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Abstract

Harmonizing the analysis of data, especially of 3-D image volumes, consisting

of di↵erent number of slices and annotated per volume, is a significant problem

in training and using deep neural networks in various applications, including

medical imaging. Moreover, unifying the decision making of the networks over

di↵erent input datasets is crucial for the generation of rich data-driven knowl-

edge and for trusted usage in the applications. This paper presents a new deep

neural architecture, named RACNet, which includes routing and feature align-

ment steps and e↵ectively handles di↵erent input lengths and single annotations

of the 3-D image inputs, whilst providing highly accurate decisions. In addition,

through latent variable extraction from the trained RACNet, a set of anchors

are generated providing further insight on the network’s decision making. These

can be used to enrich and unify data-driven knowledge extracted from di↵erent

datasets. An extensive experimental study illustrates the above developments,

focusing on COVID-19 diagnosis through analysis of 3-D chest CT scans from

databases generated in di↵erent countries and medical centers.
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1. Introduction

In a variety of applications, input data are in the form of 3-D volumetric

images, i.e., two dimensional image sequences which include di↵erent number of

frames, or slices, and which are annotated in terms of a single label per sequence.

Such applications are, for example, 3-D chest CT scan analysis for pneumonia,5

COVID-19, or Lung cancer diagnosis [1], [2]; 3-D magnetic resonance image

(MRI) analysis for Parkinson’s, or Alzheimer’s disease prediction [3], [4]; 3-D

subject’s movement analysis for action recognition & Parkinson’s detection [5];

analysis of audiovisual data showing subject’s behaviour for a↵ect recognition

[6]; anomaly detection in nuclear power plants [7]. Dealing with a single annota-10

tion per volumetric input and harmonizing the input variable length constitutes

a significant problem when training Deep Neural Networks (DNNs) to perform

the respective prediction, or classification task.

Furthermore, in each of the above application fields, public, or private datasets

are produced in di↵erent environments and contexts and are used to train deep15

learning systems to successfully perform the respective tasks. Extensive research

is currently made on using data-driven knowledge, extracted from a single, or

from multiple datasets, so as to deal with other datasets. Transfer learning,

domain adaptation, meta-learning, domain generalization, continual or life long

learning are specific topics of this research, based on di↵erent conditions related20

to the considered datasets [8]. An additional condition can be that some, or all

of the datasets may not be available during continual learning, due for exam-

ple to privacy, or General Data Protection Regulation (GDPR) issues. In such

cases it can be possible to perform diagnosis by only sharing some data-driven

knowledge, like the weights of independently trained DNNs.25

COVID-19 diagnosis based on medical image analysis is the application do-

main examined in this paper. Various methods have been proposed to diagnose

COVID-19, using analysis of chest x-rays, or CT scans. In particular, chest

3-D CT images can be used for precise COVID-19 early diagnosis. Recent ap-

proaches target segmentation and automatic detection of the pneumonia region30
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in lungs and subsequent prediction of anomalies related to COVID-19 [9]. Com-

mon anomalies are multiple ground-glass opacity, consolidation, and interlobular

septal thickening in both lungs, which are mostly distributed under the pleura.

Such approaches require large training datasets. A few databases with CT

scans have been recently developed [10], [11]. However, a rather fragmented35

approach is followed: research is based on specific datasets, provided by small,

or larger numbers of hospitals, with no proof of good performance generalization

over di↵erent datasets and clinical environments. Moreover, many datasets are

small, in terms of total CT scans, or scan slices, or COVID-19 annotated CT

scans, or number of patients [12].40

In this paper we present and use a new very large database, COV19-CT-

DB, which we have developed, including chest 3-D CT scans, aggregated from

di↵erent hospitals. In particular, it includes 7,756 3-D CT scans, annotated for

COVID-19 infection; 1,661 are COVID-19 cases and 6,095 are non-COVID-19

cases. The 3-D CT scans consist of di↵erent numbers of CT slices, ranging from45

50 to 700, totalling around 2,500,000 CT slices. The whole database is being

currently made available to the research community through our website.

We also present a deep neural architecture able to: i) analyze 3-D CT scan

inputs, ii) e↵ectively handle the problem that each CT scan consists of a di↵erent

number of CT slices and iii) provide a very high performance, when used on50

COV19-CT-DB and on other public datasets for COVID-19 diagnosis. RACNet

is a CNN-RNN architecture that is modified to include routing and feature

alignment steps which dynamically select the specific RNN outputs to be fed to

the dense layers for decision making, i.e., COVID-19 diagnosis.

In addition, we extract latent variables from the trained RACNet and derive55

a set of anchors that provide insight into the network’s data driven knowledge.

These anchors are further used for unification with other public datasets, devel-

oping a continual learning framework that does not require sharing of datasets.

The novel contributions of the paper include: i) presentation and analysis

of the COV19-CT-DB, which is a new very large database of 3-D Chest CT60

scans, annotated for COVID-19 detection and provided to the public for research
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purposes ii) development and evaluation of RACNet which can e↵ectively and

e�ciently analyze 3-D CT scans aggregated from di↵erent sources, with di↵erent

characteristics and lengths, and perform highly accurate COVID-19 diagnosis

iii) extensive evaluation of RACNet performance over six di↵erent datasets,65

showing that it provides a greatly improved performance when compared with

the state-of-the-art iv) unification of COVID-19 detection via extracted RACNet

anchor representations and evaluation over 3 di↵erent datasets.

The rest of the paper is organized as follows. Related work is presented in

Section 2. Section 3 provides a short description of COV19-CT-DB. The RAC-70

Net is described in Section 4. Section 5 includes the experimental study pre-

senting the evaluation of the performance of RACNet when trained on COV19-

CT-DB and several other public databases, as well as the validation of the

unification approach. Conclusions and future work are presented in Section 6.

2. Related Work75

A variety of 3-D CNN models have been used for detecting COVID-19 and

distinguishing it from other common pneumonia (CP) and normal cases, using

volumetric 3-D CT scans. In [13] a pretrained DenseNet-201 was trained to

classify CT scan images to COVID-19, or non-COVID-19 category. The net-

work’s performance was compared to that of fine-tuned VGG16, ResNet152V2,80

and Inception-ResNetV2. 3-D CNN models have also been used in [14], [15].

