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1 Introduction

Within the last couple of decades, a duality known as the double copy has generated a good
deal of interest [1]. It was first observed in the 1980s as a relationship between tree-level
scattering amplitudes for open and closed strings [2], known as the KLT relations. In tak-
ing the low energy limit, open and closed strings give rise to (non-abelian) gauge bosons
and gravitons respectively, such that a relationship — the double copy [3, 4] — should hold
between field theory scattering amplitudes. Importantly, the field theory double copy has
been extended to loop level, going beyond its original stringy context, thus providing tanta-
lising glimpses of deep common structures underlying our various theories of fundamental
interactions. Further work has broadened the double copy beyond scattering amplitudes
at fixed order in the coupling constant [5–8], and also to classical solutions. The latter may
be exact [9–33], or perturbative [34–54], where the latter techniques are of high interest
due to potential applications in gravitational wave physics. Non-perturbative aspects of
the double copy have been explored in refs. [53, 55–66]. Recent comprehensive reviews of
the double copy can be found in refs. [1, 67–70].

For classical solutions, two incarnations of the double copy have been particularly well-
studied. The first, the Kerr-Schild double copy of ref. [9] (see also refs. [71–73]) uses the
traditional tensorial formalism of field theory, and states that certain exact pure gravity
solutions in position space can be written as simple products of kinematic information
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entering corresponding gauge theory solutions. This applies to a special class of solutions
which happen to linearise their respective field theories, where a particular gauge is picked
out (corresponding to the use of Kerr-Schild coordinates in gravity). A second exact clas-
sical double copy, relevant for the present paper, is the Weyl double copy of ref. [18]. This
uses the spinorial formalism of field theory, and states that the gauge-independent Weyl
spinor in General Relativity can be written as a certain combination of electromagnetic
spinors, and a scalar field (see refs. [74, 75] for an earlier incarnation of this idea). This
has been shown to work for abitrary vacuum Petrov type D solutions, as well as some
type N solutions relevant for gravitational waves [21]. For solutions of linearised gauge /
gravity theory, refs. [22, 24] found examples of other Petrov type, although argued that a
generalisation of the Weyl double copy is needed for Petrov types I and III. Recently, the
Weyl double copy has also been extended to describe non-vacuum solutions [28, 76].

It is an ongoing question to establish the general scope and validity of Weyl double
copy-like formulae. We may also ask where they come from, and a number of works have
recently shed light on this issue. Firstly, refs. [22, 24] formulated the double copy in twistor
space. Certain “functions” in the latter are mapped to spacetime spinor fields by a formula
known as the Penrose transform, and it was shown that a given product of twistor-space
functions exactly reproduces the Weyl double copy in position space. A conceptual diffi-
culty arises, however, in that the quantities that enter the Penrose transform can be sub-
jected to certain equivalence transformations that leave the spacetime fields invariant. They
are thus, strictly speaking, representatives of cohomology classes rather than functions, and
as such cannot usually be meaningfully multipled together. This is not a problem for de-
riving the Weyl double copy in practice, but it does necessitate a prescription for picking
out “special” representatives in twistor space, such that the correct position-space double
copy is obtained. This was addressed further in refs. [26, 77], both of which gave suitable
prescriptions, albeit with the irksome deficiency that neither choice obviously corresponds
with the original twistor double copy of refs. [22, 24]. Finally, the situation was clarified
recently in ref. [78], using ideas developed in refs. [79–82]. The latter references show that
certain classical gauge / gravity solutions in position space1 can be obtained as on-shell
inverse Fourier transforms of momentum-space three-point amplitudes. Reference [80] then
split such a transform into two stages, where the first maps amplitudes to twistor space,
and the second corresponds to the Penrose transform from twistor to position space. The
first stage turns out to correspond to a Laplace transform of the amplitude in energy,
and this procedure will necessarily pick out a certain cohomology representative in twistor
space. As shown in ref. [78], the representatives obtained for standard three-point ampli-
tudes are precisely those used in the original twistor double copy of refs. [22, 24]. Thus, the
BCJ double copy for 3-point amplitudes, the twistor double copy, and the position-space
Weyl double copy amount to exactly the same thing, where overlap exists. Reference [78]
also showed that the simple product-like form of the double copy in twistor space crucially
relies on key properties of three-point amplitudes. In turn, exact position-space double

1As is made clear in refs. [80, 82] and below, these classical solutions are in (2,2) signature, rather
than the conventional Minkowski spacetime with (1,3) signature. The latter can be obtained via analytic
continuation of the coordinates.
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copies are not expected to be generic. Thus, the twistor methods provide a way both to
systematically derive Weyl double copy formulae, and to ascertain their scope.

An interesting analogue of the Weyl double copy was recently discovered in three
spacetime dimensions. Dubbed the Cotton double copy, it relates classical solutions of
topologically massive gauge and gravity theory, in the appropriate spinorial language [83,
84]. Unlike the 4d Weyl double copy, the Cotton double copy was found to only work
for solutions of Petrov type N. Reference [85] confirmed this by applying similar twistor
methods to the four-dimensional case of ref. [78], but now in a three-dimensional context.
The appropriate twistor space in this case is called minitwistor space, and an appropriate
generalisation of the Penrose transform must be used due to the presence of the topological
mass. By applying similar methods to those developed in refs. [80–82], ref. [85] showed that
this massive Penrose transform indeed arises naturally upon inverse Fourier transforming
three-point amplitudes, entirely independently of its original presentation in the twistor
literature [86]. The success of such methods in again deriving and constraining Weyl
double-copy like formulae suggests that similar methods be used to look for possible Weyl
double copies in cases that have not previously been considered.

With this motivation, we will here consider N = 0 supergravity, also known as NS-NS
gravity. This theory first arose as the effective field theory emerging in the low energy
limit of closed bosonic string theory (see e.g. refs. [87, 88] for textbook treatments). As
such, it is the theory that is formally related to pure Yang-Mills theory by the double copy.
Indeed, previous classical double copy formalisms have had to explain why solutions in pure
gravity are obtained by the double copy, when one naturally expects additional degrees of
freedom in the full N = 0 theory to be turned on [9, 46, 48, 49, 89]. The latter comprise
a scalar — the dilaton — and a two-form field equivalent to a pseudo-scalar known as the
axion in four spacetime dimensions. The situation appears to be that for classical solutions
at linear order, one can choose whether or not one sources the dilaton and / or axion in
the gravity theory. However, for higher-order classical and / or quantum corrections, one
must introduce additional procedures to remove the non-gravitational degrees of freedom,
should they be unwanted. This is indeed the most common situation for gravitational wave
physics, but preserving the full spectrum offers the chance to ask conceptual questions
about the double copy. In particular, exact position-space classical double copies for the
full N = 0 theory are almost completely unexplored.2 Furthermore, given that we now
have techniques for systematically deriving Weyl double copy formulae, it surely makes
sense to apply these to N = 0 supergravity, and then see what happens.

