2, 18) = 10.58,
p = 0.0009) and cerebellum (F(2, 26) = 7.7, p = 0.0024) analyzed by one-way ANOVA followed by
Dunnett’s multiple comparison test. FC (F(2, 14.49) = 5.27, p = 0.019) analyzed by Brown–Forsythe
and Welch ANOVA followed by Dunnett’s T3 multiple comparison test, *** p < 0.001, ** p < 0.01.
(B) AGE levels in the insoluble cortex, frontal cortex, hippocampus, and cerebellum fractions
for mice dosed chronically over 8 weeks with vehicle, 2 g/kg oDGal or 4 g/kg oDGal. Data are
presented as a mean ± SEM percentage vehicle. Cortex (F(2, 18) = 3.72, p = 0.046) and hippocampus
(F(2, 26) = 10.04, p = 0.0006) analyzed by one-way ANOVA followed by Dunnett’s multiple compari-
son test, * p < 0.05; ** p < 0.005. (C) PC levels in soluble fractions of cortex, frontal cortex, hippocampus,
and cerebellum for mice dosed chronically over 8 weeks with vehicle, 2 g/kg oDGal or 4 g/kg oDGal.
Data are presented as a mean ± SEM percentage vehicle. Cortex (F(2, 18) = 11.85, p = 0.0005), hippocam-
pus (F(2, 26) = 10.03, p = 0.0005), and FC (F(2, 26) = 9.174, p = 0.001) analyzed by one-way ANOVA followed
by Dunnett’s multiple comparison test, * p < 0.05, ** p < 0.005, *** p < 0.0005. (D) Representation of
BACE1 activity measured in cortex, frontal cortex, hippocampus, and cerebellum homogenates
for mice dosed chronically over 8 weeks with vehicle, 2 g/kg oDGal or 4 g/kg oDGal. Data are
presented as a mean ± SEM percentage vehicle. Cortex (F(2, 18) = 8.94, p = 0.002), FC (F(2, 22) = 9.5,
p = 0.001) and hippocampus (F(2, 26) = 7.1, p = 0.0035) analyzed by one-way ANOVA followed by
Dunnett’s multiple comparison test. Asterix (*) represent significant changes: * p < 0.05, ** p < 0.005,
*** p < 0.001. All data are presented as a mean ± SEM percentage vehicle.
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2.3. oDGal Increases Aβ and Hyperphosphorylated Tau

Given our noted modulation of BACE1 activity with oDGal treatment, we next as-
sessed beta amyloid (Aβ) levels in response to these dosing regimens. Aβ was measured in
two fractions of brain tissue extract: a soluble fraction (Figure 3A,B) and an insoluble frac-
tion (Figure 3C,D). Following oDGal dosing, the majority of Aβ40 and Aβ42 accumulated
in the insoluble fraction. oDGal treatment significantly increases both insoluble Aβ40 and
Aβ42 levels in the cortex, frontal cortex, hippocampus, and cerebellum. Interestingly, the
cortex displays a significant increase in soluble Aβ40 and Aβ42 in the 4 g/kg oDGal group.
Significantly elevated soluble Aβ42 was also detected in the hippocampi of the 4 g/kg
oDGal group. In addition to Aβ accumulation, the generation of hyperphosphorylated tau
is also considered a hallmark of AD pathology. We found that oDGal treatment induced the
accumulation of phosphorylated-tau (p-tau) in both soluble (Figure 3E) and insoluble frac-
tions (Figure 3F). Soluble p-tau antibody exposure revealed a broad immunoreactive band
extending from 55 kDa to 150 kDa for both oDGal groups in all brain regions except the
cerebellum (Figure 3E). This 55 kDa to 150 kDa p-tau immunoreactive band was quantified
and plotted in Figure 3E. Similar data have been reported for postmortem AD brain, and
this p-tau immunoreactive band (55–150 kDa) is thought to indicate hyperphosphorylated
tau aggregation or crosslinking [33].
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Figure 3. Chronic oDGal treatment promotes Aβ and hyperphosphorylated tau accumulation.
(A) Soluble Aβ40 in the cortex, frontal cortex, hippocampus, and cerebellar fractions of mice
dosed chronically over 8 weeks with vehicle, 2 g/kg oDGal or 4 g/kg oDGal. Cortex (F(2, 18) = 4.5,
p = 0.03) analyzed by one-way ANOVA followed by Dunnett’s multiple comparison test, * p < 0.05.
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(B) Soluble Aβ42 in the cortex, frontal cortex, hippocampus, and cerebellar fractions of mice dosed
chronically over 8 weeks with vehicle, 2 g/kg oDGal or 4 g/kg oDGal. Cortex (F(2, 18) = 6.2,
p = 0.009) and hippocampus (F(2, 26) = 3.853, p = 0.045) analyzed by one-way ANOVA followed by
Dunnett’s multiple comparison test, * p < 0.05, ** p < 0.005. (C) Insoluble Aβ40 in the cortex, frontal
cortex, hippocampus, and cerebellar fractions of mice dosed chronically over 8 weeks with vehicle,
2 g/kg oDGal or 4 g/kg oDGal. Cortex (F(2, 18) = 9.553, p = 0.0015), FC (F(2, 26) = 33.16, p< 0.0001),
hippocampus (F(2, 26) = 33.26, p< 0.0001), and cerebellum (F(2, 24) = 14, p < 0.0001) analyzed by
one-way ANOVA followed by Dunnett’s multiple comparison test, *** p < 0.001, **** p < 0.0001.
(D) Insoluble Aβ42 in the cortex, frontal cortex, hippocampus, and cerebellar fractions of mice
dosed chronically over 8 weeks with vehicle, 2 g/kg oDGal or 4 g/kg oDGal. Cortex (F(2, 18) = 18.75,
p < 0.0001), FC (F(2, 24) = 57.29, p < 0.0001), hippocampus (F(2, 26) = 6.24, p = 0.007), and cerebellum
(F(2, 26) = 5.9, p = 0.008) analyzed by one-way ANOVA followed by Dunnett’s multiple comparison
test, * p < 0.05, **** p < 0.0001. (E) Representative blots and quantification plot for p-tau protein
levels detected using AT180, pThr231, antibody. Mice were dosed chronically over 8 weeks with
vehicle, 2 g/kg oDGal or 4 g/kg oDGal. Data were normalized to β-actin. FC (p = 0.017) analyzed
by Kruskil–Wallis test followed by Dunn’s multiple comparison test. Hippocampus (F(2, 26) = 4.75,
p = 0.018) and Cerebellum (F(2, 26) = 5.9, p = 0.008) analyzed by one-way ANOVA followed by
Dunnett’s multiple comparison test. * p < 0.05. (F) Representation of insoluble p-tau detected using
AT180 antibody-coupled MSD Elisa plates for mice dosed chronically over 8 weeks with vehicle,
2 g/kg oDGal or 4 g/kg oDGal. Cortex (F(2, 18) = 12, p = 0.0005), FC (F(2, 24) = 10.13, p = 0.0006),
hippocampus (F(2, 26) = 8.95, p = 0.0012), and cerebellum (F(2, 26) = 18.95, p < 0.0001) analyzed by
one-way ANOVA followed by Dunnett’s multiple comparison test. Asterix (*) represent significant
changes: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. All data are presented as a mean ± SEM
percentage vehicle.