In [2], a weakly supervised deep learning framework was presented using 3-D

CT volumes for COVID-19 classification and lesion localization. A pre-trained

UNet was utilized for segmenting the lung region of each CT scan slice; the latter

was fed into a 3-D CNN that provided the classification outputs; the COVID-1985

lesions were localized by combining the activation regions in the CNN and some

connected components in unsupervised way.

In [16] and [17] 3-D models, such as ResNet3D101 and MC3 18 [18], were

used to perform CT scan classification. These 3-D CNN models provided mod-

erate results and were quite large in terms of model size compared to CNN-RNN90
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models. In addition, both papers proposed a neural network search framework

to automatically search the 3-D models for the classification task. In [16] a dif-

ferentiable neural architecture search method is developed combined with the

Gumbel Softmax technique; the training, validation and test datasets used have

been published for future research. In [17] an Evolutionary Multi-objective Ar-95

chitecture Search algorithm called EMARS was introduced, which takes into

consideration the size of the model in the search space. These auto-generated

models developed in [16] and [17] outperformed the previously manually con-

structed 3-D CNNs in terms of accuracy and model size, but they lack practi-

cality, since a di↵erent model must be constructed for every analyzed dataset.100

[19] used a CNN plus RNN network, receiving input CT scan images at

its input and discriminating between COVID-19 and non-COVID-19 cases. In

[1], the authors developed a multi-task architecture consisting of a (common)

encoder that takes a 3-D CT scan as input and i) a decoder that reconstructs it;

ii) a second decoder that performs COVID lesion segmentation; and iii) a multi-105

layer perceptron for classification between COVID and non-COVID categories.

[20] and [21] used large 2D CNN models (Inception-ResNet-V2 and VGG16)

to classify the 3D CT-scan volume through Ensemble models. Despite their

good performance, these approaches are very di�cult to contribute to real life

environments, due to very high computational complexity and inference time.110

3. The COV19-CT-DB Database

COV19-CT-DB includes 3-D chest CT scans annotated for existence of

COVID-19. Data collection was conducted in the period from September 1

2020 to November 30 2021. It consists of 1,661 COVID and 6,095 non-COVID

chest CT scan series, which correspond to a high number of patients (more than115

1150) and subjects (more than 2600). These are anonymous; in general more

than one CT scan series refer to each person, usually taken in di↵erent time

instances. In total, 724,273 slices correspond to the CT scans of the COVID-19

category and 1,775,727 slices correspond to the non COVID-19 category.
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Annotation of each CT slice has been performed by 4 very experienced (each120

with over 20 years of experience) medical experts; two radiologists and two

pulmonologists. Labels provided by the 4 experts showed a high degree of

agreement (around 98%). Each of the 3-D scans includes di↵erent number of

slices, ranging from 50 to 700. Figure 1 shows the histogram of the 3-D CT scan

lengths, where the length denotes the number of CT scan slices. This Figure125

illustrates the variety of 3-D CT scan lengths in the COV19-CT-DB database.

This variation in number of slices is due to the context of CT scanning. The

context is defined in terms of various factors, such as the accuracy asked by the

doctor who ordered the scan, the characteristics of the CT scanner that is used,

or specific subject’s features, e.g., weight and age.130

Figure 1: Histogram of CT scan lengths in COV19-CT-DB

Figure 2 shows slices from a CT scan series from a non-COVID case. Sim-

ilarly, Figure 3 shows slices from a CT scan series from a COVID case. Figure

4 shows four CT scan slices, two from a non-COVID-19 CT scan, on the left

and two from a COVID-19 scan, on the right. Bilateral ground glass regions are

seen especially in lower lung lobes in the COVID-19 slices.135

The database has been split in training, validation and test sets. The training

set contains, in total, 1991 CT scans, 882 of which are labeled as COVID-19

and 1109 are labeled as non COVID-19. The validation set contains, in total,

484 CT scans, 215 of which are labeled as COVID-19 and 269 are labeled as

non COVID-19. The test set contains, in total, 5281 CT scans, 564 of which140
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Figure 2: Slices from a non COVID-19 CT scan in COV19-CT-DB
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Figure 3: Slices from a COVID-19 CT scan in COV19-CT-DB
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Figure 4: Four CT scan slices in COV19-CT-DB, the top 2 from a non-COVID-19 scan and

the bottom 2 from a COVID-19, including bilateral ground glass regions in lower lung lobes.

are labeled as COVID-19 and 4717 are labeled as non COVID-19.

Some CT series of the same person have been taken at di↵erent time in-

stances. In order to verify that there is no leakage of data from the training to

the test set, we compared each 3-D CT scan in the test set with each 3-D CT

scan in the training set. At first, we compared each 3-D CT scan in the test145

set with all 3-D CT scans in the train set which had the same length (in terms

of the number of their CT slices). Then, we compared each 3-D CT scan in

the test set with all 3-D CT scans in the train set that did not have the same

length. In this case we made the comparison over the minimum CT scan length,

i.e., over the first 50 slices of each 3-D CT scan. We found that there was no150

3-D CT scan in the test set which was identical or almost identical to a 3-D CT

scan of the training set.

Finally, Table 1 summarizes the main attributes of COV19-CT-DB that are

presented above.
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Table 1: Attributes of the COV19-CT-DB

Attribute Description

total # of CT scans
1,661 COVID

6,095 non-COVID

total # of slices
724,273 from CT scans of COVID

1,775,727 from CT scans of non-COVID

# of slices per CT scan 50 - 700

# Patients >1150

# Subjects >2600

slice image resolution 512⇥ 512

# Annotators
4 medical experts

(2 radiologists & 2 pulmonologists)

4. RACNet: The Proposed Architecture155

Let us specifically define the input data characteristics for the COVID-19

diagnosis problem. The input sequence is a 3-D signal, consisting of a series of

chest CT slices, i.e., 2-D images, the number of which is varying. The 3-D signal

can be handled using a 3-D CNN architecture, such as a 3-D ResNet. However,

handling the di↵erent input lengths, i.e., the di↵erent number of slices that each160

CT scan contains, can only be tackled in some ad-hoc way; by selecting a fixed

input length and removing slices when a larger length is met, or by duplicating

slices when the input contains a smaller number of slices.

