
1

QoS-aware Resource Scheduling using Whale Optimization Algorithm for

Microservice Applications

Mohit Kumar1, Jitendra Kumar Samriya2, Kalka Dubey3, and Sukhpal Singh Gill4

1Department of Information Technology, Dr B R Ambedkar NIT Jalandhar, India
2Department of Computer Science and Engineering, Graphic Era University, Dehradun, India

3Department of Computer Science and Engineering, RGIPT Amethi, India
4School of Electronic Engineering and Computer Science, Queen Mary University of London, UK

Abstract: Microservices is a structural approach, where multiple small set of services are composed and processed

independently with lightweight communication mechanism. To accomplish the end-user demand in minimum delay and cost

without violating the service level agreement (SLA) constraints, and overhead is a challenging issue in cloud computing. In

addition, existing framework tries to deploy the microservice over the best computing resource for latency-sensitive applications,

but long boot-time, and low resource utilization still remains a challenging task. To find the solution for aforementioned issues,

we propose a Quality of Service (QoS) aware resource allocation model based on a Fine-tuned Sunflower Whale Optimization

Algorithm (FSWOA) that find the best resources for microservice deployment and fulfill the objectives of users as well as service

provider. The proposed technique deploys the container-based services over the physical machine based upon the capacity, to

execute the micro services by utilizing the CPU and memory maximally. The proposed work aims is to distribute the workload in

efficient manner and avoid the wastage of resources that leads to optimize the QoS parameters. The experimental results

conducted in simulation environment demonstrates that proposed approach perform superior over baseline approaches and

reduces the time, memory consumption, CPU consumption, and service cost up to 4.26%, 11.29%, 17.07% and 24.22 %

compared to SFWAO, GA, PSO and ACO.

Keywords: Microservices, Resource allocation, Quality of Service, Fine-tuned Sunflower Whale Optimization Algorithm

1 INTRODUCTION

We live in a data-driven world where data pervades and run our lives. The amount of data generated is

exponentially popping up from innumerable applications such as the Enterprise Resource Planning (ERPs),

Customer Relationship Management (CRM), social networks, online streaming and significantly from IoT sensors.

This increasing data size demands large data centers to store, process and retrieve it for analytics and further usage.

Traditional system comprises of a huge datacenter which involves huge Return on Investment (ROI), which is not

feasible for small enterprises. Moreover, datacenters comprise of massive number of components that enhances

complexity of the system [1]. As a consequence of which the recent years have observed affluence of cloud-oriented

techniques including Docker, Swarm and Spring Native which aggrandize the emergence of microservices

architecture. It is an architectural pattern which bifurcates a complex application into small and independent

processes which communicate via language agnostic APIs. In contrast to Service Oriented Architecture (SOA)

which enables location and platform independent services to reside on/off premises of cloud services user, it

decomposes the application into set of potential services which can be leveraged by other applications [2] [3]. The

microservices possess the capability of reusability, which means that once created, the services can be easily

incorporated in other application modules without building them from scratch [4].

The significant benefit of employing the resource allocation technique in deploying microservices in cloud

computing is that it maximizes resource utilization while lowering operating costs [5]. Hardware virtualization, such

as memory, network, storage, and CPU, contributes to the virtualization technology and versatility. Furthermore, in

a cloud computing situation, the principal purpose of allocating resources is to efficiently enhance physical

machines (PMs) and harmonize workload in operating physical machines in a dispersed way to minimize congestion

and low-loaded or overburdened resource utilization. The practice of distributing resources to cloud apps across the

internet in a systematic manner is referred to as resource allocation. When cloud resources fail to allocate resources

to microservices in an on-demand way, the utilities shall be short-lived. Allowing cloud service providers to allocate

resources independently at every component to handle such challenges. As a result, allocation of resources is

emphasized as a component of the resource maintenance scheme, demonstrating that it is a significant aspect in

2

allocating resources efficiently and effectively. It is utilized in the cloud framework to improve customer happiness

while reducing processing time. Minimizing resource usage guarantees cloud service quality, satisfaction for the

service provider, and increased throughput.

Microservices are considered a new software-based application for creating and deploying using the cloud

computing model. It is a combination of smaller services that can be operated indivisibly by deploying in the cloud

Figure 1: Architecture for deploying microservice-based applications on the Cloud Computing model

with different end devices. Figure 1 shows the architecture for deploying the microservices-based application on the

cloud computing model. Various microservices are received from the various end-user devices for deployment in the

cloud environment. The cloud manager is responsible for scheduling, load balancing, admission control, and SLA

management of the microservices application. The admission controller manages the flow of the microservices

application whereas the SLA manager is responsible for checking the various Quality of Standard (QoS) parameters

like CPU, Memory, Cost, Energy, etc. for the microservices application. Resource provisioning and resource

management is required for the scaling down and up of cloud resources according to the microservices application.

Finally, the actual computing resources is allocated from the cloud resource pool. But, for effective microservices

deployment on cloud computing platform, efficacious management and utilization of underlying resources is a must.

For the same, Task scheduling and resource management allow providers to maximize income and resource

utilization to their maximum capacity.

3

Motivation for the article: With the microservices gaining prominence due to their characteristics of reusability and

flexibility, it is now being considered as optimal architectural solution for implementing complex applications such

as OTT streaming. As far as its real implication is concerned, containers are utilized to encapsulate microservices,

wherein each microservice is run in the form of multiple instances or copies. But at the same time, many challenges

are encountered such as dynamism amongst underlying resources, dependencies between various instances, etc. [26-

27] Although many previous studies have been conducted over containerized solutions to microservices, but as per

the author’s knowledge none has discussed the significance of resource utilization via optimal resource scheduling

and hence are at precarious stage. Hence, in order to truly reap the benefits of this leading-edge technology, our

work proposes a dynamic resource allocation model which holds potential to run multiple instances of microservices

efficiently. The proposed work outlays improved QoS parameters along with minimizing SLAVs.

The main contributions of this research work are:

• The mathematical model is formulated with constraints to execute the microservices over the cloud

resources.

• Designed a resource allocation model based on a Fine-tuned Sunflower Whale Optimization Algorithm for

microservice application.

• The proposed approach improves the time, cost, container deployment time by utilizing the resource

maximally and improve the system performance without violating the SLA.

• Finally, the performance of the proposed approach is tested and analyzed over significant QoS parameters

and compared with well-known baseline algorithms.

Hence, this paper proposes a new QoS aware resource allocation system for microservices based cloud computing

framework. We propose a Fine-tuned Sunflower Whale Optimization Algorithm (FSWOA) to optimize resource

scheduling for smooth execution of microservices for real time applications which require to have impactful QoS

parameters in terms of resource consumption (memory and CPU) and skewness [6].

The remaining section are organized as follows: Section 2 explains the literary works associated with the

microservices application in the cloud environment. Section 3 discusses the problem statement and formulation in

mathematical form, after that proposed framework is elaborated in section 3.2 with details discussion. whereas

section 4 elaborates the proposed methodology. Section 5 analyzes and compares the behavior of the proposed

algorithm and performance evaluation over the exiting state-of-art techniques. And finally, Section 6 concludes the

overall idea of our proposed system, highlighting that our technique in resource optimization brings significant

results and future research direction.