2.4. oDGal Promotes Neuroinflammation

Chronic inflammation is both a hallmark of AD [34,35] as well as the normal aging
process (i.e., inflammaging) [36,37]. We noted a considerable inflammatory response in
the oDGal treatment groups—the frontal cortex and cortex—displayed the majority of the
inflammatory marker response (Figure 4A–G). Intriguingly, the hippocampus and cerebellum
seemed to be spared from significant neuroinflammation at the 8 week time point.

2.5. oDGal Affects Multiple Cognitive Domains

We have demonstrated so far that oDGal oral dosing can result in increased brain
Aβ and hyperphosphorylated tau, as well as significant increases in inflammatory
mediator expression, all factors that are reminiscent of clinical AD pathology. We next
assessed whether these effects of oDGal dosing also caused the creation of cognitive
deficits that are highly characteristic in AD patients. With respect to generalized central
neurological behavior, oDGal treatment showed no effect on basal activity (Figure 5A)
or motor coordination (Figure 5B, trial 1). The vehicle group showed an increased
latency to fall from trial 1 to trials 2 and 3 as a result of motor learning. This was
not apparent for either oDGal group, suggesting impaired motor learning (Figure 5B).
Novel Object Recognition (NOR) (Figure 5C), a memory task dependent on perirhinal
cortex functionality, and Novel Object Location (NOL) (Figure 5D), a hippocampal-
reliant memory task [38], can be used to evaluate an animal’s ability to recognize a
novel object or location, respectively. Vehicle-treated animals (i.e., control) showed
a significant preference for the novel object; in contrast, animal groups treated with
oDGal failed to demonstrate any recognition or bias for interest in the novel object.
These results suggest that oDGal resulted in a potential functional deficit in perirhinal
cortex functionality (Figure 5E). Both the vehicle and 2 g/kgoDGal groups showed
a preference for the novel location, whereas the 4 g/kgoDGal dosing group failed to
notice the novel location (Figure 5F), implying that 4 k/kgoDGal treatment resulted
in a hippocampal-dependent cognitive deficit. Indeed, the discrimination index D2
score displays a dose-dependent effect for oDGal in the NOL test but not the NOR test
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(Figure S1A,B). The ability of 2 g/kgoDGal treatment to affect performance in the NOR
test but not the NOL test suggests that the perirhinal cortex is more sensitive than the
hippocampus to the oDGal insult (Figure 5E,F).
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Figure 4. Chronic oDGal dosing elevates inflammatory mediators in the brain. (A) TNFα in
the soluble cortex, frontal cortex, and hippocampal fractions for mice dosed chronically over
8 weeks with vehicle, 2 g/kg oDGal or 4 g/kg oDGal. Cortex (F(2, 14.3) = 5.95, p = 0.013) and FC
(F(2, 8.9) = 7.65, p = 0.012) analyzed by Brown–Forsythe and Welch ANOVA followed by Dunnett’s
T3 multiple comparison test, * p < 0.05, *** p < 0.001. (B) IL6 in the soluble cortex, frontal cortex,
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and hippocampal fractions for mice dosed chronically over 8 weeks with vehicle, 2 g/kg oDGal or
4 g/kg oDGal. Cortex (F(2, 14.69) = 11.72, p = 0.0009) and FC (F(2, 8.51) = 7.84, p = 0.012) analyzed
by Brown–Forsy the and Welch ANOVA followed by Dunnett’s T3 multiple comparison test,
* p < 0.05, *** p < 0.001. (C) IFNγ in the soluble cortex, frontal cortex and hippocampal fractions
for mice dosed chronically over 8 weeks with vehicle, 2 g/kg oDGal or 4 g/kg oDGal. Cortex
(F(2, 12.94) = 9.532, p = 0.0029) and FC (F(2, 9.04) = 6.748, p = 0.016) analyzed by Brown–Forsythe and
Welch ANOVA followed by Dunnett’s T3 multiple comparison test, * p < 0.05, ** p < 0.01. (D) IL10
in the soluble cortex, frontal cortex, and hippocampal fractions for mice dosed chronically over
8 weeks with vehicle, 2 g/kg oDGal or 4 g/kg oDGal. Cortex (F(2, 13.69) = 8.02, p = 0.0049) and FC
(F(2, 8.93) = 6.1, p = 0.021) analyzed by Brown–Forsythe and Welch ANOVA followed by Dunnett’s
T3 multiple comparison test, * p < 0.05, ** p < 0.01. (E) IL12p70 in the soluble cortex, frontal cortex,
and hippocampal fractions for mice dosed chronically over 8 weeks with vehicle, 2 g/kg oDGal
or 4 g/kg oDGal. Cortex (F(2, 13.88) = 6.17, p = 0.012) and FC (F(2, 9.28) = 7.79, p = 0.01) analyzed
by Brown–Forsythe and Welch ANOVA followed by Dunnett’s T3 multiple comparison test,
* p < 0.05, *** p < 0.001. (F) IL1β in the soluble cortex, frontal cortex, and hippocampal fractions
for mice dosed chronically over 8 weeks with vehicle, 2 g/kg oDGal or 4 g/kg oDGal. Cortex
(F(2, 13.98) = 7.25, p = 0.007) and FC (F(2, 9.3) = 10.24, p = 0.0045) analyzed by Brown–Forsythe
and Welch ANOVA followed by Dunnett’s T3 multiple comparison test, * p < 0.05, ** p < 0.01,
*** p < 0.001. (G) KC GRO in the soluble cortex, frontal cortex, and hippocampal fractions for mice
dosed chronically over 8 weeks with vehicle, 2 g/kg oDGal or 4 g/kg oDGal. Cortex (F(2, 13.52) = 7.8,
p = 0.0056) and FC (F(2, 10.42) = 8.57, p = 0.0063) analyzed by Brown–Forsythe and Welch ANOVA
followed by Dunnett’s T3 multiple comparison test. Asterix (*) represent significant changes:
* p < 0.05, ** p < 0.01. All data are presented as a mean ± SEM percentage vehicle.
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Data are presented as a percentage of the vehicle group. Data are presented as mean ± SEM, analyzed
by one-way ANOVA followed by Dunnett’s multiple comparison test. (B) Latency for animal to fall
from an accelerating rotarod. Mice were dosed chronically over 8 weeks with vehicle, 2 g/kgoDGal or
4 g/kgoDGal. Data were analyzed using a two-way repeated measures mixed model approach, with
treatment factor treatment (F(6, 58) = 0.28, p = 0.95), repeated factor trial (F(2, 116) = 19.20, p < 0.001).
Schematic representation of NOR (C) and NOL (D) tasks, where circles and squares represent objects
used for the study. (E) NOR task represented as a percentage exploration time of familiar and novel
objects for mice dosed chronically over 8 weeks with vehicle, 2 g/kgoDGal or 4 g/kgoDGal. Data
were analyzed by Kruskil–Wallis test (p = 0.0001) followed by Dunnett’s multiple comparison test.
(F) NOL task represented as a percentage exploration time of familiar and novel locations for mice
dosed chronically over 8 weeks with vehicle, 2 g/kgoDGal or 4 g/kgoDGal. Data were analyzed by
Brown–Forsythe and Welch ANOVA (F(5, 25.96) = 29.99, p = 0.0001) followed by Dunnett’s T3 multiple
comparison test. Discrimination index (D2) score, calculated from the hippocampal spatial cognitive
score, correlated significantly with levels of hippocampal insoluble AGE (G), PC (H), soluble Aβ42 (I),
insoluble Aβ40 (J) or insoluble Aβ42 (K) in mice dosed chronically over 8 weeks with 4 g/kgoDGal or
vehicle (Veh), determined by Pearson’s rank correlation coefficient (r). Asterix (*) represent significant
changes: * p < 0.05, ** p < 0.01, **** p < 0.0001, ns=non-significant. All data are presented as a
mean ± SEM percentage vehicle.