In this paper, we propose a CNN-RNN architecture, RoutingAlignCluster-

Net (RACNet), instead of a 3-D CNN one. RACNet consists of three compo-165

nents: the 3D Analysis component, the Routing one and the Classification one.

At first, all input CT scans are padded to have length t (i.e., consist of t slices).

For example, let us consider a specific scan series with 50 slices and a total

length t of 700. The series will be duplicated 13 times, so as to reach the total

input length. Then, there are two modes of feeding input data to our model.170

In the first, segmentation of each 2-D slice is performed so as to detect the lung

regions; then the resulting segmented image constitutes the input to the CNN.
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In the second, the whole unsegmented 2-D slices are fed as input to the CNN

part. Both modes are studied in the presented experimental study of the paper.

In the following each component of RACNet is presented.175

Figure 5: The proposed Pipeline: A 3-D input composed of, up to t chest CT slices is processed

for COVID-19 diagnosis; 3-D analysis is performed by a CNN-RNN architecture, while a

routing mechanism including an ’alignment’ step and a Mask Layer handles the varying input

length t. A dense layer follows, preceding the output layer that provides the COVID-19

diagnosis; the neuron outputs of the dense layer are further analyzed through clustering to

derive a latent variable model and a related set of anchors that provide further insight into

the achieved decision making.

4.1. 3-D Analysis Component

The input data are fed into the 3D Analysis component of RACNet. This

component consists of a CNN network followed by an RNN one. The CNN

network performs local, per 2-D slice, analysis, extracting features mainly from

the lung regions. It should be mentioned that the target is to make diagnosis180

using the whole 3-D CT scan series, similarly to the way medical experts provide

the annotation. The RNN part provides this diagnosis, by analyzing the CNN

features of the whole 3-D CT scan, sequentially moving from slice 0 to slice

t � 1. This is depicted in Figure 5, where t denotes the maximum number of

slices that appear among all available chest CT scans.185
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4.2. Routing Component

As shown in Figure 5, we get RNN features corresponding to each CT slice,

from 0 to t � 1. These constitute the input of the Routing Component of

RACNet. At first, these features are concatenated and are then fed to the Mask

Layer. The original (before padding) length l of the input series is transferred190

from the input to the Mask Layer to inform the routing process. By including

a Mask Layer after the RNN part, RACNet dynamically selects RNN outputs

taking into account the input length, i.e., the number of slices of the analyzed

CT scan. This is depicted in Figure 5, where the Mask Layer performs a dynamic

routing procedure, as is explained next.195

During RACNet training, the routing mechanism performs dynamic selection

of the RNN outputs/features. In particular, it selects as many of them as

denoted by the length l of the input series, keeping their values, while zeroing

the values of the rest RNN outputs. In this way, it is routing only the selected

ones into the following dense layer. This can be done: a) by selecting the first200

l RNN outputs, or, b) through an ’alignment’ step, i.e., by first placing the l

original RNN outputs in equidistant positions in [0, t�1] and by then placing the

remaining outputs in the in-between positions; the Mask gets their positions and

performs routing of the respective RNN outputs to the Classification module.

The ’alignment’ step. As before, let us assume, e.g., that a maximum input205

length of 700 CT scan slices is considered. For a specific input CT scan consisting

of 50 slices, 650 duplicate slices are inserted so that the scan is made to contain

700 slices in total. During training, all 700 slices are fed to the CNN-RNN.

In the case where no ’alignment’ is performed, the network’s output is fed to

the Mask layer which: i) zeroes the features corresponding to the 650 duplicate210

slices, ii) lets the first 50 features keep their values. This is shown in Fig. 6 (a).

In the case where ’alignment’ is performed, the features extracted from the

CNN-RNN part are re-positioned as follows. The features corresponding to the

50 original slices are placed in equidistant positions in [0, 699]. The rest features

corresponding to the 650 duplicate slices are placed in the in-between positions,215
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following the respective duplicated slice; i.e., all slice 0 duplicates are placed

between slice 0 and slice 1 and so on. In Figure 6 (b), between ’features of CT

slice 0 and slice 1’ we place 13 features corresponding to the duplicates of slice 0;

between ’features of CT slice 1 and slice 2’ we place 13 features corresponding to

the duplicates of slice 1 and so on. After the features corresponding to the last220

original slice (49), we place the features corresponding to the final 13 duplicates

of slice 49. The operation of the Mask Layer is the same as when no ’alignment’

is performed; it i) zeroes the features corresponding to the duplicate slices, ii)

lets the 50 features (corresponding to original slices) keep their values, iii) it

forwards these values to the following Classification module.225

(a)

(b)

Figure 6: The Routing Mechanism: (a) without and (b) with the ’alignment’ step

Let us clarify the significance of the ’alignment’ step and the Mask layer

via an example, by looking at the weights between the neurons of the dense

layer and e.g. the 45th RNN output. When, during training, RACNet’s input

is a CT scan with length 700, then these weights will be updated with slice
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information from the beginning (i.e., initial slices) of the CT scan; when its230

input is a CT scan with length 90 then these weights will be updated with

slice information from the middle slices of the CT scan; when its input is a CT

scan with length 50 then these weights will be updated with slice information

from the ending slices of the CT scan. This makes the weights’ training harder,

requiring large amounts of data to work e↵ectively. This problem is handled235

through the alignment step. In this step, the features extracted from the CNN-

RNN part up to length l are re-positioned in equidistant positions in [0, 699]

and the rest features corresponding to the duplicate slices are placed in the in-

between positions; the former features are kept, whereas the latter are zeroed

out by the Mask Layer. Due to the alignment step, each weight is updated240

during training with CT slice information corresponding to a similar part of

the 3-D CT scan, for example, its beginning, middle, or end. This can make

training more e�cient and improve the performance, especially when a limited

number of training data is available.

