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Estimatingeffectsofparents’cognitiveand
non-cognitiveskillsonoffspringeducation
usingpolygenicscores

PerlineA.Demange 1,2,3 , JoukeJanHottenga 1,AbdelAbdellaoui 4,
EspenMoenEilertsen5,6,MargheritaMalanchini 7,8,BenjaminW.Domingue9,10,11,
EmmaArmstrong-Carter 9,11,EvelineL.deZeeuw 1,3,KailiRimfeld 8,12,
Dorret I.Boomsma 1,ElsjevanBergen 1,3,GeromeBreen 8,13,
MichelG.Nivard 1&RosaCheesman 5,8

Understandinghowparents’cognitive andnon-cognitive skills influence
offspringeducation is essential for educational, family andeconomicpolicy.
Weusegenetics (GWAS-by-subtraction) to assess a latent, broadnon-
cognitive skills dimension.To indexparental effects controlling forgenetic
transmission,weestimate indirectparental genetic effectsofpolygenic
scoresonchildhoodandadulthoodeducational outcomes, using siblings
(N = 47,459), adoptees (N = 6407), andparent-offspring trios (N = 2534) in
threeUKandDutchcohorts.Wefind thatparental cognitive andnon-
cognitive skills affectoffspringeducation through their environment: on
averageacross cohorts anddesigns, indirect genetic effects explain36–40%
ofpopulationpolygenic scoreassociations.However, indirectgeneticeffects
are lower for achievement in theDutch cohort, and for theadoptiondesign.
We identifypotential causesofhigher sibling- and trio-basedestimates:
prenatal indirect genetic effects, population stratification, andassortative
mating.Ourphenotype-agnostic, genetically sensitive approachhas
establishedoverall environmental effectsofparents’ skills, facilitating future
mechanisticwork.

Parents and children tend to have similar educational outcomes1.
Since education is highly predictive of social mobility and health
across the lifespan2,3, understanding themechanisms underlying the
intergenerational transmission of education could inform efforts to

alleviate inequalities. Many studies have investigated how much
certain parental characteristics influence offspring education, but
relatively few have considered non-cognitive skills. The term ‘non-
cognitive’describes skills that differ fromwhat has traditionally been
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education’sprimary focus: academicandcognitiveperformance.The
umbrella of non-cognitive skills encompasses a wide range of
competencies, including academic motivation, perseverance, mind-
sets, learning strategies, and social skills4,5. Cognitive skills like
executive functioning, working memory, and verbal IQ are more
precisely integral to cognitive functioning, but both cognitive and
non-cognitive skills are critical for educational success4. Research in
developmental psychology6, economics7, and sociology8 has sug-
gested that parents socially influence their children’s non-cognitive
skills including emotion regulation, social capacities, attitudes and
motivations9,10. Given that non-cognitive skills (particularly self-
control and emotion regulation11,12) support education, it follows that
parents’ non-cognitive skills may also affect children’s educational
outcomes.

Prior research has detected small associations between mea-
sured parental non-cognitive skills and offspring educational out-
comes. Inonestudy,mothers’ locusofcontrolwas theonly significant
non-cognitive predictor of offspring college attendance (β = 0.02,
p < 0.05; β = ~0.01 for maternal self-concept and self-esteem, both
non-significant)13. Mothers’ cognitive skills, measured by the U.S.
Armed Forces Qualifying Test, were a stronger predictor (β = 0.06,
p < 0.01). Another study found that fathers’ non-cognitive skills were
associated with sons’ standardised test scores at age 16 (β = 0.09)14.
Here, non-cognitive skills were measured by a single composite of
extraversion, neuroticism, persistence, and perseverance from a
standardised Swedish military-oriented psychological evaluation.
Additionally, parents’ attitudes towards education and social skills
have been found to account for 8% of the socioeconomic gap in
children’s achievement15. The contributions of specific measured
parental traits thatwere includedwere alsonot stated.

Twokey limitationsweakenthisbaseofevidenceontheeffectsof
parents’ skills on offspring education: challenges with phenotypic
assessmentsofparents’non-cognitiveskills,andgeneticconfounding.

First, regarding assessment, whereas cognitive skills can be
directly measured by tests of domain-specific or general cognitive
performance,non-cognitiveskillsaremorechallengingtocapture16,17.
There is little agreement on what non-cognitive skills to measure.
Some researchers focus on personality, whereas others include self-
control, self-esteem, motivation, and interests. Importantly, studies
identifying partial effects of specific parental cognitive and non-
cognitive skills are less informative about the overall influences of
these domains. Measurement error could also mean that effects of
parents’non-cognitive skills havebeenunderestimated.

Genetic methods offer an alternative approach to defining
parents’non-cognitiveskills.Bothcognitiveandtypically-studiednon-
cognitiveskillsaresubstantiallygenetically influenced,withtwinstudy
heritability estimates of 40–70%18,19. A new method—‘GWAS-by-
subtraction’—makes it possible to assess a broad latent genetic non-
cognitive construct, by ‘subtracting’ cognitive ability-related genetic
variationfromeducationalattainmentgeneticvariation20.Thisfollows
an influential definition of non-cognitive skills fromeconomics21 as all
traits positively contributing to educational and professional success
that are not cognitive skills. This non-cognitive genetic construct—
which could otherwise be conceptualized as ‘not-cognitive’—is asso-
ciated with higher socioeconomic attainment, more open and
conscientious personality, and some psychiatric disorders (e.g.,
higher risk for schizophrenia, lower risk for attention deficit/
hyperactivity disorder). In the present study, we use this GWAS-by-
subtraction measure of non-cognitive skills to capture the overall
effect of all non-cognitive parent phenotypes on offspring education.
Thisphenotype-agnosticapproachissomewhatloose: itcouldinclude
parental phenotypes not traditionally classed as ‘non-cognitive’ or
‘skills’. However, it provides a useful first step towards characterizing
pathways from specific parental skills to offspring educational
outcomes.After establishingoverall effects, complementary research

designs using measured parental non-cognitive skills can subse-
quentlybeused to identify specificmediatingmechanisms.

A second challenge is to distinguish social (i.e., environmental)
fromgenetic transmission.Noneoftheassociationsbetweenparental
skills and offspring education cited above were estimated using
genetically sensitive designs. This is problematic, because from just
parent-offspringcorrelationsonecannotconcludethatparents’skills
shape offspring education, for instance by providing resources,
experiences, and support. Ignoring any shared genetic influences on
parents’ skills and child educational outcomes confounds estimation
of the effects of parental phenotypes on offspring outcome22. To
establish theextent thatparents’ (non-)cognitiveskills influencechild
educational outcomes socially, it is vital to control for inherited
genetic effects.

Genetic study designs can isolate environmental effects of
parental skills on offspring education, controlling for genetic
transmission. Several designs estimate a genetic effect of the child’s
genotype on the child phenotype (direct genetic effect), and an
environmentally mediated effect of the parental genotype on the
child’sphenotype(parentalindirectgeneticeffect).Forexample,non-
transmitted genetic variants affect offspring phenotypes indirectly
via the environment shaped by parental phenotypes23,24. Polygenic
scores (individual-level indices of trait-specific genetic endowment;
PGS) for educational attainment based on parents’ non-transmitted
variants, are associated with offspring attainment25–27. Com-
plementary evidence of indirect effects of parents’ education-linked
genetics on offspring education has also accumulated from sibling
and adoption PGS designs25,26,28,29. To obtain estimates of indirect
genetic effects using sibling data, within-sibling genetic associations
(first developed to estimate direct genetic effects independent of
population biases30,31) are compared to population-based associa-
tions. To obtain estimates of indirect genetic effects using adoption
data, genetic associations estimated for adoptees and non-adopted
individuals are compared29. Notably, variance decomposition as well
as PGS methods can be applied to disentangle direct and indirect
genetic effects, but the former requiresmuch larger sample sizes32–35.
It is not knownwhether parental indirect genetic effects on offspring
education occur through cognitive or non-cognitive pathways (or
both), because studies have not parsed out the contributions of sub-
componentsof theeducational attainmentPGS.