2.6. oDGal-Induced AGE, ROS, and Aβ Modulation Correlate with Spatial Memory Deficits

Hippocampal insoluble AGE (Figure 5G) and PC levels (Figure 5H) correlated signifi-
cantly with the performance scores in the hippocampal NOL task for the 4 g/kgoDGal group.
Soluble hippocampal Aβ42 also showed a significant correlation with the hippocampal-
dependent spatial NOL task (Figure 5I). Contrary to this, soluble hippocampal Aβ40 levels
failed to correlate with the NOL performance of oDGal-treated mice. The increase in insoluble
Aβ40 and Aβ42 in the hippocampus of the 4 g/kgoDGal group (Figure 3C,D) also showed
a significant correlation with the NOL performance score (Figure 5J,K), implying that in
addition to insoluble AGE, PC, and soluble Aβ42, both insoluble Aβ40 and Aβ42 also may
have a negative impact on spatial memory. No other pathologies showed any correlation with
spatial memory at this time point.

2.7. Etiology of oDGal Pathology

We have identified that oDGal treatment can induce AD-related pathological features
that correlate to cognitive deficits. To extend our appreciation of the etiopathological
actions of oDGal treatment, we assessed the central nervous system (CNS) histopathology
post-mortem. Brains of mice treated with vehicle or the 4 g/kgoDGal dosing level were
collected after 1, 2, and 3 weeks of treatment. No gross morphological and pathological
changes were observed in the cortex, frontal cortex, or cerebellum. In contrast, hippocampal
regions displayed some pathology (in soluble tissue extract fractions only), suggesting
they are affected ahead of the aforementioned regions. oDGal treatment at weeks 2 and 3
induced a significant elevation in hippocampal AGE levels (Figure 6A), while PCs were
significantly elevated at the 2 week time point (Figure 6B). A trend of elevated AGE and
PCs was observed after 1 week of treatment, suggesting some animals were more resilient
than others to the oDGal treatment insult. A small, significant increase in p-tau but not
Aβ, was apparent at the 2 week time point (Figure 6C). CNS tissue cytokine elevation was
not detected at these time points, indicating that AGE, ROS, and/or p-tau accumulation
were strong candidates for initiating the onset of the pathologies observed following
8 weeks of dosing. Interestingly, the pathologies at the 2 week time point did not affect the
oDGal animals’ spatial cognitive test performance score (Figure 6D). The reason for this
may be that the pathology is simply not at a sufficient level to yet affect cognition, a process
generated at the network interaction level [39–41]. However, the initial onset of a spatial
cognitive deficit becomes apparent following 5 weeks of oDGal treatment (Figure 6D).
To gain an understanding of the type of pathology that drives the cognitive deficit at the
5 week time point, brain pathology was assessed as before. The oDGal group displayed a
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significant increase in CNS tissue AGE, PC, Aβ, p-tau, and ATP levels (Figure 6E). As noted
previously, this pathology was only observed in the soluble fraction of the hippocampus.
Despite this full range of pathology, AGE and PCs were the only insults to significantly
correlate with the spatial hippocampal cognitive score (Figure 6F,G), suggesting that both
AGE and PC accumulation over 5 weeks is sufficient to contribute to the initial spatial
cognitive deficit.
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Figure 6. AD-like pathologies precipitate in the hippocampus ahead of other brain regions. AGE (A),
PCs (B), and p-tau (C) levels in the soluble hippocampal fraction for mice dosed chronically over
1, 2 or 3 weeks with vehicle (Veh) or 4 g/kgoDGal. Hyperphosphorylated tau was detected using
AT180 antibody-coupled MSD ELISA plates and normalized to total tau levels. In (A) AGE data are
analyzed by one-way ANOVA (F(5, 41) = 3.34, p = 0.013) followed by Dunnett’s multiple comparison
test and unpaired student t-test; (B) PC (F(5, 20.83) = 3.66, p = 0.016) and (C) p-tau (F(5, 18.66) = 4.47,
p = 0.0076) data are analyzed by Brown–Forsythe and Welch ANOVA followed by Dunnett’s T3
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multiple comparison test. (D) Spatial recognition test (SRT) represented as exploration time, in
seconds, of familiar and novel locations for vehicle (Veh) or 4 g/kgoDGal. Animals were dosed
chronically for periods depicted in the figures. Data were analyzed by one-way ANOVA; Day 0:
(F(3, 36) = 13.49, p < 0.0001), week 2: (F(3, 34) = 24.22, p < 0.0001), week 3: (F(3, 36) = 8.47, p = 0.0002),
week 4: (F(3, 44) = 14.68, p < 0.0001), and week 5: (F(3, 28) = 7.18, p = 0.001) followed by Dunnett’s
multiple comparison test. (E) Representation of Aβ40, Aβ42, p-Tau, PC, AGE, and ATP detected in
the soluble hippocampal fraction from animals dosed chronically over 5 weeks with vehicle (Veh)
or 4 g/kgoDGal. Data were analyzed by unpaired Mann–Whitney nonparametric t-test. Asterix (*)
represent significant changes: * p < 0.05; ** p < 0.01, **** p < 0.0001, *** p < 0.001, ns = non-significant,
n = 10 vehicle and n =10 oDGal mice. All data are presented as a mean ± SEM percentage vehicle.
Discrimination index (D2) score, calculated from the hippocampal SRT, correlated with levels of
soluble AGE (F) and PC (G) detected in the hippocampal fraction of mice dosed chronically for
5 weeks with 4 g/kgoDGal or Veh. D2 score correlates with soluble AGE and PC as determined by
Pearson rank correlation coefficient (r). n = 10 vehicle and n = 10 oDGal mice.