4.3. Classification Component245

As mentioned above, the concatenated RNN outputs are fed to the Classifica-

tion Component that consists of a dense layer followed by the output layer which

uses a softmax activation function and provides the final COVID-19 diagnosis.

The dense layer learns to extract high level information from the concatenated

RNN outputs. During training, we update only the weights that connect the250

dense layer neurons with the RNN outputs routed in the concatenated vector

by the Mask layer. The remaining weights are updated whenever (i.e., in an-

other input CT scan) respective RNN outputs are selected in the concatenated

vector by the Mask Layer. Loss function minimization is performed, as in net-

works with dynamic routing, by keeping the weights that do not participate in255

the routing process constant, and ignoring links that correspond to non-routed

RNN outputs.
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4.4. Latent Variable Analysis and Anchor Set Generation

After RACNet is trained, we extract and further analyze, through clustering,

the, say L, neuron outputs of the dense layer of the trained RACNet. These260

latent variables carry high level, semantic information, which is used to generate

the final classification at the output layer. We choose to discard the output

layer and perform unsupervised analysis of these variables, so as to generate a

representation that can provide further insight into the achieved decision making

ability.265

Let us assume that we feed the presented architecture with a training dataset.

For each 3-D CT scan input k, we extract the L neuron outputs of the dense

layer, forming a vector v(k). In total, we get:

V =
�
(v(k) 2 RL, k = 1, . . . , N

 
(1)

where N is the number of available training data.

We aim to generate a concise representation of the v vectors, that can be

used as a backward model, to trace the most representative CT scan inputs

for the performed diagnosis. This is achieved using a clustering algorithm, e.g.,

k-means++ [22], which generates, say, M clusters Q = {q1, . . . ,qM}, where

qi 2 RL for i = 1, . . . ,M by minimizing the following criterion:

bQk-means = arg min
Q

MX

i=1

X

v2V

kv� µik
2 (2)

where µi 2 RL is the mean of v values included in cluster i.270

Then, we compute each cluster center c(i) 2 RL, generating the set C, which

constitutes the targeted concise representation:

C =
�
(c(i) 2 RL, i = 1, . . . ,M

 
(3)

The CT scan inputs corresponding to the cluster centers can be then exam-

ined by medical experts, who can add semantic information related to each one

of them.275
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The generated C set can be used as an anchor set model assisting COVID-

19 diagnosis in new subject cases. By testing the trained RACNet model on a

new input CT scan case, we will extract the corresponding v vector of latent

variables and will compute the euclidean distance between this vector and each

cluster center, i.e., anchor, in C. As a consequence, the new input case is linked280

to the cluster center with the minimum euclidean distance and is annotated

with the label of this center.

The presented latent variable extraction and anchor generation can, there-

fore, be used to assist COVID-19 diagnosis in a rather e�cient way; by comput-

ing M distances between L-dimensional vectors and selecting their minimum285

value. Moreover, by computing the respective cluster radii, we can provide

confidence levels in addition to the confidence levels provided by the RACNet

output layer.

An additional advantage of this approach, when added to the main RACNet

architecture, is that the latter needs retraining, or fine-tuning with new datasets,290

whenever such datasets become available, e.g., are generated by another hospi-

tal, or in another country. Due to privacy purposes, it is highly probable that it

is not possible for di↵erent medical centers to share their datasets for retraining

with all of them. It can, however, be possible for di↵erent medical centers to

share, or find on github, the best performing networks trained on others’ data,295

as well as the respective anchor derived information. By continual aggregation

of older and newer anchor sets, together with the respective trained (RACNet)

networks, they can generate common enriched data-driven representations.

5. Experimental Study

This section describes a set of experiments that evaluate the performance300

of the proposed approach (RACNet) for COVID-19 detection when applied to

a variety of databases. At first, we trained RACNet on the COV19-CT-DB

database and compared its performance to that of other types of networks.

We further performed an ablation study that verified the contribution of each
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component of RACNet. Next, we considered five more databases, applied and305

retrained RACNet on them and compared its performance to the state-of-the-

art methods for COVID-19 detection applied to these databases. It is shown

that in all cases, RACNet outperformed the state-of-the-art methods. Finally,

we performed latent variable extraction from the trained RACNet, deriving a

set of anchors and subsequently used them (in addition to RACNet) to derive310

a unified model over three di↵erent databases.

5.1. The Chest 3-D Scan Databases used in the Experimental Study

In the experimental study, we utilized at first the COV19-CT-DB database

which has been described in Section 3.

We also utilized the database that was shared in the COV19D Competition315

of the Workshop “AI-enabled Medical Image Analysis Workshop and Covid-19

Diagnosis Competition” held in conjunction with the International Conference

on Computer Vision (ICCV) 2021 [23, 24, 25, 26]. The database, annotated

with respect to COVID-19/non-COVID-19 diagnosis, includes a total of 1405

COVID-19 and 4066 non-COVID-19 3-D CT scans; its training set includes 1552320

3-D CT scans (707 COVID-19 and 845 non-COVID-19 ones) and its validation

set contains 374 3-D CT scans (165 COVID-19 and 209 non-COVID-19 ones).

Thereafter we refer to this database as COV19D-ICCV2021.

Furthermore, we utilized the database that was shared in the COVID-19

Detection Challenge of the 2nd COV19D Competition of the the Workshop “AI-325

enabled Medical Image Analysis – Digital Pathology & Radiology/COVID19”

held in conjunction with the European Conference on Computer Vision (ECCV)

2022 [27, 28, 23, 24, 25, 26]. The database is annotated with respect to COVID-

19/non-COVID-19 diagnosis and includes a total of 1550 COVID-19 and 5044

non-COVID-19 3-D CT scans; its training set containeS 1992 3-D CT scans330

(882 COVID-19 and 1110 non-COVID-19 ones) and its validation set contains

504 3-D CT scans (215 COVID-19 and 289 non-COVID-19 ones). Thereafter

we refer to this database as COV19D-ECCV2022.