Here, wedirectly compare estimates of parental indirect genetic
effects obtained from different designs. Estimation of genetic
associationsmay involvenumerousbiases36–38. Sibling, adoption, and
non-transmitted alleledesignshavedifferent assumptions andsubtle
differences inbiasesandcomponentsaffectingtheestimatedindirect
genetic effect. As shown by our data simulations indirect genetic
effect estimates from the adoption design may be less biased by
population stratification and assortative mating than the sibling and
non-transmitted allele designs (see Supplementary Note 6 and our
GitHubrepository39).However,estimatesobtainedfromtheadoption
design do not capture prenatal parental environmental effects on
child education andmay be less generalisable to the population. The
sibling design may estimate parental indirect genetic effects with
more bias from sibling genetic effects. Triangulation across designs
and sensitivity analyses can help detect possible biases and quantify
parental indirect genetic effects andother environmental effects37,40.

In the current study (pre-registration: https://osf.io/mk938/), we
use a novel approach to estimate the social effects of parents’
cognitive and non-cognitive skills on offspring education.We deploy
GWAS-by-subtraction to estimate individuals’ genetic endowments
(PGS) for cognitive andnon-cognitive skills, and test howmuch these
operate environmentally via parental influences on offspring educa-
tional outcomes. We provide a comparison of parental indirect
geneticeffects inthreecohortsofgenotypedfamilies intwocountries
(UK Biobank, UK Twins Early Development Study, Netherlands Twin
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Register). Each cohort includes multiple achievement outcome
measures (i.e., standardised test results and teacher-reported grades
in childhood and adolescence) and attainment (i.e., years of com-
pletededucation reported in adulthood).We triangulate across three
complementary study designs for estimating parental indirect
genetic effects andassess thepresenceof components andbiases.

Results
GWAS-by-subtraction results
Weidentified thegenetic componentsof cognitive andnon-cognitive
skills usingGenomic SEM, followingDemange et al.20, in samples that
excludedparticipants used for polygenic score analyses. Educational
attainment and cognitive performance meta-analytic summary sta-
tistics (see Methods) were regressed on two independent latent
variables, Cog and NonCog (see Supplementary Fig. 1). These two
latent factors were then regressed on 1,071,804 HapMap3 SNPs in a
genome wide association (GWA) design. The LD score regression-
based SNP heritabilities of Cog and NonCog were 0.184 (SE = 0.007)
and 0.054 (SE = 0.002), respectively. More information on the GWAS
ispresented inSupplementaryData 1.

Descriptive statistics
SNP associations with the Cog and NonCog latent variables provided
the weights to create individual-level polygenic scores in 3 cohorts
with family data and educational achievement and/or attainment
outcomes. Sample sizes for individuals with polygenic score and
educationaloutcomedatawere:39,500UKBiobanksiblings,6409UK
Biobank adoptees, up to 4796 DZ twins in the Twins Early Develop-
ment Study (TEDS), up to 3163 twins and siblings in the Netherlands
TwinRegister(NTR),andupto2534NTRindividualswithbothparents
genotyped. Full phenotypic descriptive statistics are available in
SupplementaryData2.

Overviewof three family-basedpolygenic scoredesigns
Toestimatedirectoffspring-ledand indirectparent-ledeffectsofPGS
for cognitive and non-cognitive skills on educational outcomes, we
considered three family-based genomic designs. The designs are

illustrated in Fig. 1. All models jointly included Cog andNonCog PGS.
NotethatpopulationeffectsareequivalenttoPGSeffectsestimatedin
standard population analyses that do not use within-family data. In
contrast, within-family designs exploit the principles of Mendelian
segregation or the natural experiment of adoption to separate direct
and indirect/social components of the overall population PGS effect.
Importantly, a direct genetic effect is only direct in the sense that it
does not originate from another individual’s genotype. Direct effects
are also not ‘purely’ genetic, but lead to educational outcomes via
intermediate pathways, and are expressed in the context of
environments.

First, the sibling design estimates indirect genetic effects by
comparing population-level and within-family (i.e., within-sibling or
within-DZ twin) PGS associations (Eq. (1))28. The direct effect of a
polygenic score is estimated based on genetic differences between
siblings, which are due to random segregations of parental genetic
material, independent of shared family effects (including parental
indirect genetic effects). Specifically, the direct effect is estimated
using a variable representing individuals’ polygenic scoresminus the
averagepolygenicscorefortheirfamily: thewithin-familybeta(βWithin

in Eq. (1)). The population effect of a polygenic score is estimated in a
separatemodel, simply regressing theoutcomevariableonpolygenic
scoredifferencesbetweenindividualsfromdifferentfamilies(Eq.(2)).
The indirect genetic effect is obtained by subtracting the within-
familyPGSeffect estimate fromthepopulationeffect estimate.

EAij = α00 + βWithinCog
PGSCogij � PGSCog j

� �

+ βBetweenCog
ðPGSCog jÞ+ βWithinNonCog

ðPGSNonCogij
� PGSNonCogjÞ

+ βBetweenNonCog
ðPGSNonCog jÞ+ Zij

ð1Þ

EAij = α00 + βCogðPGSCogij
Þ +βNonCogðPGSNonCogij

Þ+ Zij ð2Þ

Note: EA is the educational outcome, PGS is the polygenic score (for
Cog PGSCog and NonCog PGSNonCog). PGS refers to the average
polygenic score in the family j. i refers to the individual sibling. α0

refers to the intercept, Z are covariates for the individual i: sex, age,
sex*age, the first 10 principal components, and genotyping platform.

Fig. 1 |Analyticaldesigns toestimatedirect andparental indirectgenetic
effects.Square =observedvariable, circle =unobserved/latent variable;β=
estimatedeffectofpolygenic score (PGS)onoutcome; thepopulationeffect of a

PGScapturesbothdirect and indirect genetic effects; direct genetic effects
(controlling for indirect genetic effects) are representedwith solid arrows. Icons
madebyFreepik fromwww.flaticon.com.
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See Supplementary Note 5 for a comparison of different versions of
this siblingdesign, usingdata simulations.

Second, indirect genetic effects can be estimated by comparing
polygenic score associations estimated in a sample of adoptees
against those estimated for individuals who were reared by their
biological parents29. Therefore, we estimate the regression model
shown in Eq. (2) separately for adoptees and for non-adopted
individuals. Thepopulation effect is estimated as thepolygenic score
effectonphenotypic variationamongnon-adopted individuals (i.e., a
combination of direct and indirect genetic mechanisms). The direct
genetic effect is the effect of the polygenic score among adoptees.
Adoptees do not share genes by descent with their adoptive parents,
so we expect their polygenic scores to be uncorrelated with the
genotypes of their adoptive parents. Therefore, the polygenic score
effect in adoptees cannot be inflated by environmentally mediated
parental indirect genetic effects. In this design, the indirect genetic
effect is estimated by subtracting this direct PGS effect from the
population effect estimated in the non-adopted group. When taking
thedifference, it is important that thegroupsaresimilar in termsofall
observed and unobserved confounders, an untestable assumption
that is unlikely to always hold. We found small differences between
adoptees and non-adopted individuals in the UK Biobank in their
demographic and early-life characteristics. Cohen’s d values were
d < 0.15 for Cog and NonCog PGS and educational attainment, and
d = 0.31 for birth weight. The pattern of geographical clustering of
adopted and non-adopted participants across the UK was highly
similar (see Supplementary Data 11, Supplementary Note 3, and
Supplementary Fig. 2).

Third, indirectgeneticeffectscanbeestimated,anddisentangled
from direct genetic effects, using information on parental genetic
variation thatwasnot transmitted tooffspring25,26 (Eq. (3)).