2 RELATED WORK

There are various lightweight scheduling techniques has been proposed for allocating the microservices over the

cloud resources, here we will discuss few recent research works related to the cloud resource management. A

heuristic technique has been proposed by C. Joseph and K. Chandrasekaran to deploy the microservice over the

cloud resources in robust manner to enhance the throughput and response time [7]. The proposed approach

performance is evaluated over google cloud platform for diverse applications and computational results proved that

it performs superior over baseline approaches. The allocation of resources in a cloud environment has been

addressed by In Subalakshmi and Jeyakarthic using a WOA-TRA [8]. The WOA is hybridized with the tumbling

action that has a superior exploration capability, and generates a WOA-TRA model to optimize the objective

functions like energy efficiency and other QoS parameters. The experimentation found that the WOA-TRA

methodology provided the desired quality of service and improved energy efficiency over the comparison methods.

QoS-aware resource provisioning (QBP) was depicted based on ACO strategy by Sharma et al. [9]. AHP uses k-

means clustering to find tasks with similar QoS constraints, and afterwards AHP uses QoS requirements to order the

tasks. ACO is used to search the optimal resource for the service. QBP could be developed in the future by detecting

task dependencies.

4

An autonomic framework has been proposed by M. Kumar et al, for cloud resource provision and scheduling to

offer the most suitable services to end users [10]. The proposed framework finds the trade-off solution for multi-

objective problem by decision making capability and integrated with spider monkey algorithm to enhance the

performance. The container-aware scheduling approach has been proposed by S. N Srirama et al, for microservice

deployment over cloud resources to improve the service cost and cloud resource utilization with auto-scaling [11].

The best fit containers are used to deploy the microservice applications and bin packing approach is used to

minimize the cloud physical resources. S. Taherizadeha and M. Grobelnika describes the mechanism about the cloud

based microservice applications to enhance the time with reactive autoscaling [12]. The extensive experiments

performed over mixed workload to test the scalable feature for computationally intensive microservice applications.

X. He et al, presents self-adaptive microservice based framework for edge cloud environment to offer the services at

network edge and proposed approach has the capability to monitor the services as well as resources, analyze the data

and planning to process over the best suitable edge resource for latency sensitive microservice applications [13]. The

proposed framework is open sourced and fruitful to offer the real time services using two-phase strategy and

accomplished the demand of end users.

Table 1: Comparison of Related work along with Objective and Limitations

year Objective addressed Techniques Limitation

2020 [7]

Microservices allocated to Cloud in an

interaction aware policy using IntMA

and IntRR

Interaction graph and (0/1) Quadratic

Programming Problem

IntMA doesn’t perform

efficiently for smaller datasets;

network congestion not

considered

2020 [8]
Energy efficient resource allocation in

Cloud

Whale optimization algorithm with

tumbling effect (WOA-TRA)
Deadline not considered

2021 [10]

Schedule jobs in Cloud in most efficient

resources within deadline and optimize

energy, execution cost and time

Spider Monkey optimization

algorithm

Requests are assumed to be

non-preemptive

2021 [13]
Make the microservice capable adapt to

changes in user needs
NSGA-II, WSGA, MOEA/D

Deadline among user needs

isn’t considered

2020 [14]
Resource allocation in Cloud for energy

efficiency and performance

Multi objective optimization-based

allocation policy (MOOA)

Static requests, deadline not

considered

2020 [21] Transmit packet coding Cuckoo Search Optimization Static data

2021 [23]

Enhance performance of inverter based

microgrid; select parameters of

proportional integral controller

Sunflower optimization algorithm Simulated for small dataset

2022 [24]
Multi objective optimization of

microservice applications
Pareto Optimal Front selected Static microservice allocation

2022 [25]
Resource management of cloud

microservice resources in real time

Linear programming model and

quadratic optimization model

implemented

Proposed models are reactive in

nature

Authors have developed and tested a multi-objective optimization based-allocation policy (MOOA) in cloud

computing including power usage and SLA concerns [14]. A multi-objective optimization-driven further generalized

VM consolidation approach may be developed in future study. Mohit et. al, have depicted about the need of resource

provisioning and represented the taxonomy of scheduling techniques including QoS parameter for better services in

virtualization environment [15]. Further, authors have discussed about the real environment and simulation tool to

implement the algorithm. In Zhou et al. (2018) [16], they offered a comprehensive system containing a resource-

efficient computation offloading methodology for clients and a joint communication and computation (JCC)

allocation method for network operators. To deal with system dynamics, we shall build effective online resource

allocation methods. The prediction of upcoming workload along with resource allocation is a challenging issue in

cloud computing. Authors have developed genetic algorithm (GA) based multi-objective technique to forecast the

5

workload based upon historical data [17]. Further, authors have considered cpu and memory as parameters to predict

the next time slot workload so that they can easily place the virtual machine (VM) over the physical machine (PM)

for better services. Particle swarm optimization (PSO) based dynamic power-saving resource allocation technique

has been proposed by the authors to cut down the power of VMs, PMs and air conditioner [18]. In addition, authors

have predicted the resource utilization using least squares regression approach to eliminate the unnecessary

migration of VMs. The computational results show that proposed approach improved the performance metrics in

more efficient way as compared to baseline approaches. M. Kumar and S C Sharma have proposed PSO-COGENT

approach that offer better exploration and exploitation compared to basic PSO and improved the significant

parameters time, cost and energy consumption for the services [19]. Authors also depicted the solution of multi-

objective problem using pareto optimal principle.

 In Hasan et.al [20], the DLBS load balancing paradigm was presented for appropriate load balancing and resource

optimization on public clouds. A load balancing model has been created utilizing EC2 Instances. Every server has a

load balancer that detects the load and updates the management. Less loaded servers got greater responses whereas

overloaded ones got none. In Hammood et.al [21], for effective and stable multicasting in VANET, they provide a

TPC network coding method. In order to determine the effectiveness of network gadgets, network coding reduces

packet transmission. The Cuckoo search method is used to select the safe relay nodes in this trust-based graph

optimization case. M. Vrbaski et al., form multi-objective optimization model for microservices and improve the

service cost, resource utilization considering deadline as constraint [24]. In addition, authors have presented pareto

optimal solution for multi-objective optimization. L. Qassem et al have proposed a reactive resource manager based

novel technique to allocate the best possible resources for cloud microservices and improve the QoS metric [25].

The proposed optimal technique results shows that proposed approach improve the deployment cost. Several other

approaches also exist in cloud computing for resource provisioning, scheduling, microservices, but most of

approaches failed to find the optimal solution and hard to achieved the defined objective. In this article, authors have

addressed all the issues and try to find the optimal solution between significant objective using whale optimization

approach by deploying the microservice applications over cloud resources.

3. Problem formulation and Proposed Methodology

Initially, this section discusses about objective of our research work and formulate the problem mathematically to

optimize the QoS parameters. After that, we will discuss the proposed framework along with its components and

working methodology for microservice application in cloud platform.