We also utilized the CC-CCII [10] database that includes 3-D CT scans of
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3 classes: novel coronavirus pneumonia (NCP), common pneumonia (CP), and335

Normal. The original CC-CCII database contained a total number of 617,775

slices of 6,752 CT scans obtained from 4,154 patients. However, there were

some problems with it (i.e., damaged data, non-unified data type, repeated and

noisy slices, disordered slices, and non-segmented slices). The authors of [16]

published training and test partitions that do not include damaged data, naming340

this version of CC-CCII as ’Clean CC-CCII’. The training partition consists of

3,195 3-D CT scans (1,213 NCP, 1,210 CP and 772 Normal) and the test one

consists of 798 3-D CT scans (302 NCP, 303 CP and 193 Normal). We utilized

this version in our experimental study. We refer to this database as CC-CCII.

Another database that we utilized was the MosMedData database [11], an-345

notated with respect to COVID-19/non-COVID-19 diagnosis. It contains 1,110

3-D CT-scans, with the two classes being rather imbalanced. The COVID class

consists of 856 CT-scans, whereas the Normal class consists of 254. The training

set consists of 601 COVID-19 and 178 non-COVID-19 CT scans and the testing

set consists of 256 COVID-19 and 76 non-COVID-19. We refer to this database350

as MosMedData.

Finally we utilized the CT-image Database [29] annotated with respect to

COVID-19/non-COVID-19 diagnosis. This dataset does not include 3-D CT-

scans, but 408 non-COVID-19 and 349 COVID-19 CT-scan slices, obtained

from di↵erent patients. The training set consists of 279 COVID-19 and 326355

non-COVID-19 CT-scan slices and the training set consists of 70 COVID-19

and 82 non-COVID-19 CT-scan slices. To create respective 3-D CT-scans, we

augmented each slice using random rotation with an angle ranging from �20

to 20 degrees, random noise, and horizontal flip. Following this procedure,

we constructed 3-D CT-scans from the 2-D slices, which we utilized in our360

experiments. We refer to this database as CT-image DB.

5.2. RACNet Training: Implementation Details

Regarding implementation of RACNet: i) we used E�cientNetB0 as CNN

model, stacking a global average pooling layer on top, a batch normalization
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layer and dropout (with keep probability 0.8); ii) we used a single one-directional365

GRU layer consisting of 128 units as RNN model; iii) the first dense layer

consisted of 128 hidden units.

Regarding implementation details of RACNet training, batch size was equal

to 5 (i.e, at each iteration our model processed 5 CT scans) and the input length

’t’ (see Figure 5) was 700 (the maximum number of slices found across all CT370

scans). Our model was fed with 3-D CT scans composed of CT slices; each slice

was resized from its original size of 512 ⇥ 512 to 256 ⇥ 256. Loss function was

cross entropy. Adam optimizer was used with learning rate 10�4. In k-means

clustering, we tried values of k 2 {2, .., 25}, whilst evaluating the performance

of our model. Training was performed on a Tesla V100 32GB GPU.375

5.3. Experiments & Ablation Study on COV19-CT-DB

In this subsection we compare the performance of RACNet to that of 3-D

CNN and CNN-RNN models when trained and tested on the COV19-CT-DB.

According to [30] 3-D CNNs require a large number of labeled image se-

quences to learn the 3-D kernels. Therefore, we used a pre-trained for action380

recognition 3-D ResNet-50 [31] and further trained it on COV19-CT-DB. We

also considered MedicalNet[32], a 3-D ResNet-34 network trained for pulmonary

nodule classification. MedicalNet was trained with CT scans (i.e., the same in-

put considered in this paper). We used it as a pre-trained network and further

trained it on COV19-CT-DB.385

We also utilized a conventional CNN-RNN that provided a probability for

each CT scan slice at its output and was followed by a voting scheme that made

the final decision; the voting scheme was either a majority voting, or an at-least

one voting (i.e., if at least one slice in the scan was predicted as COVID-19, then

the whole CT scan was diagnosed with COVID-19, otherwise it was diagnosed390

with non-COVID-19); the CNN and RNN parts of this network were the same

as the respective parts of RACNet, i.e., E�cientNetB0 and single-directional

GRU (we also considered a dense layer between the RNN and the output layer,

but the achieved performance was worse).
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Table 2 shows a comparison of the performance of RACNet to the perfor-395

mance of these networks over the non-segmented COV19-CT-DB database. It

can be seen that RACNet outperformed all of them, in terms of both accuracy

and F1 score, for both COVID-19 and non COVID-19 categories. Particularly,

RACNet -although a lighter model- outperformed the 3-D ResNet-50 that had

been pre-trained on a large action database. It also outperformed MedicalNet400

that had been pre-trained, not on action recognition (which is another task),

but on a task similar to ours. This shows that the proposed model structure,

although lighter than the 3-D ones (around 4.4M parameters versus about 63M

and 46M respectively) and although not pre-trained on another task, achieved

the best performance.405

In addition, RACNet outperformed the CNN-RNN network; the main down-

side of that model is that there existed only one label for the whole CT scan

and there were no labels for each CT scan slice. In contrast to this, RACNet

analyzed the whole CT scan, based on information extracted from each slice, as

was described in the former Section.410

Table 2: Performance comparison between RACNet and other state-of-the-art networks on

the test set of COV19-CT-DB database (non-segmented data)

Method Accuracy F1

COVID non-COVID

3D ResNet-50 [31] 0.74 0.80 0.82

MedicalNet [32] 0.78 0.83 0.86

E�cientNet-GRU 0.73 0.80 0.82

RACNet 0.82 0.86 0.90

Ablation Study on the e↵ect of the routing mechanism: We compared the per-

formance of RACNet when the mask was used (and thus, only the RNN outputs

corresponding to true input slices were routed to the dense and output layers)

and when the mask was not used (and thus, inserted duplicates of input slices

were also fed to the dense layers). The last two rows of Table 3 illustrate the415
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e�cacy of the proposed mask, compared to the case of no masking. The mask

e↵ectively filtered out unnecessary and repeating information.

