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Abstract

Automatic Music Transcription seeks a machine understanding of a musical signal in terms of
pitch-time activations. One popular approach to this problem is the use of spectrogram decom-
positions, whereby a signal matrix is decomposed over a dictionary of spectral templates, each
representing a note. Typically the decomposition is performed using gradient descent based
methods, performed using multiplicative updates based on Non-negative Matrix Factorisation
(NMF). The final representation may be expected to be sparse, as the musical signal itself is con-
sidered to consist of few active notes. In this thesis some concepts that are familiar in the sparse
representations literature are introduced to the AMT problem. Structured sparsity assumes that
certain atoms tend to be active together. In the context of AMT this affords the use of subspace
modelling of notes, and non-negative group sparse algorithms are proposed in order to exploit
the greater modelling capability introduced. Stepwise methods are often used for decomposing
sparse signals and their use for AMT has previously been limited. Some new approaches to
AMT are proposed by incorporation of stepwise optimal approaches with promising results seen.
Dictionary coherence is used to provide recovery conditions for sparse algorithms. While such
guarantees are not possible in the context of AMT, it is found that coherence is a useful parameter
to consider, affording improved performance in spectrogram decompositions.
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Chapter 1

Introduction

Automatic Music Transcription seeks to enable a machine to understand a musical piece. Tonal

musical instruments produce pitched signal elements, known as musical notes, consisting of har-

monic frequency partials. Machine understanding of a tonal piece of music is often framed

in terms of activity in a pitch-time representation. While conversion of an audio signal to

a frequency-time representation, or spectrogram, is simply performed using Fourier analysis,

derivation of an appropriate pitch-time representation is a difficult task and Automatic Music

Transcription is an active research area.

Spectrogram decompositions are a popular model-based approach to AMT. A model, referred

to as an atom,is constructed for each note, typically using a representative frequency spectrum.

A collection of these atoms form a dictionary, and spectrogram decompositions seek to approxi-

mate the spectrogram as an additive combination of dictionary atoms. When the individual atoms

are pitch-labelled, the spectrogram approximation coefficients, or activation matrix, relating the

activity of individual atoms forms a pitch-time representation. Often in spectrogram decomposi-

tions phase information of the signal is discarded and a non-negative magnitude spectrogram is

employed.

While spectrogram decompositions consider fixed dictionaries that are trained offline, spec-

trogram factorisations learn a dictionary and its corresponding spectrogram decomposition simul-

taneously. Typically, as a magnitude spectrogram is used, the factorisation is performed using

methods based upon the Non-negative Matrix Factorisation (NMF) methodology [74]. Spectro-

gram decompositions are often performed using NMF-based approaches.
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Sparse representations are an active research field across the areas of signal processing, statis-

tics and machine learning, The classic interpretation of sparse representations relates to the use

of overcomplete dictionaries, which consist of a number of atoms greater than the dimension

of each atom, and the goal is to decompose a signal using such a dictionary. Early develop-

ments in the field of sparse representations include the proposal of now well-known methods for

sparse approximations. These include greedy algorithms such as Matching Pursuit (MP) [80]

and Orthogonal Matching Pursuit (OMP) [98] while Basis Pursuit (BP) [23], also known as `1

minimisation, applies a `1-norm sparse penalty to the least squares problem.

When an overcomplete dictionary is used the decomposition problem is considered under-

determined. Historically the perspective was taken that a unique solution was not available for

underdetermined problems. However, it was recently discovered that the uniqueness of a solution

to an underdetermined problem was guaranteed if the solution was sufficiently sparse [34], and

conditions on the correlation of dictionary atoms were met. Dictionary correlation is typically

related through the parameter of coherence, a fundamental property in much sparse representa-

tions research. Later developments showed that sparse recovery was guaranteed using BP and

OMP when conditions, expressed simply through coherence, were met [128].

Other interesting developments have built upon these algorithmic and theoretical foundations

of sparse representations. Structured sparse representations introduce the capability to model

structure that is inherent in signals, and many variants proposing the incorporation of various

types of structure exist. Group, or block, sparsity, [137] [37] focusses on the interrelations of

atoms in a single representation vector, while multichannel [130], molecular [30] and neighbour-

hood [70] sparse approximations consider the co-activation of similar signal elements in different

coefficient vectors. Theoretical results show that such grouping of dictionary elements can lead

to improved conditions for signal recovery in certain cases [130] [37]. Another interesting el-

ement of the sparse representations field is sparse dictionary learning, which, similar to NMF,

seeks to learn a dictionary and its representation in a signal simultaneously,

1.1 Motivations and Aims

The motivation behind the research presented in this thesis is the fact that musical signals are

naturally sparse in a pitch-time representation, as few notes are active at any given time. While

music that is not pitch-sparse is perhaps conceivable in some sense, it is known from the cog-
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nitive precepts of auditory science that there is a limit to human capabilities to separate streams

from a auditory signal [13]. AMT, when performed on a frame-level basis, attempts to transform

a frequency spectrum frame into a pitch activation vector, and as such can be formulated as a

sparse subset selection problem. While the desirability of sparsity in musical spectrograms de-

compositions has been stated [1] [125] [32], there is relatively little prior research that explicitly

considers sparsity as a factor in such approximations.

The aim of this thesis is to explore the incorporation of constructs and methodologies from

the sparse representations repertoire to the field of AMT. In drawing knowledge from the sparse

representations community towards the AMT problem, it is important to consider the different

context to which sparse representations theory, and practice, generally apply. For instance pur-

suit algorithms are designed for use with overcomplete dictionaries that are relatively incoher-

ent, while theoretical conditions in sparse representations assume a similar context. Conversely,

undercomplete dictionaries are often employed in the AMT problem, where correlated signal el-

ements are expected due to the structure of tonal music. More pertinently, dictionary atoms are

semantically meaningful when performing AMT, whereby one must consider that the sparsest

signal representation may in fact not provide the best transcription. In this respect sparsity here

may be considered a useful tool but not the ultimate goal in decompositions.

The perspective taken here is that the AMT problem may be informed by algorithmic and

theoretical developments in sparse representations. For instance, note modelling in many AMT

methods uses a single spectral template to represent a note, while the spectral shape of notes

played by many instruments is known to evolve over time. The framework of group sparsity

provides a simple explicit model for dealing with grouped atoms, affording the use of a subspace

modelling approach for notes that may assist in the AMT problem. Molecular sparsity, another

variant of structured sparsity, provides a simple approach to dealing with structure in activation

matrices. A large problem when performing AMT is the presence of correlated sources. Consid-

eration of the dictionary coherence parameter, which considers correlated atoms, may provide a

new perspective to AMT.

Stated concisely, the stated main aim of this thesis is to explore if exploitation of the sparse

representations knowledgebase can afford better decompositions for musical signal processing

tasks, than are currently available. The approach taken can be considered deterministic in a sense

as no explicit recourse to probabilistic methods is taken. Several algorithmic developments are
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proposed in this thesis, most of which are numerically based with sparsity or group sparsity of

the coefficient vectors assumed. Such approaches can be considered general algorithms that may

find application in other arenas. Alternatively, application-specific prior information is incorpo-

rated occasionally, in particular time-continuity of signal elements and harmonicity of dictionary

atoms. In both cases this is performed in a simple manner, without the requirements of priors or

penalties in subsequent calculations.

1.2 Thesis Overview

Chapter 2 is devoted to background material relevant to the research presented in this thesis. The

Automatic Music Transcription (AMT) problem is introduced and described with reference to

the harmonic structure of western tonal music, metrology of AMT, and a brief literature review

describing some well-regarded methodologies in the field of AMT. Further sections describe

some sparse decomposition and matrix factorisation methods, with a particular focus given to

these problems in a non-negative framework, before reference to some prior work applying these

methods to AMT.

Chapter 3 describes the experimental workflow used throughout much of this thesis. The goal

of this thesis is to explore the use of different sparse, structured and non-negative decompositions

for the purpose of AMT. Comparison of different approaches to be taken suggests the use of

a repetitive experimental setup. However, several variations are used within the experimental

framework employed. For instance, various transforms may be used to produce a spectrogram

and different classes of dictionaries may be used. Each of these variations is used repeatedly in

the following chapters, and they are described in detail here.

Chapter 4 explores the use of greedy OMP-based methods for AMT. In particular a com-

parison between datapoint modelling and subspace modelling is made in the context of these

methods. Non-negative variants of algorithms from the group sparse methodology are proposed

for the purpose of AMT. The non-negative constraint introduces an extra computational load and

efforts to alleviate this expense are undertaken. Some problems concerning the use of greedy

methods in the context of AMT are noted.

Chapter 5 introduces stepwise methods incorporating backwards and forwards steps to AMT,

with a focus on methods that take locally optimal steps. Considering the non-negative framework,

a backwards elimination strategy is proposed, and compared to other prior stepwise algorithms
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proposed in the sparse literature. Close observation of the backwards elimination criteria leads to

a proposed modification to the sparse cost function normally employed. Finally, a group sparse

backwards elimination method is proposed, with a similarly modified sparse cost function.

Chapter 6 continues the study of greedy and stepwise methods. In this chapter their scope

is extended by the introduction of temporal structure. A greedy molecular approach is proposed

to deal with coherence-induced problems observed when adapting prior methods to the AMT

problem. Analysis of decomposition-based methods is proposed through a simple oracle decom-

position, shedding some light on the decomposition-based AMT problem. A molecular norm is

defined that suggests easy adaptation of stepwise and thresholding based approaches to molecular

decompositions and experimental results compare these different approaches.

Chapter 7 considers gradient-based methods for non-negative matrix decompositions. Al-

ternative cost functions to the Euclidean distance, typically used in sparse representations, are

explored. A novel generalised cost function is proposed, and proof of monotonic descent of this

cost function using a multiplicative update is given. Finally sparse and group sparse penalisation

strategies are explored.

Chapter 8 provides a new analysis of the AMT problem using the sparsity-based construct

of dictionary coherence. An analysis of dictionaries from different signal transforms is provided

with reference to transcription results and the coherence of the dictionaries. A row-weighted

decomposition approach is proposed, and a novel effective coherence measure is introduced in

order to derive the row-weighting used. Experimental results show improved AMT results for

the proposed method.

Chapter 9 considers the use of sparsity in NMF. First, an example is given showing that in-

corporation of sparsity may be important in the context of NMF for musical signals. A variant

on Sparse-NMF (S-NMF) is proposed using the backwards elimination non-negative sparse ap-

proximation algorithm proposed in Chapter 5. Finally, group sparse spectrogram decompositions

using a synthetic dictionary are compared with a state-of-the art NMF approach.

Chapter 10 concludes the thesis with a reflection on the presented research, with suggestions

for further possible avenues of research.
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1.3 Associated publications and collaborations

All of the research presented in this thesis was undertaken during a course of study lasting from

2009 to 2013 at the Centre for Digital Music, C4DM, in Queen Mary, University of London.

Some of this work was undertaken in collaboration with visiting researchers at C4DM, namely

Hidehisa Nagano, a visiting researcher from the NTT Communications Lab in Japan, and Nicolas

Keriven, a visting student from CMAP at Ecole Polytechnique in France. During this course of

research, several contributions have been presented at international peer-reviewed conferences,

some of which was collaborative. The publications are listed below with respect to their presen-

tation in the this thesis, and the contribution of visiting researchers is noted.

• Research described in Chapter 4.1-4.2 was presented at the 3rd IMA International Confer-

ence on Linear Algebra and Optimisation [94].

• Research described in Chapter 5.2-5.3 was presented at the IEEE Workshop on Machine

Learning for Signal Processing (MLSP), 2013 [88]. This was a collaborative publication

with Nicolas Keriven. The research presented in Chapter 5 is the work of this author, while

Nicolas undertook research beyond what is presented in this thesis.

• Research described in Chapter 6.1 was presented at the IEEE International Conference on

Audio, Speech and Signal Processing (ICASSP), 2012 [91]. Chapter 6.2 describes research

presented at the International Conference on Music Modelling and Retrieval (CMMR),

2012 [90], and which is to be published in a Lecture Notes in Computer Science series.

This body of work was undertaken in collaboration with Hidehisa Nagano.

• A presentation made at the 5th International Workshop in Music and Machine Learning

Workshop (MML), 2012 [89] forms a precursor to work described in Chapter 7. The presen-

tation relates some initial work on group sparse NMF undertaken with Hidehisa Nagano.

However the work presented in this thesis is significant departure from that initial work.

• Research described in Chapter 8 was presented at IEEE International Conference on Audio,

Speech and Signal Processing (ICASSP), 2013 [95].

• Research described in Chapter 9.1 was presented at the European Signal Processing Con-

ference (EUSIPCO), 2011 [92], and also at 4th Workshop on Signal Processing with Adap-

tive Sparse Structured Representations (SPARS), 2011 [93]. Research described in Chapter
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9.2 was presented at the IEEE Global Conference on Signal and Information Processing

(GlobalSIP), 2013 [96].
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Chapter 2

Background

In order to establish the foundation upon which the research presented in this thesis is based, a

summary of relevant background material is presented in this chapter. First, the Automatic Music

Transcription (AMT) problem is described and the reader is referred to some well-known ap-

proaches used in the AMT field. Following this the sparse representations methodology is intro-

duced, with some focus given to structured sparse representations and recovery conditions. The

subsequent section attends to non-negative approximations such as Non-Negative Least Squares

(NNLS) and the Non-negative Matrix Factorisation (NMF) methodology. Finally, some appli-

cations of sparse representations and NMF methods to musical machine listening are outlined

before concluding.

2.1 Automatic Music Transcription

Fourier analysis, developed in the early 19th century [79], affords the capability to characterise a

waveform in terms of its frequency content. While the simplest waves are described by a simple

sine function, more complex waveforms are often seen to be periodic and Fourier analysis allows

such waveforms to be represented as a superposition of several sine waves each parametrised by

their amplitude and phase. It is very useful that many naturally occurring waveforms are seen to

be sparse, with energy concentrated in few significant elements, when viewed in this frequency

domain. With the development of modern electronic computing devices and algorithms such as

the Fast Fourier Transform (FFT), many different types of waveforms from natural signals can

be analysed and their information exploited.
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Many interesting applications have been developed in line with these new computational pos-

sibilities. Of particular interest here is the field of machine listening, which attempts to endow

machines with the capability to make sense of an audio environment. The chief goals in machine

listening are the recognition of sounds and the separation of sources, which can be viewed as

symbiotic, with better recognition leading to better separation and vice versa. Machine listen-

ing is a multidisciplinary endeavour, drawing from seemingly disparate fields, often to solve the

same problem. For instance, two well known approaches to source separation are Blind Source

Separation [28], which uses physics and machine learning approaches, and Computational Au-

dio Scene Analysis (CASA) [15], which uses cognitive principles defined by the the Audio Scene

Analysis of Bregman (ASA) [13]. Many of the principles employed by ASA focus on the group-

ing of sound elements into streams, and are similar to those used in the Gestalt theory of visual

perception [13]. Another knowledge base from which machine listening may draw is auditory

science. For instance, it is known that the frequency response of the human inner ear is not

linear. Frequency scales, such as the Equivalent Rectangular Bandwidth (ERB) scale, that aim

to model the frequency response of the auditory system have been adapted for application to

machine listening tasks through use of filterbank systems [69] [132].

The foremost machine listening application is Automatic Speech Recognition (ASR), which

is now becoming a mature technology, starting to pervade through its integration in hand-held

devices. Indeed this desire to afford interaction with machines through speech, the most concise

of human communications, and the commercial potential of developing such machine capabil-

ities has probably weighted much of the initial machine listening research in this direction. In

comparison, until now, the processing of signals containing music or sounds from the natural

environment has received relatively little attention. However, such technologies are becoming

more desirable with the advent of big data science and mobile computing.

An interesting feature of many natural waveforms is the presence of harmonic structures in

the frequency domain, consisting of regularly placed peaks in the frequency spectrum. Harmonic

structure is due to the physical phenomenon known as standing waves, caused by reflection of

a wave at the end of the propagating medium. Many waveforms in the audio frequency range,

such as sounds caused by passing air through a tube or by striking a fixed string, conform to this

harmonic structure. These harmonic sounds can be primarily parametrised using the concept of

fundamental frequency, represented by f0. Using this parameter the location of the energy peaks
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in a frequency-based representation of such a signal element can be predicted such that:

fn ≈ f0×n (2.1)

where fn is the nth harmonic, or harmonic partial, also known as the (n− 1)th overtone. The

concepts of harmonicity and fundamental frequency are applicable in terms of tonal musical

instruments, vowel sounds of human speech, and many other sounds experienced in the real

world. The use of fundamental frequency as a parameter of these harmonic sounds may help in

recognising and separating these sounds. In this sense, the similarity between CASA and multiple

fundamental frequency estimation in the grouping of coincident elements has been noted [68].

While fundamental frequency is a objective measurable construct, pitch is defined as a perceptual

attribute of sounds, defined as the frequency of a sine wave that is matched to the target sound in

a psychoacoustic experiment [67]. These two concepts are closely related, and can be considered

synonymous in the context of this thesis.

In terms of music, the use of the fundamental frequency parameter affords a symbolic rep-

resentation that transcends the physical method of sound creation and perceptual features such

as the timbre of an instrument. This symbolic representation is often referred to as a score and

music transcription is the attempt to derive such a representation from a piece of music experi-

enced aurally. Similarly, Automatic Music Transcription (AMT) is the machine attempt to derive

a pitch-time representation of a musical piece, typically represented by a digital audio file. While

a complete music transcription provides a score in musical notation, with separate instruments

assigned to separate score sheets, this level of detail in output is not yet considered by AMT sys-

tems [6]. A graphical representation of an AMT output known as a piano roll uses a binary matrix

representation to denote note activity. An example ground truth piano roll, which is augmented

with note onset information, is visible in Figure 2.1. The information contained in a piano roll

is often communicated in terms of the the Musical Instrument Digital Interface (MIDI) protocol.

The MIDI parameter of note number is used to represent the pitch, performing a discretisation of

the f0 parameter, and the temporal onset and offset parameters are also commonly used in AMT

descriptors. Further parameters can also be used to describe a transcription such as the MIDI

note velocity [99], representing the intensity of the energy of a note.
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Figure 2.1: Example ground truth piano roll, with note activity marked in grey and note onsets
in black.

2.1.1 Piano transcription

A recently published overview paper [6] aims to set out the achievements and challenges facing

the AMT field. It is noted in [6] that monophonic pitch, or melody, tracking is considered a

solved problem. The authors then consider the problems of AMT from a holistic viewpoint, con-

sidering possibilities such as transcription in the presence of percussive sounds or transcription

of electro-acoustic music, a larger perspective than is normally taken in most papers describing

AMT research. While AMT would ultimately seek to solve such problems, the simpler problem

of polyphonic transcription is still seen to be problematic, with a glass ceiling reported using

current methods [6].

Often in AMT research a musical signal described as polyphonic is actually played by a

single instrument, typically a piano, that is capable of playing several notes simultaneously. The

choice of the piano for much AMT research is interesting in that it allows several problems

general to AMT to be addressed while ignoring others which need later attention. In a piano each

note is activated by a hammer hitting a string and the body of the piano responds with a relatively

mild percussive response. The timbre of stringed instruments is known to vary [44] according to

where the string is hit, with certain harmonics attenuated according to the shape of the triangle

formed when the string is struck. Piano strings are held in a fixed position and hit in a similar

spot on each occasion. Therefore some consistency in the timbre of the piano can be expected,

a feature which may not be present in recordings of other stringed instruments that are struck
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or bowed manually. Even so, the timbre of a piano is known to vary over the duration of note

[17] [44] [1], with energy at higher frequencies attenuating quicker, while further moderations to

the timbre can be effected through the use of pedals and the velocity of the hammer blow [17].

However, the range of timbre variation is still relatively low for a piano.

Furthermore, expressive elements such as vibrato, which may be effected through rapid phys-

ical movement of a vibrating string resulting in centred pitch variance, and pitch bending are not

achievable with the machinations of a piano. Otherwise put, in the case of piano transcription

sampling the pitch may be performed over a coarse discrete f0 spectrum where each discrete

value is a MIDI note, while transcription of other instruments may require a more fine-grained f0

spectrum. However, even in this limited case, accurate polyphonic transcription is not achievable

[6]. In terms of harmonicity it is noteworthy that the length of the piano string causes a slight

inharmonicity in the partials of a piano note due to the high tension in piano strings, and their rela-

tively long length [17]. An advantage of the use of a piano for AMT research is the availability of

electro-mechanical MIDI pianos, such as the Yamaha Disklavier [39] [104], which allow ground

truth performances to be performed mechanically affording standard comparisons of AMT meth-

ods. Previously this was only achievable with MIDI files, which are seen to be less challenging

in terms of AMT performance [32] [12], while live recordings required hand-labelling of note

events and temporal alignment of the score and spectrogram.

2.1.2 Musical structure

One of the chief difficulties in the AMT problem is innately related to the structure of the musical

scale. Each musical note represents a single pitch, or fundamental frequency. The term octave

refers to the relationship between two notes that have fundamental frequencies that can be ex-

pressed by the ratio 2 : 1. The music scale consists of 12 differently labelled notes, each of which

can be expressed through several octaves to form a larger scale. For instance, the piano keyboard

contains 88 keys, each of which represents a separate note, thereby spanning more than seven

octaves. The interval between adjacent notes on the scale is referred to as a semitone. The ratio

of the fundamental frequencies of two given musical notes is given by the expression :

f i
0

f j
0

= 2
i− j
12 (2.2)
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Name f0(Hz) Equal Just Major Minor
A 440 1 1st 1st

A]/B[ 466.2 1.059 16 : 15 - -
B 493.9 1.122 9:8 2nd 2nd
C 523.3 1.189 6:5 - 3rd

C]/D[ 554.4 1.259 5:4 3rd -
D 587.3 1.335 4:3 4th 4th

D]/E[ 622.3 1.414 7:5 - -
E 659.2 1.498 3:2 5th 5th
F 698.5 1.587 8:5 - 6st

F]/G[ 740.0 1.682 5:3 6st -
G 784.0 1.782 16:9 - 7th

G]/A[ 830.6 1.888 15:8 7th -
A 880 2 2 octave octave

Table 2.1: One octave of musical scale with note names, fundamental frequency, decimal ratio of
equal temperament and rational ratio of just intonation to first A note on scale, position of note
on the A major and A minor scales.

where |i− j| is the separation of the notes, in semitones. The frequency scale expressed by

(2.2) is referred to as the equal temperament scale. Other temperaments, such as Pythagorean

tuning and just intonation, use rational numbers for the ratios between fundamental frequencies,

as these sounds are considered the most consonant. Consonance is a perceptive measure of the

pleasantness of a combination of harmonic sounds played together, and is an important concept

in the structure of western tonal music. The equal temperament scale, expressed through (2.2) is

a compromise between consonance and other musical considerations. However, the relationship

between different notes in the equal temperament approximate the rational ratios previously used.

This relationship is outlined in Table 2.1.

The structure of the musical scale, with octave and approximate rational number ratios be-

tween fundamental frequencies is problematic for AMT, as many notes contain overlapping har-

monic partials in the Fourier transform. Harmonic jumping refers to when a note is detected in-

correctly, yet temporally coincident to a ground truth note that is pitched either an octave higher

or lower. These harmonic jumps, also known as octave errors, arise from of the harmonic nature

of pitched sounds [33] and are common in AMT and f0 estimation. The problem can be com-

pounded by the co-activation of several notes sharing regular ratios of fundamental frequency.

Notes that are consonant are often played in close temporal proximity to each other, or simulta-

neously using the musical structures of keys and chords, respectively. A musical key refers to

a fixed scale, such as the major and minor scales outlined in Table 2.1, that consist of a subset
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of the 12 notes, with consonance being a feature, particularly for the major scale. Often musical

pieces are constrained to notes in a given key, typically resulting in consonant notes being played

in sequence. A combination of notes played simultaneously is referred to as a chord. Commonly

used chords contain the most consonant combinations of sounds. For example the major chord

contains the first, third and fifth notes of the major scale in Table 2.1, which can be seen to have

some of the simplest relationships in terms of the just intonation.

2.1.3 Metrology of AMT

It is an old adage that something cannot be improved if it cannot be measured. In the field of

AMT, comparison of system performance is complicated by different approaches to transcription

metrology being taken with different metrics employed and a variety of datasets being used [6].

The performance of an AMT system is most commonly measured in terms of a frame-based

analysis in which the ground truth and AMT output are compared at each pitch-time point. In

this comparison, correct detections, incorrect detections and undetected ground truth elements

are labelled. The correct detections, referred to as true positives, comprise the set T P , while

FP denotes the set of false positives, or incorrect detections. Similarly, undetected ground truth

elements, or false negatives, form the set FN . Other forms of AMT analysis are possible.

An event based analysis, that compares the onsets of the ground truth and the AMT output is

proposed in [104]. In this case a true positive is denoted when a correctly pitched detection

occurs within a stated time-tolerance, typically 50−200ms, of a ground truth detection. Common

machine learning and pattern recognition metrics such as Precision, P , Recall,R and F-measure

given by

P =
|T P|

|T P|+ |FP|

R =
|T P|

|T P|+ |FN |

F = 2× P×R
P+R

(2.3)

can be applied to both frame and onset detection based analyses. Other metrics have been pro-

posed. One commonly used metric in AMT research papers is Accuracy :

A=
|T P|

|T P|+ |FP|+ |FN |
(2.4)
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which was initially proposed by Dixon [33] and is often used in tandem with classification of

individual errors.

While event-based analysis often considers onset detection only, metrics such as the Mean

Overlap Ratio,MOR, [111] which consider offset detection as well, have been developed. The

MOR metric is most commonly used for the purpose of evaluation of note tracking AMT sys-

tems, which consider the temporal evolution of musical notes. MOR is defined as the mean of

the overlap of all correctly detected notes, where the overlap of an individual note is given by

onote =
max(ton)−min(toff)

max(toff)−min(ton)
(2.5)

where ton is a two-value set consisting of the transcribed and ground truth note onset times, while

toff similarly relates note offsets. Hence, onote can be understood as the ratio between the temporal

length of the intersection and the union of a transcribed note and its representation in the ground

truth. More recently, the Sustain, Decay and mixed Sustain / Decay metrics have been proposed

[45] which measure transcription by assigning scores to each note. The decay metric measures

the pitch correctness and onset time accuracy, while Sustain performs a similar function to the

MOR metric. These metrics are proposed to provide a holistic measure of AMT performance

in terms of human perception, with psychoacoustic knowledge used in assignment of the scores

[45].

2.1.4 Prior Research

A wide variety of methods have been proposed for AMT and multiple fundamental frequency

estimation. Initial attempts, starting in the 1970s, focussed on the transcription of duets [84]

[21]. Other early research in the field included methods using multi-agent blackboard systems

[49] [82]. In the last decade, AMT has become a more popular research area and systems that

can handle polyphonic signals have been developed, using a wide variety of signal processing

and machine learning methods. A few of these approaches are outlined below. While a large

body of recent literature concerning the AMT problem exists, it is intended here only to give a

flavour of some of the recent methodology.

Possibly the best known method for AMT and polyphonic f0 estimation is the iterative sub-

tractive methodology of Klapuri. In this method, a pitch estimation step is performed at each

time frame, and the dominant fundamental frequency is selected. The energy associated with
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that note parametrised by the dominant fundamental frequency is then subtracted from the fre-

quency domain of the signal, before pitch estimation is again performed. This approach was first

proposed in [68], where a spectral smoothness parameter was used to determine the energy in

each harmonic partial associated with a selected fundamental frequency. This energy estimation

step was performed before the subtractive process and aimed to counter the problem of overlap-

ping harmonics. Further developments on this methodology employed note modelling [111] with

Hidden Markov Models (HMMs) for tracking of note elements.

A recent contribution in AMT research that of Yeh et al [136], which is similar to other

fundamental frequency methods, such as [68], in that an explicit pitch estimation step is involved.

The method first uses a noise level estimation step, splitting the signal into a sinusoids plus noise

representation. The sinusoidal peaks are expected to be harmonic partials of active sources, and

pitch estimation is then performed. Unlike the iterative approach of Klapuri, this pitch estimation

step leads to a set of potential f0 candidates being extracted. A global search of combinations

of these f0 candidates is performed, with a score assigned to each set of candidates based on an

aggregate of scores related to harmonicity, spectral smoothness and other spectral features. The

tendency of fundamental frequency estimation systems to produce harmonic jumps is strongly

considered in the development of features used to score the candidate sets.

Davy et al. propose a Bayesian harmonic model [31] for multi-pitch estimation in signal

segments, which are assumed to have relatively homogeneous content. In a given segment a

regular time lattice and continuous frequency spectrum are used. The Bayesian model includes

parameters describing the number of notes, the number of harmonic partials in each note, the

amplitudes of individual partials, noise variance and an inharmonicity parameter to model de-

viations from perfect harmonicity. Prior distributions are placed on many of these parameters

and a Monte Carlo Markov Chain (MCMC) methodology is used to sample from the posterior

distribution. The authors describe the importance of the order of the model, relating the num-

ber of notes, in achieving good performance, while the computational load associated with the

MCMC methodology is noted. More recent work from the same research group [99] has fo-

cussed on matrix factorisations method using Expectation Maximisation (EM) based algorithms,

incorporating prior information such as time continuity.

A discriminative method is proposed by Poliner and Ellis in [104] for polyphonic piano tran-

scription. For each note on the piano scale, a one-versus-all Support Vector Machine classifier
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was trained using a large dataset of labelled piano pieces. A probability of activity is then as-

signed to each individual pitch-time point based on the distance from the frequency spectrum

of the signal to the classifier boundary hyperplane. A pitch-time posteriorgram is constructed

from these individual pitch-time probabilities. Hidden Markov Models (HMM) are used to track

notes in the resulting posteriorgram. Experimental results show this method outperforming other

well-known AMT methods, such as [111].

Bock and Schedl propose a pitched onset detection method using a recurring neural network

[12]. Spectral features are formed using two-different scales STFTs in order to achieve good

frequency and temporal resolution simultaneously. The STFTs are post-processed using semitone

filterbanks to reduce the dimensionality of the problem. The first-order difference of the semi-

tone filterbank output is taken and concatenated to the filterbank output itself. The data is labelled

and presented to the neural network for training. Test data presented to the neural network system

results are transformed to a regression matrix output, which is post-processed to produce a piano

roll output. Experimental results given are considered state-of-the-art for pitched onset detection.

The use of genetic methods for AMT is proposed in [109]. The authors propose segmenting

the spectrogram using an onset detector, and performing a parameter search using genetic meth-

ods to ascertain the signal elements present between each onset. A post-processing is performed

to stitch together note elements that extend beyond the onset boundaries. Note template spectra

are used, however the genetic method includes the ability to adapt the signal templates. Exper-

imental results given show that the method outperforms many well known methods in terms of

the combined Sustain/Decay score. However, the considerable computational expense of this

approach is noted by the authors [109].

Spectrogram factorisation and decomposition methods are commonly used for AMT and

musical signal processing in general. In this context, a spectrogram decomposition uses a fixed,

pitch-labelled, dictionary and performs a regression on the spectrogram in order to ascertain the

activations of notes, as represented by corresponding dictionary elements. Spectrogram factori-

sation methods seek to learn a dictionary and the activations of its atoms simultaneously. In this

way spectrogram factorisations may require post-processing steps such as pitch estimation of the

individual atoms. A description of some methods for matrix decomposition and factorisation

is given in the following sections, after which some applications of these methods to AMT are

described.
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2.2 Sparse Representations

A sparse representation of a signal is characterised by a coefficient vector containing only a

few non-zero elements. Sparse representations have been applied to problems in image and

video processing such as de-noising, coding and compression [79], and have been seen to be

particularly useful for audio processing [103]. The problem of retrieving a sparse representation

for a signal is referred to as sparse recovery in the noiseless case, and sparse approximation in

the presence of noise. Sparse recovery, formally, seeks to solve

min
x
‖x‖0 s.t. s = Dx (2.6)

while sparse approximation, the counterpart in noisy signals, seeks the minimisation

min
x
‖x‖0 s.t. ‖s−Dx‖2

2 ≤ ε (2.7)

where s ∈ RM is the signal, D ∈ RM×N is a dictionary with an atom of unit `2 norm in each

column, x ∈ RN is the coefficient vector, ε is a noise component, and ‖x‖0 is the `0 norm of x

relating the number of non-zero components in x.

The sparse representations methodology affords the use of overcomplete dictionaries, i.e.

dictionaries where N > M, allowing the solution of underdetermined problems. This affords the

formation of dictionaries consisting of, for example, a union of orthogonal bases [23], leading to

more succinct representations of a signal containing elements that are best represented separately

in disparate bases. Recovery of the sparsest solution using the `0 norm is known to be a NP-hard

combinatorial problem in the general case [86] and a range of algorithms have been proposed

which seek to approximate (2.6) and (2.7). One well-known approach to sparse representations

is Basis Pursuit [23], also known as `1 minimization, which relaxes the `0 norm in (2.6) for a `1

norm. Similarly, for the noisy case the sparse approximation problem can be stated as

min
x
‖x‖1 s.t. ‖s−Dx‖2

2 ≤ ε (2.8)

or, written in its Lagrangian form [79]:

min
x
‖s−Dx‖2

2 +λ‖x‖1 (2.9)
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Algorithm 2.1 Orthogonal Matching Pursuit [98]
Input

D ∈ RM×N , s ∈ RM

Initialise
i = 0; r0 = s; x0 = 0; Γ0 = {}

repeat
i = i+1
Select atom and add to support
n̂ = argmaxn |〈dn,ri−1〉|
Γi = Γi−1∪ n̂
Backproject supported atoms onto signal
xi = D†

Γis
Calculate residual
ri = s−DΓixi

until stopping condition met
Output x;Γ

which is known as Basis Pursuit DeNoising (BPDN), or LASSO [124]. Both BP and BPDN

can be solved using convex optimisation methods [23]. Other less computationally expensive

algorithms such as Gradient Projections for Sparse Representations (GPSR) [42], Iterative Soft

Thresholding (IST) [138] and stepwise methods such as (LARS) [127] and Polytope Faces Pur-

suit (PFP) [102] have also been proposed to solve these problems.

A faster alternative to Basis Pursuit is the use of greedy algorithms, which attempt to build

up a representation by selecting the atoms most correlated with a residual in an iterative man-

ner. Greedy methods are considered to approximate a `0 penalised least squares problem. The

most well-known of these algorithms are Matching Pursuit (MP) [80] and Orthogonal Matching

Pursuit (OMP) [98], which is outlined in Algorithm 2.1.

OMP is initialised by setting the residual signal, r, equal to the initial signal, s, and an it-

eration counter, i, is started. The algorithm then enters an iterative loop, calculating the inner

products of the dictionary atoms with the residual signal r and selecting the atom, indexed by

n̂ with the largest magnitude inner product. This index, n̂ is added to the sparse support, or set

of active indices, Γ. The supported atoms are then backprojected onto the signal to get the in-

terim coefficient vector, xi, from which the new residual can be calculated. This loop is repeated

until a predetermined stopping condition is reached, typically a sparsity measure referred to as

k-sparsity, where k is the amount of atoms to be selected. However, an energy-based threshold

can also be employed, such as the residual norm, or relative error.

MP differs from OMP by not employing a backprojection step. Instead, the energy in the



2.2. Sparse Representations 32

inner product of the selected atom is subtracted directly from the current residual:

ri = ri−1−〈dT
n̂ ri−1〉dn̂. (2.10)

While the backprojection step used in OMP orthogonalises the residual to atoms that are already

selected, reselection of atoms can occur using MP. It has been shown [23] that this may result

in MP entering a critical loop. However, the backprojection step used in OMP may be costly

compared to MP. Several variations such as Gradient Pursuits, which approximate the backpro-

jection using a gradient descent [11], have been proposed to counter computation problems with

large signals. Similarly LoCOMP [78], performs the orthogonalisation only on a subdictionary

of atoms overlapping with the currently selected atom in a time-frequency dictionary. Various

methods for performing the backprojection have been explored, such as rank-one Cholesky and

QR updates [121]. Stagewise OMP (StOMP) [35] selects several atoms at each iteration, based

on a coefficient threshold, in order to decrease the required number of backprojections.

Polytope Faces Pursuit (PFP) [102] is a greedy algorithm that seeks to optimise the `1 min-

imisation problem at each step, thereby performing Basis Pursuit. This is achieved using an

iterative approach, similar to OMP, with the selection criteria:

n̂ = argmax
n

∣∣∣∣ dT
n ri−1

1−dT
n ck−1

∣∣∣∣ (2.11)

where ck−1 = [D†
Γi ]

T 1|Γ‖.

The k-sparse problem relates to when it is known a priori that the sparse support consists of

k atoms. While greedy methods can be used to solve this problem in k iterations, another family

of algorithms such as CoSAMP [87], Iterative Hard Thresholding (IHT) [123], and Subspace

Pursuit [29] attempt to solve this problem by initially selecting a subset of the dictionary, with size

related to k. Swapping of atoms in and out of the active subdictionary is performed iteratively,

while the residual is decreasing, until the algorithm converges to a fixed subset.

2.2.1 Recovery Conditions for Sparse Representations

There are theoretical conditions on the accuracy of sparse recovery for several methods, including

OMP [128]. These conditions are related to the correlation between dictionary atoms, measured

by dictionary coherence. Assuming unit norm atoms, the dictionary coherence µ is given by the
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absolute maximum inner product of dictionary atoms:

µ = max
i6= j
|〈di,dj〉|. (2.12)

Other coherence measures are also used, such as the cumulative coherence, also known as the

babel function, µ(k) [128], where k is the number of atoms to be selected, given by:

µ(k) = max
i

max
|J |=k,i/∈J

∑
j∈J
|〈di,dj〉| (2.13)

from which it can be seen that µ = µ(1), and µ(k)≤ k×µ . An important condition for accurate

recovery in sparse representations is the Exact Recovery Condition (ERC) [128] which states that

recovery can be guaranteed when

‖D†0D̄‖1 < 1 (2.14)

where D0 is the subdictionary containing the correct sparse support, D̄ contains all other atoms

in the dictionary and ‖X‖1 is the matrix 1-norm, relating the maximum column sum of X. It is

shown [128] that the ERC is guaranteed to be met for OMP and BP when

k <
1
2
(µ−1 +1) (2.15)

or similarly,

µ(k)+µ(k−1)< 1. (2.16)

Recently, similar results have been shown for PFP [52] and ORMP [117].