Table 2 Symbols notation and their description

Notation Description

𝑃𝑀1, 𝑃𝑀2, 𝑃𝑀3………..𝑃𝑀𝑚 Heterogeneous m Physical Machines

𝐶1, 𝐶2 𝐶3……..𝐶𝑘 Set of containers

𝑀𝑆1, 𝑀𝑆2, 𝑀𝑆3……….. 𝑀𝑆𝑛 Request submitted in the form of microservices

η and 𝝆 Number of core and processing power of each core

𝑁𝐵𝑀𝑀 Denotes required main memory blocks

𝐸𝑇𝑀𝑆𝑖
 Execution time of microservice

 𝑆𝐶𝑂𝑀𝑆𝑖
 Service cost for the microservice

𝐷𝐶𝑂𝐶𝑖

𝑃𝑀 Deployment cost of container over PM

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑗
𝑚𝑎𝑥(𝐶𝑃𝑈,𝑀𝑀) Denotes the maximum utilization of cloud resources

6

γ Constant with range [0, 1]

𝑥𝑖,𝑛 Binary variable with value either 0 or 1

3.1 Problem Statement and formulation

The aim of this section is to improve the significant QoS parameters that directly impact the performance of the

system. The problem is formulated mathematically to optimize the objective functions that accomplished the

demand of end user as well as service provider without violating the sla. Let us consider a cloud datacenter that

contains m number of heterogeneous physical machines, denoted as PM = {𝑃𝑀1, 𝑃𝑀2, 𝑃𝑀3………..𝑃𝑀𝑚}, where k

number of container can be deployed over each physical machine depends upon the availability of resources,

represented as C={𝐶1, 𝐶2 𝐶3……..𝐶𝑘}. Various types of services and library function can be installed over the PM

to execute the microservices within defined time and cost. End users submitted n request in the form of

microservices, denoted as MS= {𝑀𝑆1, 𝑀𝑆2, 𝑀𝑆3……….. 𝑀𝑆𝑛}, where a microservice can communicate with other

one and work independently to process the application. Each microservice 𝑀𝑆𝑖 required the resources from the PM

for the completion of services, and represented in the form of tuples as {𝑅𝐶𝑃𝑈 , 𝑅𝑀𝑀 , 𝑅𝐵𝐶 , 𝑅𝐵𝑤}, Where 𝑅𝐶𝑃𝑈 is

required CPU, 𝑅𝑀𝑀 is main memory required, 𝑅𝐵𝐶 is budget constraint and 𝑅𝐵𝑤 is required bandwidth. The

proposed approach searches the best container to deploy the microservice and fulfill the resource requirement.

Resource capacity of container is defined in equation 1-2

 𝑅𝑖
𝐶𝑃𝑈= η* 𝝆 (1)

Where η denotes the number of core and 𝝆 is size of or processing power of each core.

 𝑅𝑖
𝑀𝑀= 𝑁𝐵𝑀𝑀 * sizeof(𝑁𝐵𝑀𝑀) (2)

 Where 𝑁𝐵𝑀𝑀 represents the required main memory blocks and sizeof (𝑁𝐵𝑀𝑀) is each block size. The time required

to execute each microservices over cloud resources is defined in equation 3

 𝐸𝑇𝑀𝑆𝑖
 =

𝑆𝑀𝑆𝑖

𝑅𝑖
𝐶𝑃𝑈 (3)

Where 𝐸𝑇𝑀𝑆𝑖
 is the execution time of microservice, 𝑆𝑀𝑆𝑖 is the size of microservice. The service cost for the

microservice (𝑆𝐶𝑂𝑀𝑆𝑖
) based upon CPU and memory usage is calculated by equation 4 & 5

 𝑆𝐶𝑂𝑀𝑆𝑖

𝐶𝑃𝑈 = 𝑅𝑖
𝐶𝑃𝑈 *

𝐸𝑇𝑀𝑆𝑖
∗𝑆𝐶𝑂𝐶𝑃𝑈𝑢𝑠𝑎𝑔𝑒

𝑀𝑆𝑖

ℒ1
 (4)

 𝑆𝐶𝑂𝑀𝑆𝑖

𝑀𝑀 = 𝑅𝑖
𝑀𝑀 *

𝐸𝑇𝑀𝑆𝑖
∗𝑆𝐶𝑂𝑀𝑀𝑢𝑠𝑎𝑔𝑒

𝑀𝑆𝑖

ℒ2
 (5)

Where 𝑆𝐶𝑂𝐶𝑃𝑈𝑢𝑠𝑎𝑔𝑒
𝑀𝑆𝑖 denotes the container cost in per unit time interval (ℒ1) based upon the utilization of CPU, and

𝑆𝐶𝑂𝑀𝑀𝑢𝑠𝑎𝑔𝑒
𝑀𝑆𝑖 denotes the container cost based upon the utilization of main memory in per unit time interval (ℒ2).

Total service cost is represented by the equation 6

 𝑆𝐶𝑂𝑇𝑜𝑡𝑎𝑙= 𝑆𝐶𝑂𝑀𝑆𝑖

𝐶𝑃𝑈+𝑆𝐶𝑂𝑀𝑆𝑖

𝑀𝑀 (6)

After calculating the execution time of microservices, we find the deployment time of each container (𝐷𝑇𝐶𝑖
) over

physical machine for the services with the help of applications and its components (microservices) by equation 7.

Suppose an application (𝐴𝑎𝑝𝑝) consists of α microservices and it required k container for executing in a time period

t, deployment cost of container over PM is represented by 𝐷𝐶𝑂𝐶𝑖

𝑃𝑀 .

 𝐷𝐶𝑂𝐶𝑖
 =

𝐷𝑇𝐶𝑖∗
𝐷𝐶𝑂𝐶𝑖

𝑃𝑀

ℒ3
 (7)

If 𝐷𝑇𝐶𝑖
=0, then total time taken to execute the applications is calculated by the equation 8

7

 𝐶𝑂𝑆𝑇𝐴𝑎𝑝𝑝
= ∑ 𝑆𝐶𝑂𝑖

α
𝑖=1 + ∑ 𝐷𝐶𝑂𝐶𝑖

k
𝑖=1 (8)

After deploying the container over the PMs, need to monitor the workload continuously to avoid the condition of

over and underutilization. Hence, workload cannot be allocated more than the capacity of physical machines

resources especially CPU and memory. Current workload over the physical machine can be calculated using the

equation 9

 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑗(CPU, MM) = γ * ∑ 𝑅𝑖
𝐶𝑃𝑈(𝑡)k

𝑖=1 + (1- γ) * ∑ 𝑅𝑖
𝑀𝑀(𝑡)k

𝑖=1 (9)

Where range of CPU and memory utilization are between 0 to 100 and γ is constant with range [0, 1]. The utilization

of cloud resources can be found with the help of equation 9.

 𝑅𝑒𝑠𝑈𝑗=
𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑗(𝐶𝑃𝑈,𝑀𝑀)

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑗
𝑚𝑎𝑥(𝐶𝑃𝑈,𝑀𝑀)

*100 (10)

Where 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑗
𝑚𝑎𝑥(𝐶𝑃𝑈,𝑀𝑀) represents the maximum utilization of cloud resources. Our objective is to

minimize the time and cost (𝐶𝑂𝑆𝑇𝐴𝑎𝑝𝑝
), while maximizing the utilization of cloud resources (𝑅𝑒𝑠𝑈𝑗) without any sla

violation like deadline, budget etc. Considering the equation no. 8 & 10 to fulfill the objectives,

 Min 𝐶𝑂𝑆𝑇𝐴𝑎𝑝𝑝
 (11)

 Max 𝑅𝑒𝑠𝑈𝑗 (12)

Subject to:

 𝐶𝑂𝑆𝑇𝐴𝑎𝑝𝑝
<= 𝑅𝐴𝑎𝑝𝑝

𝐵𝐶 (13)

 𝑅𝑒𝑠𝑈𝑗<=100 (14)

 ∑ 𝑅𝑒𝑠𝑈𝑖
k
𝑖=1 <= 𝑅𝑒𝑠𝑈𝑗 (15)

 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑗(𝐶𝑃𝑈,𝑀𝑀)<= 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑗
𝑚𝑎𝑥(𝐶𝑃𝑈,𝑀𝑀) (16)

 𝑥𝑖,𝑛∈ {0, 1} ; i∈ 𝐂𝐤; (17)

 ∑ xi,j
k
i=1 ; i∈ Ck; j∈ PMm (18)

The above-mentioned constraints describe that the cost of application for the microservices cannot be more than the

defined budget, and utilization of cloud resource cannot be more than 100% for any resource. Workload over the

physical machine cannot be beyond the limit as shown in equation 16. Separate container is allocated for each

microservice and several containers can run over a single physical machine based upon the configuration as defined

in constraint 17-18.

