6 REFERENCES


Ackroyd R, Tam W, Schoeman M, Devitt PG, Watson DI. Prospective randomised controlled trial of argon plasma coagulation ablation vs. endoscopic surveillance of patients with Barrett’s esophagus after antireflux surgery. Gastrointest Endosc 2004; 59: 1-7


Bird AP. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Research 1980; 8:1499-1504


Chen X, Yang GY, Ding WY, Bondoc F, Curtis SK, Yang CS. An esophagogastroduodenal anastomosis model for esophageal adenocarcinogenesis in rats and enhancement by iron overload. Carcinogenesis 1999; 20:1801-8


Code of Practice for the Humane Killing of Animals under Schedule 1 to the Animals (Scientific Procedures) Act 1986. www.homeoffice.gov.uk


Cooper BT, Chapman W, Neumann CS, Gearty JC. Continuous treatment of Barrett’s oesophagus patients with proton pump inhibitors up to 13 years: observations on regression and cancer incidence. Aliment Pharmacol Ther 2006; 23: 727-733

Cooper BT, Neumann CS, Cox MA, Iqbal TH. Continuous treatment with omeprazole 20mg daily for up to 6 years in Barrett’s esophagus. Aliment Pharmacol Ther 1998; 12: 893-897


Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene 2002; 21: 5400-5413


El-Serag HB, Aguirre TV, Davis S, Kuebeler M, Bhattacharyya A, Sampliner RE. Proton pump inhibitors are associated with reduced incidence of dysplasia in Barrett’s esophagus. Am J Gastroenterol 2004; 99: 1877-1883


Fang MZ, Chen D, Sun Y, Jin Z, Christman JK, Yang CS. Reversal of hypermethylation and reactivation of p16ink4a, RARβ, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 2005; 11(19); 7033-7041

Farrow DC, Vaughan TL. Determinants of survival following the diagnosis of esophageal adenocarcinoma (United States). Cancer Causes Control 1996; 7: 322-327


Funkhouser EM, Sharp GB. Aspirin and reduced risk of esophageal carcinoma. Cancer 1995; 76: 1116-1119

Gali HU, Perchellet EM, Perchellet JP. Inhibition of tumour promotor-induced ornithine decarboxylase activity by tannic acid and other polyphenols in mouse epidermis in vivo. Cancer Res. 1991; 51: 2820-2825

Galipeau PC, Prevo LJ, Sanchez CA, Longton GM, Reid BJ. Clonal expansion and loss of heterozygosity at chromosomes 9p and 17p in premalignant (Barrett's) tissue. J Natl Cancer Inst 1999; 91: 2087-95


Hirschowitz BI. A critical analysis, with appropriate controls, of gastric acid and pepsin secretions in clinical esophagitis. Gastroenterology 1991; 101: 1149-1158


Jang TJ, Min SK, Bae JD, Jung KH, Lee JJ, Kim JR, Ahn WS. Expression of cyclooxygenase 2, microsomal prostaglandin E synthase 1, and EP receptors is increased in rat oesophageal squamous cell dysplasia and Barrett’s metaplasia induced by duodenal contents reflux. Gut 2004; 53:27-33


Jenkins GJ, D’Souza FR, Suzen SH, Eltahir ZS, James SA, Parry JM, Griffiths PA, Baxter JN. Deoxycholic acid at neutral and acid pH is genotoxic to oesophageal cells through the induction of ROS: The potential role of antioxidants in Barrett’s oesophagus. Carcinogenesis 2007; 28(1): 136-142


Kiliruk LB, Merendino KA. Comparative sensitivity of mucosa of various segments of alimentary tract in dog to acid-peptic action. Surgery 1954; 35: 547-556


Kumble S, Omary MB, Cartwright CA, Triadafilopoulos G. Src activation in malignant and premalignant epithelia of Barrett’s esophagus. Gastroenterology 1997; 112: 348-356


Low DE, Levine DS, Dail DH, Kozarek RA. Histological and anatomic changes in Barrett’s esophagus after antireflux surgery. Am J Gastroenterol 1999; 94:80-85


McDonald ML, Trastek VF, Allen M. Barrett’s esophagus: does an antireflux procedure reduce the need for endoscopic surveillance? J Thorac Cardiovasc Surg 1996; 111:1135-1138


Morales AI, Vicente-Sanchez c, Jerkic M, Santiago JM, Sanchez-Gonzalez PD, Perez-Barriocanal F, Lopez-Novoa JM. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental

Morales CP, Lee EL, Shay JW. In situ hybridization for the detection of telomerase RNA in the progression from Barrett’s esophagus to esophageal adenocarcinoma. Cancer 1998; 83: 652-659


Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, Traskos JM, Evans JF, Taketo MM. Supression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 1996; 87: 803-809


Plessis OJ, Smith AH, Grinwich K. Subversion of immune system by tumour


Redo SF, Barnes WA de la Sierra AO. Perfusion of the canine esophagus with secretions of the upper gastrointestinal tract. Ann Surg 1959; 149: 556-564


