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Abstract 

Cyanobacteria represent one of the morphologically most diverse groups in the 

bacterial world, and one of the few where true multicellularity evolved. Their 

diversity ranges from single cells to branched filamentous forms. Some filamentous 

cyanobacteria are additionally able to undergo cell differentiation forming a two cell 

type system that represents the simplest model of multicellularity. Anabaena sp. 

PCC 7120 has been studied extensively in recent years as a model organism. Under 

nitrogen deprivation it differentiates photosynthetically-active vegetative cells into 

heterocysts, specialised cells for nitrogen fixation. Accordingly, true multicellularity 

of nitrogen-fixing cyanobacteria requires different forms of intercellular 

communication and mutual exchange of nutritional and regulatory compounds. 

Although several studies could show that molecules are exchanged between cells in 

Anabaena sp. PCC 7120, little is known about the properties and routes that allow 

molecules to diffuse between adjacent cells. In this work, the transfer of several 

physiologically-important molecules was investigated, including the fluorescent 

sucrose analogue esculin, the fluorescent glucose derivatives 2-NBDG (2-(N-(7-

Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose) and 6-NBDG (6-(N-(7-

Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-6-deoxyglucose), and the artificial 

fluorescent tracer BCECF (2′,7′-Bis-(2-carboxyethyl)-5-(and-6-)carboxyfluorescein). 

Furthermore, the role of the septal proteins FraC, FraD and SepJ for the exchange of 

these molecules was examined in Anabaena sp. PCC 7120. Confocal microscopy and 

fluorescence recovery after photobleaching (FRAP) experiments reveal that 

cytoplasmic diffusion through channels between neighbouring cells is the primary 

route for molecular exchange. Loss of FraC, FraD and SepJ strongly reduced the 

movement of molecules between cells. Overexpression of sepJ altered the heterocyst 
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spacing pattern in Anabaena sp. PCC 7120, suggesting a role of SepJ for the 

diffusion of regulators. 

Further, multicellularity in terms of intercellular communication was explored in 

Mastigocladus laminosus, a true branching cyanobacterium that is one of the 

morphologically most complex prokaryotes. FRAP analyses indicate the cytoplasmic 

continuity of the filament network and the dependency of molecular exchange on the 

morphology of the trichomes. 
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1 Introduction 

Cyanobacteria are the only known prokaryotes that are capable of oxygenic 

photosynthesis. Uptake and stable integration of one of these ancestral 

phototrophic prokaryotes into a eukaryotic organism by a process called primary 

endosymbiosis led to the evolution of the chloroplasts found today (Gould et al., 

2008). Cyanobacteria exhibit a great biochemical and morphological diversity and 

can be found in almost all habitats on our planet, including extreme environments 

such as hot springs (Castenholz, 1969) and polar regions (Vincent, 2007). Recent 

data suggest that cyanobacteria evolved around 3 billion years ago when first low 

but appreciable levels of atmospheric oxygen could be detected in rocks from the 

Pongola Supergroup in South Africa (Crowe et al., 2013). Further proof for the 

early presence of cyanobacteria was obtained by phylogenetic analyses using 16S 

rRNA and fossil records (Schopf, 2012; Schirrmeister et al., 2013). These studies 

date the existence of cyanobacteria to more than 2.7 billion years ago. Additional 

analyses using phylogenetic reconstructions and trait analyses indicate that these 

early cyanobacteria were presumably unicellular strains with small cell diameters 

that were restricted to freshwater ecosystems for several hundred million years 

until they started diversifying and moving into coastal brackish and marine 

environments at around 2.4 billion years ago (Blank and Sánchez-Baracaldo, 

2010). This time point closely coincides with the ‘Great Oxygenation Event’ 

(GOE) (Bekker et al., 2004), an event that led to a significant increase of the 

partial pressure of oxygen (pO2) in the atmosphere from initially less than 

0.002 atm to about 0.02 to 0.04 atm between 2.45 and 1.85 billion years ago 

(Holland, 2006). 
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The presence of multicellular cyanobacteria around the time of the GOE is well 

supported by recent phylogenetic studies (Tomitani et al., 2006; Schirrmeister et 

al., 2011; Schirrmeister et al., 2013). The latest of these studies even suggests that 

multicellularity evolved earlier than the GOE and that multicellularity might have 

played a key role in triggering cyanobacterial evolution and diversification around 

the GOE (Schirrmeister et al., 2013). Although cyanobacteria were presumably 

already able to form heterocysts, specialised cells for nitrogen fixation, at this 

time (Tomitani et al., 2006), it took more than a billion years until marine 

planktonic unicellular nitrogen fixing cyanobacteria evolved (850-635 million 

years ago) (Sánchez-Baracaldo et al., 2014). The delayed evolution might be a 

result of the insufficient availability of trace elements such as molybdenum and 

vanadium in the open ocean at the time of the GOE which are essential co-factors 

of the nitrogenase, the nitrogen fixing enzyme (Sánchez-Baracaldo et al., 2014). 

1.1 Morphological diversity and classification of cyanobacteria 

It is remarkable that multicellularity in cyanobacteria has evolved as early as the 

GOE and that the phylum reached its maximum morphological complexity around 

2 billion years ago which remained almost unchanged until today (Damuth, 2001). 

According to their strong morphological variations, cyanobacteria have been 

divided into five sections, including unicellular forms (Section I and II), 

filamentous (Section III and IV) and filamentous-branching forms (Section V) 

(Rippka et al., 1979). Cyanobacteria of Section I (formerly known as order 

Chroococcales) divide by binary fission while species of Section II 

(Pleurocapsales) exhibit a special mode of reproduction. Large cells undergo 

multiple fissions within the outer wall layer resulting in the release of small, 
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spherical daughter cells called baeocytes (Herdman and Rippka, 1988). 

Occasionally, cyanobacteria of the Pleurocapsa group (Section II) undergo binary 

fission which results in the formation of irregular cellular aggregates that 

resemble filaments but without plasmatic connections between these cells 

(pseudofilaments) (Rippka et al., 1979). Real filaments of different complexity 

can only be observed in cyanobacteria of Sections III, IV and V. While filaments 

of cyanobacteria of Section III (Oscillatoriales) consist only of a single cell type, 

organisms of Section IV (Nostocales; including model organism Anabaena sp. 

PCC 7120) and Section V (Stigonematales; including the potential model 

organism Mastigocladus laminosus) show additionally the ability to undergo cell 

differentiation, forming specialised cells for nitrogen fixation (heterocysts), and 

sometimes also akinetes (resting cells) and hormogonia (motile filaments for 

dispersal and symbiosis competence) (Rippka et al., 1979). Cyanobacteria of 

Section V exhibit further morphological complexity. Cellular division occurs in 

multiple planes, resulting in the formation of true branches. The morphological 

diversity of cyanobacteria is shown in Figure 1. 
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Figure 1. Morphological diversity of cyanobacteria. 

(A) Cyanothece aeruginosus (Section I). (B) Merismopedia sp. (Section I) (C) 

Chroococcus turgidus (Section I). (D) Gloeotrichia echinulata (Section IV). (E) 

Cylindrospermum sp. (Section IV) with akinetes (aki) and heterocysts (het). (F) 

Oscillatoria limosa (Section III). (G) Trichormus variabilis (Section IV). (H) 

Stichosiphon sansibaricus (epiphytic with the green algae Cladophora) 

(Section III). (I) Hapalosiphon hibernicus (Section V). Photos A and I by 

Dr Yuuji Tsukii, Protist Information Server (protist.i.hosei.ac.jp), photos B - F 

and H by Dr Ralf Wagner (dr-ralf-wagner.de), and photo G by Dr Lira Gaysina. 

1.2 Nitrogen fixation as a prerequisite for intercellular 

communication 

Although nitrogen is the fifth most abundant element in our biosphere, it is only 

accessible for the incorporation into biological molecules such as proteins and 

DNA after its reduction to ammonium. The ability to fix nitrogen therefore limits 
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the productivity of the biosphere (Gruber and Galloway, 2008). Biological 

nitrogen fixation is a highly energy expensive process and requires the presence of 

the heterodimeric enzyme complex, nitrogenase. To fix one molecule of N2 

approximately 16 molecules of adenosine triphosphate (ATP) and 8 low-potential 

electrons (usually provided as reduced ferredoxin) are necessary (Canfield et al., 

2010). Cyanobacteria obtain this energy by oxygenic photosynthesis which seems 

paradoxically since the nitrogenase is extremely sensitive to oxygen. A pO2 as 

low as 0.001 atm already starts inhibiting nitrogenase activity of Plectonema 

boryanum (Section III) and Anabaena cylindrica (Section IV) in vitro (Haystead 

et al., 1970). In cyanobacteria various mechanisms evolved to allow both 

intrinsically incompatible processes to take place. According to Stal (1995) three 

strategies can be distinguished: (1) avoidance of O2, (2) temporal separation of 

oxygenic photosynthesis and nitrogen fixation, and (3) spatial separation of both 

processes. 

Cyanobacteria using the strategy of oxygen avoidance can be either filamentous 

or unicellular and are found in a wide range of different environments. They fix 

nitrogen only under anaerobic (or microaerobic) conditions while oxygenic 

photosynthesis is inhibited. For example, the filamentous cyanobacterium 

P. boryanum fixes nitrogen at a pO2 below 0.005 atm (Weare and Benemann, 

1974). Particularly favourable are sulphide-rich environments as they are 

anaerobic and inhibit photosystem II activity. Organisms living in this 

environment, such as the filamentous cyanobacterium Oscillatoria limnetica 

(Section III), replace oxygenic photosynthesis by an effective sulphide-dependent 

photosynthesis, driven by photosystem I (Cohen et al., 1975; Cohen et al., 1986). 
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Cyanobacteria showing temporal separation of oxygenic photosynthesis and 

nitrogen fixation are able to fix nitrogen aerobically and can be either filamentous 

or unicellular. Cultures grown under an alternating light-dark cycle usually 

confine nitrogen fixation to the dark period when oxygen production is low or 

absent, a mechanism which is well described for the unicellular cyanobacteria 

Cyanothece sp. ATCC 51142 (Section I) (Reddy et al., 1993), Crocosphaera 

watsonii WH 8501 (Section I) (Tuit et al., 2004) and for species of the genus 

Gloeothece (Section I) (Stephens et al., 2003). Also the filamentous species 

Lyngbya aestuarii (Section III) fixes nitrogen preferably during the dark period 

when grown under alternating light-dark cycles (Stal and Krumbein, 1985). 

However, most organisms which are able to fix nitrogen aerobically still show 

optimum nitrogen-fixing activity only under low oxygen concentrations, e.g. 

between 25 and 80 µM O2 for Gloeothece sp. PCC 6919 depending on the age of 

the culture (exponential and stationary growth phase respectively) (Maryan et al., 

1986). An exception is the filamentous cyanobacterial genus Trichodesmium 

(Section III) which fixes nitrogen maximally at a pO2 of 0.1 atm (Ohki and Fujita, 

1988). Interestingly, Trichodesmium spp. fix nitrogen exclusively during the day 

and inactivate and degrade the nitrogenase during the night (Capone et al., 1990). 

Although nitrogen fixation occurs during the time of oxygenic photosynthesis 

both processes are more or less temporally separated as nitrogen fixation occurs 

around mid-day when the oxygen production is reduced and oxygen-scavenging 

mechanisms are enhanced (Berman-Frank et al., 2001). However, temporal 

separation is not the only mechanism that allows nitrogen fixation and oxygenic 

photosynthesis to occur under aerobic conditions in Trichodesmium spp. Bergman 

and Carpenter (1991) could show by immunogold labelling that the nitrogenase is 
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localised in subsets of specialised cells, called diazocytes (Figure 2), thus 

separating nitrogen fixation and oxygenic photosynthesis spatially. 

 

Figure 2. Diazocytes in filaments of Trichodesmium erythraeum IMS101. 

Immunolocalisation of the NifH protein reveals the presence of the nitrogenase in 

subsets of cells named diazocytes (blue). Scale bar, 10 µm. (adapted from 

Bergman et al., (2013)) 

However, the most prominent example for spatial separation is the localisation of 

the nitrogenase to specialised cells called heterocysts, while oxygenic 

photosynthesis and carbon fixation occur simultaneously in adjacent vegetative 

cells. In 1968 Peter Fay and co-workers proposed for the first time that 

heterocysts are the sites of nitrogen fixation (Fay et al., 1968) and shortly 

afterwards Stewart et al. (1969) could experimentally confirm their hypothesis. 

The ability to form heterocysts is a main feature for the classification of 

cyanobacteria. Organisms which are capable of fixing nitrogen by the formation 

of heterocysts were grouped in Section IV and V (Rippka et al., 1979). Heterocyst 

differentiation has been studied extensively in species of the genera Anabaena and 

Nostoc (both Section IV). In Anabaena spp. removal of combined nitrogen from 

the growth medium induces the formation of heterocysts at regular intervals of 10 

to 20 cells along the filament (Wilcox et al., 1973). Several stages can be 
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distinguished during the development from a vegetative cell towards a mature 

heterocyst (Sherman et al., 2000). In order to establish a regular heterocyst 

spacing pattern transfer of regulators between cells is required. Gordon Elliot 

Fogg (1949) was the first who proposed that the spacing pattern is a result of 

periodic concentrations of an inhibitor along the filament that allows heterocyst 

formation only at the position of the lowest concentration. A prime candidate for 

such a diffusible inhibitor is the product of the gene patS (Yoon and Golden, 

1998). Under nitrogen deprivation patS is expressed early in differentiating 

proheterocysts, potential heterocysts which represent an intermediate between a 

vegetative cell and a heterocyst (Yoon and Golden, 1998). Inactivation of patS in 

Anabaena sp. PCC 7120 results in the formation of heterocysts in the presence of 

combined nitrogen and in the formation of multiple contiguous heterocysts 

(MCH) under nitrogen deprivation (Yoon and Golden, 1998), whereas 

overexpression of the gene inhibits heterocyst differentiation (Liu and Golden, 

2002). The patS gene encodes a polypeptide of just 17 amino acids of which the 

N-terminal amino acids are important for the proper processing and self-immunity 

of the producing cell while the C-terminal amino acids are essential for the 

suppression of heterocyst differentiation (Corrales-Guerrero et al., 2013). A 

shortened PatS variant of only the 5 C-terminal residues RGSGR (PatS5) is 

sufficient to inhibit heterocyst differentiation when added to the external medium 

(Yoon and Golden, 1998; Huang et al., 2004; Wu et al., 2004). Another protein 

possessing the RGSGR motif named HetN is additionally needed to establish the 

heterocyst spacing pattern. Deletion of HetN (Black and Wolk, 1994; Callahan 

and Buikema, 2001) or deletion of the internal RGSGR sequence of HetN 

(Corrales-Guerrero et al., 2014) led to MCH in Anabaena sp. PCC 7120. Both 
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proteins are likely to inhibit heterocyst differentiation in neighbouring cells by 

interacting with HetR, the positively-acting master regulator of heterocyst 

differentiation (Huang et al., 2004; Risser and Callahan, 2009; Feldmann et al., 

2011; Higa et al., 2012), and possibly also a regulator of other cellular processes 

in non-heterocystous cyanobacteria (El-Shehawy et al., 2003; Zhang et al., 2009). 

A recent study by Risser and Callahan (2009) confirmed the presence of HetR 

concentration gradients along filaments in Anabaena sp. PCC 7120 that respond 

to the expression of PatS and HetN. Deletion of both patS and hetN prevents the 

formation of HetR concentration gradients. Immunofluorescence localisation 

studies by Corrales-Guerrero et al. (2013) furthermore showed that RGSGR-

containing peptides such as PatS and HetN accumulate in cells adjacent to the 

differentiating proheterocysts, suggesting that those peptides are transferred 

between cells. However direct transfer of the potential inhibitors has not been 

visualised yet. Whether PatS diffuses from differentiating proheterocysts to 

adjacent vegetative cells via the contiguous periplasmic space as suggested by 

Yoon and Golden (1998) or through channels linking the cytoplasms of adjacent 

cells remains to be investigated. 

In order to establish the regular heterocyst spacing pattern along the filament 

some cells need to have initially the ability to differentiate. In N. punctiforme 

ATCC 29133 the protein PatN seems to determine which subset of cells is biased 

to differentiate (Risser et al., 2012; and commentary by Flores (2012)). 

Inactivation of patN results not only in an increase in heterocyst frequency but 

also in shorter but still regularly spaced intervals of vegetative cells between two 

heterocysts (Risser et al., 2012). Interestingly, the protein is distributed unevenly 

between cells. After cell division usually only one of the two daughter cells 
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possesses PatN while the other cell does not. The cell lacking PatN is transiently 

poised to undergo cell differentiation after nitrogen depletion, thus establishing a 

rudimentary pattern of subsets of potential heterocysts along the filament (Risser 

et al., 2012). This initial pattern is later resolved into a single spaced heterocyst 

pattern by the diffusion of inhibitors such as PatS and HetN and their interaction 

with the transcription activator HetR (Risser et al., 2012) (Figure 3). 

 

Figure 3. Two stage model for the establishment of the heterocyst spacing 

pattern in filamentous cyanobacteria. 

During cell division PatN is localised at the half of the cell that contains the most 

recently formed septum (black cell lines). After cell division only one of the two 

daughter cells possesses PatN in the cytoplasmic membrane, resulting in subsets 

of cells that are devoid of PatN and are poised to differentiate after nitrogen 

depletion. Diffusion of inhibitors containing the pentapeptide RGSGR along the 

filament results in the formation of single heterocysts (yellow) separated by a 

regular number of vegetative cells in between (green) (adapted from Risser et al. 

(2012)). 

The development of subsets of cells that potentially differentiate into heterocysts 

after nitrogen step-down is similar to the subset of diazocytes found in 

Trichodesmium spp. (Bergman et al., 2013). Similar to the initial subsets of cells 

in heterocyst-forming cyanobacteria, diazocytes are not terminally differentiated 
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cells, they retain their ability to divide and regress into vegetative cells (Wilcox et 

al., 1973; Fredriksson and Bergman, 1997). Based on this observation it has been 

proposed that heterocysts and diazocytes may have developed from a common 

non-heterocystous filamentous cyanobacterial ancestor (Bergman et al., 2013). 

Keeping the initial stage of nitrogen fixing cells in Trichodesmium spp. 

(diazocytes) might be beneficial for the survival of the organism in the open ocean 

as it offers more flexibility to adapt to a rapidly changing environment (Bergman 

et al., 2013). The similarity of regulatory mechanisms that determine diazocyte 

formation in Trichodesmium spp. to the earlier described mechanism in 

Anabaena/Nostoc spp. has not yet been resolved. A BlastP search revealed that 

there are no PatN similar proteins present in Trichodesmium spp. 

Once the heterocyst pattern is established it allows filaments to survive nitrogen 

stress condition. While vegetative cells retain their metabolic and morphological 

characteristics, such as photosynthetic activity and carbon fixation, heterocysts 

undergo extensive changes in order to allow nitrogen fixation. Mature heterocysts 

provide a microoxic cytoplasm by synthesising a distinctive multilayered 

envelope. Additional to the outer membrane heterocysts have an inner laminated 

layer composed of heterocyst-specific glycolipids (also named heterocyst-specific 

glycolipid (HGL) layer)) that are highly specific for certain families or even 

genera of cyanobacteria, and an outer homogenous layer formed of 

polysaccharides (heterocyst envelope polysaccharide (HEP) layer) (Wildon and 

Mercer, 1963a; Lang and Fay, 1971; Bauersachs et al., 2009). Both layers 

function as a gas diffusion barrier by limiting the entrance of O2 into heterocysts 

(Walsby, 1985). The HEP-layer is additionally thought to protect the underlying 

HGL-layer and to support its formation as a scaffold (Nicolaisen et al., 2009a). To 
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diminish oxygen concentration in heterocysts further, heterocysts reduce O2 

production and increase O2 consumption by dismantling photosystem II and 

activating respiration (Fay and Walsby, 1966; Thomas, 1970; Donze et al., 1972). 

These mechanisms enable heterocysts to retain a minimal O2 concentration inside 

the heterocysts (ca. 600 nM O2 for Anabaena sp. PCC 7120 (Tomitani et al., 

2006)) even in the presence of O2 concentrations as high as 300 µM O2 (Jensen 

and Cox, 1983). On the other hand heterocysts require atmospheric N2. Anthony 

E. Walsby (2007) proposed that N2 mainly enters heterocysts by diffusing from 

neighbouring vegetative cells into heterocysts rather than passing the heterocysts' 

envelope. Inside heterocysts N2 is reduced by the nitrogenase to ammonia which is 

immediately incorporated into glutamine (Wolk et al., 1976). As heterocysts 

contain high levels of glutamine synthetase (GS) which catalyses the ATP-

dependent amidation of glutamate to produce glutamine, but lack the enzyme 

glutamine­2­oxoglutarate amidotransferase (GOGAT; also known as glutamate 

synthase) which catalyses the reductive transfer of the amide group from 

glutamine to 2-oxoglutarate to produce two glutamate molecules, it has been 

suggested that glutamate is transferred into heterocysts while glutamine is 

transferred into vegetative cells (Wolk, 1968; Wolk et al., 1976; Thomas et al., 

1977; Jüttner, 1983; Martín-Figueroa et al., 2000). Additionally, other amino 

acids might play a role in intercellular transfer. It has been shown by 
14

C labelling 

experiments that alanine is likely to be transferred from vegetative cells into 

heterocysts (Jüttner, 1983) which was verified by gene inactivation and 

localisation studies of the alanine dehydrogenase Alr2355 in Anabaena sp. 

PCC 7120 (Pernil et al., 2010). Inactivation of the enzyme led to a substantially 

reduced nitrogenase activity and a bisected rate of diazotrophic growth. Moreover, 
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it has been suggested that the sulphur-containing amino acids cysteine and 

methionine are transported into heterocysts as their synthesis stops during 

heterocyst development (Omairi-Nasser et al., 2014). Early microscopy studies 

furthermore revealed the presence of distinct granules in the neck region of 

heterocysts to adjacent vegetative cells which have been termed ‘cianoficina’ 

(Borzi, 1887) and later cyanophycin granules. Cyanophycin is a unique polymer 

in the sense that it consists only of the two amino acids arginine and aspartic acid 

in a nearly 1:1 ratio (Simon, 1971). Its synthesis is catalysed by the enzyme 

cyanophycin synthetase (CphA) that adds the single amino acids in two separate 

ATP dependent steps (Ziegler et al., 1998; Berg et al., 2000). The final product 

consists of a polyaspartic acid backbone with arginine side residues (Simon and 

Weathers, 1976). Although cyanophycin is not directly required for diazotrophic 

growth (Ziegler et al., 2001), it seems to play an important role as a dynamic 

nitrogen reservoir to balance the nitrogen state of the cells, acting as a kind of 

‘nitrogen buffer’ (Carr, 1988). It is likely that cyanophycin and its subunits are 

also involved in intercellular transfer of nitrogen molecules between cells. Beside 

the single amino acids, arginine and aspartic acid, the dipeptide β-aspartyl-

arginine seems to be the main nitrogen vehicle from heterocysts into vegetative 

cells (Richter et al., 1999; Ke and Haselkorn, 2013; Burnat et al., 2014). 