3.2 Proposed Framework for Microservice in Cloud Computing

Figure 2 shows the primary components of the proposed architecture for the microservices application in the cloud

environment. The proposed framework is divided among the following components.

3.2.1 End User Devices: It provides a user interface for cloud users to send the microservices application through

various end users’ devices. The same user can request the different types of resources to execute microservices or

different users can request for the same type of resources. Hence, demand of users is unpredictable.

3.2.2 Workload analyzer: It analyze smooth and Bursty workload demand of end users. Clustering and a ranking

system are two modules of the workload analyzer. The clustering component divides end-user jobs into clusters

based on their resource requirements. It is used to find tasks with comparable resource requirements. On the other

hand, a ranking methodology provides a numerical weight to every task, known as rank. Its QoS requirements

determine a task's rank. Tasks are ranked to determine their priority so that resources can be allocated appropriately.

8

3.2.3 Resource pool: Multiple firms provide cloud computing services, which might be diverse and geographically

dispersed. The resource pool connects resource providers who are spread across the globe. It also aids in centralized

resource supply and administration by storing resource details such as resource type, number of resources,

geographical position, etc. When a user request for the resource, it is allocated from the nearest region based upon

the requirement.

3.2.4 Monitoring: It collects consumption statistics for every VM from the appropriate PM's hypervisor. Efficient

monitoring aids in making judgments on how to increase the system's behavior, energy efficiency, and other

attributes. A monitoring agent operates in a PM's hypervisor and gathers QoS measurements regularly, which is kept

in a QoS metric database for later analysis. This article employed low-level measurements like CPU, memory, and

network bandwidth utilization to avoid the substantial cost.

3.2.5 Resource scheduling: A resource schedule is a list of activities and resources on a timeline. In other terms, it

evaluates when a task should begin or end based on the work's length, QoS requirements, and available resources.

At certain times, shared resources are available, and activities are scheduled during those times. There are several

scheduling approaches are available in cloud based upon heuristic, meta-heuristic and hybrid approach.

3.2.6 SLA management: The SLA management module keeps track of each user's Service Level Objectives (SLOs)

and completion history. A service level agreement (SLA) is a established agreement between the service providers

and the users. It includes several service performances measures as well as the SLOs that go with them.

3.2.7 Resource Allocation: The suggested FSWOA, which is a merger of Fine-tuned Sunflower Optimization

(FSFO) and Whale Optimization Algorithms (WOA), adopts both algorithms' parametric properties to improve the

resources allocation method's efficiency. By evaluating the minimum fitness function, the suggested approach

efficiently assigns the work to a Virtual machine. To ensure efficient resource allocation, the suggested FSWOA

employs the humpback whales hunting technique and foraging behavior, as well as the unusual behavior of

sunflowers.

Figure 2 Proposed Framework for microservices in cloud environment

9

4. Fine-tuned Sunflower Optimization (FSFO):

SFO is an optimization-based approach to enhance the performance of system by improving the QoS parameters or

finding the optimal solution of defined fitness/objective functions. It employs three different strategies to regenerate

the population [22-23]. The first way, a new plant is developed with the help of two successive plants that are

available in the population. The aim of this method's is to explore and utilize the search space in an efficient manner.

The aim of next method is to create the new plants that migrate to the best plant. It aids SFO in maximizing the

defined search space.

The last approach produces the plants randomly to explore search area and avoid SFO quickly narrowing to a local

optimum. Considering the SFO process mentioned above, we have applied a Fine-tuned sunflower whale

optimization (FSWOA) technique in this paper. A new strategy for creating a new plant by modifying the finest one

is proposed. Defined fitness function is formed for the plants of new population using the above discussed three

approaches, and try to fulfil the objective by identifying the finest plant. The aim is to create the new plant by

mutation method before the population is regenerated in the next generation. If newly generated plant provides

optimal value, then it is substitute with current plant; else, it will die if its quality is lower than the finest one. The

update equation of the new plant is expressed in equation 19:

𝑆𝑛𝑒𝑤,𝑖 = 𝑆𝑏𝑒𝑠𝑡,𝑖 + 𝑟𝑎𝑛𝑑 (0,1). 𝛼. 𝛿(0,1); 𝑖 = 1 ÷ 𝑝 (19)

Here, 𝑆𝑛𝑒𝑤,𝑖and 𝑆𝑏𝑒𝑠𝑡,𝑖represent the regulation variable i of the new and best plants. P denotes problem dimension. 𝛼

denotes a constant to identify the maximum variation restriction of the variable. 𝛿(0,1) indicates a function, which

have the range of value between 0 to 1. If the 𝛿(0,1) is equivalent to 0, the 𝑆𝑛𝑒𝑤,𝑖is equivalent to 𝑆𝑏𝑒𝑠𝑡,𝑖 else the

𝑆𝑛𝑒𝑤,𝑖will be fixed to new value. The value of 𝛿(0,1) is identified as shown:

𝛿(0,1) = {
1; 𝑖𝑓 𝑟𝑎𝑛𝑑(0,1) < 𝑅𝑚

0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (20)

Wherein 𝑅𝑚 is the mutation rate, which has been set to 0.2. It implies that around a quarter of the variables in the

𝑠𝑏𝑒𝑠𝑡 are updated. The fitness function of the new plant is evaluated, and if it has a higher quality than the most

delicate plant, it is employed to substitute the finest plant; else, it will die.

4.1 Proposed Fine-tuned Sunflower Whale Optimization Algorithm (FSWOA):

The suggested FSWOA executes the microservice allocation procedure over cloud resources including time, cost,

utilization of resources as significant performance parameters.

Estimation of Fitness function:

The fitness function is calculated to find the perfect solution. As the perfect solution, the fitness value with the

lowest number is chosen. Nevertheless, the fitness value is estimated employing the following formula:

𝑓 = ∑ 𝑄𝑚 + ∑ (𝐶𝑚 + (1 − 𝐵𝑚)𝑞
𝑚=1

𝑝
𝑙=1 + 𝑆𝑚) (21)

Here 𝑄𝑚 indicates the runtime of mth assignment, 𝐶𝑚 denotes the cost of mth microservice, 𝐵𝑚 represents the

resource consumption of mth microservice for an application in cloud platform, 𝑆𝑚indicates the skewness. P

represents the overall count of assignments. Here, the factors 𝐵𝑚 and 𝑆𝑚 are expressed as,

𝐵𝑚 =
𝐶𝑚

𝑣 ×𝑀𝑚
𝑣 ×𝑈𝑚

𝑣

𝐶𝑚
𝑡 ×𝑀𝑚

𝑡 ×𝑈𝑚
𝑡 ×

𝑋𝑢

𝑋𝑥
 (22)

10

𝑆𝑚 = (
𝐵𝑚

𝐵
− 1)

2

 (23)

Here, 𝐶𝑚
𝑣 represents the CPU used by the mth microservice, 𝑀𝑚

𝑣 indicates the memory used by mth microservice.