We could also start with a zeroed 3-D scan input; then put the existing CT

slices in equidistant positions and use slice duplication, so as to increase the

varying input length reaching a constant maximum value. We have performed420

experiments with this configuration without masking the outputs. The obtained

performance was about 8% lower to that shown in Table 3, providing an F1 score

of 0.82.

Ablation Study on the e↵ect of the ’alignment’ step: We compared the per-

formance when the ’alignment’ step was included, or not. In rows 6 and 8 (i.e.,425

the last row) of Table 3 one can see that the ’alignment’ case provided the best

results. This result was expected, since the ’alignment’ step managed to better

align the features of the important slices in each CT scan series.

Ablation Study on the e↵ect of various CNNs: Table 3 shows that when Ef-

ficientNetB0 was used as the CNN part of RACNet (shown on last row of the430

Table), it outperformed the cases when other state-of-the-art CNNs were used,

in particular ResNet-50 and DesneNet-121 (shown on rows 4 and 5 of the Table).

We also studied the e↵ect of using 3-D convolutions instead of the CNN-RNN

part in RACNet. Table 3 shows that using the CNN-RNN provided a better

performance, with the model being also lighter (this is indicated on rows 3 and435

8 -the last one- of the Table). Finally, we studied the e↵ect of using di↵erent

numbers of hidden units in the first dense layer of RACNet. Table 3 illustrates

that 128 units provided the best performance compared to the cases when 16

or 64 units were utilized (shown on rows 1, 2 and 8 of the Table).

5.4. Experiments on COV19D ICCV & ECCV Competitions440

Until this point, the presented results refer to the case where no segmen-

tation has been performed on the 3-D CT scan inputs; we did that as we did

not want the specific selection of the lung segmentation method to a↵ect the

presented analysis and obtained results. From here and thereafter, we exam-

ined the obtained performance of RACNet -for COVID-19 detection- when its445
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Table 3: Ablation Study: Performance comparison on the test set of COV19-CT-DB database

(non-segmented data)

RACNet Accuracy F1

COVID non-COVID

64 units in dense layer 0.79 0.83 0.86

16 units in dense layer 0.78 0.82 0.85

3-D conv instead of CNN-RNN 0.79 0.84 0.87

ResNet-50 as CNN 0.80 0.85 0.88

DenseNet-121 as CNN 0.79 0.84 0.87

without ’alignment’ 0.80 0.85 0.88

without mask 0.78 0.84 0.87

whole

(E�cientNetB0, GRU, 128 units in dense layer)

0.82 0.86 0.90

input was the segmented CT scans and compared its performance to the best

performing methods in the ICCV 2021 and ECCV 2022 Competitions, on the

COV19D-ICCV2021 and COV19D-ECCV2022 databases, respectively.

In Table 4, the performance of RACNet is compared to that of the best

performing method on COV19D-ICCV2021 database (winner of the COV19D450

ICCV 2021 Competition), FDVTS COVID, and to the performance of the meth-

ods that ranked in the second and third places, SenticLab.UAIC and ACVLab,

respectively. It can be observed that RACNet outperformed them by 3.4%-

5.09% in terms of the macro F1 score, which was the criterion used in the

Competition. Moreover, it can be observed that RACNet has produced a much455

larger increase in diagnosis of COVID-19 cases, which is very important; it has

outperformed the state-of-the-art by more than 10%.

Table 4 also illustrates a comparison of the performance of RACNet to the

performance of the best performing methods on COV19D-ECCV2022 database

(winners of the 2nd COV19D ECCV 2022 Competition), ACVLab and FDVTS,460

and to the performance of the method that ranked in the second place, MDAP.

It can be observed that RACNet outperformed them by 5.95%-7.19% in terms

of the macro F1 score, which was the criterion used in the Competition. More-
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over, it can be observed that RACNet has produced a much larger increase in

diagnosis of COVID-19 cases, which is very important; it has outperformed the465

state-of-the-art by more than 13%.

Table 4: Performance comparison between RACNet and the state-of-the-art on the test set of

COV19D-ICCV2021 and COV19D-ECCV2022 databases of the respective ICCV and ECCV

Competitions; F1 Score presented in %

Databases Methods F1

Macro COVID non-COVID

COV19D-ICCV2021 ACVLab [33] 88.74 80.63 96.84

SenticLab.UAIC [34] 90.06 82.96 97.17

FDVTS COVID [35] 90.43 83.60 97.27

RACNet 93.83 93.62 94.04

COV19D-ECCV2022 MDAP [36] 87.87 78.80 96.95

FDVTS [37] 89.11 80.92 97.31

ACVLab [38] 89.11 80.78 97.45

RACNet 95.06 94.18 95.95

5.5. Experiments on CC-CCII, MosMedData and CT-image Databases

In the following, we examine the obtained performance of RACNet on three

databases (CC-CCII, MosMedData and CT-image Database) and compare its

performance to the state-of-the-art.470

Table 5 illustrates the performance of RACNet trained for 3-class classifica-

tion (to distinguish novel coronavirus pneumonia from common pneumonia and

Normal) on the CC-CCII database according to various metrics (accuracy, pre-

cision, sensitivity, F1 score); Table 5 also illustrates a performance comparison

of RACNet and the state-of-the-art, which have been reported in Section 2.475

RACNet outperformed by a large margin all methods on all metrics. In

particular, RACNet outperformed the best performing method, EMARS-APS

by 3.28% in terms of F1 score and 4.33% in terms of accuracy; it also outper-

formed the other state-of-the-art methods by 4.74%-9.11% in terms of F1 score
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and 5.25%-7.7% in terms of accuracy. In this case, RACNet was pre-trained on480

COV19-CT-DB and then fine-tuned on the CC-CCCII’s training set. We ex-

ploited COV19-CT-DB for learning features, which were then used as priors for

achieving best performance. When RACNet was not pre-trained (but trained

from scratch) it still outperformed EMARS-APS by 1.28% in terms of F1 score

and 2.39% in terms of accuracy. It also outperformed the other state-of-the-art485

by 2.76%-7.11% in terms of F1 score and 3.31%-5.84% in terms of accuracy.