A number of recent studies have provided further inspiration. First, ref. [92] used
similar methods to ref. [82] to write position-space solutions of N = 0 supergravity in
terms of on-shell inverse Fourier transforms of momentum-space scattering amplitudes.
They examined variants of the well-known Kerr and Taub-NUT solutions in pure gravity,
but such that the dilaton and / or axion are also turned on. A direct consequence of this
is that the solutions thus obtained are no longer vacuum solutions in gravity, and thus a

2Very interesting early work in this area set up a Kerr-Schild ansatz in the framework of double field
theory [90, 91], although the solutions considered in this paper are distinct from this formalism.
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greater variety of spinor fields in position space are needed, than in the traditional Weyl
double copy of ref. [18]. The authors converted all spinor fields to the tensorial language,
proving that the Riemann tensor can be written, in general, as a convolution of gauge-
theoretic field strength tensors, and an inverse scalar field. An exact position-space double
copy arises if this convolution is equivalent to a product, and ref. [92] showed explicitly
how this occurs in the tensor language for pure gravity, but also that it is apparently
broken when the dilaton and axion are present. Another source of inspiration is the recent
work of refs. [28, 76], which has sought to extend the Weyl double copy in pure gravity to
encompass non-vacuum solutions. The authors looked at solutions whose source currents /
energy-momentum tensors can be written as a sum of terms which can each be meaningfully
identified across different theories. Then, Weyl-double-copy-like formulae were proposed
for the various spinor fields that enter the spinorial decomposition of the Riemann tensor.
We will be able to compare our formulae in what follows with these conjectures.

The aim of this paper is to apply the twistor methods of refs. [78, 80, 85] to the starting
point of ref. [92]. That is, we will look at the position-space spinor fields generated by the
inverse on-shell Fourier transforms of three-point amplitudes in N = 0 supergravity, and
split the transform into two stages, where the first takes us from momentum to twistor-
space. This additional step will allow us to reveal exact relationships between spinor
fields in position-space that appear to have been overlooked in ref. [92]. For the case of
dilaton-axion solutions with no NUT charge or spin, they indeed take the form of local
products of spinor fields in position space, albeit dressed by additional factors that mean
that they are not of the traditional Weyl-double copy form. Furthermore, whilst one may
write similar formulae for the case of non-vanishing spin / NUT charge, they do not have
a straightforward double copy interpretation, thus providing additional insights into the
results of ref. [92]. We also compare our results with the proposed non-vacuum Weyl
double copy formulae of refs. [28, 76]. For the cases we look at, we do not arrive at the
same results. This is not a problem, given that we are examining a different situation in a
different theory. However, this comparison perhaps suggests that similar methods to those
used in this paper might also prove fruitful in examining the non-vacuum pure-gravity case.

The structure of our paper is as follows. In section 2, we review relevant details of
the spinorial formalism, as well as the arguments of refs. [78, 80, 82, 92] which will be
needed in what follows. In section 3, we apply our twistor methods to the case of a N = 0
supergravity solution with no spin or NUT charge, finding our first spinorial double copy
formula in position space. In section 4, we extend the analysis to include the effects of
non-zero NUT charge and spin. Finally, we discuss our results and conclude in section 5.

2 Review of key ideas

2.1 The spinorial formalism

Throughout this paper, we will use the spinorial formalism of field theory, in which all field
equations can be written in terms of two-component Weyl spinors πA, and conjugate spinors
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ωȦ. Indices may be raised and lowered using the two-dimensional Levi-Civita symbol:

πA = εBAπ
B, πB = −πAεAB, (2.1)

where
εABε

CB = δCA , ε01 = 1, (2.2)

and similarly for the dotted equivalent εȦḂ. Any tensorial quantity may be converted into a
(multi-index) spinor by contracting its spacetime indices3 with the Infeld-van-der-Waerden
symbols

σa
AȦ

= (I, iσy, σz, σx), (2.3)

expressed in terms of the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.4)

We have here matched conventions with refs. [82, 92], which work in (2,2) signature, for
reasons that will be clarified below. As an example, the spinorial translation of a 4-vector is

VAȦ ≡ Va σ
a
AȦ

=
(
V0 + V2 V1 + V3
V3 − V1 V0 − V2

)
. (2.5)

The determinant of this matrix is

|VAȦ| =
(
V 2

0 + V 2
1 − V 2

2 − V 2
3

)
= V 2, (2.6)

which vanishes for null vectors, such that for the latter one may decompose eq. (2.5) into
an outer product of a spinor and conjugate spinor:

VAȦ = πAπ̃Ȧ, V 2 = 0. (2.7)

For later use, we also note the formula

V ·W = 1
2VAȦW

AȦ. (2.8)

The widespread use of the spinorial formalism relies on the fact that it makes certain struc-
tures manifest, that are more difficult to see in the tensorial framework. This simplification
relies on two key properties, both of which ultimately arise from the fact that each spinor
index may assume one of only two values. The first property is that all multi-index spinor
objects can be decomposed into sums of products of symmetric spinors, and Levi-Civita
symbols. Relevant for this paper is the spinorial translation of the field strength tensor Fab
in (linearised) gauge theory:

Fab → FAȦBḂ = φABεȦḂ + φ̃ȦḂεAB, (2.9)
3Throughout, we use lower-case Latin letters, capital Latin letters and Greek letters to correspond to

Lorentz, spinor and twistor indices respectively.
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where φAB and φ̃ȦḂ are symmetric in their indices, and represent the self-dual and anti-
self-dual parts of the field respectively. In N = 0 supergravity, ref. [92] introduced a
generalised Riemann tensor Rabcd for N = 0 supergravity, whose components represent the
combined graviton, dilaton and axion. Its spinorial translation is

RAȦBḂCĊDḊ = XABCD εȦḂ εĊḊ + X̃ȦḂĊḊ εAB εCD (2.10)
+ ΦABĊḊ εȦḂ εCD + Φ̃ȦḂCD εAB εĊḊ , (2.11)

which is directly analogous to the usual spinor decomposition of the Riemann tensor in
General Relativity (see e.g. refs. [93, 94]). For vacuum solutions in pure gravity, the mixed-
index spinors are absent, and the quantity XABCD becomes known as the Weyl spinor,
which we will denote in that context by ΦABCD. As first presented in ref. [18], the Weyl
spinors for certain solutions (those of Petrov type D) can be expressed as a symmetrised
product of gauge theory field strength spinors, divided by a scalar field S(x):

ΦABCD =
Φ(ABΦCD)

S
, Φ̃ȦḂĊḊ =

Φ̃(ȦḂΦ̃ĊḊ)

S̄
, (2.12)

where S̄ is the complex conjugate of S (in Lorentzian signature), and the two Weyl spinors
represent the self-dual and anti-self-dual graviton degrees of freedom respectively. This is
the Weyl double copy, and it is the potential generalisation of these formulae to N = 0
supergravity that we are seeking in this paper.