EA = α00+βTCog
ðPGSTCog

Þ +βTNonCogðPGSTNonCog
Þ

+βNTCogðPGSNTCog
Þ+βNTNonCog

ðPGSNTNonCog
Þ +Z ð3Þ

The population effect is estimated from a polygenic score based on
transmittedvariants (βT).Transmittedgeneticvariantsarepresent inan
offspring and in at least one of their parents, and so may influence
offspring education via both direct and indirect mechanisms. The
parental indirect genetic effect is estimated as the effect of a polygenic
scorebasedonparental variants thatwerenot transmitted tooffspring
(βNT). Non-transmitted variants can only take effect on offspring
education through the environment. The direct genetic effect is
estimatedbypartiallingout theeffectof thenon-transmittedpolygenic
score from that of the transmittedpolygenic score (βT − βNT).Maternal
and paternal scores are averaged to create overall parental non-
transmittedpolygenicscores.Wedidnotdistinguishbetweenmaternal
and paternal PGS, due to the replicated evidence that mothers’ and
fathers’PGS for educational attainment have equal effects onoffspring
education41,42, and to enable closer comparison with the adoption and
sibling designs, which yield estimates of the overall parental genetic
effect. Notably, regressing offspring phenotype on offspring PGS and
parental PGSwouldallowequivalentestimationof theparental indirect
geneticeffectwithouthaplotypeestimation43.

Parents’heritable cognitive andnon-cognitive skills
environmentally influenceoffspringeducation
We investigated environmental effects of parents’ non-cognitive and
cognitiveskillsonoffspringeducationbyestimatingparental indirect
geneticeffectsofNonCogandCogPGS.Figure2ashowsthat, forboth
NonCogandCogPGS, indirect genetic effects of parents onoffspring
education were present (meta-analytic indirect βNonCog = 0.08, SE =
0.03; indirect βCog = 0.10, SE = 0.01), in addition to direct genetic
effects (direct βNonCog = 0.14, SE = 0.03; direct βCog = 0.15, SE = 0.02).
Averaged across all designs, outcomes and cohorts, indirect

environmentally mediated effects explained 36% of the population
effectof theNonCogPGS, and40%of thepopulationeffectof theCog
PGS. However, results varied depending on the methods used and
outcomes investigated. Results per cohort, outcome and design, as
well as population genetic effects and the ratio of indirect to
population effects are reported in Supplementary Data 3 and
Supplementary Figs. 3, 4 and 5. Meta-analytic results are reported in
Supplementary Data 4. Z-tests results comparing direct and indirect
effects are reported inSupplementaryData 5.

Estimatesof indirectgenetic effectsvarybyage,outcomeand
cohort
Figure 2b shows estimates of direct and indirect genetic effects of
NonCogandCogPGSfordifferentcohortsandeducationaloutcomes,
holding the design constant (i.e., the sibling design, which was
available for all cohorts and outcomes). Estimates were highly
consistent across cohorts except for age 12 achievement in Dutch
versus UK cohorts: indirect genetic effects were negligible and
represented a small fraction of the population effect in NTR (3% and
23% for NonCog and Cog, respectively), whereas they accounted for
56%and48%ofthepopulationeffectsofNonCogandCogPGSinTEDS.
For adult educational attainment, estimates of direct and indirect
effects weremore similar for the Dutch (NTR: indirect βNonCog = 0.11,
SE = 0.03; indirect βCog = 0.06, SE = 0.03) and UK (UKB: indirect
βNonCog = 0.12, SE = 0.01; indirect βCog = 0.12, SE = 0.01) cohorts. See
SupplementaryData3 for full results.

Estimatesof indirectgenetic effectsdependon theanalytical
design
Figure 2c shows estimates of direct and indirect genetic effects of
NonCog and Cog PGS for different designs, holding the phenotype
constant(i.e.,educationalattainment,whichwasavailableforall three
methods).Whileestimatesobtainedwithsiblingandnon-transmitted
PGS methods indicate equal indirect effect sizes (indirect βs for
educational attainment ranged between 0.11 and 0.12; see Supple-
mentaryData3and4), theadoptiondesignyielded lowtonull indirect
geneticeffects forbothNonCogandCogPGS(indirectβNonCog = 0.02,
SE = 0.02; indirectβCog = 0.08, SE = 0.02).

Figure 3 summarises how the three designs estimate parental
indirect genetic effects in the presence of different contributors, thus
highlightingpossibleexplanations for loweradoption-basedestimates.
This information is based on simulations (see Supplementary Notes 4
and6,SupplementaryFig. 9, andourGitHubrepository39).Weconsider
prenatal andpostnatal parental indirectgenetic effects as components
of the total parental indirect genetic effect, and other simulated
contributors as biases. First, unlike the sibling and non-transmitted
allele designs, the adoption design does not capture indirect genetic
effects occurring in the prenatal period. Second, the adoption design
estimates indirect genetic effects with less bias from population
stratification. Third, the adoption design estimates indirect genetic
effects with less bias from assortative mating than the sibling design,
and,mostlikely,thanthenon-transmittedallelesdesign.Howthebiasin
theadoptiondesignestimatescompares to thenon-transmitteddesign
depends on the precision of the polygenic score, see Supplementary
Note 6. Any excess indirect genetic effect estimated in the sibling/non-
transmitted allele designs compared to the adoption design therefore
indicates the overall impact of prenatal indirect genetic effects,
population stratification, and assortative mating. Sibling indirect
genetic effects are an important potential influence to consider,
but cannot explain the empirical results because they only do not
affect indirect effect estimates from adoption and non-transmitted
designsdifferently (theymainly inflatesibling-basedestimates).

With the adoption design, the indirect genetic effect of the
NonCog PGS on educational attainment in UK Biobank is 83% lower
than with the sibling design, while it is only 33% lower for Cog. This
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suggests that estimates for NonCog are affected more strongly than
Cog by population stratification, assortative mating and/or prenatal
indirect genetic effects.

Populationphenomenamay inflate indirectgenetic effect
estimates
Although triangulating designs suggested that prenatal indirect
genetic effects, population stratification, and assortativematingmay
contribute to the higher estimated parental indirect genetic effects
from non-transmitted alleles/sibling designs relative to the adoption
design, this approach cannot disentangle the relative importance of

these individual biases. To this end, we conducted additional
sensitivity analyses to assess themagnitudes of these biases (not pre-
registered).

First, we analysed the GWAS summary data on which the
polygenic scores were based, using LD score regression to detect
population stratification. The LD score regression ratio statistics of
uncorrected educational attainment and cognitive performance
GWAS were 0.11 (SE = 0.01) and 0.06 (SE = 0.01), respectively (Sup-
plementary Data 1). These non-null estimates indicated that a small
butsignificantportionoftheGWASsignalwaspotentiallyattributable
to residualpopulation stratification.Ascognitiveperformance seems
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Fig.2 | EstimateddirectandindirectgeneticeffectsofNonCogandCogPGSon
educationaloutcomes.aMeta-analyticresults.Meta-analysedestimatesofdirect
and indirectgenetic effects ofNonCogandCogPGSoneducational outcomes
(N = 68,919). Indirectgenetic effectswork through theenvironment thatparents
provide for their children.Beta coefficientswereobtained frommeta-analysisof
effects across cohorts, designs andoutcomephenotypes; bars =95%CIs.bSibling
designbycohort. Estimatesofdirect and indirect effectsofNonCogandCogPGS

bycohort (for age 12 andadult outcomes), using the siblingdesignonly.NTR is a
Dutchcohort (N = 1631 andN = 3163 respectively), TEDS (N = 2862) andUKB
(N = 16,624) areUKcohorts; bars =95%CIs. cEducational attainment bydesign.
Estimatesofdirect and indirect effectofNonCogandCogPGSbyanalyticdesign
(for adult educational attainment outcomesonly). Samples sizes:N = 42,663
(resultsmeta-analysedacrossUKBandNTR);N = 6407adoptees and6500non-
adopted individuals (UKB);N = 2534 trios inNTR;bars =95%CIs.
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less prone to population stratification than EA, it is possible our
estimates of direct and indirect genetic effects of NonCogweremore
biasedbypopulation stratification thanCog.