Table 5 also shows a comparison in terms of model size (in MB) between

RACNet and the state-of-the-art. It can be observed that RACNet is a way

lighter model than all state-of-the-art but EMARS-APS; the latter, however, is

a neural architecture search method which constructs a di↵erent model for each490

analyzed dataset, as can be seen comparing the obtained sizes in the cases of

CC-CCII and MosMedData databases (presented in the following). Let us also

report that the computational complexity of our model is about 112 BN FLOPs

and the number of parameters about 4.4 M.

Table 5 further shows the performance of RACNet trained for COVID-19495

vs non-COVID-19 diagnosis on the MosMedData database according to various

metrics and compares its performance to the state-of-the-art, explained in Sec-

tion 2. RACNet outperformed all methods on all metrics, although RACNet

is a lighter in size model than all of them as can be verified in Table 5. In

particular, the pre-trained RACNet on COV19-CT-DB outperformed the best500

performing method, EMARS-APS by 1.73% in terms of F1 score and 1.79% in

terms of accuracy; it also outperformed the other state-of-the-art methods by

5.65%-5.84% in terms of F1 score and 7.58%-9.83% in terms of accuracy. When

RACNet was not pre-trained (but trained from scratch) it still outperformed

EMARS-APS by 1.02% in terms of F1 score and 1.05% in terms of accuracy.505

It also outperformed the other state-of-the-art by 4.94%-5.13% in terms of F1

score and 6.84%-9.09% in terms of accuracy.

Finally, Table 5 shows the performance of RACNet trained for COVID-19

vs non-COVID-19 diagnosis on the CT-image database and compares its per-

formance to the state-of-the-art, explained in Section 2. RACNet outperformed510
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VGG19 and ResNet50 by 10.47% and 19.95%, respectively, in terms of accuracy,

although it is a lighter model in size by at least 10 times order of magnitude.

To sum up, through this extensive comparison analysis we demonstrate the

superior performance and e�ciency of RACNet in terms of both various classifi-

cation metrics and model size. RACNet is a computationally e�cient approach.515

Table 5: Performance comparison between RACNet and the state-of-the-art on the test set of

CC-CCII, MosMedData, and CT-image Database; Acc stands for Accuracy metric

Dataset Method
Size

(MB)
Acc Precision Sensitivity F1

CC-CCII MC3 18 [18] 43.84 86.16 87.11 82.78 84.89

Densenet3D121 [39] 43.06 87.02 88.97 82.78 85.76

COVID-AL [15] - 86.60 - - -

VGG-Ensemble [21] - 88.12 84.04 89.19 86.54

MNas3DNet [14] 22.91 87.14 84.44 86.09 87.25

CovidNet3D [16] 53.26 88.69 90.48 88.08 89.26

EMARS-APS [17] 3.38 89.61 91.48 89.97 90.72

RACNet 8.60 93.94 93.69 94.30 94.00

MosMedData MC3 18 [18] 43.84 80.04 79.43 98.43 87.92

Densenet3D121 [39] 43.06 79.55 84.23 92.16 88.01

DeCoVNet [2] - 82.43 - - -

CovidNet3D [16] 60.39 82.29 79.50 98.82 88.11

EMARS-APS [17] 10.69 88.09 93.52 90.59 92.03

RACNet 8.60 89.87 94.69 92.85 93.76

CT-image DB ResNet50 [40] 98.0 76.32 - - -

VGG19 [40] 549.0 84.80 - - -

RACNet 8.60 95.27 93.15 97.14 95.10

5.6. Anchor Set Creation

In the following we implemented the procedure of latent variable extrac-

tion and anchor set generation when training RACNet with the COV19-CT-DB

database. This resulted in a set of 11 anchors, each represented by a vector in
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the 128-dimensional space. 7 of them corresponded to COVID-19 cases, with520

the rest corresponding to non COVID-19 cases.

Table 6 provides the number of CT scans, belonging to RACNet training

data, assigned to every generated cluster and their COVID-19, or non-COVID-

19 category. It also provides a ranking of the severity of COVID-19, as classified

by our medical experts, in the range from 1 to 4, with 4 denoting the critical525

status. Table 7 describes each of these four categories [11]. The centers of the

above 11 clusters formed the anchor set on COV19-CT-DB.

Table 6: Number of CT Scans per cluster, cluster category & Severity category in COV19-

CT-DB

Cluster ID Number of CT Scans Category Severity Category

0 231 COVID-19 3

1 360 COVID-19 2

2 344 COVID-19 4

3 106 COVID-19 1

4 195 COVID-19 4

5 156 COVID-19 3

6 242 COVID-19 4

7 107 non COVID-19 1

8 586 non COVID-19 1

9 557 non COVID-19 1

10 322 non COVID-19 1

Table 7: Description of the Severity Categories

Category Severity Description

1 Mild Few or no Ground glass opacities. Pulmonary parenchymal in-

volvement  25% or absence

2 Moderate Ground glass opacities. Pulmonary parenchymal involvement

25� 50%

3 Severe Ground glass opacities. Pulmonary parenchymal involvement

50� 75%

4 Critical Ground glass opacities. Pulmonary parenchymal involvement

� 75%
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For validation, we used this anchor set to classify the COV19-CT-DB test

set. In particular, we fed each 3-D CT scan in the test set of the RACNet

architecture; we extracted the corresponding dense layer neuron outputs; we530

computed their euclidean distance from each anchor. Then they were classified

according to the label of their nearest cluster center. The obtained classifica-

tion performance over the test dataset was similar to the original RACNet’s

classification performance.