2.2 Twistors

Twistor theory is a well-established framework combining elements of algebraic geometry,
topology and complex analysis (see e.g. [95–97] for reviews), that has become increasingly
prevalent in contemporary research on scattering amplitudes. One way of introducing
twistors is as solutions of the twistor equation

∇(A
Ȧ

ΩB) = 0, (2.13)

where ∇AȦ is the spinorial translation of the spacetime covariant derivative, and ΩB a
spinor field. The general solution of this equation in Minkowski space is

ΩA = ωA − xAȦπȦ, (2.14)

such that each solution can be characterised by a four-component twistor, containing two
spinors:

Zα =
(
ωA, πȦ

)
. (2.15)

Twistor space T then consists of the set of all such objects, and we may define a map from
twistor space to spacetime by defining the “location” of a twistor in Minkowksi space to
be the locus of points such that the spinor field ΩA vanishes. This implies the incidence
relation

ωA = xAȦπȦ, (2.16)
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which is invariant under simultaneous rescalings of both sides:

ωA → λωA, πȦ → λπȦ, λ ∈ C. (2.17)

Consequently, twistors obeying the incidence relation constitute points in projective twistor
space PT. The map between spacetime and twistor space is non-local: it may be shown that
a point xAȦ in spacetime maps to a Riemann sphere X in PT. One way to appreciate this
is to note that eq. (2.16) implies that, upon knowing xAȦ, a twistor is entirely fixed by the
single 2-spinor πȦ. Given that the latter is only defined projectively, we may parametrise
all possible twistors satisfying the incidence relation for a given spacetime point using the
two independent parametrisations

πȦ = (1, ξ), or πȦ = (η, 1), ξ, η ∈ C. (2.18)

The parameters ξ and η then indeed correspond to two conventional coordinate patches
for a Riemann sphere, defined via stereographic projection from the north or south pole to
a complex plane through the equator. On the overlap, one identifies ξ ∼ η−1.

A key result of twistor theory known as the Penrose transform states that solutions of
the linearised vacuum field equations for a spinor field of spin n can be obtained via the
contour integral

Φ̃Ȧ1Ȧ2...Ȧ2n
(x) = 1

2πi

∮
Γ
πĖdπ

Ė πȦ1
πȦ2

. . . πȦ2n
ρx[f(Zα)], (2.19)

where f(Zα) is a holomorphic function of twistor variables, ρx denotes restriction to the
Riemann sphere X corresponding to the spacetime point xa, and the contour Γ on X is
such that it separates any poles of the function f(Zα). For this integral to make sense as
being in projective twistor space, the function f(Zα) must scale as

f(λZα) = λ−2n−2f(Zα). (2.20)

Furthermore, the quantities f(Zα) entering the Penrose transform are not, strictly speak-
ing, functions. One is free to redefine them according to the equivalence transformations:

f(Zα)→ f(Zα) + fN (α) + fS(Zα), (2.21)

where fN (Zα) (fS(Zα)) has poles only in the northern (southern) hemisphere of the Rie-
mann sphere X. Such contributions will vanish when performing the Penrose transform,
due to having poles on only one side of the contour Γ. This infinite freedom to redefine
f(Zα) is stated more formally by referring to this quantity as a representative of a coho-
mology class [98], such that different representatives of the same cohomology class lead to
the same spacetime field.

Note that the Penrose transform of eq. (2.19) gives only the anti-self-dual part of the
field. One may obtain the self-dual part, given by an undotted spinor field, in different
ways. One way is to consider the complex conjugate of the twistor equation of eq. (2.13)

∇(Ȧ
A ΛḂ) = 0, (2.22)
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for which the general solution is:

ΛȦ = µȦ − xAȦλA. (2.23)

We may then combine the spinors appearing here to form a dual twistor

Wα =
(
λA, µ

Ȧ
)
, (2.24)

satisfying the incidence relation
µȦ = xAȦλA. (2.25)

An inner product exists between (dual) twistors:

ZαWα = ωAλA + µȦπȦ. (2.26)

Furthermore, the analogue of the Penrose transform of eq. (2.19) in dual twistor space is

Φ̃A1A2...A2n(x) = 1
2πi

∮
Γ
λEdλ

E λA1λA2 . . . λA2nρx[f(Wα)], (2.27)

where again Γ is a contour on the Riemann sphere X in projective dual twistor space
corresponding to the spacetime point xa. To the uninitiated, the above concepts will
be highly abstract, and we refer such a reader to detailed reviews for more details [95–
97]. The relevance for the present study is that we will see the above Penrose transforms
emerging naturally upon obtaining classical solutions in position space from momentum-
space scattering amplitudes.

2.3 Spinor fields from amplitudes

Reference [81] introduced a systematic method for obtaining classical solutions from scatter-
ing amplitudes, which has become known as the KMOC formalism. This was subsequently
used in refs. [82, 92] to construct linearised solutions in pure gravity and N = 0 supergrav-
ity. More specifically, the specific spinor fields entering eq. (2.11) can be obtained from
on-shell inverse Fourier transforms of three-point amplitudes in (2,2) signature, where the
reason for the latter is so that the relevant amplitudes are non-vanishing once all kinematic
constraints are satisfied. Thus obtained, the fields can be analytically continued to conven-
tional Lonrentzian (or indeed any other) signature. Let us define three-point amplitudes
for a massive source particle emitting gravitons of a given helicity (h±), dilaton (φ) or axion
(B) radiation, with amplitudesMX , X ∈ {h, φ,B}. Following ref. [92], we may define an
alternative basis {Mη1η2} of amplitudes, where ηi ∈ {+1,−1}, and such that the physical
amplitudes are given by

Mh± =M±±; (2.28)

Mφ = 1
2
(
M+− +M−+

)
;

MB = 1
2
(
M+− −M−+

)
. (2.29)
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The motivation for this definition is the double copy for scattering amplitudes, which
states that given degrees of freedom in N = 0 supergravity can be obtained as certain
combinations of polarisation states from two separate gauge theories. In its simplest form,
this holds for plane wave states, where it is known that the polarisation tensors for gravitons
of given helicity can be obtained as outer products of photon polarisation vectors:

ε±ab = ε±a ε
±
b . (2.30)

Likewise, the two independent combinations

1
2
(
ε+a ε

−
b ± ε

−
a ε

+
b

)
(2.31)

turn out to describe the dilaton and axion respectively. The non-trivial statement of the
double copy is that this product structure survives even when interactions are included, so
that multi-point amplitudes involving gravitons, axions and dilatons can be obtained by
combining gauge theory amplitudes in appropriate combinations. For three-point ampli-
tudes involving radiation of a single (h±, φ,B) state this is very simple, and corresponds
precisely to eq. (2.29), where the amplitudesMη1η2 are given by simple products of gauge
theory three-point amplitudes with the appropriate helicity. Motivated by this, ref. [92]
proposes a slightly more general relationship

MηLηR = − κ

4Q2 cηLηR A
(L)
ηL
A(R)
ηR

, (2.32)

where κ =
√

32πGN is the gravitational coupling constant in terms of the Newton constant
GN , and Q the electromagnetic coupling of the source particle in the gauge theory. We also
adopt the notation of ref. [92], such that the two gauge theories that are double-copied to
make the gravity theory are referred to as the “left” (L) and “right” (R) theories. The ad-
ditional constants {cηLηR} allow different normalisations for different helicity combinations,
where the traditional BCJ double copy has these all equal to one.