Another set of conditions which can ensure guaranteed recovery for BP is the Restricted

Isometry Property (RIP) [18], which relates the distance from orthogonality of a subdictionary:

(1−δk)‖x‖2
2 ≤ ‖D0x‖2

2 ≤ (1+δk)‖x‖2
2 (2.17)

where δk is the Restricted Isometry Constant (RIC), which measures the maximum deviation

from unity of the eigenvalues of the subdictionary, D0 containing k atoms. It has been shown that

Basis Pursuit [23] will recover the correct support with very high probability when δ2k <
√

2−1

[18]. A simple relationship exists between the coherence and the RIC where (k− 1)µD ≥ δk,

where µD is the coherence of the subdictionary, D0. The RIP is more commonly referred to in
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Figure 2.2: Graphical description of group sparsity. The dictionary, in centre, is partitioned into
blocks that are two columns wide, and indexed correspondingly. D[2] refers to the second group,
or block, comprised of the 3rd and 4th column atoms of the dictionary matrix. The activation
vector, on right, is partitioned similarly, with two active blocks visible.

relation to Compressed Sensing, as it is known to hold with very high probability for various

classes of random matrices.

2.2.2 Structured sparse representations

Structured sparse representations afford the introduction of prior knowledge to the sparse rep-

resentation problem, through the implication that the activities of atoms tend to be interrelated.

These interrelationships may be quite general, such as group sparsity [37] [137] where certain

atoms tend to be active together in the same sparse vector, or simultaneous sparsity [130] where

a similar atom tends to be active in different channels. Alternatively, more application specific

forms of structured sparsity are possible where the interrelationship is based on expected out-

comes, such as time continuity [30] or harmonic patterns [53].

Group sparsity, also referred to as block sparsity, extends the sparse representation framework

by incorporating the assumption that certain atoms tend to be active together, as graphically

described in Figure 2.2. Given the set of tuples

L= {Ll} (2.18)
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where Ll contains the column indices of the lth group leads to the notation for the lth group of

the dictionary, D[l], and of the coefficient vector, x[l]:

D[l] = [dLl(1), ...,dLl(|Ll |)]

x[l] = [xLl(1), ...,xLl(|Ll |)]
T (2.19)

where Ll(i) is the ith member of the lth tuple in the set L, and ∑l |Ll|= N. The notation x[l, i] is

used to refer to the ith member of the lth group of x.

The group sparse problem is similar to the sparse problem and can also be solved using

optimisation based methods, such as the Group Lasso [137] or L2-OPT [37], which seek to

minimise a penalised least squares in a fashion similar to Basis Pursuit. Mixed vector or `p,q

norms penalty terms given by

‖x‖p,q =

 L

∑
l=1

 ∑
i∈{1,..,|L(l)|}

x[l, i]p


q
p


1
q

(2.20)

are used. Similar to BP [23] the `2,0 norm penalty is relaxed for an `2,1 norm penalty which is

seen to equal ‖g‖1 where gl = ‖x[l]‖2 for the `2,1 norm (2.20). Using the `2,1 norm assumes

that few groups are active, but does not constrain the variety within groups. Other norms can be

used, such as the `1,2 norm, which conversely allows many groups to be active, but constrains

the number of atoms that are active in each group. Similar to Basis Pursuit, different algorithms

have been proposed in order to solve the group sparse optimisation problem, including a method

based on Iterative Soft Thresholding [71] that was applied to audio denoising.

Greedy methods for group sparse recovery have been derived from Orthogonal Matching

Pursuit (OMP) [98], differing only through using a group selection criteria, and adding all atoms

in the selected group, indexed by l̂, to the support: Γ = Γ∪Ll . The most well-known group

sparse greedy method is the Block-OMP (B-OMP) [37] which uses the selection criteria

l̂ = argmax
l
‖φ [l]‖2 (2.21)

where

φ [l] = D[l]T ri. (2.22)

An earlier proposed algorithm is the Subspace Matching Pursuit (SMP) [47], which uses the
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selection criteria.

l̂ = argmin
l
‖ri−πl(ri)‖2 (2.23)

where πl(y) is the projection of y onto the subspace D[l].

In a multi-sensor environment, several observations of the same source may be obtained,

in different channels but in similar dimensions. It can be assumed that the signal is sparse in

each channel at once, and the problem is referred to as simultaneous, or multichannel, sparsity.

Simultaneous sparse approximation seeks to decompose all channels using a collection of a few

atoms that are active across channels. This problem may be solved using optimisation based

methods or greedy methods. The Simultaneous Orthogonal Matching Pursuit (S-OMP) [130] is

presented as an algorithm for providing sparse solutions in the multichannel case, generalising

OMP by changing the atom selection step to consider the `2 norm of the inner products of an

atom with several channels :

n̂ = max
n
‖dT

n S‖2 (2.24)

where S = [s1, ...,sP] is the matrix containing the signal sp from the pth sensor in each column.

In [54], a similar algorithm is used and an average-case recovery analysis is proposed, which is

shown to become more relevant as the number of channels increases. In [129] it is shown how

global optimisation methods can also be used to solve the simultaneous sparse approximation

problem using a `2,1 mixed norm penalty term.

Several structured sparse methods have been proposed which exploit common structures

found in audio signals. Harmonic Matching Pursuit [53], extends MP using a dictionary of har-

monic atoms, composited from groups of Gabor atoms related by harmonicity. The coefficient

of a harmonic atom is derived from the inner products of the individual Gabor atoms comprising

the harmonic atom with the residual signal. The constituent Gabor atoms are selected from a

small local peak search, which can allow for inharmonic tunings, and the peak and sidelobes are

incorporated into the harmonic atom. Note detection and tracking are proposed as applications

for this algorithm.

The Molecular Matching Pursuit (MMP) [30] is a greedy algorithm that extracts, at each it-

eration, a molecule consisting of a collection of structurally related atoms. MMP was proposed

for the purpose of audio coding, with the aim of representing tonal elements in a Modified Dis-

crete Cosine Transform (MDCT) and transient elements in a Discrete Wavelet Transform (DWT).



2.3. Non-negative Representations 37

Structure is favoured in the atom selection stage by assigning locality based coefficients to each

atom. From an initially selected atom, a molecule is grown based on connectivity criteria. When

a tonal atom is initially selected, a search is performed, backwards and forwards through time

frames along a narrow frequency window, until an energy threshold is reached. If a transient

atom is selected, a wavelet tree is selected and pruned based on energy and connectivity criteria.

All atoms found in the molecular search are added simultaneously to the sparse support which is

reported to afford a speedup in a manner similar to StOMP [35].

2.3 Non-negative Representations

Many physical quantities and real-world data are inherently non-negative. In order to process

such quantities, non-negativity often has to be explicitly considered. Non-Negative Least Squares

(NNLS) is a well-studied constrained least squares problem:

x = argmin
x
‖s−Dx‖2

2 s.t x≥ 0 (2.25)

for which many algorithms have been proposed. The original NNLS algorithm [73], described

in Algorithm 2.2 is a greedy active set algorithm. Indeed, it is similar to OMP (§2.2) with some

important modifications. The atom selection is constrained to select atoms with non-negative

inner products, while an inner loop is employed to eject atoms that have non-negative coefficients

after backprojection of the active set onto the signal. NNLS stops iterating when no more atoms

have a positive inner product with the residual, while OMP typically has a defined stopping

condition.

The classic NNLS algorithm [73] is considered slow and many other algorithms have been

proposed to solve the same problem. Fast-NNLS (F-NNLS) [14], proceeds similarly to the

NNLS algorithm outlined above with some small modifications. The pseudoinverse of the active

columns of the dictionary, D†, is calculated at every iteration of NNLS, in order to perform the

backprojection. In F-NNLS, the Gram matrix G = DT D and the projection vector α = DT s are

input. Then, instead of calculating the pseudoinverse, the inverse of a submatrix of the Gram

matrix

Ḡ = GΓ,Γ = DT
ΓDΓ (2.26)

containing the rows and columns indexed by the active set is inverted. The backprojection coef-
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Algorithm 2.2 Non-Negative Least Squares (NNLS)
Input

D ∈ RM×N , s ∈ RM

Initialise
φ = DT s; x = 0N ; Γ = {};

repeat
n̂ = argmaxn φn

Γ← Γ∪ n̂
xΓ = D†

Γ
s

Remove negative candidates
While min(x)< 0

n̄ = argminn xn

Γ← Γ\n̄; xn = 0
xΓ = D†

Γ
s

Endwhile
r = s−DΓix
φ = DT r

until maxn φn ≤ 0
Output x

ficients are then calculated using

xΓ = Ḡ−1
αΓ. (2.27)

Similarly the residual is not explicitly calculated and the vector of dictionary-residual inner prod-

ucts is approximated by

φ = α−Gx (2.28)

F-NNLS is seen to perform similarly to NNLS while being considerably faster. A variant of

F-NNLS considers matrix decompositions, where many of the calculations may be similar and

performed simultaneously. Another well known active set method is the block principal pivoting

algorithm [105], which allows several atoms to be added or removed from the active set at each

application. NNLS methods using descent-based approaches have been proposed. A coordinate

descent based method is proposed in [46], while a Projected Quasi-Newton method is proposed

in [61]. An overview of NNLS methods is given in [22].

Non-negative sparse approximations are performed using a Thresholded Non-Negative Least

Squares (T-NNLS) algorithm in [114]. The authors show that the non-negativity constraint per-

forms an innate regularisation, which may be more relevant than `1 minimisation for deriving

non-negative sparse approximations. Experimental results are given showing, indeed, that T-

NNLS outperforms `1 minimisation with a non-negativity constraint.

A non-negative variant of OMP (NN-OMP) is proposed in [16], in which the coherence
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problems inherent to non-negative sparse decompositions are noted. NN-OMP is seen to differ

from OMP only by constraining the atom selection step to the maximum positive coefficient. It

is suggested in [16] to use NNLS as the backprojection strategy, however it is more appropriate

to consider NN-OMP as a truncated NNLS algorithm, using a defined stopping condition [100].

It is noteworthy that the normalisation of the dictionary generally used in sparse approximation

is not necessary in NNLS, however it should be considered in the case of NN-OMP.

2.3.1 Non-negative Matrix Factorisation

Non-negative Matrix Factorisation (NMF) [74] is a factor analysis algorithm that seeks to form

an approximation of a non-negative matrix, S ∈ RM×T , such that

S≈ DX (2.29)

where both D ∈ RM×N , the dictionary matrix and X ∈ RN×T , the activation matrix are non-

negative and unknown. Typically, the NMF problem is approached using an alternating projec-

tions methodology; i.e. alternating between updating the dictionary and updating the activation

matrix, while the other is fixed.

The original NMF algorithm was referred to as Positive Matrix Factorisation (PMF) [97].

PMF used Alternating Non-negative Least Squares (ANLS) projections on D and X to seek the

approximation (2.29) using a Euclidean distance cost function

CE(s|z) = ‖s− z‖2
2 s.t. x≥ 0. (2.30)

where z = Dx. The ANLS projections can be slow, and optimised NNLS approaches have been

proposed for use in ANLS-NMF [61] [64] [65] [57].

However, non-negative factor analysis was popularised as NMF [74] using fast multiplicative

update gradient descent algorithms to solve the NMF problem using both the Euclidean distance

(2.30) and Kullback-Leibler divergence

CKL(s|z) = ∑
i

si log
si

zi
− si + zi (2.31)

cost functions. Again, alternating projections are used to update D and X. The multiplicative
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updates for the Euclidean distance cost updates are given by

X←− X⊗ [DT S�DT DX] (2.32)

D←− D⊗ [DST �XSST ] (2.33)

where ⊗ denotes Hadamard or elementwise multiplication and � denotes elementwise division.

It was demonstrated that the multiplicative updates were equivalent to the more common addi-

tive updates in gradient descent algorithms, with a fixed stepsize. It was also proved that the

cost function was non-increasing in the multiplicative updates for both the Euclidean and KL

multiplicative updates.

NMF algorithms using multiplicative updates have been proposed for other cost functions,

the most common of which are generalised by the β divergence [27] given by

Cβ (s|z) =
1

β (β −1) ∑
i

sβ

i +(β −1)zβ

i −β (siz
β−1
i ). (2.34)

The cost function given in (2.34) reduces to Euclidean distance when β = 2 and the KL-divergence

and the Itakuro-Saito (IS)-divergence [40] are limiting cases given by β = 1 and β = 0 respec-

tively. The multiplicative updates for the generalised β -divergence are given by

X← X⊗ [DT (S⊗ [DX][β−2])]� [DT (DX)[β−1]] (2.35)

D← D⊗ [(S⊗ (DX)[β−2])XT ]� [(DX)[β−1]XT ] (2.36)

where X[a] denotes elementwise exponentiation of X to the power of a.

Bayesian formulations of NMF have also been proposed. Probabilistic Latent Component

Analysis (P-LCA) [116] is a Bayesian NMF algorithm, allowing the use of appropriate Bayesian

priors and which uses the KL-divergence NMF to update the probability distributions. The

Itakuro-Saito (IS) divergence is shown in [40] to be similar to a maximum likelihood algorithm,

and the authors also propose the integration of Bayesian priors, particularly in an Expectation

Maximisation (EM) algorithm.
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2.4 AMT using Spectrogram Decompositions

2.4.1 NMF-based approaches for AMT

NMF was originally proposed for AMT by Smaragdis and Brown [115], who show how a spec-

trogram, S, can be factorised into a dictionary, D, which is seen to contain atoms which represent

note spectra, and a matrix, X, in which each row contains the activations of a corresponding

atom. It is noted that the use of the KL-divergence cost function (2.31) provides a better fac-

torisation than the Euclidean distance cost function (2.30) for the purpose of AMT. The authors

suggest that each note might need to be played separately at least once in order to achieve a good

separation. While the examples given in [115] are relatively simple, further work showed NMF

to be a promising area of research for AMT [132] [8].

When NMF is used for AMT some common postprocessing steps are required [132]. The

pitch of each atom must be determined. While this can be done by hand [1] [66], pitch estima-

tion of single atoms is seen to be relatively straightforward and accurate [132] [8]. Once each

atom is pitch labelled, a pitch-time representation can be formed by simply summing the energy

contributions of all atoms of a given pitch [132]. Finally, thresholding of this pitch-time repre-

sentation needs to be performed in order to to derive a piano roll [132] [8]. In [8], the effects

of learning order on NMF are explored in the context of AMT, and it is found that initialisation

of the dictionary with spectral templates that are similar to piano notes is optimal. Meanwhile,

a simple example is given of perfect separation of notes, none of which are played in isolation.

However, the authors note the ideal scenario used.

Several other related approaches exist. Abdallah and Plumbley propose learning a dictionary

from power spectrograms using a non-negative sparse coding approach, in which a logarithmic

prior is introduced to the atom activations. The dictionary is then pitch-labelled and used to

decompose other musical spectrogram using the Itakuro-Saito divergence, again with a logarith-

mic sparse penalty applied. A sparse penalty and a time smoothness penalty, based on the total

squared variance, augment the KL-divergence NMF for the purpose of monaural sound separa-

tion in [134].

Later research considers problems in unconstrained NMF when applied to AMT. In particular

the tendency for meaningless atoms to be learnt is noted in [106]. Although NMF is considered

to give a parts based representation, there are no guarantees that the atoms learnt are meaningful.

In the context of AMT, a meaningful atom can be thought of as being related to only one note,
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with the atoms energy consisting of harmonic peaks from that note. In practice, atoms may be

found consisting of energy from two or more notes, or alternatively having energy localised to

one narrowband part of the spectrum, while atoms with unpitched features might also be learned.

Hence, a harmonic version of NMF is proposed in [106]. In this approach, a dictionary atom

is created for each note. The fundamental frequency and the expected harmonic peaks (2.1) are

initialised with a fixed spectral envelope, while all other elements of the atom are set to zero.

A feature of multiplicative update NMF is that zero elements are unaffected [4]. The crosstalk

between the harmonic atoms is noted and some penalty terms are applied to the coefficient matrix.

A sparse penalty is introduced, time continuity is encouraged by convolution with a smoothing

matrix and a further penalty term on co-occurring correlated pitches are all augmented to the

basic NMF updates, resulting in improved AMT [106].

A different approach to harmonic NMF is taken in [133], were it is proposed that each har-

monic atom is parametrised by a collection of fixed narrowband harmonic components. A har-

monic atom is learnt by finding the optimal coefficients for each narrowband element using β -

NMF, with updates performed until convergence at each alternating projection. State of the art

NMF results for AMT are given in [133] using this approach. The same authors also propose a

Bayesian NMF approach in [9], using the same adaptive harmonic dictionaries [133].

An alternative to using the data-driven NMF approach to AMT is to use a fixed dictionary.

This approach was referred to Non-negative Matrix Decomposition (NMD) in [32] and exploits

the methodology of NMF, using only the coefficient matrix updates. Indeed, superior AMT re-

sults have been shown using NMD [133] [32], when the dictionary is learnt offline on a relevant

dataset. A comparison of the use of β -NMD with Euclidean NMD and a sparse decomposition

method [55] for the purpose of AMT is made in [32]. Superior AMT results are given for the

β -divergence, with β = 0.5, for which a fast vector-based approach is proposed for the purpose

of real-time approximation. In [133], NMD experiments are run using β -divergence with varying

values of β ∈ [0,2]. Superior AMT results are again given for β = 0.5. In these experiments,

degraded performance was noted when multiple atoms were used to represent one note. Further-

more, the authors show results for similar experiments with a dictionary that is not suited to the

signals, with a large deprecation in performance.

An alternative perspective to spectrogram decompostion is proposed in [5] where decompo-

sition is performed in a Bayesian setting, using Shift-Invariant P-LCA. The authors use shift-
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invariance as a feature of the decompositions where differently pitched notes are represented by

pitch-shifted versions of the same spectral templates. Each note is represented by three atoms,

each representing a different state of the evolution of a piano note, namely attack, sustain, or

decay with HMMs used to model the transitions from one state to another.

2.4.2 Spectrogram decompositions using greedy sparse methods

While NMF-based methods dominate the field of spectrogram decompositions, some researchers

have explored the use of greedy methods for the same purpose. Harmonic Matching Pursuit

(HMP) [53] was initially proposed for pitch tracking, a similar application to AMT, and can

be seen to be a somewhat similar approach to the harmonic subtraction method of Klapuri [68]

which it predates. However, the HMP algorithm suffers through not considering the problem of

overlapping harmonic peaks which is addressed in the harmonic subtraction algorithm.

Matching pursuit methods have been considered on several occasions. In [20], the authors

propose a variant of HMP that is augmented with spectral smoothness constraints to tackle the

harmonic overlap problem. However, HMP is not used to decompose the spectrogram in this case

[20]. Rather it is used to learn a dictionary of harmonic atoms. The extracted dictionary is then

used with Matching Pursuit (MP) to perform spectrogram decompositions. This affords a data-

driven approach based on sparse representations and results are given showing improved AMT

results in comparison to NMF. However, the authors note the problem of spurious omissions

when using MP, and propose a post-processing to fill gaps found in otherwise continuous signal

elements [20]. An earlier work [76] uses a molecular variant of MP with a pre-learned harmonic

dictionary, in which the atoms are labelled with pitch and instrument information. The molecular

variant of MP used is similar to the tonal tracking used in MMP [30], but also allows for pitch

variance, allowing notes from instruments with vibrato to be extracted in the one molecule.

In [125] the use of large dictionaries with OMP for AMT is considered, in which each note

is represented with many atoms, each a datapoint from a spectrogram of an isolated note. The

authors consider that the use of such dictionaries might allow more accurate modelling of sig-

nals. The computational complexity introduced by the large dictionary using OMP is noted and

an Approximate OMP (AMP) algorithm using an approximate nearest neighbours search is pro-

posed in [125]. AMP is seen to speed up the decomposition while a slight deterioration in AMT

performance relative to OMP is noted. The problem of picking an apt stopping condition for

OMP in the context of AMT is noted.
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2.5 Discusssion

In this chapter, a summary of background research of relevance to this thesis was given. First

the AMT problem was outlined, set in the context of the larger field of musical machine lis-

tening, and defined as a particular case of fundamental frequency estimation. A mention was

given to metrics for AMT performance and some assumptions in use when AMT is applied to

piano pieces were outlined before a brief summary of some prior AMT research was presented.

Following this, sparse representations were introduced. Some popular algorithms for sparse ap-

proximation were described, before dictionary coherence and corresponding recovery conditions

were introduced. Attention was then given to the concept of structured sparse representations.

The next section focussed on non-negative representations, such as NNLS and NMF, before a re-

turn to the application of AMT, using non-negative and sparse decompositions. In later chapters

more specific details of some of the prior research presented in this chapter are given.

The focus of this thesis is the development of methods encouraging sparsity and exploiting

structure in the decomposition for the application of AMT. One possible initial observation might

be that this could be a poor match of method to application. The sparse methodology was devel-

oped for the use of overcomplete dictionaries, and much of the research in this area assumes a

union of orthogonal bases. For the AMT problem, an overcomplete dictionary is not necessary,

although it may possibly be advantageous. The possibility of a mismatch becomes apparent if the

high coherence in a dictionary of harmonic elements is considered in light of the recovery condi-

tions given by the ERC (2.14). However, a direct application of sparse representations to AMT

is not the goal. Rather, it is intended to draw on the knowledgebase of sparse representations

in order to inform the AMT problem. Particular foci of this endeavour include the use of group

sparsity, which affords a simple approach for dealing with subspaces. Dictionary coherence,

while not affording the capability of guaranteed recovery in the setting of AMT, may nonethe-

less provide a parameter that is useful in this context. From the perspective of decomposition

algorithms, greedy methods are popular for sparse approximation, and have occasionally been

used, without great success, for the purpose of AMT. However, a new perspective is presented

by considering algorithms that employ backtracking.

Before further description of the exploration of these ideas, the following chapter outlines the

experimental setup employed throughout much of this thesis.
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Chapter 3

Experimental Setup

While many different problems exist in Automatic Music Transcription (AMT) [6] the goal of

this thesis is quite specific, with a focus on decomposition methods, incorporating sparsity and

structure. In this regard most chapters consider different methods for performing a similar task of

spectrum, or spectrogram, decompositions, and a similar homogeneity in experiments to be un-

dertaken is suggested. A graphical description of a standard experimental workflow is shown in

Figure 3.1, where the modular nature of the experiments undertaken can be observed. While dif-

ferent chapters propose different decomposition algorithms, the other steps in this experimental

workflow vary little, while some common choices are available at each step.

Dictionary

Decomposition
Algorithm AnalysisTransform

Spectrogram

Figure 3.1: General experimental workflow
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For instance, different transforms may be employed to form a spectrogram, while different

types of dictionary may be used to perform the decomposition. It is also proposed to learn the

dictionaries once, avoiding repetitive computation and affording direct comparison of various

approaches. The analysis of the pitch-time representation may vary depending on the type of

method used. The choices available in this modular experimental setup are laid out here in order

to avoid repetition of description and simultaneous reference to various parts of the thesis in the

description of an individual experiment. Much of the experimental setup is based upon that used

in [133].

In the rest of this chapter, the dataset employed is introduced, before the various signal trans-

forms employed are described. The dictionaries used are then derived, before post-processing

steps employed in the analysis of performance are described. An example experiment, based

upon reported state-of-the-art framewise spectrogram decompositions for AMT, is then per-

formed to consolidate the workflow, and to set a benchmark for comparison of the approaches

proposed in subsequent chapters.

3.1 Dataset

Many different datasets are used in the AMT community, a fact which in itself can lead to confu-

sion as to the comparative efficacy of different methods [6]. Part of the reason for the wide range

of datasets available is the large range of different AMT problems. For instance, multi-instrument

AMT requires a different testbed to polyphonic piano transcription. In order to provide a direct

comparison of the different approaches proposed in this thesis, one dataset is used throughout all

AMT experiments in this thesis.

Polyphonic piano transcription is considered an appropriate application and a dataset taken

from the MIDI-Aligned Piano Sounds (MAPS) database [39], was chosen for all AMT exper-

iments. The MAPS database is a collection of digital audio files of piano sounds, including

classical piano pieces, individual notes and chords. There are ten datasets in MAPS, eight of

which are high quality synthetic Musical Instrument Digital Interface (MIDI) recordings. The

remaining two datasets are recorded live on an electro-mechanical Disklavier piano, capable of

playing automatically from a MIDI file input. The dataset used in this thesis is the EnStDkcl

dataset, which is recorded with a microphone placed close to the piano body. The EnStDkcl

contains 30 classical pieces of varying duration and complexity and the first 30s of each piece
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comprise the dataset employed in this thesis, referred to as the standard dataset. This provides

a similar dataset to other research performed in AMT [133]. Indeed, much of the experimental

setup outlined here is derived from that work.

Several reasons led to the choice of this dataset. As well as providing a challenging, varied

set of piano pieces, the dataset is recorded live, thereby presenting a realistic challenge to an

AMT system, for instance introducing room-specific echoic effects. An advantage of this dataset

is the fact that due to the electromechanical nature of the recordings, a ground truth is provided,

thereby avoiding the task, and related vagaries, of hand-labelling the notes in a piece and score

to pianoroll alignment. Using the onset and offset times given for each note, a ground truth

piano roll is derived in order to analyse performance. The ground truth piano roll is a grid with

23ms temporal delineations and 88 different pitch frames, representing MIDI notes #21-#108.

All pitch-time points containing an onset or offset of a note, as defined from the supplied ground

truth, are designated as active. Similarly pitched points intermediate to the onset and offset of a

note are also set as active.

3.2 Spectrogram Transforms

Different signal transforms may be used to produce a spectrogram. The most commonly used

spectrogram is the Short-Time Fourier Transform (STFT), which can be calculated very quickly

by windowing a signal into frames of a desired sample size which are individually processed us-

ing the Fast Fourier Transform. However the STFT is known to suffer from several problems in

relation to musical signal processing. In particular the time and frequency resolutions are related

which can be problematic in dynamic signals. In musical signals the fundamental frequency scale

is logarithmic (§2.1.2). A reasonable time resolution, in terms of human perception, can lead to

the fundamental frequencies of neighbouring lower pitched notes sharing the same frequency bin

in the spectrum. Overlapping signal windows are often used to afford greater frequency reso-

lution in the STFT. Alternatively, other transforms with logarithmic frequency scales have been

proposed for use in musical signal processing. Two commonly used logarithimic scale trans-

forms are the Equivalent Rectangular Bandwidth Transform (ERBT) [132] and the Constant-Q

Transform (CQT) [113], both of which are implemented using filterbanks. While the STFT par-

titions the time frequency domain in a regular manner, with all time-frequency points of identical

shape, the ERBT and CQT use irregularly-sized frequency partitions. The CQT places an equal
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Figure 3.2: Central frequency of each ERB dimension relative to STFT. Both transforms are
sampled at 44.1kHz and have similar atom dimension 1024

amount of frequency partitions in each octave, while the ERBT places the frequency bins linearly

on the ERB scale given by [132]:

ν
ERB
f = 9.26× log(0.00437ν

Hz
f ) (3.1)

where νERB
f is the frequency in terms of ERBs and ν

Hz
f is the frequency as measured conven-

tionally in Hertz (Hz). Both the ERB and CQT are known to introduce some distortion into

the spectrogram at low-frequencies. The higher resolution at low frequencies requires the use of

longer signal windows than is needed at higher frequencies, and both the CQT and ERB are often

interpolated onto a rectangular matrix [113] [132] for convenient post-processing. The relation-

ship between the linear frequency scale used in the STFT and the log scale used in the ERB can

be observed in Figure 3.2.

The ERBT and STFT were compared for the purpose of AMT in [132]. Signals with sam-

pling frequency 22.05kHz were transformed using an ERBT with atom dimension 250 interpo-

lated onto a 23ms grid. This ERBT was designed so that no two fundamental frequencies shared

the same frequency frame [132]. A comparison was made with an STFT of atom dimension



3.3. Dictionaries 49

Name Transform fS(kHz) Window(ms) Overlap Dimension
S1 STFT 22.05 92 75 % 1024
S2 STFT 44.1 92 75 % 2048
E1 ERBT 22.05 23 - 250
E2 ERBT 22.05 23 - 512
E3 ERBT 44.1 23 - 512
E4 ERBT 44.1 23 - 1024

Table 3.1: Transforms used in experiments - ERB transforms are interpolated onto a grid

1024, requiring 92ms windows and using a 75% window overlap, giving a similar temporal res-

olution as the ERBT. Similar results were recorded for both transforms, while it was noted that

the ERBT afforded faster processing due to its smaller dimension.

To further this exploration, a comparison of several different dimension ERBTs as well as

two different scale STFTs is proposed, with some experiments in this thesis comparing all six

transforms. In particular, larger dimension transforms are used, and it hoped that doing so might

result in less coherent dictionaries due to the spread of energy. A 23ms time partitioning of

the spectrogram is used in all cases, and two different sampling frequencies are considered. The

higher sampling frequency, 44.1kHz, is the same rate that is used on compact discs and covers the

range of frequencies accessed by normal human hearing. The lower sampling rate is 22.05kHz,

the same as that used in [132] and simply effected on the MAPS dataset by downsampling using

the resample function in Matab, which applies a low pass anti-aliasing filter. The details of

the transforms employed are shown in Table 3.1. Each transform is coded with an alphabetic

and a numeric character. The alphabetic character relates the type of transform used while the

numeric character relates a transform specific ordering in terms of sampling frequency and atom

dimension.

3.3 Dictionaries

To perform AMT in a supervised manner, a spectrogram is decomposed with a dictionary of

pitch-labelled atoms that represent notes in the corresponding transform. Different types of dic-

tionary can be used, the choice of which may be related to the method. Greedy methods are

flexible and can be used with both large and small dictionaries. NMD-based methods have pre-

viously been observed to perform optimally when each note is represented by one atom [133].

Audio files containing isolated notes signals are available in the MAPS database and are used

to derive the dictionaries proposed here. The isolated note signals that are used are from the
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Figure 3.3: 50 atoms from datapoint dictionary in ERB (transform E4) used to represent one
note. Echoic artefects visible

EnStDkcl dataset, similar to the dataset. Several different types of fixed dictionary are used in

the experiments in this thesis. To form each of these types of dictionary, a subdictionary is first

obtained for each note of the piano scale, 88 notes in all, from MIDI notes #21 to #108. The

atoms of each subdictionary are pitch-labelled according to the isolated note from which they are

derived and the dictionary is constructed through concatenation of these subdictionaries. This

dictionary construction is performed for all transforms listed in Table 3.1.

3.3.1 Datapoint Dictionaries

A stated advantage of greedy methods is the ability to easily handle overcomplete dictionaries

(§2.2). For example, Tjoa et al [125] propose using OMP with an overcomplete dictionary, com-

prised of datapoints from spectrograms of isolated notes, to perform AMT. A similar dictionary

is constructed here using a process akin to that employed in [125] . To construct each pitched

subdictionary, a spectrogram of an isolated note file was produced, and onset detection was per-

formed to capture the start of the note. The 50 time frames of the spectrogram following the onset

were individually normalised to unit `2 norm and collated to form the subdictionary representing

the given note. Concatenation of the individual subdictionaries was performed to construct the

dictionary, as previously mentioned. These dictionaries are referred to as the datapoint dictio-

naries, and an example subdictionary representing one note is shown in Figure 3.3.
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Figure 3.4: Group of atoms from subspace dictionary (P=4) used to represent a note

3.3.2 Subspace and Atomic Pitch Dictionaries

Usually a dictionary much smaller than the datapoint dictionary described above is used for

spectrogram decompositions [32] [133]. While a dictionary can be learnt from signals containing

musical pieces with hand-labelling of pitches [1], it is also possible to learn each subdictionary

from isolated notes, an approach taken by [32] [133] and adapted here.

A spectrogram of an isolated note signal is formed using the desired transform. Non-negative

Matrix Factorisation (NMF) [74] is used to perform a factorisation of predetermined rank, P, of

the spectrogram. The resultant subspace, of size P, then forms the subdictionary corresponding

to the note played in the isolated signal. Again, the dictionaries are formed by concatenation of

the individual subspaces and each atom is normalised to have to unit `2 norm.

Dictionaries were learnt for all transforms in Table 3.1 for all values of P ∈ {1, ...,7}. These

dictionaries are referred as subspace dictionaries collectively for P ∈ {1, ...,7}. The term atomic

pitch dictionary is used to refer to a dictionary with one atom used to represent each note, also

considered a subspace dictionary with P = 1. An example subspace of size P = 4 is shown in

Figure 3.4.
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3.4 Analysis of AMT

The aim of this thesis is to enhance the performance of spectrogram decomposition-based AMT.

Spectrograms are decomposed on a frame-by-frame basis in many of the proposed approaches.

Therefore a frame-based analysis is considered most appropriate to measure the performance

of the proposed methods, although some onset-based analysis is also described in Chapter 6.

A plethora of measures have been proposed for AMT, as described in (§2.1.3). However as it

is intended mostly to measure the effectiveness of decomposition methods, the F-measure is

employed as the primary performance metric, with occasional auxiliary use of the Precision, P ,

and Recall, R, (2.3) metrics commonly used in pattern recognition. These metrics, when used

here, are expressed as percentages.

The Accuracy, or A-measure (2.4) is commonly used in AMT, which, similar to F-measure,

incorporates both false detections and true omissions. It is worth noting that the F-measure (2.3)

can, through substitution of the definitions of the Recall and Precision (2.3), be written in similar

form to the Accuracy measure:

F =
2|T P|

2|T P|+ |FP|+ |FN |
(3.2)

differing only from the Accuracy metric through replacement of |T P| with 2|T P|. Whether the

F- or A-measure is more appropriate for the purpose of AMT is a philosophical point. The F-

measure is preferred here, as in the case when the polyphony is known theA-metric will penalise

a false detection twice. For example, in the known polyphony case, if 80% of detections are

correct, leading to 20% false detections / true omissions, an Accuracy of 67% is recorded, while

an F-measure of 80% is given. Two different post-processing steps are commonly used prior to

calculation of the metrics. These post-processing steps are referred to here as δ -thresholding and

k-sparse thresholding.

3.4.1 δ -thresholding

Often in the context of AMT thresholding is performed as a post-processing step to a decompo-

sition method such as NMF (§2.3.1) or NNLS (§2.3) in order to determine the final output piano

roll [132] [133] [32]. The thresholding setup used in [133] is adapted here, whereby a parameter,
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δ , is used to adapt the threshold λ to the data:

λ = δ ×max
l,t

[H]l,t . (3.3)

where δ is typically related in decibels (dB) and H is a (group) coefficient matrix. For each

individual piece, the size of the sets, T P,FP,FN , are recorded for a range of values of δ .

Summation of the cardinalities of these sets, across all pieces, is performed for each value of δ ,

allowing the F-measure to be calculated similarly. Results given relate the optimal F-measure

achieved, recorded at δopt . When values for Recall and Precision are given, these are also the

values recorded at δopt . A graphical example of this procedure is shown in Figure 3.5, later in

this chapter.

3.4.2 k-sparse thresholding

Occasionally in AMT it is assumed that the polyphony at a given time frame of the spectrogram

is known, in which case the problem can be conceived of as a k-sparse problem (§2.2). Some

algorithms, such as OMP can be initialised with a k-sparse stopping condition, selecting only k

atoms. However other algorithms, such as NNLS or NMF/NMD, perform a global optimisation.

While such approaches are typically analysed using a global threshold, such as the δ -thesholding

strategy employed above, it may be useful occasionally to compare these different classes of

algorithms. In order to do this a k-thresholding is performed at each time frame of the coefficient

matrix from a global optimisation based method to identify the k-sparse support Γ such that

Γi =


1, if i ∈ J (1:k)

0, otherwise
(3.4)

where J = { j|h j > h j+1} is the set of the indices of ordered values of a vector h and J (1:k) is

a subset of J consisting of the first k elements. When k-sparse analysis is used, the results are

described in terms of F-measure. Due to the known sparsity level the number of false positives

and false negatives are equal and P =R= F = |T P|/(|T P|+ |FP|).



3.5. Example experiment 54

Figure 3.5: P,R,F metrics relative to δ threshold parameter for benchmark experiment. δopt

indicated.

3.5 Example experiment

An example experiment is performed to provide a benchmark. Spectrograms using Transform

E1 (§3.2), are decomposed with a atomic pitched dictionary (§3.3.2) for all pieces of the standard

dataset (§3.1). δ -thresholding (§3.4.1) was performed for a range of values of δ ∈ {15, ...,40}dB,

in steps of 1dB. In this way a similar dataset, dictionary and thresholding strategy are employed

in this set of experiments to those used in the NMD experiments described in [133]. The results

for these experiments are tabulated in Table 3.2 and a graphical description of the evolution of

the P,R,F metrics relative to δ is given in Figure 3.5 with δopt outlined.

It should be noted that the dictionary used in [133] was learnt from isolated note signals

in the RWC [51] database. The best results presented in [133] give an F-measure of 67%.

The results presented here use a similar transform and a F-measure of 72% is achieved, an

increase of 5%. This can be explained as a result of using a dictionary learnt from isolated

note signals recorded in similar conditions to the pieces. This result, with F-measure of 72% is

Transform P F δopt(dB) P R
E1 1 72.0 33 73.0 71.0

Table 3.2: Results from benchmark experiment in terms of P,R,F . δopt noted.
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considered as a benchmark for the researched presented here, as results using this experimental

setup, performing NMD with β -divergence with β = 0.5 with ERB of dimension 250 has recently

been considered state-of-the-art for supervised decomposition based AMT.

3.6 Other details

All code was written in Matlab version 10.1. and experiments were run on an Apple Mac using

the OSX 10.6 operating system with 8Gb of RAM running at 1067MHz, with an Intel Core 2

Duo processor clocking 3.06GHz.

3.6.1 Reproducible Research

The level of reproducibility of much research in the signal processing community is underwhelm-

ing. As the methodologies used in the field become more complex, ambiguity in written descrip-

tions may arise, leading to difficulty in building upon established published literature. In light of

this, efforts should be undertaken to provide code which makes results reproducible, and allows

competing methodologies to be easily and fairly compared. The research described in this thesis

has benefited greatly from the availability of code and datasets made possible through the en-

deavours of other researchers. Hoping both to acknowledge the benefit of this open availability

to this research, and to promote the reproducible research philosophy, the code used to perform

all experiments will become available at www.soundsoftware.ac.uk/ken/thesis.
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Chapter 4

Matching Pursuits

Spectrogram decompositions are often used for the application of Automatic Music Transcrip-

tion (AMT) and other musical signal processing tasks, and are usually performed using a gradient

descent methodology. In particular, a magnitude spectrogram is usually decomposed using multi-

plicative update algorithms based on Non-negative Matrix Factorisation [115] [133] [32]. Greedy

sparse Matching Pursuit [80] algorithms provide an alternative strategy to perform matrix decom-

positions and may be attractive as they are fast and allow explicit control of the sparsity level.

Another advantage of greedy methods is that they allow the use of an overcomplete dictionary,

which may afford greater modelling capabilities than the single atom per note model commonly

used in supervised Non-negative Matrix Decompositions (NMD) [133] [32]. The most well-

known greedy pursuits are Matching Pursuit (MP) [80] and Orthogonal Matching Pursuit (OMP)

[98], outlined in (§2.2).