Second,wedetected slight evidenceof assortativemating,which
appeared stronger in theUK thanDutch cohorts. InNTR,parental PGS
correlations are non-significant (NonCog r = 0.03, Cog r = 0.02).
Sibling PGS intraclass correlations ranged between 0.49 and 0.52 in
NTR,andbetween0.53and0.56inTEDSandUKBiobank.Thissupports
thepresenceofassortativematingonNonCogandCogPGSpotentially
biasingourestimatesof indirectgeneticeffects inUKcohorts,but less
inourDutchcohort. SeeSupplementaryData6 for full correlations.

Third, our sensitivity analyses did not support the presence of
indirect effects of siblings’ NonCog and Cog PGS on individuals’
educational outcomes. Our first approach leveraged sibling poly-
genic scores, the rationale being that in the presence of a sibling
effect, a sibling’s PGS will influence a child’s outcome beyond child
and parent PGS. In NTR, siblings’ NonCog or Cog PGS had non-
significant effects (Supplementary Data 7). In a second approach,
the difference in PGS effects on EA between monozygotic (MZ) and
dizygotic (DZ) individuals was tested. Since MZ twins are more
genetically similar than DZ twins, their PGS should capture more of
the indirect genetic effect of their twin. In NTR and TEDS, PGS
effects were not significantly different between MZs and DZs
(Supplementary Data 8 and Supplementary Fig. 6). Finally, in UKB,
we tested PGS effects on EA given the number of siblings individuals
reported having. If more siblings lead to a stronger sibling effect,
this will be captured as an increased effect of an individual’s own
PGS on the outcome in the presence of more genetically related
siblings. As a negative control, we conducted the same analysis in
adoptees. Since adoptees are unrelated to their siblings, their PGS
do not capture sibling effects at any family size. NonCog PGS effects
weakly increased with number of siblings, but this pattern was also
present in adoptees, suggesting confounding by unobserved
characteristics of families with numerous children (Supplementary
Data 9 and Supplementary Fig. 7).

Discussion
We used genetic methods to study environmental effects of parents’
skills on child education. We found evidence that characteristics
tagged byNonCog andCog polygenic scores (PGS) are both involved
in how parents provide environments conducive to offspring
education. Indeed, indirect geneticmechanismsexplained36%of the
populationeffectoftheNonCogPGS,and40%ofthepopulationeffect
of the Cog PGS (population βNonCog = 0.22, SE = 0.01; population
βCog = 0.25, SE = 0.01). This result was consistent across countries,
generations, outcomes, and analytic designs, with two notable
exceptions.First,estimatedparental indirectgeneticeffectswerenull
for childhood achievement in our Dutch cohort (NTR), but not for
comparable outcomes in our UK cohort (TEDS). Second, parental
indirect genetic effects estimated with the adoption design were
lower than for the sibling and non-transmitted allele designs,
particularly for the NonCog PGS. Given our evidence from data
simulations that the adoption-based estimates of indirect genetic
effects donot account forprenatal effects andmaybemore robust to
population stratification and assortative mating, these factors may
contribute substantially to estimates from the other two designs,
especially for the NonCog PGS. This was supported by results from
sensitivity analyses.

This study demonstrates the utility of genetic methods for
assessing elusive phenomena: non-cognitive skills, and genuine
environmental influences fromparents, unconfounded by offspring-
led effects of inherited genes. Compared to analysing a set of
measured parental non-cognitive skills, our GWAS-by-subtraction
approach captures a wider array of traits linked genetically to
attainment, and therefore broadly quantifies the overall salience of
parents’ non-cognitive skills. Our evidence that parents’ non-
cognitive and cognitive skills are both important for children’s
education complements the growing literature that has considered
effects of specific measured skills within both of these domains13,14.
These studies found that effects of parents’ non-cognitive skills on
offspring education were less than half the size of the effects of

Fig. 3 | Estimatesofparental indirectgeneticeffects fromthe threedesigns,
basedondata simulated to includedifferentcomponents andbiases.
Components includeparental prenatal andpostnatal indirect genetic effects.
Biases include sibling indirect genetic effects, assortativemating, andpopulation
stratification. Boxplots of 100 replicatesbasedona simulated sampleof20,000
families. Thecenter line represents themedian, thebox limits are the 1st and3rd

quartile, and thewhiskers reach themaximumvaluewithin 1.5 times the
interquartile range.Outlyingvalues arenot represented. For clarity, the red line
benchmarks the true simulatedpostnatalparental indirect effect, althoughwe
note thatprenatalparental genetic effects are acomponent rather thanabiasof
theparental indirect genetic effect.
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parents’ cognitive skills. In contrast, we found that indirect genetic
effects of NonCog PGS were almost as large as for Cog skills. This
discrepancymight stem inpart fromour comprehensivedefinitionof
non-cognitive skills, as we do not rely on possibly unreliable and
incomplete phenotypic measures. Importantly, the parental indirect
genetic effects we have identified may capture proximal forms of
‘nurture’ (e.g.,aparentdirectly trainingtheirchild’scognitiveskills,or
cultivating their child’s learning habits through participation and
support) and/or more distal environmental effects (e.g., a parent’s
openness to experience leading them to move to an area with good
schools). The environmental effects of parents’ non-cognitive and
cognitive skills are likely to be larger than we estimate, because our
approach only captures effects of parent skills tagged by current
GWAS. Polygenic scores index a subset of the common genetic
component of parent skills, which is in turn a fraction of the total
genetic component (missing heritability44,45), and cannot account for
thenon-heritable componentofparent skills.

The lower importance of parental indirect genetic effects for
child achievement in the Netherlands compared to the UK indicates
thatourUKachievementoutcomesmorestronglycapturevariationin
family background. This difference could result from the design of
these achievement measures: Dutch test results are standardized
based on a representative population, but UK teacher reports might
still be affected by student social background. Societal differences
between the two countries might offer another explanation, as
indirect genetic effectsmight be seen as indicator of social inequality
(similarly to shared-environment variance in twin studies46). For adult
attainment, results were more similar across UK and Dutch cohorts,
corresponding with recent evidence for consistent shared-
environment influence on educational attainment across social
models47. This consistency also suggests that the difference in
childhood is not due to a cohort or population difference. The higher
indirect genetic effects in adult attainment in the Netherlands might
reflect an increase in environmental variance following tracking
taking place in secondary schools27. Indeed, socioeconomic dis-
parities inachievement seemto increasemorebetweenages 10and15
in theNetherlands than in theUK48 andchildrenwhoseparents have a
highereducationaremore likely toenrol inahighereducational track
independently of their achievement at age 1249, suggestive of greater
parental effects on secondary and later education, which should be
tested in further studies.