2.8. Therapeutic Interventions Ameliorate oDGal-Induced Pathology and Cognitive Decline

We have contended that ROS are highly likely to contribute to the generation of oDGal-
induced AD-like effects. To assess whether the cognitive deficit and/or pathology could
be delayed through pharmacological interventions that nullify the toxic effects of ROS,
oDGal mice were treated with the antioxidant NaC (N-acetyl cysteine) in combination
with oDGal for 5 weeks. The NaC successfully delayed the hippocampal cognitive deficit
(Figure 7A) and onset of pathology (Figure 7B) in the oDGal mice in comparison to the
oDGal vehicle-treated group. The NaCoDGal group showed a significant reduction in Aβ40,
Aβ42, and hyperphosphorylated tau (Figure 7B). Importantly, the NaCoDGal group also
showed a significant reduction in PCs relative to the oDGal vehicle group. The NaCoDGal
group did however show a significant increase in AGE in relation to both the vehicle and
oDGal vehicle groups (Figure 7B). In order to further validate the oDGal model as an
appropriate preclinical model of neurodegeneration, we investigated the ability of actual
therapeutic compounds that are approved or in clinical trials for the treatment of AD,
donepezil, memantine, and levetiracetam [42,43], to interdict the oDGal-induced cognitive
dysfunctions. Animals were dosed with oDGal for 5 weeks before being acutely dosed with
donepezil, memantine, or levetiracetam. Importantly, all three compounds reversed the
cognitive deficit induced by oDGal treatment (Figure 7C–E). Both donepezil and memantine
have been shown to acutely improve learning and memory in transgenic mouse models of
AD [44]. Levetiracetam was originally developed as an anti-epileptic drug but has been
shown to reverse behavioral deficits in aged wildtype as well as Tg AD animal models by
reducing Aβ-induced neuronal excitability [45,46]. Thus, taken together, it is evident that
oDGal treatment can reproduce many of the pathologies and cognitive deficits characteristic
of sAD, and importantly, these AD-promoting effects of oDGal demonstrate a sensitivity
to clinically employed dementia interventions. These data therefore support the potential
utility of the oDGal murine model in AD drug research.
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Figure 7. Spatial cognitive deficit and pathology are reversed or delayed pharmacologically.
(A) SRT is represented as exploration time, in seconds, of familiar and novel locations. Animals were
dosed chronically with vehicle or 4 g/kgoDGal with and without 5g/kg NaC for 5 weeks. Data are
analyzed by unpaired t-test. (B) Representation of Aβ40, Aβ42, p-Tau, PC, and AGE detected in the
soluble hippocampal fraction from animals dosed chronically over 5 weeks with vehicle (Veh) or
4 g/kgoDGal with and without 5g/kg NaC for 5 weeks. Data were analyzed by Brown–Forsythe
and Welch ANOVA; Aβ40: (F(2, 27.7) = 11.16, p = 0.0005), Aβ42: (F(2, 23.65) = 5.79, p = 0.009),
p-Tau: (F(2, 21.79) = 3.98, p = 0.0036), PC: (F(2, 19.03) = 18.18, p < 0.0001), and AGE (F(2, 20.91) = 44.08,
p < 0.0001) followed by Dunnett’s T3 multiple comparison test. Hippocampal SRT time spent in
novel and familiar area for vehicle and oDGal (4 g/kg) treated mice dosed acutely with memantine
(C), donepezil (D), and leveteracitam (E). Mice were treated chronically with vehicle or 4 g/kgoDGal
for 5 weeks prior to acute drug treatment. Time spent in novel and familiar location analyzed by
paired t-test for each treatment. Data are presented as a mean ± SEM. Asterix (*) represent significant
changes:* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns = non-significant. n = 10 vehicle
and n = 10 oDGal mice.
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3. Discussion