The use of greedy methods has previously been proposed on a few occasions for the applica-

tion of AMT. Cariabas-Orti et al [20] use a variation of Harmonic Matching Pursuit (HMP) [53]

with an extra constraint placed on the smoothness of the spectral envelope to learn a dictionary of

harmonic atoms. After the dictionary is derived, a spectrogram decomposition is then performed

using MP. The authors note the problem of correctly detected note events being represented in a

fractured manner, due to spurious pitch-time omissions.

Tjoa et al [125] propose to use large datapoint dictionaries, similar to those outlined in

(§3.3.1), for AMT, using OMP to perform spectrogram decompositions. The authors note the

resultant computational expense associated with the large dictionary-residual multiplications at
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each iteration of OMP. An Approximate OMP (AMP) algorithm is proposed to counter this ex-

pense, using an approximate nearest neighbour search based on Locality Sensitive Hashing. The

AMP algorithm is seen to be faster than OMP, while incurring a small relative deficit in per-

formance. The authors note the difficulty in selecting apt stopping conditions for OMP-based

methods in the context of AMT.

One recent avenue of research in the field of sparse representations is the concept of group,

or block, sparsity, which assumes that certain groups of dictionary atoms tend to be correlated in

their activity in a given coefficient vector (§2.2.2). Greedy methods for the group sparse problem

have been proposed, such as Block-OMP (BOMP) [37] and Subspace Matching Pursuit (SMP)

[47]. BOMP and SMP are based upon the OMP algorithm, outlined in (§2.2), with two important

alterations to incorporate the group structure. The selection criteria consider all atoms in the

group. For BOMP the `2-norm of the coefficients belonging to a group is used :

l̂ = argmax
l
‖φ [l]‖2 (4.1)

where Φ = DT r is the inner product of the dictionary and the residual, and [l] denotes the lth

group using the group notation defined in (§2.2.2). SMP considers an orthogonal projection of

the current residual signal onto a given subspace

l̂ = argmin
l
‖r−πl(r)‖2

2 (4.2)

where πl(r) is the projection of the residual onto the subspace represented by the lth block of the

dictionary. In both BOMP and SMP, all atoms in a newly selected group are added to the sparse

support simultaneously.

The use of group sparsity has not been previously explored in the context of AMT. It has

previously been shown that the use of several atoms to represent one note may result in better

AMT performance [1], due to improved modelling ability. Conversely, it was observed in [133]

that the use of more than one atom to represent a note had a negative effect on AMT performance.

It is one of the goals of this thesis to explore the use of group sparsity with subspace-based models

for each note and this chapter begins that exploration, using greedy methods.

In the remainder of this chapter, non-negative variants of group sparse greedy algorithms

are first proposed. Experiments are described that compare subspace modelling, which employs



4.1. Greedy Non-Negative Group Sparsity 58

Algorithm 4.1 Non-negative Group OMP-based algorithms
Input

D ∈ RM×N , s ∈ RM, L
Initialise

Γ = {}; r0 = s; i = 0
repeat

i = i+1
Select l̂ using selection criteria (4.3), (4.4), (4.5) or (4.6)
Γ = Γ∪Ll̂

Back project support onto signal
xΓi = argminx ‖s−DΓix‖2

2 s.t. x≥ 0
Update residual

ri = s−DΓixΓi

until stopping condition met

these group sparse methods, with datapoint modelling and single atom per pitch modelling us-

ing standard unstructured greedy methods. Some computational problems using greedy group

methods are observed in the non-negative framework, and strategies to counter these issues are

proposed. In particular, a non-negative variant of the SMP [47] is seen to be computationally

demanding and a fast variant of this algorithm is proposed. Furthermore the use of a gradient

step for the backprojection is explored in this non-negative structured framework. Finally the

chapter concludes with a discussion, summarising the findings of the chapter.

4.1 Greedy Non-Negative Group Sparsity

Subspace dictionaries, described in (§3.3) are formed from a union of pitch-labelled subspaces,

each learnt from the spectrogram of an isolated note using Non-negative Matrix Factorisation

(NMF) [74]. The factorisation used to learn individual subspaces also produces an activation

matrix in which each row displays the activations for a corresponding atom. Co-activation of

atoms is generally observed in individual columns of the activation matrix of this factorisation,

although not all atoms are necessarily active at each time frame, particularly when the size of

the subpace P≥ 3. An implication of this observed co-activation is that individual atoms cannot

be expected to form a good model of a given note spectrum, unlike atoms from the datapoint or

single atom dictionaries. Indeed, their modelling capability lies in their interdependency, and it

is essential to consider some grouping strategy when they are used to decompose a spectrogram,

providing the rationale for the use of group sparsity.

As magnitude spectrograms are considered and the dictionaries consist of non-negative atoms,
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group sparsity is considered in a non-negative framework, where s,D,x≥ 0, and variants of group

sparse pursuits that incorporate the non-negative constraint are proposed. An outline of a gen-

eral non-negative group sparse OMP-based algorithm is given in Algorithm 4.1. Similar to the

NN-OMP [16], the use of NNLS as the backprojection step is used for the general non-negative

group OMP. Different group sparse algorithms can be effected simply by using different group

selection criteria.

A non-negative variant of the BOMP selection criteria (2.21) [37] referred to as NN-BOMP

is proposed by considering only the positive inner product coefficients:

l̂ = argmax
l
‖φ+[l]‖2 (4.3)

where φ =DT r and φ+ = Iφ where I is a binary elementwise “is positive” indicator function.

The use of the `∞ and `1 norms as group selection criteria for greedy methods may be appropriate

for some applications and non-negative versions of these selection criteria are proposed, being

easily derived in a similar manner to (4.3) :

l̂ = argmax
l
‖φ+[l]‖1 (4.4)

for the `1-norm, or alternatively for the `∞ norm:

l̂ = argmax
l
‖φ+[l]‖∞ (4.5)

which are referred to as NN-`1-BOMP and NN-`∞-BOMP respectively. A non-negative variant

of the SMP algorithm is proposed using the selection criteria :

l̂ = argmin
l
‖r−D[l]x̂[l]‖2 (4.6)

where x̂[l] is the NNLS solution (2.25) to r≈ D[l]x[l]. This selection criteria (4.6) is referred to

as Non-Negative Nearest Subspace OMP (NN-NS-OMP) [91], although it could also be referred

to as Non-negative SMP. The difference in how the selection criteria for NN-NS-OMP and SMP

are written is notable, with SMP using the projection operator, πl(r) onto the subspace D[l]. As

some atoms in a group may not be active the projection operator is not explicitly available in the

non-negative case. Hence, NNLS is required in order to ascertain the active atoms in each group
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so that the selection criteria (4.6) may be calculated.

Experiments

Experiments were performed to compare the use of the different modelling approaches for AMT

using greedy algorithms. As the methods employed are greedy in both cases, a comparison

can be performed by using a k-sparse stopping condition. The problem in picking a good stop-

ping condition for greedy methods when used for AMT has previously been noted [125] and the

k-sparse stopping condition avoids such complications when a comparison is required. Experi-

ments were run on the complete standard dataset (§3.1). Separate experiments were run for each

signal transform described in Table 3.1 in order to compare their performance in an AMT task.

For the subspace modelling, all non-negative group sparse algorithms are used by employ-

ing the selection criteria (4.3)-(4.6) in the general non-negative group sparse OMP described in

Algorithm 4.1. Experiments were run for all groupsizes, P∈ {1, ...,7}, noting that all group algo-

rithms default to NN-OMP when P = 1. In the case of the group sparse algorithms, the k-sparse

stopping condition is effected when k different groups have been selected.

For the datapoint modelling, NN-OMP and a non-negative variant of MP (NN-MP) are used

to perform the decompositions. NN-MP differs from standard MP only by constraining the se-

lection step to consider only atoms displaying positive inner products with the residual. Using

the datapoint dictionaries, the greedy algorithms are faced with some difficulty in relation to the

k-sparse stopping condition, as many atoms labelled with the same pitch could be selected in the

same time frame of the spectrogram. Two separate formulations of k-sparsity are compared; first,

a k-note-sparse stopping condition is used, where any number of atoms may be selected and the

algorithm stops iterating when k notes have been selected; in the second case k-sparsity is main-

tained by constraining the selection step to only select one atom for any given pitch. In previous

AMT research using OMP [125], non-negativity was enforced in the atom selection step while

the backprojection step was performed by simply using Least Squares (LS), in typical OMP fash-

ion. Conversely, the NN-OMP algorithm proposed in [16] uses a NNLS backprojection step. The

OMP experiments with the datapoint dictionaries were run twice to compare these backprojec-

tion strategies in the context of AMT, particularly to test if the use of the LS backprojection has

a negative effect in terms of AMT performance.
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Figure 4.1: F-measure for k-sparse transcription experiments comparing datapoint modelling
approaches with subspace modelling approaches for various transforms. Note differing scales
used.
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Results

The results for the experiments described are shown in Figure 4.1. It should first be noted that

the scaling on each graph differs, due to the different range of results found with the individual

transforms. The difference in F-measure, between Transforms S1 and E4, which display the

worst and best performance, respectively is of the order of 10%. This pattern is observable

across all algorithms and amounts to a substantial difference in performance, being greater than

the differences between individual algorithms on a given transform.

Similar patterns in algorithm performance are observable across all transforms. When data-

point modelling is used, OMP outperforms MP in all cases. In the worst performing transforms

this performance gap was ∼ 5%, while in the transforms displaying improved results, the perfor-

mance gap was shortened to ∼ 2.5%. Recalling that both algorithms were run in two different

modes, a constrained k-sparse and a k-note sparse, the results shown in Figure 4.1 are for the

k-note sparse approach, which performed better in all cases. Little difference was observed in

the performance of the two approaches; for OMP the difference was ∼ 0.4% for all transforms,

while in the case of MP the difference was even smaller, at ∼ 0.1%. The comparative use of

LS and NNLS backprojection steps was also compared by running OMP with both strategies,

separately. However the difference in performance relative to the backprojection employed was

negligible, and the results therefore are not recorded here.

Amongst the group sparse algorithms, NN-NS-OMP was seen to perform best consistently,

followed by the NN-`2, NN-`1- and NN-`∞- BOMP algorithms, in that order. Better performance

with another group sparse algorithm was seen only once across the 36 different combinations of

groupsize and transform. This occured using the NN-BOMP algorithm for Transform E4 with

P = 5. The difference in performance between the NN-NS-OMP and NN-BOMP ranged up to

5%, averaging at around 2%. A tendency for NN-NS-OMP to have a smooth transition of F-

measure across values of P can be observed in Figure 4.1. Here it is observed that the other group

sparse algorithms were less consistent with respect to the groupsize used, with large performance

differences between adjacent groupsizes. Indeed sympathetic undulations are seen for the NN-

BOMP algorithms, possibly indicating underlying properties of certain dictionaries. In terms

of group size, performance tended to peak at P = 4 or 5, and to decrease at larger values of P,

which could be construed as a overfitting phenomenon. Alternatively this could be an effect of

the dictionary having meaningless atoms introduced when larger subspaces are learnt due to the
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simple unconstrained method used to learn the subdictionaries.

The use of datapoint modelling is seen, in Figure 4.1, to increase performance using NN-

OMP by 2−4% relative to the single atom per note model in each transform. Similar improve-

ments relative to the single atom modelling are observable when the subspace modelling is used

with an optimal value of P, and this improvement is enhanced when Transforms E2− 4, the

larger dimension ERBTs are used. When the optimal groupsize dictionaries are used little dif-

ference in performance is observed between the subspace modelling, using NN-NS-OMP, and

the datapoint modelling. Results using NN-NS-OMP are seen to outperform those of OMP with

datapoint dictionaries in the case of Transforms S1 and E3&4.

Experiments using mixed group sizes

Further experiments were run to test how the different algorithms perform when presented with

subspace based dictionaries where the subspaces are of varying size. While it is straightforward

to learn a dictionary with a fixed subspace size when isolated note signals are available, such

signals may not be available and a dictionary may need to be learnt from a signal, or signals [20]

[1], in which case it may be necessary to accommodate mixed group sizes.

As the NN-`1- and NN-`2- BOMP selection criteria employ a summation in their calcula-

tion, it may be expected that performance for these algorithms will suffer when presented with

mixed group sizes, with a preference given to notes represented with by larger subspaces. Con-

versely, NN-NS-OMP, which considers an orthogonal projection, and NN-`∞-BOMP which uses

a groupwise maximum can be expected to avoid mostly these issues related to the inner coherence

of individual groups.

Experiments similar to those described in the previous section were run, differing only through

the use of mixed group sizes. The group size relating to a given note was randomly selected from

P ∈ {2, ...,5}, and the relevant block was taken from the subspace dictionary of corresponding

P. These individual note-specific blocks were then concatenated into a dictionary, and the group

structure, L, (§2.2.2) indexed accordingly. Experiments were run for all transforms outlined in

(§3.2). Each piece in the dataset was assigned its own specific random pattern of groupsizes,

which was used for all transforms and algorithms.

The results are presented in Table 4.1. Here it is observed that NN-NS-OMP and NN-`1-

BOMP record similar performance to the standard case when the blocks are of equal size, as may

be expected. However, NN-`1- and NN-`2- BOMP are seen to deteriorate significantly.
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Transform NN-`1 NN-BOMP NN-`∞ NS-OMP
S1 55.3 62.7 64.3 68.0
S2 55.0 62.4 64.8 67.8
E1 64.1 57.8 65.3 69.4
E2 62.6 69.8 72.6 75.1
E3 60.6 68.2 71.1 74.1
E4 65.3 72.8 74.6 76.8

Table 4.1: F-measure for various greedy group sparse approaches for a range of transforms in
experiments with mixed group sizes.

4.2 A fast implementation of NN-NS-OMP

It is observed in the experimental results in the prior section that NN-NS-OMP outperforms the

other non-negative group sparse methods, displaying a consistency not seen with other group

methods and adpating well when a dictionary with mixed group sizes is employed. However,

this improved performance comes at a very high computational expense. The selection criteria

of the NN-BOMP algorithms can easily be calculated by vector and matrix multiplications. This

simplicity is not afforded to NN-NS-OMP as the non-negative constraint on the groupwise solu-

tion vector, x̂[l], (4.6) requires that NNLS be used to find the active set of atoms in a given group

in order to calculate the value of the selection criteria (4.6). While these NNLS projections may

use small subdictionaries, a significant computational expense is incurred as a NN-NS-OMP de-

composition of a 60sec spectrogram with 23ms time frames requires of the order of 106 of these

small NNLS calculations. While this could be approximated by using a Least Squares projection,

as in SMP [47], some prior experiments determined that this was an oversimplification, leading

to a deterioration in performance.

In order to derive a fast NN-NS-OMP algorithm, it is necessary to recall the SMP selection

criteria (4.2) and in particular the coefficient for each group, which can be rewritten:

‖r−πl(r)‖2
2 = ‖r−D[l](D[l])†r‖2

2

= ‖r‖2
2−φ [l]T x̂[l] (4.7)

where φ = DT r and x̂[l] is the LS solution vector for the lth group. This enables the SMP

selection criteria (4.2) to be expressed as

l̂ = argmax
l

φ [l]T x̂[l] (4.8)
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which is referred to here as the Fast SMP (FSMP) selection criteria. One way that FSMP can be

solved is through introduction of an auxiliary dictionary

Θ[l] = [D[l]†]T (4.9)

where D[l]† is the Moore-Penrose pseudoinverse of D[l]. Using the auxiliary dictionary the

groupwise LS solution vector x̂[l] = Θ[l]T r is easily calculated, while φ is available using the

original dictionary allowing the FSMP to be calculated using a two-dictionary approach.

A more straightforward single dictionary approach is possible, through orthogonalisation of

the individual subspaces. Given that x̂[l] = (D[l]T D[l])−1φ [l] from the definition of the pseudoin-

verse, the FSMP group coefficient can be rewritten

φ [l]T x̂[l] = rT D[l](D[l]T D[l])−1D[l]T r
= rT

Ψ[l]Ψ[l]T r = ‖Ψ[l]T r‖2
2 (4.10)

where Ψ[l] = (D[l]T D[l])−1/2D[l]T is the polar decomposition of D[l]. The final expression in

(4.10) suggests the BOMP algorithm can be used to solve SMP when supplied with the dictionary

Ψ rather than the original dictionary D. Other subspace orthogonalisations to derive Ψ are also

possible.

However, this formulation using orthogonalised subspaces is not appropriate in the non-

negative framework. While projection onto a given subspace and its orthogonal complement

are equivalent, there is no simple correspondence between the individual atoms or their coeffi-

cients and the set of atoms that would form a non-negative backprojection coefficient vector is

not simply discernible. However, a Fast NN-NS-OMP (F-NS-OMP) selection criteria defined

by:

l̂ = argmax
l

x̂[l]T φ [l] (4.11)

in which x̂ is the NNLS solution vector is amenable to fast expression using the two dictionary

formulation. This is still not straightforward as the NNLS solution vector, x̂[l], is not simply

derivable by dictionary calculation. An alternative approach is proposed in which the F-NS-

OMP coefficient for each group is bounded. These bounds are first defined.

Fact 1. The F-NS-OMP selection criteria (4.11) is upper-bounded by the FSMP selection criteria

(4.8).
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Algorithm 4.2 Fast NN-NS-OMP (F-NS-OMP)
Input D ∈ RM×N, Θ ∈ RM×N , r ∈ RM

φ = DT r; φ+ = Iφ ; x = ΘT r
fl = min[x[l]T φ [l],φ+[l]T φ [l]]
J = { j|f j > f j+1}
t = 0; ζmax = 0
while fJ (t+1) > δmax do

t = t +1
l = J (t)
x+[l] = argminx ‖ri−D[l]x‖2

2 s.t. x≥ 0
ζ = x+[l]φ [l]
if ζ > ζmax then

ζmax = ζ

l̂ = l
end if

end while
Output l̂

Proof. This is a simple result of least squares projections. Given that B is a column submatrix of

A it follows that πA(r) ≥ πB(r), while a NNLS solution refers to the least squares solution of a

column submatrix.

Fact 2. The F-NS-OMP selection criteria (4.11) is upper-bounded by the NN-BOMP selection

criteria (4.3) in the non-negative case, i.e. when D≥ 0

Proof. In a non-negative framework, it is necessary that xi ≤ φi where x and φ are the NNLS and

inner product coefficients given a non-negative dictionary D and a signal s.

The subprocedure outlined in Algorithm 4.2 can be used to calculate the NN-NS-OMP selec-

tion criteria (4.6) using these bounds. This subprocedure is initialised by calculating the block-

wise least squares coefficient vector x̂ and the inner products, φ , of the dictionary and the residual

The FSMP (4.8) and NNBOMP (4.3) group coefficients are then derived using x̂ and φ . The vari-

able fl expressing the groupwise minimum of the FSMP and NN-BOMP for the lth group then

sets an upper bound to the F-NS-OMP selection criteria (4.11). The ordered set, J , of group

indices, l, sorted in descending order of fl , is formed before an iterative loop is entered after a

counter, t, is initialised to zero. At each iteration, NNLS is run for the group indexed by l =J (t)

to derive the solution vector x+[l]. The F-NS-OMP group coefficient, ζ , is then calculated us-

ing x+[l], and compared to the current best estimate, ζmax. If ζ is larger than ζmax, its value

is assigned to ζmax, and l is assigned to l̂. This iteration continues until the next group index
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l = J (t +1) in the set relates a group with an upper bound, fl that is lower than the current best

estimate, ζmax. When this happens, the loop stops and the subprocedure then returns the selected

index l̂.

In this way it is expected that the amount of NNLS iterations required to assert the NN-

NS-OMP selection criteria will be pruned, while the calculation and ordering of the bounds is

relatively computationally inexpensive. It is notable that the proposed accelerated F-NS-OMP

does not constitute an approximation of the NN-NS-OMP, and the same results are derived using

both approaches.

Experiments

Experiments were run to test if the proposed F-NS-OMP provides an expected acceleration rela-

tive to the initial implementation in which a NNLS calculation is performed for each group. For

comparison, timing experiments are also run using OMP and MP with the datapoint dictionaries,

and NN-BOMP with the subspace dictionaries.

For all OMP-based algorithms, including the group sparse variants, the inner product of the

dictionary atoms with the residual is approximated at each iteration using

φ
i+1 = α−DT DΓxi

Γ (4.12)

where α = DT s and DT D is precalculated, as suggested for OMP in [121] and [110], and also

used as part of the F-NNLS algorithm [14]. In MP, the inner product vector is updated in a similar

fashion, while only considering the coefficient of the last atom to be selected:

φ
i+1 = φ

i−DT dl̂φ
i
l̂ . (4.13)

The timing results given for OMP consider the case when the non-negative backprojection

step is omitted and the solution is k-sparse, when only one atom is selected to represent each

note, i.e. the fastest variant of the OMP algorithms described in the experiments in (§4.1). For

the group sparse algorithms, the groupsize is set to P = 5, as this value was generally seen to be

optimal in the earlier experiments. The group sparse algorithms use the F-NNLS algorithm [14]

configured for warm restarts for the back projection step.

The timing results for all algorithms are outlined in Table 4.2. Here it is seen that MP is

generally the fastest algorithm, as can be expected due to the lack of a backprojection step.
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Transform NN-MP NN-OMP NN-BOMP F-NS-OMP NS-OMP
S1 29.7 38.4 34.4 55.3 1087
S2 48.8 53.3 34.3 55.6 1073
E1 17.0 26.7 33.7 53.9 1048
E2 21.5 29.2 33.6 50.7 1072
E3 21.0 29.2 35.4 52.7 1067
E4 28.7 38.0 33.7 48.8 1084

Table 4.2: Time taken in seconds to transcribe 15 minutes of music using OMP based algorithms.

However, NN-BOMP is seen to be faster in the case of Transform S2, which is of the largest

dimension, 2048, of all dictionaries.

OMP and MP are both seen to vary greatly between transforms, due solely to the initial inner

product calculation introducing a computational load which scales with the atom/spectrogram

dimension. It is worth noting that the authors of [125] ignore the fast inner product vector update

used (4.12), instead using an Approximate OMP (AMP) with approximate nearest neighbour

search. Some experiments using OMP without the inner product approximation (4.12) suggest

that (4.12) effects a large speedup in the execution time, as the matrix multiplication of the

dictionary and the residual is not performed. Indeed it would appear that this speedup is larger

than that described using AMP [125] without suffering the reported degradation of results.

In comparison, the group sparse methods are seen to vary little relative to the transform used

as the dictionary size is much smaller and the computation load is dominated by the backprojec-

tion step. The F-NS-OMP is seen to be expensive relative to NN-BOMP typically taking more

than 1.5 times as long to calculate. However, F-NS-OMP is seen to accelerate the NN-NS-OMP,

being about 20 times faster, while again noting that this acceleration does not come with a degra-

dation in terms of performance, as the F-NS-OMP selection criteria, as described in Algorithm

4.2 is not an approximation.

Comparing the OMP with datapoint dictionaries against the group sparse methods, it is seen

that the group sparse methods are faster on all the transforms with dimension larger than 512, i.e.

the two STFTs, and Transform E4, the largest ERBT, which has been observed in the previous

section to give superior AMT performance to the other transforms.

4.3 Non-negative Group Gradient Pursuits

The largest computational expense incurred by OMP is associated with the backprojection step

[121]. The backprojection step consists of a LS projection of the supported atoms onto the sig-
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nal that is performed after each new atom is added to the sparse support. Different approaches

such as using rank-one QR or Cholesky decomposition updates to ameliorate the computational

expense associated with backprojection have been considered and a comparison of some of these

approaches is described in [121]. Gradient Pursuits [11] provide a fast alternative to OMP, from

which they differ only through use of an approximate backprojection step which may be per-

formed using gradient descent methods [11],

It was observed in previous experiments that the group greedy non-negative OMPs suffer in

computational terms, by the need to use a NNLS backprojection step. Performance is not seen to

degrade when a LS backprojection is used in OMP for the context of AMT when the datapoint

dictionaries are used. However, this is not the case when the subspace dictionaries are used,

possibly an effect of the interdependency of the atoms in each group of the subspace dictionaries

Several attempts to counter the computational load in terms of the backprojection in non-

negative group greedy algorithms were undertaken. While the execution time is reduced by

a considerable amount when a warm restart is used, the addition of a group may still require

several iterations of the F-NNLS algorithm in order to add new atoms to the active set, while

possibly ejecting others. Adding all atoms of positive coefficient from a newly selected group to

the active set, similar to a stagewise approach [35] and also proposed for greedy group sparsity

[37] [47] may seem an appropriate strategy. However, scaling errors were incurred in some initial

experiments using this approach, assumed to be due to badly conditioned dictionaries.

Similarly, experiments were run using the block pivoting approach [105]. However this ap-

proach required calculation of a pseudoinverse at each iteration of NNLS, and even with a warm

restart was slower than FNNLS. A further attempt, in which explicit calculation of the pseudoin-

verse in the block pivoting method was replaced through use of the inverse of the Gram matrix,

in a manner similar to that employed by F-NNLS [14], was proposed. However, scaling errors

were again seen using this approach.

It is useful to consider, in this case, the use of a gradient pursuit, and the NMF coefficient

matrix update (2.32) is known to provide a fast gradient descent update with proven monotonic

descent in a non-negative framework. A gradient variant of the general Non-Negative Group

OMP, Algorithm 4.1, is proposed by substituting the NNLS backprojection step with a fixed

number, w, of the Euclidean distance NMF coefficient matrix updates (2.32).
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NNLS
Gradient (w)

1 2 5 10 20

Time (secs)
NN-BOMP 33.7 11.5 13.0 17.4 24.7 39.6
F-NS-OMP 51.2 39.6 41.1 44.3 49.7 61.3

F-measure (%)
NN-BOMP 72.9 73.7 73.5 73.0 72.9 72.9
F-NS-OMP 74.8 73.4 73.7 74.1 74.2 74.3

Table 4.3: Comparision of NNLS and gradient based backprojections for F-NS-OMP and NN-
BOMP in terms of time and AMT performance using F-measure. The number of iterations of
the multiplicative update, w, is varied between 1 and 20 (indicated in italics).

Experiments

Some experiments were run to test the effectiveness of the gradient approach, in terms of exe-

cution time and potential deterioration in AMT performance. Gradient variants of both the NN-

BOMP and F-NS-OMP, with a varying number of iterations of the NMF multiplicative update,

w ∈ {1,2,5,10,20} were used to decompose the spectrograms of Transform E2 using subspace

dictionaries with P = 5. A k-sparse stopping condition was used, with kt equal to the known

polyphony at each time frame. The assumption is made that performance will decrease in the

gradient algorithms, as an approximation is used.

The multiplicative update (2.32) does not effect any difference on a coefficient set to zero, so

initialisation of the coefficients of atoms newly added to the sparse support is necessary. Different

initialisation strategies were used with the two algorithms. For Gradient NN-BOMP, only atoms

belonging to the selected group which displayed a positive inner product with the residual were

added to the support. The inner products of these atoms with the residual were used to initialise

the corresponding coefficients in the vector, xt . In the case of Gradient F-NS-OMP, the selection

criteria requires calculation of an NNLS coefficient vector x̂t [l] for the newly added group. This

NNLS coefficient vector is used to initialise the coefficients of the newly selected group.

Results are given in terms of computation time and F-measure in Table 4.3. Some differing

patterns are seen in the results, relative to the algorithm used. In the case of F-NS-OMP it

is observed that the gradient backprojection decreases the performance in terms of F-measure

with the worst performance seen when w = 1 and the best when w = 20. However, with NN-

BOMP the opposite occurs. Improved F-measure is observed when the gradient backprojection

is employed and the best performance is seen when w = 1. This was originally assumed to be

an effect of using the different initialisations for each algorithm. However, further experiments

showed that this was not the case and both algorithms performed worse than reported in Table
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4.3 when employing the alternative initialisation.

Furthermore, the timing results show some unexpected phenomena. In both cases, a speedup

is seen in all cases when w < 20. However, the scale of the speedup is larger for NN-BOMP,

which drops from 33.7sec to 11.5sec, a decrease of ∼ 22sec, being now faster than even MP.

However, in the case of the F-NS-OMP, the speedup is ∼ 11sec, around half of that of the NN-

BOMP. This might suggest that the original NNLS backprojection was for some reason more

efficient with the NS-OMP, possibly requiring less backtracking due to the use of the prior NNLS

projection in the group selection criteria.

4.4 Discussion

In this chapter, the use of greedy methods for the application of AMT has been explored. In

particular the use the group sparse greedy methods with subspace modelling of piano notes was

introduced, a novel approach in AMT. Several greedy non-negative group sparse methods were

proposed, the best of which, NN-NS-OMP, was seen to be computationally demanding. However,

a strategy based on bounded projections was seen to afford a large speed up of this algorithm,

with zero effect on performance. Further speed-ups were shown using a gradient approach to

perform a backprojection step, however this was seen to effect the performance, albeit positively

in some cases.

The subspace modelling, using group sparsity, was compared with the use of both single

atom per pitch modelling and datapoint modelling with standard sparsity. It was found that the

subspace-based decompositions performed better than the atomic pitched dictionary based de-

compositions and similar to the datapoint dictionary based decompositions, when the size of the

group of atoms representing the subspace is optimal. This suggests that the subspace model is

an apt model for AMT. Further exploration of this model is undertaken in the following chap-

ters. One interesting observation was the large discrepancy seen between performance relative

to different transforms. Indeed, the differences in performance observed for different transforms

were larger than those recorded for different algorithms with a given transform employed. This

is suspected to be an effect of varying dictionary coherence in the different transforms, which

leads to further analysis provided in Chapter 8.

To summarise, in the context of AMT, it has been seen that the use of different transforms

can affect the performance, and the subspace model can also provide an improvement similar to
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that found using a large datapoint dictionary, while having similar computational expense.

While it has been observed that subspace modelling and the use of different transforms may

be useful for AMT in the context of greedy methods, the usage of this methodology has not

necessarily been advanced. Fractured time continuity is a previously reported problem using

greedy methods for AMT [20] that was observed in the experiments undertaken, even though

some improvement in this aspect was seen in the better performing transforms. Previously noted

advantages of greedy methods are similarly unaffected, such as their potential for use in multi-

instrument signals [76], as greedy methods discourage co-activity of instruments observed using

gradient based methods [133]. While speed is a noted advantage of greedy methods [23], this

may not be so important in a non-negative framework where fast algorithms are available mostly

due to the use of multiplicative updates.

One flaw of greedy methods observed in the experiments undertaken is that many mistakes

in atom selection can happen at a very early stage; even at the first iteration upwards of 10%

of selections are incorrect. In a purely greedy method these early atom selection mistakes are

irreversible. A previously noted problem with OMP for AMT is selection of an apt stopping con-

dition when the polyphony, k, is unknown [125]. These two observations lead to an exploration

in the next chapter of stepwise methods that include backwards elimination steps, and locally

optimise the `0 sparse cost function at each step.
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Chapter 5

Stepwise Optimal Methods

In the previous chapter, the use of methods based upon Orthogonal Matching Pursuit (OMP)

was explored in the context of AMT. Subspace modelling was seen to be equivalent to datapoint

modelling in this context, while the use of different signal transforms was observed to result

in large relative differences in AMT performance. However, problems using matching pursuits

in the context of AMT that have previously been described in the literature, such as fractured

temporal continuity [20] and the difficulty in selecting an apt stopping condition [125] were still

observed.

Fractured temporal continuity is observed when a ground truth atom remains undetected,

while temporally adjacent time-pitch points are correctly selected. Often when a ground truth

atom is undetected using OMP, an atom representing a harmonically related note is detected in-

stead, a phenomenon that can be understood as a dictionary coherence problem. High coherence

is expected between musical atoms, particularly those that are consonant due to the harmonic

overlap and non-negativity.

A graphical description of this problem with OMP and musical dictionaries is shown in Fig-

ure 5.1, in a simple, noiseless problem using a dictionary with three atoms. Two of these three

atoms are active in the signal. However, the inactive atom has a higher correlation with the sig-

nal. In the described problem, an incorrect selection is made at the first iteration if a greedy

method is used, an example of the myopic nature of greedy methods [83], while NNLS would

be expected to recover the correct representation in this noiseless scenario. Alternatively, it has

long been recognised that backwards steps, as used in the LARS/LASSO algorithms [127] and
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Figure 5.1: Graphical description of problems of overlapping harmonic partials. Three musical
atoms are shown on top, representing the first, its octave and the twelfth note of a scale. On the
bottom are shown, from left, a signal composed from a superposition of two atoms, the synthesis
coefficents and the correlations of each atom with the signal
.

suggested for Polytope Faces Pursuit [102], may be needed to correct false detections when a

greedy method is used. Such an approach has not previously been proposed in the context of

AMT.

Optimal Steps

Orthogonal Matching Pursuit can be seen as part of a larger family of algorithms referred to as

stepwise regression. In stepwise regression different selection criteria can be used while several

stepwise strategies are common. Forward selection, referred to as Order Recursive Matching

Pursuit (ORMP) [86] in the sparse representations literature, adds a single atom at each iteration,

in a similar fashion to OMP [98]. OMP selects the atom with the largest gradient in terms of the

least squares cost function, related through the inner products of the dictionary with the residual.

ORMP looks deeper in its atom selection, seeking to select the atom, indexed by n̂ which when

added to the current sparse support will cause the largest reduction in the residual error norm.

The difference in the residual norm effected by adding an atom indexed by n to the sparse support
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is denoted by :

∆Frn = ‖ri‖2
2−‖r̄n‖2

2 (5.1)

where ri is the residual at the current iteration, and r̄n is the residual for the hypothetical sparse

support Γn = Γ∪n, where Γ contains the indices of the current sparse support. Using this defini-

tion the forward selection criteria is given by

n̂ = argmax
n

∆Frn. (5.2)

ORMP is considered a slower algorithm than OMP [10] and several variants have been proposed

in the sparse representations literature [10] [108] [86] [83] offering optimised computational

performance.

Backwards elimination is an alternative strategy in which the initial estimate contains all, or

many candidates. Similar to forward selection, the elimination cost of an atom is given by

∆Brn = ‖r̄n
B‖2

2−‖ri‖2
2 (5.3)

where r̄n
B is the residual given the hypothetical sparse support Γn = Γ\n. At each iteration one

atom indexed by

n̂ = argmin
n

∆Brn (5.4)

is eliminated from the sparse support Γ.

OMP is considered an `0 approximation algorithm and is guaranteed to solve the k-sparse

problem when the Exact Recovery Condition (ERC) [128] is met. However, in the case of highly

coherent dictionaries, a condition such as ERC can be considered irrelevant. Indeed, the `0-

penalised sparse cost function

CS = ‖s−Dx‖2
2 +λ‖x‖0 (5.5)

is not necessarily optimised by any iteration of OMP, except for the initial selection, which se-

lects the atom that displays the largest inner product with the current residual. The forwards

selection criteria selects the atom that minimises the residual when added to the sparse support

and therefore can be considered to make the locally optimal step with regard to the sparse cost

function (5.5). Indeed the forward selection step is seen to reduce the value of (5.5) as long as

∆Frn̂ > λ in which case the reduction in ‖s−Dx‖2
2 is offset by in the increment of λ in the
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sparse penalty term. The backwards elimination step performs a similar local optimisation, when

∆Brn̂ < λ . Hence, ORMP and backwards elimination can be referred to as stepwise optimal. One

advantage of stepwise optimality is that the parameter λ , representing a threshold, can be used

as a stopping condition in pursuit algorithms.

Fast calculation of the forwards selection (5.2) and backwards elimination (5.4) criteria are

proposed as part of the Greedy Sparse Least Squares (GSLS) algorithm in [83]. Given that

‖r‖2
2 = ‖s‖2

2−αT
Γ

x, where α = DT s and x = (DT
Γ

DΓ)
−1αΓ the forward selection coefficient (5.1)

becomes

∆Frn = α
T
Γ (D

T
ΓDΓ)

−1
αΓ−α

T
Γn
(DT

Γn
DΓn)

−1
αΓn

= α
T
Γ (D

T
ΓDΓ)

−1
αΓ−

[
αΓ

αn

][
An bn

bT
n cn

][
αΓ αn

]
(5.6)

where bn = D†
Γ
dn; cn = 1/(dT

n dn− [DT
Γ

dn]
T bn) and A = (DT

Γ
DΓ)

−1+cn[D†Γdn][D†Γdn]
T are given

by the block matrix inverse formulae [7]. Cancellations in (5.6) and the fact that ‖dn‖2 = 1∀n

lead to the reconfigured selection criteria :

∆Frn =
φ 2

n

1−gn
Γ

T (DT
Γ

DΓ)−1gn
Γ

(5.7)

where gn
Γ
= dT

n DΓ is a submatrix of the Gram matrix G = DT D. Some matrix manipulation

conveniently allows (5.7) to be calculated for all atoms simultaneously, using matrix and vector

operations:

[∆Fr] = φ
[2]�

(
1|Γ|−

[
GΓ⊗ [(DT

ΓDΓ)
−1GΓ]

]
1|Γ|
)

(5.8)

where GΓ = DT DΓ; 1|Γ| is a column vector of dimension |Γ| in which each element is equal to

one, � denotes elementwise division and x[a] denotes elementwise exponentiation of x to the

power of a. Using a similar methodology based on block matrix inverse updates, the backwards

GSLS [83] elimination criteria can also be derived:

∆Brn = argmin
n

x2
n

[(DT
Γ

DΓ)−1]n,n
(5.9)

which, even more simply than (5.8) can be computed solely in terms of matrix and vector opera-

tions.

In the remainder of this chapter the use of stepwise optimal methods for AMT is explored. In
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the next section several bi-directional strategies from the literature are described and a backwards

elimination strategy from an initial NNLS solution is proposed (BF-NNLS). Comparison using

k-sparse experiments shows similar performance to NNLS for the stepwise optimal methods. A

modified sparse cost function is then proposed, which is incorporated into the BF-NNLS. This

backwards elimination approach is then extended to incorporate group sparsity, before conclud-

ing with a summary of the findings of the chapter.

5.1 Bi-directional stepwise optimal strategies

A bi-directional stepwise method incorporates both forwards and backwards steps, using a strat-

egy to define the ordering of the steps. Recently, several papers in the sparse representations

literature have proposed pursuit algorithms that incorporate different combinations of backwards

and forwards steps in order to counter problems encountered with coherent dictionaries [131]

[83] [60] [120].

One bi-directional strategy is the use of cyclic replacement, proposed in [120], where two

different cyclic algorithms, Cyclic MP (CMP) and Cyclic OLS (COLS) are derived from MP and

ORMP, respectively. The COLS algorithm is considered here as it can be seen as a bi-directional

stepwise strategy that uses optimal forward selection. COLS, outlined in Algorithm 5.1, proceeds

by selecting an initial support estimate through the normal iterations of ORMP. Once the support

is initialised, the COLS algorithm iteratively deselects each atom. When an atom is deselected,

the residual is recalculated and an atom is then selected using the forward selection criteria (5.7).

If the newly selected atom and the deselected atom are the same, a counter, j, is incremented.

Otherwise, the newly selected atom replaces the deselected atom in the sparse support. COLS

converges when j = k; that is, a full cycle through all supported atoms occurs without any atoms

being replaced.

An alternative formulation of the k-sparse problem is the family of subspace pursuits, includ-

ing algorithms such as Subspace Pursuit [29], CoSaMP [87], and Iterative Hard Thresholding

[123], which are known to afford accurate recovery under ERC and RIP conditions. However,

problems when dealing with coherent dictionaries with subspace pursuits are noted in [131]

where a related algorithm called Stepwise Optimal Subspace Pursuit (SOSP) is proposed. SOSP,

outlined in Algorithm 5.2, is a bi-directional pursuit algorithm that is initialised, similar to COLS,

by selecting k atoms using ORMP. The algorithm then enters an inner loop, in which ∆ extra
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Algorithm 5.1 Cyclic OLS
Input D ∈ RM×N , s ∈ RM, k
Initialise Γ = {}; i = 0; j = 0
repeat

Select atom index n̂ using (5.2); Γ = Γ∪ n̂
until |Γ|= k
repeat

i = i+1; î = i mod k; n̄ = Γî; Γî← Γ\n̄
Get new atom index l̂ using (5.2)
If n̄ = n̂

j = j+1
Else

j = 0; Γ = Γî∪ n̂
EndIf

until j = k
Output Γ

atoms are added using forward selection steps, followed by removing ∆ atoms using backwards

elimination steps until the size of the sparse support is equal to k. The forwards and backwards

steps proposed in the Greedy Sparse Least Squares (GSLS) algorithm [83] are used. After the in-

ner loop of atom selection and elimination is completed, the new residual error, Ci, is calculated,

and ∆ is decremented when a decrease in the current residual error relative to that of the previous

iteration is not encountered. SOSP converges when ∆ disappears.

Non-negative bi-directional stepwise strategies

In the context of a non-negative framework, such as is used for AMT throughout this thesis, some

modifications have to be made to the COLS and SOSP algorithms. In particular, a non-negative

variant of the fast forward selection criteria (5.7), proposed in [83] is required. The denominator

of (5.7) can also be written as dT
n (I−DΓD†

Γ
)dn, where D† is the Moore-Penrose pseudoinverse.

Indeed, the bracketed term is the projector onto the subspace DΓ and is therefore positive semi-

definite, leading to a positive denominator in all cases. Hence, a non-negative variant of the

forward step of GSLS, referred to as NN-GSLS, is proposed simply by taking the square root of

(5.7):

n̂ = argmax
n

φn

(1−gn
Γ

T (DT
Γ

DΓ)−1gn
Γ
)

1
2

(5.10)

as the sign of the inner product of a given atom and the the residual, φn, is preserved due to

the positive denominator. This can also be written in the form of (5.8) allowing calculation of

the coefficients for all N atoms simultaneously. It is noted however, that this does not ensure a
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Algorithm 5.2 SOSP
Input D ∈ RM×N , s ∈ RM, k, ∆

Initialise i = 0; Γ = {}
repeat

Select atom index n̂ using (5.2); Γ = Γ∪ n̂
until |Γ|= k
C0 = ‖s−DΓxΓ‖2

2
i = 0
repeat

i = i+1; Γi = Γ(i−1)

repeat
Select atom index n̂ using (5.2); Γi = Γi∪ n̂

until |Γi|= k+∆

repeat
Select atom index n̂ using (5.4); Γi = Γ\n̂

until |Γi|= k
Ci = ‖s−DΓixΓi‖2

2
If Ci ≥ Ci−1

Γi = Γi−1; Ci = Ci−1; ∆ = ∆−1
until ∆ = 0
Output Γi

completely non-negative solution vector.

A non-negative variant of ORMP (NN-ORMP) is achieved using several iterations of the

NN-GSLS selection criteria (5.10), with some subsequent replacements if necessary to maintain

the non-negative constraint. After the initial support of k atoms was derived, elements displaying

non-negative coefficients in a least squares (LS) backprojection were removed from the sparse

support and atom additions were performed until the support was again of size k atoms. This

removal and addition was repeated until a non-negative solution of cardinality k was found.

Similar steps are required for non-negative variants of both COLS and SOSP. For COLS, non-

negativity of the current solution vector is checked after all replacements. When a replacement

occurs, LS backprojection is performed to check if the non-negative constraint is met. If this

constraint is violated, the newly selected atom is removed from the sparse support, and the atom

with the next best non-negative forward selection value (5.10) is added. If necessary this is

repeated until an atom was found for which the non-negative constraint is met.

SOSP adds a further ∆ atoms to the support, after initialisation of the support using NN-

ORMP. The authors of [131] propose that ∆= k, that is the support is initially grown to 2k, similar

to the Subspace Pursuit [29]. However, in some cases it may be found that |x > 0|< 2k, where x

is the NNLS solution vector. A non-negative variant of SOSP needs to be aware of this, stopping
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Algorithm 5.3 BF-NNLS algorithm
Input

D ∈ RM×N , s ∈ RM, s,D≥ 0, k or λ

Initialise
x0 = argminx ‖s−Dx‖2

2 s.t. x≥ 0
Γ = { j|x0

j > 0}
r0 = s−Dx0

repeat
n̂ = argmin∆Brn where n ∈ Γ

Γ = Γ\n̂; xn̂ = 0;
xΓ = argminx ‖s−DΓx‖2

2 s.t. x≥ 0
until ‖x‖0 = k or ∆Brn̂ > λ

Output x

when no more atoms display a positive inner product with the residual to avoid a potential critical

loop. When ∆ extra atoms have been added, a check needs to be made for non-negativity, and

atoms displaying non-negative coefficients are removed from the sparse support. SOSP then

uses a backwards elimination step. Some initial experiments led to the observation that the

non-negative constraint is rarely broken in the backwards elimination stage when the forward

solution was positive, and backwards elimination was performed naively, without consideration

being given to the non-negative constraint.

It is seen above that the non-negative constraint introduces some instability to the bi-directional

strategies, particularly in the forward selection step. It is worthwhile to reconsider that the dictio-

naries used for the application of AMT are often undercomplete, avoiding the scenario encoun-

tered with overcomplete dictionaries where many solutions are possible. Even if an overcomplete

dictionary, such as a datapoint dictionary (§3.3.1) or a subspace dictionary (§3.3.2) with large

groupsize, P, and a small transform dimension, is used the active set NNLS algorithm is known

to give a full rank solution and converges to a minimum [14].

Considering that NNLS provides a stable solution and backwards elimination was seen to

generally maintain the non-negative constraint an algorithm referred to as Backwards From

NNLS (BF-NNLS) is now proposed, in order to avoid the problems introduced to the forward

step by the non-negative constraint. BF-NNLS is outlined in Algorithm 5.3 and is seen to be

conceptually simple. Active set NNLS is used to initialise the solution vector, which can be con-

sidered as having taken all possible forward steps. This is followed by backwards elimination

steps and a stopping condition can be employed that considers the number of atoms selected, k,

or a threshold λ .
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Transform OMP ORMP SOSP COLS BF-NNLS T-NNLS
S1 66.8 66.9 68.1 69.6 69.9 70.0
S2 66.8 66.9 68.1 69.7 69.9 70.0
E1 69.2 69.3 70.4 71.9 72.2 72.3
E2 72.6 72.7 73.8 74.4 74.5 74.5
E3 71.9 72.1 73.2 74.0 74.0 74.1
E4 74.3 74.3 75.3 75.7 75.6 75.6

Table 5.1: OMP and bi-directional algorithms compared in terms of F-measure with T-NNLS in
k-sparse experiments on standard dataset across all transforms using single atom dictionaries.

Experiments

Experiments were run to compare the OMP, T-NNLS and BF-NNLS with non-negative variants

of SOSP and COLS. NN-ORMP is also compared as SOSP and COLS initialise with ORMP,

as described above. It is noteworthy that all the stepwise methods ultimately form a subset

NNLS solution, and it is queried whether the stepwise approaches may be able to capture the

more relevant signal elements, while countering some of the problems introduced by harmonic

overlaps experienced using OMP.

Decompositions of the standard dataset (§3.1) are performed with the atomic pitch dictionar-

ies (§3.3.2) using all transforms outlined in (§3.2). A k-sparse experimental setup was used with

the stepwise methods set to select k atoms while k-sparse thresholding (§3.4) was used as the

thresholding strategy for T-NNLS.

Results

The results for the experiments are outlined in Table 5.1. Here it is seen that the ORMP per-

forms slightly better than OMP, while all bi-directional methods outperform these forwards only

strategies. There is little to divide the different bi-directional approaches, with SOSP performing

worst, and BF-NNLS generally performing best. However, improvement on NNLS results are

only seen once. Hence, COLS and SOSP can be considered unuseful in this context, as BF-NNLS

is faster, simpler and provides marginally better results.

In terms of performance relative to signal transform, a similar pattern is seen in the vari-

ation of all algorithms, with the STFTs performing worst, and improvements with the larger

dimension ERBTs with the largest of these, Transform E4, performing the best. The variation

in performance for the NNLS based methods is reasonably large at over 5%. However this is

considerably smaller than the variation observed with OMP-based decompositions.
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5.2 A modified sparse cost function

In the experiments in the previous section, the BF-NNLS was seen to perform similarly to NNLS

in terms of AMT in a k-sparse experimental setup. It is worth reconsidering the backwards

elimination cost (5.4) for an atom that, using the block matrix inversion formulae, can also be

written

∆Brn =
x2

n(
dT

n (I−DΓnD†
Γn
)dn

) =
x2

n

(1−dT
n DΓnD†

Γn
dn)

(5.11)

where Γn = Γ\n as ‖dn‖2 = 1∀n. From (5.11) it can be seen that the backwards elimination cost

of an atom is related to two elements. The first of these is the square of its NNLS coefficient, xn,

given the current support. The second is the bracketed term (1−dT
n DΓnD†

Γn
dn). This bracketed

term shows that the elimination cost of an atom is related to correlation with other atoms. The

value of the bracketed term is equal to 1 in the case of zero correlation with other supported

atoms if ‖dn‖2 = 1. As correlation increases the value of the bracketed term can be expected

to increase, and can be considered to apply a coherence-based weighting to the coefficient of an

atom.

As noted earlier in this chapter, the backwards elimation step provides a local optimisation to

the sparse `0 penalised least squares cost function (5.5) when λ > ∆Brn̂. This allows AMT to be

performed in a polyphony-blind manner using BF-NNLS, with λ used as a stopping condition, as

seen in Algorithm 5.3. A similar global approach is possible using NNLS with the δ -thresholding

strategy (§3.4.1), performed on the NNLS coefficient matrix X.

It is recalled from above that the BF-NNLS elimination cost is constructed (5.11) in terms

of x2
n̂, the square of the NNLS coefficient at a given iteration. It may be preferable to derive a

coefficient in the backwards elimination that is based upon the atom coefficient rather than its

square. One motivation is that the coefficients of individual atoms may be expected to scale well

relative to a maximum coefficient value, as employed in the δ -thresholding approach (§3.4.1).

Hence a modified sparse cost function is proposed using the sparse penalised residual norm

Cmod = ‖s−Dx‖2 +λ‖x‖0 (5.12)

which differs from the usual sparse cost function (5.5) which uses a penalised least squares. In
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terms of the BF-NNLS algorithm, a modified elimination cost is given by

∆̂Brn = ‖r̄n
B‖2−‖ri‖2 (5.13)

which uses the same elimination criteria (5.9) as the standard `0-penalised least squares (5.5), as

the ordering of the elimination criteria coefficients for both cost functions, ∆̂Br and ∆Br, is the

same. The value of the modified elimination cost of the selected atom is easily calculated by :

∆̂Brn̂ =
√
‖ri‖2

2 +∆Brn̂− ‖ri‖2 (5.14)

Hence, the BF-NNLS algorithm can also be used to form an approximation for the modified

sparse cost function (5.12) by using a stopping condition, λ > ∆̂Brn̂.

Experiments

Experiments were run to compare the BF-NNLS approach, using both the standard sparse (5.5)

and the modified sparse (5.12) cost functions, with the T-NNLS. It is expected that the use of the

modified sparse cost function will result in consistency in the value of δopt as scaling is expected

to be relatively consistent regardless of the transform used. Furthermore, it can be expected that

the backwards elimination approaches may produce better AMT results.

A δ -thresholded experimental setup was used. For all transforms outlined in Table 3.1 the

standard dataset (§3.1) was decomposed using the atomic pitch dictionaries (§3.3.2). The results

are tabulated in terms of the F ,P,R ensemble of metrics. The value of δopt , representing the

value of δ which gives the maximum value of F-measure when applied across all pieces, is also

tabulated in order to compare the scaling of the different approaches across transforms. The

values of Precision, P , and Recall,R tabulated are those recorded at δopt .

Results

The experimental results are shown in Table 5.2. In terms of F-measure BF-NNLS with the

modified sparse cost function is seen to outperform T-NNLS for all transforms by 1.4 ∼ 2.0%,

while BF-NNLS with the standard cost function is seen to perform worse than T-NNLS in all

cases. The variability of the δopt value is seen also to validate the use of the modified sparse cost

function. For five of the transforms the value is δopt = 41dB, while it is 40dB for Transform E1.

In stark contrast, the value of δopt is seen to range between 15 - 46dB, showing that the modified

sparse cost function scales better in the signals of interest. T-NNLS is also seen to have a small
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Transform Metric T-NNLS BF-NNLS (CS) BF-NNLS (Cmod)

S1

F 64.0 63.9 65.8
δopt(dB) 30 21 41
P 63.4 60.9 61.7
R 64.6 67.2 70.4

S2

F 64.0 63.9 65.8
δopt(dB) 28 45 41
P 63.4 61.8 62.8
R 64.7 66.2 69.0

E1

F 66.6 66.2 68.0
δopt(dB) 30 46 40
P 65.3 61.4 63.4
R 68.0 71.8 73.3

E2

F 68.4 67.9 70.0
δopt(dB) 28 45 41
P 65.5 64.3 65.8
R 71.5 71.8 74.8

E3

F 68.1 67.5 69.6
δopt(dB) 28 42 41
P 64.4 63.4 65.2
R 72.3 72.3 74.7

E4

F 68.6 68.4 70.6
δopt(dB) 27 41 41
P 67.2 66.6 68.1
R 70.0 70.3 73.3

Table 5.2: Comparision of T-NNLS, and BF-NNLS using standard sparse cost function CS (5.5)
and modified sparse cost function Cmod (5.12).

range of optimum values of δopt , ranging from 27-30dB, confirming the observations for NMF

based algorithms in [133].

In terms of Recall, R, the BF-NNLS with modified sparse cost function is seen to effect

an improvement over the other approaches, reaching 5.8% relative to T-NNLS with Transform

S1, while a minimum improvement of 2.4% was observed for Transform E3. BF-NNLS with the

standard sparse cost function is also seen to improve over T-NNLS in terms of Recall. In terms of

Precision, two patterns emerge. For the transforms which perform worst, Transforms S1,S2&E1,

the Precision is seen to be highest for the T-NNLS followed by BF-NNLS using the modified

sparse cost function. For the other transforms, BF-NNLS with the proposed cost function is seen

to achieve the highest Precision values followed by T-NNLS. Variability of Precision is seen to

be much lower than for Recall.

To summarise, the use of the modified sparse cost function is seen to improve AMT results,

and to scale well relative to the signal. Conversely, backwards elimination using the standard
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cost is seen to result in a deterioration in AMT results relative to NNLS.

5.3 Group BF-NNLS

In the previous chapter, group sparsity with subspace dictionaries was seen to improve AMT

performance when OMP-based methods were used. Meanwhile, backwards elimination with a

modified sparse cost function is seen to improve NNLS based decompositions for AMT when

the atomic pitch dictionaries are used. Therefore, it is proposed to introduce group sparsity to the

backwards elimination framework.

Using a similar approach to the GSLS algorithm [83], using block inverse matrix updates,

the downdate for a group indexed by [l] is given by

∆Br[l] =

[
αΓl

α[l]

][
DT

ΓDΓ

]−1 [
αΓl α[l]

]
−α

T
Γl

[
DΓ

T
l DΓl

]−1
αΓl

=

[
αΓl

α[l]

][
Al Bl
BT

l Cl

][
αΓl α[l]

]
−α

T
Γl

[
DΓ

T
l DΓl

]−1
αΓl (5.15)

where Γl is the hypothetical support Γ\L(l) and α = DT s. Al,Bl and Cl are given in the in-

verse of the Gram matrix of the current support. Using the block matrix updates it is seen that

[DΓ
T
l DΓl]

−1 = Al = BBT/C, from which it follows that

l̂ = argmin
l

∆Br[l]

= argmin
l

x[l]T x[l]
[(DT

Γ
DΓ)−1][l, l]

(5.16)

where Y[l, l] is the principal submatrix of Y indexed by the block of indices L(l). Efficient

calculation of all group elimination costs simultaneously, such as is performed in the ungrouped

case (5.9), is not possible as a matrix inverse needs to be calculated for each group. In this case,

the group downdate needs to be calculated for each active group separately, which can lead to

many small matrix inverses being calculated.

In a similar fashion to the F–NS-OMP algorithm proposed in Algorithm 4.2, a simple strategy

for accelerating this algorithm is proposed. Using the fact that the norm of the residual after Least

Squares (LS) projection of a signal onto a set of atoms is less than the norm of the residual after

a similar projection onto a subset of the atoms, it follows that the reduction in residual norm is

greater for a group than for any of the individual atoms in the group, or otherwise stated
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x[l]T x[l]
[(DT

Γ
DΓ)−1][l, l]

≥ max
[l,i]

x[l, i]2

[(DT
Γ

DΓ)−1][(l, i),(l, i)]

= max
n

x2
n

[(DT
Γ

DΓ)−1]n,n
where n ∈ L(l) (5.17)

where [(l, i)] refers to the ith member of the lth group, which is also referred to by the nth atom

index. Using the fact (5.17), the atomwise elimination costs can be calculated simply using (5.9)

and a maximum taken for each group. If the groupwise maximums are ordered in ascending

magnitude an iterative process similar to that used in F-NS-OMP, outlined in Algorithm 4.2, is

possible. Again, similar to F-NS-OMP calculation of a group coefficient (5.16) is not necessary

if the elimination cost of any atom in a given group is larger than the current lowest group

coefficient.

Similar to the standard atomic elimination case, the group sparse elimination criteria can be

thought of as locally optimising the cost function

CG = ‖s−Dx‖2
2 +λ‖x‖⊥,0 (5.18)

where ‖x‖⊥,0 = ‖h‖0 and hl = ‖D[l]x[l]‖2. Other norms than the `⊥-norm can be used for the

group penalty, however the backwards elimination is not seen to necessarily optimise CG in this

case. As a modified cost function was seen to improve AMT performance in the standard sparse

case, a modified group sparse cost function is proposed :

CmodG = ‖s−Dx‖2 +λ‖x‖⊥,0 (5.19)

again differing only in replacement of the least squares coefficient with the residual norm. Similar

to the standard sparse case (5.14) the order of elimination is the same for CG and CmodG and the

modified downdate cost is simply expressed :

∆̂Br[l̂] =
√
‖ri‖2

2 +∆Br[l̂]−‖ri‖2. (5.20)

k-sparse Experiments

Two sets of experiments are run to compare the effectiveness of GBF-NNLS against other step-

wise methods for AMT. The first set of these use k-sparse decompositions to compare GBF-
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Transform T-NNLS GT-NNLS GBF-NNLS NS-OMP
S1 70.0 72.2 (5) 75.0 (5) 69.3 (5)
S2 70.0 71.9 (6) 75.3 (6) 68.8 (5)
E1 72.3 72.8 (5) 76.8 (6) 70.4 (3)
E2 74.5 76.9 (4) 79.7 (7) 76.0 (6)
E3 74.1 76.6 (4) 79.4 (5) 75.8 (4)
E4 75.6 78.7 (5) 80.8 (5) 78.3 (5)

Table 5.3: Comparision of T-NNLS(P=1), Group T-NNLS, GBF-NNLS and NS-OMP in terms
of precision in k-sparse experiments. Numbers in brackets denote optimal size of P for group
decompositions

NNLS with GT-NNLS and NN-NS-OMP. The standard dataset (§3.1) was decomposed using

the subspace dictionaries (§3.3.2) for all values of the groupsize P ∈ {2, ...,7}. GBF-NNLS

and NN-NS-OMP are set to select k atoms, while GT-NNLS is post-processed with a k-sparse

thresholding (§3.4). The results for T-NNLS using the atomic pitch atom dictionaries are also

retabulated for comparison. For the group sparse algorithms, the results given are for the optimal

value of P.

The results for the experiments are shown in Table 5.3, where it seen that GBF-NNLS out-

performs all other approaches. Compared to the T-NNLS approach an improvement of the order

of 5% is seen for all transforms, while compared to the GT-NNLS an improvement of 2 to 4% is

seen in each case, while the results using NN-NS-OMP are lower than those of GT-NNLS. The

optimal groupsize is seen to be around P = 5 or 6 for GBF-NNLS, slightly larger than for GT-

NNLS or NN-NS-OMP. Interestingly, the performance of NN-NS-OMP is observed to approach

that of GT-NNLS in Transforms E2-4 with the difference in F-measure being seen to be less

than 1% in each case. In these cases NN-NS-OMP is also seen to outperform T-NNLS.

The results validate the use of GBF-NNLS with the subspace dictionaries. In particular it

should be noted that BF-NNLS and T-NNLS provide similar results in the k-sparse experiments

for the standard sparse case in (§5.1), in which case it can be assumed that the ordering of relevant

coefficients was similar. When the subspace dictionaries are used however, the ordering of the

coefficients varies for GBF-NNLS relative to GT-NNLS.

δ -thresholded Experiments

Further experiments are run using the GBF-NNLS in a δ -thresholded experimental setup. It

is expected that improvements in AMT performance should be seen using GBF-NNLS as this

approach improves upon the GT-NNLS in k-sparse experiments. Meanwhile, the BF-NNLS
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Transform T-NNLS GT-NNLS BF-NNLS GBF-NNLS
S1 64.0 64.5 (5) 65.8 70.4 (5)
S2 64.0 64.0 (2) 65.8 70.6 (6)
E1 66.6 65.5 (5) 68.0 71.4 (6)
E2 68.4 69.2 (4) 70.0 74.6 (5)
E3 68.1 69.1 (4) 69.6 74.9 (4)
E4 68.6 70.0 (5) 70.6 75.0 (5)

Table 5.4: Comparision of T-NNLS(P=1), Group T-NNLS, GBF-NNLS and NS-OMP in terms
of F-measure in δ -threshold experiments. Numbers in brackets denote optimal size of P for
group decompositions

algorithm does not improve upon T-NNLS in k-sparse experiments, yet improvements are seen

in δ -thresholding experiments when the modified sparse cost function is used. From these two

observations it is expected that a large improvement may be seen using the GBF-NNLS approach.

In order to isolate the individual contributions of group sparsity and the BF-NNLS approach

to see which might be most important, a comparison is made between GBF-NNLS and GT-NNLS

for the group sparse approach and BF-NNLS and T-NNLS. For all experiments decompositions

of all pieces in the standard dataset (§3.1) are performed using subspace dictionaries (§3.3.2) for

P ∈ {1, ...,7}. Again decomposition are performed using all transforms outlined in (§3.2). The

T-NNLS and GT-NNLS are post-processed using δ -thresholding (§3.4.1). For the BF-NNLS

approaches, the stopping condition, λ is calculated using the delta parameter (3.3) applied to the

largest entry of the coefficient matrix [H]l,t = ‖D[l]xt [l]‖2. Results for all algorithms are given in

terms of the optimal F-measure.

The results for these experiments are given in Table 5.4, where some slightly different pat-

terns are seen relative to the k-sparse results. The GT-NNLS does not always improve on the

T-NNLS results and any improvements observed are relatively small (< 1.5%). BF-NNLS using

the atomic pitch dictionaries is seen to outperform the GT-NNLS approach in all cases. How-

ever, the GBF-NNLS shows significant improvements over the other approaches, showing im-

provements of at least 5% relative to the GT-NNLS, and of over 3.5% relative to BF-NNLS,

in all transforms. While the k-sparse threshold experiments measure the relative magnitudes at

each time frame of the decomposition, the δ -thresholded experiments measure the magnitudes

globally over a complete transform, suggesting that the backwards elimination cost may be a

more appropriate measure of the energy for a given atom, possibly due to the coherence-aware

weighting placed on the coeffcients. In terms of the groupsize, the optimal results in terms of

F-measure are seen at P ≈ 5, similar to the NS-OMP and slightly smaller than those observed
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for GBF-NNLS in the k-sparse experiments.

5.4 Discussion

In this chapter the use of stepwise methods in the context of AMT was extended beyond the per-

spective of greedy OMP-based algorithms previously seen in the AMT literature and in Chapter

4. The motivation for using stepwise methods was the observation, described in a simple three-

atom toy problem, that OMP can easily select an inactive atom, due to the coherence between

atoms representing notes that are harmonically related, even in the noiseless case.

Several sparse stepwise algorithms from the literature were introduced and some steps taken

to derive non-negative variants of these methods were described. These modifications were seen

to be tricky, leading to the proposal of a backwards elimination strategy, BF-NNLS, that used

a NNLS solution vector as its initial state. Similar performance was noted for the stepwise

algorithms and proposed BF-NNLS in k-sparse experiments, with NNLS itself seen to be optimal.

However, improved AMT results were seen when a proposed modified sparse cost function was

applied using the BF-NNLS approach.

Group sparsity was then introduced to the BF-NNLS using a similarly modified group sparse

cost function. In this case a large increase in AMT performance was seen, again validating the use

of the subspace dictionaries with algorithms that explicitly enforce group sparsity. The results

seen for the GBF-NNLS were better than the state-of-the-art benchmark given by β -NMD as

described in (§3.5).. However, the largest part of these improvements are seen to be due mostly

due to the transforms used. When Transform E1 is used, as in the benchmark experiments, the

observed improvement is slight.

While the GBF-NNLS algorithm is seen to perform well in the given context, further im-

provements may be possible. GBF-NNLS, as outlined, only considers atoms that are active in

the initial NNLS decomposition. Allowing atoms that themselves are inactive, but belong to

groups that are considered active, to enter the sparse support when other eliminations take place

may provide some further enhancement of AMT.

While an accelerated group elimination subprocedure was proposed, the initial NNLS de-

composition is seen to be relatively slow when subspace dictionaries are used. A bi-directional

approach may be more computationally attractive in this case. A fast pursuit algorithm such as

F-NS-OMP, which is seen to perform similarly to GT-NNLS in the k-sparse experiments, could
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be used for forward selection in tandem with stepwise optimal backwards elimination steps. An

exploration of different strategies to select the direction at each iteration is probably required.

The advantages of the BF-NNLS approach are seen in a structured sparse setting, and a

further development on this approach, undertaken by a visiting student at C4DM, is described

further in [88], where temporal structure is also considered. However, the most suitable appli-

cation for this type of approach may be in a multi-instrument setting, where matching pursuit

methods have previously been reported to be useful [76]. More complex elimination criteria may

need to be considered in this case.

In the next chapter, the use of greedy and stepwise decompositions for AMT is further ex-

tended using a molecular sparse approach, allowing temporal structure to be considered in a

simple manner.
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Chapter 6

Molecular sparsity

In the previous two chapters the use of stepwise methods for Automatic Music Transcription

(AMT) was described. The decompositions were performed framewise, with each spectrogram

frame decomposed independently of other frames. Greedy methods were seen to be quick, with

reasonable overall performance. However, selection errors were often observed to cause correctly

detected notes to be represented in a temporally fractured manner, with spurious omissions. Time

continuity is considered an important element in musical signals and much research in musical

signal processing has tried to leverage the fact that signal elements tend to be time continuous.

Contrary to the greedy methods, Non-Negative Least Squares (NNLS) decompositions were seen

to derive representations in which the time continuity in signal elements tended to be maintained,

a state that was unchanged using subsequent backwards elimination of pitch-time points. When

NNLS or or other non-negative spectrogram decompositions are used for the purpose of AMT,

thresholding is often performed to ascertain the active signal elements [133]. An alternative ap-

proach to simple thresholding is to perform tracking of signal elements, introducing dependency

between spectrogram frames. This can be performed in a probabilistic framework using, for in-

stance, Hidden Markov Models (HMMs) to post-process an activation matrix [5] or probability

distribution [104]. Alternatively, temporal dependency can be introduced by incorporating ap-

propriate penalty terms into a cost function used in a decomposition method [134] [106], or as a

prior in a probabilistic approach [39] [9].

Several structured sparse approaches have considered time continuity in audio signals. Kowal-

ski et al propose [71] [70] neighbourhood sparse systems for audio denoising, using an approach
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called Windowed Group Lasso (WG-Lasso) which can be solved using an iterative shrinkage

approach. WG-Lasso generalises the Group Lasso [137] by allowing overlapping groups when

orthogonal atoms are considered. Sprechmann et al [118] propose the Collaborative Hierarchical

Lasso (CHi-Lasso) which uses group sparsity at the frame level, while incorporating correlation

between frames by using hierarchically structured norms. CHi-Lasso is applied to many applica-

tions including an instrument recognition task [118]. However, a limitation of these optimisation

based approaches is that the groups are required to be predefined.

Molecular sparsity, first proposed by Daudet, [30] refers to greedy algorithms which select

several structurally related atoms at each iteration. In this approach, an initial atom is selected

based on a correlation measure, in typical greedy fashion, and a local search is performed to

gather related atoms to form a molecule. In this way, grouping is performed on the fly. While

other possible applications of this approach may be considered, it is found in the literature that

molecular sparsity has tended to refer to representations that introduce structure in audio signals,

with temporal continuity most commonly considered. Originally, Molecular Matching Pursuit

(MMP) [30] was proposed to create signal representations in which the tonal and transient el-

ements of an audio signal were represented in a Modified Discrete Cosine Transform (MDCT)

and a Discrete Wavelet Transform (DWT), respectively, for the purpose of audio coding. MMP

performs this separation by extracting a molecule of either stationary tonal, or time-localised

transient, atoms at each iteration. Structure is favoured in the atom selection stage through lo-

cality based coefficients, using either a time-smoothed MDCT coefficient matrix or summed

coefficients of DWT branches. A Matching Pursuit type algorithm selects either a tonal or tran-

sient component at each iteration, based on the maximum localised coefficient and the selected

component is used as the start point of a local search for other structurally related atoms. If a

transient atom is selected, the corresponding wavelet tree is pruned using a threshold and con-

nectivity criteria, and the remaining atoms form a molecule that is added to the sparse support.

Of particular interest here, when a tonal atom is selected a search, or tracking, is performed back-

wards and forwards through time frames along a narrow frequency window, until an low energy

threshold is reached. All atoms found during the tracking step are added to the molecule and

enter the sparse support simultaneously.

Meta-Molecular Matching Pursuit (M3P) [72] employs a similar tracking methodology to

that used for tonal tracking in MMP. The M3P approach was proposed for the purpose of pitch
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tracking and harmonic structure is also considered. Rather than selecting one Gabor atom at

each time frame, several harmonically related frequency atoms are selected together, in a similar

fashion to that used for Harmonic Matching Pursuit [53]. Similar to MMP, structure is favoured

in the initial atom selection through the use of a harmonicity index, and the initially selected

harmonic atom is then tracked backwards and forwards through time until an energy threshold is

met. A similar approach is also used in [76] where a dictionary of pitch and instrument labelled

harmonic atoms is used for the purpose of forming a mid-level representation similar to a piano

roll, while also allowing for pitch variance, of a multi-instrument signal. Again a molecular

tracking method is used, differing from that used in [30] by also searching through adjacent

pitches, while the atoms found through tracking are constrained to be labelled similarly, in terms

of instrument, to the initially selected atom.

In this chapter an alternative molecular sparse strategy for introducing temporal continuity to

greedy methods for the purpose of AMT is proposed. Following an initial NNLS spectrogram

decomposition, molecules are defined through a clustering step. A molecular variant of OMP is

then proposed to decompose a spectrogram using these predefined molecules. Experiments using

this molecular OMP are performed with frame-based and event-based analyses. While promising

results are seen with this molecular approach, analysis of an oracle transcription is then proposed,

providing further insight to spectrogram decomposition-based AMT. A molecular norm is then

defined that affords easy adaptation of other approaches, including backwards elimination, to

perform similar molecular decompositions. An experimental comparison of these approaches is

undertaken before the chapter concludes with a discussion section.

6.1 Molecular methods with non-negative dictionaries for AMT

Molecular methods such as MMP [30] and M3P [72] introduce a temporal element to sparse

representations through the use of tracking. Some initial experiments were run that sought to

employ such a tracking approach for the purpose of AMT. However, tracking was seen to be

problematic in this context as it was observed that many molecules were extended far beyond

their natural length, either before a note commenced or after a note had ceased, and often in both

directions. This extension problem was particularly common at early iterations of the tracking

based molecular approach and can be explained in terms of dictionary coherence.

In the case of the MMP, a Modified Discrete Cosine Transform (MDCT) dictionary was used
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for capturing tonal elements of the decomposition. The MDCT is a Fourier-related transform

in which atoms of different frequency that share the same time domain are orthogonal to each

other. However, in the context of AMT, the dictionary is coherent due to the non-negativity

and harmonic structure. In particular coherence exists between atoms representing notes that

are consonant, and more likely to be played in proximity to each other (§2.1.2). In the context

of tracking, this can lead to high signal projection values for selected atoms being observed be-

yond the ends of notes, resulting in the observed temporal overestimation. Hence, an alternative

molecular approach is required.

It was previously observed that time continuity was reasonably maintained in NNLS de-

compositions. A greedy molecular approach is proposed that attempts to leverage this desirable

feature by predefining the molecules. An initial piano roll, Γ, is derived by thresholding

[Γ]l,t =


1, if [H]l,t > λ

0, otherwise
(6.1)

the (group) coefficient matrix H where λ is a defined threshold.

Clustering of temporally-adjacent pitch-similar active atoms in the piano roll Γ is performed

to construct molecules. This clustering can be seen as similar in nature to the agglomerative clus-

tering approach of [122] for molecular decompositions, where atoms supported in an OMP de-

composition are clustered according to a similarity measure. The set of moleculesM= {M(m)}

is defined with each molecule represented by a tuple:

M(m) = (l(m),τ
(m)
0 ,τ(m)

∞ ) (6.2)

where l(m) denotes the group membership of the molecule thereby relating the pitch of all atoms

in the molecule while τ
(m)
0 and τ

(m)
∞ represent the start and end points of the molecule, respec-

tively, with all intermediate time-pitch points active. Otherwise put, the mth molecule contains

only active points: Γl(m),τ = 1 where τ
(m)
0 ≤ τ ≤ τ

(m)
∞ , and points just beyond the molecule ends,

Γ
l(m),τ

(m)
0 −1

and Γ
l(m),τ

(m)
∞ +1

are inactive.

To decompose a spectrogram using the molecules defined in (6.2), an algorithm referred to as

Molecular NN-NS-OMP (M-NS-OMP) is proposed. M-NS-OMP uses a similar atom selection

criteria to MMP. Notable differences between the two algorithms include the backprojection step
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Algorithm 6.1 Molecular NN-NS-OMP (M-NS-OMP)
Input

D ∈ RM×N , S ∈ RM×T , Γ, M, L, κ

Initialise
i = 0; J = {J (t) = {}}; Γ̂ = 0L×T ; R0 = S; X = 0N×T

repeat
i = i+1
yt [l] = argminy ‖ri

t −D[l]y‖2
2 ∀(l, t) s.t. l ∈ Γt

Φl,t = ‖D[l]ȳt [l]‖2
Calculate Θ (6.3) and ξm ∀m (6.4)
m̂ = argmaxm ξm

For τ = τ
(m̂)
0 : τ

(m̂)
∞

[Γ̂]l(m̂),τ = 1

J (τ) = J (τ)∪Ll(m̂)

xJ (τ),τ = argmint ‖sτ −DJ (τ)x‖2
2 s.t. x≥ 0

ri
τ = sτ −Dxτ

End For
until Stopping condition
Output Γ̂(pianoroll)

of OMP and the use of group sparsity at the frame level, both seen to improve AMT performance

using greedy methods (§4.1) and the use of predefined molecules instead of a tracking-based

approach. M-NS-OMP uses a straightforward OMP methodology, selecting one molecule at a

time, adding this to the sparse support and backprojecting the support onto the signal. As well as

the dictionary and signal, M-NS-OMP, outlined in Algorithm 6.1, accepts as input the piano roll,

or (group) sparse support, Γ , the molecular structure,M (6.2), the group structure, L (§2.2.2),

and a smoothing factor κ .

Initially, the NN-NS-OMP projection coefficient, Φ is calculated at each pitch-time point of

each molecule, noting that Φ = DT r when the atomic pitch dictionaries are used. Similar to the

tonal molecule selection criteria used in MMP [30], a smoothing filter of length κ is applied to

the coefficient matrix Φ to encourage structure in the decomposition :

[Θ]l,t =

t+ κ−1
2

∑
t′=t− κ−1

2

[Φ]l,t′/κ (6.3)

and hence the vector of molecular coefficients

ξm = ‖[Θ]l
(m)

τ
(m)
0 :τ(m)

∞
‖∞ (6.4)

is derived from the smoothed coefficient matrix, where xa:b represents a subvector of x consisting
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of all entries in the range [a,b]. The molecule displaying the maximum value of ξm is then

selected and its pitch index, l(m̂), is added to the sparse support, J (t), at each time point τ in

the time domain of the molecule. Backprojections need only be calculated in the time domain

of the selected molecule, and similarly the group coefficients need only be recalculated within

this domain, while the molecular coefficients (6.4) are calculated for molecules which temporally

overlap with the currently selected molecule.

Experiments

Experiments were performed in order to test if M-NS-OMP resulted in improved AMT per-

formance results relative to (G)T-NNLS. It is observed in the previous chapter that the best δ -

thresholding performance for AMT using NNLS decompositions is achieved at δopt ≈ 30dB. A

potential advantage of the proposed two step molecular approach is that a lower value of δ may

be used prior to clustering. This should result in higher Recall, while it is hoped that the M-

NS-OMP method may eject false positives introduced by the use of a lower threshold, thereby

leading to improved AMT results.

AMT experiments were performed on the standard MAPS dataset (§3.1) using STFT spectro-

grams of dimension 1024, similar to Transform S1 (§3.2). However in this set of experiments an

overlap of 50% in the signal windows is used, rather than the 75% overlap used previously with

Transform S1. The subspace dictionaries (§3.3.2) of size P ≤ 5 are used, and NNLS is used to

perform the initial decomposition, with group coefficients calculated when P > 1. This resultant

coefficient matrix is δ -thresholded with a parameter value δ = 0.01, lower than the previously

observed δopt by around 10dB, leading to the derivation of the initial piano roll Γ (6.1) on which

molecular clustering is performed. For the M-NS-OMP algorithm a persistence factor of κ = 5

was used, and the stopping condition was set to ξm̂ < 1, parameters that were seen from initial

experiments to provide good results across all piano pieces.

A frame-based analysis is performed, for which theP,R,F ensemble of metrics are recorded.

For comparison, the results for the frame-based analysis are compared with the δ -thresholded

NNLS using δopt , giving the optimum F-measure and δ = 0.01, the value used in the initial

pre-clustering thresholding. In addition, an event-based analysis is performed. Note events are

detected using a simple threshold-based event detector, similar to that used in [9] [8], in which an

onset is detected when a threshold, δ o, is exceeded and subsequently sustained for a minimum

duration of 2 time bins. A true positive event is detected when an onset for a note is found within
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P Metric (G)T-NNLS (δopt) (G)T-NNLS (δ = 0.01) M-NS-OMP

1
P 69.0 44.7 69.0
R 62.0 78.5 73.4
F 65.7 57.0 71.1

2
P 68.0 39.6 68.8
R 63.5 81.4 75.5
F 65.7 51.4 73.5

3
P 67.5 37.1 69.9
R 62.6 83.9 77.8
F 65.0 51.4 73.5

4
P 68.4 37.1 71.8
R 63.0 84.4 78.1
F 65.6 51.6 74.8

5
P 69.9 37.3 74.7
R 63.3 84.8 78.8
F 66.4 51.9 76.7

Table 6.1: Frame-based transcription results for (G)T-NNLS and M-NS-OMP in terms ofP,R,F
metrics for different group sizes P.

1 time frame of the ground truth piano roll. As the spectrogram frame size is 46ms this results in a

worst case tolerance of 92ms. The threshold for the event detector was set to δ o = 5.5, which was

seen from initial experiments to be a reasonable value across all group sizes. The event-based

analysis is performed on the (G)T-NNLS decompositions with δopt and also the M-NS-OMP

coefficient matrix.

The frame-based results of the experiments are presented in Table 6.1. Here it is seen that the

M-NS-OMP algorithm outperforms the other approaches by a considerable margin, in terms of

F-measure. When the atomic pitch dictionaries are used, the T-NNLS is outperformed by M-NS-

OMP by approximately 5%. When the subspace dictionaries are used, GT-NNLS transcription

results are only seen to improve upon those of T-NNLS once, and by a small margin of less than

1%. Conversely M-NS-OMP performance is seen to improve with each increment in groupsize.

An improvement of 5.6% in F-measure is recorded when P = 5 relative to when the atomic

pitch dictionary is used. Similarly, when P = 5 the improvement in F-measure relative to the

(G)T-NNLS is over 10%.

The results for (G)T-NNLS, with δ = 0.01 are also recorded. In these experiments, M-NS-

OMP can be considered a post-processing of these thresholded NNLS decompositions, on which

the molecular clustering is performed. In this sense, comparing the results for M-NS-OMP and

(G)T-NNLS demonstrates the effect of M-NS-OMP in isolation. In particular, the Recall using
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P
1 2 3 4 5

(G)T-NNLS 74.7 74.0 73.0 73.3 73.9
M-NS-OMP 75.6 76.7 77.1 77.7 78.0

Table 6.2: F-measure for event-based analysis with (G)T-NNLS and M-NS-OMP decomposi-
tions used to perform AMT for different groupsizes P.

M-NS-OMP is limited by the Recall of the (G)T-NNLS decomposition, as no new atoms are

activated. It is seen in Table 6.1 that Recall using M-NS-OMP comes within 6% of that of the

(G)T-NNLS for all group sizes. Meanwhile Precision is greatly increased, leading to superior

F-measure in these frame-based AMT results. M-NS-OMP can be regarded to perform well,

selecting many of the true positives contained in the presented molecules, while ignoring many

of the false positives introduced by the lower threshold related to δ .

Results for the onset-based analysis are given in Table 6.2, where M-NS-OMP is seen to

outperform (G)T-NNLS by 0.9% in terms of F-measure when the atomic pitch dictionaries are

used. The performance difference becomes greater when the subspace dictionaries are used, in

which case event detection deteriorates for the (G)T-NNLS. For M-NS-OMP, a small increment

in F-measure was observed with each increase in the groupsize.

6.2 AMT analysis using oracle decomposition

Many possible sources of error exist when spectrogram decompositions are used to perform

AMT, some of which are innate to the signal and the transform. The dataset used here is recorded

live in a studio, with audible echoic effects in the recordings. The frequency response of both

the room and the microphone used characterise the recording. However the possibility of error

resulting from these sources is limited in the experimental setup used in this thesis as the dic-

tionaries were learnt from isolated notes recorded in the same environment piano pieces in the

dataset. Further introductions to err exist in the use of STFT and ERBT time-frequency rep-

resentations which produce sidelobes due to spectral leakage and have limited time-frequency

resolution, while the use of a non-negative spectrogram leads to loss of phase information. How-

ever, the approximations assumed in spectrogram decompositions are considered reasonable, in

the context of this thesis, and the signal transforms are considered a black box operation.

Indeed, the focus of this thesis is to improve such spectrogram decompositions, and some

progress has been seen by using a group sparse model with dictionaries formed from a union of
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Figure 6.1: Comparision of AMT output using M-NS-OMP method (left) and Oracle(right) with
some errors found using M-NS-OMP circled.

pitched subspaces. It is considered that the subspace dictionaries provide better modelling of the

evolving note spectra, and several stepwise methods, each of which give sparse subset NNLS

solutions, have been proposed that leverage this advantage. While some improvement have been

noted, several problems are still obvious. Low energy in the tails of long notes is difficult to

recognise leading to false negatives, while harmonic overlaps still seem to cause most of the

false recognitions in terms of a frame-based analysis. Furthermore, the simple threshold-based

onset detection approach described is perceived to be suboptimal.

It is proposed to perform an oracle decomposition, thereby omitting incorrect detections, in

order to try to better understand the problem at hand. The MAPS dataset (§3.1) is provided with

a ground truth, from which ΓOt , the ground truth atomwise sparse support at a time frame indexed

by t can be derived. The oracle decomposition, XO, is then simply calculated using NNLS:

[XO]
ΓOt ,t = min

x
‖st −D

ΓOt
x‖ s.t x > 0 (6.5)

from which the group coefficients [HO]l,t = ‖D[l]xOt [l]‖2 are calculated when a subspace dictio-

nary is used. This oracle decomposition can then be compared with the output from a decompo-

sition algorithm.

A graphical comparison of an oracle decomposition and the corresponding output from the

M-NS-OMP algorithm is shown in Figure 6.1. Here, the two decompositions are seen to be quite

similar in terms of coincident energy levels, while some false positive errors are observed in the

output of the M-NS-OMP, a pattern which is seen across many pieces. Such an oracle decom-
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Figure 6.2: Precision, Recall and F-measure for AMT experiments using T-NNLS relative to δ

thresholding parameter for Transform S1 with atomic pitch dictionary. Recall for oracle tran-
scription using same setup compared.

position provides a best case transcription using NNLS-based algorithms, a class that includes

stepwise methods. Further analysis is undertaken, corresponding to the two forms of analysis

performed on the spectrogram decompositions. First, the effects of δ -thresholding on Recall are

observed, before the effectiveness of the onset detection system employed is examined.

Energy Based Thresholding

In NNLS-based AMT experiments described in the previous chapter δ -thresholding (§3.4.1) of

the coefficient matrix was used to produce a piano roll. An optimum value of δ ≈ 27− 32dB

empirically asserted in [133] for AMT spectrogram decomposition methods was confirmed in

the experiments undertaken. The δ -thresholding approach is also employed in the proposed

molecular approach, prior to the clustering stage. The Recall after this thresholding places an

upper bound on the Recall of M-NS-OMP as no new time-pitch points are activated. A lower

value of δ = 40dB was used in the M-NS-OMP experiments described in the previous section,

affording greater Recall, while the greedy approach was seen to omit many of the false elements

detected at this low threshold.

It is worth considering the possible Recall relative to the thresholding parameter δ as a gen-

eral investigation in the context of AMT. To this end, Figure 6.2 shows the Recall of oracle

spectrogram decompositions of all pieces in the standard dataset. These decompositions were

performed with Transform S1, using the atomic pitch dictionary and δ -thresholding was per-
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Figure 6.3: Recall for oracle decompositions using STFT, S1, and ERBT, E2, with atomic pitch
dictionaries and subspace dictionaries with P = 5 relative to thresholding parameter δ .

formed for a range of values of δ ∈ 1, ...,100}dB in steps of 1dB. The P,R,F measures are also

shown in Figure 6.2 for the equivalent NNLS decompositions, for which the F-measure is seen

to peak at 30dB at a value of 64.0% with similar values of Recall and Precision. At higher values

of δ the Recall increases to a maximum of 86% while Precision decreases at a faster rate. The

oracle Recall is seen to be larger than that of the NNLS decompositions at all points and reaches

a maximum of 92.1%. This maximum Recall is achieved at δ = 100dB, while a flattening is

observed at around 70dB. This can be considered a very low relative threshold, and it is seen that

Precision in the NNLS decompositions is below 30% at such values of δ . Considering that this

is an oracle decomposition suggests a limitation in the methodology for the purpose, in that the

maximum achievable recall falls short of 100% by what would seem a considerable amount.

Varying AMT results have been observed in previous chapters when different spectrogram

transforms have been employed, while improvements have been recorded with the use of the

subspace dictionaries. A similar comparison is performed on oracle decompositions to test if

higher Recall than that observable in Figure 6.2 may be possible with spectrogram decomposi-

tions. Oracle decompositions are performed on the standard dataset with both the S1 and E2

transforms using the atomic pitch atom dictionaries and subspace dictionaries with P = 5. Group

coefficients are calculated for the subspace dictionary-based decompositions and δ -thresholding

is performed on all coefficient matrices, again for the range δ ∈ {1, ...,100}dB. The Recall is

recorded at each value of δ and plotted in Figure 6.3 where the Recall using the ERBT is seen

to rise faster than with the STFT for the atomic pitch dictionaries, and achieve a slightly higher
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maximum, with an increase in possible Recall up to 94.4%. Meanwhile, Recall improves signif-

icantly when the subspace dictionaries are used. In the case of the STFT, a Recall of 97.1% is

achieved, which increases to 97.9% for the ERBT. If the vagaries of the pitch-time tiling of the

spectrograms and ground truth piano rolls (§3.1) are considered, the Recall in these cases may

be considered very close to optimal. This observation, coupled with the improved results seen

in group sparse AMT experiments in previous chapters, validates the subspace approach for note

representation in decomposition-based AMT. Indeed, it can be conjectured that a subspace dic-

tionary may be necessary if polyphonic piano transcription is to be considered a solved problem

using decomposition-based methods.

Onset Analysis

An event-based analysis of AMT using M-NS-OMP and (G)T-NNLS was performed in experi-

ments presented earlier in this chapter. Note events were detected using a simple threshold-based

onset detection system that detected an onset when a threshold value was surpassed and sus-

tained for a minimum duration. A true positive was flagged when this trigger happened within

one time frame of a ground truth onset of the same note, giving a worst-case temporal resolution

of 92ms. This onset detector was proposed in [8] [9] for the purpose of event detection. However,

the effectiveness, or otherwise, of this simple approach has not previously been tested. An oracle

transcription affords the opportunity to simply test the effectiveness of the onset detection system

itself. This analysis was performed on oracle decompositions of the standard dataset, again using

a spectrogram similar to Transform S1 with a 50% overlap between time frames. The atomic

pitch dictionary and a subspace dictionary with P = 5 were used, while the threshold used to

detect an onset, δ o, was varied between 0 and 7 in steps of 0.1 for both dictionaries. In order to

trigger a note detection, the threshold δ o had to be surpassed for a minimum of two time frames,

similar to the experiments described earlier in this chapter.

The results of the onset detection on the oracle decomposition using the subspace dictionary

are shown in terms of Precision, Recall and F-measure in Figure 6.4 for a range of values of δ o.

The F-measure from the AMT experiments is also shown, for comparison. The F-measure for

the oracle is seen to be highest at very low values of δ o, where the molecular decomposition is

seen to be low. This is to be expected due to low-value false detections in the coefficient matrix

of the AMT decomposition triggering onsets. Overall, an increase of 7% in F-measure is seen

using the oracle, which reduces to around 4% in the locality of δ o
opt , where the peak performance
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Figure 6.4: Evaluation of onset detector using oracle decomposition of transform S1 with sub-
space dictionary (P = 5). P,R,F values plotted against values of the onset threshold δ o ranging
from [0.1, 7.0] in steps of 0.1. F-measure of event detection applied to M-NS-OMP decomposi-
tion shown for comparison.

of the molecular method is recorded, suggesting that the molecular approach performs quite well

relative to what can be expected. Further comparison is offered in Table 6.3 where the event-

based results of the oracle and molecular transcriptions in terms of the optimal F-measure and

corresponding P,R and δ o
opt are given for both dictionaries employed. Here it can be seen that

the use of the subspace dictionaries is seen to afford improved performance in both oracle and

molecular approaches, while the better performance recorded for the oracle decomposition is

observed to result mostly from improved Precision.

The event detection results for the oracle transcription suggest the performance of the onset

detector is far from optimal. However, the difficulty of the Disklavier datasets from the MAPS

database in terms of onset detection has previously been observed in [12], where state-of-the

art onset detection results for polyphonic piano recordings are given using a recurrent neural

Oracle Molecular
P = 1 5 1 5

P 86.9 92.4 77.8 78.7
R 76.6 77.6 73.5 77.2
F 81.4 84.4 75.6 78.0

δ o
opt 0.1 0.1 5.5 4.8

Table 6.3: Optimum event-based AMT results using M-NS-OMP and oracle decompositions for
dictionaries with groupsizes P ∈ {1,5}.
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network. The onset detection results using the molecular and oracle methods with subspace

dictionaries are seen to be similar to those given in [12] for the MAPS Disklavier, while noting

that direct comparison cannot be performed as a smaller time resolution and a larger dataset are

used in [12].

However, careful consideration of the onset detection problem in spectrogram decomposi-

tions could yet yield improvements. Close inspection of the individual oracle decompositions

reveal repetitive systematic flaws in the onset detection, as graphically described in Figure 6.5.

False positives are often found when a sustained note is retriggered by oscillation around the

threshold value, behaviour which is often found in the presence of other note onsets and may

be due to transient signal elements effecting the smoothness of the decomposition across time.

Several common types of false negative were found. It is observed that a note that is replayed,

with minimal time between the offset of the original event and the onset of the following event,

often produces a false negative as the observed coefficient may not have fallen below the thresh-

old value. When several notes onset simultaneously, onsets may not be detected for all of these

notes. A tendency for lower pitched notes not to trigger an onset event in the detection system

is also noticed. Further to this some timing errors are found, where a false negative and a false

positive are closely spaced.

6.3 Further molecular algorithms

In the first section of this chapter molecular decompositions were performed using an OMP-based

algorithm with a selection criteria based upon that used for tonal elements in the MMP [30]. This

selection criteria incorporated a smoothing of the projection matrix (6.3), which is important

in the context of MMP, which seeks to capture temporally localised transient elements with a

wavelet transform. Smoothing the tonal elements in this scenario encourages spurious tonal

elements found around transients to be ignored. However, it may be possible that smoothing is

not particularly relevant in the case of AMT, and employing a different selection criteria in a

molecular OMP-based approach will reduce the number of input parameters, and may possibly

yield improved performance.

An alternative molecular selection criteria is proposed using the norm of the projection coef-



6.3. Further molecular algorithms 105

Figure 6.5: Some common problems with onset detection system. True positives in black, false
positives in green, false negatives in red. Retriggered onsets (top), repeated notes not triggering
onsets (middle) and untriggered onsets when many notes onset simultaneously (bottom).
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Algorithm 6.2 Molecular Hard Thresholding (MHT)
Input

H ∈ RN×T , p, δM, M
Initialise

Γ = 0N×T

Perform thresholding
ξm = ‖M(m)‖Mp = ‖Hl(m)

τ
(m)
0 :τ(m)

∞
‖p ∀m

m̂ = argmaxm ξm

λm = ξm̂×δM
J = {m|ξm > λM}

Assign sparse support / pianoroll
For i = 1: |J |

For τ = τ
(J (i))
0 : τ

(J (i))
∞

Γl(J
(i))

τ = 1
End For

End For
Output Γ(pianoroll)

ficients at each time point of a molecule :

ξm = ‖M(m)‖Mp = ‖Φl(m)

τ
(m)
0 :τ(m)

∞
‖p (6.6)

where Φ is any matrix of projections onto the residual signal. When a subspace dictionary is

employed (6.6) could also be considered in mixed-norm format such as ‖M(m)‖Mp,q , where an

`q-norm forms the group coefficient. However considering Φ in (6.6) as a group coefficient

matrix has the same effect, whilst being simpler notation-wise. A new algorithm, Molecular-

OMP (M-OMP) is proposed by simple replacement of the molecular selection criteria using the

smoothed coeffcient matrix (6.3) in M-NS-OMP, by the molecular norm (6.6). Indeed, apart

from the smoothing of the coefficient matrix, M-NS-OMP can be considered equivalent to M-

OMP with aM∞-norm used, as all other steps in the two algorithms are equal.

Other algorithms are easily derived using this molecular norm. A Molecular Hard Thresh-

olding (MHT) algorithm described in Algorithm 6.3 is now proposed. MHT accepts as input a

set of molecules,M, a coefficient matrix H, the molecular norm parameter, p, and a molecular

threshold parameter, δM. MHT proceeds by calculating the molecular norm coeffcient for each

molecule and calculating a molecular threshold λM using a δ -thresholding approach with the

parameter δM. The set of active molecules J is then determined by thresholding out molecules

such that ξm < λM, before finally the piano roll, Γ, is assigned by activating all pitch-time points
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Algorithm 6.3 Molecular Backwards Elimination (MBE)
Input

D ∈ RM×N , S ∈ RM×T , X ∈ RN×T , Γ ∈ {0,1}L×T , M, L, λM, p
Initialise
J = {1, ..., |M|}; R = S−DX
∆Br[l]t = x[l]T x[l]

[(DT
Γ

DΓ)−1][l,l] ∀(l, t) s.t. Γl,t = 1

Φl,t =

√
‖rt‖2

2 +∆Br[l]t −‖rt‖2
2

ξm = ‖Φl(m)

τ
(m)
0 :τ(0)∞

‖p ∀m ∈ J

While λM > minξ

m̂ = argminm ξm

J = J \m̂; ξm̂ =∞
For τ = τ

(m̂)
0 : τ

(m̂)
∞

[Γ]
τ,l(m̂) = 0

xJ (τ),τ = argmint ‖sτ −DJ (τ)x‖2
2 s.t. x≥ 0

ri
τ = sτ −Dxτ

∆Br([l])τ = x[l]T x[l]
[(DT

Γ
DΓ)−1][l,l] ∀ (l, t) s.t. Γl,τ = 1

Φl,t =

√
‖rτ‖2

2 +∆Br[l]τ −‖rτ‖2
2

End For
ξm = ‖Φl(m)

τ
(m)
0 :τ(0)∞

‖p∀m ∈ J
EndWhile
Output Γ̄(pianoroll)

contained in the set of active molecules.

The molecular norm also suggests that an elimination cost for a molecule can easily be de-

rived. Hence a Molecular Backward Elimination (MBE) algorithm is now proposed. MBE is a

stepwise algorithm, similar in a manner to M-OMP. However, in typical backwards elimination

fashion, MBE starts with a sparse support in which all molecules, and their constituent pitch-time

points, are active. Different molecular backwards elimination costs can be considered. However,

the stepwise optimal approach using the `0-penalised least squares error norm was seen to per-

form well in the context of AMT in the previous chapter, and is adapted for the MBE algorithm,

outlined in Algorithm 6.3.

MBE accepts as input the spectrogram, S, dictionary, D, the molecular and group structures

M,L, the current binary support matrix, Γ, the NNLS coefficient matrix, X given the sparse

support, a molecular threshold λM that is used as a stopping condition, and p, relating the value

of the molecular norm Mp to be used. The residual, R, and the set of indices of supported

molecules J are initialised. The backwards elimination cost ∆Br for the squared error norm

is calculated, from which Φ, the elimination cost using the error norm is derived. Finally the
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molecular elimination cost ξ is calculated using the molecular norm applied to Φ. MBE then

enters an iterative loop. At each iteration elimination of the molecule, indexed by m̂, displaying

the smallest elimination cost is performed and the index is removed from the setJ . At each pitch-

time point in the eliminated molecule, the corresponding pitch-time point in the piano roll, Γ, is

set to zero, and a new coefficient vector and residual are calculated with the downdated support.

The elimination costs for each pitch-time point active at that time frame are calculated. When

the pointwise elimination costs are calculated for all time frames contained in the molecule, the

molecular elimination costs are recalculated. This iteration continues until the elimination cost

of all molecules is greater than the molecular threshold λM.

Experiments with MHT

Before a comparison of these newly proposed molecular algorithms is undertaken, some initial

experiments are run to examine the comparative performance of the MHT algorithm for AMT

using different transforms and dictionary subspace sizes. Improvements were observed when

ERBTs and subspace dictionaries were used with other algorithms. While similar improvements

may be expected here, it can also be hypothesised that the introduction of temporal continuity

may attenuate the differences in performance, as a leveraging effect may be introduced when

structured collections of pitch-time points are considered together. Using MHT, or any of the

other proposed molecular approaches, an extra parameter, δM, is introduced. The initial NNLS

coeffcient matrix is δ -thresholded using a parameter, δF , before clustering of molecules is per-

formed as described earlier in the context of M-NS-OMP. The subsequent molecular decompo-

sition is then performed using a second threshold, or stopping conditon, δM. An examination of

the potential robustness, or otherwise, of the molecular approach through a thorough exploration

of the (δ F ,δM) threshold parameter space is undertaken in tandem with the relative comparison

of different transforms.

Similar to the experiments in §6.1, a NNLS decomposition is (group) thresholded using δ F

prior to clustering molecules. This thresholding is performed for a range of values of δ F ∈

{6, ...,60}dB in steps of 1dB. At each value of δF a molecular structure,M, and corresponding

sparse support Γ are derived and input to MHT, along with a value of δM, the molecular thresh-

olding parameter. Experiments are run for a range of δ M similar to that used for δ F , and results

are recorded for every (δ F ,δM) pair. These experiments are performed for all transforms used in

this thesis (§3.2), and using subspace dictionaries of groupsize P ∈ {1, ...,7}. Group coefficients
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Figure 6.6: Maximum F-measure achieved for each transform and groupsize using MHT.

when P > 1 are determined by the `⊥-norm of the groupwise non-negative solution vector. The

molecular norm coefficient is calculated using aM1-norm, summing all pitch-time coefficients

in the molecule. The results are given for the tuple (δ F ,δM)opt giving the optimal F-measure

for each transform/groupsize pair.

The performance relative to groupsize and transform is graphically represented in Figure

6.6. Here, it is seen that performance using the different transforms is quite similar, with around

2% difference in F-measure recorded between the best results for each transform, compared to

around 5% in the case of the NNLS decompositions. Further to this the effect of the groupsize is

similarly attenuated using MHT. The benefits of MHT are mostly observed for the STFTs, which

are seen to perform better relative to the GBF-NNLS approach proposed in the previous chapter,

while performance of the ERBTs deteriorate in a similar comparison. This flattening of relative

performance may be very useful, as the computation of an STFT is faster by a large factor than

that of an ERBT.

Contour maps of the F ,P,R ensemble of metrics in terms of (δ F ,δM) using MHT with

Transform E2 and groupsize P = 5. are shown in Figure 6.7, As can be expected, the Recall and

Precision metrics display relatively monotonic relationships with the thresholding parameters.

The F-measure is seen to peak in a region which extends from 31dB to 54dB in terms of δF and

from 24dB to 34dB in terms of δM, while a high value is maintained on a large L-shaped ridge. It

is noted that the difference between contours in this diagram is 2% in which case any point in the
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Figure 6.7: Contour maps showing Recall (top), Precision (middle) and F-measure (bottom)
using molecular thresholding with transform E2 and groupsize P = 5, relative to the framewise
and molecular thresholding parameters δF and δM.
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P = 1 P = 5
S1 E2 S1 E2

MHT (T) 71.6 72.8 73.5 74.0
M-OMP (T) 71.7 72.7 76.3 75.8

MBE (T) 73.6 74.5 77.3 77.1
MHT (BF) 73.0 74.0 77.7 77.5

M-OMP (BF) 70.8 72.6 76.8 77.4
MBE (BF) 73.4 74.3 77.3 77.8

Table 6.4: F-measure for various molecular algorithms in Transforms S1,E2 for single atom dic-
tionary and subspace dictionary (P=5). Coefficient matrices from two different decompositions
are input to the molecular method: (T) denotes NNLS: (BF) denotes backwards elimination.

large peak region returns an F-measure less than 2% below the optimum. This would indicate a

potential robustness of MHT in terms of the thresholding parameters.

Further Experiments

Some further experiments are undertaken to compare the proposed M-OMP, MHT and MBE

algorithms. In previous molecular experiments clustering was performed on a NNLS decompo-

sition, and this is repeated here for all algorithms. Furthermore, clustering is also performed on a

(G)BF-NNLS coefficient matrix. In the case of MHT, modifications are made to (G)BF-NNLS,

omitting the stopping condition and iterating at each spectrogram frame until all pitch-time points

are eliminated, while the elimination cost for each pitch-time point is recorded in the output co-

efficient matrix, which is input to MHT.

Experiments are run on the standard dataset (§3.1) using Transforms S1&E2. Experiments

are limited to the atomic pitch dictionaries and to subspace dictionaries with P= 5. For the MHT,

a similar setup to the previous set of experiments is used with decompositions performed at all

values of (δ F ,δM) ∈ {6, ...,60}dB and the optimal F-measure is recorded. For the M-OMP and

MBE, a similar approach is taken, with decompositions performed for a similar wide range of

values. However, in this case δ F -thresholding is performed at intervals of 5dB.

The results of these experiments are given in Table 6.4. Here, little difference is observed in

the results relative to the transform used for the decompositions, a scenario that, again, favours

STFT. The use of the subspace dictionaries is effective giving an improvement of around 4% in all

cases except for MHT with the NNLS coefficient matrix input. When the subspace dictionaries

are used, inputting the GBF-NNLS coefficient matrix is seen to be superior to inputting the NNLS

coeffcient matrix for all algorithms. Furthermore little difference is seen in the performance of
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the algorithms when the GBF-NNLS coefficients are input. However when the NNLS coeffcients

are used there is a difference of over 3%, between the superior MBE and the results of MHT, with

the M-OMP algorithm displaying performance intermediate to these two algorithms.

In the case of the atomic pitch dictionaries, some different effects are observed. The consis-

tency observed between algorithms with the subspace dictionaries when the elimination coeffi-

cients are input is not observed in this case. A higher F-measure is recorded for the stepwise

algorithms when the NNLS coefficient matrix is input, while the elimination coeffcients lead to

better performance when MHT is used. The best results are seen with the MBE algorithm for

both types of input coefficient matrix. To summarise it would seem that the use of a subspace

dictionary with backwards elimination performed, either pre- or post-clustering, results in the

best performance.

6.4 Discussion

In this chapter, structured sparse methods such as neighbourhood sparsity and molecular sparsity,

that introduce time continuity to sparse representations, were briefly introduced. Problems adapt-

ing such approaches to the AMT problem were noted, before an alternative molecular approach

was proposed that took advantage of the time continuity often observed in NNLS decomposi-

tions.

Initially the M-NS-OMP algorithm was proposed, which performed greedy selection from

a dictionary of predefined molecules. M-NS-OMP was seen to perform well both in terms of

frame-based and onset-based analyses. An analysis of oracle decompositions was then per-

formed, giving some insights to spectrogram decomposition-based AMT. In particular the use

of the subspace dictionaries was validated, as a larger recall was seen to be possible using the or-

acle. Further to this the onset detector, while seen to perform reasonably with M-NS-OMP, was

seen to reveal systematic errors when used on the oracle transcription, consideration of which

may lead to improved onset detection.

Finally a molecular norm, affording simple adaptation of other common sparse approxima-

tion algorithms to a molecular context was defined. Experiments showed improved AMT, par-

ticularly when subspace dictionaries and backwards elimination were used. The performance

enhancements were most notable in the STFT, where improvements relative to previous best

AMT using GBF-NNLS of the order of 6% were seen. In the case of the ERBT, the observed
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performance enhancement was around 2%. Indeed the molecular approach is seen to equalise the

transforms in terms of performance, which is advantageous due to the computational inexpen-

siveness of the STFT relative to the ERBT. It can probably be considered that the introduction of

a temporal element to the spectrogram decompositions suppresses some large individual errors

observable when the spectrogram frames are considered independently. As the STFT performs

the worst in the case of independently considered frames, it benefits most from the introduction

of temporal structure.

While improved results are seen in general, some large individual errors are occasionally

observed, such as over-extended notes, that the molecular approach sought to counter. Ideally

each molecule would represent one note-event. However, the molecular clustering approach

used is very coarse, with little consideration given to the concept of a note-event, and several

repeated notes may be contained in one molecule. This problem may be enhanced when a lower

threshold is used pre-clustering, and ultimately limits the potential effectiveness of the molecular

approach. It may be worth considering other molecular approaches. One such approach is seen

in [88], where the molecules are ultimately delineated by an onset detector. Another possible ap-

proach might be to start with a higher threshold applied to the initial decomposition, to encourage

separability of different note-events in a molecule. A molecular decomposition could then be per-

formed with subsequent lowering of the framewise threshold, allowing active molecules to dilate

whilst not merging. This dilation could be performed by further molecular clustering or alter-

natively, by using a framewise forward selection method constrained by connectivity to active

molecules. This is an avenue of research that may be investigated at a later date.

However, in the context of this thesis, a change in direction is now taken. Until now, sparse

and structured sparse decompositions have been performed in the context of AMT using step-

wise approaches which perform `0-penalised NNLS approximations. However, cost functions

other than the Euclidean are generally considered more effective in the context of musical signal

processing. The following chapter considers some of the cost functions commonly used, and

introduces some new cost functions to musical signal processing, while the focus on sparsity is

maintained through consideration of penalised cost functions including group sparse approxima-

tions.
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Chapter 7

Non-Negative Matrix Decompositions

Previous chapters have seen the exploration of stepwise methods for Automatic Music Transcrip-

tion (AMT), with a particular focus on group sparse decompositions. In particular it was seen

that using an NNLS decomposition with backwards elimination improved AMT, which is seen as

an `0-, or `⊥,0-penalised NNLS approximation. Typically in the sparse representations literature

an `1 penalty is used, as this affords a convex relaxation of the problem [23]. The `1 penalty is

also often applied in Non-negative Matrix Factorisation (NMF) approaches [56] [107].

The Basis Pursuit Denoising / LASSO problem has been adapted for the group sparse case.

A mixed norm penalty term for grouped atoms is introduced in the Group Lasso [137] :

x = argmin
x
‖s−Dx‖2

2 +λ‖x‖p,q (7.1)

where the mixed norm is given by

‖x‖p,q =

∑
l

(
∑

i∈L(l)
|xi|p

) q
p

 1
q

(7.2)

with varying values of the tuple (p,q) used to effect different properties on the decomposition.

For instance in the Group Lasso paper [137] an `1,2 norm is used to effect sparsity within a group,

while sparsity between groups is not enforced. Conversely, an `2,1 norm is used [37] [71] when

it is expected that atoms within a given group are active together, while few groups are active

in a given coefficient vector. An Iterative Soft Thresholding algorithm is used to perform this
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optimisation in [71] using a proximal, or shrinkage operator

xi← xi×max
(

0,1− λ

‖x[l]‖2

)
s.t. i ∈ L(l) (7.3)

for the thresholding step, with the authors noting that convergence is guaranteed when each group

is internally orthonormal. The use of groups which are not orthonormal is considered in [38],

who propose the use of a mixed norm using the orthogonal projection of the group

x = argmin
x
‖s−Dx‖2

2 +‖h‖1 (7.4)

where hl = ‖D[l]x[l]‖2, thereby considering the correlations within each group.

While the penalised least squares approach is relatively well studied, it has previously been

seen in the AMT and musical signal processing literature that cost functions other than the Eu-

clidean distance result in better performance [115] [40] [133] when using Non-negative Matrix

Factorisation (NMF) [74] algorithms. Typically, NMF refers to an unsupervised learning algo-

rithm, in which both the dictionary and activation matrix are learnt using an alternating projection

strategy. However, the NMF coefficient matrix updates can be used with a fixed dictionary, an

approach referred to as supervised NMF [4], or alternatively Non-negative Matrix Decomposi-

tion (NMD) [32]. Indeed, when a fixed pitch-labelled dictionary with atoms which captures well

the spectral shape of the instrument being played is used, superior results to those found using

unsupervised NMF are to be expected [32] [133].

NMF using multiplicative updates was first proposed by Lee & Seung [74] who propose mul-

tiplicative update algorithms for the Euclidean distance and Kullback-Leibler (KL) divergence

cost function:

CKL(s|z) = ∑
i

si log
si

zi
− si + zi. (7.5)

Smaragdis and Brown [115] first proposed the use of NMF as a tool for AMT, and experiments

with the cost functions given in [74] demonstrate superior performance when using the KL-

divergence. Later the Itakuro-Saito divergence

CIS(s|z) = ∑
i

si

zi
− log

(
si

zi

)
−1 (7.6)

was proposed for use with musical signals [40], in particular for use with the power spectrogram.
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Notably, this divergence had inadvertently been used at an earlier date for AMT in [1] where it

was derived by the authors who sought to accomodate a multiplicative noise model, again in the

case of a power spectrogram. It is worth noting that these three cost functions can all be seen to

perform maximum likelihood estimation with different distributions on the noise [40], with the

Euclidean distance assuming a Gaussian distribution, while the KL and IS divergences assume a

Poisson and Gamma distribution, respectively.

NMF algorithms using multiplicative updates have been proposed for many different cost

functions, and a pattern is seen in the literature towards generalised divergences that allow the

same algorithm to be used with varying parameters in order to effect different cost functions. For

example the generalised β -divergence [24] [27] given by

Cβ (s|z) = ∑
i

sβ

i
β (β −1)

+
zβ

i
β
−

siz
β−1
i

β −1
(7.7)

is seen to include the Euclidean distance (β = 2), while the Itakuro-Saito (IS) and Kullback-

Leibler (KL) divergences are seen as limiting cases when β → {0,1} respectively. Considering

that z = Dx the multiplicative update [24] for β -NMD derived by using a fixed stepsize in a

similar fashion to that used in [74] is given by

X←− X⊗ [DT (S⊗ [DX][β−2])]� [DT [DX][β−1]] (7.8)

where ⊗ and � denote elementwise multiplication and division, respectively and x[a] denotes

elementwise exponentiation of x to the power of a. Indeed this update (7.8) reduces to the

multiplicative updates given for Euclidean distance and KL-divergence in [74] and IS-divergence

given in [1] [40] with the appropriate values of β . An exploration of the use of NMD with the

β -divergence for the purpose of AMT was undertaken in [133] where the authors report superior

results using the value of β = 0.5, having compared with values in the range of β = {0, ...,2} in

steps of 0.1, thereby including the popular Euclidean and KL and IS cost functions.

The Amari α-divergence [24]

Cα(s|z) =
1

α(α−1) ∑
i

sα
i z1−α

i −αsi +(α−1)zi (7.9)

is a generalised divergence which also includes the KL-divergence as a special case. Similar to

the generalised β -divergence, the α-divergence is seen to encompass several other well known
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cost functions, such as the Pearson chi-squared distance

CP(s|z) = ∑
i

(si− zi)
2

zi
(7.10)

when α = 2; the Hellinger distance

CH(s|z) = ‖s[0.5]− z[0.5]‖2
2 (7.11)

when α = 0.5, and the Neyman chi-squared distance

CN(s|z) = ∑
i

(si− zi)
2

si
(7.12)

when α = −1, while the KL-divergence is effected when α = 1. The multiplicative update for

the Amari α-divergence is given as

X←− X⊗

(
DT
[

S
DX

][α]
) 1

α

(7.13)

in [27] where the division is elementwise and the atoms of D are required to have unit sum.

Further to this the same authors recently connected both α- and β - divergences into a larger

framework known as the generalised alpha-beta divergence [25], given by

Cαβ (s|z) =−
1

αβ
∑

i
sα

i zβ

i −
α

α +β
sα+β

i − β

α +β
zα+β

i (7.14)

which includes all α- and β - divergences mentioned above in a two-dimensional divergence

parameter space. The definition of the α- and β -divergences as part of the αβ -divergence should

be noted. The β divergence (7.7) is given by

C(b)
β

(s|z) = C(1,b−1)
αβ

(s|z) (7.15)

where C(a,b)
αβ

relates the αβ -divergence with α = a;β = b. Similarly the the α-divergence (7.9)

is given by

C(a)α (s|z) = C(a,1−a)
αβ

(s|z). (7.16)
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A NMD multiplicative update for the αβ -divergence is given [25] by

X← X⊗

(
DT (S[α]⊗ [DX][β−1])

DT [DX][α+β−1]

)[ 1
α
]

(7.17)

when α 6= 0.

Application-specific enhancement is often sought in NMF, both supervised and otherwise.

Penalty terms afford one possibility for effecting such enhancements, and many different penalty

terms have been used to augment NMF [134] [106]. Very often a sparsity-inducing penalty is

desirable. While a `1 penalty has been applied [55] [107] other strategies such as logarithmic

penalties [134] [1] have also been employed. Group sparsity has recently been introduced to the

NMF problem. For example, it is proposed in [40] to use the IS divergence with a log-based

group sparse penalty

CGIS(s|Dx) = CIS(s|Dx)+λΦ(x) (7.18)

for the purpose of source separation, where Φ(x) is a group sparse operation. In particular, the

authors propose that Φ(x) = ∑l log(a+gl) where gl = ‖x[l]‖1 where ∑di = 1∀ i.

Monotonic decreases

The seminal NMF paper [74] proposed multiplicative updates for the Euclidean and KL cost

functions, and it was shown, by employing the auxiliary function methodology, that both cost

functions were non-decreasing under the actions of the proposed updates. This monotonic de-

crease in a cost function is a much desirable trait for any descent algorithm. Indeed part of the

reason for the popularity of the multiplicative update methodology might well be the fact that cost

functions which are otherwise seen to display badly scaled gradients such as the KL-divergence

[135] and Itakuro-Saito divergence [1] are solvable in an uncomplicated manner, where other

methods can be quite inefficient.

An interesting area of research has sought to find provably monotonic decreasing multiplica-

tive updates. For instance a monotonic variant of the β -divergence multiplicative update

X← X⊗

(
DT (S⊗ [DX][β−2])

DT [DX][β−1]

)[ϕ(β )]

(7.19)

is proposed by Nakano et al [85], which is seen to differ from the original heuristic β -divergence
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algorithm (2.35) only through the exponential factor ϕ(β ) :

ϕ(β ) =



1
2−β

if β < 1

1 if 1≤ β ≤ 2

1
β−1 otherwise.

(7.20)

This update was derived by using an auxiliary function separately for each case shown as the

β -divergence (7.7) typically consists of separate convex and concave elements. While the mono-

tonicity is often observed for the unexponentiated updates, it is often not guaranteed [4] [41]. The

results from [85], where the exponential factors (7.20) are proposed are extended by Fevotte and

Idier in [41] where it is shown that ϕ(β ) = 1 guarantees a monotonic descent when 0 < β ≤ 1.

The αβ divergence is also equipped with a monotonic variant when α 6= 0 using a similar

exponential factor :

ϕ(αβ ) =



1
1−β

if β

α
< 1

α
−1

1
α

if 1
α
−1≤ β

α
≤ 1

α

1
α+β−1 if β

α
> 1

α
.

(7.21)

which correspond to ϕ(β ) in [85] when the β -divergence is generalised as in (7.15). When the α-

divergence is generalised as in (7.15), ϕ(αβ ) = 1/α guarantees monotonic descent, as proposed

in the original α-divergence update (7.13).

In the rest of this chapter, the use of αβ -divergence for AMT is first explored, starting with

experiments with some well-known cost functions. Based on these observations another gen-

eralised divergence is proposed, that itself is a special case of the αβ -divergence, and leads to

improved AMT results with the STFT. While the αβ -divergence comes with guaranteed mono-

tonicity with exponentiated multiplicative updates, it is found that the new divergence is a special

case, similar to the β -divergence when 0≤ β ≤ 1, where a larger stepsize can be used while main-

taining montonic descent, as shown in [41]. Finally, some experiments are described, using the

mixed-norm group sparse penalty with NMF.

7.1 AMT using αβ divergence

The use of the β -divergences is well explored for the purpose of AMT, with β = 0.5 previously

seen to give optimal results [133] [32]. In particular, the authors of [133] performed extensive
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S1 S2 E1 E2 E3 E4
CN 61.6 61.5 64.6 67.3 66.5 67.7
CEUCL 64.0 64.1 66.7 68.4 68.1 68.6
CP 68.5 68.7 70.1 71.2 70.9 72.8
CH 70.1 70.1 71.3 73.0 72.6 73.7
CKL 70.9 71.0 70.9 73.5 73.1 73.9
C(0.5)

β
71.1 71.5 72.0 74.9 74.7 75.3

Table 7.1: Comparision of NMD using several different αβ divergence cost functions for AMT
experiments on standard dataset across various transforms using single atom dictionaries. Results
given in terms of optimal F-measure.

experiments similar to those presented here, for a range of values of β . However the use of the

α-divergence is relatively unexplored, with the exception of the KL-divergence which is both an

α- and a β - divergence. The KL-divergence is a commonly used cost function in musical signal

processing [134] [115], for which good results are generally reported, and it may be worthwhile

to compare the use of some other α-divergences.

Experiments

In light of this, some experiments were run to compare the relative performance of some well

known cost functions that are generalised by the αβ -divergence. AMT decompositions were per-

formed on the standard dataset (§3.1), using single atom dictionaries with all transforms outlined

in Table 3.1. The cost functions used were the Euclidean, CE , Hellinger, CH , (7.11), Neyman,

CN , (7.12) and Pearson, CP (7.10), distances, the KL-divergence, CKL (7.5) and generalised β -

divergence with β = 0.5 denoted by C(0.5)
β

.

The results are shown in Table 7.1. It is seen here that, from the selected cost functions, C(0.5)
β

performs best, followed by the Kullback-Leibler divergence, Hellinger distance and the Pearson

distance, while the Neyman distance is seen to perform worst for all transforms, followed by the

Euclidean distance. Across the different transforms, a variation in performance is seen, with a

similar pattern to when greedy and stepwise methods were used in Chapters 4 and 5, with the

larger dimension ERBTs performing best, and STFTs seen to perform the worst. However, the

difference in performance relative to the transform used is small in comparision to the results

seen for the OMP based methods, being approximately 3− 5%, similar to results seen with the

(G)BF-NNLS methods. It is notable that the performance of the β - and KL-divergences are

quite similar in the case of the STFTs while those of the Hellinger distance and KL-divergence

are closely matched in the case of the ERBs.
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Figure 7.1: Diagram showing the η-, α- and β - divergences as generalised αβ -divergences.
Popular cost functions generalised by αβ -divergence also indicated

7.1.1 Another generalised divergence

In light of the results seen in the previous experiments, it is worth noting the similar form of the

generalised β -divergence with β = 0.5 :

C(0.5)
β

(s|z) = 1
0.5 ∑

i

(s0.5
i − z0.5

i )2

z0.5
i

(7.22)

and the Pearson distance (7.10). Of particular interest is the fact that both are seen to be weighted

by a denominator, based upon the current estimate z = Dx. Otherwise stated, CP and C(0.5)
β

are

model weighted versions of the Euclidean distance and Hellinger distance (7.11), respectively.
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Furthermore, these model weighted cost functions outperform the corresponding unweighted

cost functions. Conversely, the Neyman distance (7.12) is seen to be weighted by the signal,

and is seen to perform the worst of all cost functions used. This resonates with results given in

[24] where the Neyman distance is seen to perform well when the signal matrix is dense, and it

is assumed that presence of small values in the signal matrix leads to instabilities in the signal

representations leading to possibly large errors [24].

As the model weighting approach is seen to be useful, it may be worthy of further exploration.

Hence , it is proposed to generalise the two model weighted cost functions, CP and C(0.5)
β

, and a

parametric cost function which is referred to as the η-divergence is proposed :

Cη(s|z) =
1
η

∑
i

(sη

i − zη

i )
2

zη

i
=

1
η

∑
i

s2η

i z−η

i + zη

i −2sη

i . (7.23)

In order to derive a multiplicative update for (7.23), the gradient is first taken :

dCη(s|Dx)
dx

= DT [Dx[η−1]]−DT
[
s[2η ]⊗ [Dx][−η−1]

]
. (7.24)

In typical NMF fashion [74] [24] a fixed stepsize

ν =− x

DT [Dx][η−1]
i

(7.25)

can be defined which leads to additive gradient descent reducing to the multiplicative update:

X ←− X+ν
dCη(s|Dx)

dx

= X⊗
DT
[
S[2η ]⊗ [DX][−η−1]

]
DT [DX][η−1] . (7.26)

This is equivalent to the heuristic β -NMF update (2.35) when β = η = 0.5. Indeed the update

(7.26) bears resemblance to the update for the αβ -divergence . As might be expected, due to

its derivation from linking two separate αβ -divergences, close inspection reveals that the η-

divergence is a special case of the αβ -divergence, where α = −2β = 2η . This can also be

expressed by

C(y)η (s|z) = C(2y,−y)
αβ

. (7.27)

where y is any value of η , and is graphically shown in Figure 7.1. An advantage of the relation-
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Transform
S1 S2 E1 E2 E3 E4

η = 0.1 49.8 39.6 59.5 65.7 64.5 66.9
0.2 57.9 53.7 66.2 70.7 70.3 71.5
0.3 63.7 63.3 69.6 73.3 73.0 73.8
0.4 68.1 68.5 71.3 74.5 74.3 75.0
0.5 71.0 71.4 72.1 74.9 74.7 75.3
0.6 72.4 72.6 72.1 74.8 74.5 75.2
0.7 72.6 72.8 71.8 74.4 74.1 74.9
0.8 72.1 72.2 71.4 74.0 73.6 74.4
0.9 71.3 71.4 71.0 73.5 73.1 74.0
1.0 69.0 69.0 69.6 72.1 71.7 72.7

Table 7.2: AMT performance for η-divergence expressed in F-measure for various transforms
over a range of values of η .

ship with the αβ -divergence is the admission of a monotonic descent algorithm

X←− X⊗

(
DT
[
S[2η ]⊗ [DX][−η−1]

]
DT [DX][η−1]

)ϕ(η)

(7.28)

where

ϕ(η) =



1
η+1 if 0 < η ≤ 1

1
η−1 if −1≤ η < 0

1
2η

otherwise.

(7.29)

is derived from the definition of ϕ(αβ ) (7.21)

Experiments

Experiments were run using the η-divergence with varying values of η in order to test if further

AMT improvements are possible. The experiments are similar to the previous AMT experiments

for αβ -divergence, with decompositions of all pieces in the standard dataset (§3.1) performed

in all transforms (§3.2) using the atomic pitch dictionaries (§3.3.2). Decompositions were per-

formed for values of η ∈ {0.1, ...1.0} in steps of 0.1.

Results are shown in Table 7.2 where two different patterns are seen. For the STFT trans-

forms, the best results are seen with η = 0.7, noting that previously the best results for these

transforms were seen with η = β = 0.5. The improvement seen is mild at around 1.5%; however

improvements over η = 0.5 are seen over the range η ∈ [0.6,0.9] in both cases. However, these

results with the STFT are better than the results seen for the STFT using all other cost functions.

For the ERB transforms, the best results are seen for η = 0.5−0.6, and little separates the results
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for these values.

The authors of [25] describe how the alpha parameter can be seen as a ”zoom” parameter on

a β -divergence. When α 6= 0 this relationship is expressed by

C(a,b)
α,β (s|z) = C(b+1)

β
(s[a]|z[a]) (7.30)

where the change in the variable b in αβ -divergence to b+ 1 in β -divergence is an expression

of (7.15). In this manner, the η-divergence can be seen as the β -divergence with fixed β = 0.5,

and an α-zoom on the signal and model. For example, when η = 0.7, as was seen to produce

superior results for the STFTs, the η-divergence can also be expressed as :

C(0.7)η (s|z) = C(0.5)
β

(s[1.4]|z[1.4]). (7.31)

7.1.2 Improved monotonic update for η-divergence

In the last section results were given showing that the η-divergence may provide useful cost

functions, particularly in the range η ∈ [0.5,1.0], with improved results observed in the case of

the STFTs. Indeed, these can be considered state-of-the art decompositions for AMT using the

STFT transform.

The multiplicative update used (7.28) included an exponential factor ϕ(η) (7.29), the use

of which guarantees monotonic decreases in the cost function. This factor ϕ(η) is derived from

ϕ(αβ ) given as part of the αβ -NMF framework (7.21). ϕ(αβ ) also generalises ϕ(β ) [85] which

gives monotonic updates for the β -divergence, and the monotonic descent algorithm given for

the α-divergence (7.13) [24].

While the exponentiated updates given for the αβ -divergence have proven monotonicity,

special cases also exist where a larger step than that proposed in (7.21) may be taken. For exam-

ple, Fevotte and Idier [41] show that for β -divergence, the unexponentiated multiplicative update

(7.8) originally proposed in [24] is monotonic for values of β ∈ [0,1], where previously this was

only shown to be the case for β ∈ [1,2] (7.20) as originally given by Nakano et al [85] and also

generalised by ϕ(αβ ) (7.21). Similarly, it may be shown that the η-divergence in the range

η ∈ [0.5,1] is a similar special case that can accommodate a larger step size while maintaining

monotonicity.
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s[2η ][Dx][−η ] [Dx][η ] −2s[η ]

0 < η ≤ 1 ^ _ -
−1≤ η < 0 _ ^ -
|η |> 1 ^ ^ -

Table 7.3: Convexity/ concavity of separate terms of η-divergence in terms of Dx relative to
value of η . Convexity denoted by ^; concavity denoted by _ and constant denoted by −

Theorem 1. For η ∈ [0.5,1.0] the cost function (7.23) is non-increasing under the multiplicative

update

X←− X⊗

(
DT
[
S[2η ]⊗ [DX][η+1]

]
DT [DX][η−1]

) 1
2η

(7.32)

where X,D,S≥ 0.

The proof of this theorem is delayed while the requisite tools are described. A similar

methodology to that used in [41] is taken. This requires the use of an auxiliary function, as

used in [74][85][41][25] to prove monotonicity for NMF algorithms. Given a cost function

C(s|z) = C[x] where z = Dx an auxiliary function is given by F [x, x̂] where x̂ is referred to as

an auxiliary variable. An auxiliary function has by definition [41], the following properties

C[x] = F [x|x]∀x
C[x] ≤ F [x|x̂]∀(x, x̂) (7.33)

which show that the auxiliary function provides an upper bound to the cost function at x. In most

cases of the αβ -divergence the cost function is seen to consist of separate convex, concave and

linear elements [25], and the η-divergence is similar. Multiplying out the Cη cost function (7.23)

and displaying the curvature of each term, when 0≤ η ≤ 1 gives:

Cη(s|z) = s[2η ][z][−η ]+[z][η ]−2s[η ]

=
^

Cη(s|z)+
_

Cη(s|z)+ C̄η(s|z) (7.34)

where
^

C denotes a convex term,
_

C denotes a concave term and C̄ denotes a constant term. These

curvature definitions do not hold for values of η outside the range (0,1), and the possible com-

binations of convex and concave functions are outlined in Table 7.3, leading to three possible

combinations relative to the value of η . However, the focus here is solely on the first row of

Table 7.3 as given in (7.34), and particularly a subset of that range, when 0.5≤ η ≤ 1.

In this case of mixed curvature, an auxilary function is similarly split into concave, con-

vex and linear parts, and the following theorem gives a general auxiliary function for a mixed
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curvature cost function.

Theorem 2 (Fevotte and Idier [41]). Given ẑ = Dx̂, the function

F [x, x̂] = ∑
m

[(
∑
n

dmnx̂n

ẑ
^

C(sm|ẑm
xn

x̂n
)

)
+

(
_

C(sm|ẑm)+∑
n

dmn(xn− x̂n)
_

C′(sm|ẑm)

)
+ C̄(sm|ẑm)

]
(7.35)

is an auxiliary function to C(s|z) =
^

C(s|z)+
_

C(s|z)+ C̄(s|z) where z = Dx.

Proof. Defining Cm[x] = C(sm|zm) it is noted that C[x] = ∑mCm[x]. The auxiliary function can be

constructed:

F [x, x̂] = ∑
m

Fm[x, x̂]

= ∑
m

^

Fm[x, x̂]+
_

Fm[x, x̂]+ F̄m[x, x̂] (7.36)

such that
^

Fm[x, x̂]≥
^

Cm[x] and
_

Fm[x, x̂]≥
_

Cm[x] while F̄m[x, x̂] = C̄m[x], thereby considering sepa-

rate auxiliary functions for the convex and concave parts at each element of the signal.

The convex auxiliary function,
^

Fm[x, x̂], is given using Jensen’s inequality and equates to

the first term of (7.35) while the first term of the Taylor expansion is used to give the concave

auxiliary function,
_

Fm[x, x̂], which is equal to the second term of (7.35). A full proof is given in

[41].

It is noted that Theorem 2 generalises the approach taken by Nakano et al [85] who provide

a similar proof for the specific case of the β -divergence. An important property of the auxiliary

function (7.35) is that it is separable in each variable. In particular the following relationships

are noted in [41]:

F [x, x̂] = ∑
n

Fn[xn, x̂]+K (7.37)

where K is a constant with respect to x̂, and

Fn[xn, x̂] = x̂n

[
∑
m

dmn

ẑm

^

C
(

sm|ẑm
xn

x̂n

)]
+ xn

[
∑
m

dmn
_

C′(sm|ẑm)

]
(7.38)

which in the particular case of the η-divergence in the specified range reduces to

Fn[xn, x̂] = x̂n

(
x̂n

xn

)η [
dT

k (s
[2η ]⊗ [Dx̂][−η−1])

]
+ηxn

[
dT

k ([Dx̂][η−1])
]

(7.39)



7.1. AMT using αβ divergence 127

using the fact that
d

_

Cη(s|z)
dz

= ηzη−1. (7.40)

Another necessary element of the proof of Theorem 1 is the introduction of a scalar auxiliary

function, as defined in [41]:

f (a|b,c) =
^

C(c|a)+
_

C(c|b)+(a−b)
^

C′(c|b)+ C̄(c) (7.41)

where f (a|b,b) = C(a|b). The η-divergence update can be rewritten in the univariate case with

ϕ(αβ ) = 1/α

x̄n←− x̂n

(
dT

n (s[2η ]⊗ ẑ[−η−1])

dT
n ẑ[η−1]

) 1
α

= x̂nJ[
1
α
]

Further to this, the following Lemma is proposed, which is similar to that used for the case of the

β -divergence in [41].

Lemma 1. For η in the range (0,1]

Fn[xn, x̂] = x̂(1−η)
n

(
dT

n (ẑ
[η−1])

)
f (xn|x̂n, x̄n)+K (7.42)

where K is constant in terms of x̂nandx̄n.

Proof. First, writing out the scalar auxiliary function (7.41) for the case of the η-divergence in

the range (0,1) gives

f (xn|x̂n, x̄n) = x̄2η
n x−η

n +ηxnx̂η−1
n +(1−η)x̂η

n −2x̄n. (7.43)

The different terms of f (x|x̂, x̄) (7.43) can be multiplied out separately. First, consider the first

term:

x̂(1−η)
n

(
dT

n (ẑ
[η−1])

)
x̂2ηx−η = x̂(1−η)

n

(
dT

n (ẑ
[η−1])

)
(x̄nJ[

1
α
])2ηx−η

= x̂n

(
x̂n

xn

)η (
dT

n (ẑ
[η−1])

)
J

= x̂n

(
x̂n

xn

)η (
dT

n (s
[2η ]⊗ ẑ[−η−1])

)
(7.44)
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which is seen to be the same as the first term of Fn[xn, x̂] in (7.39). Similarly, the second term

x̂(1−η)
n

(
dT

n [ẑ]
[η−1]

)
ηxnx̂[η−1]

n = ηxndT
k [ẑ]

[η−1] (7.45)

is seen to be equal to the second term of Fn[xn, x̂] in (7.39). The third and fourth terms of (7.43)

are seen to be constants in terms of x̄ or x̂, thereby proving the Lemma.

Now that the necessary framework is in place, proof of Theorem 1 is given.

Proof of Theorem 1. Ultimately, the proof requires demonstration that

Cη(s|Dx̄)< Cη(s|Dx̂) (7.46)

for η ∈ (0.5,1) where each x̂n is given by (7.42). Due to the definition of an auxiliary function

(7.33) the condition (7.46) is guaranteed when F [x̄, x̂]≤ F [x̂, x̂]. Furthermore, separability of the

auxiliary function guarantees (7.46) when

Fn[x̄n, x̂]≤ Fn[x̂n, x̂]

which reduces to

f (x̄|x̂, x̄)≤ f (x̂|x̂, x̄) (7.47)

following Lemma 1.

Using dummy variables, rearranging and making cancellations leads to (7.47) being rewritten

f (a|a,b)− f (b|a,b) =
^

C(a|b)−
^

C(a|a)− (a−b)
_

C′(a|b)≥ 0 (7.48)

t which can be stated in terms of η-divergence

f (a|a,b)− f (b|a,b) = a[2η ]b−η −a[2η ]a−η − (a−b)ηbη−1

= a[2η ]b−η −aη −aηbη−1 +ηbη

= bη(Θ2η −Θ
η −ηΘ+η) (7.49)

where Θ = a/b. It follows from non-negativity that bη ≥ 0. Given that Θη ≤ 1+(Θ−1)η from

concavity of Θη as η ≤ 1 the proof only requires that
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Θ
2η ≥ ηΘ−η +1+(Θ−1)η

= 1+2η(Θ−1)

(7.50)

and recalling that α = 2η gives

Θ
α ≥ 1+α(Θ−1) (7.51)

which is true in all cases, again due to the Taylor expansion with convexity of Θα which is convex

as α ≥ 1.

7.2 Applying sparse penalties to Alpha-beta divergence

In order to make a signal representation sparse, application of an `1-norm penalty is a common

procedure in the sparse representations methodology [23] [124]. The `1 penalty is also often

considered in NMF [56] [107]. Application of an `1 penalty to the β -divergence is proposed in

[41] leading to the cost function

CSβ (s|z) = Cβ (s|z)+λ‖x‖1 (7.52)

where z = Dx. Monotonic descent multiplicative updates for (7.52) are given in [41] by

X← X⊗

(
DT (S⊗ [DX][β−2])

DT [DX][β−1]+λ

)[ 1
2−β

]

(7.53)

when β ∈ [0,1], and similarly when β ≥ 2:

X← X⊗

(
DT (S⊗ [DX][β−2])−λ

DT [DX][β−1]

)[ 1
β−1 ]

. (7.54)

It is now shown that the α-divergence also accommodates an `1 penalty term in a straightforward

manner

Lemma 2. The cost function

CSα =
1

α(α−1)

(
∑

i
sα

mz1−α
m −αsm +(α−1)zm

)
+

λ‖x‖1

α
(7.55)
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where z = Dx is non-increasing with the multiplicative update

X←− X⊗

(
DT [ S

DX ]
[α]

DT 1M +λ

)[ 1
α
]

. (7.56)

Proof. First an auxiliary function for (7.55) is formed using (7.35). This is performed by bound-

ing only the first element of the summed term in (7.55) which is convex as all other terms are

linear, or constant:

F [x, x̂] = ∑
m

[
∑
n

dmnx̂n

ẑm

^

C(sm|ẑm
xn

x̂n
)− 1

(α−1)
sm +

1
α

ẑm

]
+

1
α

λ‖x‖1 (7.57)

Separability of (7.57) is given by (7.38) [41] and the fact that the `1 norm is separable:

Fn[xn|x̂] = x̂n

[
∑
m

dmn

ẑm

^

C(sm|ẑm
xn

x̂n
)

]
+

1
α

dnxn +
1
α

λxn (7.58)

the gradient of which, with respect to x is given by

− 1
α

dT
n (s

[a]⊗ ẑ[−a])

(
xn

x̂n

)−α

+
1
α

dT
n 1M +

1
α

λ . (7.59)

Setting the gradient (7.59) to zero gives

(
xn

x̂n

)−α

=
dT

n 1M +λ

dT
n (s[a]⊗ ẑ[−a])

(7.60)

and rearranging:

xn = x̂n⊗

(
dT

n (s[a]⊗Dx̂[−a])

dT
n 1M +λ

)[ 1
α
]

(7.61)

from which (7.56) follows.

While the `1-penalty is commonly used, other approaches are possible. It is proposed to use

a `p
p penalty term, described in [43] [19]. It is worth noting that the `p-norm exponentiated to p

is also the `1 norm of the likewise exponentiated vector :

‖x‖p
p = ‖x[p]‖1. (7.62)
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In particular this affords separability of the penalty term in each variable, a property that is seen in

Lemma 2 to allow incorporation of penalty terms to monotonic NMF updates in a straightforward

manner. It is now shown that a monotonic update is available for the `p
p-penalised αβ -divergence

in the range α +β < 1,β < 0.

Lemma 3. The cost function

CSαβ =− 1
αβ

(
∑

i
sα

i zβ

i −
α

α +β
sα+β

i − β

α +β
zα+β

i

)
+

λ

α p
‖x‖p

p (7.63)

where z = Dx is non-increasing with the multiplicative update

X←− X⊗

(
DT [S[α]⊗ [DX][β−1]

DT [DX][α+β−1]+λX[p−1]

)[ 1
1−β

]

. (7.64)

when 0 < α +β < 1; 0 < p < 1 and β < 0.

Proof. A similar proof to that given for Lemma 2 is used, relying on the auxiliary function

defined in Theorem 2. The `p
p norm is separable, as can be seen from its statement as a `1norm

(7.62) and concave in each element as p < 1, leading to an auxiliary function for the penalty term

F‖.‖n [xn|x̂] =
λ

α p
x̂n

p +(xn− x̂n)
dx̂[p]n

dx̂n

=
λ

α p

[
(1− p)x̂p

n + px̂(p−1)xn

]
. (7.65)

The general auxiliary function (7.35) is then augmented by (7.65). The gradient for the combined

auxiliary function with relation to xn for the αβ -divergence in the given range is then given as

1
α

[
−dT

n (s
[α]⊗ ẑ[β−1])

(
xn

x̂n

)[β−1]

+dT
n ẑ[α+β−1]+λ x̂[p−1]

n

]
(7.66)

Setting the gradient to zero gives

−dT
n (s

[α]⊗ ẑ[β−1])

(
xn

x̂n

)[β−1]

= dT
n ẑ[α+β−1]+λ x̂[p−1]

n (7.67)

and rearranging leads to

xn = x̂n

(
dT

n (s[α]⊗ ẑ[β−1])

dT
n ẑ[α+β−1]+λ x̂[p−1]

n

)[ 1
1−β

]

(7.68)
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Penalty term
0 `1 `0.5

0.5
CKL 73.9 75.0 75.6
C(0.5)

β
75.2 75.5 76.4

Table 7.4: AMT results in F-measure for two β -divergences, without a sparse penalty, and with
different sparse penalty strategies applied.

from which (7.64) follows.

Experiments

Some decomposition experiments were run to compare the two penalisation approaches. The

cost functions used were limited for these experiments to CKL and C(0.5)
β

. Decompositions were

performed on the standard dataset with spectrograms from Transform E4, the best performing

transform. Only the atomic pitch dictionaries were used. After some initial experiments a value

of λ = 0.5 was selected for C(0.5)
β

and in the case of CKL; λ = 2. These values were seen to

be good for the individual transforms and to maintain that state regardless of the penalty norm

employed. For both cost functions, a `0.5
0.5 norm is used.

The results of the experiments are shown in Table 7.5. Here it is seen that the `0.5
0.5 penalty

results in better performance than the `1 penalty. The improvements are mild, less than 2% better

than the results for the unpenalised approach.

7.2.1 Group sparse penalisation

A particular focus of this thesis is the incorporation of subspace modelling using group sparse

methods. Group sparse NMF has previously been proposed [75] using the Itakuro-Saito diver-

gence with a log-penalised group penalty with an `1 norm for the group coefficient.

While proofs of monotonicity are not offered, it is proposed to perform group sparse pe-

nalisation using mixed norm approaches, in particular penalties of the form `q
p,q. Two different

approaches are undertaken, an `0.5
2,0.5 and `0.5

⊥,0.5 penalty. The gradient has to calculated offline, i.e.

not during the multiplicative update.

Experiments were undertaken to compare the different approaches mentioned above. Similar

to the last set of experiments, only Transform E4 is used for this set of spectrogram decomposi-

tions. Group sparse penalised variants of the KL-divergence and C(0.5)
β

are used, with subspace

dictionaries of size P ∈ {3,5} employed. δ -thresholding (§3.4.1) is employed and the optimum

F-measure for each approach is recorded.
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P = 3 P = 5
`0.5
⊥,0.5 `0.5

2,0.5 `0.5
⊥,0.5 `0.5

2,0.5
CKL 77.9 78.4 77.8 78.0
C(0.5)

β
77.7 78.3 76.8 77.5

Table 7.5: AMT results in F-measure for different group sparse penalty approaches with two
cost functions, C(0.5)

β
and CKL. Two different groupsizes P also applied.

The results are shown in Table 7.5. A tendency for the performance of G-β -NMD to diminish

when P= 5 is observable. Similar results were obtained using the G-KL-NMD as the G-β -NMD.

G-KL-NMD also performed relatively consistently with respect to group size In terms of the

penalty terms employed, both cost function performed slightly better with the `0.5
2,0.5. Nonetheless,

both algorithms show improved performance relative to the standard atomic pitch setup, and also

in comparison to the `p
p penalised approaches described above.

7.3 Discussion

In this chapter an outline of some recent developments in NMF was given. In particular gen-

eralised divergences for which multiplicative update algorithms are available were described,

before focussing on the forms of these algorithms that have guaranteed monotonic descent prop-

erties. Some initial AMT experiments were performed to compare the use of α-divergences for

this purpose with the already popular β -divergences. Results showed that the β -divergence, with

β = 0.5 to provide superior results, as previously described in the literature [133] [32].

However, multiplying out the C(0.5)
β

cost function revealed its similar form to the Pearson

distance, affording a simple generalisation, referred to as the η-divergence, of the two cost func-

tions. Further experiments yielded improved AMT results using η-divergence for the STFT,

while improved monotonic descent was shown.

Following this, the use of sparse penalties for NMF was explored, and it was found that

an `p
p-norm penalty was more effective than the standard `1 penalty for AMT, with a small im-

provement in results demonstrated, while monotonicity of the penalised approaches was shown.

Further to this some further experiments using group sparse penalties were also described, again

with improved results. Indeed, these results are superior to those of the stepwise and molecular

approaches previously described, and exceed the results of the benchmark experiments by over

6%. However, monotonicity of these algorithms was not shown, and further exploration may be

required. A comparison with the use of logarithmic penalties should also be undertaken. While
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the `0.5
0.5 penalty performed well, it will be worthwhile further exploring the use of other penalty

terms of such form.
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Chapter 8

Considering Coherence

In the sparse representations literature, coherence is considered a fundamental property of a

dictionary, being simple to calculate and yet affording theoretical conditions under which signal

recovery can be guaranteed using `1 minimisation or greedy algorithms such as OMP [128]. The

coherence of a dictionary measures the maximum correlation between dictionary atoms and is

simply defined as

µ = max
i 6= j
|dT

i d j| (8.1)

where ‖dn‖2 = 1∀n. A similar measure, the cumulative coherence

µ(k) = max
i

max
|J |=k,i/∈J

∑
j∈J
|dT

i d j| (8.2)

relates the maximum sum of k correlations relative to one specific atom, and it is apparent from

this definition of cumulative coherence that µ(k) ≤ kµ . The classic condition for recoverability

of a sparse representation of a signal is the Exact Recovery Condition (ERC) (2.14). Tropp [128]

shows that the ERC is always met under the following condition on the dictionary coherence :

k <
1
2
(µ−1 +1) (8.3)
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where k is the number of active atoms in the decomposition. Similarly, the ERC is guaranteed

when the following condition, using the cumulative coherence, is met

µ(k)+µ(k−1)< 1 (8.4)

which can also be stated in a slightly looser fashion as µ(k) < 1/2. Recently it has been shown

that while these conditions may be necessary at the first iteration of OMP, they may be relaxed

at later iterations [117]. However it is noted that research in sparse representations is mostly

concerned with dictionaries where the coherence is assumed to be reasonably low, consisting

of a union of orthogonal bases [128] [23] or using random dictionaries such as in Compressed

Sensing [18].

Even in the case of relatively incoherent dictionaries, coherence may be problematic. This

has led some researchers to propose preconditioning methods which seek to counter the effects of

dictionary coherence, in particular for use with OMP-based methods. This was first considered

by Schnass and Vandergheynst [112] who proposed the use of a sensing dictionary, Θ, with a

modified OMP algorithm. The authors define a cross-coherence measure µ̂ = maxi 6= j |θ T
i d j| in

a similar manner to coherence (8.1), while incorporating the sensing dictionary. Optimisation

is then performed to derive a sensing dictionary that reduces the cross-coherence to the lowest

possible value. The sensing dictionary is then used in a modified OMP algorithm, in which an

atom index is selected according to the maximum correlation between a sensing dictionary atom

and the residual, and added to the sparse support. The backprojection step is performed in the

normal manner using atoms from the original dictionary D. Improved recovery results using

this approach were reported in experiments using a variety of dictionaries, such as Gaussian

matrices, and unions of orthogonal bases. Improvements were also reported in terms of the

number of atoms that were guaranteed to be recovered using a modified version of the ERC (2.14)

that incorporates the sensing dictionary, in a manner similar to the cross-coherence property. A

similar sensing dictionary approach, which also uses the modified OMP, is proposed in [59],

where the authors propose learning a data-adaptive sensing dictionary. Superior results shown to

those given in [112] are reported in [59]. A similar work from the same research group [58] uses

a similar methodology in the context of block sparsity, with a modified BOMP algorithm.

The methods described in the paragraph above focus on fixed dictionaries which are relatively

incoherent and use quasi-orthogonalisation to decohere the dictionaries. Other researchers have
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considered coherence in different scenarios. A sparse dictionary learning method, based on the

K-SVD algorithm [2] and referred to as IN-KSVD, is proposed in [77]. IN-KSVD seeks to

learn dictionaries which are relatively incoherent by augmenting the K-SVD algorithm with an

extra decorrelation step which selects, in a greedy manner, pairs of highly correlated atoms and

decorrelates them by quasi-orthogonalisation. A large improvement in sparse approximations in

audio signals is reported using the IN-KSVD method [77].

A non-negative version of OMP (NN-OMP) is proposed in [16] where the authors note that

problems with dictionary coherence are innate to non-negative dictionaries. In light of this the

authors propose to use NN-OMP to solve a preconditioned approximation :

Ps≈ PDx (8.5)

where P can be any invertible matrix. In [16] the authors select P such that multiplication with a

vector ŷ = Py is equivalent to subtraction of the mean coefficient of the vector from each element

ŷi = yi− (1T y)/|y|. In this case the preconditioner, P, performs a centring of the dictionary

and data that introduces negative elements to both and reduces the dictionary coherence. The

alternative approximation (8.5) is then performed using the NN-OMP algorithm, and improved

performance for non-negative sparse approximation is reported.

The concept of dictionary coherence has not previously been explicitly considered in a mu-

sical signal processing context. In a musical dictionary, coherence and harmonic overlap can

be considered synonymous, as the non-negativity enforces the summing of all overlapping ele-

ments. This equivalence can be seen in Figure 8.1, a graphical representation of the Gram matrix

of the single atom dictionary for Transform E4 in which high correlations are seen mostly in lines

parallel to the diagonal. Close inspection reveals these lines to be located at consonant musical

intervals, for example the octave and the fifth note, in the scale. While the problem of harmonic

overlap is often noted in musical signal processing research when decomposition-based methods

are used, little research has attempted to explicitly counter the problem, with researchers tending

to prefer to focus their attention on the use of different cost functions or incorporating prior in-

formation such as temporal structure. In an extensive literature search only one published paper

[106] was found that regards the correlation of harmonically related atoms in decomposition-

based musical signal processing. In this work [106], a harmonically constrained unsupervised

NMF algorithm is used for the purpose of AMT. The dictionary is initialised with 88 atoms, each
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Figure 8.1: Gram matrix of single atom dictionary of Transform E4. Note lines parallel to the
diagonal indicating structured high correlations corresponding to musical structure.

representing a note on the piano. All points of each atom which are not multiples of the funda-

mental frequency of the note the atom represents are initialised to zero. The authors noted that

atoms representing pitches that were not present in the signal were likely to become active, whilst

their shape became more similar to that of harmonically related pitched elements. Therefore a

penalty term Φ = λWX was added to the denominator of the NMF coefficient update where W

is a circulant matrix with high values where dictionary correlation is expected, similar to those

seen in Figure 8.1. This penalisation seeks to lower coefficients of atoms that co-occur with

other harmonically related atoms. While this method affects only the coefficients of the update

it can be understood to implicitly consider the harmonic overlap as this is where the dictionary

correlations tend to reside.

In the rest of this chapter the atomic pitch dictionaries of the different transforms (§3.2)

used to perform spectrogram decompositions throughout this thesis are analysed in terms of

coherence. This coherence analysis is then related to the varying AMT performance seen for

these different transforms. The use of row-weighting is then proposed for conditioning of non-

negative harmonic dictionaries, with a novel effective coherence measure used to learn a different



8.1. Considering dictionary coherence for AMT 139

weighting at each time frame. Experimental results are given which validate the approach, while

some further insight into the problem is given by considering row weighting in a noiseless signal,

before concluding.

8.1 Considering dictionary coherence for AMT

It would seem that consideration of dictionary coherence might offer little in the context of AMT,

at least in the conventional sense of how coherence is generally applied, as a condition on signal

recovery. Non-negative musical dictionaries are highly coherent. The inner product of two atoms

separated by a musical octave is expected to be of the order 0.7 under a fixed spectral envelope,

due to overlap at every other partial of the lower pitched note. Indeed, higher values of coherence

are recorded for every dictionary used in this thesis, as can be seen in Table 8.1. In terms of ERC,

this would suggest that recovery is never guaranteed when more than one atom is active, even in

a noiseless signal. An example of this behaviour was given at the start of Chapter 5.

Different transforms have been compared, using a variety of algorithms, for the purpose of

AMT throughout this thesis. Regardless of the algorithm used, be it greedy or gradient descent

based, a variation in AMT performance relative to the transform used was observed, with a

relatively distinct ordering in the varying performance. The worst AMT performance, for each

algorithm, has generally been observed when the STFT transforms have been used. A small

improvement is usually observed with the smallest ERBT, Transform E1. Meanwhile the larger

dimension ERBT transforms E2-4 provide the best AMT performance with transform E4, the

largest dimension ERBT used, generally seen to achieve the best performance. The relative

performance difference is particularly enhanced in the OMP algorithms, where a difference inF-

measure of 10% was often seen. Using NNLS-based algorithms, the performance differential was

milder, of the order of 5%. Transform E1, the ERBT with atom dimension 250, was proposed for

AMT in [133] and was designed specifically such that the fundamental frequencies were disjoint

on the frequency scale of the transform. This counters a problem seen in the STFT where lower

pitched notes have fundamental frequencies which share the same frequency frame in the case of

reasonable time resolution being applied. However, the introduction of further larger dimension

ERBTs in this thesis has seen a further increase in AMT performance. While separability of

fundamental frequency partials is maintained, observation of experimental results leads us to

suspect that somehow these larger ERBTs result in dictionaries that are better conditioned. To
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Transform κ(D) µ µF µΣ T-NNLS (F) NS-OMP (F)
S1 42.87 0.8695 19.82 1356 64.0 69.3
S2 43.13 0.8693 19.93 1367 64.1 68.8
E1 55.35 0.8723 20.11 1434 66.7 70.2
E2 24.36 0.8619 15.74 1082 68.4 75.9
E3 28.27 0.8641 16.49 1142 68.1 74.8
E4 17.30 0.8513 13.85 934 68.6 78.3

Table 8.1: Comparison of matrix condition κ(D) (8.6), coherence µ (8.1), global coherence
µF (8.7) and summed coherence, µΣ, (8.8) of dictionaries learnt from the same signals for differ-
ent transforms and corresponding AMT results for T-NNLS and NS-OMP in terms ofF -measure

this end, a relative comparison in terms of dictionary coherence is now offered.

In order to compare the transform-specific dictionaries, various matrix metrics were calcu-

lated for the atomic pitch dictionaries. In this context, it is important to recall that each atom in

a given dictionary should be similar, at some level, with the correspondingly pitched atom from

another dictionary as all dictionaries are learnt from the same set of isolated note signals. The

first measure considered is the matrix condition number:

κ(D) = σmax(D)/σmin(D) (8.6)

which gives the ratio of the largest and smallest singular values of the matrix. The matrix condi-

tion, being an eigenvalue measure can be considered to have some correspondence with the Re-

stricted Isometry Property (RIP) condition (2.17) [18], which measures the maximum deviation

from unity of the eigenvalues of a submatrix of size k, when all atoms have unit `2 norm. While

the matrix condition considers the eigenvalues of the matrix, the RIP considers the eigenvalues of

a submatrix. However, the eigenvalues of a matrix are known to bound those of a submatrix [83].

Other matrix measures are then applied to the Gram matrix G = DT D. The coherence value µ

(8.1) and the cumulative coherence µ(k) (8.2) for k ∈ {1, ...,87} are also calculated. While these

measures are used to prove the theoretical performance bounds of sparse methods with incoher-

ent dictionaries, at some level they may not be totally indicative of the coherence in the whole

dictionary as the coherence relates to one pair of atoms, while cumulative coherence relates the

correlation of one atom with a few other atoms. To give some measure of all coherences in the

dictionary a global coherence measure

µF = ‖G− I‖F (8.7)
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Figure 8.2: Cumulative coherence µ(k) plotted against k for dictionaries learned from the same
dataset in several transforms

and summed coherence measure

µΣ = ∑
j 6=i
[G]i, j (8.8)

are defined for comparison, where ‖X‖F is the Frobenius norm of X.

In Table 8.1 the AMT results in terms of F-measure for T-NNLS and for NS-OMP are given

for each transform alongside the matrix measures, described in the previous paragraph, of the

corresponding dictionaries. While the NN-NS-OMP is a group sparse algorithm, using a dictio-

nary formed from a union of pitched subspaces, the same ordering of performance is seen as for

the T-NNLS, as has been observed for other group sparse algorithms throughout the thesis. The

cumulative coherence values relating to the dictionaries in each transform are plotted in Figure

8.2. Some distinctive patterns are obvious in these results. While the coherence value µ seems

relatively uninformative in this context, being quite similar for all algorithms, a pattern in the or-

dering of the other tabulated matrix measures is seen that is matched in the coherence parameter.

The smallest ERBT, Transform E1, has the highest measures in all cases, followed by the two

STFTs, which are seen to be very similar to each other, both in terms of AMT results and ma-

trix measures. In terms of AMT performance, Transform E1 performs better than the STFTs, in

contradiction to the ordering of the tabulated measures; however E1 is seen in Figure 8.2 to have

a lower cumulative coherence than the STFTs. Transforms E2-4, the larger dimension ERBTs,

are seen to perform significantly better in terms of AMT, and the corresponding matrix measures
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are also significantly lower than those of the first three transforms. A strict ordering is also seen

amongst these ERBTs with E4 performing best and having the lowest matrix measures for all

measures, followed by E2 and E3. It is interesting that the STFTs display better tabulated matrix

measures than the small dimension ERBT, Transform E1, when AMT performance is seen to

suffer in relation, while a strict correspondence is seen amongst the ERBTs themselves. Possible

explanations may be given by the fact Transform E1 displays lower cumulative coherence than

the STFTs, while the dictionary of Transform E1 has disjoint fundamental frequencies, unlike

the STFT dictionaries. From this comparison of dictionaries it may be concluded that AMT

performance may be somewhat related to coherence measures. If this is the case it would seem

appropriate to attempt to leverage the dictionary coherence in order to further improve AMT. In

the next section, an attempt to condition a harmonic dictionary to improve AMT performance is

described.

8.2 Conditioning a Harmonic Dictionary

The relationship of dictionary coherence to AMT performance has been established in the previ-

ous section, and it would seem worthwhile to manipulate the dictionary coherence, if possible, to

improve performance. The AMT problem has distinct characteristics that discourage the use of

general methods for coherence-based preconditioning. Each atom in a musical dictionary used

for AMT is semantically meaningful, representing a particular note, and the dictionaries used are

often undercomplete. Several coherence-based preconditioning approaches in the sparse repre-

sentations literature [112] [59] [77] use quasi-orthogonalisation to reduce the coherence. How-

ever, in the case of undercomplete dictionaries, such as musical dictionaries, it is trivial to form

an equivalent orthogonal dictionary. Observation of the orthogonalisation of a musical dictionary

quickly indicates the unsuitability of such an approach. Atoms in the transformed dictionary are

far removed from corresponding atoms in the original dictionary. Many negative elements, some

of which display very large coefficients, are introduced to the dictionary particularly in areas

of harmonic overlap, while some very large coefficients also appear in high frequency elements

where there is little energy. The high dictionary coefficients can introduce instability to the prob-

lem, effecting the representation capability of the dictionary. From these observations it would

seem that the structure inherent in the dictionary should be maintained as much as possible.

Another candidate preconditioning approach, specifically proposed for non-negative dictio-



8.2. Conditioning a Harmonic Dictionary 143

naries, is the centring approach of [16], which can be considered to maintain the structure of the

dictionary. However, this approach was observed not to be effective in the context of the problem

at hand. Some experiments using NN-OMP with this preconditioning approach were performed.

While this method was seen to be effective using randomly generated dictionaries, detrimental

performance was observed in the context of AMT. It can be hypothesised that the harmonic over-

lap is not effected by such a centring, or alternatively that the sparsity of the musical dictionary

itself may not be amenable to a centring approach. In light of these observations, it would seem

sensible to employ an approach that conserved the non-negativity and structure of the dictionary,

while aiming to counter the effect of harmonic overlaps.

It is proposed to use a row weighting, or scaling approach. Row weighting applies a different

scale to each dimension of a vector, and can be effected through multiplication with a diagonal

matrix. Row weighting is known to effect a least squares solution [50], and is a commonly used

approach in methods such as Total Least Squares [81]. Typically, the goal of row-weighting is

to better condition a problem. Many row weighting schemes are possible, such as simple row

weighting [50] in which each row of a matrix is scaled such that all rows contain the same largest

entry. A further example is given in [135] where the authors propose to use projected gradient

descent to perform unsupervised NMF with the Kullback-Leibler divergence cost function. A

row-weighting that equalises the sum of each row of is employed to condition the matrix to be

decomposed thereby discouraging problems with gradient scaling. It is noted in [50] that while

row scaling strategies may be effective, a generic approach to scaling is not available and the

approach taken should vary as per application.

For the specific problem at hand it is proposed that the row weighting is determined by

coherence. In particular, a row weighting that lessens the effective coherence in a decomposition

is sought. Using a row weighting leads to the modified approximation

Ws≈WDx̂ (8.9)

where W is a diagonal matrix, with all diagonal entries wm,m > 0, which scales each row of D and

s, and x̂ is the solution vector to the weighted problem. The form of this approximation is similar

to that employed in the centring approach used in tandem with the NN-OMP in [16]; however

the form of the preconditioning matrix W differs.

While it would be desirable to find a single weighting matrix, W, that would enhance many
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Algorithm 8.1 Post-preconditioning approach
Input

D ∈ RM×N , s ∈ RM

Decompose
x = argminx ‖s−Dx‖2

2 s.t. x≥ 0
Find row-weighting matrix W using (8.11)
Apply weighting and decompose

x̂ = argminx ‖Ws−WDx‖2
2 s.t. x≥ 0

decompositions, prior experiments indicated that this would not be a very effective approach.

While a less coherent dictionary is derivable by scaling in a manner that reduces various coher-

ence measures seen previously in this chapter (8.1) (8.2) (8.7) (8.8), ultimately the connectedness

of the musical scale limits the effectiveness of such an approach, as a local improvement may be

detrimental in other areas.

Therefore, it is proposed to take an alternative approach, in order to adapt to signal vectors

individually. Hence a post-preconditioning approach is proposed, as outlined in Algorithm 8.1.

The term post-preconditioning refers to the fact that an initial decomposition is made using NNLS

as outlined. Based on the solution to this decomposition, x, a diagonal conditioning matrix W

is derived, and a subsequent row weighted decomposition (8.9) is performed, giving the final

solution vector x̂. While NNLS is proposed for performing the decompositions in Algorithm 8.1,

different decomposition methods may also be used. In terms of a spectrogram decomposition

these steps are performed at each time frame, deriving a different weighting matrix, Wt , based on

each individual solution vector xt , leading to a new approximation Wtst ≈ D̂x̂t being performed,

where D̂t
= WtD.

Effective Coherence

The proposed post-preconditioning approach requires that the conditioning matrix, W, is learnt

at each time frame, and it is proposed to emphasise the coherence of atoms that have reasonably

high coefficients. Before further description of the learning approach is given, it is necessary to

consider that multiplication of a dictionary atom, such that d̂n = Wdn, will generally cause the

norm of the atom to change such that ‖d̂n‖2 6= 1. This transformation results in the Gram matrix

Φ = D̂T D̂. As coherence measures presume that dn = 1∀n, it is necessary to consider the Gram

matrix of the equivalent normalised dictionary Θ, which can be conveniently derived from Φ:

Θ
[2] = Φ

[2]� [hhT ] (8.10)
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where � denotes elementwise division, X[.] indicates elementwise exponentiation of X and h =

diag(Φ). With Θ now defined, a new effective coherence measure is proposed:

µ
e = xT [Θ[2]− IN ]x (8.11)

where IN is an identity matrix of dimension N×N. This effective coherence measure emphasises

coherence in atoms that are active relative to the product of their coefficients and is used in order

to derive a suitable value for Wt such that

W = argmin
W

µ
e s.t.[W ]m,n6=m = 0 (8.12)

which can be performed using descent based methods. While it is possible to update x through

iterations of the descent method, the choice is made to keep x fixed which necessitates the use

of the normalised Gram matrix Θ in the effective coherence measure (8.11). The possible values

of [W ]m,m are bounded above and below in order to prevent trivial solutions and to maintain

the structure of the original problem. Hence the projected gradient descent method is used to

estimate W. As x is kept constant the gradient of the effective coherence measure relative to any

given dimension, m is given by :

∂ µe

∂wm
= ∑

i6= j
xix j

∂ [Θ[2]]i, j
∂wm

(8.13)

where wm = [W ]m,m, [X ]i, j = xi, j denotes the element in the ith row and jth column of X. The

gradient term ∂ [Θ[2]]i, j
∂wm

can be expressed in terms of Φ, individual dictionary elements and the

norms of the modified atoms:

∂ [Θ[2]]i, j
∂wm

=
2wmΦi, j

‖d̂i‖4
2‖d̂ j‖4

2

× {2‖d̂i‖2
2‖d̂ j‖2

2dm,idm, j−

Φi, j(‖d̂i‖2
2d2

m, j +‖d̂ j‖2
2d2

m,i)} (8.14)

or alternatively, in matrix form

∂Θ[2]

∂wm
= 2wmΦ⊗X⊗

[
[2Am⊗AmT ]−Φ⊗ [Zm +ZmT ]

]
(8.15)
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where ⊗ denotes the Hadamard elementwise multiplication, X = [h[2]h[2]T ][−1]; Am = dmhT and

Zm = dm[2]hT , where dm is the mth row of D. After W is estimated, a solution to the weighted

approximation (8.9) is calculated, using NNLS or another decomposition method, giving x̂, the

new coefficient matrix, from which the piano roll can be derived.

Some insight into how this method is proposed to work is offered. Firstly, consider a noiseless

signal formed from a non-negative superposition of atoms from a non-negative dictionary, which

is full rank and overdetermined. It is then assumed [114] that NNLS will correctly recover the

support and coefficients. Furthermore the effect of row weighting in this noiseless case does not

effect the solution as shown in the proceeding Lemma.

Fact 3. Given s = Dx, and W is any diagonal matrix, x = argminx ‖Ws−WDx‖2
2.

Proof. This is simply proved by considering the scalar case where s = ∑i xi. Applying a scalar

weighting gives ws = ∑i wxi which is easily generalised to the vector case.

However, when the signal is noisy error may be introduced into the support selection, and

even if the support is fixed two solution vectors x and x̂ can differ. In musical spectrogram

decompositions the error is often introduced as false detections, many of which are observed to

be of atoms of consonant pitches. This can be explained simply in terms of a noisy signal with

one active pitch. If the correspondingly pitched atom does not exactly fit the signal, a residual

signal can be expected to be left after projection onto the correctly pitched atom. Most of the

energy in this residual can be expected to reside in the harmonic partials of the correctly pitched

atom, and further atoms may be selected in the decomposition. It is likely that extra atoms will

contain energy in the largest elements of the residual signal, which are likely to reside in the

harmonic partials of the correctly pitched atom. Hence the incorrectly selected atoms are likely

to have harmonic overlap with the correctly selected atom.

The proposed effective coherence measure (8.11) is seen to include the Gram matrix, em-

phasising the coherence of active atoms and the covariance of the coefficient vector from the

initial decomposition. By containing both these elements in the one measure, it is hoped to

learn a weighting that targets atoms that are both active in the decomposition and correlated to

one another. By scaling the individual dimensions of these supported atoms in a coherence-aware

manner, it is hoped to lessen the importance of dimensions which overlap in atoms in the support,

and thereby reducing the coefficients of falsely detected atoms.



8.2. Conditioning a Harmonic Dictionary 147

Transform NNLS WNNLS β -NMD Wβ -NMD
E1 66.7 69.7 71.9 73.7
E2 68.4 72.6 74.9 77.0
E4 68.6 73.7 75.2 77.9

Table 8.2: Results from AMT experiments in terms of F-measure (%) comparing the weighted
methods (WNNLS and Wβ -NMF ) against the original algorithms.

8.2.1 Experiments

AMT experiments were run using the standard dataset (§3.1) to assess the effect of the pro-

posed coherence reducing row-weighting scheme. The experiments were limited to the ERB

transforms E1,2&4. For the considered transforms, NNLS was used to perform the initial spec-

trogram decomposition, and a subset of the atoms was selected by thresholding the spectrogram

decomposition based on its maximum value with δ = 0.01 (3.3). The threshold is applied to

lessen the computational expense, and is far below the optimum value optimum value of δ ob-

served in previous AMT experiments, and it is assumed that its use will have little effect on either

the weighting or the final transcription output. This active set of atoms after thresholding was

used to calculate the weighting matrix Wt at each spectrogram frame, and W was bounded to

have values in the interval [0.4, 1.6] giving an extremal weighting factor of 4.

Projected gradient descent was implemented to calculate Wt . After the gradient was calcu-

lated at each dimension using (8.13), a line search was performed, starting with a small initial

stepsize which was doubled at each iteration until improvements in the cost function ceased to

be produced. The gradient was recalculated before returning to the linestep procedure, and the

algorithm stopped when the first step of the linesearch failed to reduce the relative cost function

by a factor of 10−9, returning the weighting matrix Wt .

A NNLS decomposition was performed on the transformed signal Wtst using the transformed

dictionary D̂ to derive the Weighted NNLS (WNNLS) coefficient matrix X̂. δ -thresholding

(§3.4.1) was performed on X̂ for a range of values of δ ∈ {10, ...,50}dB and the recorded re-

sults described the optimum F-measure at δopt . As mentioned earlier, other algorithms can be

used to perform either the pre- or post-weighting decomposition. Similar weighted decompo-

sitions were also performed using β -NMD [27] using the weightings derived from the initial

NNLS decomposition and referred to Wβ -NMD. The value of β = 0.5 was used as this setting

was seen to be the optimum value for AMT on a similar dataset [133], and also in experiments

on the ERBTs in Chapter 7.
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The results for these experiments are shown in Table 8.2, where it can be observed that the

weighted methods outperform their unweighted counterparts. In particular, the weighted NNLS

method, WNNLS, shows improvements of up to 5.1% relative to NNLS, with improvements

more marked in the transforms that already perform better in the unweighted case. In the case of

the β -divergence, the improvements of the weighted approach, Wβ -NMD, relative to β -NMD

are smaller, reaching 2.7% in the case of transform E4. It is noted that the results for β -NMD

without weighting are seen to improve more significantly than NNLS as the dimension of the

ERBT is increased. Overall it is seen that employing the row weighting with transform E4

results in an improvement of 7% and 6%, for the NNLS and the β -NMD respectively, relative to

using an unweighted decomposition with transform E1, as in the benchmark experiments (§3.5).

A graphical demonstration of the evolution of Precision, Recall andF-measure across a range

of values of δ is shown for NNLS and WNNLS for Transform E4. Inspection of comparative

performance of the two approaches shows that Recall is slightly improved in the weighted case.

Meanwhile a large variation in Precision using these two approaches is observed, with the row

weighted approach performing better, with a maximum improvement of 10.4% seen at 32dB.

This validates the approach taken, which sought to eliminate false positives induced through

harmonic overlapping. This increase in Precision also results in an increase in F-measure, and

δopt is seen to be 2dB lower for the WNNLS. Further to this the improvement using WNNLS

relative to NNLS are seen to be statistically significant. In all individual songs an increase in F-

measure is seen at the value of δopt selected for all songs. The mean improvement of F-measure

is 5.0% with a standard deviation of 2.1%.

An example data weighting is seen in Figure 8.4 where the weightings are seen to be often

set to extremes, which is common. While significant downwards scaling of the signal can be seen

in this example, this is not necessarily indicative, as upwards scaling is also likely. However the

relative flattening effect seen in Figure 8.4 is a general phenomenon, as the correlation between

two atoms is most significantly reduced when coincidentally large elements are scaled down.

8.3 Discussion

In this chapter, an analysis of the AMT problem in terms of coherence was given. While the

use of different transforms has previously been proposed in AMT and musical signal processing

[133] [48], in particular to counter the problems of close spacing of low-pitched fundamental fre-
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Figure 8.3: Evolution of P,R,F measures for NNLS and W-NNLS relative to thresholding
parameter δ .

quencies, the perspective of analysing these transforms in terms of dictionary coherence is new.

Indeed, this can be considered an unconventional perspective to take, considering that coherence

is usually associated with recovery conditions for quasi-incoherent dictionaries. However, taking

this perspective was demonstrated to be a fruitful endeavour. Throughout the previous chapters

in this thesis, a consistent variation in AMT results relative to the time-frequency transforms

used was observed, and this coherence analysis was seen to go some way to explaining this vari-

ation. The better performing transforms, the larger dimension ERBTs, were observed to be less

coherent than the other transforms.

The realisation that improved dictionary coherence led to enhanced AMT performance mo-

tivated an attempt to further enhance performance by conditioning the dictionary in a coherence-

aware manner. Previous methods for conditioning dictionaries were described and observations

of their unsuitability to the problem at hand were related. In light of this, a new coherence-based

row-weighting method was proposed. It is noted how coherence in a musical dictionary is related

to harmonic overlap, which is often mentioned as problematic in the AMT problem [125] [106].

However in terms of decomposition-based methods little research has been performed with the

stated aim of countering this problem. Conversely, a lot of research in decomposition based
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methods has focussed on temporal evolution of the signal [5] [134] [9], enforcing continuity in

the decomposition. Here an alternative philosophy is originally proposed. Time continuity and

smoothness may exist in the signal. However, it can be considered that the numeric instability of

the decomposition is actually the problem, perturbing the underlying smoothness. Coherent, or

equivalently ill-conditioned dictionaries, coupled with temporal evolution of note spectra result

in the appearance of falsely detected notes, many with harmonic sympathy to the actual notes

played. The work presented here demonstrates that it may be possible to tackle the problem at

hand, in a more direct fashion, and in a reasonably principled manner.

While the work presented here is a solid progression over the state-of-the-art decomposition

methods, it can also be viewed as a first step in a new direction for tackling the AMT problem,

and possibly other problems which display similar characteristics such as non-negativity and

structured overlapping. Coherence has been used as a parameter to perform the row-weighting,

and while this has been seen to be effective, alternative strategies may be envisaged. It may be

worthwhile to further consider the multiplicative noise model, previously assumed in [1] [40]

in terms of NMF models. The coherence-based method presented may inadvertently be adept

at attenuating the effects of multiplicative noise in the matrix decompositions, by weighting the

frequency elements where such noise is likely to occur.

This completes the exploration of decomposition methods in this thesis and the next chapter

focusses on unsupervised and semi-supervised learning using Non-negative Matrix Factorisation.
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Figure 8.4: Example data point sn (top), weighting vector wn (centre) and weighted datapoint
Wnsn (bottom).
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Chapter 9

Sparse NMF

Non-negative Matrix Factorisation (NMF) is a popular tool in musical signal processing, which

seeks a low rank approximation of a non-negative matrix. This factorisation is often referred to

as a ‘parts-based’ representation as it is hoped that meaningful elements of the matrix, or signal,

will be separated. Given a matrix, S ∈ RM×T , in which all entries are non-negative, NMF seeks

to find a dictionary matrix, D ∈ RM×N , and an activation matrix, X ∈ RN×T , both of which are

also completely non-negative, such that

S≈ DX. (9.1)

NMF was originally proposed as Positive Matrix Factorisation (PMF) by Paatero and Tapper

[97], who proposed to effect the approximation (9.1) by minimising a constrained Euclidean

distance cost function:

CE = ‖S−DX‖2
F s.t.D,X≥ 0 (9.2)

where D and X are both unknown, thereby casting the NMF problem as

D,X = argmin
D,X
‖S−DX‖2

F s.t.D,X > 0. (9.3)

However the problem (9.3) is not convex in both variables simultaneously and is regarded to

suffer from the presence of many local minima [61] [64]. Hence, a commonly used approach to

NMF problem is to iterate through alternating projections, whereby one variable is fixed while
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the other is updated, then vice versa. In the case of PMF [97], this methodology is proposed

through the use of Alternating Non-negative Least Squares (ANLS) projections

X←− argmin
X
‖S−DX‖2

F s.t.X≥ 0 (9.4)

D←− argmin
D
‖ST −XT DT‖2

F s.t. D≥ 0 (9.5)

whereby the NMF problem is solved through the iterative solution of convex subproblems.

While NMF was first introduced in the guise of PMF, it was popularised by Lee and Seung

[74] who proposed using fast multiplicative gradient descent updates to perform the alternating

projections as an alternative to the expensive NNLS (9.4) (9.5) calculations required for ANLS.

Multiplicative updates were proposed in [74] for both the Euclidean distance (9.2) and Kullback-

Leibler divergence cost funtions. The multiplicative updates were formed by selecting a fixed

stepsize that enabled the normal additive update gradient descent to be rearranged into a multi-

plicative form. For instance, a stepsize of ν = X�DT DX was inserted into the standard gradient

descent update for the coefficient matrix

X←− X+ν× [DT (S−DX)] (9.6)

leading to the multiplicative update, in the case of the Euclidean distance cost function

X←− X⊗ [DT S]� [DT DX] (9.7)

where ⊗ denotes elementwise multiplication and � denotes elementwise division. A similar

formulation leads to the update for the dictionary :

D←− D⊗ [SXT ]� [DXXT ] (9.8)

which can be seen as a transposed version of (9.7), similar to how (9.5) is equal to a transposed

formulation of (9.4). It is shown in [74] that the updates (9.7) and (9.8) are both non-increasing

in the Euclidean distance cost function (9.2). However, problems with convergence using multi-

plicative updates have been noted [4] and the ANLS framework is considered more robust [65].

While other cost functions, such as β -divergence [27], can be used for NMF [25] [27] [85],
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the Euclidean distance NMF is still popular for many applications [22]. The computational load

of using NNLS projections for the subproblems in ANLS has been noted and many variants of

the ANLS/PMF algorithm have been proposed using different strategies for the individual NNLS

problems. For instance, projected gradient descent methods are proposed in [62]. Optimised

active set methods, which take advantage of similarity between individual representation vectors

coupled with the optimisations used in the Fast-NNLS algorithm [14] are used in [64]. The

authors of [64] further propose the use of a block pivoting algorithm for ANLS [65]. Block

pivoting is an active set algorithm that allows several atoms to be added and removed from

the active set at each iteration, and was first proposed for NNLS in [105]. The authors of [65]

propose to augment the block pivoting method of [105] by solving for multiple coefficient vectors

simultaneously, in a similar fashion to that employed in [64]. A more recent development has

seen coordinate descent based methods used for the individual NNLS problems. This approach,

referred to as Hierarchical Alternating Least Squares (HALS), was first proposed in [26], with

each alternating projection consisting of cyclic sequential coordinate descents.

Incorporating sparsity

A noted feature of NMF factorisations is that they tend to be sparse [74] [55]. This somewhat

echoes the fact that NNLS decompositions tend to be sparse [114]. This sparsity is a desirable

property for many applications and several attempts have been made in NMF research to control

the sparsity level of a signal, or matrix, representation. Similar to the sparse representations lit-

erature, a typical approach to Sparse NMF is to introduce a sparsity penalty term to, for instance,

the Euclidean distance :

CS = ‖S−DX‖2
F +λ

T

∑
t=1
‖xt‖p s.t. D,X≥ 0 (9.9)

where λ is a parameter controlling the sparsity and ‖.‖p is an `p vector norm. Typically, in

the NMF literature, as in the sparse representations literature, a `1 norm is used for the penalty

term applied to the activation matrix, in which case the cost function (9.9) can be seen as a

non-negative matrix variant of the LASSO [124], or Basis Pursuit Denoising (BPDN) [23].

The `1 penalty term was first introduced to NMF by Hoyer [56] using a multiplicative update

X←− X⊗ [DT S]� [DT DX+λ ] (9.10)
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which simply augments the Euclidean coefficient update (9.7) with the sparsity parameter λ . In

the same work an option to enforce the dictionary to be sparse, using an iteration of projected

gradient descent, was proposed. A later work by the same author proposed a different strategy

for enforcing sparsity in a coefficient vector. A sparsity measure incorporating the number of

atoms in the dictionary, the `1 and `2 norms of an activation vector was proposed. Iterative

projections of each coefficient vector were performed until the predefined sparsity measure was

met. An alternative multiplicative update strategy for the `1 penalised coefficient matrix update

using subtraction rather than addition:

X←− X⊗
[
max

(
DT S−λ ,ε

)]
� [DT DX+ ε] (9.11)

was proposed in [119] and [24] where ε is a small value added to prevent divide by zero errors

A non-negative variant of Iterative Soft Thresholding (IST) [138] was employed to perform

the coefficient matrix update using the `1-penalised cost function (9.10) for a sparse version

of NMF, called Generalised Morphological Component Analysis (GMCA) in [107]. The IST

algorithm is known to converge for the LASSO or BPDN [138] and the authors also suggest a

tempering approach, initialising the algorithm with a large value of λ that is slowly decreased

at each iteration. In the ANLS framework, Kim and Park [64] [63] proposed to apply a squared

`1-penalty term by performing the NNLS approximation:

X←− argmin
X

∥∥∥∥∥∥∥
 M

01×N

−
 D
√

λ 11×K

X

∥∥∥∥∥∥∥
2

F

. (9.12)

Non-negative dictionaries inherently have correlated atoms [16], and it is shown in [124]

that `1 penalisation can perform worse than `2 penalisation, or ridge regression, in the case of

correlated atoms in an undercomplete dictionary. In more specific terms of non-negative sparse

approximations, it has been shown recently that Thresholded NNLS outperforms non-negative

`1-minimisation approaches such as LASSO/BPDN, due to the innate regularisation of the non-

negative constraint [114]. It would therefore seem questionable if `1 is an appropriate term for

NMF. Indeed, in the context of NMF, and in particular the GMCA algorithm [107] an iterative

strategy using hard thresholding was often seen to perform better than the IST approach, with the

authors noting that the hard thresholding strategy tends towards an `0 penalty.
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Algorithm 9.1 NN-K-SVD
Input

S ∈ RM×T , k
Initialise

X0 = 0N×T ; D ∈ RM×N ; D > 0
repeat

Approximate using sparse coding algorithm
X←− argminX ‖S−DX‖2

F s.t.‖xt‖0 = k
Update dictionary and coefficient matrix

FOR n ∈ {1, ....,N}
Γn = {t | [X ]n,t)> 0}
En = [S−DX+dnxn]Γn

En = U∆VT

IF ∑i vi < 0
xn

Γn
=−V

dn =−U
ELSE

xn
Γn

= V
dn = U

ENDIF
ENDFOR

until stopping condition met

An alternative approach to the sparse NMF problem (9.9) is offered by Non-Negative K-SVD

(NN-K-SVD) [3], outlined in Algorithm 9.1 where it is seen to iterate through two separate steps.

The first step uses a non-negative sparse approximation algorithm to identify the sparse support.

An algorithm referred to as Non-Negative Basis Pursuit (NN-BP), consisting of several iterations

of the sparse multiplicative update (9.10) followed by a k-sparse thresholding for sparse approxi-

mation, is proposed in [3]. However, the authors note that any non-negative sparse approximation

algorithm can be used. The second step uses the K-SVD [2] update. The standard K-SVD up-

dates atoms in a sequential fashion, and also updates the corresponding coefficient vector while

updating an atom. However, it is possible that the signs of the atoms and their corresponding

coefficients may be reversed, and NN-K-SVD has to correct for this. The sign direction of the

atom in which most energy is present is set as the positive side, while a corresponding reflection

of the coefficient vector is performed if necessary. Remaining negative coefficients in the atom

and the dictionary are then set to zero. It is noted [3] that the cost function (9.9) may actually

increase during the update due to this setting of non-negative elements to zero, in which case it

is proposed to use subsequent multiplicative updates in order to reduce the cost function. While

this fix may lead to consideration that K-SVD may not be the most appropriate dictionary update

step in a non-negative framework, it may conversely be queried if this fix is absolutely necessary
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Algorithm 9.2 NMF-`0

Input
S ∈ RM×T , k, J

Initialise
X0 = 0N×T ; D ∈ RM×N ; D > 0; ‖dn‖2 = 1 ∀n

repeat
Normalise columns of D s.t. ‖dn‖2 = 1∀n
Approximate using sparse coding algorithm

X←− argminX ‖S−DX‖2
F s.t. ‖xt‖0 = k

FOR j = 1 : J
Update D using (9.8)
Update X using (9.7)

ENDFOR
Normalise

xn← xn/‖dn‖2 ∀n
‖dn‖2 = 1 ∀n

until stopping condition met

as monotonicity, while often considered desirable, may not be necessary when solving NMF [61]

[62]. A stated advantage of the (NN-) K-SVD algorithm is that it may be used with overcomplete

dictionaries [2] [3].

The NMF-`0 algorithm [101], also seeks to approximate a `0 norm penalty in the sparse NMF

problem (9.9) through use of a sparse approximation algorithm. Once the sparse support is iden-

tified, several iterations of the Euclidean NMF multiplicative updates (9.7) (9.8) are performed,

thereby updating both the coefficient matrix and the dictionary in a similar manner to NN-K-

SVD. For sparse approximation the authors propose a gradient variant of NN-OMP [16] and also

compare the use of NN-BP, described earlier in the context of NN-K-SVD. Experimental results

in [101] describe NMF-`0 outperforming both NMF and NN-K-SVD in a range of experiments.

In the rest of this chapter two pieces of research are presented that were performed with

a large separation in time. The following section describes some early experiments performed

in the context of recovery of harmonic dictionaries that formed the first publications submitted

during the course of this research project [92] [93]. It had previously been shown [8] that NMF

significantly outperformed NN-K-SVD for the purpose of AMT. This seemed a curious result and

some toy experiments with harmonic dictionaries and coefficient matrices of known sparsity are

presented, which serve to highlight the usefulness of sparsity in NMF and the importance of using

an apt sparse approximation algorithm. This led to research, as described in previous chapters of

this thesis, exploring sparse approximation in the presence of the non-negative constraint.

A variant of Sparse NMF, referred to as `0-Sparse NMF, is proposed that uses BF-NNLS



9.1. Structure-Aware Dictionary Learning 158

algorithm to update the coefficient matrix and NNLS to update the dictionary. As the proposed

approach is couched in the ANLS framework for NMF, it is also capable of learning overcom-

plete dictionaries. Experiments are presented, showing improved recovery of overcomplete non-

negative dictionaries relative to NMF-ANLS and some other Sparse NMF algorithms.

9.1 Structure-Aware Dictionary Learning

NMF is a very popular tool in the musical signal processing community and is used for other

applications as well as AMT. As previously mentioned, NMF and NN-K-SVD were compared

for the purpose of AMT in [8], and NMF was seen to perform better for this purpose. A large

discrepancy between the results reported for the two algorithms is reported in [8]. This may seem

strange, as NN-K-SVD is a specific, sparse, approach to the NMF problem. Indeed, it could be

hypothesised that incorporation of the sparse constraint, seen in the case of NN-K-SVD, should

not be detrimental to performance in the AMT problem, with its underlying sparse assumption.

This motivates further investigation of the aforementioned algorithms. In particular it is

queried whether the performance gap may be an effect of the K-SVD update, or if errors are

more likely to be a result of the sparse approximation algorithm. In particular, Matching Pursuit

(MP) , constrained to select atoms with non-negative inner products with the residual signal, was

used as the sparse coding algorithm for NN-K-SVD in [8]. A particular facet of MP is that a

backprojection step is not taken. This may lead to erroneous atom coefficients, a problem that

may be amplified in this coherent setting, and a similarly incorrect residual, which may effect the

K-SVD step.

In this context, substitution of other sparse approximation algorithms affords simple isola-

tion of the effect of using MP for NN-K-SVD. Similarly it is desired to isolate the effect of the

K-SVD update. Hence, a further algorithm, referred to as Sparse Multiplicative Update Dictio-

nary Learning (SMUDL), outlined in Algorithm 9.3, is proposed. SMUDL performs alternating

projections, using a sparse coding algorithm to update the coefficient matrix, then updating the

dictionary with one iteration of the multiplicative dictionary update (9.7). The difference in this

approach relative to NMF-`0 is small; NMF-`0 uses a sparse approximation algorithm followed

by several iterations of both multiplicative updates, thereby updating both X and D given a fixed

sparse support, in a similar manner to NN-K-SVD. Indeed, it is possible that NMF-`0 may pos-

sibly outperform SMUDL in this context. However, the intention here is solely to isolate the
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Algorithm 9.3 SMUDL
Input

S ∈ RM×T , k
Initialise

X0 = 0N×T ; D ∈ RM×N ; D > 0
repeat

Normalise dictionary : ‖dn‖2 = 1∀n
Approximate using sparse coding algorithm

X←− argminX ‖S−DX‖2
F s.t. ‖xt‖0 = k

Update D using (9.8)
until stopping condition met

different elements of the NN-K-SVD algorithm, in order to test their efficacy, or otherwise.

One problem with using NMF for AMT is that certain signal elements may not be separable.

To give a simple example, it is easy to consider two notes that are always played coincidentally

in a piece to be factorised, a scenario that may not be that unusual due to the chordal nature of

western music. It is to be expected that a factorisation algorithm would learn one atom containing

both sources, in the absence of prior knowledge. Indeed, this problem of learning dual source

atoms may be extended to other less specific situations.

In the case of many musical pieces a harmonic structure is expected in signal elements, and

harmonically constrained variants of NMF have been proposed in order to leverage this structure

for the AMT problem. The earliest of these [106] proposes to use a dictionary initialised with

harmonic structure. In particular, the dictionary was initialised with 88 atoms, each representing

a different note of the piano scale. Each atom was initialised with a non-zero element at each

frequency frame that represented a multiple of the fundamental frequency of the note it sought to

represent, while all other frequency frames were set to zero. A feature of multiplicative updates

is that elements that are equal to zero are unaffected. A problem with this method [106] noted

by the authors is that the atoms representing notes that do not exist in the signal interact with the

atoms of active notes. Hence, the authors proposs a penalisation strategy for correlated atoms.

An alternative formulation of Harmonic NMF (H-NMF) is proposed in [133], in which the

adaptive harmonic dictionaries are proposed. In this approach each full spectrum pitched har-

monic atom is formed from a variable superposition of several narrowband harmonic atoms la-

belled with the same pitch, and a semi-supervised NMF algorithm is used to learn the optimal

superpositions to constitute each full spectrum atom. The results given for this approach are con-

sidered state-of-the-art for AMT using NMF. An alternative approach, proposed in [126], sought

to extract harmonic atoms sequentially from a non-negative matrix. Experiments using this ap-
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proach were described using synthetic harmonic dictionaries, with results showing improved

dictionary recovery relative to unconstrained NN-K-SVD and NMF.

It is easy to consider that such harmonically constrained approaches may be limited when

presented with a signal consisting of a mix of harmonic and inharmonic features. Nonethe-

less it seems worthwhile to experiment with harmonically constrained variants of the different

NMF methods mentioned above. A harmonically constrained SMUDL (H-SMUDL) is easily

effected using the same initialisation as H-NMF [106] as the dictionary update is similarly based

on the multiplicative update, and zeros are maintained. A harmonic version of NN-K-SVD is

also proposed (H-NN-KSVD). Unlike the multiplicative update, the NN-K-SVD update does not

necessarily preserve structure, and requires filtering at each atom update

dn←− dn⊗vn (9.13)

where V is a binary matrix, of similar dimensions to D, that encodes the harmonic structure by

placing ones at the harmonic partials and zeroes elsewhere, in a similar fashion to the H-NMF

initialisation.

Experiments

Several questions have been raised by reference to the literature just described. Firstly can the

use of different sparse coding algorithms effect the efficacy of sparse NMF methods such as NN-

K-SVD when used in the context of dictionaries with harmonic structure? If so, how does this

then compare with NMF? Finally, if the sparse structure of the dictionary is known beforehand,

how much might this improve the recovery rate? Attempting to answer these questions suggests

an experimental setup that is quite pointed in its intentions. Hence, toy dictionary recovery

experiments were run with synthetic noiseless spectrograms. Another consideration in real-world

factorisation problems is the selection of the learning order, or the rank of the factorisation. The

effect of the learning order on NMF and NN-K-SVD in the context of AMT is noted in [8]. In

order to constrain the number of variables in the experimental setup the learning algorithms are

performed with the learning order set to the number of known atoms in the dictionary. Similarly,

the sparse algorithms are also aware of the fixed number of atoms active at each frame.

The experiments are based upon those described in [126], with a harmonic dictionary con-

sisting of ten atoms synthesised. From this dictionary a spectrogram is synthesised and the

dictionary is initially constructed so that the spectrogram simulates a STFT with sampling fre-
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quency 44.1kHz and a signal window of dimension 4096. Two variations in the experiment are

used, which differ only in how the harmonic dictionary D ∈ R2048×10 is created. In both cases a

unique fundamental frequency from the set

f0 ∈ {200,300,400,500,600,800,900,1000,1200,1500}

is assigned to each atom, thereby producing a large harmonic overlap between different atoms.

At each multiple of the fundamental frequency a harmonic peak is assigned. In the first set of

experiments, referred to as Experiment A, the coefficients of each harmonic peak are assigned

using a fixed spectral envelope

φ f = e(
− f
512 )

2

similar to that used in [126]. Sidelobes for each harmonic peak are assigned by filtering with a

Gaussian window. For the second set of experiments, Experiment B, the same harmonic structure

is used; however the coefficients of each peak and sidelobe is selected randomly from a equiprob-

able distribution in the interval [0, 1]. In both sets of experiments, all dictionary atoms are

normalised to have unit `2 norm. A non-negative coefficient matrix, X ∈R10×100, is also synthe-

sised, with each column consisting of 5 randomly selected non-zero elements, with coefficients

sampled from a equiprobable distribution in the interval [0.02, 1]. The synthetic spectrogram is

formed from the product of the dictionary and coefficient matrix.

For both sets of experiments, 100 different spectrograms are synthesised. In the case of

Experiment B, a unique dictionary is used for each individual experiment. Experiments are run

using the NN-K-SVD, SMUDL and NMF algorithms, and their harmonic variants. For the sparse

NMF algorithms, NN-K-SVD and SMUDL, three different sparse approximation algorithms are

used; NN-MP as used in [8], NN-OMP [16] and T-NNLS [114]. It is noted that T-NNLS displays

a similar performance as NN-BP, in which the multiplicative update step (9.10) is observed to

tend towards a NNLS solution. NN-MP and NN-OMP stop iterating when k = 5 atoms are

selected at each frame of the spectrogram, while T-NNLS uses the k-sparse thresholding strategy

(§3.4), also with k = 5. The same spectrograms and initial dictionaries are used for all algorithms,

in order to effect a fair comparison. Each algorithm is run for 100 iterations, after which the learnt

dictionary is compared with the original dictionary.

To measure the similarity between the two matrices, two metrics are used. First, similar to
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[126], a hit is registered when an atom in the learnt dictionary has a correlation of 0.9 or greater

with an atom from the original dictionary, and the number of hits is recorded. An Accuracy

measure is given as the percentage of atoms for which a hit is recorded:

Acc =
number o f hits

number o f atoms
×100%.

The average maximum correlation between the dictionaries is also measured using the matrix

Ḡ = D̄T D, where D is the original dictionary and D̄ is the learnt dictionary. Vectors of the row

maximums and column maximums of Ḡ are formed, and the mean of both of these vectors is

taken. The average correlation, ρ is given as the minimum of these two averaged values:

ρmean =
min{∑K

k=1 max ḡk, ∑
K
k=1 max ḡk}

K
. (9.14)

The minimum of the column/row maximums is used to avoid extra hits where a learnt atom may

contain energy of two signal elements and hence be highly correlated with two synthetic atoms.

Results

The results for the experiments are given in Table 9.1, from which several observations are made.

First, it is seen that NMF performs better than NN-K-SVD (NN-MP) in both experiments, a

result that resonates with those in [8]. However, this pattern is reversed when the other sparse

approximation algorithms, NN-OMP and T-NNLS are used, in which the results are superior to

those for NMF by a considerable margin.

In Experiment A, NMF is seen to recover 61.9% of atoms, at the correlation threshold spec-

ified, while NN-K-SVD recovers 95.4% and 98.8% of the atoms using NN-OMP and T-NNLS,

respectively. In comparision, the SMUDL algorithm has a recovery rate of 84.2% with NN-OMP,

and 90.6% with T-NNLS. In terms of sparse approximation algorithms the T-NNLS is seen to

improve on the results given using the NN-OMP for both NN-K-SVD and SMUDL. The results

using the SMUDL algorithm relative to NMF show that the sparse approximation step effects a

large improvement in the dictionary recovery performance. However, the K-SVD update is seen

to outperform the multiplicative update in terms of updating the dictionary. This is in contrast

to the original set of experiments, described in [92] [93], in which SMUDL was seen to outper-

form NN-K-SVD. In these experiments [92] [93], code for NN-K-SVD published by the authors

[3] was used, with minor modifications performed to incorporate the harmonic structure. It was
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Experiment A Experiment B
Algorithm Acc(%) Cmean Acc(%) ρmean

NMF 61.9 0.91 89.7 0.96
NN-KSVD (NN-MP) 39.9 0.86 39.1 0.87

NN-KSVD (NN-OMP) 95.4 0.98 99.8 1.00
NN-KSVD (T-NNLS) 98.8 1.00 100 1.00

SMUDL (NN-MP) 25.6 0.84 26.2 0.83
SMUDL (NN-OMP) 84.2 0.96 98.9 1.00

SMUDL (NNLS) 90.6 0.97 99.9 1.00

H-NMF 98.8 0.99 100 1.00
H-NN-KSVD (NN-MP) 42.0 0.86 46.2 0.88

H-NN-KSVD (NN-OMP) 97.0 0.99 100 1.00
H-NN-KSVD (T-NNLS) 99.5 1.00 100 1.00

H-SMUDL (NN-MP) 65.9 0.92 62.2 0.91
H-SMUDL (NN-OMP) 99.3 1.00 100 1.00

H-SMUDL (NNLS) 99.8 1.00 100 1.00

Table 9.1: Results from experiments comparing NMF with NN-K-SVD using different sparse
coding algorithms

noted in subsequent observations that atoms were occasionally omitted from the representation

completely at the sparse approximation step. In the code provided, the replacement strategy for

unsupported atoms was to form a new atom based on the signal residual. In the context of the

experiments presented here, this was seen not to be effective as the newly formed atom tended

not to be included at further sparse approximation steps. An alternative strategy, retaining un-

supported atoms, was used and led to a large difference in the results. It is worth recalling that

the experimental setup used here is similar to that used in [126], and the results seen here for

NN-K-SVD are superior to those reported in [126].

Experiment B is seen to be easier for all methods, with both sparse algorithms achieving al-

most perfect recovery, while NMF is seen to recover 89.7% of atoms. It is recalled that the only

difference between Experiment A and Experiment B is in assignment of dictionary coefficients,

with a fixed spectral envelope used in the former, and random coefficients in the latter. An analy-

sis in terms of a global dictionary coherence measure is offered. The correlation of each element

in the dictionary is given as an element of the Gram matrix, G = DT D. A global correlation

measure is given by

µG = ‖G− I‖2
F (9.15)

when the dictionary elements are normalised. A fixed dictionary is used in Experiment A, for

which it is found that µG = 3.36. In Experiment B, a different dictionary is used for each sepa-
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rate experiment. To compare, each individual dictionary used in Experiment B is measured using

(9.15). It is found the mean of µG for these dictionaries is 2.79, with a standard deviation of

0.06, while the maximum and minimum values of µG found are equal to 2.94 and 2.63, respec-

tively. In other words the fixed spectral envelope dictionary is much more correlated, or coherent.

While sparsity is often considered advantageous in NMF [55], it may become important, or even

essential, when correlated underlying factors exist.

The harmonically constrained versions of the dictionary learning algorithms are given in

the bottom half of Table 9.1. The recovery rates are high for all algorithms, except for the

sparse algorithms when NN-MP is employed as the sparse approximation algorithm. Indeed, for

Experiment B perfect recovery is seen for all algorithms when NN-MP is not used. In Experiment

A, some slightly different patterns to those for the unconstrained algorithms are seen.

H-SMUDL algorithm outperforms H-NN-K-SVD relative to the sparse approximation al-

gorithm used, while H-NMF outperforms H-NN-K-SVD, except when T-NNLS is used as the

sparse approximation algorithm. This could suggest that the harmonic structure favours the mul-

tiplicative update to the K-SVD update; however, the differences are relatively insignificant. The

unrealistic experimental setup is noted, with the learning algorithm aware of both the correct

number of atoms and their structure. In terms of AMT it is recalled that H-NMF [106] required

a penalty term to counter the interactions of atoms representing notes not present in the signal.

Nonetheless, a similar variant of K-SVD, referred to as Musical Structure K-SVD (MS-K-SVD)

[48], which is very similar to H-NN-K-SVD has recently been proposed for the purpose of AMT,

with promising results reported.

Some Further Experiments

Some results in the previous set of experiments demand some further exploration. In particular,

poor performance was observed for NMF in Experiment A. It is worth investigating if this is just

an effect of slower convergence when sparsity is not enforced, or whether sparsity may actually

be required in order to find an appropriate factorisation. While NN-K-SVD outperformed other

methods, the K-SVD update is relatively computationally expensive. Equivalent performance

may be achievable using SMUDL, or other algorithms, with less computation required.

In light of this, Experiment A from the previous section is repeated using unconstrained NMF

and sparse NMF algorithms. Multiplicative update NMF is run for 1000 iterations while S-

MUDL is run for 500 iterations. Two other NMF approaches are also compared. NMF using



9.1. Structure-Aware Dictionary Learning 165

Algorithm #iterations Acc ρmean

NN-KSVD (NN-OMP) 100 95.4 0.98
NN-KSVD (T-NNLS) 100 98.8 1.00
SMUDL (NN-OMP) 100 84.2 0.96
SMUDL (NN-OMP) 500 93.2 0.98
SMUDL (T-NNLS) 100 90.6 0.97
SMUDL (T-NNLS) 500 98.3 0.99

NMF 100 61.9 0.91
NMF 500 71.7 0.94
NMF 1000 73.3 0.95

ANLS-NMF 100 74.9 0.95
ANLS-NMF 500 76.3 0.95

ANLS-NMF (T-NNLS) 100 99.2 1.00
β -NMF 100 62.0 0.91
β -NMF 500 64.6 0.92

Table 9.2: Further results for Experiment A

ANLS [97] is run for 500 iterations. Further to this the β -NMF with β = 0.5, is run for 500

iterations. A sparse variant of ANLS-NMF is also proposed, with thresholding applied to the

coefficient matrix. This is referred to as ANLS-NMF(T-NNLS) and is run for 100 iterations.

The results for the further experiments are shown in Table 9.2, where an increase in per-

formance can be seen for both SMUDL and NMF after further iterations, with the performance

of SMUDL coming close to that of NN-K-SVD. However, NMF is seen to perform relatively

poorly. After 500 iterations, an improvement of almost 10% is seen relative to the performance

after 100 iterations. However, a further 500 iterations yield only an extra 1.6% of atoms recov-

ered, at which point the recovery rate is still more than 20% lower than for NN-K-SVD after 100

iterations. Considering the slow improvement observed between 500 and 1000 iterations, it is ap-

parent that the multiplicative update version of NMF may have converged at this stage. Further

unreported experiments with a larger amount of iterations yielded no significant improvement.

The β -NMF is seen to perform similar to the Euclidean NMF, suggesting that the alternating

multiplicative update approach is not suitable for unsupervised NMF in such scenarios. ANLS-

NMF is also seen to fail to recover the dictionaries, with performance only slightly better than

that of the Euclidean NMF. On the other hand, experiments run using the sparse variant of ANLS-

NMF, with T-NNLS used to update the coefficient matrix are seen to slightly improve upon the

performance of the NN-K-SVD, giving the best results of all. From these results, it is obvious

that introduction of sparsity to the NMF problem may be essential in some cases.



9.2. `0-Sparse NMF 166

9.2 `0-Sparse NMF

Experimental results in the previous section outline the importance of sparsity in NMF when

underlying correlated signal elements are present in the matrix to be factorised. In the toy ex-

periments presented, all algorithms that did not employ a sparse approximation step were seen

to fail to recover the dictionaries. Meanwhile, all algorithms employing a sparse approximation

step, other than MP, were relatively successful. The employment of NN-OMP was seen to im-

prove upon standard NMF approaches, even though NN-OMP can be considered to be somewhat

ill-suited in such a coherent problem. Further improvements were observed when T-NNLS was

used instead of NN-OMP, motivating a further examination of sparse approximation for NMF.

It is worth recalling the NN-K-SVD [3] and NMF-`0 [101] NMF approaches that employ

sparse approximation algorithms. More recent research with these two approaches has consid-

ered different sparse approximation steps. NN-OMP is used with NN-K-SVD in [48] for the

purpose of AMT. Further research on the NMF-`0 approach was recently published [100], in

which the use of different non-negative sparse approximation algorithms is considered. A back-

wards elimination algorithm called reserve sparse NNLS (rsNNLS) was proposed in [100], and

was seen to outperform NN-OMP and non-negative `1-minimisation in sparse approximation

tasks. rsNNLS, similar to BF-NNLS (§5.1) is a backwards elimination algorithm; however, some

differences between the two approaches should be noted. Both approaches start from an initial

NNLS solution, performing a downdate or elimination at each step. While BF-NNLS takes an

optimal step at each iteration, rsNNLS eliminates the atom with the smallest coefficient in the

downdated NNLS coefficient vector. rsNNLS is proposed for a k-sparse experimental setup,

while BF-NNLS more easily accommodates a threshold on the energy loss in the step, and the

optimality in the step suggests that a better `0 approximation should be formed.

A variant of sparse NMF, referred to as `0-Sparse NMF, (`0S-NMF) using the BF-NNLS

sparse approximation step with the modified sparse cost function (§5.2) is proposed. `0S-NMF,

outlined in Algorithm 9.2 employs the standard ANLS NMF [97] methodolgy, and differs only

through incorporation of the backwards elimination step after the NNLS coefficient matrix esti-

mation step. The `0S-NMF can also be employed with other dictionary update steps, such as the

NN-K-SVD or NMF-`0 approaches. Alternatively stated, the BF-NNLS algorithm can be used as

the sparse approximation step for the NN-K-SVD and NMF-`0 algorithms. However, using the

ANLS framework for `0S-NMF, the backwards elimination approach can also be used to enforce
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Algorithm 9.4 `0 S-NMF Algorithm
Input S ∈ RM×T , N, λ

Initialise D ∈ RM×N

repeat
Perform BF-NNLS
X = argminX ‖S−DX‖2

2 s.t. X≥ 0
for t = 1:T do

Γt = {n|[X ]n,t > 0}
repeat

∆rt = x[2]�diag([DT
Γt

DΓt ]
−1)

n̂ = argmin∆nrt

∆̄n̂rt =
√
‖rt‖2

2 +∆n̂rt −‖rt‖2

Γt ← Γt\n̂t

until ∆̄n̂rt < λ

xt = argminx ‖st −DΓt x‖2
2 s.t. x≥ 0

end for
Update Dictionary
D = argminD ‖ST −XT DT‖2

2 s.t. D≥ 0
until stopping condition

sparsity on the dictionary as well, thereby considering a cost function

CS = ∑
n
{‖s−Dxn‖2 +λ‖xn‖0}+η‖D‖0 (9.16)

where ‖D‖0 is the number of non-zero elements in the dictionary and η is a parameter enforcing

sparsity on the dictionary. In the transposed NNLS problem (9.5) the solution given is DT , the

transpose of the dictionary. Application of BF-NNLS in this case sets to zero some elements in a

given row of the dictionary.

Experiments

Some synthetic dictionary recovery experiments were designed to test the proposed `0-SNMF

approach. Random, twice overcomplete non-negative dictionaries D̄ of dimension 200× 400

were generated, with each element sampled from a flat equal probability distribution in the range

[0,1], and all dictionary columns were normalised to unit `2 norm. A coefficient matrix X̄ of

dimension 200× 800 was synthesised using a equal distribution in [0.02, 1]. Between 5 and 10

entries of X̄ were randomly selected to be active in each column for all experiments, and all other

entries of X̄ were set to zero. Experiments were performed using three different sparsity levels

in the dictionary, with {10,25,50}% of entries set as non-zero. The matrix S = D̄X̄ was syn-

thesised. Subsequent factorisation was performed using different NMF approaches, each run for
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50 iterations of alternating projections. All approaches use the transposed ANLS approach (9.5)

to perform the dictionary update, while different algorithms are used to estimate the coefficient

matrix X at each iteration.

The proposed `0S-NMF is used with λ = 0.02, the minimum value of an activation in the

synthesised dictionary. NMF was performed using the ANLS approach. OMP was used as a

sparse approximation step, with non-negative constraints applied. OMP stopped iterating when

either 15 atoms were selected, or the relative error ‖rn‖2
2

‖sn‖2
2
< 0.05. Thresholded NNLS (T-NNLS)

was performed using two different values of the threshold λ = 0.02 and λ =
√

0.02. An `1-SNMF

approach was also performed, with λ = 0.02, and also with λ = 0.04 (`1-SNMF (2λ )).

Early efforts attempted to use accelerated active set methods [65] [64] that attempt to solve

multiple right-hand sides of the NNLS problem simultaneously. However these were seen to be

problematic, inducing scaling errors. It is suspected that this is an effect of the overcomplete

dictionaries used. For all NNLS calcuations the active set Fast-NNLS [14] method was used,

with each column of S, or ST in the transposed case, being decomposed independently.

Similar to the experiments in the previous section, the goal is to find a dictionary that is

similar to the original dictionary, using the described NMF techniques. In order to measure the

similarity between the original and estimated dictionaries, the measure ρ (9.14) , which measures

the average maximum correlation of an atom from the original dictionary with a learnt atom, is

again used. A value of ρ = 0.95 is considered success in this set of experiments, and an additional

measure I, relates the number of iterations taken to achieve ρ = 0.95, when averaged across all

experiments.

Results

The results for the experiments are shown in Table 9.3, while Figure 9.1 plots the average value

of ρ across all experiments at each iteration, for the three different dictionary sparsity levels. It is

observed that NMF performs poorly, being unsuccessful for all dictionary sparsity levels with the

average correlation falling relative to the initialised dictionary in all cases. A stated advantage

of the ANLS approach to NMF is that overcomplete dictionaries can be used [26]. However,

from these experiments it would appear that a sparse approach may actually be necessary when

the dictionary is overcomplete. With a relatively low threshold, λ = 0.02, the T-NNLS approach

was seen to perform almost exactly the same as ANLS-NMF, and the results are not recorded.

When a higher value of λ =
√

0.02 was used, the T-NNLS approach was seen to perform well for
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50% 25% 10%
ρmax I ρmax I ρmax I

`0-S-NMF 0.992 27 0.992 12 0.973 10
NMF 0.408 - 0.507 - 0.660 -

T-NNLS 0.990 17 0.970 14 0.897 -
`1-SNMF 0.432 - 0.555 - 0.865 -

`1-SNMF(2λ ) 0.476 - 0.893 - 0.995 21
OMP 0.818 - 0.958 15 0.976 11

Table 9.3: Different NMF algorithms compared for different dictionary density levels with dic-
tionaries synthesised from equiprobable distribution

the densest dictionary, with 50% of active dictionary elements. In this case the T-NNLS approach

learnt quicker than all other approaches, reaching ρ = 0.95 in the smallest amount of iterations.

However, the performance of this approach is seen to deteriorate when the dictionaries become

sparser, and is unsuccessful in recovering the dictionary of 10% density.

The proposed `0-SNMF approach is seen to be the only algorithm successful in all experi-

ments. However, a small drop-off in performance is observed in the case of the sparsest dictio-

nary, where ρmax is reached after around 15 iterations, and not subsequently improved. A sparsity

constraint on the dictionary, such as in (9.16), may improve this performance. NN-OMP is also

shown to perform well, with success in the case of the sparser dictionaries, and a relatively high

value of ρmax in the case of the densest dictionary.

Using an `1-SNMF approach was relatively unsuccessful, using the considered parameters.

Success was demonstrated only when the higher threshold (2λ ) was used for the experiments

using the sparsest dictionaries. In this case, however, ρmax was seen to be higher than for all

other algorithms. While learning was slower than with other algorithms, the correlation for the

`1-SNMF(2λ ) was seen to continue increasing when other successful approaches had ceased to

improve.

The effect of the use of a higher threshold is obvious in the results, as seen in the case of

T-NNLS. Some initial experiments were run with the `2
1-penalty norm suggested by [65], using

a value of λ = 0.02 for which good performance was observed. However, this is an effect of the

scaling that is inherent in the `2
1-norm, and performance using this approach was seen to be poor

in similar experiments that were scaled down. Other initial experiments performed using high

values of λ with the `1-SNMF approach were seen to bring similar improvements in the dictio-

nary recovery to the `2
1 approach. These observations would seem to validate the approach taken
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Figure 9.1: Comparison of NMF algorithms learning in terms of P when the dictionary is 50%
dense (top) and 25% dense (middle) and 10% dense (bottom).
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Figure 9.2: Group of atoms used to represent one note in adaptive harmonic dictionary

in [107] where a large value of λ , used at initial iterations, was gradually decreased. However,

it is noted that in all cases the proposed `0 approach performs similarly, without requiring any

scaling.

9.3 Is NMF necessary for AMT?

Spectrogram decompositions are considered to provide better results for the application of AMT

than unsupervised learning methods such as NMF, particularly if the dictionary used represents

the sources in the signal well. However, such a dictionary is not alway available. For this rea-

son, NMF is popular tool for AMT and musical signal processing, affording a fast, data-driven

approach. However, the problems with NMF in the context of AMT, such as learning order,

separability of coincident notes and a tendency to learn meaningless atoms, are well noted in the

literature [8] [133] [106].

An alternative NMF-based approach is the semi-supervised NMF of Vincent et al, proposed

in [133]. In this method a hierarchical dictionary is used. At the top of the hierarchy is a dictio-

nary consisting of pitched atoms, with one atom for each note on the piano scale, 88 in all. Each

of these pitched atoms is actually a superposition of a group of narrowband harmonic atoms,

each with the same fundamental frequency. An example of one of these groups is shown in

Figure 9.2. Each of these narrowband atoms is fixed. In [133] a semi-supervised β -NMF (SSβ -
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NMF) approach is used to learn harmonic atoms. Rather than learning a dictionary, SSβ -NMF

seeks to learn the coefficients of a group of narrowband atoms, such as those in Figure 9.2, that

constitute a good broadband harmonic atom. The learning is performed by using an alternating

projections methodology, using β -NMF. In one projection the spectrogram is decomposed using

the 88 broadband pitched atoms. In the alternative projection, the coefficients of the narrowband

atoms are optimised. Each group of narrowband atoms comprising a given broadband atom are

optimised with the coefficients of the broadband atom fixed. It is noteworthy that each alternat-

ing projection does not consist of one multiplicative update. In this approach, each alternating

projection iterates until convergence of the given cost function.

Results in [133] place the performance for this method at 10% ahead of unsupervised NMF,

in terms of F-measure, and 7% ahead of the H-NMF [106]. Indeed, this method is generally

considered state-of-the-art for NMF-based transcription systems. It is noted that, similar to the

NMD experiments described in the same paper and from which the benchmark experiment de-

scribed in (§3.5) is derived, that the authors of [133] performed the supervised NMF experiments

using β -divergence NMF for a wide range of values of β .

It is possible to take an alternative view of the adaptive harmonic dictionary used in [133],

and consider it as a subspace dictionary, and hence a candidate for the group sparse decomposi-

tions used throughout this thesis. While the learnt dictionaries were seen to perform well, they

were recorded in a similar environment to the piano pieces that they were used to decompose.

However, the dictionary used in [133] was not designed with decomposition methods in mind.

For instance, the narrowband structure employed results in some atoms being present in areas of

the spectrogram where little energy is present, and it is possible that a group sparse penalty might

be unevenly distributed between the narrowband atoms constituting a pitch.

Experiments

Some experiments were run to compare the performance of group sparse NMD methods, from

Chapter 7, against the SSβ -NMF approach of Vincent et al [133]. The software to construct

these dictionaries and perform the related SSβ -NMF learning is available online. Dictionaries

were created using the default settings in the software, and the SSβ -NMF was performed using

the code supplied.

To perform group sparse NMD, all narrowband atoms were normalised to unit `2 norm and

a group structure, L (§2.2.2.) was formed by applying common indexing of atoms of the same
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F δopt(dB) P R
G-KL-NMD (§7.2.1) 66.6 29 69.0 64.4
G-β -NMD (§7.2.1) 67.5 29 71.9 63.5

SSβ -NMF [133] 67.7 29 70.3 65.3

Table 9.4: Experimental results comparing semi-supervised β -NMF with G-NMD.

pitch (2.18). It is noted that the groups or subspaces created have varying size P, with P= 6 being

the maximum, and used for low pitches, while P = 3 is the minimum, used only for the highest

pitches. A total of 496 atoms were created. The spectrograms of Transform E1, the default setting

for the SSβ -NMF approach, were decomposed using Group-NMD (§7.2.1) decompositions using

both the Kullback-Leibler (KL) and β -divergence, with β = 0.5, cost functions with a group

sparse penalty. For the KL-divergence the `⊥,1 mixed norm was used as the group sparse penalty,

while the β -divergence was penalised with a `0.5
⊥,0.5 norm. In both cases λ was set to 1.

The results are shown in Table 9.4. Here it is seen that there is little to separate the ap-

proaches. While SSβ -NMF method performs best, the improvement in F-measure seen is 1.1%

relative to the KL-divergence and only 0.2% relative to the G-β -NMD.. This is an interest-

ing result, questioning the requirement of NMF methods for the purpose of decomposing such

structured signals. It is possible that with a different dictionary design, the decomposition-based

method may have performed as well. Alternatively, it may be possible to improve on the results

of SSβ -NMF by enhancing the dictionary learning process, as the decomposition step is now

superior to that used before.

9.4 Discussion

In this chapter, prior research on NMF and Sparse NMF was first described. A noted difficulty in

NMF is the problem of the separability of overlapping factors [115], as described in the original

paper proposing the use of NMF for AMT. In particular, the authors of [115] consider that each

note in a signal to be factorised may have to be played in isolation at least once to be recognised.

While this was later shown not to be the case [8], problems with the quality of atoms learnt

using NMF are often noted [106] [133]. A curious result relating to the comparison of NMF

and NN-K-SVD in [8] for the purpose of AMT was recalled. Some experiments were run to

compare the use of some NMF and Sparse NMF algorithms, with different sparse approximation

algorithms employed also. The experiments were synthesised from a small dictionary, designed

to emulate musical spectrograms with a presence of harmonic overlap. It was found that several
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NMF algorithms failed to recover the underlying dictionaries. However, all approaches that used

a sparse approximation method, other than MP, were relatively successful. The implication is

that sparse NMF methods may be desirable when factorising musical spectrograms.

A considerable difference was noted in the results for the expeirments above when T-NNLS

and NN-OMP were used as sparse approximation algorithms. Previously it was observed that

BF-NNLS, proposed in Chapter 5, is a good non-negative sparse approximation algorithm. Some

further synthetic experiments, this time synthesised from overcomplete dictionaries were run

to compare various NMF and Sparse NMF algorithms, all within the ANLS framework. The

proposed `0-S-NMF was seen to perform most consistently amongst the approaches compared.

The worst performance for `0-S-NMF was observed when the underlying dictionary was sparse.

However, a strategy to enforce sparsity on the dictionary, again using BF-NNLS was proposed,

albeit not implemented here.

Finally, some group sparse decompositions were performed using a generic harmonic dic-

tionary, which was designed for use with a state-of-the-art NMF approach to AMT. The results

were perhaps surprising. The group sparse constraint alone performed almost as well as the

semi-supervised β -NMF approach. This opens a wide range of possibilities. For instance, group

sparse NMF may be worth exploring, particularly in such a harmonically constrained case. An al-

ternative perspective may also be taken. Structured sparse representations, with flexible, generic

dictionaries may be sufficient for AMT, in which case dictionary design may become a pertinent

area for future research.
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Chapter 10

Conclusions

Throughout this thesis, a stated goal has been to inform the Automatic Music Transcription

(AMT) problem through incorporation of concepts and methodology from the sparse represen-

tations repetoire. In particular the concepts of structured sparsity and dictionary coherence, and

use of stepwise methods were introduced to AMT. To conclude this thesis, a summary of the re-

search contained herein is given, with the main contributions then outlined. Finally some pointers

to future research made more accessible by the findings of this thesis are offered.

10.1 Summary

In Chapter 4 an exploration of greedy methods for AMT was undertaken. Some prior work in

the literature was used as a reference point, particularly the use of OMP with large overcom-

plete dictionaries containing datapoint atoms. The alternative approach of subspace modelling

was considered, and the use of group sparsity was deemed necessary when using dictionaries

formed from a union of pitched subspaces. Magnitude spectrograms were used, as is typical

in AMT spectrogram decompositions, leading to the proposal of novel non-negative variants of

group OMP algorithms, many simply derived through suppression of non-negative inner prod-

ucts in the calculation of group selection coefficients. However, the best performing of the group

non-negative pursuits, NN-NS-OMP, was not so simply adapted to the non-negative framework.

Hence, a novel accelerated approach, F-NS-OMP, was derived through bounding the coefficients

of the NNLS projection, bringing the computational load associated with this approach close to

that of the other non-negative greedy group methods. The use of a gradient-based approximate
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backprojection step was also explored in order to lessen the computational load of backprojec-

tion incurred with the subspace dictionaries. However, limitations in terms of fractured temporal

continuity, inability to correct early bad selections and the difficulty in choosing a good stopping

condition are notable when using OMP for AMT. Nonetheless, some positive conclusions and

motivation for further research were provided in this exploration of OMP. In particular it was

found that subspace modelling is a apt approach, leading to development of other group sparse

algorithms. The large variation in performance relative to the type of spectrogram transform used

was noted, leading to a later analysis in terms of dictionary coherence.

Chapter 5 began with a demonstration, through a simple three-atom example, of how OMP

can easily select an incorrect atom, in the context of musical signals. This provided the mo-

tivation for an exploration of stepwise methods that include a facility for backtracking. More

specifically, the use of stepwise optimal methods was considered, prompted by the difficulty

in selecting an good stopping condition when OMP is employed. This approach had not pre-

viously been considered in the context of AMT. Some methods from the sparse methodology

incorporating backtracking were first described, with note taken of their tricky assimilation to a

non-negative framework. Closer consideration of the problem led to the proposal of a backwards

elimination approach, BF-NNLS, initialised from a non-negative least squares decomposition. In

k-sparse experiments this was seen to be perform similarly to other approaches, while simpler

in its execution. A modified sparse cost function was then proposed, due to the observation that

the elimination cost for an atom was related to the square of its current NNLS coefficient. In

this case improved results relative to NNLS were observed. A group sparse variant of the BF-

NNLS approach was then proposed, using a modified group sparse cost function. This group

sparse backwards elimination approach led to AMT results that were superior to the benchmark

experiments, previously considered state-of-the-art for framewise decomposition-based AMT.

The research presented in Chapter 6 was also motivated by the failings of OMP-based ap-

proaches; this time, with regard to the fractured time continuity observed in correctly detected

signal elements. In this chapter, molecular sparse methods were considered. Molecular meth-

ods are most often considered in time-frequency representations, with tracking performed across

time frames of pitch-similar atoms. However, this approach is not necessarily apt when the dic-

tionary is coherent, as in the case of non-negative decomposition for AMT. A new approach was

proposed to counter these problems. First, clustering of pitch-similar time-adjacent active atoms,
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in a NNLS-based piano roll, into molecules is performed. These molecules form an alternative

type of dictionary, for which the new M-NS-OMP algorithm was proposed to perform molecular

spectrogram decompositions. Promising results were observed using the proposed M-NS-OMP,

both in frame- and event-based analyses. Comparison with a ground truth, or oracle, decom-

position was proposed in order to analyse the decomposition-based AMT problem, and led to

some interesting observations. Systematic problems in the onset detector employed were noted.

While it was observed that very low thresholds are required to achieve a high value of Recall,

the use of subspace modelling was validated as a higher potential Recall was recorded using an

oracle decomposition. Finally a molecular norm was proposed, prompting new molecular al-

gorithms such as Molecular Hard Thresholding (MHT) and Molecular Backwards Elimination.

Experimental results indicate that the molecular approach is potentially robust, with performance

observed to be equivalent regardless of the transform used, while the use of subspace modelling

and backwards elimination were again validated.

Chapter 7 sees a departure from the use of stepwise methods, which result in subset NNLS

decompositions. Previous AMT research has reported better results when cost functions other

than the Euclidean distance are used, with the generalised β -divergence particularly popular in

musical signal processing. Some exploration of the more recent generalised αβ -divergence, pre-

viously not considered in the context of AMT, was undertaken. A novel η divergence, itself a

special case of the αβ -divergence, was proposed, leading to state-of-the-art AMT decomposi-

tions for the STFT. Monotonic descent is proved for the η-divergence, using an NMF update with

a larger stepsize than previously considered in the NMF literature, for η ∈ [0.5,1] the range of

enhanced performance. Sparse and group sparse penalised NMD approaches were then explored.

An alternative perspective is taken in Chapter 8. Throughout many chapters of this thesis,

varying performance was observable in AMT experiments relative to the transforms employed in

the decomposition. This variation led to an analysis of the different dictionaries in terms of co-

herence, a perspective not previously undertaken in AMT. A relationship between the dictionary

coherence in a given transform and AMT performance was shown. Considering then that coher-

ence is somewhat related to AMT performance, a novel row-weighting conditioning approach

for application in a non-negative framework was proposed. A new effective coherence measure,

incorporating coherence and activity through the coefficients of an initial decomposition, was

proposed. Projected gradient descent was then performed to find a row-weighting that reduced
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this effective coherence measure. This row weighting was then applied to both the signal and

the dictionary before a further decomposition was performed, leading to improved AMT, while

the observation was made that row weighting in a noiseless scenario has no effect on the final

decomposition coefficients.

Fiinally, Chapter 9 explores the field of Sparse Non-negative Matrix Factorisation (SNMF),

with a focus on methods that consider a `0 sparse approximation algorithm. Some toy experi-

ments showed that sparsity may necessary in some cases for NMF when underlying correlated

factors exist in the matrix to be factorised. Further to this, a variant of sparse NMF, `0-SNMF was

proposed, further indicating the usefulness of BF-NNLS as a non-negative sparse approximation

algorithm. The chapter finishes with an observation of some experimental results, comparing

group sparse decompositions using a generic harmonic dictionary with a state-of-the-art NMF-

based method, bringing into question the necessity of NMF for AMT.

10.1.1 Main Contributions

• Coherence-based conditioning for AMT using newly proposed effective coherence mea-

sure.

• The η-divergence.

• BF-NNLS backwards elimination approach with modified sparse cost function; seen to be

particularly useful for group sparse decompositions.

• `0-SNMF, a novel variant of Sparse NMF employing the BF-NNLS approach.

• Subspace modelling of musical notes and group sparse algorithms.

• Molecular sparse methods for AMT.

• F-NS-OMP; a fast non-negative variant of SMP.

10.2 Future Research

Several contributions to decomposition-based AMT have been outlined briefly in the previous

section. While some of these, such as the molecular approach, can be considered application

specific, many are general methods that may possibly find application elsewhere. However,

possible avenues for further research in the context of AMT are suggested, some of which are

outlined below.
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10.2.1 Modelling Approaches

In the work presented subspace modelling of musical notes was seen to be beneficial, affording

improved AMT relative to typical atomic pitch dictionaries in supervised decompositions. Fur-

ther improvements may be possible by using a more considerate subspace learning approach.

The individual subspaces were learnt in a simple fashion, using unconstrained Euclidean NMF,

and the representation power of individual atoms was poor, with many harmonic partials missing

from each atom. Some simple possibilities that might be considered include normalisation of the

data, and the use of different cost functions to learn the atoms. More structured approaches are

also possible, for instance using approaches that encourage co-activity in harmonic partials, or

otherwise. The employment of temporally constrained learning could possibly lead to pitched-

subspaces that themselves contain overlapping groups, which may better model the evolution of

a note.

In a similar fashion to the subspace modelling, the molecular clustering approach was prim-

itive with all time-adjacent active atoms clustered, occasionally leading to large molecules con-

taining several notes, or molecules that substantially overrun the natural length of a single note.

Ideally, a molecule should be more semantically meaningful. For instance in AMT each molecule

could represent a single note, an approach that may lead to better thresholds or stopping param-

eters for stepwise methods. However, this might be a tricky problem, as it could be hypothe-

sised that some type of onset detection would be necessary in order to derive such meaningful

molecules. Further work could build on the observed deficiencies in the threshold-based onset

detector used in Chapter 6.

While improved decompositions were implemented as part of this thesis, the post-processing

of a decomposition was not developed, with adherence to simple global thresholding in order to

derive a piano roll. It may be worthwhile considering more complex classification at each time-

pitch point. For instance, in the AMT literature the use of Hidden Markov Models is seen to be

popular. Other approaches to be considered include a simple mixed global and local thresholding.

10.2.2 Methodology

The backwards elimination methodology was seen to be useful when the modified sparse cost

functions were introduced, affording good transcription with the use of only one stopping con-

dition parameter, in the frame-based approach, and also performing well when a molecular ap-
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proach was used. OMP-based approaches have previously been used in a multi-instrument set-

ting [76], where gradient-based methods are seen to denote co-activity [133]. In this context,

backwards elimination approaches may be able to provide the best elements of both approaches,

affording the selectivity of greedy approaches with the better overall performance of other ap-

proaches. Simultaneous stepwise decompositions, in which different spectrograms are decom-

posed at once, in a similar manner to simultaneous sparsity [130] [54], may also be considered

In the exploration of the αβ -divergence it was seen that model-weighted cost functions per-

formed well in the context of AMT, and consideration should be given to other divergences in

the statistics literature that share this property, for which multiplicative update descent algo-

rithms could be derived. An exploration of other approaches than the popular multiplicative

updates might also be welcome. For instance, the use of proximal methods has been proposed

for the Kullback-Leibler divergence [36], while coordinate descent algorithms have previously

been proposed for the α- and β -divergences. Research should be performed into extension of

these approaches, with a particular focus on group sparse penalisation.

An inherent weakness of decomposition based AMT is the requirement of a dictionary that

represents the sources in the signal well. While sparse variants of NMF were proposed, exper-

imentation with musical signals was not performed. One possibility is the use of group sparse

NMF, which may be implemented by employing the GBF-NNLS algorithm in the `0 Sparse NMF.

However, the final experiments in Chapter 9 suggest that spectrograms decomposition methods

may be capable of similar performance to factorisation based approaches when a well-structured

dictionary is used. Conversely, the performance of the decomposition methods in this case might

indicate the potential for enhanced NMF based methods.

An alternative approach may be to use adaptive decompositions, whereby the signal or the

dictionary or both are transformed. An example of this, using coherence-based row-weighting,

was proposed in this thesis, and there are many future possibilities for such approaches. Initial

work would consider incorporation with group sparsity. The genetic methods proposed in [109]

provide an alternative example of an adaptive type of approach, whereby spectral templates are

used and adapted. However, a more numerical based approach may be possible. While a de-

composition adaptive approach was taken using the effective coherence measure in this thesis,

consideration of more explicit adaptation to the signal may be worthwhile.
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