𝑈𝑚
𝑣 denotes the MIPS used by the mth microservice, 𝐶𝑚

𝑡 denotes the overall CPU present in the mth microservice.

𝑀𝑚
𝑡 represents memory present in mth microservice, 𝑈𝑚

𝑡 indicates the MIPS present in mth microservice, and B

denotes the mean resource consumption. 𝑋𝑢Indicates the consumption of time slots, and 𝑋𝑥 indicates the highest

total slot.

4.2 Working Principle of FSWOA:

The proposed optimization technique FSWOA is used to allocate the cloud resources to microservices as well as

deploy the container over the physical machine for the execution of microservices in cloud. The proposed FSWOA

is created by combining the characteristics of WOA and ISFO. The equation of WOA is updated with the help of

ISFO to implement the allocation approach. The proposed approach is a meta-heuristic enhancement algorithm

motivated by the bubble net's hunting technique. Whales are magnificent creatures that are the world's largest

animals. Whales are thought to be predators since they never sleep to breathe from the surface of the ocean. Whales

contain the same general cells in their brains as humans, which are known as spindle cells. Humans' social actions,

feelings, and judgment are all controlled by spindle cells. Whales are the most intelligent creatures because they

have twice as many spindle cells as an adult human. The fascinating aspect of whale behavior is their social

behavior. Humpback whales are giant baleen whales, and they can exist in clusters or alone. The resource allocation

to microservice in cloud model is based on the hunting technique of humpback whales. The humpback whale's

hunting habit is known as the bubble net paradigm. The following are the algorithmic steps associated with the

proposed FSWOA:

• Initialization of the population: Assume there is an m count of whale W, and the population is initiated as

𝑊𝜏 (𝜏 = 1, 2,…,m). The coefficient vectors �⃗� and𝑍 , present iteration j, and location vector W* are the

factors stated in the suggested method.

• Calculate each search agent's fitness function. The fitness function is calculated to achieve the most

optimum search agent solution described in equation (21).

• Encircling victim: Humpback whales locate and surround their victim. The present resolution is initially

defined as the intended victim that is close to the ideal number. When the best search agent has been

identified, the leftover search agents adjust their position based on the best agent's recommendation. As a

result, the surrounding behavior of humpback whales is expressed by the equation below:

�⃗⃗� = |𝑍 . �⃗⃗⃗�
𝑗
∗ − 𝑊𝑗

⃗⃗⃗⃗ | (24)

 𝑊⃗⃗⃗⃗⃗⃗ ⃗
𝑗+1 = �⃗⃗⃗�

𝑗
∗ − �⃗� . �⃗⃗� (25)

�⃗⃗⃗�
𝑗+1 = �⃗⃗⃗�

𝑗
∗ − �⃗� . |𝑍 . �⃗⃗⃗�

𝑗
∗ − 𝑊𝑗

⃗⃗⃗⃗ | (26)

�⃗⃗⃗�
𝑗+1 = �⃗⃗⃗�

𝑗
∗ − �⃗� . 𝑍 . �⃗⃗⃗�

𝑗
∗ − �⃗� . �⃗⃗⃗�

𝑗 (27)

Where j represents the present iteration, 𝑊∗ indicates the location vector of the perfect agent, �⃗⃗⃗� represents the

location vector, || represents the absolute number, and �⃗� and𝑍 represents the coefficient vectors. The above formula

indicates the updated formula of humpback whales depending on the behavior of surrounding victims. The updating

formula for fine-tuned sunflower direction towards the sun is expressed as,

�⃗⃗� 𝑗+1 = �⃗⃗� 𝑗 + 𝑑𝑗
∗𝑆 𝑗 (28)

Where 𝑀𝑗+1 represents the updated location of sunflowers, 𝑑𝑗 denotes the step of sunflowers towards the sun's

direction. The proposed algorithm (Algorithm 1) for the microservices is given below:

11

Algorithm 1: Proposed Algorithm for Microservices based Applications

Input: Physical machines PM = {𝑃𝑀1, 𝑃𝑀2, 𝑃𝑀3……….𝑃𝑀𝑚}, Containers C = {𝐶1, 𝐶2 𝐶3……..𝐶𝑘}, and

microservices MS= {𝑀𝑆1, 𝑀𝑆2, 𝑀𝑆3……….. 𝑀𝑆𝑛}

Output: Optimal value of 𝐶𝑂𝑆𝑇𝐴𝑎𝑝𝑝
 and Max 𝑅𝑒𝑠𝑈𝑗

1. Initialize the population 𝑊𝜏 (𝜏 = 1, 2,…,m), iteration t=0 to 𝑡𝑚𝑎𝑥

2. Create the applications as well as microservices

3. Create the datacenter and physical machine to process the microservices

4. Defined constraints 𝑅𝐵𝐶 , 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑗
𝑚𝑎𝑥(𝐶𝑃𝑈,𝑀𝑀), 𝑅𝑒𝑠𝑈𝑗<=100, and xi,j

5. Identify the best agent

6. While t< 𝑡𝑚𝑎𝑥 do

7. Compute the optimal value of 𝐶𝑂𝑆𝑇𝐴𝑎𝑝𝑝
, 𝑅𝑒𝑠𝑈𝑗 with 𝐶𝑂𝑆𝑇𝐴𝑎𝑝𝑝

<= 𝑅𝐴𝑎𝑝𝑝
𝐵𝐶

8. Calculate the 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑗(CPU, MM) with 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑗(𝐶𝑃𝑈,𝑀𝑀)<= 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑗
𝑚𝑎𝑥(𝐶𝑃𝑈,𝑀𝑀)

9. Map available PM resources with required resources by Containers 𝐶𝑘

10. If (j<< 𝑡𝑚𝑎𝑥) then

11. Update Z and Y

12. Else

13. Initialization the random location of sunflowers

14. Find the best solution

15. Adjust orientation towards sun

16. Worst m (%) solutions are removed

17. Update the position

18. Check the fitness value

19. If new fitness value is better then

20. Accept the solution

21. t=t+1

22. Otherwise continue up to 𝑡𝑚𝑎𝑥

23. End while

24. Return 𝐶𝑂𝑆𝑇𝐴𝑎𝑝𝑝

The proposed algorithm, initially defined the control parameters for the input and created the population, cloud

datacenter, microservices, and container to execute the services. Our aim is to find the optimal value of 𝐶𝑂𝑆𝑇𝐴𝑎𝑝𝑝
 by

utilizing the cloud resources maximally. The constraints are defined at the initial stage to get the best solution

because utilization of resources and budget should not be beyond the defined limits. After that identify the agent and

repeat the loop until find the optimal value of defined objective functions. Start to compute the objective function by

deploying the containers over the physical resources in less amount of time and requirement of resources also.

Firstly, cloud resources are mapped with requirement of container for the microservices. After mapping the

container with cloud resources, microservices are allocated for the execution and compute the workload as well as

time and service cost. The proposed framework continuously monitors the microservices assigned to containers and

take the necessary step, if there is any possibility of over or underutilization. The proposed algorithm checked the

new solution with the current solution, if it is improved, the accept it otherwise process is repeated until the iteration

is completed. Finally, algorithm return the optimal value of objective function and improve the significant QoS

parameters. The flowchart of the proposed approach is shown in figure 2.