Here we present the characterization of a novel and physiologically relevant oDGal
model of sAD. The oDGal model provides an appealing alternative to the traditional Tg
animals that have been used as preclinical models in AD research to date. We found that
our oral-dosing oDGal model exhibited a number of striking features directly relevant to
clinical observations of the human disease: (i) oDGal animals display multiple domain
cognitive dysfunctions and present with a suite of AD-like pathologies; (ii) Importantly,
unlike traditional Tg models of AD, the robust, reproducible phenotype and associated
pathologies displayed in the oDGal model are not driven by mutant protein expression, and
consequently, the etiology observed in this model shares similarities to those perceived to
occur in sAD (Figure 8); (iii) as observed in human disease, the oDGal-induced pathologies
display key temporal and spatial features that include protein aggregation and propagation
(Figure 8); (iv) the cognitive dysfunction, in this model, is reversed with acute application
of therapeutics prescribed or trialed to AD patients; and (v) pathology is delayed with
NaC treatment, which strongly implicates ROS as the mechanistic driver of downstream
pathologies and the associated spatial cognitive impairment. In addition, to these clinically
relevant features, the attractiveness of the oDGal model for preclinical research is further
elevated given that it is straightforward (via oral administration), inexpensive and rapid
to establish. The model can be run in either C57Bl6J or Sev129 mice for pharmacological
profiling of novel compounds or biologics. The oDGal model can also be run in Tg or knock-
out mice to determine the impact certain genes have on its neurodegenerative phenotype
thereby mitigating the need for any time-consuming interbreeding as is conducted with
current Tg AD models.
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Figure 8. Diagram illustrating sequential onset of pathologies in the hippocampus following oDGal
dosing. Spatial cognitive deficit precipitates at 5 weeks and correlates negatively with elevated AGE
and PC. AGE, PC, p-tau, and Aβ levels are all elevated in the soluble fraction of the hippocampus
following 5 weeks of dosing. At the 8 week time point, these pathologies undergo significant
aggregation and propagate to adjacent brain regions such as the cortex, frontal cortex, and cerebellum.
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With specific respect to nuances in AD-related pathophysiology, our cognitive data
suggested that the perirhinal cortex was affected prior to the hippocampus following
oDGal exposure, as animals dosed for 8 weeks with 2 g/kgoDGal were able to perform
the hippocampal driven NOL task (Figure 5F) but were impaired in the perirhinal
cortex-dependent NOR task after just 2 or 4 weeks of dosing (Figure S2A,B). These data
share similarities with clinical observations, where the perirhinal/entorhinal cortex is
affected early in the disease course and prior to detrimental alterations occurring at the
level of the hippocampus [47–50].

The pathology displayed in the AD brain is multifaceted, and pathological spread-
ing is a key feature of the disease [51]. Tg animal models of AD possess an applied
developmental phenotype dependent on the overexpression of mutant proteins, which
ultimately affects pathology initiation and progression timing. Although the amy-
loid cascade hypothesis has been proposed to be responsible for the pathogenesis of
fAD, increasing evidence suggests that dysregulated cellular metabolism and oxidative
stress play a key role in the etiology of sAD [3,52]. Abnormal levels of oxidative stress
markers have been reported in sAD patients [53,54] and precede Aβ accumulation by
decades [55–57]. Furthermore, FDG-PET imaging data clearly demonstrates signifi-
cant hypometabolism in brain regions affected by AD decades before the disease may
become apparent [58]. Neurometabolic dysfunctions (potentially linked to multiple
glycometabolic deficits) are highly likely to result in the exacerbation of oxidative stress
as ROS are found to be elevated in pro-diabetic states linked to dementia [59–61]. In-
creased oxidative stress has also been strongly associated with the excessive generation
of AGE products. AGE products are induced by protracted exposure to elevated blood
glucose, a classical hallmark of pro-diabetic pathology. Therefore, ROS and AGE are
likely to both serve as effective markers of AD conditions linked to neurometabolic
stress [62–64]. In the oDGal model, pathology is detectable 2 weeks post oDGal dosing,
with significant changes in ROS, AGE, and p-tau preceding all other pathological insults
(Figure 6A–C). Intriguingly, this pathology is present only in the soluble hippocampal
fraction. The transient normalization of ROS (Figure 6B) and p-tau (Figure 6C) levels at
the 3 week time point may be due to cellular compensation mechanisms initially able
to cope with the oDGal insult, prior to their potentially pathological re-appearance at
5 weeks (Figure 6E). Early elevations in p-tau were subtle and reversible, suggesting
they were not pathological. p-Tau was found to be elevated at later time points, and by
8 weeks it had spread to other brain regions (Figure 3E,F). By this time, tau is mainly
present in the insoluble fraction and has undergone aggregation, typical of the patholog-
ically hyperphosphorylated species. The initial, subtle increase in p-tau indicates early
perturbations in tau phosphorylation state and that tau is affected ahead of Aβ in this
model. Similarly, intraneuronal tau accumulation has been demonstrated to precede
Aβ deposition in human subjects [65,66].

Unlike ROS and p-tau, AGE levels remained abnormally elevated between
2 and 5 weeks of exposure to oDGal (Figure 6A,E). Despite the re-appearance of other
pathologies at 5 weeks, including p-tau, ROS, and Aβ, elevated AGE and ROS levels
were the only pathologies to negatively correlate with impaired spatial cognition, im-
plicating them as potential drivers of downstream pathologies observed at 5 weeks
(Figure 6F,G). AGE levels are elevated in MCI and AD patients and correlate with
disease severity [67–70]. As galactose is metabolized to UDP-galactose, a substrate
for AGE, via the Leloir pathway, we hypothesize that the observed elevations in AGE
levels in oDGal mice result from activation of this pathway and lead to increased ROS
generation. AGE accumulation is linked to accelerated oxidative damage [71], and in-house
in vitro data demonstrate that exposure of rodent primary neuronal cultures to AGE-BSA
increases the level of nitrotyrosine and 8-oxyguanadine, markers of ROS damage.

Interestingly, significant evidence indicates the elevation of ROS in mild cognitive
impairment (MCI) and sAD, and postmortem autopsy data suggest it may be the earliest
pathological feature [31,54,72–82]. ROS has been shown to affect Aβ production through
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modulating α, γ, and β-secretase [83–85]. Elevated BACE1 activity is observed in the AD
brain, particularly in areas most susceptible to degeneration [38–40]. These changes are
observed in areas shown to exhibit significant elevations in protein carbonylation. Thus, the
increased BACE1 activity (Figure 2D) observed in the oDGal model may be a consequence
of elevated oxidative stress, as suggested by increased PC levels (Figure 2C).

Despite early hippocampal pathologies, spatial cognitive deficits are only apparent
after 5 weeks of oDGal dosing (Figure 6D). While pathology at 5 weeks remained spatially
restricted to the hippocampus, a pathological spread to other brain regions, including
the cortex, had occurred by 8 weeks (Figure 3A–F). Protein misfolding and aggregation,
a hallmark of AD [5], are recapitulated in the oDGal model. At early time points, all
pathology is detected only in the soluble fraction, contrary to the 8 week time point,
where the majority of pathology predominantly presents in the insoluble fraction. This
shift from soluble- to insoluble-state pathology indicates a degree of protein misfolding
and/or aggregation has occurred over time. Interestingly, AGE have also been shown
to chemically crosslink proteins, and, in so doing, act as a seed for plaques in protein
aggregating neurodegenerative diseases [86–93].

At the 8 week time point, the spatial cognitive deficit remains in oDGal animals
(Figure 5F), which still correlates negatively to ROS and, in this instance, insoluble AGE
due to its aggregating nature (Figure 5G,H). In addition to these pathologies, there is also a
negative correlation between hippocampal soluble Aβ42 and insoluble Aβ40 and Aβ42 with
spatial memory (Figure 5I–K), implicating the aggregated Aβ species as being more toxic.

Phenotypic reversal through pharmacological manipulation is essential when de-
veloping novel neurodegeneration models. Importantly, the reversal of the oDGal-
induced cognitive deficit was achieved using compounds prescribed/trialed for demen-
tia treatment. A single dose of either donepezil, memantine, or levetiracetam was able
to reverse the spatial cognitive deficit elicited by 5 weeks of oDGal dosing (Figure 7C–E).
Donepezil is a selective acetylcholinesterase inhibitor widely prescribed for AD. It has
shown efficacy in the clinic for mild, moderate, and severe stages of AD. Memantine
was designed as a selective NMDA-receptor (NMDAR) antagonist intended to reduce
excitotoxicity in moderate- to late-stage AD. The paradox of acute dosing of memantine
being able to improve learning and memory is due to its ability to reduce the activation
threshold for neuronal depolarization through NMDAR antagonism. Levetiracetam
is predicted to enhance cognitive performance using the same principle. Neuronal
background ‘noise’ is reduced through normalization of intracellular calcium levels.
Reduced glutamate release was detected in isolated hippocampal and cortical synapto-
somes from oDGal-treated animals (Figure S3A,B), a factor that may contribute to their
reduced cognitive performance. The ability of memantine and levetiracitam to lower the
threshold of neuronal activation suggests this is the probable mechanism through which
these compounds are eliciting their beneficial effects, although alternative mechanisms
cannot be discounted.

To demonstrate that the pathology could be delayed pharmacologically, oDGal mice
were treated prophylactically with the antioxidant NaC. NaC has shown efficacy in the
clinic; nutraceuticals, a formulation containing NaC delayed cognitive decline and im-
proved the mood of MCI patients. Although it is not clear from this data whether NaC
alone is responsible for the improvement, it does suggest that antioxidant treatment may be
a beneficial treatment for sAD. Historically, the failure of antioxidants in clinical trials for
sAD may have been due to enrolling patients who already displayed symptoms of demen-
tia, where the pathology was too severe to rescue. The NaCoDGal mice displayed a spatial
cognitive score comparable to the vehicle-treated animals, demonstrating a complete delay
in any spatial cognitive deficit, contrary to what was seen in the oDGal group (Figure 7A).
The NaCoDGal group also showed a significant reduction in all pathologies measured,
Aβ40, Aβ42, pTau, and importantly, PC levels relative to the oDGal group (Figure 7B). Sur-
prisingly, the NaCoDGal group showed a significant increase in AGE levels relative to both
the vehicle and the oDGal group, despite previously correlating negatively with spatial
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cognition (Figure 6F). The elevated AGE and lack of cognitive impairment in the oDGalNaC
group imply that ROS is responsible for the cognitive deficit and downstream pathologies.
The fact that AGE showed a significant negative correlation with spatial memory indicates
that AGE is triggering ROS production, as demonstrated by other groups [71,94] and
our own in-house data. Although the phenotypic rescue of the oDGal model with NaC
strongly implies ROS is involved in our observed pathological phenotypes [95–98], direct
measurement of ROS levels would be a productive new route for further studies.

In summary, the oDGal model is a novel and pragmatic example of sAD, displaying a
central phenotype with no obvious peripheral abnormalities (Figure S4A–P). The utility
of this model is that it allows the investigation of both prodromal and symptomatic sAD
through simple manipulation of dosing, which determines the pathology type and its
effects on different cognitive domains. Clinical evidence dictates that early intervention
is imperative for successful disease-modifying therapeutics. In contrast to fAD, mutant
protein expression does not drive sAD pathology. Therefore, both the type and progression
of pathology will differ significantly between these subtypes of disease, particularly during
the critical initiation phase, in which pharmacological intervention would be most beneficial.
While the etiology of sAD remains unknown, accumulating evidence indicates a crucial
role for oxidative stress in the genesis of this disease. Importantly, key temporal and spatial
features of oDGal pathology, which correlate with significant cognitive impairment, link
to observations made in human disease. We propose that the oDGal model provides an
excellent, novel, robust, and facile model in which the initial pathological insults appear
similar to those manifesting early on in the clinic and provides an attractive alternative to
the traditional TgAD mice to model sAD.

4. Materials and Methods
4.1. Animals

Male C57Bl6/j mice (Charles River, Harlow, UK) were used throughout the study.
Animals were group housed on a 12 h: 12 h light–dark cycle, and food and water were
available ad libitum. All procedures described were approved by the Home Office and
were designed with a commitment to reduce numbers and undue suffering in accordance
with the Animals (Scientific Procedures) Act 1986.

4.2. D-Galactose (oDGal) Treatment

D-galactose (2 g/kg or 4 g/kg) and 0.1% sodium benzoate were supplemented into
the oDGal group’s drinking water; vehicle (Veh) groups received 0.1% sodium benzoate
in their drinking water. Dosing started at three months of age, and drinking water was
changed every second day using freshly prepared stock. Animals could access their
food and drinking water ad libitum, and this was their only water source throughout
the experiment.

4.3. oDGal Formulation

A 150 g/L D-galactose (Sigma, Gillingham, UK, G0625) stock solution was made in
drinking water. To generate the 4 g/kgoDGal dosing material, we applied the following
protocol: Given a mouse drinks 2 mL of water per day, the animals were given a solution
of 2 mg/g/mL (for 30 g mice), hence created with 60 mg/mL of D-galactose. The
2 g/kg received a drinking water solution of half this concentration. The final oDGal
formulation was supplemented with 0.1% sodium benzoate (Sigma, Gillingham, UK,
71,300). All experimental groups, Veh and oDGal, received 0.1% sodium benzoate in
their drinking water.

4.4. Synaptosome Preparation

Hippocampal and cortical synaptosomes were isolated from mice pretreated with
vehicle or 4 g/kg oDGal for 8 weeks. Dissected tissue was homogenized in 320 mM
sucrose buffer before being centrifuged at 3020× g/2 min/4 ◦C. Supernatants (S1) were
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centrifuged at 14,600× g/12 min/4 ◦C, and pellets (P2) were re-suspended in 320 mM
sucrose buffer before being loaded onto Percoll gradients (3, 10, and 23% from top to
bottom, 4 ◦C). The synaptosomal fraction accumulated between the nominal 10% and
23% Percoll layers following a 35,100× g/6min/4 ◦C centrifugation. The synaptosomal
fraction was carefully removed and re-suspended in HEPES buffer (140 mM NaCl,
5 mM KCl, 5 mM NaHCO3, 1.2 mM NaH2PO4, 1 mM MgCl2, 10 mM glucose, and
10 mM HEPES, pH 7.6, 4 ◦C) before being centrifuged at 27,000× g/10 min/4 ◦C.
Pellets were re-suspended in HEPES buffer, and the synaptosomal concentration was
determined using the BCA assay (Bio-Rad, Watford, UK, 23221). The required aliquots of
synaptosomal proteins were finally centrifuged at 3020× g/10 min/4 ◦C. Supernatants
were removed and pellets stored at 4 ◦C until use in the experiment.

4.5. Mitochondrial Functional Assay

Mitochondrial function was measured using the Seahorse extracellular flux (XF)
96 analyzer (Seahorse Bioscience, Agilent, Santa Clara, CA95051, USA). On the day of
the experiment, XF-PS plates were coated with poly-D-lysine (50 µg/mL) for
2 h and washed with cell culture grade water. 50 mg of synaptosomes were plated on
poly-D-lysine-coated XF-PS plates in an ionic medium (20 mM HEPES, 10 mM glucose,
1.2 mM Na2HPO4, 1 mM MgCl2, 5 mM NaHCO3, 5 mM KCl, and 140 mM NaCl). The
plate was centrifuged at 3400× g for 1 h at 4 ◦C. The ionic medium was replaced with in-
cubation medium (3.5 mM KCl, 120 mM NaCl, 1.3 mM CaCl2, 0.4 mM KH2PO4, 1.2 mM
Na2SO4, 2 mM MgSO4, 15 mM Glucose, and 4mg/ml BSA). The plate was incubated and
loaded onto the Seahorse XF96 analyzer following the manufacturer’s instructions. All
experiments were performed at 37 ◦C. Titrations determined the optimal concentrations
of oligomycin (160 µM), carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazon (FCCP)
(14 µM), rotenone (4 µM), and antimycin A (4 µM). By sequentially adding these, we
measured basal respiration and ATP production.

4.6. Tissue Processing

Frozen sections were homogenized in phosphate buffered saline (PBS) supplemented
with complete protease inhibitors (Roche, Welwyn Garden City, UK, 04693116001): 200 µL
for the hippocampus and frontal cortex, 400 µL for the cortex and cerebellum, using the
LT Tissuelyser (Qiagen, Manchester, UK). An equivalent weight/volume of homogenizing
buffer was used for the peripheral tissues. Protein quantification was carried out using
the BCA assay, and samples were normalized to 5 mg/mL total protein in PBS containing
1% lauryl-β-D-maltoside. Samples were briefly mixed and left on ice for 30 min before
undergoing centrifugation at 16,000× g/20 min/4 ◦C. The supernatants (soluble fraction)
were removed, and the remaining pellets were briefly sonicated in Guanidine buffer (6 M
guanidine-HCL, 1% sarkosyl, 50 mM Tris, pH 8) before being rotated overnight at room
temperature. Guanidine samples were diluted 40× in PBS prior to use (insoluble fraction).

4.7. ATP Assay

The Abcam ATP assay kit (Abcam, Cambridge, UK, ab83355) was used to measure
ATP levels in 20 µg of soluble fraction, and the manufacturer’s protocols were followed.

4.8. Protein Carbonyl and AGE Quantification

Protein carbonyls and AGE products were quantified using the oxiselect protein
carbonyl ELISA kit (2B Scientific, Stonesfield, UK, STA-310) and oxiselect AGE ELISA kit
(2B Scientific, Stonesfield, UK, STA-317). Plates were incubated with 10 µg/mL of soluble
or insoluble fraction at 4 ◦C overnight, and the manufacturers’ protocols were followed.

4.9. BACE1 Activity Assessment

BACE1 activity assay plates (Abcam, Cambridge, UK, ab65357) were loaded with
20 µg of soluble fraction, and the manufacturer’s protocols were followed.
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4.10. Mesoscale Discovery (MSD) ELISA

Aβ was quantified using the Aβ MSD Vplex kit (Rockville, MD 20850-3173, USA,
K15199E), 25 µL of soluble or insoluble fraction were loaded for each brain region. Total
and phosphorylated Tau was quantified using a Phospho(Thr231)/Total Tau Kit (Rockville,
MD 20850-3173, USA, K15121D). Soluble samples were diluted 80× in PBS, and previously
40× diluted insoluble samples were used. Cytokines were quantified using the Mouse
ProInflammatory 7-Plex Tissue Culture Kit (Rockville, MD 20850-3173, USA, K15012B).
Soluble fraction samples were diluted 5× in PBS.

4.11. Western Blot Analysis

Lysates were resolved using one-dimensional gel electrophoresis on 4–12% gradient
acrylamide gels followed by electro transfer to polyvinylenedifluoride (PVDF) (Life
technologies, Renfrew, UK, 88520). PVDF membranes were blocked for one hour at
room temperature in 4% BSA (Sigma) before application of specific primary antisera.
Secondary, species-specific antibodies were used at a dilution of 1:10,000 (Li-COR
Bioscience, Lincoln, NE, USA, VRDye 490, 549), and signals were detected with an
Odyssey Scanner (Li-COR Bioscience, Lincoln, NE, USA). Specific primary antisera
used were obtained from the following sources: AT180 (Pierce, Oxford, UK, MN1040);
β-actin (Sigma, Gillingham, UK, A2228).

4.12. Locomotor Activity Assay (LMA)

Activity was measured using the PAS Home Cage and Open Field system (San Diego
Instruments, San Diego, CA, USA). Mice were individually placed in the LMA boxes, and
their activity was recorded for over one hour.

4.13. Rotarod Analyses

Mice were placed upon an accelerating rotarod (Ugo Basile), and their latency to fall
was recorded. Each mouse received three trials of 10 min each, with an intermittent trial
interval of 30 min. Motor coordination was assessed by comparing the latency to fall on
the very first trial between treatment groups [99,100]. Motor learning was assessed both
within and between subjects by comparing the latency to fall from the first trial with that of
subsequent trials [101–103].

4.14. Novel Object Recognition (NOR)

On day 1, the animals were habituated in the arena with their cage mates for 10 min.
The animals were then individually habituated in the arena for 5 min on days 2, 3, and 4.
On day 5, the animals were exposed to a sample phase of four identical objects in the
arena for 5 min before being returned to their home cage; these would serve as the
familiar objects. Following a 30 min intermittent time interval, animals underwent a
test phase where they were exposed to two novel objects alongside two familiar objects.
The animals were allowed to investigate for 5 min, and the time spent investigating
objects was recorded and analyzed manually in a blinded fashion. In order to ensure
there was no object bias, each group was split into two, with each sub-group receiving a
different set of objects during the sample phase. These sub-groups were further divided
in two during the test phase, where the novel objects were placed either on the left or
right of the familiar objects. A detailed description of the equipment can be found in
the supporting information.

4.15. Novel Object Location (NOL)

Animals underwent the same habituation process as per the NOR protocol. On
day 5, animals were exposed to a sample phase where they were exposed to two
identical objects placed diagonally from one another in the arena for 5 min before being
returned to their home cage; these served as the familiar objects. Following a 30 min
intermittent time interval, animals underwent a test phase where they were exposed to
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the same two objects from the sample phase. One of the objects was placed in a novel
location compared to its position during the sample phase. The animals were allowed
to investigate for 5 min, and the time spent investigating objects was recorded and
analyzed manually in a blinded fashion. In order to ensure there was no location bias,
each group was split into two, with each sub-group being presented with a different
object location during the sample phase. These sub-groups were further divided in
two during the test phase, where the novel locations were alternated within groups. A
detailed description of the equipment can be found in the supporting information.

4.16. Spatial Recognition/Topographical Test

Spatial/topographical recognition memory was tested using the Spatial/topographical
Recognition Test (SRT), which is based on the spontaneous tendency of mice to investigate
a novel environment over a familiar environment. The test consists of an initial 5 min
sample phase, followed by a retention interval, and subsequently a 5 min choice phase. SRT
has a higher throughput than the NOL test and was used as an alternative spatial cognitive
assay in experiments that required large cohorts.

Mice were acclimatized to the experimental room for 1 h before being individually
placed into the front chamber of the spatial recognition box for the sample phase. Mice
were allowed to investigate one compartment for 5 min, whilst the other was blocked off,
before being returned to their home cage for the retention interval. The retention interval
was 3 h; previous experiments indicate that 3 h is the maximum time after which naïve
animals can still remember their previous exposure to this task. Sample phase compartment
sides were randomly assigned and balanced across each group. Following the retention
interval, mice were then placed back into the SRT apparatus for the choice phase, in which
access to both compartments was allowed. A detailed description of the equipment can
be found in the supporting information. Spatial recognition memory was examined by
recording the time spent actively exploring either the novel or familiar compartments.
A discrimination index was calculated as follows: Discrimination index = (Time spent
exploring novel compartment − time spent exploring familiar compartment)/(Total time
spent in novel and familiar compartments).

4.17. Drug Treatments

Donepezil-HCl (1224981), memantine-HCl (1380502), and levetiracetam (PHR1447)
were purchased from Sigma-Aldrich (Gillingham, UK), and they were all dissolved
in 0.9% saline. Mice received a single intraperitoneal (i.p.) injection at a volume
of 10 mL/kg of body weight of either donepezil-HCl (0.1, 0.3, 0.5, or 0.7 mg/kg),
memantine-HCl (0.1, 1, 3, 5, or 10 mg/kg), levetiracetam (0.1, 0.3, 1, 3, or 10 mg/kg),
or vehicle (0.9% saline). Mice were dosed 30 min prior to the sample phase of the SRT.
N-acetyl cysteine (NaC) (5 g/kg) (Sigma, Gillingham, UK, 106425) was dissolved in
drinking water and pH adjusted to 7.4 with sodium hydroxide. Treatment started on
the same day as oDGal and lasted for the duration of the experiment.

4.18. Statistics

All data are presented as mean ± 1 SEM. Analyses were performed using GraphPad
Prism (GraphPad Software, LLC, version 8.3.0, San Diego, CA, USA) or InVivostat (v4.4.0).
Parametric data was analyzed using one-way analysis of variance (ANOVA) or Brown-
Forsythe and Welch ANOVA followed by post-hoc comparisons with Dunnett’s, Dunnette’s
T3, Sidak’s or Bonferonni multiple comparison tests where appropriate. Nonparametric
data was analyzed using Kruskal-Wallis one-way ANOVA followed by Dunn’s multiple
comparisons test. An effect was considered significant if p < 0.05.
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