Sampliner RE. Effect of up to 3 years of high-dose lansoprazole on Barrett’s esophagus. Am J Gastroenterol 1994; 89:1844-1848


Sharma P, Sampliner RE, Camargo E. Normalization of esophageal pH with high-dose proton pump inhibitor therapy does not result in regression of Barrett’s esophagus. Am J Gastroenterol 1997; 92: 582-585


Tselepis C, Perry I, Jankowski J. Barrett’s esophagus: deregulation of cell cycling and intracellular adhesion in the metaplasia-dysplasia-adenocarcinoma sequence. Digestion 2000; 61: 1-5


Vaezi MF, Richter JE. Role of acid and duodenogastroesophageal reflux in gastroesophageal reflux disease. Gastroenterology 1996; 111: 1192-1199


Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action of aspirin-like drugs. Nature 1971; 231: 232-251


Weston AP, Badr AS, Hassanein RS. Prospective multivariate analysis of clinical, endoscopic, and histological factors predictive of the development of Barrett’s multifocal high-grade dysplasia or adenocarcinoma. Am J Gastroenterol 1999; 94:3413-3419

Wilkinson SP, Biddlestone L, Gore S, Shepherd NA. Regression of columnar lined (Barrett’s) oesophagus with omeprazole 40mg daily: results of 5 years continuous therapy. Aliment Pharmacol Ther 1999; 13: 1205-1209


Younes M, Schwartz MR, Finnie D, Younes A. Overexpression of Fas ligand (FasL) during malignant transformation in the large bowel and in Barrett’s metaplasia of the esophagus. Hum Pathol 1999; 30: 1309-1313
7 APPENDIX

7.1 RAT DIETS

7.1.1 Semi-Synthetic and Experimental Rat Diets

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>g/Kg</th>
<th>Semi-synthetic chow</th>
<th>Aspirin</th>
<th>Quercetin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin mixture</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Mineral mixture</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>DL-methionine</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cellulose</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Casein</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Starch</td>
<td>260</td>
<td>259.5</td>
<td>258.75</td>
<td>258.75</td>
</tr>
<tr>
<td>Sucrose</td>
<td>298</td>
<td>298</td>
<td>298</td>
<td>298</td>
</tr>
<tr>
<td>Corn oil</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Drug</td>
<td>0.5</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>
7.1.2 Components of the Mineral Mix

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>g/Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium Hydrogen Orthophosphate</td>
<td>322.8</td>
</tr>
<tr>
<td>(CaHPO4)</td>
<td></td>
</tr>
<tr>
<td>Di-Sodium Hydrogen Orthophosphate</td>
<td>185</td>
</tr>
<tr>
<td>(Na2HPO4)</td>
<td></td>
</tr>
<tr>
<td>Calcium Carbonate</td>
<td>205</td>
</tr>
<tr>
<td>(CaCO3)</td>
<td></td>
</tr>
<tr>
<td>Potassium Chloride</td>
<td>175.5</td>
</tr>
<tr>
<td>(KCl)</td>
<td></td>
</tr>
<tr>
<td>Magnesium Sulphate (dried)</td>
<td>100</td>
</tr>
<tr>
<td>(MgSO4)</td>
<td></td>
</tr>
</tbody>
</table>

Trace Element Pre Mix (added to Mineral Mix)

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>g/Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc Carbonate (ZnCO3)</td>
<td>2.5</td>
</tr>
<tr>
<td>Ferrous Sulphate (FeSO4)</td>
<td>3.6</td>
</tr>
<tr>
<td>Cupric Sulphate (CuSO4)</td>
<td>0.575</td>
</tr>
<tr>
<td>Potassium Iodate (KIO3)</td>
<td>0.025</td>
</tr>
<tr>
<td>Manganous Sulphate (MnSO4)</td>
<td>4.5</td>
</tr>
</tbody>
</table>
7.1.3 Components of the Vitamin Mix

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>g/Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicotinic Acid</td>
<td>3</td>
</tr>
<tr>
<td>B12 in Mannitol</td>
<td>2.5</td>
</tr>
<tr>
<td>D-Pantothenic Acid</td>
<td>2</td>
</tr>
<tr>
<td>Thiamine Hydrochloride (B1)</td>
<td>0.5</td>
</tr>
<tr>
<td>Riboflavin (B2)</td>
<td>0.5</td>
</tr>
<tr>
<td>Pyridoxine</td>
<td>0.5</td>
</tr>
<tr>
<td>Folic Acid</td>
<td>0.5</td>
</tr>
<tr>
<td>D-Biotin</td>
<td>0.05</td>
</tr>
<tr>
<td>Vitamin K1</td>
<td>0.1</td>
</tr>
<tr>
<td>Rovi Mix E50</td>
<td>7.5</td>
</tr>
<tr>
<td>Rovi Mix A500</td>
<td>1.25</td>
</tr>
<tr>
<td>Rovi Mix D3500</td>
<td>0.75</td>
</tr>
<tr>
<td>Choline Bitartrate</td>
<td>90</td>
</tr>
<tr>
<td>Starch</td>
<td>890.85</td>
</tr>
</tbody>
</table>