5 Performance Evaluation and Result Analysis

In this section, we check the validation and performance evaluation of the proposed FSWOA techniques for the

microservices application in the cloud environment. Furthermore, Concerning the evaluation metrics, we elaborate

on the results and discussion obtained on various QoS parameters. Authors have conducted simulations on the

12

CloudSim, a toolkit among the most widely used simulators. The proposed method is tested in a variety of

situations, using Intel Core i7 processors and 16GB of RAM. We consider 30 VM for deploying the container, and

the maximum capacity of each VM is in the range of 50 to 100 MIPS. The microservices are arranged in a batch of

50 to 300 in sequential order. We have taken four different datasets for evaluating the performance at the

parameters: processing time, memory utilization, CPU utilization, and total cost required to process the

microservices. The proposed technique FSWOA performance is against conventional approaches: SFWAO, GA,

PSO, and ACO. The comparative result analysis of the proposed algorithm with the existing ones is discussed in the

following sub-sections.

Fig. 3 flowchart of proposed methodology

13

5.1 Processing Time:

The processing time for microservices totally depends on the allocated resources and the deployment time of the

container of that microservice. Therefore, the selection of the resource and container affects the processing time

parameters. The proposed techniques allocated the resources and container in a manner that minimizes the

processing time parameters for microservices. Figure 4 shows the comparative analysis of processing time against

the microservices for Datasets 1,2,3, and 4. The result proves that the proposed techniques reduce the processing

time up to 4.26%, 11.29%, 17.07% and 24.22 % compared to SFWAO, GA, PSO and ACO to serve the

microservice in the range of [50-300]. The number of microservices is represented by the x axis and processing time

in seconds is represented by the y axis. More microservices required a greater number of containers, that are deploy

over the physical machine, but deployment and execution time is increases in the same order as the microservices is

increase. Processing time computational results along with variation and statistics are shown in Table 3.

Figure 4(a): Dataset 1

Figure 4(b): Dataset 2

0

100

200

300

400

500

50 100 150 200 300

P
R

O
C

ES
SI

N
G

 T
IM

E

BATCH OF MICROSERVICE

D A T A S E T 1

FSWOA SFWAO GA PSO ACO

0

100

200

300

400

500

600

50 100 150 200 300

P
R

O
C

ES
SI

N
G

 T
IM

E

BATCH OF MICROSERVICES

D A T A S E T 2

FSWOA SFWAO GA PSO ACO

14

Figure 4(c): Dataset 3

Figure 4(d): Dataset 4

Figure 4: Comparative analysis of processing time against the microservices for the Dataset 1,2,3, and 4

Table 3 Processing Time results comparison for dataset 1,2,3 and 4

Data Set Statistics FSWAO SFWAO GA PSO ACO

Data Set 1

Best 151.96 154.45 167.27 183.25 200.53

Average 267.67 279.57 301.79 314.95 409.24

Worst 350.91 358.91 391.45 408.31 410.76

Data Set 2

Best 170.11 176.82 181.67 190.24 191.65

Average 271.25 273.5 299.12 301.62 300.28

Worst 320.17 325.54 390.14 405.39 408.97

Data Set 3

Best 201.35 205.3 203.89 217.92 221.21

Average 272.49 274.83 291.07 300.42 303.53

Worst 351.27 359.37 394.28 480.79 495.82

 Best 215.67 221.57 235.72 267.58 283.17

0

100

200

300

400

500

600

50 100 150 200 300

P
R

O
C

ES
SI

N
G

 T
IM

E

BATCH OF MICROSERVICES

D A T A S E T 3

FSWOA SFWAO GA PSO ACO

0

100

200

300

400

500

600

50 100 150 200 300

P
R

O
C

ES
SI

N
G

 T
IM

E

BATCH OF MICROSERVICES

D A T A S E T 4

FSWOA SFWAO GA PSO ACO

15

Data Set 4 Average 275.61 276.81 293.47 301.7 304.93

Worst 422.07 436.87 453.21 521.97 532.79

5.2 Memory consumption:

It is defined as amount of memory required to complete the microservice for the application running over the cloud

resources. Authors have defined the constraint for the utilization of memory in problem formulation part i.e.,

memory cannot be used beyond the limit. The proposed framework monitors the percentage of memory utilization

continuously, as it goes beyond the limit, it informs to the scheduler for balancing the workload among the

resources. Scheduler and resource allocator are responsible for distributed the fair workload and avoid the condition

of over and underutilization. Figure 5 portrays the comparative examination of memory utilization concerning the

number of iterations. It is evident from the graph that the proposed FSWOA method reduce the memory

consumption up to 1.24%, 2.22%, 3.52% and 5.08% compared to SFWAO, GA, PSO and ACO traditional methods.

The computational results of memory consumption at diverse synthetic dataset along with variation and statistics are

shown in Table 4.

Figure 5(a): Dataset 1

0

5000

10000

15000

20000

25000

30000

50 100 150 200 300

M
EM

O
R

Y
 U

TI
LI

ZA
TI

O
N

BATCH OF MICROSERVICE

D A T A S E T 1

FSWOA SFWAO GA PSO ACO

0

5000

10000

15000

20000

50 100 150 200 300

M
EM

O
R

Y
 U

TI
LI

ZA
TI

O
N

BACTH OF MICROSERVICE

DATA S E T 2

FSWOA SFWAO GA PSO ACO

16

Figure 5(b): Dataset 2

Figure 5(c): Dataset 3

Figure 5(d): Dataset 4

Figure 5: Comparative analysis of memory consumption against the microservice for the Dataset 1,2,3, and 4

Table 4 Memory utilization results comparison for dataset 1,2,3 and 4

Data Set Statistics FSWAO SFWAO GA PSO ACO

Data Set 1

Best 4047.5176 4098.9826 4139.7681 4195.7195 4264.1722

Average 14587.50508 14670.11106 14810.57192 14911.58438 15143.78296

Worst 27119.9716 27231.2276 27456.817 27614.4472 27875.3344

 Best 2265.3569 2275.0173 2291.7129 2317.9342 2362.587

0

2000

4000

6000

8000

10000

12000

50 100 150 200 300

M
EM

O
R

Y
 U

TI
LI

ZA
TI

O
N

BATCH OF MICROSERVICES

DATA S E T 3

FSWOA SFWAO GA PSO ACO

0

2000

4000

6000

8000

10000

12000

50 100 150 200 300

M
EM

O
R

Y
 U

TL
IZ

A
TI

O
N

BATCH OF MICROSERVICES

DATA S E T 4

FSWOA SFWAO GA PSO ACO

17

Data Set 2
Average 8145.5161 8190.3735 8293.06762 8389.6138 8596.3678

Worst 15790.2913 15876.2916 15991.7625 16129.3018 16468.633

Data Set 3

Best 1825.9172 1879.4519 1910.3791 1981.6192 2036.134

Average 6033.234092 6068.02682 6163.9349 6270.3254 6414.265

Worst 10891.5195 10910.8173 10924.8192 11098.6183 11209.299

Data Set 4

Best 1755.8713 1779.81 1789.5391 1801.5289 1846.885

Average 5299.53434 5329.88156 5387.50722 5450.00314 5503.2212

Worst 9755.8821 9800.6371 9863.7347 9981.7259 10001.216

5.3 CPU consumption:

CPU is most significant resource that directly impact at the system performance in the form of energy, cost and time.