Using the so-called KMOC formalism of ref. [81], ref. [92] showed that the classically
observed values for the spinor fields appearing in eq. (2.11) at linearised level — derived as
expectation values of quantum field operators — are given in terms of the above amplitudes
via

XABCD = −κ
2c++
2Q2 Re i

∫
dΦ(k)δ̂(2p · k)A(L)

+ A
(R)
+ |k〉A|k〉B|k〉C |k〉D e−ik·x , (2.33)

X̃ȦḂĊḊ = −κ
2c−−
2Q2 Re i

∫
dΦ(k)δ̂(2p · k)A(L)

− A
(R)
− [k|Ȧ[k|Ḃ[k|Ċ [k|Ḋ e

−ik·x , (2.34)

ΦABĊḊ = +κ2c+−
2Q2 Re i

∫
dΦ(k)δ̂(2p · k)A(L)

+ A
(R)
− |k〉A|k〉B[k|Ċ [k|Ḋ e

−ik·x , (2.35)

Φ̃ȦḂCD = +κ2c−+
2Q2 Re i

∫
dΦ(k)δ̂(2p · k)A(L)

− A
(R)
+ [k|Ȧ[k|Ḃ|k〉C |k〉D e

−ik·x . (2.36)

Here we have introduced the Lorentz-invariant phase space measure

dΦ(k) = d4k

(2π)4 δ̂(k
2)Θ(k0), (2.37)
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the normalised delta function

δ̂(x) = 2πδ(x), (2.38)

and the conventional bra-ket notation whereby the spinorial translation of the null radiation
momentum ka is written as

kAȦ = |k〉A[k|Ȧ. (2.39)

In words, eqs. (2.33)–(2.36) constitute the fact that classical spinor fields in N = 0 super-
gravity at linearised level can be expressed in terms of on-shell inverse Fourier transforms of
three-point amplitudes, where the latter are obtained by double-copying gauge theory am-
plitudes according to eq. (2.32). Reference [92] used these formulae as a starting point for
examining whether or not one may formulate exact position-space double copies for partic-
ular solutions, after converting all spinor fields into the tensorial language. We will consider
the same family of solutions here, namely those constructed from gauge theory amplitudes

A(L,R)
η = −2Q(p · εη)eη(θL,R+ik·aL,R), (2.40)

for some vectors {aR,L} and constant parameters θL,R. Here

pa = Mua (2.41)

is the 4-momentum of the source, with mass M and 4-velocity ua. We have also introduced
polarisation vectors for the photon in each theory, explicit realisations of which are given
by (see e.g. ref. [82])

εa− = (εa+)∗ = −〈k|σ
a|l]√

2[kl]
, (2.42)

where |l]Ȧ is an arbitrary null reference spinor, corresponding to a gauge choice. The phys-
ical interpretation of the amplitudes in eq. (2.40) has been explored in detail in ref. [99].
Without the exponential factor (i.e. for aa = θ = 0 in a given gauge theory), the amplitude
describes photon emission from a spinless particle with electric charge, and thus gives rise
to the Coulomb solution. The double copy of this in pure gravity is the Schwarzschild
solution [9], and in N = 0 supergravity leads to the JNW solution [100], in which a static,
spherically-symmetric black hole is dressed by a non-zero dilaton profile. Upon turning on
the vector aa in gauge theory or pure gravity, a spin is generated for the source particle, such
that aa can be identified with its Pauli-Lubanski spin pseudo-vector. In pure gravity the
resulting field is that of the Kerr solution [101], and its gauge theory single copy is known
as
√

Kerr. The exponential factor appearing in eqs. (2.40) then constitutes the Newman-
Janis shift, a complex transformation that transforms the Schwarzschild into the Kerr black
hole [102]. The additional constant factor in the exponent transforms to a different solution
in pure gravity, namely the NUT solution of refs. [103, 104]. This is a generalisation of the
Schwarzschild black hole that has a non-vanishing rotational character to the gravitational
field at asymptotic infinity. Its single copy is a dyon, where the NUT charge in the gravity
theory maps to the magnetic monopole charge in the gauge theory [10]. In N = 0 super-
gravity, double-copying the amplitudes of eq. (2.40) will thus lead to generalisations of the
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JNW black hole, in which both spin and NUT charge are present. This in turn entails the
possibility that the axion may turn on in addition to the dilaton, as discussed in ref. [92].

In the remainder of this paper, we will adopt the starting point of eqs. (2.33)–(2.36)
as in ref. [92], but take a different approach in looking for position-space double copies.
That is, we will stick with the spinorial language, and also use the twistor methods of
refs. [78, 80, 85], that have recently proved successful in deriving Weyl-double copy formulae
in pure gravity. As a warm-up, we consider the simplest solution — corresponding to
double-copying the Coulomb charge — in the following section.

3 A spinorial double copy for the JNW solution

3.1 From momentum to twistor space

In refs. [78, 85] (motivated by ref. [80]), the inverse Fourier transform appearing in
eqs. (2.33)–(2.36) is split into two stages, such that one considers an intermediate twistor
space between momentum and position space. This in turn provides additional insights
allowing one to systematically derive position-space double copy formulae, and to ascer-
tain when they apply. To illustrate this idea, let us focus on the gauge theory analogue
of eqs. (2.33)–(2.36), namely the fact that the field strength spinors corresponding to the
amplitudes of eq. (2.40) are given by

〈ΦAB〉 = Re
√

2
M

∫
dΦ(k)δ̂(u · k)A+ |k〉A|k〉B e−ik·x , (3.1)

〈Φ̃ȦḂ〉 = Re
√

2
M

∫
dΦ(k)δ̂(u · k)A− [kȦ| [kḂ| e

−ik·x . (3.2)

In order to carry out the phase-space integral, one may make the change of variables

kAȦ = ωλAλ̃Ȧ + ξqAȦ, (3.3)

where qAȦ is the spinorial translation of an arbitrary constant null 4-vector, and the spinors
λA and λ̃Ȧ are defined only up to an overall scaling, which may be absorbed into ω. The
various bra-ket symbols above are then given in these new variables by

|k〉A = ω1/2λA, 〈k|A = ω1/2λA, [k|Ȧ = ω1/2λ̃Ȧ, |k]Ȧ = ω1/2λ̃Ȧ. (3.4)

If we choose to parametrise the spinors via

λA = (1, z), λ̃Ȧ = (1, z̃), z, z̃ ∈ C, (3.5)

then the change of variables is from the four components of ka to the set (ω, ξ, z, z̃). After
evaluating the Jacobian, one finds

dΦ(k) = dzdz̃dωdξδ(ξ)ω
4(2π)3 , (3.6)

such that the field strength spinor with dotted indices becomes

Φ̃ȦḂ = 2
√

2
4M(2π)2 Re

∫
dzdz̃dωdξ δ(ξ)δ(u · k)ω2Θ(ω)A− λ̃Ȧλ̃Ḃe

−ik·x. (3.7)
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The ξ integral can be carried out immediately, and simply sets ξ = 0. This corresponds
to the fact that ξ in eq. (3.3) parametrises how far ka is from being null, and thus on-
shell. However, eq. (3.1) manifestly contains an on-shell Fourier transform, and thus the
vanishing of ξ enforces this on-shell condition. To go further in carrying out the integral,
let us substitute the explicit form of the Coulomb amplitude, namely that obtained from
eq. (2.40) by setting θ = aa = 0. From eq. (2.42) we find