Wefoundthatthedesignusedtoestimate indirectgeneticeffects
matters, with the adoption design giving systematically lower
estimates.Directcomparisonof results acrossdesigns suggested that
33% (for Cog) and 83% (for NonCog) of the indirect genetic effects on
adult educational attainment, estimated using the sibling design, are
at least inpartduetopopulationstratification,assortativemating,and
prenatal indirect genetic effects. The importance of population
stratification for genetic associations with educational attainment
was suggested by recent UK Biobank studies50,51. Our sensitivity
analyses also indicated residual population stratification, which was
more severe for the NonCog GWAS. There was some evidence of
assortative mating, with sibling PGS correlations above expectation
(>0.5) particularly in the UK cohorts. This country difference in
assortment is supported by the lower estimated spouse PGS
correlations in NTR (0.02 for Cog, 0.03 for NonCog) than for the EA
PGS in the UK Biobank (0.06)52. There was no statistically significant
difference in assortative mating between Cog and NonCog, suggest-
ing that population stratification explains the particularly large
design-based discrepancy between estimates of indirect genetic
effects for NonCog (but possibly also differential bias in the Cog
versus NonCog GWAS; see Limitations). Population stratification
should be carefully considered in studies using NonCog PGS.
Structural equation models, leveraging within-family polygenic
scores and phenotypes, are being developed to parse the

contributions of indirect and direct genetic effects to complex traits
fromassortativemating (bothdisequilibriumandequilibrium forms)
and population stratification53,54. Another consideration for future
research is that indirect genetic effects on education might span
across more than a single generation, for example the influence of
grandparents. Since cumulative indirect genetic effects are all
removedwhen a child is adopted, their presencewould contribute to
the observed difference in indirect effect between the adoption and
otherdesigns.

Regarding siblings, we did not find evidence that indirect effects
of siblings’ NonCog and Cog PGS affect individual differences in
educational outcomes, using three different approaches. This corre-
sponds with null findings regarding indirect effects of siblings’
educational attainment genetics in the UK Biobank50,51. However,
other UK Biobank studies have detected indirect effects of older
siblings’ EA PGS on younger siblings’ educational attainment55, and
parental compensation for sibling EA PGS differences56, suggesting
that more subtle analyses are required to understand sibling effects.
There is also some evidence for sibling effects on educational
attainment in other populations, based on the EA PGS26 and on
extended twin family data57. It is possible that our PGS analyses were
not sufficiently powered to detect indirect genetic effects of siblings,
since they were based on lower sample size than our main analyses.
However, our results suggest that indirect genetic effects of siblings
oneducationaresmall.Therefore,ourmethodsprovidegoodproxies
for parental indirect genetic effects, with minimal inflation from
siblingeffects.

Our data suggest that the adoption design may provide a useful
lower-boundestimateofindirectgeneticeffectsofparents.Giventhat
there was no evidence for sibling effects of the Cog or NonCog PGS,
our adoption-based estimates, which appear to be less biased by
population stratification and assortativemating, should give a closer
measureof(postnatal)parental indirectgeneticeffects intheabsence
of other issues. However, adoptees and non-adopted individuals
differ in unobserved and observed ways, including birthweight
(d = 0.3). These differences likely make adoption-based estimates of
indirectgeneticeffects,whichrelyonacomparisonofthetwogroups,
less reliable. Moreover, three additional factors may make the
adoption-based estimates of indirect genetic effects too con-
servative. First, adoption based indirect effect estimates exclude
prenatal indirect genetic effects (and indirect genetic effects taking
place between the birth and moment of adoption), which might
influence educational outcomes58,59. While we are unable to test for
prenatal indirect effects, these could be investigated in cohorts with
pregnancy information, adjusting for postnatal indirect genetic
effects.Second,adopteesmayhavebeenexposedtoanarrowerrange
of environments (e.g., family socioeconomic status) compared to
non-adopted individuals60. This form of selection bias is likely to
increase the genetic variance at the expense of the indirect genetic
effect. Third, selective placement of children in adoptive families
matching characteristics of their biological families, or adoption of
children by close relatives61, could result in correlation between child
and (adoptive) parent genotypes, leading to an underestimation of
the indirect genetic effect. There is modest evidence for selective
placement of adoptees based on education in the US62. We cannot
control for selection and relatedness (e.g., by excluding individuals
who were adopted by relatives and/or adopted relatively late in
development), since there is no information on the adoptive parents
in theUKBiobank resource.

We acknowledge several limitations. First, while we suggest that
an attribute of our study is the broad and phenotype-agnostic
characterisation of non-cognitive skills, our GWAS-by-subtraction
approach is unable to identify specific parental characteristics and is
also still limited by measures of cognitive performance and educa-
tional attainment in the original GWAS. Some cognitive skills might
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not be reflected in the available Cognitive Performance GWAS, so the
NonCog factor could capture genetic influences affecting cognition.
However, previous analyses have shown that aNonCog PGS based on
GWAS-by-subtraction predicts substantially less variation in cogni-
tion than the Cog PGS20. Additionally, our NonCog latent variable
reflects the residual variance of adult educational attainment, and
therefore is a measure of non-cognitive aspects of adult EA. Non-
cognitive aspects of childhood achievement might differ somewhat,
whichmight lead to an underestimation of indirect genetic effects of
theNonCogPGSon theseoutcomes.

Second, the generalisability of our results is limited. Highly
educated individuals are over-represented in all cohorts. Participa-
tion bias also affects GWAS results63. Selection effects may be
especially strong in the adoptiondesign as adoptionsmaydependon
(partially heritable) phenotypes of the biological parents, and many
adoptive parents are also selected based on their (partially heritable)
behavioural phenotypes. Additionally, only participants of European
descentwere included in the analysis.

Third, replication efforts are needed. Special effort should be
targeted to include diverse ancestry participants. While our overall
estimates are well powered due to the aggregation of cohorts, some
analyses rely on a single sample. As such, results from these analyses
might reflect specificsof these samples andnotdesign-specificbiases
andshouldbe replicated.

Fourth, although our within-family methods allowed us to
evaluate biases in polygenic score effects within the target samples,
the same biases are likely to influence the effect size estimates from
the original population-based GWAS used to construct polygenic
scores. This problem has been explored in relation to the sibling
design in a recent preprint64, but remains to be investigated for non-
transmitted PGS and adoption designs. Population GWAS effects
could be differentially affected (i.e., stronger correlation between
direct and indirect genetic effects) for NonCog versus Cog, which
wouldmaketheirrespectivePGSeffects lesscomparable. Increasingly
large within-family GWAS35,65 of Cog and EA will allow this to be
resolved.

Finally, while we conceptualize our NonCog PGS as a non-
cognitive measure, it could also be considered a ‘not-cognitive PGS’,
since it is a residual construct that results from removing heritable
varianceassociatedwithcognitiveskills fromtheheritablevariance in
educational attainment. In the future, it may be useful to develop a
more precise non-cognitive skills GWAS, by creating the latent Cog
and NonCog factors using additional measured phenotypes. To this
end, large GWA meta-analyses should be completed not only for
personality66 but for other classic non-cognitive skills such as
motivationandself-control.

Several additional future researchdirectionsemerge.First, given
that we have quantified the overall environmental effects of parents
onoffspring education taggedbyNonCogandCogPGS, thenext step
is to identify specific mediating parent characteristics, whether
proximal or distal. It will be informative to test not only typical non-
cognitive skills measures such as parental locus of control (as
suggested by13), but also ‘not-cognitive’ characteristics that do not
appear in non-cognitive skill batteries yet are genetically correlated
with the NonCog PGS and phenotypically correlated with offspring
achievement. For instance, parental depression is a feasible partial
mediator, given that Major Depressive Disorder is significantly
genetically correlated with NonCog (rg = −0.19, p = 2.62E−14)20, and
maternal depression is associated with offspring mathematics
performance,possiblyviaoffspringexecutivefunction67.Researchers
could also examine mediating child characteristics on the pathway
between their parents’ characteristics and their own educational
outcomes.Children’s skills themselvesmight notbe involved in these
pathways. Indeed, educatedparentsdonot appear to affect offspring
education by fostering non-cognitive skill development11, and twin

research shows no influence of shared environmental factors on
individual differences in children’s measured non-cognitive skills
suchasgrit and self-control68–70.