The utilization of CPU should be maximum to execute the microservices in less amount of time and cost, but not

beyond the defined limit. The mathematical model for the CPU utilization is defined in problem formulation section.

Authors have taken four different datasets to evaluate the performance of the proposed model, initially 50

microservices are considered to test the performance, then increase linearly 50 to 100, and up to 300. Figure 6 shows

the comparative examination of CPU consumption for microservices with different approaches including proposed

technique also. The computational results proved that proposed approach utilized the CPU in superior way and

improve up to 3.16%, 10.43%, 14.83% and 20.54% compared to SFWAO, GA, PSO and ACO state of art methods.

The simulation-based results of cpu consumption at diverse synthetic dataset along with variation and statistics are

shown in Table 5.

5 0 1 0 0 1 5 0 2 0 0 3 0 0

C
P

U
 U

TI
LI

ZA
TI

O
N

BATCH OF MICROSERVICES

D A T A S ET 1

FSWOA SFWAO GA PSO ACO

18

Figure 6(a): Dataset 1

Figure 6(b): Dataset 2

Figure 6(c): Dataset 3

Figure 6(d): Dataset 4

5 0 1 0 0 1 5 0 2 0 0 3 0 0

C
P

U
 U

TI
LI

ZA
TI

O
N

BATCH OF MICROSERVICES

D A T A S ET 2

FSWOA SFWAO GA PSO ACO

5 0 1 0 0 1 5 0 2 0 0 3 0 0

C
P

U
 U

TI
LI

ZA
TI

O
N

BATCH OF MICROSERVICES

D A T A S ET 3

FSWOA SFWAO GA PSO ACO

5 0 1 0 0 1 5 0 2 0 0 3 0 0

C
P

U
 U

TI
LI

ZA
TI

O
N

BATCH OF MICROSERVICES

D A T A S ET 4

FSWOA SFWAO GA PSO ACO

19

Figure 6:Comparative Analysis of total cost against the microservice for the Datasets 1,2,3, and 4

Table 5 CPU Utilization results comparison for dataset 1,2,3 and 4

Data Set Statistics FSWAO SFWAO GA PSO ACO

Data Set 1

Best 1901.7265 1921.8162 1982.6785 2001.6519 2093.82814

Average 7019.75716 7041.45078 7102.141144 7142.82448 7249.562972

Worst 13649.2871 13688.6142 13794.7614 13812.6519 13930.31337

Data Set 2

Best 870.3813 873.8712 965.2396 1006.7611 1095.5856

Average 3687.75436 3712.85882 3783.43092 3842.94152 3917.294242

Worst 7260.8341 7285.7125 7341.9123 7391.6193 7455.79995

Data Set 3

Best 781.5194 804.81123 872.9124 917.6223 976.9809

Average 2586.52204 2614.842106 2667.0511 2721.4452 2814.581592

Worst 5048.6293 5072.8172 5103.7772 5162.9622 5298.462497

Data Set 4

Best 582.6114 601.6791 653.9223 703.7441 787.62886

Average 2046.88024 2075.2371 2129.28038 2178.70522 2260.505031

Worst 3929.0126 3974.8371 4052.9261 4092.0183 4174.10447

Total Service Cost:

The service cost of applications or microservices is depends upon the execution time of microservices and

deployment time of containers. To reduce the service cost, authors have proposed a framework that allocate and

execute the microservice over the cloud resources in minimum time. In addition, the proposed approach also reduces

the deployment time of containers that directly affect the service cost as already discussed in problem formulation

part. The cost is a significant parameter that should not be beyond the defined user budget at the time of sla.

Authors have considered four diverse datasets to evaluate and test the performance of proposed model. The

proposed strategy finds the best resources for the container that will execute the microservices by utilizing the

computing resources maximally. The simulation based computational results shown in figure 7 show that proposed

strategy achieved the less cost to process the microservices based applications over to other baseline techniques. The

computational results of service cost at diverse synthetic dataset along with variation and statistics are shown in

Table 6. The figure 7 and table 6 based simulation results proved that proposed framework reduce the cost up to

2.94%, 6.45%, 12.84% and 17.73% compared to SFWAO, GA, PSO and ACO state of art methods.

20

Figure 7(a): Dataset 1

Figure 7(b): Dataset 2

Figure 7(c): Dataset 3

0
15000
30000
45000
60000
75000
90000

105000
120000
135000
150000

50 100 150 200 300

To
ta

l C
o

st

Batch of microservice

DataSet 1

FSWOA SFWAO GA PSO ACO

0
15000
30000
45000
60000
75000
90000

105000
120000
135000
150000

50 100 150 200 300

To
ta

l C
o

st

Batch of microservices

DataSet 2

FSWOA SFWAO GA PSO ACO

0
15000
30000
45000
60000
75000
90000

105000
120000
135000
150000
165000

50 100 150 200 300

To
ta

l C
o

st

Batch of Microservice

DataSet 3

FSWAO SFWAO GA PSO ACO

21

Figure 7(d): Dataset 4

Figure 7: Comparative Analysis of total cost against the microservice for the Dataset 1,2,3, and 4

Table 6 Cost results comparison for dataset 1,2,3 and 4

Data Set Statistics FSWAO SFWAO GA PSO ACO

Data Set 1

Best 15735.9128 15778.0912 16821.091 17027.9816 18495.2906

Average 68050.09632 68082.75362 68951.03044 69300.13392 70622.17107

Worst 133698.6518 133734.9637 134782.6693 135164.9263 135994.3507

Data Set 2

Best 16231.8267 16723.971 17348.9162 18623.9846 19731.4627

Average 70802.25548 71280.30474 72093.73136 72825.35168 74006.51217

Worst 139836.8724 139932.8712 140117.9262 140628.9367 141804.6228

Data Set 3

Best 19896.7342 19956.8267 20167.9352 20893.8267 21730.7024

Average 73849.35044 74041.19292 75145.78408 75712.07008 76762.19717

Worst 147738.9371 147823.8472 148923.8492 149256.9373 150168.4424

Data Set 4

Best 22381.7365 22502.9716 22876.8271 23109.5618 23747.9143

Average 77967.96014 78273.66588 79355.70914 80235.23648 81239.07068

0
15000
30000
45000
60000
75000
90000

105000
120000
135000
150000
165000
180000

50 100 150 200 300

To
ta

l C
o

st

Batch of Microservice

DataSet 4

FSWOA SFWAO GA PSO ACO

22

Worst 153673.8362 153989.9374 155468.8362 156457.9267 157933.2143

6 Conclusions and Future work

Cloud computing is offering larger number of services through virtualization technology to run multiple applications

over single physical machines. An application can be divided in the form of components and each component is

called microservices, run independently and required light weighted resources to complete the service, but allocation

of efficient resource, utilization of cloud resources, communication overhead between virtual machines, and service

cost becomes a challenging issue. To address the mentioned challenges, A QoS-aware resources allocation

framework is proposed by the authors for the microservices using Fine-tuned Sunflower Whale Optimization

Algorithm (FSWOA). The proposed approach focused at the significant QoS parameters during the allocation of

resources for the microservices and deployment of container over the physical resources. The proposed approach

reduces the container deployment time and services time, and improve the utilization the CPU and memory

maximally that provides the optimal service cost. Further, the proposed approach also monitors the resource and

take the necessary action, if resource utilization reaches beyond the defined limits. The proposed approach optimize

the QoS parameters based upon the defined function in problem formulation part using FSWOA. The computational

results revealed through simulation outcomes that FSWOA outperforms Genetic Algorithm (GA), Particle Swarm

Optimization (PSO), ACO and Sunflower Whale Optimization Algorithm (SFWOA) in terms of performance

metrics like service cost, memory consumption, CPU consumption, and other parameters. The limitation of the

proposed framework is that authors did not test the performance of the proposed approach in real cloud environment

and did not consider all the network parameters constraints [28]. Latency is an issue with cloud computing; hence

we will develop an intelligent algorithm that will offload the latency sensitive microservices over the fog/edge node

without any delay and normal services over the cloud platform in the future [29]. Artificial Intelligence technique

will play the vital role to decide the offloading platform at the runtime [30].

References

[1] L. De Lauretis, From monolithic architecture to microservices architecture, in: 2019 IEEE International Symposium on

Software Reliability Engineering Workshops, ISSREW, IEEE, 2019, pp. 93–96.

[2] Gawali, M.B. and Shinde, S.K., 2018. Task scheduling and resource allocation in cloud computing using a heuristic

approach. Journal of Cloud Computing, 7(1), pp.1-16.

[3] Waseem, Muhammad, et al. "Design, monitoring, and testing of microservices systems: The practitioners’ perspective."

Journal of Systems and Software 182 (2021): 111061.

[4] Ciuffoletti, Augusto. "Automated deployment of a microservice-based monitoring infrastructure." Procedia Computer

Science 68 (2015): 163-172.

[5] Linthicum, David S. "Practical use of microservices in moving workloads to the cloud." IEEE Cloud Computing 3.5

(2016): 6-9.

[6] Subhash, L.S. and Udayakumar, R., 2021. Sunflower Whale Optimization Algorithm for Resource Allocation Strategy

in Cloud Computing Platform. Wireless Personal Communications, 116(4), pp.3061-3080.

[7] Joseph, Christina Terese, and K. Chandrasekaran. "IntMA: Dynamic Interaction-aware resource allocation for

containerized microservices in cloud environments." Journal of Systems Architecture 111 (2020): 101785.

[8] Subalakshmi, N. and Jeyakarthic, M., 2020. Optimal whale optimization algorithm based energy-efficient resource

allocation in the cloud computing environment. IIOAB J, 11(2), pp.92-102.

[9] Kumar, A., Sharma, A. and Kumar, R., 2020. A swarm intelligence-based quality of service-aware resource allocation

for clouds. International Journal of Ad Hoc and Ubiquitous Computing, 34(3), pp.129-140.

[10] Kumar, Mohit, et al. "ARPS: An autonomic resource provisioning and scheduling framework for cloud platforms."

IEEE Transactions on Sustainable Computing 7.2 (2021): 386-399.

[11] Srirama, Satish Narayana, Mainak Adhikari, and Souvik Paul. "Application deployment using containers with auto-

scaling for microservices in cloud environment." Journal of Network and Computer Applications 160 (2020): 102629.

[12] Taherizadeh, Salman, and Marko Grobelnik. "Key influencing factors of the Kubernetes auto-scaler for computing-

intensive microservice-native cloud-based applications." Advances in Engineering Software 140 (2020): 102734.

23

[13] He, Xiang, et al. "Programming framework and infrastructure for self-adaptation and optimized evolution method for

microservice systems in cloud–edge environments." Future Generation Computer Systems 118 (2021): 263-281.

[14] Shrimali, B. and Patel, H., 2020. Multi-objective optimization-oriented policy for performance and energy-efficient

resource allocation in cloud environment. Journal of King Saud University-Computer and Information Sciences, 32(7),

pp.860-869.

[15] Kumar, Mohit, et al. "A comprehensive survey for scheduling techniques in cloud computing." Journal of Network and

Computer Applications 143 (2019): 1-33.

[16] Chen, X., Li, W., Lu, S., Zhou, Z. and Fu, X., 2018. Efficient resource allocation for on-demand mobile-edge cloud

computing. IEEE Transactions on Vehicular Technology, 67(9), pp.8769-8780.

[17] Tseng, F.H., Wang, X., Chou, L.D., Chao, H.C. and Leung, V.C., 2017. Dynamic resource prediction and allocation for

cloud data center using the multi-objective genetic algorithm. IEEE Systems Journal, 12(2), pp.1688-1699.

[18] Li-Der, C., Hui-Fan, C. and Fan-Hsun, T., 2018. DPRA: Dynamic Power-Saving Resource Allocation for Cloud Data

Center Using Particle Swarm Optimization [J]. IEEE Systems Journal, 12(2), pp.1554-1565.

[19] Kumar, Mohit, and Subhash C. Sharma. "PSO-COGENT: Cost and energy efficient scheduling in cloud environment

with deadline constraint." Sustainable Computing: Informatics and Systems 19 (2018): 147-164.

[20] Hasan, R.A., Mohammed, M.N., Ameedeen, M.A.B. and Khalaf, E.T., 2018. Dynamic Load Balancing Model Based

on Server Status (DLBS) for Green Computing. Advanced Science Letters, 24(10), pp.7777-7782.

[21] Hammood, O.A., Kahar, M.N.M., Hammood, W.A., Hasan, R.A., Mohammed, M.A., Yoob, A.A. and Sutikno, T.,

2020. An effective transmit packet coding with trust-based relay nodes in VANETs. Bulletin of Electrical Engineering

and Informatics, 9(2), pp.685-697.

[22] G.F. Gomes, S.S. da Cunha, A.C. Ancelotti “A sunflower optimization (SFO) algorithm applied to damage

identification on laminated composite plates” Eng Comput (2018), pp. 1-8

[23] Hussien, A. M., Hany M. Hasanien, and S. F. Mekhamer. "Sunflower optimization algorithm-based optimal PI control

for enhancing the performance of an autonomous operation of a microgrid." Ain Shams Engineering Journal 12.2

(2021): 1883-1893.

[24] Vrbaski, Mira, Miodrag Bolic, and Shikharesh Majumdar. "Multi-objective optimization for cloud provisioning: A case

study in large-scale microservice notification applications." 2022 9th International Conference on Future Internet of

Things and Cloud (FiCloud). IEEE, 2022.

[25] Al Qassem, Lamees M., et al. "Optimal Resource Allocation for Containerized Cloud Microservices." 2022

International Conference on Electrical and Computing Technologies and Applications (ICECTA). IEEE, 2022.

[26] Ding, Zhijun, Song Wang, and Changjun Jiang. "Kubernetes-oriented microservice placement with dynamic resource

allocation." IEEE Transactions on Cloud Computing 01 (2022): 1-1.

[27] He, Xiang, et al. "Online deployment algorithms for microservice systems with complex dependencies." IEEE

Transactions on Cloud Computing (2022).

[28] Chakraborty, A., Kumar, M., Chaurasia, N. and Gill, S.S., 2023. Journey from cloud of things to fog of things: Survey,

new trends, and research directions. Software: Practice and Experience, 53(2), pp.496-551.

[29] Singh, R. and Gill, S.S., 2023. Edge AI: A survey. Internet of Things and Cyber-Physical Systems. Elsevier, 71-92, Vol

3, 2023.

[30] Xu, M., Song, C., Ilager, S., Gill, S.S., Zhao, J., Ye, K. and Xu, C., 2022. "CoScal: Multifaceted Scaling of

Microservices With Reinforcement Learning," in IEEE Transactions on Network and Service Management, vol. 19, no.

4, pp. 3995-4009, Dec. 2022,