As heterocysts lack ribulose 1,5­bisphosphate carboxylase–oxygenase and do not 

fix CO2, they depend on the supply of carbon skeletons from adjacent vegetative 

cells for the generation of energy for nitrogen fixation. Carbon skeletons are most 

likely provided by vegetative cells in form of sugars. Most studies so far, have 

focussed on the role of sucrose as carbon carrier (Schilling and Ehrnsperger, 

1985; Wolk et al., 1994; Curatti et al., 2002; Cumino et al., 2007; Marcozzi et al., 
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2009; López-Igual et al., 2010; Vargas et al., 2011), but also the transfer of 

glucose or fructose has been suggested (Haury and Spiller, 1981; Jüttner, 1983). 

Sucrose is known as a key molecule in plants, where it is probably the major 

vehicle for long distance transport of photosynthates, being involved in growth, 

development, storage, signal transduction and acclimation to environmental stress 

conditions (Salerno and Curatti, 2003). In cyanobacteria the importance of sucrose 

for diazotrophic growth has been shown by studies on the localisation and 

function of the sucrose hydrolysing invertase InvB in Anabaena sp. PCC 7120 

(Schilling and Ehrnsperger, 1985; Curatti et al., 2002; López-Igual et al., 2010; 

Vargas et al., 2011). Inactivation mutants of invB were unable to grow under 

diazotrophic conditions and accumulated ten times more sucrose than the wild 

type after nitrogen step-down while glycogen was less abundant in the mutant 

under this condition (López-Igual et al., 2010; Vargas et al., 2011). 

In summary, nitrogen fixation via heterocysts requires exchange of various types 

of molecules and gases between cells. In order to establish the regular heterocyst 

spacing pattern, inhibitors containing the RGSGR pentapeptide need to diffuse 

from proheterocysts into neighbouring vegetative cells. Furthermore, N2 needs to 

be transferred into heterocysts where it is fixed by the nitrogenase, and is returned 

to vegetative cells in form of amino acids. As heterocysts are unable to fix CO2, 

carbon skeletons are provided by adjacent vegetative cells as sugars including 

sucrose. A summary of all potential metabolites and regulators that are likely to be 

exchanged between heterocysts and vegetative cells is given in Figure 4. 
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Figure 4. Metabolites and regulators possibly being exchanged between 

vegetative cells and heterocysts in Anabaena sp. PCC 7120. 

1.3 Routes of molecular exchange between cells 

First evidence for intercellular transfer of molecules between cyanobacterial cells 

was obtained by staining experiments with methylene blue and ruthenium red 

using different species of Oscillatoria (Section III) (see review by Wolk, 1973). 

The experiments show that the dyes move more rapidly across many septa than 

through a single outer wall. 

In 1968 Peter Wolk made a ground breaking experiment in this field. By using 

radioactive labelled carbon he showed that part of the carbon fixed by vegetative 

cells moves through the filament into heterocysts. Shortly afterwards Stewart et 

al. (1969) confirmed his result and suggested additionally that there is rapid 

transfer of fixed nitrogen from heterocysts into neighbouring vegetative cells. 

However, little was known about possible routes of communication at this time. 
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In Anabaena sp. PCC 7120 (Section IV), there are currently two possible routes of 

metabolite exchange under discussion (Haselkorn, 2008; Flores and Herrero, 

2010). One favours the transport of molecules via a continuous periplasm 

(Mariscal et al., 2007), the other the diffusion of molecules from cytoplasm to 

cytoplasm via cell-cell connections termed septal junctions (Mullineaux et al., 

2008; Mariscal, 2014). Both pathways of intercellular communication have been 

studied using Fluorescence Recovery after Photobleaching (FRAP). The outline of 

a typical FRAP experiment for filamentous cyanobacteria is shown in Figure 5. 

 

Figure 5. Outline of a FRAP experiment for a multicellular organism. 
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Figure 5 

(A) The cytoplasms of all cells within a filament are labelled with a mobile 

fluorescent dye (green). The region of interest (ROI) is highlighted by a dashed 

rectangle. The bleached cell is marked black. (B) FRAP experiments consist of 

three phases. During the pre-bleach phase (1) mobile dye molecules (green) move 

randomly within the cytoplasm and establish a concentration equilibrium along 

the filament. By increasing the laser intensity in the cell highlighted in black (A) 

the fluorescence of the dye molecules is irreversibly bleached (2; black). As a 

result of the continuous movement of fluorescent molecules into the cell, and 

bleached molecules into the neighbouring cells the fluorescence intensity of the 

bleached cell recovers (3). Note that the displayed cell has not reached full 

recovery yet. The change of fluorescence intensity during the FRAP experiment is 

shown in the graph below. The bleach results in a sudden drop in intensity, 

followed by recovery. If the dye molecules are freely mobile and the filament is 

formed of many cells, with the result that the number of fluorescent molecules is 

considerable larger in comparison to the dye molecules present in the bleached 

cell, the overall loss of fluorescence is negligible. (C) When immobile 

fluorophores are present (red outline) the fluorescence intensity does not reach the 

initial fluorescence (Ii) after the bleach (I0) and remains at a plateau value (IE). 

The resulting immobile fraction (IF) can be calculated by [(II-IE)/(II-I0)]. 

Accordingly, the mobile fraction (MF) is defined by 1-IF. (Figure modified after 

Staras et al. (2013)) 

A prerequisite for FRAP studies is the introduction of a suitable fluorescent tracer 

into the appropriate cell compartment. Periplasmic communication was studied by 

expressing Green Fluorescent Protein (GFP; 27 kDa) (Mariscal et al., 2007; 

Zhang et al., 2008a) or the smaller fluorescent protein iLOV (13 kDa) (Zhang et 

al., 2013) fused to a signal sequence which is recognised by the twin-arginine 

translocation (TAT) system that exports the protein to the periplasm. To locate the 

expression of GFP to heterocysts of Anabaena sp. PCC 7120, Mariscal et al. 

(2007) used the promoter of the patS gene which is active specifically in 
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developing heterocysts (Yoon and Golden, 1998; 2001). After nitrogen depletion 

the GFP signal was present in the periphery of both cell types, heterocysts and 

neighbouring vegetative cells. In contrast, if the GFP was anchored to the 

cytoplasmic membrane of the producing heterocysts, the fluorophore would have 

been confined to the periplasm of these cells and would not have moved into 

neighbouring vegetative cells. These experiments suggest that molecules as big as 

GFP can move along the filament through the continuous periplasm. On the other 

hand, the results from Zhang’s laboratory (2008, 2013) indicate that neither GFP 

nor the smaller molecule iLOV move within the periplasm from cell to cell. In 

their first approach Zhang et al. (2008) fused GFP to the signal sequence of the 

trimethylamine N-oxide reductase TorA from Escherichia coli which is one of the 

best-characterised substrates of the TAT system (Chanal et al., 2003). To locate 

the expression of GFP into heterocysts or vegetative cells respectively they used 

three different promoters. While the hepA and patB promoters are exclusively 

active in heterocysts (Holland and Wolk, 1990; Jones et al., 2003) the rbcL 

promoter is only active in vegetative cells (Yoon and Golden, 1998). Their results 

show that GFP is able to diffuse freely within the periplasmic space of a 

producing cell, but does not diffuse from heterocysts into adjacent vegetative cells 

or vice versa, suggesting that diffusion barriers exist in the periplasm for 

molecules as big as GFP. These results are contradictory to the results obtained by 

Mariscal et al. (2007). As it is unknown whether the E. coli signal is processed 

properly in Anabaena sp. PCC 7120 it has been suggested that the immobility of 

GFP might be a result of its interaction with the plasma membrane or the 

peptidoglycan layer (Nicolaisen et al., 2009a). In their subsequent study Zhang et 

al. (2013) proved by immunoblotting that the TAT signal from E. coli is correctly 
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recognised and processed in Anabaena sp. PCC 7120. Furthermore, they fused the 

fluorescent protein iLOV to the signal sequence of All3333, a putative homologue 

of the nitrate transporter NrtA in Anabaena sp. PCC 7120 and expressed the 

protein cell-specifically by using the nifHDK promoter for the expression of iLOV 

in heterocysts and the rbcL promoter for the expression in vegetative cells. 

Fluorescence microscopy indicated that iLOV is neither transferred from the 

periplasm of heterocysts to vegetative cells nor in the periplasmic space form 

vegetative cells into heterocysts, confirming the presence of diffusion barriers for 

molecules bigger than 13 kDa. The reasons for the different results obtained by 

Mariscal et al. (2007) and Zhang et al. (2008; 2013) remain unknown. Further 

experiments are necessary to clarify whether the periplasm is continuous and can 

be considered as a possible route of molecular exchange. 

Alternatively, intercellular communication between cells could be achieved via 

cytoplasmic bridges linking the cytoplasms of neighbouring cells. Although 

neither GFP nor iLOV diffuse between the cytoplasms of heterocysts and 

vegetative cells (Yoon and Golden, 1998; Mariscal et al., 2007; Zhang et al., 

2008; Cheng-Cai Zhang, personal communication), it could be shown that the 

smaller fluorescent tracer molecules calcein and 5-carboxyfluoresceindiacetate (5-

CFDA) are transferred cytoplasmically between cells (Mullineaux et al., 2008; 

Mariscal et al., 2011). Both molecules are available as an acetoxymethylester 

(AM) derivative that is non-fluorescent and hydrophobic enough to enter the cell. 

Hydrolysis of the ester groups by cytoplasmic esterases converts the precursor 

molecule to a fluorescent form which is trapped in the cytoplasm because it is too 

hydrophilic to traverse lipid bilayers (Mullineaux et al., 2008; Mariscal et al., 

2011). Uptake of calcein into the cytoplasm was shown for different 
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cyanobacterial strains of Section III (Oscillatoria terebriformis) and IV 

(Anabaena cylindrica PCC 7122, Anabaena variabilis ATCC 29413 and 

Anabaena sp. PCC 7120) (Mullineaux et al., 2008). FRAP experiments reveal 

transfer of calcein and 5-CFDA between the cytoplasms of adjacent cells in these 

organisms by passive diffusion (Mullineaux et al., 2008; Mariscal et al., 2011; 

Merino-Puerto et al., 2011b). There is no indication of active transport. After 

bleaching out the fluorescence of single cell within a filament, fluorescence of the 

entire filament changes following the concentration gradient. The fluorescence of 

the bleached cell recovers while the fluorescence of neighbouring cells decreases 

(Mullineaux et al., 2008). The diffusion of calcein along the filament differs from 

‘classical diffusion’ in that it is not spatially homogeneous. The rate-limiting step 

for the diffusion of calcein from cell to cell is the cell-cell interface. In order to 

quantify the kinetics of dye exchange between cells Mullineaux et al. (2008) 

introduced the ‘exchange coefficient’ (E), a parameter which relates the rate of 

molecular flux between adjacent cells to the difference in dye concentration 

between the cells. For the pairwise exchange of molecules between two adjacent 

cells, the net rate of exchange is given by E (C1 - C2) where C1 and C2 are the dye 

concentrations in cell 1 and 2. However, cyanobacterial filaments usually consist 

of dozens of connected cells, making the calculation difficult. Under the 

assumption that E is identical for every cell junction, the actual E value can be 

determined by fitting a predicted recovery curve for the cell of interest onto the 

experimentally determined recovery curve. For the prediction of redistribution of 

calcein within the filament Mullineaux et al. (2008) used an iterative model in 

which the neighbouring cells determine the incremental change in dye 

concentration in any cell within the filament (δCn) within a time increment δt, 
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resulting in                                             

    . Using this approach it was shown that calcein and 5-CFDA are transferred 

between vegetative cells of Anabaena sp. PCC 7120, Anabaena cylindrica PCC 

7122 and Anabaena variabilis ATCC 29413 (Mullineaux et al., 2008; Mariscal et 

al., 2011). Interestingly, no significant molecular exchange of calcein was 

observed in the filamentous non-heterocystous cyanobacterium Oscillatoria 

terebriformis (Section III), suggesting that the connections are specific for 

metabolite exchange in differentiating cyanobacteria (Mullineaux et al., 2008). 

However, it is likely that other molecules are transferred between cells of 

Oscillatoria species as they possess pores in the cross-walls between cells 

(Metzner, 1955; Drawert and Metzner, 1956) and are highly motile, being even 

able to change the direction of movement (Halfen and Castenholz, 1971). Further 

investigations are required to identify a possible route of communication in the 

genus Oscillatoria. 

The importance of the connections for the exchange of metabolites is further 

strengthened by a significant increase of the exchange coefficient between 

vegetative cells under nitrogen deprivation in comparison to growth in the 

presence of combined nitrogen. In A. cylindrica PCC 7122 and A. variabilis 

ATCC 29413 the E value for calcein for vegetative cells is approximately 3 to 10 

times faster 72 h after nitrogen depletion (Mullineaux et al., 2008). 

As heterocysts and vegetative cells are mutually dependent on metabolite transfer 

with vegetative cells providing fixed carbon and heterocysts providing fixed 

nitrogen, FRAP experiments should also reveal insights into the kinetics of 

exchange between vegetative cells and heterocysts. Mullineaux et al. (2008) 
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showed that fluorescence recovery occurs in heterocysts but at a much slower rate 

than in vegetative cells. During recovery of the heterocyst’s fluorescence the 

concentration of dye remains nearly constant in the adjacent vegetative cells. 

Hence, recovery in heterocysts follows a simple exponential model. For an 

intercalary heterocyst the fluorescence in the heterocysts is defined by        

             where C0 is the initial fluorescence intensity immediately after the 

bleach and tending towards (C0 + CR) during time t. A similar equation applies for 

a terminal heterocyst:                   . FRAP results indicate that 

exchange between heterocysts and vegetative cells is approximately 13 times 

slower than between vegetative cells (Mullineaux et al., 2008). The reduction of 

molecular exchange may be necessary to maintain the functionality of the 

nitrogenase by keeping the influx of oxygen low enough to be reduced by the 

terminal oxidases in the heterocysts. Mullineaux et al. (2008) also showed that the 

presence of cyanophycin plugs in the neck region of heterocysts reduces the 

exchange of calcein with neighbouring vegetative cells. A ΔcphA1 mutant of A. 

variabilis ATCC 29413 which is unable to form cyanophycin (Ziegler et al., 

2001) shows an approximately three times higher E value for heterocysts than 

wild-type heterocysts. 

In summary, both cell types, heterocysts and vegetative cells, show cytoplasmic 

transfer of calcein and 5-CFDA. Whether the periplasm is an additional route of 

metabolite and regulator transfer in Anabaena sp. PCC 7120 remains to be 

clarified. 
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1.4 Distribution and structural characteristics of septal junctions 

and nanopores in cyanobacteria 

Cytoplasmic exchange requires the presence of septal junctions or pores 

penetrating the cross-walls. The occurrence of such structures has been studied 

extensively in cyanobacteria by electron microscopy. Various methods including 

conventional thin-section TEM, freeze-fracture EM and electron tomography 

revealed insights into the distribution and dimension of these structures among 

cyanobacteria. Electron micrographs of thin sections through the septal regions 

between adjacent cells show clearly structures pervading the septa (Figure 6). 

These structures have been named initially ‘microplasmodesmata’ although they 

lack cytoplasmic membrane connections and hence do not resemble the structure 

of plasmodesmata of plants (Bell and Oparka, 2011). 

Thin-section TEM on cyanobacteria of Sections III, IV and V reveal that all 

filamentous species possess junctions at the septa between neighbouring cells of 

similar dimensions although their metabolisms and morphologies vary (Table 1). 

Septal junctions are present in both vegetative-vegetative and vegetative-

heterocyst septa (Wildon and Mercer, 1963a; Lang and Fay, 1971; Omairi-Nasser 

et al., 2014). According to electron micrographs the diameter of septal junctions 

in cyanobacteria is approximately 5 to 15 nm, making them wider than gap 

junctions in animals (2 to 3 nm) but narrower than plasmodesmata in plants (20 to 

50 nm) and simple pores (50 to 500 nm) and Dolipores in fungi (100 to 200 nm) 

(see review by Bloemendal and Kück, 2013). 
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Table 1. Distribution and diameter of septal junctions among cyanobacteria 

studied by thin-section TEM. 

 strain diameter [nm] reference 
S

ec
ti

o
n

 I
II

 

 
Microcoleus vaginatus  

IUCC 621 

10-15 (core) 

5-10 (wall) 
Lamont, 1969 

Oscillatoria limosa 15 Hagedorn, 1961 

Symploca muscorum     

IUCC B617 

5 (core) 

2 (wall) 
Pankratz and Bowen, 1963 

S
ec

ti
o
n

 I
V

 

Anabaena catenula  Wilcox et al., 1973 

Anabaena cylindrica  Wilcox et al., 1973 

 
<5 

 

Lang and Fay, 1971 

Haselkorn, 1978 

Anabaena cylindrica Lemm  
Giddings and Staehelin, 

1978 

Anabaena mutant 5 Haselkorn, 2008 

Anabaena sp. L14  Wildon and Mercer, 1963 

Anabaena sp. PCC 7120 

 

 

 

14 ± 1 (Ru)
* 

5.5 ± 0.7 (K)
* 

12 ± 1 (veg)
# 

14 ± 1 (het)
# 

Wilk et al., 2011 

 

Omairi-Nasser et al., 2014 

ΔsepJ  Wilk et al., 2011 

Anabaena variabilis 

 

10-13 

 

Golecki and Drews, 1974 

Palinska and Krumbein, 

2000 

Anabaenopsis sp. 51  Peat and Whitton, 1968 

Cyanospira rippkae 

Florenzano 
 

Palinska and Krumbein, 

2000 
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* 
Ru – ruthenium red; K – KMnO4 

# 
 het – heterocyst; veg – vegetative cell 

The presence of septal junctions was confirmed by freeze-fracture electron 

microscopy (FFEM) (Table 2). FFEM is a powerful method for revealing the 

distribution and organisation of membrane proteins at macromolecular resolution 

(Severs, 2007). During the freeze-fracture process a frozen membrane is split into 

strain diameter [nm] reference 

Nostoc commune  25 
Palinska and Krumbein, 

2000 

Nostoc muscocorum N52  Wildon and Mercer, 1963b 

Nostoc shaericum Vaucher  Bisalputra et al., 1975 

Nostoc sp. F. Blasia  Gorelova and Baulina, 2009 

Nostoc sp. IUCC 756  Bisalputra et al., 1975 

Nostoc punctiforme      

ATCC 29113 
 Lehner et al., 2011 

S
ec

ti
o
n

 V
 

Fischerella ambigua  Thurston and Ingram, 1971 

Fischerella muscicola 

LB1427/1 
 Butler and Allsopp, 1972 

Geitleria calcarea   Couté, 1982 

Loriellopsis cavernicola  Lamprinou et al., 2011 

Loriella populations  
Hernández-Mariné et al., 

1999 

Mastigocladus laminosus 

SAG 4.84 
 Nürnberg et al., 2014 

Mastigocladopsis repens 

BCF 172-6 
 Merino et al., 1994 

Stigonema hormoides  Butler and Allsopp, 1972 

Stigonema mamillosum  Butler and Allsopp, 1972 
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two half-membrane leaflets, a leaflet close to the (inner) cytoplasm (protoplasmic 

fracture face (PF)) and a leaflet close to the (outer) exoplasmic space (exoplasmic 

fracture face (EF)) (Branton et al., 1975). Septal junctions appear as protrusions 

on the PF face and pits on the EF face (Giddings and Staehelin, 1978; Giddings 

and Staehelin, 1981) (Figure 6.). According to Giddings and Staehelin (1978, 

1981) the number of septal junctions between cells of different species is quite 

variable. In general, filamentous heterocyst-forming species (Section IV) show a 

higher number of connecting structures than filamentous species (Section III) 

(Table 2). It has been suggested that a higher number of septal junctions in 

Section IV cyanobacteria is required for the exchange of metabolites, especially 

under nitrogen deprivation, while the lower number in cyanobacteria of Section 

III might be sufficient to coordinate phototactic responses and motility (Giddings 

and Staehelin, 1981). Although the number of septal junctions between vegetative 

cells remains nearly constant in the presence and absence of a combined nitrogen 

source (ca. 175 to 300), the number of these structures is greatly reduced in septa 

between heterocysts and vegetative cells under nitrogen deprivation (ca. 50) 

(Table 2). As the formation of septal junctions occurs during cell division (Peat 

and Whitton, 1968; Giddings and Staehelin, 1978), the differentiation process 

requires a yet unknown mechanism of septal remodelling. 
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Table 2. Distribution of septal junctions among cyanobacteria studied by 

FFEM. 

 strain number reference 
S

ec
ti

o
n

 I
II

 Phormidium luridum var. 

olivaceae 
30-40 Giddings and Staehelin, 1981 

Plectonema boryanum IUCC 

5944 
30-40 Giddings and Staehelin, 1981 

S
ec

ti
o

n
 I

V
 

A. cylindrica 

 

200-300 (v)* 

50 (h)* 

Giddings and Staehelin, 1978 

Giddings and Staehelin, 1978 

 175-250 Giddings and Staehelin, 1981 

A. variabilis ATCC 29413 100-140* Giddings and Staehelin, 1981 

A. variabilis UTEX B377 200-300* Giddings and Staehelin, 1981 

Nostoc muscorum UTEX 1038 200-300* Giddings and Staehelin, 1981 

* Cells grown in the absence of combined nitrogen; h – heterocyst; v - vegetative cell 

Although Giddings and Staehelin (1978) suggested a proteinaceous character of 

the septal junctions based on the assumption that the outer diameters of these 

structures are too small (< 20 nm) to be made of a stable lipid bilayer (> 20 nm), a 

final proof was missing. Wilk et al. (2011) addressed the question of composition 

by another approach. They used two different methods of sample preparation for 

electron tomography and compared the obtained staining patterns with those of 

gap junctions whose proteinaceous character is proven. As the structures appear 

positively stained in a KMnO4-based preparation method and negatively stained in 

an OsO4/Ruthenium red-based preparation, they concluded that the septal 

junctions of cyanobacteria consist of proteins and suggested naming them 

‘septosomes’ in analogy to desmosomes. However, this nomenclature is 

ambiguous as the term septosome is used frequently to describe the prokaryotic 
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protein complex machinery during cytokinesis (e.g. Di Lallo et al., 2003). In the 

following work the term ‘septal junction’ will be used to describe the cell-cell 

joining structures which has been recently suggested by (Mariscal, 2014). 

However, a revision of the naming is necessary. 

 

Figure 6. Presence of septal junctions and nanopores in cyanobacteria 

revealed by electron microscopy. 

(A) Septal junctions visualised by thin-section TEM in Anabaena sp. PCC 7120. 

Structures linking two neighbouring cells are visible as black lines at the septum 

(white arrowheads). Note that only the cytoplasmic membrane (CM) of each cell 

enters the septum and not the outer membrane (OM). Cells were fixed with 

glutaraldehyde and KMnO4. Scale bar, 200 nm. (B) Septal junctions of 

A. variabilis IUCC B377 visualised by FFEM. More than 300 complexes (white 

arrowheads) are visible as pits on the exoplasmic fracture face (EF) of the plasma 

membrane. Cell wall (CW). Protoplasmic fracture face (PF). Scale bar, 250 nm. 

Image modified after Giddings and Staehelin (1981). (C) Nanopores in isolated 

peptidoglycan sacculi of Tolypothrix tenuis. (Micrograph from Metzner (1955)). 

In order to connect the cytoplasms of neighbouring cells via septal junctions, 

nanopores need to be formed in the cross-walls. The presence of such pores has 

been demonstrated by TEM on isolated peptidoglycan sacculi of cyanobacteria of 

all filamentous sections (Section III, IV and V) (Table 3; Figure 6). The diameters 
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of these pores vary between 10 and 20 nm (Table 3) and are accordingly in the 

range of the diameters observed for septal junctions by thin-section TEM (Table 

1) and FFEM (< 20 nm; Giddings and Staehelin, 1978). Interestingly, the number 

of nanopores determined for cross-walls of Nostoc punctiforme ATCC 29133 (155 

± 13; Table 3) is similar to the number of septal junctions observed for other 

organisms of Section IV by FFEM (Table 3) and electron tomography (Omairi-

Nasser et al., 2014), suggesting that the nanopores constitute a framework for the 

proteins of the septal junctions to penetrate the cell wall (Lehner et al., 2013). 

However, it has to be noted that the frequency of nanopores might also be strain-

specific, e.g. Nostoc punctiforme ATCC 29133 shows approximately 155 

nanopores while in the closely related strain Anabaena sp. PCC 7120 only about 

77 nanopores are present (Table 3), a finding which confirms earlier observations 

by FFEM (Giddings and Staehelin, 1978; 1981). 

Table 3. Distribution and characteristics of nanopores in the septa of 

cyanobacteria. 

 
strain 

diameter 

[nm] 
number reference 

S
ec

ti
o

n
 I

II
 

Lyngbya aerugineo-

coerulea 
13-16  Metzner, 1955 

Microcoleus paludosus 15  Drawert and Metzner, 1956 

Oscillatoria limosa 
13 

 
 

Drawert and Metzner, 1956 

Hagedorn, 1961* 

Oscillatoria okeni  13-16  Metzner, 1955 

Oscillatoria sancta 13-16  Metzner, 1955 

 Phormidium unicatum   Frank et al., 1962 
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 strain 
diameter 

[nm] 
number reference 

S
ec

ti
o

n
 I

V
 

Anabaena sp. PCC 7120 15 ± 0.1 77 ± 12 Iris Maldener, unpublished 

Anabaena variabilis   
Drews and Weckesser, 1982 

Golecki, 1988 

Cylindrospermum 

licheniforme 
20  Drawert and Metzner, 1956 

Cylindrospermum stagnale 20  Drawert and Metzner, 1956 

Gloeotrichia natans 20  Metzner, 1955 

N. punctiforme 

ATCC 29133 
20 ± 1.8 155 ± 13 Lehner et al., 2013 

Scytonema julianum 10-15  Metzner, 1955 

Tolypothrix tenuis 17  Metzner, 1955 

V
 Mastigocladus laminosus 

Cohn 
11-18  Marcenko, 1962 

* revealed by thin-section TEM 

1.5 Proteins forming septal junctions and nanopores 

Giddings and Staehelin (1978) already hypothesised that septal junctions in 

cyanobacteria might be composed of protein subunits. Several proteins have been 

identified in recent years and suggested to be involved in the formation of the 

septal junctions. Key players might be the proteins SepJ (or FraG) (Flores et al., 

2007; Nayar et al., 2007; Mariscal et al., 2011), FraC and FraD (Bauer et al., 

1995; Merino-Puerto et al., 2010; 2011b). Analyses of deletion mutants show the 

importance of these proteins for filament integrity, diazotrophic growth, and 

intercellular communication in Anabaena sp. PCC 7120 (Bauer et al., 1995; 

Flores et al., 2007; Nayar et al., 2007; Mullineaux et al., 2008; Merino-Puerto et 
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al., 2010; Mariscal et al., 2011; Merino-Puerto et al., 2011b). All mutants show 

also a reduced number of nanopores penetrating the peptidoglyan layer of cross-

walls, thus providing further evidence for the involvement of the septal proteins 

SepJ, FraC and FraD in the formation of septal junctions (Iris Maldener, 

unpublished). 

In Anabaena sp. PCC 7120 SepJ is encoded by the open reading frame (orf) 

alr2338 which is located upstream of the hetR gene, a master regulator of 

heterocyst differentiation (Flores et al., 2007; Nayar et al., 2007). The 751-amino 

acid long protein is likely to be composed of three domains, including an 

appoximately 200-amino acid long N-terminal coilded-coil domain (CC), a highly 

repetitive internal linker region (L) of 211 amino acids and an approximately 340-

amino acid long C-terminal permease domain (P) that is predicted to show high 

similarity with cytoplasmic membrane proteins of the drug/metabolite exporter 

(DME) family of bacteria and archaea (Figure 7) (Flores et al., 2007). 

 

Figure 7. Predicted composition and topology of SepJ from Anabaena sp. 

PCC 7120. 
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Figure 7 

The protein shows potentially three domains: a permease domain (P) with 11 

predicted transmembrane helices (TMHs) spanning the cytoplasmic membrane, 

and an external part composed of the highly repetitive linker region (L) that is rich 

in proline and serine and a predicted coiled-coil domain (CC). Positions of the N- 

and C-terminus are indicated. 

Proteins which possess either two or three domains [(CC+P) or (CC+L+P)] are 

considered to be SepJ-like proteins, whereas proteins showing only similarity to 

the permease domain are considered as DME-family permeases. A recent BlastP 

search with the amino acid sequence of SepJ from M. laminosus SAG 4.84 as 

query against all cyanobacterial sequences available from the Integrated Microbial 

Genomes (IMG) database (Markowitz et al., 2012), and against the recently 

published sequences by Dagan et al. (2013) revealed the wide distribution of 

SepJ-like proteins among cyanobacteria (Appendix, Table 26; Nürnberg et al., 

2014). A SepJ variant is present in 62 from 139 cyanobacterial species (45 %) 

while only 28 cyanobacterial species (20 %) possess a DME family permease, of 

which 16 (12 %) can be found additionally in cyanobacteria possessing a SepJ-

like protein (Nürnberg et al., 2014). While all cyanobacteria of Sections IV and V 

(20 and 12 species respectively), and most species of Section III (32 from 34 

species (94 %)) possess a SepJ-like protein, a SepJ variant is absent from 

unicellular species of Sections I and II, indicating the importance of SepJ for 

filamentous cyanobacteria (Nürnberg et al., 2014). A closer look at the 

composition of the SepJ-like proteins in the different cyanobacterial sections 

revealed that filamentous species of Section III mostly possess a two domain 

protein (CC+P) (23/32 species; 72 %), and nearly all filamentous, heterocyst-

forming (and branching) cyanobacteria of Sections IV and V exhibit a three-
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domain (CC+L+P) SepJ variant (20/20 species (100 %); and 11/12 species (92 %) 

respectively). Hence, SepJ-like proteins containing a coiled-coil domain and a 

highly repetitive linker region of various lengths can be attributed to filamentous 

heterocystous cyanobacteria (Nürnberg et al., 2014). Based on the dstribution of 

SepJ proteins among cyanobacteria it has been suggested that the evolution of the 

three domain SepJ protein (CC+L+P) might have started from the DME-family 

protein and evolved by adding first the coiled-coil domain and finally the linker 

region (Mariscal et al., 2011). 

So far the physiological function of SepJ has been mainly characterised in 

Anabaena sp. PCC 7120 (Section IV). A sepJ deletion mutant shows filament 

fragmentation which increases in the absence of a combined nitrogen source, 

resulting in very short filaments and single cells (Flores et al., 2007; Nayar et al., 

2007; Mariscal et al., 2011). Additionally, a ΔsepJ mutant of Anabaena sp. 

PCC 7120 is inhibited in the formation of mature heterocysts and the synthesis of 

heterocyst-specific glycolipids, and is unable to fix nitrogen under any condition 

(Fix
-
 phenotype) (Flores et al., 2007; Nayar et al., 2007; Mariscal et al., 2011). 

Higher expression levels of sepJ in Anabaena sp. PCC 7120 wild-type under 

nitrogen deprivation support the importance of the protein for the acclimation to 

diazotrophic growth conditions (Flores et al., 2007; Nayar et al., 2007). On basis 

of the observed phenotype Nayar et al. (2007) named the product of alr2338 fraG 

(fragmentation, glycolipid). However, in this work the suggested term sepJ is 

preferred as it better reflects the subcellular localisation of the protein at the septal 

region (Flores et al., 2007). A SepJ-GFP fusion protein forms distinct fluorescent 

spots at the poles at the septa between neigbouring vegetative cells and between 

vegetative cells and heterocysts in the coresponding mutant strain of Anabaena sp. 
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PCC 7120 (CSAM137; Figure 8; Flores et al., 2007). Its localisation is already 

determined during cell division when the protein forms a ring-like structure 

similar to that observed for FtsZ (Meier and Goley, 2014). It is notable that also 

the positioning of the septal junctions occurs during cell division (Peat and 

Whitton, 1968; Giddings and Staehelin, 1978), suggesting a connection of SepJ 

with the transport of molecules between cells. FRAP analyses revealed that 

transfer of calcein is strongly impaired in a ΔsepJ mutant of Anabaena sp. 

PCC 7120, being appoximately 7 to 30 times slower than in the wild-type 

(Mullineaux et al., 2008; Mariscal et al., 2011). However, as exchange of the 

smaller fluorescent tracer 5-CFDA is only inhibited by approximately 54 % in 

comparison to the wild-type (Mariscal et al., 2011; Merino-Puerto et al., 2011b) 

and septal junctions are still present (Wilk et al., 2011) other proteins are likely to 

be involved in the formation of strucutres for intercellular communication. 

Interestingly, functional dissection analyses of the SepJ protein from Anabaena 

sp. PCC 7120 revealed that the linker region of the protein is dispensable 

(Mariscal et al., 2011). Mutants lacking this part of the protein are able to grow 

diazotrophically again and transfer high levels of 5-CFDA but not calcein, 

suggesting that transfer of molecules smaller than calcein is sufficient for 

diazotrophic growth and that the linker region might influence only the effective 

size of the channel connecting neighbouring cells (Mariscal et al., 2011). 

However, Mariscal et al. (2011) also showed that the permease domain of 

Anabaena sp. PCC 7120 has an important role for diazotrophic growth of the 

organism. The replacement of SepJ by a chimeric SepJ composed of the CC from 

Anabaena sp. PCC 7120 and the P domain from the filamentous, non-

heterocystous cyanobacterium Trichodesmium erythraeum does not allow 



1   Introduction 

59 

 

heterocyst formation and diazotrophic growth while a combination of CC domain 

from T. erythraeum and a P domain from Anabaena sp. PCC 7120 does. 

 

Figure 8. Localisation of SepJ-GFP in Anabaena sp. PCC 7120. 

SepJ-GFP is localised in distinct spots in the intercellular septa. Images show 

chlorophyll fluorescence (magenta; 670-730 nm), GFP fluorescence (green; 500-

527 nm), and an overlay of both images. Cells were visualised with a laser-

scanning confocal microscope (Leica SP5) using a × 63 oil-immersion objective 

(Leica HCX PL APO lambda blue 63.0 × 1.40 OIL UV), and an excitation 

wavelength of 488 nm. Emission wavelengths for the detection are mentioned 

above. The pinhole was set to 95 μm, giving a resolution of 0.8 μm in the z-

direction. Scale bars, 5 µm. 

Several other mutants of Anabaena sp. PCC 7120 were isolated which are unable 

to grow diazotrohically and show extensive filament fragmentation (Buikema and 

Haselkorn, 1991; Ernst et al., 1992). Two genes, namely fraC (alr 2392) and fraD 

(alr2393) were identified as being important for multicellularity and therefore 

likely to be involved in the formation of channels linking neighbouring cells 

(Bauer et al., 1995; Merino-Puerto et al., 2010; Merino-Puerto et al., 2011b). 

Both genes are part of the fraC operon, including another gene named fraE that is 

important for filament integrity, formation of mature heterocysts and nitrogenase 

activity but probably not for intercellular communication (Merino-Puerto et al., 

2010). Just recently, an additional gene upstream of the fraC operon named fraF 



1   Introduction 

60 

 

(alr 2395) was identified in Anabaena sp. PCC 7120; it forms the fraC-fraD-

fraEfraF gene cluster (Merino-Puerto et al., 2013). FraF negatively affects 

filament length and thus, has an effect opposite to that of the fraC operon 

(Merino-Puerto et al., 2013). It seems that the fraC operon is widely conserved in 

filamentous cyanobacteria and is present in all heterocyst-forming species of 

which 60 % possess the entire fraC-fraD-fraEfraF gene cluster (Merino-Puerto 

et al., 2013). However, the constitutive expression of the fraC operon occurs at 

relative low levels (Merino-Puerto et al., 2010) 

fraC of Anabaena sp. PCC 7120 encodes a 179-amino acid long, phenylalanine-

rich (13 %) protein with three predicted transmembrane helices spanning the 

cytoplasmic membrane (Bauer et al., 1995; Merino-Puerto et al., 2010; Merino-

Puerto et al., 2011b). FraD of Anabaena sp. PCC 7120 is slightly shorter 

(167 amino acids) but is also localised in the cytoplasmic membrane (Merino-

Puerto et al., 2010; Merino-Puerto et al., 2011b). The protein is predicted to 

possess 5 TMHs and a periplasmic segment composed of two coiled-coil motifs 

which seem to be important in sustaining filament integrity by protein-protein 

interactions as suggested for the CC domain of SepJ (Flores et al., 2007; Merino-

Puerto et al., 2010; Mariscal et al., 2011; Merino-Puerto et al., 2011b). The 

localisation of both proteins at the septa was determined by GFP-labelling and for 

FraD additionally by immunogold labelling (Merino-Puerto et al., 2010; Merino-

Puerto et al., 2011b). Although FraC and FraD are located at the septa and their 

positioning occurs already during cell division, the proteins are less focussed than 

SepJ which forms distinct spots in the centre between two cells. Under nitrogen 

deprivation, for example, FraC can be even found in the periphery of the cell 

away from the septa (Merino-Puerto et al., 2010). Furthermore, immunogold 
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labelling revealed that the positioning of FraD depends on FraC but not SepJ, 

suggesting a role for FraC in the normal localisation of FraD (Merino-Puerto et 

al., 2011b). In frame deletion of fraC and fraD in Anabaena sp. PCC 7120 results 

not only in extensive filament fragmentation in the absence of combined nitrogen 

but also in a less focussed position of SepJ at the septa and a strongly hampered 

transfer of calcein and 5-CFDA (Bauer et al., 1995; Merino-Puerto et al., 2010; 

Merino-Puerto et al., 2011b). As transfer of 5-CFDA is much less impaired in the 

sepJ deletion mutant, Merino-Puerto et al. (2011) suggested that a second route of 

intercellular molecular exchange that depends on FraC and FraD but not on SepJ 

is present in Anabaena sp. PCC 7120. This meets the prediction of Robert 

Haselkorn (1978) that not all channels are identical and that there exist subsets of 

channels for specialised transport of molecules. Interestingly, both mutants are 

still able to form mature heterocysts under nitrogen deprivation which differ, 

however, from heterocysts found in the wild-type by a greater distance between 

the cytoplasmic membranes of both cell types and by their mainly terminal 

localisation (Bauer et al., 1995; Merino-Puerto et al., 2010; Merino-Puerto et al., 

2011b). 

In summary, FRAP experiments with calcein and 5-CFDA revealed the presence 

of two systems for molecular exchange in Anabaena sp. PCC 7120, one mediated 

by SepJ, the other by FraC and FraD. However, it is notable that septal junctions 

can be observed in all tested mutants by electron microscopy and tomography 

(Bauer et al., 1995; Merino-Puerto et al., 2011b; Wilk et al., 2011). Furthermore, 

all deletion mutants still show molecular exchange between cells (Mullineaux et 

al., 2008; Merino-Puerto et al., 2010; Mariscal et al., 2011; Merino-Puerto et al., 
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2011b), suggesting that in addition to SepJ, FraC and FraD, other proteins are also 

involved in intercellular communication in Anabaena sp. PCC 7120. 

The inactivation of the fraH gene (alr1603) in Anabaena sp. PPC 7120 results in 

filament fragmentation and hence suggests a possible influence of the protein on 

cell-cell communication (Bauer et al., 1995; Merino-Puerto et al., 2010; Merino-

Puerto et al., 2011a). However, FRAP analyses using the fluorescent tracers 

calcein and 5-CFDA indicated no or only partially impaired transfer of both 

molecules (Merino-Puerto et al., 2011a). Another candidate is the gene conR 

(all0187) which encodes a LytR-CpsA-Psr domain protein that is associated with 

cell wall maintenance, the development of normal septa and diazotrophic growth 

(Fan et al., 2006; Mella-Herrera et al., 2011). Mella-Herrera et al. (2011) 

hypothesised that the diazotrophic growth defect might be a result of the inability 

to transport fixed nitrogen from heterocysts into neighbouring vegetative cells. 

Whether transfer is affected remains to be investigated. 

In order to establish the presence of fully functional channels linking the 

cytoplasms of neighbouring cells the septal peptidoglycan layer needs to be 

penetrated by nanopores. Such modification requires the activity of specific 

enzymes. In E. coli three N-acetylmuramyl-L-alanine amidases, AmiA, AmiB and 

AmiC were found to play an important role in septation and the following 

separation of the daughter cells (Heidrich et al., 2001). Deletion of the ami genes 

results in the formation of long cell chains as cell wall cross-links cannot be 

destroyed by cleaving the amide bond between the N-terminal L-alanine residue 

and the N-acetylmuaramic acid backbone (Heidrich et al., 2001). Just recently the 

function of these amidases was investigated in the filamentous, heterocyst-
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forming cyanobacteria Anabaena sp. PCC 7120 (Zhu et al., 2001; Berendt et al., 

2012) and N. punctiforme ATCC 29133 (Lehner et al., 2011; Lehner et al., 2013). 

Both organisms possess two adjacent copies of the amiC gene homologue, amiC1 

and amiC2. Localisation studies with GFP-labelled variants revealed the presence 

of the amidases in young septa of freshly divided vegetative cells, cells of 

hormogonia and in the polar region of developing heterocysts (Lehner et al., 

2011; Berendt et al., 2012; Lehner et al., 2013). In N. punctiforme ATCC 29113 

the gene amiC2 (NpF1846) is pivotal for filament morphology, intercellular 

communication, cell differentiation and the formation of nanopores in the cross-

walls (Lehner et al., 2011; Lehner et al., 2013). An amiC2 deletion mutant of N. 

punctiforme ATCC 29113 forms irregular clusters of twisted cells which lack 

nanopores at the septal peptidoglycan layer and cell-cell connecting structures, 

and are accordingly unable to transfer calcein between cells within the filament 

(Lehner et al., 2011; Lehner et al., 2013). Interestingly, amiC2 (alr0093) seems to 

be less important for maintaining cell and filament morphology in Anabaena sp. 

PCC 7120 (Zhu et al., 2001; Berendt et al., 2012). Results obtained for the 

importance of AmiC2 (or HcwA (heterocyst cell wall formation protein A) (Zhu 

et al., 2001)) are contradictory. While Zhu et al. (2001) showed that the gene is 

essential for growth on N2, the deletion mutant generated by Berendt et al. (2012) 

did not show any altered phenotype in the absence of a combined nitrogen source 

in comparison to the wild-type. Inactivation of amiC1 (alr0092) in Anabaena sp. 

PCC 7120 however, resulted in a mutant which was unable to grow 

diazotrophically and transfer calcein between cells (Berendt et al., 2012). Whether 

the mutant is also affected in the formation of nanopores remains to be 

investigated. It is not known whether AmiC1 has a similar function in 
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N. punctiforme ATCC 29113. Attempts to inactivate the gene have so far failed, 

suggesting that amiC1 (NpF1845) is essential for growth of the organism even in 

the presence of a combined nitrogen source (Lehner et al., 2011). 

In summary, remodelling of the peptidoglycan layer is required for the formation 

of functional heterocysts and normal intercellular septa in the filamentous, 

heterocyst-forming cyanobacteria Anabaena sp. PCC 7120 and N. punctiforme 

ATCC 29133. AmiC proteins possibly drill holes into the cross-walls which could 

provide the framework for cell-joining proteins such as SepJ, FraC and FraD 

(Lehner et al., 2013). Additionally, they might increase the permeability of the 

peptidoglycan layer of developing heterocysts in order to transfer glycolipids and 

polysaccharides across the cell wall for the formation of the heterocyst envelope 

(Zhu et al., 2001). 

1.6 Aims and scope of the thesis 

This work aims to deepen our knowledge of intercellular communication in 

filamentous heterocyst-forming cyanobacteria by using the well-established 

model organism Anabaena sp. PCC 7120 (Section IV; chapter 3, 4 and 5) and the 

potential model organism for cyanobacteria of Section V, Mastigocladus 

laminosus (chapter 6). 

Although previous FRAP studies revealed that molecules diffuse via channels 

connecting the cytoplasms of neighbouring cells in Anabaena sp. PCC 7120 little 

is still known about the selectivity of the channels for different kinds of 

molecules. All studies so far used artificial fluorescent tracers that are related 

members of a family of fluorescein derivatives. In chapter 3, the transfer of 
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molecules with different properties including artificial but also molecules which 

are similar to physiological-important metabolites is investigated. These 

molecules include the fluorescent sucrose analogue esculin (chapter 3.1), the 

fluorescent glucose derivatives 2- and 6-NBDG (chapter 3.2) and the artificial 

fluorescent tracer BCECF (chapter 3.3). Furthermore, the role of the septal 

proteins FraC, FraD and SepJ for the exchange of these molecules is examined. 

Chapter 4 addresses the question of the function of SepJ by overexpressing the 

gene and investigating its influence on filament length, heterocyst spacing pattern 

and molecular exchange. By fusing SepJ to the fluorescent protein GFP the 

localisation of the additional proteins was visualised in the background of various 

mutants and the wild-type. 

In another approach, insights into the properties of the septal junctions were 

revealed by inducing filament breakage by sonication and investigating its 

influence on molecular exchange and the localisation of SepJ (chapter 5). The 

question, whether filament breakage results in the death of the entire filament or 

individual cells possess the ability to close their open ends, is addressed. 

In the final chapter 6, multicellularity in terms of intercellular communication is 

explored in Mastigocladus laminosus, a true branching cyanobacterium of Section 

V. FRAP experiments and SepJ localisation studies are performed in order to 

reveal insights into differences and similarities in intercellular communication 

between Anabaena sp. PCC 7120 and Mastigocladus laminosus. 
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2 Materials and methods 

2.1 Oligonucleotides 

Oligonucleotides for PCR and sequencing were obtained from Sigma-Aldrich and 

Eurofins. Lyophilised primers were solubilised in nuclease-free water to a final 

concentration of 10 µM. Table 4 summarises oligonucleotides used in this study. 

Table 4. Oligonucleotides used in this study 

primer sequence (5’  3’) 

alr2338_7 atacaggaaattagagtgagc 

fw_d_sepJ_ML_down_BamHI cccaacagtcatcggatcccgccgatg 

fw_d_sepJ_ML_up_SpeI  ttaactagtgtcagaaaactcacgagc 

fw_mlam_sepJ atggggcgatttgagaagcg 

Fw_mTq2_EcoRV gatatcatggtgagcaagggcgag 

fw_neo ctgcttgccgaatatcatggtg 

pRL500_1 ataggcgtatcacgaggc 

rv_d_sepJ_ML_down_PstI taactgcagtataggagctaaaacc 

rv_d_sepJ_ML_up_BamHI  catcggcgggatccgatgactgttggg 

rv_mlam_hetR gttgcggctgcatctaaaaa 

rv_mlam_sepJ_seq gctgtcctgatgataagctgg 

rv_mTq2 gtccggacttgtacagctcgtc 

YFP-1 gatatcatggtgagcaagggcga 

YFP-2 ttaaaacaccttgtacagctcgtc 

2.2 Strains and plasmids 

Microbial strains and plasmids used in this study are listed in Table 5. 
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Table 5. Strains and plasmids used in this study. 

strain or plasmid genotype or relevant characteristics resistance
* source or reference 

Anabaena sp. strains    

PCC 7120 wild-type  PCC 

CSAM137 sepJ-gfp Sm
R
 Sp

R Flores et al. (2007) 

CSDN1A Φ(C.K1(+)-sepJ) Km
R This study 

CSDN1B Φ(C.K1(-)-sepJ) Km
R This study 

CSDN2A Φ(C.K1(+)-sepJ) in pCSAM200 Sm
R
 Sp

R This study 

CSDN2B Φ(C.K1(-)-sepJ) in pCSAM200 Sm
R
 Sp

R This study 

CSDN7 sepJ-eYFP Sm
R
 Sp

R This study 

CSDN11 Φ(C.K3(+)-sepJ-gfp) Km
R This study 

CSDN21 Npun_R5320-R5323 in pRL25C Km
R This study 

CSDN24 sepJ-cfp Sm
R
 Sp

R This study 

CSDN28 sepJ-mTurquise2 Sm
R
 Sp

R This study 

CSS7 cphA1 (all3879)::C.S3 Sm
R
 Sp

R Picossi et al. (2004) 

CSVM18 PpatS promoter-gfp Sm
R
 Sp

R Mariscal et al. (2007) 
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strain or plasmid genotype or relevant characteristics resistance
* source or reference 

Anabaena sp. strains    

CSVM34 ΔsepJ  Mariscal et al. (2011) 

CSVM34-DN11 ΔsepJ; Φ(C.K3(+)-sepJ-gfp) Km
R This study 

CSVM34-DN21 ΔsepJ; Npun_R5320-R5323 in pRL25C Km
R This study 

CSVM141 ΔsepJ ΔfraC ΔfraD  Vicente Mariscal, unpublished 

CSVM141-DN11 ΔsepJ ΔfraC ΔfraD; Φ(C.K3(+)-sepJ-gfp) Km
R This study 

CSVM141-DN21 ΔsepJ ΔfraC ΔfraD; Npun_R5320-R5323 in pRL25C Km
R This study 

CSVT22 ΔfraC ΔfraD  Merino-Puerto et al. (2011) 

CSVT22-DN21 ΔfraC ΔfraD; Npun_R5320-R5323 in pRL25C Km
R This study 

Other cyanobacterial strains    

M. laminosus MLDN42 sepJ::C.K1(-) Km
R This study 

Mastigocladus laminosus SAG 4.84 wild-type  SAG 

Nostoc punctiforme ATCC 29113-S 

(UCD 153) 

spontaneous derivative that grows more homogenously and 

rapidly than wild-type 

 Campbell et al. (2007; 2008) 
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strain or plasmid genotype or relevant characteristics resistance
* source or reference 

Escherichia coli K-12 strains    

DH5α F
–
 φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 

hsdR17 (rK
–
, mK

+
) phoA supE44 λ

–
 thi-1 gyrA96 relA1 

versatile cloning strain 

 Bethesda Research  

Laboratories (1986) 

ED8654  F
– 
lacY1 hsdR514 (rK

–
, mK

–
) supE44 supF58 recA56 mcrA1 

metB1 galK2 galT22 trpR55 tyrT58 λ
– 

 Borck et al. (1976) 

HB101 F
–
 hsdS20 (rB

–
, mB

–
) leuB6 supE44 ara14 galK2 lacY1 

proA2 rpsL20 (Sm
R
) xyl-5 mtl-1 recA13 mcrBC 

Sm
R Boyer and Roulland-Dussoix 

(1969) 

NEB5α DH5α derivative; versatile cloning strain  NEB 

plasmids    

pCSAM135 sepJ-C-gfp cloned in pGEM
®
 T-Easy Amp

R Flores et al. (2007) 

pCSAM200 replicative vector Sm
R
 Sp

R Ionescu et al. (2010) 

pCSDN1A C.K1(+)-sepJ cloned in pCSV3 Km
R 

Sm
R
 Sp

R This study 

pCSDN1B C.K1(-)-sepJ cloned in pCSV3 Km
R 

Sm
R
 Sp

R This study 

pCSDN2A C.K1(+)-sepJ cloned in pCSAM200 Km
R 

Sm
R
 Sp

R This study 
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strain or plasmid genotype or relevant characteristics resistance
* source or reference 

pCSDN2B C.K1(-)-sepJ cloned in pCSAM200 Km
R 

Sm
R
 Sp

R This study 

pCSDN3 sepJ cloned in pRL278 with C.K3 cassette upstream of 

gene 

Km
R This study 

pCSDN5 eyfp cloned in pSPARK
® Amp

R This study 

pCSDN6 sepJ-C-eyfp cloned in pGEM
®
 T-Easy Amp

R This study 

pCSDN7 sepJ-C-eyfp cloned in pCSV3 Sm
R
 Sp

R This study 

pCSDN10 sepJ-gfp cloned in pSPARK
® Amp

R This study 

pCSDN11 sepJ-gfp cloned in pRL278 Km
R This study 

pCSDN21 Npun_R5320-23 cloned in pRL25C Km
R This study 

pCSDN24 sepJ-C-cfp cloned in pCSV3 Sm
R
 Sp

R This study 

pCSDN27 mTurquise2 cloned in pGEM
®
 T-Easy Amp

R This study 

pCSDN28 sepJ-C-mTurquise2 cloned in pCSV3 Sm
R
 Sp

R This study 

pCSV3 positive selection vector Sm
R
 Sp

R Valladares et al. (2011) 

pCSVM58 source of sepJ Amp
R Vicente Mariscal, unpublished 



 

 

 

7
1
 

strain or plasmid genotype or relevant characteristics resistance
* source or reference 

pCSVM59A source of C.K1(+)-sepJ Amp
R 

Km
R Vicente Mariscal, unpublished 

pCSVM59B source of C.K1(-)-sepJ Amp
R 

Km
R Vicente Mariscal, unpublished 

pCSVT10 cfp cloned in pMBL-T Amp
R Victoria Merino-Puerto, 

unpublished 

pDN40 sepJ (M. laminosus) with inserted BamHI site cloned in 

pRL271 

Cm
R
 Em

R This study 

pDN42 pDN40 with inserted C.K1 in BamHI Cm
R
 Em

R 
Km

R This study 

pGEM
®
-T Easy cloning vector Amp

R Promega 

pmTurquise2-C1 source of mTurquise2 Km
R Goedhart et al. (2012) 

pRL25C cargo plasmid; carries pDU1 replicon Km
R Wolk et al. (1988) 

pRL161 source of C.K1 cassette Km
R Elhai and Wolk (1988) 

pRL271 suicide vector containing sacB for the selection of double 

recombination events 

Cm
R
 Em

R Black et al. (1993) 

pRL278 suicide vector containing sacB for the selection of double 

recombination events 

Km
R Black et al. (1993) 
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strain or plasmid genotype or relevant characteristics resistance
* source or reference 

pRL443 conjugative plasmid Amp
R
 Km

R
 Tc

R Elhai et al. (1997) 

pRL623 helper plasmid; carries mob and DNA methylases M.AvaI, 

M.Eco47II, and M.EcoT22I 

Cm
R Elhai et al. (1997) 

pSKS3-cph2(1-6)-eYFP source of eyfp Amp
R
 Cm

R Annegret Wilde, unpublished 

pSPARK
® cloning vector Amp

R Canvax, Biotech SL 

pUC19 transformation efficiency test vector Amp
R Yanisch-Perron et al. (1985) 

*
 Amp – ampicilin; Cm – chloramphenicol; Em - erythromycin; Km – kanamycin (determinants also confer resistance to neomycin (Nm)); Sm – streptomycin; 

Sp – spectinomycin; Tc - tetracycline 
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2.3 Bioinformatics methods 

2.3.1 Generation of plasmids and oligonucleotide primers 

Serial Cloner (SerialBasics) was used to develop cloning strategies and to draw 

plasmid maps. Properties of generated oligonucleotides were calculated using 

OligoCalc (Kibbe, 2007). 

2.3.2 Amino acid sequence analyses 

DNA sequences were translated into the corresponding amino acid sequences 

using the ExPASy translate tool (http://web.expasy.org/translate/). Further 

sequence analyses were performed using the TMHMM server 2.0 

(http://www.cbs.dtu.dk/services/TMHMM/) in order to predict the localisation of 

transmembrane helices, TRUST (Szklarczyk and Heringa, 2004) for the detection 

of internal repeats, and Coils/PCoils (http://toolkit.tuebingen.mpg.de/pcoils) for 

the identification of potential coiled-coiled regions in proteins. 

2.3.3 Blast search, sequence alignment and phylogenetic reconstruction 

BlastP (Altschul et al., 1997) and BlastN (Zhang et al., 2000) searches were 

performed to identify orthologous sequences. Sequences were aligned using 

ClustalW 2.1 (Larkin et al., 2007) and phylogenetic reconstructions were 

performed using the Phylogeny.fr platform (Dereeper et al., 2008). 

2.3.4 Physicochemical properties of molecules 

Molecular properties and structures were predicted by using tools at 

chemicalize.org and Marvin 6.0.2 (ChemAxon). 
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2.4 Microbial methods 

2.4.1 Growth of cyanobacteria 

N. punctiforme ATCC 29113-S was grown in liquid BG110 medium (Rippka et 

al., 1979) supplemented with 2.5 mM NH4Cl and 5 mM TES-NaOH buffer 

(pH 7.5) at 30°C under constant agitation (100 rpm) and under illumination with 

white light of approximately 20 µE m
-2

 s
-1

, or on agar plates with 1 % (w/v) Bacto 

agar (BD). 

Anabaena sp. strains were grown in liquid BG11 medium (BG110 medium 

supplemented with 17.6 mM NaNO3) (Rippka et al., 1979) under the conditions 

stated above. Mutants were cultivated in the presence of antibiotics when 

indicated. Neomycin was added to liquid medium in a final concentration of 10 

µg ml
-1

 and of 40 µg ml
-1

 to agar plates. Spectinomycin and streptomycin were 

used in a final concentration of 2.5 µg ml
-1

 for both liquid medium and agar 

plates. Heterocyst differentiation was induced by growth in BG110 medium under 

the conditions described above. The cells were first harvested by centrifugation 

(3,000xg; 5 min) and then washed three times in BG110 medium. The 

composition of BG110 medium is given in Table 6.  
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Table 6. Composition of BG110 medium. 

BG110 

component concentration (mg l
-1

) 

MgSO4 * 7 H20 75 

CaCl2 * 2 H2O 36 

Citric acid 6 

Ferric ammonium citrate 6 

Na2-EDTA 0.93 

Na2CO3 20 

H3BO3 2.86 

MnCl2 * 4 H2O 1.81 

ZnSO4 * 7 H20 0.222 

Na2MoO4 * 2 H2O 0.39 

CuSO4 * 5 H2O 0.079 

CoCl2 * 6 H2O 0.0494 

K2HPO4 34.8 

Mastigocladus laminosus SAG 4.84 was grown in liquid Castenholz D medium 

(Castenholz, 1988) at 40°C, under constant white light at approximately 20 μE 

m
−2

 s
−1

. To provide constant agitation cultures were bubbled with sterile air or 

shaken (100 rpm). Heterocyst differentiation was induced by removal of 

combined nitrogen and incubation in liquid Castenholz ND medium (Castenholz, 

1988), under the above described conditions. For growth on solid medium 1.5 % 

(w/v) agar was added to the media. The composition of Castenholz D and 

Castenholz ND medium is given in Table 7. 
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Table 7. Composition of Castenholz D and Castenholz ND medium. 

component concentration (mg l
-1

)  

 Castenholz D Castenholz ND 

nitrilotriacetic acid (NTA)* 100 100 

NaNO3 700  

KH2PO4  36 

Na2HPO4 110 70 

KNO3 100  

MgSO4 * 7 H20 100 100 

CaSO4 * 2 H2O 60 60 

NaCl 8 8 

FeCl3 * 6 H2O 0.25 0.25 

micronutrients   

MnSO4 * H20 1.14 1.14 

H3BO3 0.25 0.25 

ZnSO4 * 7 H2O 0.25 0.25 

CuSO4 * 5 H2O 0.0125 0.0125 

Na2MoO4 * 2 H2O 0.0125 0.0125 

CoCl2 * 6 H2O 0.0225 0.0225 

H2SO4 (conc.) 0.25 µl 0.25 µl 

* NTA was first dissolved by adjusting the pH to 6.5 with KOH. After adding the 

remaining components the pH was adjusted to 7.5 and the solution sterilised by 

autoclaving. 
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2.4.2 Growth of Escherichia coli 

Cells of Escherichia coli were grown in liquid lysogeny broth (LB) medium 

(Table 8) or on 1.5 % (w/v) LB agar at 37°C. Liquid cultures were agitated with 

180 to 250 rpm. In order to select for bacterial cells bearing plasmids antibiotics 

were added as follows: 100 µg ml
-1 

ampicilin, 30 µg ml
-1 

chloramphenicol, 50 µg 

ml
-1 

kanamycin, 50 µg ml
-1

 spectinomycin and 25 µg ml
-1

 streptomycin. 

Table 8. Composition of LB medium, variation Miller. 

LB medium, Miller 

component concentration (g l
-1

) 

trypton 10 

yeast extract 5 

NaCl 10 

2.4.3 Cryopreservation and recovery 

For long-term storage microbial cells were harvested from late log or early 

stationary growth phases by centrifugation (3,000xg; 3 min) and resuspended in 

the corresponding growth medium supplemented with either 20 % (w/v) glycerol 

(E. coli) or 8 % (v/v) dimethyl sulfoxide (DMSO) (cyanobacteria). Cells were 

immediately flash frozen in liquid nitrogen and stored at -80°C. 

For short-term storage E. coli cells were frozen in LB medium supplemented with 

20 % (w/v) glycerol and stored at -20°C. 
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Viable cells of E. coli were recovered by transferring a small amount of the frozen 

culture into liquid LB medium or by restreaking cells on LB agar plates 

supplemented with appropriate antibiotics. 

Cyanobacterial cultures of Anabaena sp. strains and N. punctiforme ATCC 29133 

were recovered by transferring a drop of a thawed culture to a BG11 agar plate 

and keeping the plate at room temperature until the media was fully absorbed. The 

culture was then spread away from the original place to avoid inhibition of growth 

by DMSO. Cells of M. laminosus were revived by transferring ‘cell clumps’ 

directly to liquid growth medium and incubating the culture under the conditions 

described above. 

2.4.4 Preparation of chemical competent E. coli cells 

Chemical competent cells of E. coli were prepared after a slightly modified 

protocol by Inoue et al. (1990). 3 ml of LB medium supplemented with 20 mM 

glucose were inoculated with a single colony of E. coli and grown over day at 

37°C and 200 rpm. 0.5 ml of the culture was transferred to 25 ml fresh LB – 

20 mM glucose medium and grown at 25°C and 200 rpm overnight. 50 ml LB 

medium supplemented with 20 mM glucose were then inoculated with 2.5 ml of 

the pre-culture and grown at 25°C and 200 rpm until the OD600 reached 0.5 to 0.6. 

Cells were placed on ice for 20 min before harvesting by centrifugation (3,000xg; 

5 min; 4°C). The supernatant was discarded and the cell pellet resuspended in 

12.5 ml ice-cold transformation buffer (10 mM HEPES, pH 6.7; 55 mM MnCl2; 

15 mM CaCl2; 150 mM KCl). After centrifugation for 5 min at 3,000xg and 4°C 

the cell pellet was resuspended in 5 ml ice-cold transformation buffer and 7 % 

(v/v) DMSO was added. Cells were mixed gently and placed on ice for 30 min. 
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Flash frozen aliquots of 200 µl were stored at -80°C. Transformation efficiency 

was tested by adding 100 pg of plasmid pUC19. Cells with a transformation 

efficiency greater than 1 * 10
5
 cfu µg

-1
 DNA were used for further 

transformations. 

2.4.5 Transformation of E. coli cells with plasmids 

Transformation of E. coli cells with plasmids was performed according to 

Hanahan (1983). 200 µl of competent cells were thawed on ice for 20 min. 10 µl 

of ligation mixture or approximately 50 ng of plasmid DNA were added, the 

suspension gently mixed and further incubated on ice. After 20 min of incubation 

cells were heat shocked for 90 s at 42°C (water bath) and chilled for 5 min on ice. 

800 µl of LB medium was added and the tubes were incubated for 1 h at 37°C and 

200 rpm. Cells were harvested by centrifugation (10,000xg; 30 s), the supernatant 

was decanted and the cells were resuspended in the remaining liquid. Cells were 

then spread on LB agar plates supplemented with appropriate antibiotics and 

incubated at 37°C overnight. 

2.4.6 Conjugation of cyanobacteria 

2.4.6.1 Conjugation of Anabaena sp. PCC 7120 

Constructs generated in this work (see Table 5) were transferred to Anabaena sp. 

PCC 7120 strains by conjugation as described by Elhai and Wolk (1988). Cargo 

plasmids were transferred to E. coli HB101 cells containing the helper plasmid 

pRL623 (Elhai et al., 1997) which encodes mobilisation proteins (mob) from 

ColK that allow the mobilisation of plasmids carrying the oriT of pMB1 such as 

the derivatives of pBR322 used in this study. Additionally, pRL623 encodes three 
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DNA methylases M.AvaI, M.Eco47II, and M.EcoT22I which protect the plasmid 

against digestion by the restriction enzymes of Anabaena sp. PCC 7120. A second 

E. coli strain containing the conjugative plasmid pRL443 (Elhai et al., 1997), a 

RP4 derivative that lost its kanamycin resistance and allows the usage of cargo 

plasmids for the generation of mutants which contain a kanamycin resistance 

cassette was used in this study for conjugation. Both strains HB101 [pRL623 + 

cargo plasmid] and ED8654 [pRL443] were grown in 3 ml liquid LB medium 

supplemented with the appropriate antibiotics overnight at 37°C. 250 µl ED8654 

[pRL443] and 350 µl of HB101 [pRL623 + cargo plasmid] were added to 10 ml 

of LB medium supplemented with appropriate antibiotics and were grown for 

2.5 h at 37°C. Antibiotics were removed by washing the cells three times with 

10 ml LB medium (3,000xg; 3 min). After the final centrifugation, the cell pellets 

were resuspended in approximately 60 µl of LB medium and both cultures mixed. 

The cell mixture was left for 1.5 h at room temperature before adding cells of 

Anabaena sp. strains corresponding to 10 µg of chlorophyll a. Cells were spotted 

on Immobilon-NC membrane (Millipore) on 1 % (w/v) agar BG11 plates 

supplemented with 5 % (v/v) LB medium, and incubated for 3 h in the dark at 

30°C before exposing to normal light conditions. After 24 h of incubation the 

membrane was transferred to a 1 % (w/v) agar BG11 plate, and for selection every 

48 h to 72 h transferred to a 1 % (w/v) agar BG11 plate supplemented with up to 

5 µg ml
-1

 streptomycin and spectinomycin or up to 200 µg ml
-1

 neomycin. 

Colonies were picked and restreaked on 1 % (w/v) agar BG11 plates 

supplemented with antibiotics until strains were fully segregated. 
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2.4.6.2 Conjugation of M. laminosus SAG 4.84 

For the transfer of plasmids to M. laminosus SAG 4.84 a similar approach was 

used as described for Anabaena sp. PCC 7120. Prior to the conjugation a 

M. laminosus culture was homogenised by several passages through a syringe 

needle of 0.8 mm in diameter, and the disrupted filaments were washed four times 

with Castenholz D medium. Cells were resuspended by vortexing, and harvested 

by centrifugation (5,000xg; 5 min). Before adding M. laminosus, the E. coli strain 

HB101 bearing plasmid pRL623 and the construct for genomic modification and 

E. coli strain ED8654 bearing plasmid pRL443 were mixed, and incubated for 2 h 

at RT. The amount of M. laminosus cells was adjusted to 15µg of chlorophyll a 

per plate. Cells were spotted on Immobilon-NC membrane (Millipore) on 

1 % (w/v) agar Castenholz D plates supplemented with 5 % (v/v) LB medium, 

and incubated for 3 h in the dark at 35°C before exposing to normal light 

conditions. After 24 h the membrane was transferred to a 1 % (w/v) agar 

Castenholz D plate, and for selection every 48 h to 72 h transferred to a 1 % (w/v) 

agar Castenholz D plate supplemented with antibiotics. For selection of strains 

bearing a kanamycin resistance cassette 60 µg ml
-1

 neomycin was added to the 

plates. Colonies were picked and restreaked three times on 1 % (w/v) agar 

Castenholz D plate supplemented with 30 µg ml
-1

 neomycin before growing in 

liquid Castenholz D medium with 10 µg ml
-1

 neomycin at 40°C. 

2.4.7 Determination of Chlorophyll a concentration 

Chlorophyll a (Chl a) concentrations were used to estimate culture growth and to 

standardise conjugation of Anabaena sp strains and M. laminosus. Chl a was 

extracted from cyanobacterial cells by adding methanol to a final concentration of 
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90 % (v/v) and vortexing the suspension for 1 min at RT. After removing cell 

fragments by centrifugation (16,100xg; 1 min) the absorption of the supernatant 

was measured at 665 nm with a Jenway 6300 spectrophotometer. The final 

concentration of Chl a was calculated in terms of the formula Chl a [µg ml
-1

] = 

13.43 * A665 nm * dilution factor (Porra et al., 1989). 

2.5 Genetic methods 

2.5.1 Genomic DNA isolation from cyanobacteria 

Depending on the cyanobacterial strain various methods for the extraction of 

genomic DNA were used. 

Genomic DNA from Anabaena sp. strains and N. punctiforme ATCC 29133-S 

was isolated by phenol-chloroform extraction as described by Cai and Wolk 

(1990). Cells were harvested by centrifugation (4,000xg; 5 min) and resuspended 

in 400 µl 10 mM Tris - 0.1 mM EDTA, pH 7.5. To break cells 150 µl sterile glass 

beads (212 - 300μm diameter; Sigma-Aldrich), 20 µl of a 10 % sodium dodecyl 

sulphate (SDS) solution and 450 µl phenol-chloroform (1:1 (v/v)) were added and 

the suspension vigorously vortexed for 1 min at RT before cooling on ice for 

1 min. This cycle was repeated 4 to 6 times. The final suspension was centrifuged 

for 15 min at 15,000xg and 4°C, and the supernatant was transferred to a new 

microcentrifuge tube. The supernatant was extracted once with phenol, once with 

phenol:chloroform (1:1 (v/v)) and twice with chloroform with centrifugation steps 

in between (15,000xg; 1 min). DNA was precipitated by adding 1/10 volume of 

3 M sodium acetate pH 5.2 and 2.5 volumes ethanol. After overnight incubation at 

-20°C the suspension was centrifuged for 15 min at 15,000xg and 4°C. The DNA 
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pellet was washed once in 70 % (v/v) ethanol and dried on air before resuspending 

in 30 µl 10 mM Tris - 0.1 mM EDTA, pH 7.5. Genomic DNA samples were 

stored at 4°C. 

Genomic DNA from M. laminosus was extracted using the protocol of Morin et 

al. (2010) with a cell homogenisation step prior cell lysis. The cells were 

harvested by centrifugation (3,000xg, 5 min) and resuspended in fresh growth 

medium. Homogenisation of the culture was achieved by multiple passages 

through a 0.8 mm needle with the help of a syringe. The cells were collected by 

centrifugation (3,000xg, 5 min), resuspended in 0.5 ml in 0.15 M NaCl, 

0.1 M EDTA, pH 8.0 and transferred to a 2 ml cryogenic vial (Nalgene
®
) for three 

freeze-thawing cycles, alternating freezing in liquid nitrogen and thawing in a 

water bath at 37°C. Cells were harvested by centrifugation (7,000xg; 2 min) and 

resuspended in 0.5 ml TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) for the 

subsequent enzymatic cell lysis by adding 100 µl of a 50 mg ml
-1 

of lysozyme 

solution (Sigma-Aldrich) and incubating the suspension for 30 min at 37°C. 

Protein degradation was achieved by adding 12.5 µl of 20 mg ml
-1

 proteinase K 

(Qiagen) and SDS to a final concentration of 2 % (v/v) and incubating the mixture 

for 1 h at 37°C. To remove proteins and polysaccharides which are highly 

abundant in cultures of M. laminosus, forming thick sheaths surrounding the 

filaments, and have been shown to inhibit enzymes such as DNA polymerases 

(Fang et al., 1992) 0.1 volume of cetyltrimethylammonium bromide (CTAB; 

AppliChem) and 150 µl of 5 M NaCl were added to the solution. After 10 min of 

incubation at 65°C 1 volume of chloroform:isoamyl alcohol (24:1 (v/v)) was 

added and the tubes placed on ice for 30 min to allow precipitation of CTAB-

protein and -polysaccharide complexes. After centrifugation (12,000xg; 10 min) 
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the supernatant was transferred to a new microcentrifuge tube and 0.6 volume of 

2-propanol was added to precipitate DNA. The tubes were centrifuged for 10 min 

at 12,000xg and the DNA pellet was washed once in 70 % (v/v) ethanol. After a 

final centrifugation step (12,000xg; 10 min) the supernatant was discarded and the 

pellet was dried at air before resuspending in 50 µl TE buffer. Purified genomic 

DNA was stored at 4°C. 

Alternatively, genomic DNA from all cyanobacterial organisms used in this study 

was successfully extracted by using the ZR Fungal/Bacterial DNA MiniPrep™ kit 

(Zymo Research). 

2.5.2 Plasmid isolation 

Plasmid isolation was generally performed with commercially available kits from 

Qiagen (QIAprep Spin Miniprep Kit), Machery-Nagel (NucleoSpin Plasmid), 

peqlab (peqGOLD Plasmid Miniprep Kit I) and Thermo Scientific (GeneJET 

Plasmid Miniprep Kit) according to the manufacturer’s protocols. 

Alternatively, plasmids were extracted from E. coli by classical alkaline lysis with 

SDS (Sambrook and Russel, 2001). 3 ml of an E. coli overnight culture were 

harvested by centrifugation (3,000xg; 3 min) and cells were resuspended in 100 µl 

of ice-cold solution I (Table 9). Alkaline lysis was initiated by adding 200 µl of 

freshly prepared solution II (Table 9), mixing the solutions by inverting the tube 

rapidly for 5 times and adding 150 µl of ice-cold solution III (Table 9). Tubes 

were inverted until the sample was homogenously mixed and centrifuged for 5 

min at 16,100xg and 4°C. The supernatant was transferred to a new 

microcentrifuge tube and nucleic acids were precipitated by adding 2 volumes of 
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ethanol and leaving the tube for 2 min at room temperature. Precipitated nucleic 

acids were collected by centrifugation (16,100xg; 5 min), washed once in 70 % 

(v/v) ethanol and finally resuspended in 50 µl of 10 mM Tris – 1 mM EDTA, pH 

8.0 containing 10 µg ml
-1

 RNase A. Plasmid DNA was stored at – 20°C for 

further analyses. 

Table 9. Composition of the solutions I, II and III for plasmid isolation. 

solution I solution II solution III 

50 mM glucose 0.2 N NaOH 60 ml 5 M potassium acetate  

25 mM Tris-HCl pH 8.0 1 % (w/v) SDS 11.5 ml glacial acetic acid 

10 mM EDTA pH 8.0  28.5 ml H2O 

2.5.3 DNA quantification 

DNA was quantitated by using different strategies. Nucleic acids absorb 

ultraviolet radiation. At 260 nm the optical density of a 50 µg ml
-1 

solution of 

double strand DNA equals 1.0. To get an indication of the purity of the DNA 

solution the OD260:OD280 ratio was calculated; solutions possessing a ratio above 

1.8 were considered as pure. Absorption was measured with a NanoVue Plus 

spectrophotometer (GE Healthcare). Alternatively, DNA concentrations were 

determined by using a fluorescent dye that is specific for double-stranded DNA 

and becomes highly fluorescent after binding to its target molecule (Qubit system, 

Thermo Fisher Scientific Inc.). The fluorescence is then detected with a 

fluorometer and converted into a DNA concentration by comparing the signal 

with that of samples of known DNA concentrations. In comparison to UV 

absorbance measurements the Qubit system allows distinguishing between DNA, 
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RNA, free nucleotides and proteins and thus provides an accurate way to 

determine the actual double-stranded DNA concentration in the sample. 

2.5.4 Polymerase chain reaction (PCR) 

DNA fragments from cyanobacterial genomes or plasmids were amplified using 

the polymerase chain reaction (PCR) technique. For the amplification of DNA 

fragments for cloning and sequencing DNA polymerases were used that possess a 

3' → 5' proofreading exonuclease activity which excises mismatched nucleotides 

and thus reduces the error rate. In this study the high-fidelity DNA polymerases 

iProof (Bio-Rad) and Phusion (NEB) and the Expand High Fidelity PCR System 

(Roche) were used for high quality DNA amplification. For the determination of 

the optimal annealing temperature and to identify mutants, Taq polymerases were 

used from Bioline (BioTaq) and Promega (PCR Master Mix). A standard PCR 

mixture contained 1-10 ng plasmid DNA or 50-150 ng genomic DNA as template, 

200 µM of each desoxynucleoside triphosphate (dNTP), including dATP, dCTP, 

dGTP and dTTP, 0.5 µM of each primer (forward and reverse) and 1-2 U of DNA 

polymerase per 50 µl reaction. For colony PCRs single colonies of E. coli or 

cyanobacteria were resuspended in the DNA-free PCR reaction mixture after 

restreaking the culture on a new agar plate. Table 10 summarises the general PCR 

cycling procedure for the different enzymes used in this study. Reactions were 

carried out in a C1000 Thermal Cycler (Bio-Rad) and a MyCycler (Bio-Rad). 
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Table 10. PCR cycling procedure 

  iProof/Phusion BioTaq 

denaturation  98°C; 30 s 95°C; 3 min 

 denaturation 98°C; 10 s 95°C; 30 s 

25-30 cycles annealing* 45-72°C; 30 s 60-65°C; 30 s 

 elongation 72°C; 1 kb 30 s 
-1 72°C; 1 kb 30 s 

-1 

final elongation  72°C; 10 min 72°C; 10 min 

* Annealing temperatures were generally 5°C below the lowest melting temperature of 

the pair of primers used 

2.5.5 Purification of PCR products 

To remove oligonucleotides, unspecific DNA fragments and the DNA polymerase, 

and to exchange the buffer for further downstream applications, PCR products were 

purified either by separation on agarose gels and subsequent DNA extraction or 

by using the commercially available purification kits from GE Healthcare (illustra 

GFX PCR DNA and Gel Band Purification Kit) and Qiagen (QIAquick PCR 

Purification Kit). 

2.5.6 Agarose gel electrophoresis 

PCR products, digested plasmids or other DNA fragments were separated 

according to their size by agarose gel electrophoresis. Agarose (type 2; Sigma-

Aldrich) was dissolved in either 0.5x Tris-borate-EDTA (TBE; Table 11) or 1x 

Tris-acetate-EDTA (TAE; Table 11) buffer to a final concentration of 0.8 to 2.0 % 

(w/v), depending on the size of the DNA fragments to be separated. When 

required, loading dye (Table 11) was added to the DNA sample prior 
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electrophoresis. For the separation of bands a voltage of 3 to 6 V per centimetre 

electrode distance was applied. DNA was visualised by adding the stains SYBR 

safe (Thermo Fisher Scientific) or GelRed (Biotium) to the gels and using either 

blue light (Dark reader transilluminator; Clare Chemical Research) or UV light 

excitation. Images were taken with the gel doc systems G:BOX (Syngene) or Gel-

Doc XR
+
 (Biorad). Sizes of DNA bands were determined by comparing with 

bands from a marker with DNA fragments of known sizes (1kb DNA ladder blue 

(iNtRON Biotechnology) and peqGOLD DNA-ladder mix (peqlab)). 

Table 11. Composition of electrophoresis buffers and loading dye. 

50x TAE 10x TBE 10x loading dye 

2M Tris 0.9 M Tris 50 % (v/v) glycerol 

2 M acetic acid 0.9 M boric acid 0.4 % (w/v) bromphenol blue 

50 mM EDTA, pH 8.3 20 mM EDTA, pH 8.0 0.4 % (w/v) xylene cyanol FF 

2.5.7 DNA extraction from agarose gels 

DNA from agarose gels was extracted by using purification kits from Fermentas 

(GeneJet Gel Extraction Kit) and GE Healthcare (illustra GFX PCR DNA and Gel 

Band Purification Kit) according to the manufacturer’s protocol. 

2.5.8 Restriction digestion 

For restriction digestion, DNA was treated with restriction endonucleases from 

NEB and Thermo Scientific according to the manufacturer’s protocol. The 

incubation time for the FastDigest restriction enzymes from Thermo Scientific 

was elongated to 30-60 min to achieve a higher percentage of digested plasmids 
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and PCR products. Standard restriction digests were generally incubated for 2 h at 

37°C before separation on agarose gels or dephosphorylation. 

2.5.9 Dephosphorylation of DNA 

In order to prevent self-ligation of linearised vectors phosphate groups were 

removed by adding the FastAP Thermosensitive Alkaline Phosphatase (Thermo 

Scientific) or the rAPid Alkaline Phosphatase (Roche) directly to the restriction 

digest, incubating the mixture for 10 min at 37°C and inactivating the phosphatase 

by subjecting the mixture to 75°C for 7 min. Dephosphorylated and linearised 

vectors were separated by agarose gel electrophoresis prior to ligation. 

2.5.10 Ligation 

DNA fragments were ligated by using the T4 DNA ligases from Dominion-MBL 

or Promega or the Quick Ligase from NEB which reduces the incubation time 

from generally 2 h to 5 min at room temperature. The molar ratio of insert to 

vector was approximately 3:1. 

2.5.11 DNA sequencing 

Correctness of nucleotide sequences of generated plasmids and PCR products was 

verified by sequencing using the service provided by Secugen and Eurofins. 

2.6 Biochemical methods 

2.6.1 Heterocyst isolation from Anabaena sp. strains 

Heterocysts of Anabaena sp. strains were isolated as described by Golden et al. 

(1991) with minor modifications. Filaments grown in BG110 medium were 
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harvested by centrifugation at 3,000xg for 10 min, washed twice in BG110 

medium and finally resuspended in ice-cold STET buffer (Table 12) containing 

1 mg ml
-1

 lysozyme (Sigma-Aldrich) by vigorous vortexing for 2-3 min at room 

temperature. The suspension was subjected to mild sonication on ice using a 

Vibra-Cell VC 130 ultrasonic processor (Sonics & Materials, Inc.) until only 

heterocysts were visible in a light microscope (Olympus CH20). Heterocysts were 

collected by centrifugation (3,000xg; 5 min; 4°C) and washed three times in SET 

buffer (Table 12). 

For esculin uptake studies sucrose was omitted from all buffers. 

Table 12. Composition of buffers for heterocyst isolation from Anabaena sp. 

strains. 

 concentration 

component STET SET 

sucrose 8 % (w/v) 8 % (w/v) 

Triton X-100 5 % (v/v)  

EDTA, pH 8.0 50 mM 50 mM 

Tris-HCl pH 8.0 50 mM 50 mM 

2.6.2 Membrane isolation from Anabaena sp. strains 

Cells of Anabaena sp. cultures were collected by filtration using cellulose 

membranes with a pore diameter of 0.45 µm (Millipore). Filaments were washed 

once with 25 ml buffer A (Table 13) and stored at -20°C until further treatment. 

Cells were resuspended in 10 ml buffer A supplemented with protease inhibitor 
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(Complete Mini EDTA-free, Roche) and broken by two passages through a SLM 

Aminco French pressure cell at 10,000 psi. After centrifugation at 32,000xg for 15 

min at 4°C the supernatant was subjected to ultra centrifugation (120,000xg; 90 

min; 4°C) in order to sediment membranes. Membranes were washed once in 10 

ml phosphate buffered saline (PBS; Table 13) and finally resuspended in 0.5 ml 

PBS. Isolated membranes were stored at -20°C for analyses by SDS-PAGE and 

Western blot. 

Table 13. Composition of buffers for the isolation of membranes from 

Anabaena sp. species 

buffer A PBS, pH 7.4 

20 mM HEPES-NaOH pH 8.0 137 mM NaCl 

10 mM MgCl2 2.7 mM KCl 

5 mM CaCl2 10 mM Na2HPO4 

10 % (w/v) glycerol 1.8 mM KH2PO4 

2.6.3 SDS-PAGE 

Proteins were separated by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) according to their molecular mass. As migration of 

the proteins through the gel depends on the porous character of the gel a 

polyacrylamide concentration of 8 % (w/v) was used to obtain an ideal separation 

range for SepJ. SDS-PAGE was performed according to Sambrook and Russel 

(2001). The composition of the resolving separation gel and the overlying 

stacking gel are given in Table 14. 
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Table 14. Composition of stacking gel and separation gel for SDS-PAGE. 

Volumes of the solutions are indicted in ml to prepare gels of 10 ml. 

component stacking gel (5 %) separation gel (8 %) 

30% acrylamide/0.8% bisacrylamide 1.7 2.7 

1 M Tris-HCl pH 6.8 1.25  

1.5 M Tris-HCl pH 8.8  1.25 

10 % (w/v) SDS 0.1 0.1 

10 % (w/v) APS 0.1 0.1 

TEMED 0.01 0.006 

H2O 6.8 4.6 

Samples were incubated for 5 min at 95°C in 1x SDS loading dye (Table 15), 

centrifuged for 3 min at 16,100xg and loaded onto the gel. Electrophoresis was 

carried out at a constant voltage of 15 V cm
-1

 in SDS running buffer (Table 15). 

Gels were either stained with Imperial Protein Stain (Thermo Scientific) which is 

a staining solution on the basis of coomassie brilliant blue R-250 to visualise 

proteins or subjected to Western blotting. 

Table 15. Composition of SDS loading dye and SDS running buffer. 

SDS loading dye SDS running buffer 

50 mM Tris-HCl pH 6.8 25 mM Tris 

100 mM DTT 190 mM glycine 

2 % (w/v) SDS 0.05 % (w/v) SDS 

0.1 % (w/v) bromphenol blue  

10 % (v/v) glycerol  
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2.6.4 Western Blot and protein detection 

Proteins were transferred from polyacrylamide gels to PVDF membranes 

(Hybond-P; Amersham Biosciences) using a semi-dry electroblotting system 

(Novex, Life technologies) and an ethanol based transfer buffer (25 mM Tris; 

192 mM glycine; 20 % (v/v) ethanol). The PVDF membranes were prepared by 

soaking briefly in ethanol and then in transfer buffer. Transfer was carried out by 

applying a constant voltage of 20 V for 30 min. The success of protein transfer 

was validated by staining the PVDF membrane with Ponceau S solution (0.1 % 

(w/v) Ponceau S; 5 % (w/v) acetic acid) that can easily be removed by subsequent 

washing in H2O. 

To detect specific proteins, membranes were blocked with 5 % (w/v) skimmed 

milk powder dissolved in PBS with 0.1 % (v/v) Tween-20 (PBS-T) for 1 h under 

gentle shaking. The membranes were washed three times in PBS-T (1x 15min; 

2x 5min) before adding a mouse anti-GFP antibody (Life technologies) in a 

concentration of 1:5,000 for 1 h at RT or over night at 4°C. To remove surplus 

antibody solution the membranes were washed three times in PBS-T (1x 15min; 

2x 5min). After 1 h of incubation with the horseradish peroxidase (HRP) -

conjugated antibody anti-rabbit IgG HRP (Promega) in a concentration of 

1:10,000, the membranes were washed three times in PBS-T (1x 15min; 2x 5min). 

Alternatively, the two step antibody staining protocol was replaced by a one step 

procedure using the monoclonal antibody anti-GFP-HRP (Miltenyi Biotec Ltd) 

for 1 h at RT. The protein bands were visualised using the enhanced 

chemiluminescence (ECL) kit (Amersham Biosciences) according to the 

manufacturer's protocol. X-ray films were developed manually. 
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2.7 Microscopy and spectroscopy 

In this study various methods of microscopy were used to reveal insights into the 

morphology and ultrastructure of cyanobacterial cells and filaments. Furthermore, 

these techniques allowed the localisation of fluorescent molecules and the kinetics 

of their diffusion between cells. 

2.7.1 Bright-field microscopy  

Bright field images were taken with a Leica laser-scanning confocal microscope 

SP5, a Leica DM6000B fluorescence microscope or a Leica DM RA2 microscope 

connected to a digital CCD camera (QImaging Retiga EXi IEEE 1394) using a 

x40 objective and the imaging software Velocity (PerkinElmer). Images were 

processed with ImageJ software (Abràmoff et al., 2004). 

2.7.1.1 Alcian Blue Staining 

To highlight developing (pro-) and mature heterocysts the polysaccharide stain 

Alcian Blue was added as described by Borthakur et al. (2005). 5 µl of 

0.5 % (w/v) Alcian Blue 8GX solution in 50 % (v/v) ethanol (Acros Organics) 

was added to 500 µl of culture and the solution incubated for 30 min at 30°C. 

Access stain was removed by washing the cells three times in BG110 medium 

(4,000xg; 1 min) prior to examination by bright field microscopy. 

2.7.2 Fluorescence and confocal microscopy 

Confocal and fluorescence microscopy were used to visualise fluorescent 

molecules in both living and fixed specimen. Chlorophyll of cyanobacterial cells 

is fluorescent on its own (autofluorescence), but most proteins and molecules do 
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not show any fluorescence when excited with visible light. Thus, fluorescent 

molecules were introduced into living cells either by uptake or expression as 

proteins such as green fluorescent proteins (GFP) (see results chapter for details 

on the generation of fluorophore-tagged proteins in Anabaena sp. PCC 7120). The 

localisation of proteins in fixed specimen was additionally studied by 

immunofluorescent labelling of the protein of interest with a fluorophore-tagged 

antibody (see chapter 2.7.3). As two types of microscopes have been used 

extensively in this work, they are described briefly in the following Figure 9. 

 

Figure 9. Schematics of a fluorescence and confocal microscope. 

Figure 9. 

Fluorescence and confocal microscopes consist of a light source, an excitation 

filter that selects for a specific excitation wavelength, a dichroic mirror which 

allows the separation of emission and excitation photons, an emission filter that 



2   Materials and methods 

96 

 

selects for a specific emission wavelength and a sensitive imaging device. Main 

differences between both devices are in the way of exciting the fluorophore and 

detecting its emission. While fluorescence microscopes consist of broad spectrum 

light sources such as mercury-vapor lamps or xenon arc lamps and detect photons 

by charge-coupled device (CCD) or complementary metal-oxide semiconductor 

(CMOS) cameras, confocal microscopes excite fluorophores by a laser beam of a 

specific wavelength that systematically scans the sample in a point-by-point 

fashion and detects fluorescence signals with a photomultiplier (PMT) after 

passing through a pinhole which rejects out-of-focus light. Thus, confocal 

microscopy allows collecting fluorescence emission light only from the focal 

plane or ‘optical section’ of a thick specimen. By capturing images from different 

focal planes (z-stacking) it is possible to reconstruct the three-dimensional 

structure of a sample. However, image acquisition usually takes longer than in 

fluorescence microscopy. 

2.7.2.1 Fluorescent cell labelling 

For molecular exchange experiments and localisation studies of cell components 

cyanobacterial cells were labelled with various fluorescent tracers summarised in 

Table 16. 
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Table 16. Fluorophores used in this study 

fluorophore usage excitation 

wavelength 

[nm] 

emission 

wavelength 

[nm] 

supplier 

BCECF molecular exchange 488 500-527 Molecular Probes 

calcein molecular exchange 488 500-527 Molecular Probes 

5-CFDA molecular exchange 488 500-527 Molecular Probes 

esculin hydrate molecular exchange 355 443-490 Sigma-Aldrich 

FM1-43FX cytoplasmic membrane 

stain 

488 570-595 Molecular Probes 

Hoechst 33258 DNA stain 355 455-495 AppliChem 

2-NBDG molecular exchange 476 520-560 Molecular Probes; 

Cayman Chemical 

6-NBDG molecular exchange 476 520-560 Molecular Probes 

     

GFP fluorescent protein tag 488 500-527  

mTurquise2 fluorescent protein tag 458 460-490  

YFP fluorescent protein tag 514 520-535  

2.7.2.1.1 Labelling with fluorescent tracers for molecular exchange 

experiments 

Cyanobacterial cells were harvested by centrifugation (4000xg, 1 min), washed 

twice in fresh growth medium and resuspended in 1 ml medium. Fluorescent 

tracers were added as follows: 12 µl of a 1 mg ml
-1

 calcein or 5-CFDA solution in 

DMSO, 10 µl of a 1 mg ml
-1

 2- or 6-NBDG solution in ultra-pure water, 30 µl of a 

saturated esculin hydrate solution in ultra-pure water (ca. 5 mM) and 5 µl of a 

10 mM BCECF solution in DMSO. The suspensions were incubated for 20 min 



2   Materials and methods 

98 

 

(2- and 6-NBDG), 30 min (BCECF, 5-CFDA and esculin hydrate) and 90 min 

(calcein) in the dark at optimal growth temperature and under gentle shaking 

(80 rpm). To remove the fluorescent dyes, cells were washed three times in 

growth medium, and incubated for another 15-30 min in 1 ml of medium at 

optimal growth temperature in the dark under gentle shaking (80 rpm). After a 

final washing step, cells were spotted onto growth medium agar plates, and excess 

solution was removed. To maintain the growth conditions throughout the 

experiment media and plates were preheated to optimal growth temperature. 

2.7.2.1.2 Fluorescent labelling of specific cell components 

Two additional fluorescent dyes, FM1-43FX and Hoechst 33258, were used to 

visualise specific cellular components. FM1-43FX stains the cytoplasmic 

membranes of cyanobacteria (Schneider et al., 2007), while Hoechst 33258 

interacts with DNA. For labelling, cells were washed once in fresh growth 

medium, and 1 μl Hoechst 33258 (1 mg ml
−1

; Bisbenzimide H33258) and/or 

2.5 μl FM1-43FX (0.1 mg ml
−1

) was added to 0.5 ml of culture. The suspension 

was incubated for 10 min at room temperature and washed twice with growth 

medium prior mounting on growth medium agar plates. Surplus medium was 

removed. 

2.7.2.2 Visualisation and FRAP 

For confocal microscopy, small blocks of agar were placed in a custom-built 

temperature-controlled sample holder covered with a glass coverslip (Figure 10). 

FRAP and time-lapse experiments were performed at the optimal growth 

temperature of the organism by attaching a water bath to the sample holder and 

pumping water through the metal body. 
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Figure 10. Custom-built temperature-controlled sample holder for confocal 

microscopy. 

The sample was placed on a cover slip inside the well and the temperature 

adjusted by pumping water through the sample holder (arrows). 

Cells were visualised with the Leica laser-scanning confocal microscope SP5 

using a x63 oil immersion objective (Leica HCX PL APO lambda blue 63.0×1.40 

OIL UV). Excitation and emission wavelengths for the different dyes and 

fluorescent proteins were chosen according to Table 16. Chlorophyll fluorescence 

(autofluorescence) was imaged usually simultaneously by using an emission 

detection range from 670 to 720 nm. 

For imaging, a 95 μm confocal pinhole was used which corresponds to a 

resolution of approximately 0.7 to 0.8 μm in the z-direction, whereas for FRAP 

measurements the pinhole was maximally opened (600 μm, resulting in an optical 

section thickness of ca. 4.0 - 4.2 μm). 

FRAP experiments were performed as follows: After taking an initial image (pre-

bleach), the region of interest (ROI) was bleached by increasing laser intensity 

and zooming into the ROI. Recovery was then recorded. 

2.7.2.3 Data analysis 

Images were prepared and analysed with ImageJ software (Abràmoff et al., 2004). 
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FRAP data were analysed as described by Mullineaux et al. (2008) and Merino-

Puerto et al. (2011) to estimate the ‘exchange coefficient’ E and the ‘recovery 

rate’ constant R, using Image Pro Plus 6.3 (Media Cybernetics) and SigmaPlot 

10.0 (Systat Software). 

2.7.3 Immunofluorescence localisation – sample preparation and 

fluorescence microscopy 

For immunofluorescence localisation of SepJ in cells of M. laminosus, filaments 

were harvested by centrifugation (3000xg; 2 min) and resuspended in fresh 

growth medium. Cultures were transferred onto 0.2 μm Nucleopore membranes, 

which were subsequently placed onto poly-L-lysine-coated slides. For fixation the 

slides were incubated in 50 ml plastic Falcon tubes containing 70 % (v/v) chilled 

(−20°C) ethanol for 30 min at −20°C. After three washing steps for 2 min with 

PBS-T, the samples were immersed in 3 % (w/v) milk powder, diluted in PBS-T, 

and incubated for 15 min at room temperature. Afterwards, the slides were 

directly incubated with the primary antibody, rabbit anti-Anabaena sp. PCC 7120 

SepJ (Mariscal et al., 2011), diluted 1:250 in PBS-T, and stored for 3 h at 30°C in 

a moisture chamber. After incubation, the samples were washed three times in 

PBS-T for 2 min, and then incubated with the secondary antibody for 45 min at 

30°C. The secondary antibody was an anti-rabbit immunoglobulin G conjugated 

with Alexa Fluor 488 (Life technologies) diluted 1:500 in PBS-T. After three 

washing steps with PBS-T for 2 min each, the slides were mounted with a 

coverslip using FluorSaveTM Reagent (Calbiochem), and sealed with nail 

varnish. 
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Immunolabelled cells were examined with a Leica DM6000B fluorescence 

microscope, using a ×63 oil immersion objective and an ORCA-ER camera 

(Hamamatsu). Alexa Fluor 488 fluorescence was monitored using a fluorescein 

isothiocyanate (FITC) L5 filter (excitation, band-pass (BP) 480/40 filter; 

emission, BP 527/30 filter), and autofluorescence was detected using a Texas Red 

TX2 filter (excitation, BP 560/40; emission, BP 645/75). Images were convolved 

with the Leica Application Suite Advanced Fluorescence software. 

2.7.4 Transmission Electron Microscopy (TEM) 

In contrast to light, fluorescence and confocal microscopy transmission electron 

microscopy (TEM) can be used to reveal structural characteristics of cells with 

much higher spatial resolution by illuminating the thin section of a specimen with 

a high voltage electron beam (short wavelength) instead of visible light. However, 

due to the power of the electron beam and the vacuum inside the microscope 

biological samples cannot be visualised alive but need to be prepared in a 

complex process, including the fixation of the sample and further steps, described 

in detail in the following paragraph. 

2.7.4.1 Sample preparation and visualisation of thin-sections 

Cultures were harvested by centrifugation (3000xg; 2 min) and chemically fixed 

for 2 h at room temperature with 4 % (w/v) glutaraldehyde in 100 mM phosphate 

buffer pH 7.3 (Table 17) to preserve the biological structure of the cells. To 

remove the fixative, samples were washed three times with 100 mM phosphate 

buffer. After embedding in 2 % (w/v) low-gelling temperature agarose (Sigma-

Aldrich), samples were cut in 1–2 mm cubic blocks, and post-fixed with 2 % 

(w/v) potassium permanganate dissolved in distilled water overnight at 4°C. 



2   Materials and methods 

102 

 

Addition of KMnO4 as fixative has been shown to increase the contrast of 

membranes (Luft, 1956). Samples were washed with distilled water until the 

supernatant remained clear, and dehydrated through a graded ethanol series (1×15 

min 30 %, 1×15 min 50 %, 1×15 min 70 %, 1×15 min 90 % and 3×20 min 100 

%). Two washes for 5 min with propylene oxide were performed prior infiltration 

with Araldite (Table 17) for 1 h and with fresh Araldite overnight. Polymerisation 

was achieved by incubation at 60–65°C for 48 h. Alternatively, cells were fixed 

for 2 h at room temperature in 100 mM phosphate buffer pH 7.3 containing 3 % 

(w/v) glutaraldehyde, 1 % (w/v) formaldehyde and 0.5 % (w/v) tannic acid, 

washed with phosphate buffer, and incubated in 2 % (w/v) OsO4 in phosphate 

buffer overnight. Dehydration was performed using a graded acetone series as 

described for ethanol prior to embedding in Araldite. Thin sections were cut with 

a glass knife prepared with a LKB 7800B KnifeMaker (LKB-Produkter AB) at a 

Reichert Ultracut E microtome. Areas of interest were identified by visualising 

cells with 2.5 % (w/v) toluidine blue in 0.5 % (w/v) sodium tetraborate on semi-

thin sections. Ultra-thin sections (ca. 70 nm) were collected on uncoated, 300 

mesh copper grids (Agar Scientific). High contrast was obtained by poststaining 

with saturated aqueous uranyl acetate and lead citrate (Reynolds, 1963) for 4 min 

each. The grids were examined in a JOEL JEM-1230 transmission electron 

microscope at an accelerating potential of 80 kV. 
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Table 17. Composition of phosphate buffer and Araldite resin for the 

preparation of samples for TEM. 

Phosphate buffer, pH 7.3 Araldite resin* 

450 ml 0.2 M Na2HPO4 40 ml Araldite CY212  

150 ml 0.2 M KH2PO4 60 ml dodecenyl succinic anhydride  

381 ml H2O 2 ml methyl nadic anhydride 

 1 ml benzyl dimethylamine 

* all chemicals were obtained from Agar Scientific 

2.7.5 Fluorescence spectroscopy 

Fluorescence emission spectra for esculin and 2-NBDG were recorded in a 

Perkin-Elmer LS55 luminescence spectrometer at room temperature at different 

pH. Esculin was excited at 360 nm and emission detected from 400 to 600 nm 

(slit-widths 2.5 nm). For 2-NBDG an excitation wavelength of 465 nm and an 

emission range from 500 to 600 nm (slit-widths 5 nm) was used. Data were 

analysed using SigmaPlot 12.5. 

Interaction of cyanophycin and esculin was tested by dissolving esculin to a final 

concentration of 300 nM in 10 mM KH2PO4/K2HPO buffer at pH 6.0, pH 7.0 and 

pH 10.0 and adding cyanophycin to a final concentration of 1 mg ml
-1

, 

corresponding to approximately 30 to 40 µM assuming a molecular weight of 25 

to 35 kDa. Suspensions were incubated for 0.5 - 3 h with gentle shaking at RT, 

and cyanophycin was then removed from the suspension by centrifugation (1 min; 

16,100xg). 
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3 Properties of transferred molecules between cells and 

their possible pathways in Anabaena sp. PCC 7120 

As heterocysts lack ribulose 1,5­bisphosphate carboxylase–oxygenase and do not 

fix CO2, they depend on the supply of carbon skeletons from adjacent vegetative 

cells for the generation of energy for nitrogen fixation (Wolk, 1968) but provide 

in turn combined nitrogen compounds for neighbouring vegetative cells. Until 

now it has remained unclear which metabolites in particular are exchanged 

between the two cell types. It has been suggested that ammonia or a substance 

derived from it such as glutamine (Fogg, 1949; Wolk et al., 1976; Thomas et al., 

1977) and/or the amino acids which form the storage compound cyanophycin, i.e. 

aspartate, arginine, or its smallest subunit β-aspartyl-arginine (Carr, 1988; Richter 

et al., 1999; Ke and Haselkorn, 2013; Burnat et al., 2014), could function as 

nitrogen vehicles between heterocysts and vegetative cells. In the other direction, 

it is likely that carbon metabolites are exchanged as sugars. Most studies so far, 

have focussed on the role of sucrose as carbon carrier (Schilling and Ehrnsperger, 

1985; Wolk et al., 1994; Curatti et al., 2002; Cumino et al., 2007; Marcozzi et al., 

2009; López-Igual et al., 2010; Vargas et al., 2011) but also the transfer of 

glucose or fructose has been suggested (Haury and Spiller, 1981; Jüttner, 1983). 

Additionally, some amino acids such as glutamate, alanine, methionine and 

cysteine may be transferred from vegetative cells into heterocysts (Wolk, 1968; 

Wolk et al., 1976; Jüttner, 1983; Pernil et al., 2010; Omairi-Nasser et al., 2014). 

A summary of potential metabolites being exchanged between heterocysts and 

vegetative cells is displayed in Figure 4. 
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Although it has been shown that fluorescent molecules are transferred between 

cells either via a continuous periplasm (Mariscal et al., 2007) or from cytoplasm 

to cytoplasm via cell-cell connections in Anabaena sp. PCC 7120 (Mullineaux et 

al., 2008), these studies are based on using fluorophores that are not directly 

comparable to physiologically-important metabolites. In the following chapter, the 

role of various fluorescent molecules in intercellular communication is 

investigated, including molecules that are similar to metabolites such as the 

sucrose analogue esculin and the glucose derivatives 2- and 6-NBDG. 

Furthermore, an additional ‘artificial’ molecule, BCECF, is introduced. The 

possible routes of transfer and the influence of the septal proteins FraC, FraD and 

SepJ on molecular exchange are explored by confocal microscopy and FRAP 

measurements. Finally, the physico-chemical properties of the molecules are 

compared with previously used fluorescent tracers and a conclusion about the 

properties of the complexes mediating the molecular transfer is drawn. 

3.1 Exchange of the sucrose analogue esculin in Anabaena sp. 

PCC 7120 

Sucrose is not only a key metabolite in cyanobacteria but also in plants where it is 

probably the major product of photosynthesis and long distance transport, being 

involved in growth, development, storage, signal transduction and acclimation to 

environmental stress conditions (Salerno and Curatti, 2003). It has been shown for 

plants that sucrose uptake transporters (SUTs) are important for loading sucrose 

into vascular tissues (phloem) and for the uptake of sucrose into sink tissues, such 

as flowers and seeds (Reinders et al., 2012a). An efficient way to study type I 

SUTs in plants has been recently developed by using the fluorescent coumarin 
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β-glucoside esculin and detecting its fluorescence using microscopy and 

spectroscopy (Gora et al., 2012; Reinders et al., 2012b). Uptake of esculin in 

Saccharomyces cerevisiae could be specifically induced by the heterologous 

expression of the potato sucrose transporter StSUT1 (Gora et al., 2012; Reinders 

et al., 2012b). Furthermore, the rate of esculin import by the type I SUTs, 

AtSUC2 and AtSUC9 from Arabidopsis thaliana is similar to that of sucrose 

(Sivitz et al., 2007; Reinders et al., 2012a), indicating that esculin is recognised 

and transported in a similar way to sucrose. However, it remains unknown 

whether cells of Anabaena sp. PCC 7120 take up esculin or related fluorescent 

sucrose analogues. 

3.1.1 Uptake of esculin by Anabaena sp. PCC 7120 

Several fluorescent sucrose analogues which have been used to follow sucrose 

uptake in plants such as rutin, quercitin, esculin (Sivitz et al., 2007), and 

hesperidin were tested for their ability to be taken up into cells of Anabaena sp. 

PCC 7120. Confocal images reveal that esculin was significantly incorporated and 

retained in filaments of Anabaena sp. PCC 7120 (Figure 11). 
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Figure 11. Uptake of esculin by Anabaena sp. PCC 7120 filaments. 

(A) Esculin-labelled cells (grown in BG11). (B) Control with unlabeled cells. 

Images show esculin fluorescence (cyan), autofluorescence (magenta) and an 

overlay of both channels. Scale bars, 10 µm. 

Comparison of the distributions of esculin and chlorophyll fluorescence from the 

thylakoid membranes shows that esculin fluorescence originates from the 

cytoplasm (Figure 11A). Esculin fluorescence could not be detected in the 

periplasm, where fluorophores such as GFP and iLOV make a fluorescent halo 

outside the thylakoid membranes (Mariscal et al., 2007; Zhang et al., 2008a; 

Zhang et al., 2013). An additional comparison of the distributions of esculin 

fluorescence with chlorophyll and periplasmic GFP in Anabaena sp. PCC 7120 

strain CSVM18 (Mariscal et al., 2007) did not show significant esculin 

fluorescence in the periplasm (Figure 12). However, since the periplasm is a thin 

compartment, the presence of some esculin in the periplasm cannot be excluded, 

but it is clear that at least the vast majority of esculin must be in the cytoplasm. 

Although nearly all cells show esculin fluorescence in the cytoplasm, significant 
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variation in fluorescence intensity (Figure 11A) indicates variation in competence 

for esculin uptake. 

 

Figure 12. Sub-cellular distributions of esculin, chlorophyll and periplasmic 

GFP from confocal fluorescence images. 

Esculin fluorescence visualised in cells of CSVM18, an Anabaena sp. PCC 7120 

mutant that expresses GFP fused to a signal sequence that is recognised by the 

TAT system, resulting in GFP export to the periplasm (Mariscal et al., 2007). 

Cells were grown for 24 h in BG110 medium to induce GFP expression (Mariscal 

et al., 2007). Images show esculin fluorescence (cyan), GFP fluorescence (green), 

chlorophyll fluorescence (magenta) and a merged image. Scale bars, 5 µm. 

Fluorescence profiles taken across a cell in the region marked by the white box in 

the merged image is shown underneath. 
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As it has been reported that esculin fluorescence depends on pH (Yin et al., 1996) 

it was investigated to which extent esculin fluorescence is influenced by pH. 

Fluorescence emission spectra were recorded at pH 4.5 to 10.0 (Figure 13A). 

Assuming that the cytoplasmic pH in Anabaena sp. PCC 7120 is about 7.0 

(Blanco-Rivero et al., 2005) and assuming that the pH in other cell compartments 

falls within the range 6.5 to 8.0 esculin fluorescence yield would be similar within 

a factor of approximately 0.8 to 1.3 (Figure 13A). Therefore, the effect of pH on 

esculin fluorescence intensity is negligible under physiological conditions. 

Another key factor which might influence esculin fluorescence is the difference in 

oxygen concentration between oxic vegetative cells and nearly anoxic heterocysts. 

Fluorescence spectroscopy revealed that esculin fluorescence yield was unaffected 

by oxygen concentration (Figure 13B), thus making esculin a suitable fluorophore 

to investigate fluorescence changes within different compartments of Anabaena 

sp. PCC 7120. 
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Figure 13. pH and oxygen dependence of esculin fluorescence. 

(A) pH dependence. Emission of esculin at the peak wavelength of 453 nm is 

plotted vs. pH from 4.5 to 10.0. (B) Oxygen dependence. Fluorescence emission 

spectra for a 330 nM esculin solution at pH 7.0, either in solution equilibrated 

with atmospheric O2 or after purging by bubbling with N2. A similar treatment 

carried out in a Clarke-type oxygen electrode (OxyLab 2; Hansatech) confirmed 

that purging with N2 decreases the O2 concentration in the solution from 

0.213 mM to 0.013 mM. 
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To test whether esculin is taken up by a specific sucrose transporter a fluorometric 

assay was developed that allowed following esculin fluorescence over time 

(Figure 14). The results indicate that esculin was taken up linearly for at least 

70 min. Addition of sucrose significantly reduced the rate of esculin uptake, 

suggesting that both molecules compete for the same uptake mechanism and 

possess similar properties. This applies under both diazotrophic and non-

diazotrophic growth conditions. 

 

Figure 14. Time-course for esculin uptake in Anabaena sp. PCC 7120 cells 

under different growth conditions and effect of sucrose competition. 

Cells were grown either with (BG11) or without combined nitrogen (BG110). 

Uptake of esculin (100 µM) was measured in the presence or absence of sucrose 

at 10 mM. Error bars represent standard deviations (number of biological 

replicates n = 3-5). Student’s t-tests show that rates of uptake differed 

significantly for: BG11 ± sucrose (p = 0.00003); BG110 ± sucrose (p = 0.002); 

BG11 vs. BG11 sucrose) (p = 0.05). Absolute values for esculin uptake assume 

that the intracellular fluorescence yield is similar to that in the buffer. (Data were 

kindly provided by Mercedes Nieves-Morión.) 
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3.1.2 Esculin as a fluorescent probe for intercellular communication 

In contrast to FRAP experiments with calcein as fluorescent tracer (Mullineaux et 

al., 2008), experiments with esculin were more difficult to perform for the 

following reasons: 

 Cells of Anabaena sp. PCC 7120 show a weak but detectable background 

autofluorescence at the wavelengths used for esculin detection (Figure 11). 

 Esculin fluorescence is easily bleached while recording image series. To 

diminish the effect of photobleaching the laser power was reduced and the 

pin hole maximally opened. This approach allowed image recording with 

negligible photobleaching but less resolution in the z-direction. 

 Esculin shows spontaneous recovery from photobleaching. When 

fluorescence of an entire filament is bleached out no recovery is possible 

due to redistribution of the fluorophore but only by spontaneous recovery. 

About 7.5 % of the initial fluorescence recovered spontaneously (Table 

18). 

 Esculin possesses a high immobile fraction (IF) of about 50-75 % (Table 

18). Similar to 5-CFDA in Anabaena sp. PCC 7120 (Merino-Puerto et al., 

2011b) esculin always showed incomplete recovery. Esculin binds to 

proteins such as human serum albumin (Zhang et al., 2008b) and possibly 

to specific sucrose-binding factors. Once bound it is likely that esculin 

becomes trapped inside a cell. Neither GFP (27 kDa) (Yoon and Golden, 

1998; Mariscal et al., 2007) nor iLOV (13 kDa) (Zhang, personal 

communication) diffuse between adjacent cells. To quantitate intercellular 

transfer Mullineaux et al. (2008) introduced the ‘exchange coefficient’ E 
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which relates the rate of dye movement between two adjacent cells to the 

difference in dye concentration between the cells. However, the high 

immobile fraction prevents calculation of E as this requires fitting of the 

simulated time-development of dye distribution in the filament to the 

experimental data (Mullineaux et al., 2008). Alternatively, kinetics of 

esculin transfer between vegetative cells can be quantified by determining 

the ‘recovery rate constant’ R as previously described by Merino-Puerto et 

al. (2011). To allow valid comparison of terminal cells (with one cell 

junction) with cells in the middle of filaments (with two cell junctions), R 

values were divided by 2 in the latter case. However, E is easier to 

estimate for exchange at vegetative cell:heterocyst junctions, provided that 

exchange at such junctions is significantly slower than exchange among 

vegetative cells. Then it can be assumed that the dye re-equilibrates among 

a large pool of vegetative cells on a faster time-scale than it exchanges 

with the heterocyst (Mullineaux et al., 2008). Under these conditions E 

simply approximates to R for the heterocyst (Mullineaux et al., 2008). 

3.1.3 Intercellular diffusion of esculin in filaments of Anabaena sp. 

PCC 7120 

In order to quantitate intercellular transfer of esculin in filaments of Anabaena sp. 

PCC 7120 FRAP experiments were performed. Esculin fluorescence in a single 

cell was bleached out and its recovery monitored over time (Figure 15). 

Experiments were carried out in filaments grown with or without a combined 

nitrogen source. In the later case, both cell types, vegetative cells and heterocysts, 

were analysed. FRAP measurements indicate that esculin transfer is present 
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between vegetative cells (Figure 15A,B) and from vegetative cells into 

heterocysts (Figure 15C,D). As the extent of fluorescence recovery is 

considerably greater than the spontaneous recovery of esculin fluorescence (Table 

18), the observed recovery is due to molecular exchange of the fluorophores 

between cells. To test whether esculin also diffuses from heterocysts into 

vegetative cells, fluorescence of all vegetative cells neighbouring a terminal 

heterocyst was bleached out and the fluorescence intensity of the heterocyst 

monitored over time. A control experiment using the same visualisation settings 

as for recording the images after the initial bleach did not show a bleaching effect 

(Figure 15E). Subsequently, the observed decay of heterocyst fluorescence 

indicates that esculin can be transferred from heterocysts to vegetative cells. 

Transfer in both directions occurs at similar timescales (Figure 15D,E), suggesting 

that transfer of esculin in Anabaena sp. PCC 7120 is due to simple diffusion 

rather than active transport. Because no esculin fluorescence was detected in the 

periplasm (Figure 11; Figure 12) intercellular communication from cytoplasm to 

cytoplasm appears to be the main route of communication in Anabaena sp. 

PCC 7120. This is in good agreement with previous studies using calcein 

(Mullineaux et al., 2008) and 5-CFDA (Mariscal et al., 2011; Merino-Puerto et 

al., 2011b). 
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Figure 15. Examples of FRAP experiments monitoring intercellular exchange 

of esculin in filaments of Anabaena sp. PCC 7120. 

(A,B) Esculin exchange among vegetative cells. (C,D) Esculin exchange from 

vegetative cells to a terminal heterocyst. (A,C) Fluorescence images from FRAP 

time-series showing esculin fluorescence prior to the bleach (pre), immediately 

after bleaching out fluorescence in the highlighted cell (t = 0), and 19 s later. 

Scale bars, 5 µm. (B,D) Fluorescence recovery curves for the bleached cells. (E) 

Esculin transfer from a terminal heterocyst to neighbouring vegetative cells. The 

graph shows heterocyst fluorescence over time prior FRAP (filled circles) and 

after bleaching out the fluorescence of all vegetative cells (open circles). 

Heterocyst fluorescence at t = 0 is already lowered by diffusion of esculin out of 

the heterocyst during the bleach. 
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3.1.4 Kinetics of esculin exchange and influence of the septal proteins SepJ, 

FraC and FraD on intercellular communication in Anabaena sp. 

PCC 7120 

In order to quantitate esculin exchange recover rate constants (Merino-Puerto et 

al., 2011b) were determined for different cell types and growth conditions. They 

revealed that exchange of esculin is significantly faster among vegetative cells 

than between vegetative cells and heterocysts (Table 18), following the same 

pattern as with calcein (Mullineaux et al., 2008). However, esculin transfer into 

heterocysts is faster than that of calcein by a factor of about 1.7. 

In contrast to previous observations with calcein (Mullineaux et al., 2008; 

Mariscal et al., 2011), rates of exchange of esculin among vegetative cells did not 

significantly increase following combined nitrogen step-down (Table 18) and the 

presence of cyanophycin plugs in the neck region of heterocysts did not influence 

molecular exchange of esculin. Esculin influx into heterocysts remained similar in 

an Anabaena sp. PCC 7120 mutant lacking the cyanophycin synthetase CphA1 for 

the synthesis of cyanophycin plugs (strain CSS7; Picossi et al., 2004) (Table 18). 

Consistent with this finding, no interaction between esculin and cyanophycin was 

detected in vitro (Figure 16). Different pH were tested to exclude the possibility of 

charge mediated interaction between esculin and cyanophycin. Neither neutral 

esculin (pH 6.0) nor negatively charged esculin (pH 10.0) showed binding of 

esculin to cyanophycin (Figure 16). No interaction at physiological conditions 

(pH 7.0; Blanco-Rivero et al., 2005) was detected. 
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Figure 16. Testing for interaction of esculin and cyanophycin in vitro. 

Fluorescence emission spectra for esculin at pH 6.0, pH 7.0 and pH 10.0 in buffer 

and after adding cyanophycin for 0.5 h and 3 h. Binding of esculin to cyanophycin 

is not detectable at any pH tested, as cyanophycin treatment did not lead to any 

detectable loss of fluorescence. 

As previous work showed that the septal proteins FraC, FraD and SepJ are 

important for the intercellular exchange of the fluorescent tracers calcein and 

5-CFDA (Mullineaux et al., 2008; Mariscal et al., 2011; Merino-Puerto et al., 

2011b) the influence of these proteins on the intercellular transfer of esculin was 

investigated using the deletion mutants CSVM34 (ΔsepJ; Mariscal et al. (2011)), 

CSVT22 (ΔfraC ΔfraD; Merino-Puerto et al. (2011)) and CSVM141 (ΔsepJ 
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ΔfraC ΔfraD; Vicente Mariscal, unpublished). In the presence of combined 

nitrogen, all three mutants showed significantly reduced fluorescence recovery 

rates compared to the wild type (Table 18), suggesting that these proteins are 

involved in intercellular exchange of esculin among vegetative cells. Deletion of 

FraC and FraD reduced the rate of esculin exchange between vegetative cells by 

about 50 % (Table 18). Interestingly, additional loss of SepJ did not reduce the 

rate of molecular transfer further (Table 18). It is likely that recovery rates remain 

similar between the two mutants as deletion of fraC and fraD strongly influences 

SepJ at the septa (Merino-Puerto et al., 2010). However, slower residual esculin 

exchange was still observed in the triple mutant (Table 18) suggesting that 

additional yet unknown proteins are involved in intercellular communication. 

Determining the influence of FraC, FraD and SepJ on molecular exchange 

between heterocysts and vegetative cells is difficult. Mutants lacking SepJ such as 

CSVM43 (ΔsepJ; Mariscal et al. (2011)) and CSVM141 (ΔsepJ ΔfraC ΔfraD; 

Vicente Mariscal, unpublished) do not grow diazotrophically and do not form 

heterocysts after nitrogen depletion and thus do not allow further investigations. 

Although strain CSVT22 (ΔfraC ΔfraD) is also incapable of sustained 

diazotrophic growth, it survives nitrogen depletion for more than 48 hours and 

produces well-developed heterocysts during this time (Merino-Puerto et al., 

2011b), enabling to test for the involvement of FraC and FraD in esculin exchange 

between heterocysts and vegetative cells. FRAP experiments revealed that the 

transfer of esculin into CSVT22 heterocysts is slower than in the wild-type by a 

factor of greater than 3 (Table 18). 
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Table 18. Kinetics of esculin exchange from FRAP measurements on 

filaments of Anabaena sp. PCC 7120. 

Measurement (number of replicates) R [s
-1

] (± s.d.) E [s
-1

] (± s.d.) IF (± s.d.) 

1. Vegetative cells in presence of nitrate 

a) Anabaena sp. PCC 7120                (n = 29) 0.137 ± 0.050
a  0.518 ± 0.143 

b) CSVM34 (ΔsepJ)                           (n = 25) 0.099 ± 0.042
b  0.571 ± 0.145 

c) CSVT22 (ΔfraC ΔfraD)                 (n = 30) 0.069 ± 0.029
c  0.605 ± 0.072 

d) CSVM141 (ΔsepJ ΔfraC ΔfraD)   (n = 21) 0.069 ± 0.030
c  0.671 ± 0.068 

2. Vegetative cells 48 h after nitrogen deprivation  

Anabaena sp. PCC 7120                    (n = 38) 0.142 ± 0.046
a  0.507 ± 0.110 

3. Heterocysts 48 h after nitrogen deprivation 

a) Anabaena sp. PCC 7120                (n = 33) 0.060 ± 0.054
c 0.060 ± 0.054 0.757 ± 0.069 

b) CSVT22 (ΔfraC ΔfraD)                 (n = 18) 0.017 ± 0.024
d 0.017 ± 0.024 0.736 ± 0.097 

c) CSS7 (cphA1::C.S3)                      (n = 24) 0.074 ± 0.069
e 0.074 ± 0.069 0.640 ± 0.160 

4. Spontaneous fluorescence recovery 

Anabaena sp. PCC 7120                    (n = 21)   0.925 ± 0.049 

Mean exponential recovery rate constants (R), exchange coefficients (E) and immobile 

fractions (IF) for filaments grown ± combined nitrogen. R values were standardised by 

dividing by 2 for cells with 2 connecting junctions. IF is defined by [(Ii-IE)/(Ii-I0)], where Ii 

= initial fluorescence intensity before bleaching, I0 = fluorescence intensity immediately 

after the bleach, IE = final fluorescence intensity. Extent of spontaneous fluorescence 

recovery in (4.) is given by (1-IF). Different letters indicate statistically significant 

differences between R values based on a ANOVA test followed by Fisher LSD pair-wise 

comparison. R values for cells showing recovery less than 7.5 % (equivalent to the 

spontaneous fluorescence recovery in the absence of diffusion) were considered as 

being 0. 

3.1.5 Loss of metabolic communication in senescent heterocysts 

When cultures of Anabaena sp. PCC 7120 were grown diazotrophically for 

48 hours, not all heterocysts showed esculin fluorescence, although neighbouring 
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vegetative cells remained fluorescent (Figure 17A,B). This suggests that some 

heterocysts are deficient in esculin exchange with their vegetative neighbours. To 

quantify esculin equilibration between heterocysts and vegetative cells, esculin 

fluorescence intensity in each heterocyst was divided by the mean fluorescence 

intensity in its vegetative neighbours (IH/IV). While IH/IV should be close to 1 for 

‘communicating’ heterocysts as esculin fully equilibrates across the cell junctions, 

IH/IV should be close to zero for heterocysts that are deficient in esculin exchange 

and also incapable of direct esculin uptake. A frequency distribution of IH/IV 

within a population confirms the bimodal distribution with two peaks close to zero 

and 1 (Figure 17C). Fluorescence from the ‘non-communicating’ heterocysts was 

not significantly above the background seen in unlabelled cells. Sometimes 

‘communicating’ and ‘non-communicating’ heterocysts were present in the same 

filament (Figure 17B). The frequency of ‘communicating’ heterocysts was almost 

100 % 24 hours after combined nitrogen step-down, but then dropped to about 

70 % at 48 hours and subsequently remained at this level (Figure 17B). Therefore 

young heterocysts are virtually all capable of esculin exchange, but during 

continued diazotrophic growth a population of about 30 % of ‘non-

communicating’ heterocysts builds up. A cphA1 deficient mutant which is unable 

to synthesise cyanophycin (Picossi et al., 2004) showed a similar frequency of 

‘non-communicating’ heterocysts (Figure 18) indicating that cyanophycin plugs 

are not the cause of heterocyst non-communication. 
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Figure 17. Esculin labelling of Anabaena sp. PCC 7120 heterocysts. 
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Figure 17 

(A,B) Fluorescence micrographs show esculin-labelled filaments 48 h after 

nitrogen step-down. ‘Communicating’ heterocysts are highlighted by white 

arrows and ‘non-communicating’ heterocysts (defined by IH/IV < 0.2) by yellow 

arrows. IH = esculin fluorescence intensity in the heterocyst; IV = mean esculin 

fluorescence intensity in the immediately neighbouring vegetative cells. Images 

show chlorophyll fluorescence (magenta), esculin fluorescence (cyan) and bright-

field images (grey). (A) (bottom) and (B) are merged images. Scale bars, 5 µm in 

(A) and 10 µm in (B). (C) Frequency distribution of IH/IV for heterocysts in 

esculin-labelled filaments as in (A,B). (D,E) Frequencies of ‘communicating’ 

(black) and ‘non-communicating’ (gray) heterocysts vs. time following combined 

nitrogen step-down (D) and after addition of combined nitrogen to a diazotrophic 

culture (E). Detached heterocysts are not included in the statistics. 

As heterocysts are incapable of further cell division and have a limited lifetime 

before they senesce and die (Meeks et al., 2002) the ‘non-communicating’ 

heterocysts may represent a senescent population. To test this possibility, nitrate 

was added to a diazotrophic culture, a procedure which prevents the generation of 

new heterocysts and must therefore lead to the gradual disappearance of 

heterocysts from the culture (Meeks et al., 2002). The results indicate that 

heterocyst frequency decreases following combined nitrogen addition, with a 

simultaneous decrease in the proportion of communicating heterocysts (Figure 

17E) suggesting that senescent heterocysts are indeed characterised by loss of 

communication with their vegetative neighbours. This occurs prior to any obvious 

morphological changes (Figure 17A) suggesting that it is an early event in 

heterocyst senescence. As heterocysts can consume about 50 % of the filament's 

photosynthates (Wolk, 1996) supply of only fully-functional heterocysts seems 

logical. Furthermore, loss of communication before cell lyses avoids leakage of 
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molecules from the entire filament. Insights into channel closure in Anabaena sp. 

PCC 7120 are given in chapter 5. 

 

Figure 18. Esculin labelling of heterocysts in an Anabaena sp. PCC 7120 

mutant lacking cyanophycin synthetase CphA1. 

Strain CSS7 (cphA1::C.S3) is unable to form polar plugs of cyanophycin in the 

neck region of heterocysts (Picossi et al., 2004). Fluorescence micrographs show 

esculin-labelled filaments 72 h after nitrogen step-down (A,C) and an unlabelled 

control (B). ‘Communicating’ heterocysts are highlighted by white arrows and 

‘non-communicating’ heterocysts by yellow arrows. ‘Non-communicating’ 

heterocysts are defined as those for which IH/IV < 0.2, where IH = esculin 

fluorescence intensity in the heterocyst; IV = mean esculin fluorescence intensity 

in the immediately neighbouring vegetative cells. Images show autofluorescence 

(magenta), esculin fluorescence (cyan) and a bright-field image (gray). Right-

hand images are merged. Scale bars, 10 µm in (A, B) and 5 µm in (C). 
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3.1.6 Conclusion 

The fluorescent sucrose analogue esculin is incorporated into the cytoplasm of 

Anabaena sp. PCC 7120 by a sucrose import system. Addition of sucrose reduces 

the rate of esculin uptake significantly. FRAP experiments revealed that esculin 

diffuses from cytoplasm to cytoplasm between vegetative cells and between 

heterocysts and vegetative cells. In comparison to the diffusion of sucrose in 

water (Table 23) the diffusion of esculin between cells is slow. Assuming sucrose 

diffuses with a diffusion coefficient D of 0.52 cm
2
 s

-1
 a distance x of one cell in 

Anabaena sp. PCC 7120 which is approximately 5 µm, the required time   

  

  
        

Loss of the septal proteins FraC, FraD and SepJ strongly impairs transfer of 

esculin between cells. However, a triple mutant still shows transfer of esculin 

between vegetative cells, suggesting the involvement of other proteins which 

remain to be identified. In conclusion, the major pathway for supplying 

heterocysts with sucrose is via intercellular diffusion from cytoplasm to cytoplasm 

via septal junction complexes. Interestingly, intercellular communication is lost in 

a significant fraction of older heterocysts, suggesting that molecular exchange is 

controlled to prevent the death of the entire filament when a heterocyst dies. 

3.2 Exchange of fluorescent glucose analogues in Anabaena sp. 

PCC 7120 

In comparison to earlier studies based on isotope glucose analogues the usage of 

fluorescent derivatives enables the measurement of data of high temporal and 

spatial resolution for living cells such as the exact localisation of glucose and the 
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kinetics of its transfer and turn-over (Kim et al., 2012). In the following 

subchapter two fluorescent tagged glucose molecules, 2-NBDG (2-(N-(7-

Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose) and 6-NBDG (6-(N-

(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-6-Deoxyglucose) are used to label 

filaments of Anabaena sp. PCC 7120 and their role in intercellular communication 

is investigated. Both fluorophores have been studied extensively for eukaryotic 

cell systems in the background of cancer and diabetes research but only little for 

microorganisms (Kim et al., 2012). 

3.2.1 Uptake of 2- and 6-NBDG by Anabaena sp. PCC 7120 

It is known from E. coli that 2-NBDG can enter the cells but 6-NBDG cannot be 

incorporated (Yoshioka et al., 1996). Uptake of 2-NBDG in E. coli is mediated by 

the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) 

which immediately phosphorylates 2-NBDG into 2-NBDG-6-phosphate after 

uptake (Yoshioka et al., 1996). Interestingly, both glucose derivatives 

accumulated in the cytoplasm of Anabaena sp. PCC 7120 filaments (Figure 19), 

suggesting a different route of uptake in Anabaena sp. PCC 7120 than found in E. 

coli. However, the efficiency of cell labelling was nominal and not suited for 

FRAP measurements. Only a fraction of filaments were labelled with 2-NBDG 

(Figure 19A). 
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Figure 19. Uptake of 2-NBDG by Anabaena sp. PCC 7120 and N. punctiforme 

ATCC 29133. 

(A) Anabaena sp. PCC 7120 grown in BG11. (B) N. punctiforme ATCC 29133 

grown in BG110 supplemented with ammonia. Images show 2-NBDG 

fluorescence (green) and chlorophyll fluorescence (magenta). Right-hand images 

are merged. Control images with unlabeled cells are shown at the bottom of each 

panel. Scale bars, 10 µm. 
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3.2.2 Expression of a glucose uptake system from Nostoc punctiforme 

ATCC 29133 in Anabaena sp. PCC 7120 

Confocal images reveal that 2-NBDG was to a significant degree incorporated and 

retained in filaments of the closely related cyanobacterium Nostoc punctiforme 

ATCC 29133-S (also known as UCD 153; Campbell et al., 2007; 2008) (Figure 

19B). On the basis of an earlier study by Ekman et al. (2013), showing that the 

OprB-like porin Npun_R5320 and the glucose permease GlcP (Npun_R5323) are 

important for the uptake of glucose in N. punctiforme ATCC 29133, mutants of 

Anabaena sp. PCC 7120 were generated which express both genes from the 

replicative vector pRL25C (Wolk et al., 1988). The gene region Npun_R5320-

Npun_R5323 was amplified by PCR using primers f_Npun_R5320-23 and 

r_Npun_R5320-23 and DNA of N. punctiforme ATCC 29133-S as template. The 

DNA fragment was digested with the restriction endonuclease BamHI and 

inserted into the BamHI-site of plasmid pRL25C, resulting in construct 

pCSDN21. The correctness of the inserted sequence was verified by sequencing. 

Construct pCSDN21 was transferred to Anabaena sp. PCC 7120, CSVM34 

(ΔsepJ; Mariscal et al., 2011), CSVM141 (ΔsepJ ΔfraC ΔfraD; Vicente Mariscal, 

unpublished) and CSVT22 (ΔfraC ΔfraD; Merino-Puerto et al., 2011) by 

conjugation as described by Elhai and Wolk (1988), resulting in strains CSDN21, 

CSVM34-CSDN21, CSVM141-CSDN21 and CSVT22-CSDN21 respectively. 

Uptake studies using the 
14

C-labelled sugar molecules glucose, fructose and 

sucrose revealed enhanced uptake by CSDN21 for glucose but not fructose and 

sucrose (Figure 20A), strengthening the importance of Npun_R5320 and 

Npun_R5323 as specific glucose transporters. Further studies using confocal 
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microscopy on NBDG labelled filaments of CSDN21 show the presence of both 

fluorescent tracers 2- and 6-NBDG in the cytoplasm (Figure 20B,C) while 

unlabelled cells remain non-fluorescent under the same visualisation settings 

(Figure 20D). The increase of NBDG uptake in strain CSDN21 remains to be 

quantitated. The flourometric assay described for esculin (see chapter 3.1.1) could 

resolve this question. 
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Figure 20. Sugar uptake properties of strain CSDN21. 
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Figure 20 

Cells grown in BG11. (A) Time-course for uptake of 
14

C labelled glucose, 

fructose and sucrose. All substrates were used at 100 µM. (Data and graphs were 

kindly provided by Vicente Mariscal and Mercedes Nieves-Morión) (B) 2-NBDG 

labelled cells. (C) 6-NBDG labelled cells. (D) Control with unlabelled cells using 

the same settings as for (B,C). Images show NBDG fluorescence (green), 

chlorophyll fluorescence (magenta) and overlays. Scale bars, 10 µm. 

3.2.3 Intercellular diffusion of 2- and 6-NBDG in CSDN21 

In order to investigate the role of the fluorescent glucose derivatives in 

intercellular communication, FRAP experiments were performed as previously 

described by Mullineaux et al. (2008). After labelling cells with either 2- or 

6-NBDG the fluorescence of a specific cell was bleached out by increased laser 

intensity and zooming into the ROI, and its recovery followed over time. FRAP 

measurements revealed that NBDG fluorescence recovers within 25 s for both 

glucose derivatives.  

Figure 21 shows exemplary fluorescence recovery of 2-NBDG in vegetative cells 

and heterocysts. These experiments indicate that 2-and 6-NBDG are transferred 

between adjacent vegetative cells and between vegetative cells and heterocysts via 

cytoplasmic bridges. 
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Figure 21. Examples of FRAP experiments monitoring intercellular exchange of 2-NBDG in CSDN21. 

Exchange between vegetative-vegetative cells (A) and vegetative cells-heterocysts (B). Fluorescence images from FRAP time-series show 2-NBDG 

fluorescence prior to the bleach (pre), immediately after bleaching out fluorescence in the highlighted cell (t = 0), and 25 s later. Scale bars, 5 µm. 

Fluorescence recovery curves for the bleached cells are displayed on the right-hand site. 
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However, not all cells show fluorescence recovery after bleaching. The frequency of 

non-communicating cells ranges from 10 % for 6-NBDG to 41 % for 2-NBDG 

(Figure 22). It is likely that the lack of molecular transfer results from immobilisation 

of the NBDG molecules within the cell. Similar to 5-CFDA (Merino-Puerto et al., 

2011b) and esculin (see chapter 3.1) 2- and 6-NBDG always showed incomplete 

recovery. When incubating filaments of CSDN21 for 24 h in BG11 medium 

supplemented with either 2- or 6-NBDG the frequency of non-communicating cells 

dramatically increased to 90 % for 2-NBDG and 100 % for 6-NBDG (Figure 22). 

 

Figure 22. Frequency of fluorescence recovery in FRAP experiments using 2- 

and 6-NBDG. 

Number of performed measurements: 39 (2-NBDG), 20 (6-NBDG), 20 

(2-NBDG+BMAA), 21 (6-NBDG+BMAA), 20 (2-NBDG (24h)), 20 (6-NBDG 

(24h)), 27 (2-NBDG (-N) veg), 26 (2-NBDG (-N) het), 30 (CSVM34-2-NBDG), 26 

(CSVT22-2-NBDG) and 33 (CSVM141-2-NBDG). het - heterocyst; veg - vegetative 

cell. 
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Interestingly, the frequency of immobilised 2-NBDG in vegetative cells was 

significantly lower under nitrogen depletion than in cells grown with nitrate as 

nitrogen source (5 % and 41 % respectively) (Figure 22). In contrast to vegetative 

cells, heterocysts showed a high frequency of 2-NBDG immobilisation (73 %; Figure 

22). Further investigation by confocal microscopy revealed a high variability of 

heterocyst labelling with both 2- and 6-NBDG with some cells showing fluorescence 

and others being non-fluorescent (Figure 23A). Variation in heterocyst labelling has 

been also observed for esculin (see chapter 3.1). However, labelling with NBDG 

molecules was in general less efficient with less cells being labelled in comparison to 

the labelling with esculin. Sometimes only heterocysts were labelled within a 

filament (Figure 23A). To further investigate whether heterocysts are capable of 

taking up 2-NBDG, heterocysts were purified and the fluorescent glucose derivative 

added. Isolated heterocysts did not show any fluorescence (Figure 23B) suggesting 

that 2-NBDG is not taken up directly by heterocysts but diffuses from neighbouring 

vegetative cells into the cell where degradation processes might be slower or 

missing. To prove that isolated heterocysts are viable calcein-AM was added to 

isolated heterocysts. Calcein-AM becomes only fluorescent inside living cells after 

hydrolysis by intracellular esterases. Isolated heterocysts showed fluorescence 

(Figure 23C) indicating the suitability of the used purification method to obtain 

viable heterocysts. 
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Figure 23. Labelling of heterocysts with 2-NBDG. 
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Figure 23 

(A) Fluorescence micrographs showing filaments 48 h after nitrogen step-down. 

Heterocysts of interest are indicated by white arrows. Images show 2-NBDG 

fluorescence (green), chlorophyll fluorescence (magenta), overlays of both channels 

and bright-field images (grey). Control with unlabelled cells (bottom panel). Scale 

bars, 10 µm. (B,C) Uptake of 2-NBDG (B) and calcein (C) by purified heterocysts. 

Images show 2-NBDG fluorescence (green), chlorophyll fluorescence (magenta), 

bright-field images (grey) and overlays of 2-NBDG fluorescence and bright-field. 

Controls without dye are displayed in the bottom row of each panel. Scale bars, 5µm. 

Louzao et al. (2008) reported that 2-NBDG accumulates in glycogen in living cells 

and cell-free systems. In order to test whether the immobilisation of the fluorescent 

glucose derivatives coincides with the formation of glycogen, the non-proteinogenic 

amino acid β-N-methylamino-L-alanine (L-BMAA) was added. In Anabaena sp. 

PCC 7120 the addition of L-BMAA strongly influences the metabolic pathways of 

the organism by rapidly inhibiting nitrogenase activity and massively accumulating 

glycogen (Berntzon et al., 2013). Addition of L-BMAA results in extensive 

accumulation of both fluorophores in filaments of CSDN21 (Figure 24A,B) and 

complete immobilisation of both NBDG molecules (Figure 22, Figure 24D,E). 

NBDG fluorescence of a bleached vegetative cell did not recover, consistent with the 

constant fluorescence intensity of neighbouring vegetative cells (Figure 24D,E). 

These results suggest that incorporation of 2- and 6-NBDG into glycogen could be 

the main cause for the loss of mobility. However, immobilisation due to interactions 

with other cell components such as proteins and lipids is possible. The model in 

Figure 24G shows that both molecules can be incorporated into glycogen. Although 

incorporation of 6-NBDG does not allow the formation of α(1→6) linkages, it is 

likely that glycogen formation is still possible using unlabelled glucose molecules 

instead. 
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Figure 24. Influence of L-BMAA on uptake and transfer of 2- and 6-NBDG in 

CSDN21 and formation of NBDG-glycogen. 

Filaments of CSDN21 incubated for 24 h with 2-NBDG (A) and 6-NBDG (B). (C) 

Control without dye. Images show NBDG fluorescence (green), chlorophyll 

fluorescence (magenta) and overlays. Scale bars, 10µm. (D,E) Fluorescence recovery 

curves for 2-NBDG (D) and 6-NBDG (E). NBDG fluorescence for the bleached cell 

(cell 2 (open circle)) and neighbouring vegetative cells (cell 1 (filled circle) and 

cell 3 (filled triangle)) vs. time. (F) Fluorescent 2-NBDG granules in filaments of 

CSN21. Images show 2-NBDG (green), chlorophyll fluorescence (magenta) and 

overlays. Control with unlabeled cells (bottom row). Scale bars, 10 µm. (G) 

Hypothetical structure for NBD-glycogen based on incorporation of 2- and 6-NBDG. 

Glycogen is formed of glucose molecules which are covalently linked via α(1→4) 

and α(1→6) bonds. Carbon atoms which are involved in formation of the linkages 

are numbered in red. 

Interestingly, after removal of both L-BMAA and the fluorescent glucose derivative 

and further incubation for 24 h, filaments of CSDN21 showed a highly variable 

fluorescence within the same filament (Figure 25A,B), suggesting that single cells 

within the same filament exhibit different metabolic characteristics. The variation in 

fluorescence along the filaments of CSDN21 also indicates that once immobilised 



3   Properties and pathways of transferred molecules 

 

138 

 

NBDG molecules do not retain mobility and cannot diffuse freely between 

neighbouring cells until reaching the concentration equilibrium. 

To test whether NBDG fluorescence is dependent on pH, fluorescence emission 

spectra were recorded at pH 4.5 to 10.0 (Figure 25C). Assuming that the cytoplasmic 

pH in Anabaena sp. PCC 7120 is about 7.0 (Blanco-Rivero et al., 2005) and 

assuming that the pH in other cell compartments falls within the range 6.0 to 8.0 

NBDG fluorescence yield would be nearly constant (Figure 25C). Therefore, the 

effect of pH on 2-NBDG fluorescence intensity is negligible under physiological 

conditions.  

 



3   Properties and pathways of transferred molecules 

 

139 

 

 

Figure 25. Degradation of 2-NBDG in filaments of CSDN21 and pH dependence 

of 2-NBDG fluorescence. 

(A) Fluorescence images of CSDN21 after incubation for 24 h with 2-NBDG and 

L-BMAA (upper left) and 24 h after removal of 2-NBDG and L-BMAA (upper 

right). 2-NBDG fluorescence shown in green. Scale bars, 10µm. (B) Fluorescence 

intensity plot using cells displayed in (A). Filled circles - 24 h after addition of 

2-NBDG and L-BMAA; open circles - 24 h after removal of 2-NBDG and L-BMAA. 

(C) pH dependence of 2-NBDG fluorescence. Emission of 2-NBDG at the peak 

wavelength of 545 nm is plotted vs. pH from 4.5 to 10. 

3.2.4 Kinetics of intercellular 2- and 6-NBDG diffusion in CSDN21 

To quantify the kinetics of intercellular exchange for the different fluorophores, 

Mullineaux et al. (2008) introduced the ‘exchange coefficient’ E that relates the rate 

of dye movement between two neighbouring cells to the difference in dye 

concentration between these cells. After short incubation of CSDN21 with the 

fluorescent glucose variants the majority of cells shows fluorescence recovery after 

the initial bleach (Figure 22) indicating that NBDG molecules remain mobile. 

However, as even recovering cells never showed full recovery, E can only be 
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determined for heterocysts but not for vegetative cells (see esculin 3.1.2 for 

discussion). Therefore, the ‘recovery rate constant’ R was used for quantitation of 

molecular transfer between vegetative cells (Merino-Puerto et al., 2011). 

In the presence of a combined nitrogen source exchange of 2- and 6-NBDG was 

similar between vegetative cells in strain CSDN21 (Table 19). For simplicity the 

following FRAP experiments were performed with 2-NBDG only. 

Under nitrogen depletion the need for intercellular communication becomes 

substantial. Filaments of Anabaena sp. PCC 7120 differentiate photosynthetically-

active vegetative cells into photosynthetically-inactive heterocysts which provide 

fixed nitrogen but depend on the provision of fixed carbon from neighbouring cells. 

In contrast to calcein (Mullineaux et al., 2008) but similar to esculin (see chapter 3.1) 

exchange for 2-NBDG between vegetative cells was not significantly faster under 

this condition (Table 19). Intercellular transfer of 2-NDBG between vegetative cells 

and heterocysts was significantly slower by about 76 % than between vegetative cells 

under nitrogen deprivation (Table 19). A result which could be attributed to the 

reduced number of septal junctions identified by freeze-fracture electron microscopy 

(Giddings and Staehelin, 1978) and electron tomography (Omairi-Nasser et al., 

2014). 
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Table 19. Kinetics of 2- and 6-NBDG exchange from FRAP measurements on 

filaments of CSDN21 and related mutants. 

Measurement (number of replicates) R [s
-1

] (± s.d.) E [s
-1

] (±s.d.) 

6-NBDG 2-NBDG 2-NBDG 

1. vegetative cells in presence of nitrate 

a) CSDN21 

b) 

(n=18) 

(n=23) 

0.095 ± 0.048
a 

 

 

0.126 ± 0.083
a 

 

 

c) CSVM34 (ΔsepJ)-DN21 (n=28)  0.082 ± 0.044
b  

d) CSVT22 (ΔfraC ΔfraD)-DN21 (n=19)  0.042 ± 0.026
c  

e) CSVM141(ΔsepJ ΔfraC ΔfraD)-

DN21 

(n=9)  0.042 ± 0.023
c  

2. vegetative cells 48 h after nitrogen deprivation 

CSDN21 (n=26)  0.100 ± 0.058
a  

3. heterocysts 48 h after nitrogen deprivation 

CSDN21 (n=7)  0.024 ± 0.014
d 0.024 ± 0.014 

Mean recovery rate constants (R) and exchange coefficients (E) for filaments grown in the 

presence and absence of combined nitrogen. R values were standardised by dividing by 2 for 

cells with 2 connecting junctions (i.e. all cells except those at the terminus of the filament). 

Different letters indicate statistically significant differences between R values. ANOVA 

followed by Fisher LSD pair-wise comparison. 

3.2.5 Influence of septal proteins FraC, FraD and SepJ on intercellular 

transfer of 2-NBDG 

As previous work showed that the septal proteins FraC, FraD and SepJ are important 

for the intercellular exchange of the fluorescent tracers calcein, 5-CFDA (Mullineaux 

et al., 2008; Mariscal et al., 2011; Merino-Puerto et al., 2011b) and esculin (see 

chapter 3.1), the influence of these proteins on the intercellular transfer of 2-NBDG 
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was investigated by FRAP. To increase glucose uptake in mutants CSVM34 (ΔsepJ; 

Mariscal et al. (2011)), CSVT22 (ΔfraC ΔfraD; Merino-Puerto et al. (2011)) and 

CSVM141 (ΔsepJ ΔfraC ΔfraD; Vicente Mariscal, unpublished) plasmid pCSDN21 

was introduced, resulting in strains CSVM34-DN21, CSVT22-DN21 and 

CSVM141-DN21. Deletion of fraC, fraD and sepJ significantly reduces molecular 

transfer between vegetative cells to about 33 % in comparison to CSDN21 (Table 

19). While in CSVM34-DN21 (ΔsepJ) the recovery rate constant remains at about 65 

%, deletion of fraC and fraD results in reduction of molecular exchange to about 33 

% (Table 19). The similarity of recovery rate constants in CSVM141-DN21 and 

CSVT22-DN21 is likely due to the importance of FraC and FraD for the correct 

localisation of SepJ at the septa (Merino-Puerto et al., 2010). It is notable that both 

mutants still show intercellular exchange of 2-NBDG suggesting that other proteins 

are likely involved in mediating diffusion between cells. 

3.2.6 Conclusion 

Uptake of glucose by Anabaena sp. PCC 7120 can be significantly increased by 

expressing the genes oprB (Npun_R5320) and glcP (Npun_R5323) from 

N. punctiforme ATCC 29133 from the self-replicating plasmid pRL25C. OprB and 

GlcP together provide the capability of specific transport of glucose but not fructose 

or sucrose in Anabaena sp. PCC 7120. Generated mutants show uptake of two 

fluorescent glucose derivatives, 2- and 6-NBDG that diffuse in the cytoplasm 

between adjacent vegetative cells and vegetative cells and heterocysts. Septal 

proteins FraC, FraD and SepJ are important factors for molecular transfer. Deletion 

of the three genes reduces exchange to a third. Furthermore, a high frequency of 

immobilised fluorophore was observed likely due to their incorporation into 
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glycogen. Different degradation velocities of the fluorescent glucose derivatives 

suggest that single cells within a filament possess different metabolic characteristics. 

3.3 Exchange of BCECF in Anabaena sp. PCC 7120 

2′,7′-Bis-(2-carboxyethyl)-5-(and-6-)carboxyfluorescein (BCECF) was first 

introduced in 1982 to measure the cytoplasmic pH of lymphocytes (Rink et al., 1982) 

and has since then become the most widely used intracellular pH indicator for 

mammalian and plant cells (see review by Han and Burgess, 2010) but also bacteria 

(e.g. Corvini et al., 2000). The technique is based on pH dependent changes in 

fluorescence intensities when exciting the molecule at different wavelengths (Slavík, 

1997). Similar to calcein and 5-CFDA the fluorescent tracer BCECF is a fluorescein 

derivative that is added as acetoxymethylester (AM) to the cultures. BCECF-AM is 

hydrophobic enough to enter the cell. Once inside the cytoplasm the ester groups are 

hydrolysed by esterases and the molecule converted to its fluorescent form. As 

BCECF is too hydrophilic to traverse lipid bilayers it is retained in the cytoplasm. 

Thus, fluorescence recovery after photobleaching can only be observed when 

fluorophores diffuse into the bleached cell from neighbouring cells. In comparison to 

calcein and 5-CFDA, BCECF exhibits some specific physico-chemical properties, 

allowing the investigation of the effect of size and charge on molecular transfer via 

septal junctions. While BCECF is strongly negatively charged, similar to calcein, its 

size is more comparable to that of 5-CFDA (Table 23). In the following subchapter 

the role of BCECF in intercellular communication is investigated by FRAP 

measurements. Results are compared with transfer of 5-CFDA and calcein. 

Furthermore, the influence of the septal proteins FraC, FraD and SepJ on BCECF 

transfer is examined. 
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3.3.1 Uptake of BCECF and kinetics of its transfer in Anabaena sp. PCC 7120 

Cells of Anabaena sp. PCC 7120 were successfully labelled with BCECF after 

30 min of incubation with the dye. Confocal images reveal the presence of the 

fluorophore in the cytoplasm (Figure 26) and FRAP experiments indicate that 

BCECF is transferred between vegetative cells (Figure 26) and between vegetative 

cells and heterocysts (data not shown). As cells did not show full fluorescence 

recovery after bleaching, molecular exchange was quantitated by the method of 

Merino-Puerto et al. (2011) by determining the recovery rate constant R. For 

comparison purposes cells of the same culture were labelled in separate experiments 

with the fluorescein derivatives 5-CFDA and calcein as described in the materials 

and methods section 2.7.2.1. Table 20 summarises the results. 

Both fluorophores, BCECF and calcein exhibited similar recovery rates in the 

presence of a combined nitrogen source while exchange of 5-CFDA is significantly 

faster under this condition, indicating that the negative charge of the molecule might 

be a key feature beside its size reducing transfer between vegetative cells. When cells 

of Anabaena sp. PCC 7120 were deprived of combined nitrogen, exchange between 

vegetative cells increases for BCECF and calcein and became similar to the value 

determined for 5-CFDA. Accordingly, nitrogen step-down allows faster exchange of 

molecules that are negatively charged and slightly bigger. How molecular transfer is 

increased remains speculative. It is possible that either new channels between cells 

are formed or the properties of existing structures are altered e.g. by structural 

modifications or by adding new components/proteins. According to the FFEM 

studies by Giddings and Staehelin (1981) the number of septal junctions between 

vegetative cells remains nearly constant in the presence and absence of combined 
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nitrogen in the closely related strain Anabaena cylindrica, suggesting that existing 

structures are modified for molecular exchange. 

 

Figure 26. Example of FRAP experiments monitoring intercellular of BCECF 

exchange between vegetative cells in Anabaena sp. PCC 7120. 

Fluorescence images from FRAP time-series show BCECF fluorescence prior to the 

bleach (pre), immediately after bleaching out fluorescence in the highlighted cell 

(t = 0), and 13 s later. Scale bars, 5 µm. Fluorescence recovery curve for the bleached 

cell is displayed underneath. 

Exchange of BCECF between vegetative cells and heterocysts was significantly 

slower than between vegetative cells. This is in good agreement with earlier studies 

on the exchange of calcein in Anabaena sp. PCC 7120 (Mullineaux et al., 2008) and 

is possibly the result of the reduced number of septal junctions found in septa 
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between heterocysts and vegetative cells (Giddings and Staehelin, 1981; Omairi-

Nasser et al., 2014). Furthermore, it is notable that the exchange coefficients for 

heterocysts are highly variable with several cells showing no recovery, indicated by 

the high standard deviation in Table 20. 

Table 20. Kinetics of BCECF exchange from FRAP measurements on filaments 

of Anabaena sp. PCC 7120 and septal mutants. 

Measurement R [s
-1

] (± s.d.) (number of replicates) 

BCECF 5-CFDA Calcein 

1. vegetative cells in presence of nitrate 

a) Anabaena sp. PCC 7120 0.079 ± 0.050 

(n=48)
a 

0.094 ± 0.054 

(n=57)
A* 

0.072 ± 0.042 

(n=39)
B* 

b) CSVM34 (ΔsepJ) 0.049 ± 0.032 

(n=66)
b 

  

c) CSVT22 (ΔfraC ΔfraD) 0.007 ± 0.008 

(n=23)
c 

  

d) CSVM141(ΔsepJ ΔfraC ΔfraD) 0.004 ± 0.007 

(n=24)
c 

  

2. vegetative cells after nitrogen deprivation 

a) Anabaena sp. PCC 7120 - 48 h 0.095 ± 0.035 

(n=14)
a 

0.088 ± 0.034 

(n=13)
A 

0.105 ± 0.039 

(n=10)
C 

b) Anabaena sp. PCC 7120 - 72 h 0.085 ± 0.033 

(n=26)
a 

0.101 ± 0.048 

(n=10)
A 

0.111 ± 0.054 

(n=4)
C 

3. heterocysts after nitrogen deprivation 

a) Anabaena sp. PCC 7120 - 48 h 0.010 ± 0.019 

(n=6)
c 

  

b) Anabaena sp. PCC 7120 - 72 h 0.010 ± 0.020 

(n=4)
c 
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Mean recovery rate constants (R) for filaments grown in the presence and absence of 

combined nitrogen. Different letters indicate statistically significant differences between R 

values for a specific dye under minus or plus N conditions. Significant differences for R 

values for different dyes are indicated by "*". ANOVA followed by Fisher LSD pair-wise 

comparison. 

3.3.2 Influence of the septal proteins SepJ, FraC and FraD on the exchange of 

BCECF 

Exchange of 5-CFDA and calcein depends on the presence of FraC, FraD and SepJ 

in Anabaena sp. PCC 7120. Loss of these proteins strongly reduced transfer between 

vegetative cells (Mullineaux et al., 2008; Mariscal et al., 2011; Merino-Puerto et al., 

2011b). Similar results were obtained for transfer of BCECF in strains CSVM34 

(ΔsepJ; Mariscal et al. (2011)), CSVT22 (ΔfraC ΔfraD; Merino-Puerto et al. (2011)) 

and CSVM141 (ΔsepJ ΔfraC ΔfraD; Vicente Mariscal, unpublished) (Table 20). 

Deletion of fraC, fraD and sepJ (CSVM141) and deletion of fraC and fraD 

(CSVT22) nearly inhibited molecular transfer between vegetative cells completely, 

while recovery in the sepJ deletion mutant (CSVM34) remains at 62 % of the level 

determined in the wild-type (Table 20). 

3.3.3 Conclusion 

BCECF is a suitable fluorescent probe to investigate intercellular communication in 

Anabaena sp. PCC 7120. Both, vegetative cells and heterocysts can be labelled with 

the dye. FRAP results reveal that BCECF diffuses within the cytoplasm of different 

cell types. Exchange of BCECF is similar to the molecular diffusion determined for 

calcein, suggesting that charge and size of the molecules passing the channels are 

important characteristics. Loss of the septal proteins FraC, FraD and SepJ 

significantly reduces transfer of BCECF. 
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3.4 Summary 

Several new fluorescent dyes were introduced in this chapter to study intercellular 

communication in Anabaena sp. PCC 7120, including molecules that are similar to 

physiologically-important molecules such as the sucrose analogue esculin and the 

glucose derivatives 2- and 6-NBDG but also a new fluorescein derivative that is 

highly negatively charged (Table 23). Confocal microscopy and FRAP experiments 

revealed cytoplasmic transfer via septal junction complexes as the main route of 

exchange for all tested molecules. This is in good agreement with earlier studies, 

showing cytoplasmic transfer of calcein and 5-CFDA in Anabaena sp. PCC 7120 

(Mullineaux et al., 2008; Merino-Puerto et al., 2010; Mariscal et al., 2011; Merino-

Puerto et al., 2011a; 2011b; Berendt et al., 2012). However, it cannot be excluded at 

this stage that a small fraction of molecules diffuses additionally from cell to cell via 

the continuous periplasm (Mariscal et al., 2007). 

Little is known about the selectivity of septal junction complexes. The expansion of 

the range of molecular probes for intercellular communication described in this 

chapter, allows a first comparison. In the presence of combined nitrogen (BG11 

medium), calcein and BCECF exhibited significantly different recovery rates than 

5-CFDA, 2-NBDG and esculin (Table 21) suggesting that bigger and more 

negatively charged molecules diffuse slower between vegetative cells. Accordingly, 

charge and size can be considered as important properties of molecules passing 

septal junction complexes (Figure 27). 

When cultures of Anabaena sp. PCC 7120 were deprived of combined nitrogen 

(BG110 medium), exchange of calcein increases significantly in comparison to 

conditions when combined nitrogen source abundant (Table 21). As no significant 
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differences were observed between plus and minus combined nitrogen conditions for 

BCECF, 5-CFDA, 2-NBDG and esculin (Table 21) this result suggests that nitrogen 

step-down leads to a change of septal junction complexes, allowing bigger molecules 

to diffuse faster between vegetative cells in the absence of combined nitrogen than in 

its presence. Charge of the molecules does not influence transfer. Comparison of the 

recovery rates of the different molecules under minus N conditions revealed that the 

smallest molecule, esculin is exchanged fastest between vegetative cells (Table 21).  

Table 21. Recovery rate constants for calcein, BCECF, 5-CFDA, 2-NBDG and 

esculin under plus (BG11) and minus N (BG110) conditions. 

 R [s
-1

] (± s.d.)
 

fluorophore (number of replicates) BG11 BG110 

calcein                                   (74/31) 0.077 ± 0.037
a* 0.103 ± 0.030

A* 

BCECF                                 (48/14) 0.079 ± 0.050
a 0.095 ± 0.035

A 

5-CFDA                                (98/32) 0.110 ± 0.055
b 0.096 ± 0.045

A 

2-NBDG                                (23/26) 0.126 ± 0.083
b,c 0.100 ± 0.058

A 

esculin                                   (29/38) 0.137 ± 0.050
c 0.142 ± 0.046

B 

Mean recovery rate constants (R) for filaments grown in the presence and absence of 

combined nitrogen. Different letters indicate statistically significant differences (p ≤ 0.05) 

between R values under minus or plus N conditions. Significant differences for R values for 

a specific dye under different growth conditions are indicated by "*". ANOVA followed by 

Fisher LSD pair-wise comparison. 
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Figure 27. Comparison of molecular exchange in Anabaena sp. PCC 7120. 

Influence of molecular weight (A) and charge (B) on transfer of fluorescent tracers. 

Graphs are based on R and E values presented in this work and by Mullineaux et al. 

(2008), Merino-Puerto et al. (2010; 2011a; 2011b) and Mariscal et al. (2011). The E 

value for 5-CFDA in Anabaena sp. PCC 7120 under nitrogen deprivation determined 

by Mariscal et al. (2011) and the E value for calcein in Anabaena sp. PCC 7120 

under nitrogen deprivation determined by Mullineaux et al. (2008) were excluded as 

outliers. 
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In Anabaena sp. PCC 7120 the septal proteins FraC, FraD and SepJ are important 

components mediating intercellular transfer of calcein and 5-CFDA (Mullineaux et 

al., 2008; Mariscal et al., 2011; Merino-Puerto et al., 2011b). Furthermore, Merino-

Puerto et al. (2011b) suggested the existence of a FraC/FraD-dependent intercellular 

exchange route that does not require SepJ. In order to investigate the importance of 

FraC, FraD and SepJ for the transfer of specific molecules further, the determined E 

and R values were compared with data previously published by Mullineaux et al. 

(2008); Merino-Puerto et al. (2010; 2011a; 2011b) and Mariscal et al. (2011). 

However, as the two parameters cannot be compared directly, a different approach 

was taken. Differences were determined by comparing the E and R values for each 

mutant strain to the value determined for the wild-type. Loss of SepJ (CSVM34) 

strongly reduces transfer of calcein (ca. 24 % of wild-type; