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Abstract 

 

This communication is in response to unsubstantiated claims, arising from misinterpretations and 

misrepresentations, made by Bogenfield and Kreikemeier in their recent paper, ‘‘A tensorial based 

progressive damage model for fiber reinforced polymers”[1], on a damage model developed by Falzon 

et al. [2]. While details of this model have been extensively reported in a number of publications (e.g. 

[2–4]), and validated through comprehensive experimental programmes, this brief paper provides 

additional information on the damage model’s formulation for the purpose of clarification and rebutting 

the conclusions in [1]. The test cases reported in [1], to demonstrate the apparent shortcomings of the 

damage model in [2], are repeated here to show that the alleged shortcomings are non-existent and 

consequently provide further support for the robustness and predictive capability of Falzon’s 

progressive damage model. 
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1. Introduction 

 

This communication is primarily concerned with highlighting fundamental misunderstandings and 

misrepresentations of the model presented in [2], by the authors in [1].  It is not concerned with 

assessing the merits, or otherwise, of the damage model presented by Bogenfield and Kreikemeier [1] 

although it has long been established that an eighth order damage tensor is not required to represent 

the most general form of damage arising from the concept of stiffness degradation and strain 

equivalence [5]. It is also worth pointing out that the basic definition of the constitutive damage law for 

intralaminar tensile damage reported in Fig. 2 in [1] contains two  basic inaccuracies. The first concerns 

the area under the bilinear constitutive curve which Bogenfield and Kreikemeier refer to as the energy 

release rate (�) but which is actually the strain energy density, hence the requirement for the use of a 

characteristic length.  The second concerns the label attached to the reduced slope which is given as a 

function of the stress and damage parameter but which should be a function of the pristine elastic 

modulus and damage parameter. 

 

2. Damage model 

 

2.1 Basic principles 

 

Continuum damage mechanics [6] is based on the concept that before the onset of macroscopic 

fracture (i.e. net section failure in the Representative Volume Element (RVE), under uniaxial loading, 

shown in Fig. 1), microscopic cracks and voids form within the material under loading [7]. With 

reference to Fig. 1 (left), the damage in the cross-sectional area, � , under damage-inducing load,	�, 
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leads to a reduction in the effective load bearing area, represented by a fictitious state of the material 

shown in Fig. 1 (right) where  �� represents the difference in the cross-sectional area, �, of the original 
(damaged) specimen and the area representing the microscopic damage. The reduction of the load 

bearing area (from � to ��)  may be quantified by a damage parameter, �, as shown in Eq. (1), 
 

(1 − �) = ��
� . 

(1) 

 

This reduction in load bearing area leads to a corresponding reduction in transmitted stress, �, in the 
damaged material. Combining with the damage parameter defined in Eq. (1), the stress is given by Eq. 

(2) which relates the transmitted stress to an ‘effective’ stress, �, in the ‘fictitious’ undamaged 

configuration,  

 

� = (1 − �)� . (2) 

 

The principle of strain equivalence assumes that the strains in the damaged material, Fig 1. (left), and 

‘fictitious’ material, (Fig. 1, right) are equal, � = �̃	. Using the constitutive relations, � = �� and 
� = ���̃, where � is the modulus of the damaged material and ��  is the modulus of the fictitious 
(undamaged/pristine) material, it may be easily shown that,  

 

� = (1 − �)�� . (3) 
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2.2 Global constitutive law (ply level) 

 

Fig. 2 shows a representative volume element (RVE) of a composite ply where 1 is the fibre direction 

and orthogonal directions 2 and 3 are the transverse and through-thickness directions, respectively, 
which are dominated by matrix properties. By strain equivalence,  

 

�� = �: � , (4) 

 

where � is the pristine stiffness matrix.  
 

After damage initiation, both the moduli and Poisson ratios are degraded,  

 

���,����,� = ���(1 − ���)���(1 − ���) = ����1 − ����
����1 − ���� = ���,����,� ,  , ! = 1,2,3	 ≠ ! 

. 
(5) 

 

2.4 Fibre-dominated damage model 

 

The deformation of the RVE in the fibre direction is shown in Fig. 3. A strain-based failure initiation 

criterion, in the fibre-dominated direction, is used in the analysis [8]. It is to be noted that extensive 

validation [2,4,9–14] has shown that the need for coupling of this failure mode does not lead to 

significantly improved accuracy. For fibre-dominated damage, the fracture surface is assumed to be 

perpendicular to the loading direction such that the fracture surface coordinate system is coincident 

with the material coordinate system (123). In the computational subroutine, a damage tensor for fibre 

damage, #$�%, is defined, along with a stiffness matrix with Poisson degradation only, �&, 
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�'() = #$�%�&:�'() = #$�% : �*'()  , (6) 

 

#$�% =
+,
,,
,-
�1 − �$�%� 0 0 0 0 0

0 1 0 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1/0
00
01					 

, 

(7) 

 

and �*'() is a non-physical stress vector, introduced for computational expediency, which is based on 

the product of  �& and the strain, �'(). 