Table 8: Description of findings in each cluster center in COV19-CT-DB

Cluster ID Description

0 Bilateral shadows ground-glass that become more compact locally in lower

lung lobes with an image of pneumonia due to COVID-19; severe category

1 Bilateral shadows ground-glass as in pneumonia due to COVID-19; moder-

ate category

2 Minimal shadows ground-glass in left upper lung lobe. Severe thickening

shadows, dense atelectasis of lower lung lobes. Minimal pleural fluid on the

right. Possible microbial cause; critical category

3 Bilateral shadows ground-glass mainly in lower lung lobes as in pneumonia

due to COVID-19 in rather mild condition; mild category

4 Bilateral shadows ground-glass that occupy more than 75 % of the pul-

monary parenchyma as in pneumonia COVID-19 of critical condition; crit-

ical category

5 Bilateral shadows ground-glass that occupy about 50 % of the pulmonary

parenchyma as in pneumonia COVID-19 of critical condition; severe cate-

gory

6 Bilateral shadows ground-glass that occupy more than 75 % of the pul-

monary parenchyma as in pneumonia COVID-19 of critical condition; crit-

ical category

7 Bilateral emphysematous lesions as in chronic obstructive pulmonary dis-

ease. Dense atelectasis in paravertebral right lung; mild category

8 Normal CT scan; mild category

9 Normal CT scan; mild category

10 Normal CT scan; mild category
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Moreover, our medical experts examined the 3-D scan inputs corresponding535

to the 11 cluster centres and produced justification for the respective diagnosis.

Table 8 presents the findings detected in each cluster center.

Some examples of CT slices from the cluster centers are given below. Figure

7 shows 10 consecutive slices from COVID-19 cluster center 0. Medical experts

have annotated it as ’bilateral ground glass regions that appear, especially in540

lower lung lobes’. Figure 8 shows 10 slices from COVID-19 cluster center 2.

According to medical experts’ annotation, this is consistent with ’COVID-19

pneumonia bilateral thickening filtrates’. Figure 9, on the contrary, shows 10

slices from non COVID-19 cluster center 9.

Figure 7: Slices from cluster center 0 of COVID-19 category in COV19-CT-DB. Bilateral

ground glass regions are seen especially in lower lung lobes.

Figure 8: Slices from COVID-19 cluster center 2 in COV19-CT-DB, which is consistent with

COVID-19 pneumonia bilateral thickening filtrates.

The major advantage of the anchor set model is the insight that it introduces545
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Figure 9: Slices from non COVID-19 cluster center 9 in COV19-CT-DB

in the diagnosis process. In each new test case, the generated decision is ac-

companied by the information about the anchor to which this case was assigned

through the above nearest neighbor classification procedure. As a result, the

patient, or the doctor, can see which part of RACNet data-driven knowledge

was used to make the specific diagnosis.550

5.7. Anchor Set Unification across Databases

In the following we used the RACNet trained on COV19-CT-DB and the

set of 11 anchors for unification with similar data-driven knowledge generated

from other databases, i.e., the CC-CCII and CT-image Database. We developed

an e�cient unification procedure based on the generated anchor set, which, on555

the one hand, alleviates the problem of ’catastrophic forgetting’ when transfer

learning is used and, on the other hand, reduces the high computational cost

needed for retraining the deep learning model.

Utilization of CC-CCII database. At first, we computed the 128-dimensional

features for each CT scan of the CC-CCII database using the RACNet’s model560

which had been trained with the COV19-CT-DB training set. Then, these 128-

dimensional features formed the input to train a neural network, say NN(1),

consisting of 3 fully connected layers, so as to predict the Covid/non-COVID

status of the CC-CCII data. The three layers included 64, 128 and 2 (output)

neurons respectively. In a similar way, as we extracted the 11 clusters from565

RACNet in 4.4, we extracted a set of representations from the layer with 128
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neurons; then, through clustering, we generated another set of cluster centres.

In this case, the number of cluster centers that produced the best performance

over the CC-CCII test partition set was 13. Figure 10, shows 10 slices from one

of the extracted COVID-19 cluster centers.570

Figure 10: Slices of a new COVID-19 anchor in CC-CCII database, with ground glass regions

in the lungs.

As a result, we had created: a) a set of 11 clusters & respective cluster

centers, using COV19-CT-DB and RACNet, b) a set of 13 clusters & respective

cluster centers, using CC-CCII, RACNet and NN(1).

In the following, we generated a unified prediction model, by: a) merging the

11 cluster centers from COV19-CT-DB and the 13 cluster centers from CC-CCII,575

b) using the RACNet-NN(1) as the combined test model. In particular, we could

classify any CT scan in the COV19-CT-DB and CC-CCII databases, by passing

it through RACNet-NN(1) and computing which one out of the 24 cluster centers

was nearest to the extracted representation in the 128-dimensional space. The

obtained performance was almost identical to the one obtained when processing580

each database independently. This result was achieved without exchanging any

data between the holders of the two databases. It was only assumed that the

RACNet and NN(1) networks and the cluster center representations in the 128-

dimensional space were made available to each other.
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Further Utilization of CT-image Database. To further illustrate the e↵ective-585

ness of this procedure, we extended the unified representation so as to include

the CT-image Database [29]. In a similar way, we created a set of 5 more clus-

ters and merged them with the 24 (11 and 13) already derived cluster centres

over COV19-CT-DB and CC-CCII, together with RACNet, NN(1) and NN(2)

networks, where NN(2) had the same structure as NN(1). The resulting repre-590

sentation was able to provide a performance over all databases that was similar

to the one obtained when processing each one of them independently. Figure 11

shows the derived 5 cluster centers from the CT-image Database, two of which

belong to the COVID-19 category and three to the non-COVID-19 category.

Figure 11: The 5 derived cluster centers in the CT-image Database; the 3 top ones correspond

to the non-COVID-19 category and the 2 bottom ones correspond to the COVID-19 category

6. Conclusions and Future work595

In this paper we presented COV19-CT-DB, a large database with Chest 3-D

CT scans, annotated for COVID-19 diagnosis. We also presented RACNet, a

new method which: a) harmonizes analysis of 3-D image volumes consisting of

di↵erent number of slices and annotated per volume, b) unifies decisions made

over di↵erent datasets, thus enriching data-driven knowledge and improving its600
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trusted use. RACNet was successfully used for obtaining high performance in

COVID-19 diagnosis based on chest 3-D CT scans, over six di↵erent datasets,

whilst permitting continual learning and avoiding catastrophic forgetting.

Future work includes extension of the RACNet model and of the presented

approach, so as to include uncertainty estimation and domain adaptation to a605

large variety of related applications, referenced in the Introduction of the paper.
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