A− = 2MQ√
2
uAȦλ

AlȦ

λ̃Ḃl
Ḃ

, (3.8)

such that eq. (3.7) becomes

Φ̃ȦḂ = Q

(2π)2 Re
∫
dzdz̃dωδ

(
uAȦλ

Aλ̃Ȧ
)
ωΘ(ω)λ̃Ȧλ̃Ḃe

− iω
2 λAλ̃Ȧx

AȦ

×
uAȦλ

AlȦ

λ̃Ḃl
Ḃ

. (3.9)

The remaining delta function sets
λA ∝ uAȦλ̃

Ȧ (3.10)

which, as emphasised in ref. [78], can be turned into an equality by reparametrising

λA =
( 1√

z
,
√
z

)
, λ̃Ȧ =

( 1√
−z̃

,−
√
−z̃
)
. (3.11)

One may then use the delta function to eliminate the z integral, yielding

Φ̃ȦḂ = Q

(2π)2 Re
∫
dz̃ λ̃Ȧλ̃ḂM(λ̃Ȧ), (3.12)

where

M(λ̃Ȧ) =
∫
dω ωΘ(ω)e− iω

2 uA
ḂxAȦλ̃Ȧλ̃Ḃ

= − 4
[uAḂxAȦλ̃Ȧλ̃Ḃ]2

. (3.13)

At this stage, we may reparametrise back to the original definition of z̃. From eq. (3.5), it
then follows that

dz̃ = λ̃Ėdλ
Ė (3.14)

is the projective measure on the Riemann sphere parametrised (in a particular coordi-
nate patch) by z̃. Next, we may note that M(λ̃Ȧ) depends on λ̃Ȧ through the specific
combinations λ̃Ȧ and

ωA = xAȦλ̃Ȧ,

where we can recognise the incidence relation of eq. (2.16). Thus, the quantity

Zα = (λ̃Ȧ, ω
A) (3.15)
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is a bona fide point in projective twistor space PT! We may also then write the functional
dependence in eq. (3.13) as M(λ̃Ȧ) ≡ ρx[M(Zα)], such that eq. (3.12) becomes

Φ̃ȦḂ = − Q

(2π)2 Re
∮
λ̃Ėdλ̃

Ė λ̃Ȧλ̃Ḃ ρx[M(Zα)]. (3.16)

It is now straightforward to recognise the Penrose transform of eq. (2.19). Furthermore,
the function of eq. (3.13) is homogeneous of degree −4 under rescalings of Zα (and thus
λ̃Ȧ), in agreement with eq. (2.20).

Let us summarise what has happened. We started by expressing spacetime (spinor)
fields as inverse on-shell Fourier transforms of momentum-space scattering amplitudes.
Next, we transformed to spinor variables, and found out that carrying out “half” of the
Fourier transform takes our amplitude into twistor space. Indeed, eq. (3.13) is a variant of
the so-called half Fourier transform used in the seminal work of ref. [105], which originated
the modern use of twistor methods in scattering amplitude research. Here it takes the form
of a Laplace transform in ω, which from eq. (3.3) can be interpreted as the energy of the
radiation. Note that, in defining a precise form for M(Zα), the half transform defines a
particular cohomology representative in twistor space for a given classical spacetime field
i.e. one that is “picked out” by the amplitude. Reference [78] used this observation to
resolve cohomological ambiguities in the twistor double copy of refs. [22, 24].

3.2 Consistency relation between (anti-)self dual field strength spinors

In eq. (3.16), we have shown that the anti-self-dual field strength spinor can be obtained as
an explicit Penrose transform of a cohomology representative derived from a momentum-
space scattering amplitude. One may also perform a similar exercise for the self-dual spinor,
starting from eq. (3.1), and such that the analogue of eq. (3.9) is found to be

ΦAB = Q

(2π)2 Re
∫
dzdz̃dωδ

(
uAȦλ

Aλ̃Ȧ
)
ωΘ(ω)λAλBe− iω

2 λAλ̃Ȧx
AȦ

×
uAȦl

Aλ̃Ȧ

lAλA
. (3.17)

In this case, we can use the delta function to set

λ̃Ȧ = uAȦλ
A, (3.18)

namely the inverse relation of eq. (3.10). This eliminates the z̃ integral in eq. (3.17), such
that one gets

ΦAB = Q

(2π)2 Re
∫
dzλAλBN(λA), (3.19)

where

N(λA) =
∫
dωωΘ(ω)e

iω
2 u

B
Ȧx

AȦλAλB

= −4
[uBȦxAȦλAλB]2

. (3.20)
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Recognising that this depends only on λA and

µȦ = xAȦλA,

we see that N(λA) ≡ ρx[N(Wα)] is defined on dual twistor space, where Wα is given as in
eq. (2.24). Equation (3.19) then becomes

ΦAB = Q

(2π)2 Re
∮
λEdλ

E λAλBρx[N(Wα)], (3.21)

and we recover the well-known result that anti-self-dual (self-dual) solutions are associated
with Penrose transforms from twistor space (dual twistor space) respectively. However,
a fact that was overlooked in the recent ref. [78] is that it is also possible to derive a
consistency relation between the (anti-)self-dual spinor fields, for this particular solution.
Returning to eq. (3.9), we may choose to eliminate λ̃Ȧ using the delta function, rather than
λA i.e. by using eq. (3.18) rather than eq. (3.10). We then find

Φ̃ȦḂ = uAȦu
B
Ḃ

[
Q

(2π)2 Re
∫
dz λAλBρx[N(λA)]

]
, (3.22)

where N(λA) is defined as in eq. (3.20). In other words, we have obtained the relationship

Φ̃ȦḂ(x) = uAȦu
B
ḂΦAB(x), (3.23)

whose inverse — as may be derived by using eq. (3.10) in eq. (3.17) — is

ΦAB = uA
ȦuB

ḂΦ̃ȦḂ. (3.24)

It is instructive to see how this relation actually works in practice, by finding the explicit
forms of the spinor fields implied by the Penrose transforms of eqs. (3.16), (3.21). Let us first
note that we may write the combination appearing in eq. (3.13), using the parametrisation
of eq. (3.5), as

uA
ḂxAȦλ̃Ȧλ̃Ḃ = Ñ−1(x)(z̃ − z̃1)(z̃ − z̃2), (3.25)

where an explicit calculation yields

Ñ−1(x) = x01̇, z̃1,2 =

(
x11̇ − x00̇

)
±
√

(x00̇)2 + (x11̇)2 − 2x00̇x11̇ + 4x01̇x10̇

2x01̇
. (3.26)

From eqs. (3.12), (3.13), we then have

Φ̃ȦḂ = 4Q
4π2 Ñ

2(x) Re
∮
dz̃

(1, z̃)Ȧ(1, z̃)Ḃ
(z̃ − z̃1)2(z̃ − z̃2)2 , (3.27)

and we may carry out the z̃ integral by enclosing the pole at z̃ = z̃1 (see e.g. ref. [24] for a
similar calculation). The result is