 

2.5 Matrix-dominated damage model 

 

The matrix-dominated damage model uses Puck’s stress-based damage initiation criterion [15]. The 

orientation of the fracture surface (coordinate system LNT), defined by the angle, 2$ , in Fig. 4, is 

determined by the 3D stress state acting on the RVE. This requires �*'(), expressed as a stress tensor, 

to be rotated onto the fracture plane using the standard rotation tensor 3�2$�, 
 

�*456 = 3�2$��*'()33�2$� , (8) 

 

The degraded stress vector on the fracture plane, �456, may then be expressed as, 

 

�456 = #789: �*456 , (9) 

 

where #789  is a matrix damage tensor in which a damage parameter, �789, is derived from a 

constitutive bilinear law [10,16,17], 
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#789 =
+,
,,
,,
-1 0 0 0 0 00 �1 − �789:��� 0 0 0 0
0 0 1 0 0 00 0 0 �1 − �789:��� 0 0
0 0 0 0 �1 − �789:��� 0
0 0 0 0 0 1/0

00
00
1
 

, 

(10) 

 

where :�� is the Kronecker delta, 

:�� = 1       ;	 ≠ ! 
( , ! = <, =, >) :�� = 0       ;	 = !	 ∩	�55 < 0. 

and 

 

�789(�A) = �AB −	�A,�C	D
�AB − �AD

E �AD − �A�A − �A,�C	D F 
, 

(11) 

 

where �A  is the G( −norm of the strain vector [�55, �45 , �56 ]T acting on the fracture plane.  �AD and 

�ABare the G( −norms of the damage initiation and final failure strains, respectively. �A,�C	D is the 

G( −norm of the inelastic strain vector at damage initiation. 

 

The degraded stress tensor on the fracture plane, �456, is subsequently rotated back to the material 

coordinate system,  

 

�'() = 3�−2$�	�456	36�−2$� , (12) 
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2.6 Full stress tensor for damaged RVE 

 

Since the matrix fracture plane is always rotated around the fibre direction, the fibre and matrix damage 

tensors may be combined in the LNT coordinate system,  

 

�456 = #H: �*456  , (13) 

 

where 

 

#H =

+,
,,
,,
-(1 − �$�%) 0 0 0 0 0

0 �1 − �789:��� 0 0 0 0
0 0 1 0 0 00 0 0 �1 − �789:��� 0 0
0 0 0 0 �1 − �789:��� 0
0 0 0 0 0 1/0

00
00
1
 

, 

(14) 

 

The resulting global stress tensor (�'()) is obtained by rotating the degraded stress tensor (�456) 

back to the material coordinate system,  

 

�'() = 3�−2;��4563>�−2;� . (15) 

where 

 

�'' = (1 − �$�%)	�44 ,  (16) 

   

�(( = (1 − �789:��)�55 IJK( 2$ − (1 − �789:��)�56 K L 22$ + �66 K L( 2$  , (17) 

   

�)) = (1 − �789:��)�55 K L( 2$ + (1 − �789:��)�56 K L 22$ + �66 IJK( 2$  , (18) 
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�'( = (1 − �789:��)�45 IJK 2$ − �46 K L 2$  , (19) 

    

�') = (1 − �789:��)�45 K L 2$ + �46 IJK 2$  , (20) 

    

�() = E(1 − �789:��)�55−�662 FK L 22$ + (1 − �789:��)�56 IJK 22$  
. 

(21) 

 

3. Application in FE simulations 

 

With the exception of the first sub-heading below, the same section headings and subheadings have 

been used in this section, as those presented in [2], for facilitating the comparison of results.  

 

3.1 Constrained single element test 

 

Two different constrained single element simulations were carried out with identical boundary 

conditions to those suggested in [1], Fig. 5. The results of the first simulation, shown in Fig. 6a, were 

obtained using the proper implementation of the damage model in [2] where it is evident that the correct 

behaviour was captured. In Fig. 6b the model was executed with the Poisson ratio degradation 

deactivated where it is noted that, in this instance, the incorrect behaviour presented in [1], and 

erroneously attributed to the formulation in [2], is reproduced. This is one, but perhaps not the only, 

possible explanation for the error in Bogenfield’s and Kreikemeier’s implementation of Falzon’s model.  
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3.2 Minimal example: tensile specimen 

 

A simple tensile test simulation, under displacement control, was conducted using a mesh density 

shown in Fig. 7a and boundary conditions given in Fig. 7b. The element size was 1NN × 1NN ×
1NN, and 40 C3D8R elements were used.  