A second future direction is to incorporate gender and
socioeconomic status into research on indirect genetic effects on
education. Twin data show that shared environmental contributions
to educational attainment are larger for women than for men47. It is
unknown whether this finding holds for indirect genetic effects and
for childhood achievement. Another gender aspect to consider is
differential maternal and paternal indirect genetic effects33. There is
some evidence (although not genetically informed) that mother and
father skills show unique associations with offspring education14.
Indirect effects of parents’ genetic endowment for non-cognitive
skills on child education might be mediated or moderated by
parents’ income and cultural capital (including school-related skills
and habits). While some evidence suggests that home learning
environments may be more cognitively stimulating in families of
higher socioeconomic71,72, there is also evidence suggesting that
mothers who have lower reported incomes also report more
frequent activities that facilitate cognitive stimulation73.

In sum, this studyprovidesevidence for environmental effectsof
parents’ non-cognitive and cognitive skills on offspring educational
outcomes, indexed by indirect genetic effects of polygenic scores.
Combining three cohorts and three designs for estimating indirect
geneticeffectsallowedustoobtainrobustfindings.Theseresultshave
significance for human health, as the role parents play in successful
cognitive development and (mental) health development go hand
inhand.

Methods
Our research complies with all relevant ethical regulations. Project
approval for the Twins Early Development Study (TEDS) was granted
by King’s College London’s ethics committee for the Institute of
Psychiatry, Psychology and Neuroscience PNM/09/10–104. Ethical
approval fortheNetherlandsTwinRegister (NTR)wasprovidedbythe
Central Ethics Committee on Research Involving Human Subjects of
the VU University Medical Center, Amsterdam, and Institutional
Review Board certified by the U.S. Office of Human Research
Protections (IRB number IRB-2991 under Federal-wide Assurance-
3703; IRB/institute codes 94/105, 96/205, 99/068, 2003/182, 2010/
359)andparticipantsprovidedinformedconsent.TheUKBiobankhas
receivedethicalapproval fromtheNationalHealthServiceNorthWest
Centre for Research Ethics Committee (reference: 11/NW/0382).
Informedconsentwasobtained fromall humanparticipants.

The study methods were pre-registered on the Open Science
Framework (https://osf.io/mk938/) on the 24/02/2020. Additional
non-preregisteredanalysesare indicatedassuchbelowandshouldbe
considered exploratory. Additional deviations from the pre-
registration aredetailed inSupplementaryNote 1.

Samples
UKBiobank.TheUKBiobankisanepidemiologicalresourceincluding
British individuals aged 40 to 70 at recruitment74. Genome-wide
genetic data came from the full release of the UK Biobank data, and
were collected and processed according to the quality control
pipeline75.

We defined three subsamples of the UK Biobank to be used for
polygenic score analyses: adopted participants, a control group of
non-adopted participants, and siblings. Starting with UK Biobank
participants withQC genotype data and educational attainment data
(N = 451,229), we first identified 6407 unrelated adopted individuals
who said yes to the question “Were you adopted as a child?” (Data-
Field 1767). We restricted the sample to unrelated participants
(kinship coefficient <1/(2^9/2))76. Second, our comparison sample
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(N = 6500) was drawn at random fromnon-adopted participants who
were unrelated to each other and to the adopted participants. Third,
we identified 39,500 full siblings, excluding adopted individuals. We
definedfull-siblingsasparticipantswithakinshipcoefficientbetween
1/(2^(3/2)) and 1/(2^(5/2)) and a probability of zero IBS sharing
>0.0012, as suggestedby75 and76.

After excluding the three sub-samples for polygenic score
analyses and individuals related to these participants, we were left
with388,196UKBiobankindividualswitheducationalattainment(EA)
data, and 202,815 individuals with cognitive performance (CP) data.
We used these remaining individuals for the GWAS of EA and CP, and
later meta-analysis with external GWASs77 (see ‘Statistical Analyses’
andSupplementaryNote2).

Twins Early Development Study (TEDS). The Twins Early Develop-
ment Study (TEDS) is a multivariate, longitudinal study of >10,000
twin pairs representative of England and Wales, recruited
1994–199678. The demographic characteristics of TEDS participants
and their families closely match those of families in the UK. Analyses
were conducted on a sub-sample of dizygotic (DZ) twin pairs with
genome-wide genotyping and phenotypic data on school achieve-
ment at age 12 (1431DZpairs) andage 16 (2398pairs).

Netherlands Twins Register (NTR). The Netherlands Twin Register
(NTR)79 is established by the Department of Biological Psychology at
the Vrije Universiteit Amsterdam and recruits children and adults
twins for longitudinal research. Data on health, personality, lifestyle
and others, as well as genotyping data have been collected on
participants and their families.

We included in our analyses genotyped European-ancestry
participants. We created a subsample of full-siblings. NTR contains
information on numerous monozygotic multiples (twins or triplets).
BecauseMZmultiplessharethesamegenes,werandomlyexcludedall
individuals but one per MZ multiple. Only siblings with complete
geneticandoutcomedataweresubsequently includedintheanalyses:
1631 siblingswithCITO(achievement test takenduring the last yearof
primaryschool)data(from757families)and3163siblingswithEAdata
available (from1309 families).

We created a subsample with complete offspring, maternal and
paternal genotypic data (i.e., trios). Among individuals with available
parental genotypes, respectively 1526 (from 765 families) and 2534
(from1337 families) had reportedCITOandEA information.

The sibling and trio subsets are not independent: for CITO, 823
participants arepresent inboth subsets, 1374 for EA.

Phenotypicmeasures
UK Biobank. Educational attainment and cognitive performance
phenotypes were defined following Lee et al. 201877. From data-field
6238, educational attainment was defined according to ISCED
categories and coded as the number of Years of Education. The
responsecategoriesare:noneoftheabove(noqualifications)=7years
ofeducation;CertificateofSecondaryEducation (CSEs)or equivalent
=10years;Olevels/GCSEsorequivalent=10years;Alevels/ASlevelsor
equivalent = 13 years; other professional qualification = 15 years;
National Vocational Qualification (NVQ) or Higher National Diploma
(HNC)orequivalent= 19years; collegeoruniversitydegree=20years
of education. For cognitive performance, we used the (standardized)
mean of the standardized scores of the fluid intelligence measure
(data-field20016 for in-person and20191 for anonline assessment).

TEDS. Educational achievement at age 12 was assessed by teacher
reports, aggregated across the three core subjects (Mathematics,
English, andScience).

Educational achievement at age 16was assessedby self-reported
results for standardized tests taken at the end of compulsory

education inEngland,WalesandNorthern Ireland:GeneralCertificate
of Secondary Education; GCSE). GCSE grades were coded from 4 (G;
theminimumpassgrade)to11(A∗; thehighestpossiblegrade).Aswith
the age 12 measure, we analysed a variable representing mean score
for thecompulsory core subjects.

NTR. Educational attainment was measured by self-report of the
highest obtained degree80. Thismeasurewas re-coded as the number
of years in education, followingOkbayet al. 201681.

Academicachievement isassessedintheNetherlandsbyanation-
wide standardized educational performance test (CITO) around the
age of 12 during the last year of primary education. CITO is used to
determine tracking placement in secondary school in the Nether-
lands, incombinationwithteacheradvice.Thetotalscorerangesfrom
500to550, reflectingthechild’spositionrelative totheotherchildren
taking the test thisparticular year.

Genotypequality control
UKBiobank. SNPs fromHapMap3 CEU (1,345,801 SNPs) were filtered
out of the imputedUKBiobank dataset.We then did a pre-PCAQCon
unrelated individuals, and filtered out SNPs with MAF < 0.01 and
missingness > 0.05, leaving 1,252,123 SNPs. After removing indivi-
duals with non-European ancestry, we repeated the SNP QC on
unrelated Europeans (N = 312,927), excluding SNPs with MAF < 0.01,
missingness > 0.05 and HWE p < 10−10, leaving 1,246,531 SNPs.
The HWE p-value threshold of 10−10 was based on: http://www.
nealelab.is/blog/2019/9/17/genotyped-snps-in-uk-biobank-failing-
hardy-weinberg-equilibrium-test. We then created a dataset of
1,246,531QC-edSNPs for456,064UKBsubjectsofEuropeanancestry.
Principal components were derived from a subset of 131,426
genotyped SNPs, pruned for LD (r2 > 0.2) and long-range LD regions
removed82. PCA was conducted on unrelated individuals using
flashPCAv283.

TEDS. Two different genotyping platforms were used because
genotyping was undertaken in two separate waves. Affyme-
trixGeneChip 6.0 SNParrayswere used togenotype 3665 individuals.
Additionally, 8122 individuals (including 3607 DZ co-twin samples)
weregenotypedon IlluminaHumanOmniExpressExome-8v1.2arrays.
Afterqualitycontrol,635,269SNPsremainedforAffymetrixGeneChip
6.0 genotypes, and 559,772 SNPs for HumanOmniExpressExome
genotypes.

Genotypes from the two platforms were separately phased and
imputed into the Haplotype Reference Consortium (release 1.1)
through the Sanger Imputation Service before merging. Genotypes
fromatotal of 10,346samples (including3320DZtwinpairs and7026
unrelated individuals) passed quality control, including 3057 indivi-
duals genotyped on Affymetrix and 7289 individuals genotyped on
Illumina. The identity-by-descent (IBD) between individuals was
<0.05 for 99.5% in the merged sample excluding the DZ co-twins
(range=0.00–0.12)andrangedbetween0.36and0.62for theDZtwin
pairs(mean = 0.49).Therewere7,363,646genotypedorwell-imputed
SNPs (for full genotypeprocessingandquality controldetails, see84).

To ease high computational demands for the current study, we
excludedSNPswithMAF < 1% and info <1. Following this, 619216 SNPs
were included inpolygenic scoreconstruction.

Principal components were derived from a subset of 39,353
common (MAF > 5%), perfectly imputed (info = 1) autosomal SNPs,
after stringent pruning to remove markers in linkage disequilibrium
(r2 > 0.1) and excluding high linkage disequilibrium genomic regions
toensure thatonlygenome-wideeffectsweredetected.

NTR. Genotyping was done on multiple platforms, following manu-
facturers protocols: Perlegen-Affymetrix, Affymetrix 6.0, Affymetrix
Axiom, Illumina Human Quad Bead 660, Illumina Omni 1M and
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Illumina GSA. For each genotype platform, samples were removed if
DNA sex did not match the expected phenotype, if the PLINK
heterozygosity F statistic was < −0.10 or >0.10, or if the genotyping
call rate was <0.90. SNPs were excluded if the MAF < 1 × 10–6, if the
Hardy-Weinberg equilibrium p-value was <1 × 10–6, and/or if the call
rate was <0.95. The genotype data was then aligned with the 1000
GenomesreferencepanelusingtheHRCand1000Genomeschecking
tool, testing and filtering for SNPs with allele frequency differences
larger than 0.20 as compared to the CEU population, palindromic
SNPs and DNA strand issues. The data of the different platforms was
then merged into a single dataset, and one platform was chosen for
each individual. Based on the ~10.8 k SNPs that all platforms have in
common, DNA identity-by-descent state was estimated for all
individual pairs using the Plink 1.9 and King 2.1.6 programs. Samples
were excluded if these estimates did not correspond to expected
familial relationships.CEUpopulationoutliers, basedonperplatform
1000 Genomes PC projection with the Smartpca software v2.r904,
were removed fromthedata. Then,perplatform, thedatawasphased
using Eagle v2.4.1 and then imputed to 1000 Genomes and Topmed
usingMinimac3-ompv2.10 following theMichigan imputation server
protocols. Post-imputation, the resulting separate platform VCF files
were merged with Bcftools 1.9 into a single file per chromosome for
each reference, for SNPs present on all platforms. For the polygenic
scoring and parental re-phasing, the imputed datawere converted to
bestguessdataandwerefilteredtoincludeonlyACGTSNPs,SNPswith
MAF > 0.01, HWE p > 10–5 and a genotype call rate >0.98, and to
excludeSNPswithmorethan2alleles.Allmendelianerrorswereset to
missing. The remaining SNPs represent the transmitted alleles
dataset. 20PCswere calculatedwith SmartpcausingLD-pruned 1000
Genomes–imputed SNPs genotyped on at least one platform, having
MAF > 0.05 and not present in the long-range LD regions. Using the—
tucc option of the Plink 1.07 software pseudo-controls for each
offspringwere created, given thegenotypedata of their parents. This
resulted in the non-transmitted alleles dataset, as these pseudo-
controls correspond to the child’s non-transmitted alleles. To
determine theparental origin of each allele, the transmitted andnon-
transmitted datasets were phased using the duoHMM option of the
ShapeIT software. The phased datasets were then split based on
parental origin, resulting in a paternal and maternal haploid dataset
for the transmittedandnon-transmittedalleles.

Statistical analyses
All statistical tests are two-sided, unlessotherwise stated.

NonCog GWAS-by-subtraction. To generate NonCog summary
statistics, we implemented a GWAS-by-subtraction using Genomic
SEMfollowingDemangeetal.2020usingsummarystatisticsofEAand
cognitive performance obtained in samples independent from our
polygenic score samples.

We ran a GWAS of Educational Attainment and Cognitive
Performance in UK Biobank (polygenic score sample left-out). We
meta-analysed them with the EA GWAS by Lee et al. excluding
23andMe, UK Biobank and NTR cohorts, and with the CP GWAS by
Trampush et al. respectively (EA totalN = 707,112 and CPN = 238,113)
using Metal software release 2011-03-05. More information on these
methods and intermediate GWAS are found in Supplementary Note 2
andSupplementaryData 1.

FollowingDemangeetal.2020,weusedEAandCPmeta-analysed
summary statistics with GenomicSEM to create two independent
latent variables: Cog, representing the genetic variance shared
between EA and CP, and NonCog representing the residual genetic
variance of EA when regressing out CP (Supplementary Fig. 1). These
two latent factors were regressed on each SNP: we obtained
association for 1,071,804 SNPs (HapMap3 SNPs, as recommended
when comparing PGS analyses across cohorts). We calculate the

effective sample size of these GWAS to be 458,211 for NonCog and
223,819 forCog.

Polygenic Score construction in UK Biobank, TEDS and NTR.
Polygenic scores of NonCog and Cog were computed with Plink
software (version 1.9 for NTR, 2 for UKB and TEDS)85,86 based on
weighted betas obtained using the LDpred v1.0.0 software using
infinitesimal prior, a LD pruning window of 250 kb and 1000Gen-
omesphase3CEUpopulationasLDreference.Weightedbetaswere
computed in a shared pipeline. In NTR, scores for non-transmitted
and transmitted genotypes were obtained for fathers andmothers
separately sowe average them toobtain themid-parent score.

Polygenic scoremodelfitting
Each model included cognitive and non-cognitive polygenic scores
simultaneously and controlled for: 10 ancestry principal components
(PCs),sexandage, interactionbetweensexandage,andcohort-specific
platform covariate (NTR: genotyping platform, UKB: array, TEDS:
batch). Agewas estimated by year of birth, age at recruitment or age at
testing depending on the cohorts, see Supplementary Data 2. Correla-
tions between NonCog and Cog PGS, as well as between and within-
familyPGSarereportedSupplementaryData 10.

Outcomes were standardized for each analysis group. Polygenic
scores were standardised as follows prior to analysis. For the non-
transmitted allele design, we summed the parental PGS and then
scaledthenon-transmittedandtransmittedPGSseparately, following
Kong et al26. Note that the variances of the non-transmitted and
transmitted PGSwere not significantly different prior to scaling (Cog
PGS: F = 1.0088, p = 0.71; NonCog PGS: F = 0.9920, p = 0.73). For the
adoption design, we scaled the PGS in adopted and non-adopted
groups separately. There were no significant differences in variances
of adoptedandnon-adoptedPGSprior to scaling (seeSupplementary
Data 11). For the sibling design,we scaled the PGS tohavemean0 SD 1
using the sibling group, and subsequently created the within-
siblingPGS.”

All regressions were linear models with lm() in R rather than
mixed models as in previous analyses27,28 and our pre-registered
methods. See Supplementary Note 1 for the justification based on
simulated data. We obtained bootstrapped standard errors and bias-
corrected confidence intervals (normal approximation) for the
population, indirectanddirecteffects, aswell as theratiosof indirect/
direct and indirect/population effect. We ran ordinary non-
parametric bootstraps using 10,000 replicationswith boot() in R. For
the sibling design, where two independent regressions are used, we
use the same bootstrap samples for both (both regressions were run
within the same boot object). For the adoption design, the boot-
strapped samples are drawn from the adopted and non-adopted
samples separately. Thebootstrap estimateswereused to test for the
difference between the direct and indirect effect in both Cog and
NonCog and thedifference between the ratio indirect/population for
CogandNonCog,usingZ-tests.

Additional analyses (notpre-registered)
Meta-analyses. To estimate the overall indirect and direct effects of
NonCog and Cog polygenic scores, we meta-analysed estimates
across cohorts, designs andphenotypicoutcomes.

To compare results obtained across the three different designs,
we meta-analysed effect sizes obtained from each design across
cohorts, butholding theoutcomeconstant (educational attainment).
The adoption design was only applied to EA in UKB, hence no meta-
analysiswasnecessary.

Meta-analyses were conducted using the command rma.mv()
in the R package metafor. Design was specified as a random
intercept factor, except when results were meta-analysed within-
design.
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Investigationofbiases
Population stratification. Population stratification refers to the
presence of systematic difference in allele frequencies across
subpopulations, arising fromancestry difference due to non-random
mating and genetic drift. This leads to confounding in genetic
association studies. In a PGS analysis, bias due to population
stratification can arise from both the GWAS used to create the scores
and the target sample. We corrected for population stratification in
the target samplebyadjustinganalyses forPCs (althoughthismaynot
remove fine-scale stratification). For the GWAS summary statistics,
the ratio statistics LDSC output is a standard measure of population
stratification87. As a rule of thumb, an LDSC intercept higher than 1
(inflated) indicates presence of population stratification. Because we
corrected the standard errors of the EA GWAS for inflation and
GenomicSEM corrects for inflation as well, the ratio statistics of the
Cog and NonCog GWAS are not a valid indication of population
stratification(ratio < 0followingGCcorrection).Wethereforeusethe
ratio statistics of uncorrected EA and CP GWAS as proxies. Ratio and
LDscore interceptwasassessedwith the ldsc software87.

Assortative mating. Assortative mating refers to the non-random
matechoice,withapreference for spouseswithsimilarphenotypes. If
these preferred phenotypes have a genetic component, assortative
mating leads to an increased genetic correlation between spouses, as
well as between relatives52. Assortative mating can therefore be
inferred from elevated correlations between polygenic scores in
siblings (correlations would be 0.5 without assortative mating) and
between parents (correlations would be 0 without assortative
mating). We estimated sibling intraclass correlations of Cog and
NonCog PGS in UKB, TEDS and NTR, and Pearson’s correlations of
paternal and maternal Cog and NonCog PGS in NTR. Notably, these
observed correlations cannot distinguish assortative mating from
population stratification.

Sibling effects. We performed three additional analyses to
investigate indirect genetic effects of siblings on educational
outcomes.

First, we ran a linear mixed model extending our main non-
transmitted alleles design to include polygenic scores of siblings (Eq.
(4)). To this end,we useddata fromNTRonDZpairs andboth of their
parents. Sample sizes of genotyped ‘quads’with offspringCITOor EA
phenotypeswere657and788, respectively.

EA = α00+βTCog PGS Cogð ÞT
� �

+βTNonCog PGS NonCogð ÞT
� �

+βNTCog PGS Cogð ÞNT
� �

+βNTNonCog PGS NonCogð ÞNT
� �

+βSiblingCog
PGS Cogð ÞSibling

� �
+βSiblingNonCog

PGS NonCogð ÞSibling
� �

+ sex + age + sex*age + 10PCs +genotyping platform

ð4Þ

Second,wecanalsoassessthepresenceofsiblinggeneticeffectsusing
monozygotic and dizygotic twins. Because monozygotic twins have
the samegenotypes, the geneticallymediated environment provided
bythecotwin ismorecorrelatedtothetwingenotype inMZtwinsthan
inDZ twins. The siblinggenetic effect ismore strongly reflected in the
polygenic score prediction of the educational outcome for MZ twins
thanforDZtwins. If thesiblinggeneticeffect isnegative, thepolygenic
scoreeffect (betas)ontheoutcomeinpeoplethathaveanMZtwinwill
be lower than in people that have a DZ twin, it will be higher in those
with anMZtwin then thosewith anDZ twin if the siblinggenetic effect
is positive.We therefore compare Betas fromEq. (2) in a subset ofMZ
twins and in a subset ofDZ twins (one individual per pair) in bothNTR
(NMZ = 818 & NDZ = 865 for CITO and NMZ = 1600 & NDZ = 1369 for EA)
andTEDS (NMZ = 546&NDZ = 2709).

Third, the presence of sibling genetic effects can be assessed
using data on the number of siblings participants have. If an
individual hasmore siblings, we expect their polygenic scores to be

more correlated to sibling effects. As the number of siblings
increases(ifweassumelinear increase)sodoesthedegreetowhicha
PGS captures sibling effects. If the sibling genetic effect is positive,
the effect of the Cog and NonCog PGS on the educational outcome
should increase with the number of siblings. However, family
characteristics and environment might differ across families
depending on the number of children. Therefore, changes in the
effect of the PGS on our outcomewith the number of siblings could
be due to factors other than sibling genetic effects (for example,
there is a known negative genetic association between number of
children and EA88 which could result in confounding). By also
looking at changes in the effect of the Cog and NonCog PGS on the
educational outcome in adopted (unrelated) sibships, we break the
correlation between PGS and any sibling effects. If there is a change
in PGS effect on the educational outcome in adopted children
dependent on the number of (non-biological) siblings, we can
assume this effect to be caused bymechanisms other than a sibling
effect. We finally contrast the change in PGS depending on family
size in biological and adopted siblings to get an idea of the sibling
effectminusanyotherconfoundingeffectsof familysize.Weusethe
total number of reported siblings (full siblings for non-adopted and
adopted siblings for adopted individuals, data-fields: 1873, 1883,
3972&3982).

Reporting summary
Further information on research design is available in the Nature
ResearchReportingSummary linked to this article.

Dataavailability
For the original summary statistics of Cog and NonCog, including
NTR and UKBiobank siblings data, see20. The summary statistics for
Cog and NonCog generated for this study are available at: https://doi.
org/10.34894/MMXYPL. For UK Biobank dataset access, see: https://
www.ukbiobank.ac.uk/using-the-resource/. Netherlands Twin Register
data may be accessed, upon approval of the data access committee,
email: ntr.datamanagement.fgb@vu.nl. Researchers can apply for
access to TEDS data: https://www.teds.ac.uk/researchers/teds-data-
access-policy.

Codeavailability
All scripts used to run the analyses (empirical and simulated) are
available at our GitHub https://github.com/PerlineDemange/
GeneticNurtureNonCog/, which can be cited as Demange P., et al.
Estimating effects of parents’ cognitive and non-cognitive skills on
offspring education using polygenic scores, GitHub, https://doi.org/
10.5281/zenodo.6581326, 2022. All additional software used to
perform the analyses are available online. The pre-registration of the
study is availableonOSF: https://osf.io/mk938/.
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