Φ̃ȦḂ = −4Q
2π

1
[x01̇]2

Re i
[
α̃(Ȧβ̃Ḃ)

(z̃1 − z̃2)3

]
, (3.28)
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where the principal spinors are given by

α̃Ȧ = (1, z̃1), β̃Ḃ = (1, z̃2). (3.29)

Substituting the result of eq. (3.26) and simplifying, one finds

Φ̃ȦḂ = 4Q
2π Re i

[
1

Λ3/2(x)

(
x01̇ x11̇ − x00̇

x11̇ − x00̇ −x10̇

)]
, (3.30)

where
Λ = (x00̇)2 + (x11̇)2 − 2x00̇x11̇ + 4x01̇x10̇. (3.31)

Likewise, one may carry out the Penrose transform in eq. (3.21), and the result is

ΦAB = −4Q
2π Re i

[
1

Λ3/2(x)

(
x10̇ x11̇ − x00̇

x11̇ − x00̇ −x01̇

)]
. (3.32)

To confirm the relation of eq. (3.23), we may note that the static 4-velocity ua = (1,0)
implies

uAȦ = εBAuAȦ =
(

0 1
−1 0

)
. (3.33)

Then we have

uAȦu
B
ḂΦAB = −4Q

2π Re i
[

1
Λ3/2(x)

(
0 −1
1 0

)(
x10̇ x11̇ − x00̇

x11̇ − x00̇ −x01̇

)(
0 1
−1 0

)]
,

which indeed agrees with eq. (3.30). Note that we have here chosen to express the field-
strength spinor in terms of the components xAȦ, rather than substitute explicit spacetime
coordinates. It is then straightforward to evaluate these formula in either (2,2) or (1,3)
signature.

3.3 A double copy formula for the JNW solution

We now have all the ingredients we need to ascertain the existence — or otherwise — of a
double copy formula for the JNW solution. Let us start with the spinor X̃ȦḂĊḊ, given in
terms of an amplitude by eq. (2.33). Carrying out similar steps to that leading to eq. (3.16),
we find

X̃ȦḂĊḊ = κ2c−−M

(2π)2 Re
∮
λ̃Ėdλ̃

Ė λ̃Ȧλ̃Ḃλ̃Ċ λ̃Ḋ ρx

[
4

(λ̃ȦU Ḃ
A λ̃Ḃx

AȦ)3

]
, (3.34)

where we have substituted the explicit form of the amplitudes of eq. (2.40), and again used
the delta function δ(u · k) to impose the condition of eq. (3.10). Carrying out the Penrose
transform using the parametrisation of eq. (3.5) (see e.g. ref. [24] for a similar calculation),
one finds

X̃ȦḂĊḊ = κ2c−−iM

2π Re
[

Ñ3(x)
(z̃1 − z̃2)5 α̃(Ȧβ̃Ḃα̃Ċ β̃Ḋ)

]
, (3.35)
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where Ñ(x), z̃1,2 and the principal spinors α̃Ȧ and β̃Ȧ have been defined in
eqs. (3.26), (3.29). One may also define a scalar field

S̃ ∝ N(x)
z̃1 − z̃2

, (3.36)

which can be found to satisfy the massless Klein-Gordon equation. Then comparison of
eq. (3.35) with eqs. (3.28), (3.36) implies the relationship

X̃ȦḂĊḊ =
Φ̃(ȦḂΦ̃ĊḊ)

S̃
, (3.37)

where all constant factors have been absorbed into the scalar function S̃(x). This is a
precise analogue of the Weyl double copy formula of eq. (2.12), and indeed its derivation
using twistor methods is exactly the same as in ref. [78]. Similar arguments may be used
to verify the corresponding relationship

XABCD =
Φ(ABΦCD)

S
, (3.38)

where the scalar field S is defined by

S(x) ∝ N(x)
z1 − z2

, N−1(x) = x10̇. (3.39)

Given the close analogues of these formulae with their pure gravity counterparts, it is
perhaps not surprising that they occur. A more interesting question is whether or not a
double copy formula emerges for the mixed-index spinors appearing in eq. (2.11), which
have no counterpart for vacuum solutions in pure gravity. Let us first consider

〈ΦABĊḊ〉 = κ2c+−M
2

4(2π)2 Re i
∫
dzdz̃dωω3Θ(ω)δ(2p · k)λAλBλ̃Ċ λ̃Ḋ e

− iω
2 λAλ̃Ȧx

AȦ

×
(
uAȦλ

AlȦ

λ̃Ḃl
Ḃ

)(
uDḊl

Dλ̃Ḋ

lCλC

)
, (3.40)

where we have substituted the amplitudes of eq. (2.40) into eq. (2.35). We may then use the
delta function to implement either of the conditions of eq. (3.10) or eq. (3.18). Choosing
the former, we get

〈ΦABĊḊ〉 = κ2c+−M

4(2π)2 uCĊu
D
Ḋ Re i

∫
dzdωω2Θ(ω)λAλBλCλD e

iω
2 λAu

B
ȦλBx

AȦ
, (3.41)

where the integral appearing here is precisely that which generates XABCD. Using eq. (3.38)
we then immediately find

ΦABĊḊ = uCĊu
D
Ḋ

(Φ(ABΦCD)
S

)
. (3.42)

This is indeed a double copy formula for the mixed-index Riemann spinor. However, its
form is different to formulae such as eq. (2.12) that have previously arisen in the Weyl
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double copy for vacuum pure gravity solutions. In particular, the numerator does not
simply contain a product of electromagnetic field strength tensors, but instead involves an
additional projector, that depends on the 4-velocity of the static source. Elucidating this
structure crucially depended on transforming the momentum-space amplitude for the JNW
solution to an intermediate twistor space, as it is this that allows us to ascertain the relation
eq. (3.10), that is ultimately responsible for the additional prefactors in eq. (3.42). Indeed,
eq. (3.42) bears a resemblance to the consistency relation obtained for the Coulomb solution
in eq. (3.23), and this begs the question of whether eq. (3.42) is fully general, or whether
such a form is highly specialised to the particular JNW solution we are considering here. We
will address this point more fully in the following section, but first note that it is interesting
to compare our results with the recent refs. [28, 76], which looked at generalising the Weyl
double copy in pure gravity to non-vacuum solutions. Various formulae were proposed for
the Riemann spinor, for different types of solution. They included combinations such as

ΦABĊḊ ∝ ΦABΦ̃ĊḊ (3.43)

i.e. involving products of the two distinct gauge theory field strength spinors. Interestingly,
the formula of eq. (3.42) does not have this form. To see this, note that the symmetrised
brackets can be expanded to give

ΦABĊḊ = uCĊu
D
Ḋ

1
S

(ΦABΦCD + ΦACΦBD + ΦADΦBC) . (3.44)

In the first term, the consistency relation of eq. (3.23) may be used to express the mixed-
index Riemann spinor in terms of a product of gauge theory field-strengths. However, this
is not true for the second and third terms, which will be non-zero in general. To see this,
one may set