 

A comparison of the force versus displacement curves, obtained using the damage model in [2], Fig. 

8a, and as presented by Bogenfeld and Kreikemeier`s [1], Figs 8b, shows that Bogenfeld and 

Kreikemeier`s claim that the model in [2] leads to ‘a permanently oscillating response’ is not correct.  

It is further demonstrated in Fig. 9a that an appropriate crack band is formed using Falzon’s damage 

model [2] and not the distortion reported by Bogenfeld and Kreikemeier [1], reproduced in Fig. 9b. 

 

3.3 Compression of cubic specimen 

 

The cubic specimen compression test, described in Bogenfeld and Kreikemeier`s paper [1], was 

replicated in this work using Falzon’s damage model [2]. The finite element model is shown in Fig. 10. 

Damage initiation, at each corner of the specimen, was predicted correctly with the defective version of 

Falzon’s model implemented by Bogenfeld and Kreikemeier in [1]. In such idealised computational 

specimens, damage is expected to propagate from these edges to form diagonal cracks. This is indeed 

what is observed in the current work where the results are presented in Fig. 11a. Fig. 11b shows the 

results obtained by Bogenfeld and Kreikemeier [1].  

 

It is immediately obvious that the current work produces a clear crack path and does not ‘lead to rather 

diffusely damaged elements’ as claimed in [1]. Neither do the results in Fig. 11a exhibit ‘non-physical 
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effects’ at the edges. This is, presumably, a reference to the high level of element distortion obtained by 

Bogenfeld and Kreikemeier [1]. 

 

4. Application on a low velocity impact (LVI) model 

 

A number of papers by Falzon’s research group [2,3,8,10] have reported excellent correlation between 

experimental impact tests and predictive computational modelling. Moreover, recent developments 

have further demonstrated the ability of this damage model to accurately predict compression-after-

impact behaviour [3] and assess the crushing response of composite specimens [4,9,11].  These 

studies attest to the robustness and stability of the damage model. It was, therefore, with a 

considerable degree of incredulity that the authors of this paper viewed the force vs time and force vs 

displacement curves reported by Bogenfeld and Kreikemeier (Fig 15 in [1]) which showed a surprising 

degree of instability which has never been observed using the proper implementation of Falzon’s 

damage model.  

 

The results of impact simulation obtained from Bogenfeld and Kreikemeier`s work [1] are shown in Fig. 

12. The LVI specimen described by Bogenfeld and Kreikemeier [1] was reproduced by the authors and 

executed using the damage model in [2]. The resulting force vs time and force vs displacement curves 

are shown in Fig. 13a and 13b, respectively. It is clearly evident that excellent correlation was achieved 

with no evidence of instability issues. 
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Figures 

 

Fig. 1. Micro-cracking (left) which reduces the effective load bearing area from � to ��  . 
 

 

Fig. 2. Representative Volume Element (RVE) of a unidirectional composite ply. 
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Fig. 3. RVE loaded in the fibre direction. 

 

 

Fig. 4. Fracture plane and corresponding coordinate system. 
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Fig. 5. Boundary condition of single element tensile simulation. 

 

  

(a) (b) 

Fig. 6. (a) Correct results obtained from the damage model reported in [2] (b) results obtained with Poisson ratio 

degradation deactivated (cf. Fig, 3 in [1]). 
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(a) (b) 

Fig. 7. (a) FE model for minimal tensile specimen (b) boundary condition of minimal tensile specimen. 

 

 
 

(a) (b) 

Fig. 8. Force history curve (a) obtained using the damage model reported in [2] (b) as presented in Bogenfeld 

and Kreikemeier`s paper (Table 1, [1]). 

 

  

(a) (b) 

Fig. 9. Crack band formation (a) obtained using the damage model reported in [2], and (b) as reported by 

Bogenfeld and Kreikemeier [1]. 
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Fig. 10. Finite element model of the cubic compression test simulation. 

 

  

(a) (b) 

Fig. 11. Diagonal crack formation in cubic specimen compression test (a) obtained using the damage model 

reported in [2], and (b) as reported by Bogenfeld and Kreikemeier [1]. 

 



  

17 

 

  

(a) (b) 

Fig. 12. (a) Force versus time and (b) force versus displacement curves presented in Bogenfeld and 

Kreikemeier`s work [1]. 

 

  

(a) (b) 

Fig. 13. (a) Force versus time and (b) force versus displacement curves obtained using the damage model 

reported in [2]. 

 