ΦAB ∝ α(AβB), IABCD = uCĊu
D
Ḋ

[
ΦACΦBD + ΦADΦBC

]
,

and perform an explicit calculation to obtain

I0011 ∝ α2
0β

2
0 . (3.45)

If IABCD is to vanish, then we must have α0 = 0 or β0 = 0, where we may choose the
former without loss of generality. We then find

I0000 ∝ α2
1β

2
0 . (3.46)

We cannot now choose α1 = 0 without the entire spinor field ΦABĊḊ vanishing. Thus, we
must choose β0 = 0, which further implies

I1111 = α2
2β

2
2 . (3.47)

We are now forced to choose either α2 = 0 or β2 = 0, such that the only way that IABCD
can vanish is if ΦABĊḊ=0. Thus, the second and third terms in eq. (3.44) are indeed non-
zero in general. As a consequence, the double copy formula that the twistor methods arrive
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at is distinctly different to other double-copy ansätze appearing in the literature. This is
in itself not surprising, given the findings of ref. [92], namely that a pure double copy of
gauge theory field strengths in position space was not possible for the JNW solution in the
tensorial language.

Finally, we note that the counterpart of eq. (3.42) for the other mixed-index Riemann
spinor is derived to be

Φ̃ȦḂCD = uC
ĊuD

Ḋ

(
Φ̃(ȦḂΦ̃ĊḊ)

S̃

)
, (3.48)

which is simply related to eq. (3.42), such that similar observations to the above apply.
In this section, we have examined the JNW solution in N = 0 supergravity, finding that

it is indeed possible to construct spinorial double copy formulae for all spinors entering the
decomposition of eq. (2.11). Whilst two of these formulae are straightforward counterparts
of the Weyl double copy for vacuum solutions in pure gravity, the mixed-index double
copy formulae are different to anything encountered before. In order to probe how general
such formulae are, we must move away from the spinless and magnetic-chargeless case of
eq. (2.40). This is the subject of the following section.

4 The case of non-zero spin and NUT charge

We can generalise the Coulomb solution to include a non-zero magnetic monopole charge
and spin by using the full amplitudes of eq. (2.40), in which the parameters α ≡ (a, θ) are
turned on in each theory. In order to examine the implications of this for generalising the
spinorial double copy, it is instructive to first review the results of ref. [78], in pure gravity.

4.1 The Kerr-Taub-NUT solution in pure gravity

In section 3, we have expressed gravity amplitudes leading to the JNW solution in terms of
gauge theory amplitudes according to eq. (2.32). However, for amplitudes in pure gravity
corresponding to non-zero spin and / or NUT charge, it is conventional to write these in
the form (see e.g. refs. [78, 92])

M± ∼
A±A±

Ascal.
±

. (4.1)

Here Ascal.
± is a three-point amplitude for emission of a massless scalar from a spinning and /

or “magnetically” charged particle. The classical solution corresponding to this amplitude
is the so-called zeroth copy of the

√
Kerr or Taub-NUT solution, that comprises a solution

of linearised biadjoint scalar field theory. The zeroth copy field is indeed different for the
(anti-)self-dual cases, hence the ± label on the scalar amplitude. To understand further the
reason why the scalar amplitude is needed in eq. (4.1), it is sufficient to consider the Kerr so-
lution with spin aa, for which the relevant 3-point amplitude for the anti-self-part is given by

M+ = eik·aM(0)
+ , (4.2)

where M(0) denotes the spinless (Schwarzschild) amplitude. The photon amplitude for
the corresponding

√
Kerr solution is

A+ = eik·aA(0)
+ , (4.3)

– 18 –



J
H
E
P
0
5
(
2
0
2
3
)
0
4
7

where A(0)
+ denotes the Coulomb amplitude. Thus, if we were simply to square eq. (4.3)

according to eq. (2.32), we would instead generate the gravitational amplitude

e2ikaM(0)
+ ,

which has twice the spin of the usual Kerr solution. In order to formulate the double copy
between the conventional

√
Kerr and Kerr solutions, one must then introduce the scalar

amplitude
Ascal.

+ = eik·aA(0),scal., (4.4)

where Ascal. is the amplitude for emission of a scalar from a spinless particle (and indeed
is just a constant). The combination of eq. (4.1) then performs the relevant double copy.
Reference [92] has argued that this leads to an ambiguity in the double copy, namely that
one may choose different scalar functions, such that the spin of the Kerr solution is appor-
tioned in different ways in the two gauge theory amplitudes. It remains, true, however, that
only one such choice matches the original Kerr-Schild and Weyl double copies for the Kerr
solution [9, 18]. Indeed, the requirement of having a local double copy in position space
itself fixes the relevant scalar amplitude, as follows from the arguments of ref. [78]. There,
it was observed that eqs. (2.34), (3.2), and their counterpart for a massless scalar field:

φ = Re i
∫
dΦ(k)δ̂(2p · k)Ascal.

+ e−ik·x, (4.5)

generate cohomology representatives in twistor space for each theory that are related in
certain circumstances by the simple product-like relationship

Mgrav. = MEMMEM
Mscal.

. (4.6)

This is precisely the twistor double copy of refs. [22, 24], which it was shown leads
to the position-space Weyl double copy of ref. [18] as a consequence of the Penrose
transform. Furthermore, the fact that each twistor quantity M arises from a precise
integral transform of a scattering amplitude provides a rule for picking out a particular
cohomology representative, thus resolving the puzzle for how one is allowed to “multiply”
together functions in twistor space.

As ref. [78] makes clear, the fact that the double copy has a local product structure
in twistor space is not generic, but relies on the special properties of certain three-point
scattering amplitudes. We see, for example, in eq. (3.13) that the integral that takes one
from momentum space to twistor space is a Laplace transform in the energy ω. Given that
the double copy of three-point amplitudes is indeed a product in momentum-space, it can
only be true that a local product is obtained in twistor space provided the integrands of
the ω integral for each amplitude consist of functions whose convolution is equivalent to a
product of similar functions. This is true for pure power-like functions of ω, which indeed
correspond to the three-point amplitudes for spinless particles (i.e. those leading to the
Coulomb and Schwarzschild solutions). This is not the only possibility: one is also free to
shift the conjugate variable in the Laplace transform:

eωU → eω(U+V ), (4.7)
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given that this operation commutes with the convolution. This is in fact what
eqs. (4.2), (4.3), (4.4) do, as the 4-momentum ka is linear in ω. Thus, the Newman-
Janis shift acting on a 3-point amplitude is such that it preserves the local double copy in
twistor space. Crucially, however, this will only work if the shifts acting on the gravity,
gauge and scalar amplitudes are the same, and the physics of this is that the corresponding
spacetime fields must be related by the conventional single and zeroth copies. Once a local
product in twistor space is obtained, a local spacetime spinorial double copy will emerge
automatically from the Penrose transform, as shown in ref. [78].

4.2 Generalisation to N = 0 supergravity

Returning to the full spectrum of N = 0 supergravity, we now wish to see whether the
double copy formulas of eqs. (3.37), (3.38), (3.42), (3.48) generalise to the presence of non-
zero spin and / or NUT charge. Given that the arguments are similar in both cases, we
will here restrict ourselves to a non-zero spin vector aa for each source particle. Then the
KMOC formulae of eqs. (2.33)–(2.36) become

XABCD=−κ
2c++
2Q2 Re i

∫
dΦ(k)δ̂(2p·k)e−ik·(aL+aR)A(0)

+ A
(0)
+ |k〉A|k〉B|k〉C |k〉De−ik·x , (4.8)

X̃ȦḂĊḊ=−κ
2c−−
2Q2 Re i

∫
dΦ(k)δ̂(2p·k)eik·(aL+aR)A(0)

− A
(0)
− [k|Ȧ[k|Ḃ[k|Ċ [k|Ḋe

−ik·x , (4.9)

ΦABĊḊ=+κ2c+−
2Q2 Rei

∫
dΦ(k)δ̂(2p·k)e−ik·(aL−aR)A(0)

+ A
(0)
− |k〉A|k〉B[k|Ċ [k|Ḋe

−ik·x , (4.10)

Φ̃ȦḂCD=+κ2c−+
2Q2 Rei

∫
dΦ(k)δ̂(2p·k)eik·(aL−aR)A(0)

− A
(0)
+ [k|Ȧ[k|Ḃ|k〉C |k〉De

−ik·x , (4.11)

where aaL,R are the spin vectors of the two gauge theory solutions, and A(0)
± the photon

amplitudes in the spinless case. Following arguments exactly analogous to the previous
section, we can write each product of amplitudes (and spin factor) as a combination of
spinless scalar and gauge theory amplitudes, each shifted by a common exponential factor:

eαηLηRAηLAηR →
[eαηLηRA(0)

ηL ][eαηLηRA(0)
ηR ]

[eαηLηRA(0),scal.]
, (4.12)

where we have defined
αηLηR = −ik · (ηLaL + ηRaR). (4.13)

It is now straightforward to apply the arguments of section 3, and the result is that
eqs. (3.37), (3.38), (3.42), (3.48) are replaced by

X̃ȦḂĊḊ[aR + aL] =
Φ(ȦḂ[aR + aL]ΦĊḊ)[aR + aL]

S̃[aR + aL]
, (4.14)

XABCD[aR + aL] =
Φ(AB[aR + aL]ΦĊḊ)[aR + aL]

S[aR + aL] , (4.15)
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and

ΦABĊḊ[aR − aL] = uCĊu
D
Ḋ

(
Φ(AB[aR − aL]ΦCD)[aR − aL]

S[aR − aL]

)
, (4.16)

ΦȦḂCD[aR − aL] = uC
ĊuD

Ḋ

(
Φ̃(ȦḂ[aR − aL]Φ̃ĊḊ)[aR − aL]

S̃[aR − aL]

)
. (4.17)

Here all electromagnetic spinors and scalar fields correspond to the
√

Kerr and zeroth copy
Kerr solutions respectively, but where the spin is taken to be a particular combination of
aR and aL, as indicated by the arguments of each field. As for the JNW solution considered
in the previous section, the double copy formula for the mixed-index spinors involves a pre-
factor that depends upon the 4-velocity of the source particle. Interestingly, this is the same
factor that appears in the spinless case, a fact which is ultimately due to the static nature
of the solution, in that the prefactor arises from the delta function δ(2p · k) in eqs. (4.8)–
(4.11). However, the spin arguments in eqs. (4.14)–(4.17) are such that these formulae do
not admit a strict double-copy interpretation. In order to satisfy the requirements of a
local position-space double copy, as outlined in the previous section, the spin parameters
aa of each electromagnetic spinor and scalar field must be the same. This in turn means
that the combinations of spin vectors appearing in each individual electromagnetic spinor
depend on both aR and aL i.e. the spin vectors from both the gauge theories appearing
in the double copy. There is, of course, a special case in which we may indeed obtain a
double-copy interpretation, namely aR = aL. This matches what happens for the Kerr
solution in pure gravity, but is such that the axion will automatically vanish. Furthermore,
the dilaton will look like a dilaton that is generated by a non-spinning particle, and it is
not clear if such a solution can be made to satisfy the Einstein-dilaton equations of motion
beyond linearised order (see e.g. ref. [106] for related work).

It is perhaps worth stressing that eqs. (4.14)–(4.17), even if they lack a strict double
copy interpretation, nevertheless constitute exact position-space relations for solutions of
N = 0 supergravity at linearised order. They may therefore be useful for something,
however restricted in scope.

5 Discussion

In this paper, we have addressed the question of whether position-space double copy for-
mulae exist for N = 0 supergravity, that are analogous to the well-known Weyl double
copy [18]. To this end, we have used recently developed methods that express classical
solutions in terms of on-shell inverse Fourier transforms of scattering amplitudes [81], to-
gether with arguments that split this transform into two stages [80]. The first stage takes
amplitudes into twistor space, such that the twistor double copy of refs. [22, 24] is ob-
tained. The second stage then consists of the well-known Penrose transform from twistor
to position space, and allows one to discern a position-space double copy formula, if it ex-
ists. This chain of arguments has been previously used to derive the original Weyl double
copy [78], and also the so-called Cotton double copy for topologically massive solutions in
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three spacetime dimensions [83–85]. Thus, it is natural to try to apply it to the case of
N = 0 supergravity, which after all is the known “full” double copy of Yang-Mills theory.

Whether or not a position-space double copy exists for N = 0 supergravity has been
recently considered in ref. [92], which indeed inspired the present study. The authors in that
case found that no double copy exists if the dilaton and / or axion are turned on, where the
tensorial formalism was used. Our arguments in this paper show that this is not quite true,
and that one can indeed write double copy formulae for all spinor fields appearing in the
generalised Riemann tensor of eq. (2.11), at least for the JNW solution sourced by a spinless
particle with no NUT charge. For those spinors with a single type of index, the formulae
precisely mirror those for the case of pure gravity. For the mixed-index spinors, however,
there are additional factors involving the 4-velocity of the source particle. That these were
not considered in ref. [92] may be due to its focus on tensorial formulae for the position-space
double copy, given that the translation from spinors to tensors can obscure simple properties
in the former language. Furthermore, the twistor methods considered here proved crucial
in deriving the presence of the additional prefactor, which we note is also absent in recent
conjectures for how to double-copy spinors for non-vacuum gravity solutions [28, 76].

When non-zero spin and / or NUT charge are present, it is yet again possible to write
formal position-space double copy formulae for solutions of N = 0 supergravity, which again
involve similar prefactors to the JNW case. However, the interpretation of these formulae
is not natural, given that they must involve products of electromagnetic spinors, each of
which involves the spin / NUT parameters of the full gravity solution. Whether or not such
formulae are useful is a matter of debate, but it is in any case interesting that the twistor
methods, as in refs. [78, 85], are again able to ascertain both the presence of spinorial double
copy formulae, but also their scope and applicability. It would be interesting to investigate
whether similar methods could shed light on the generalised (non-vacuum) double copies
explored in refs. [28, 76], or indeed to other theories and / or types of solution.
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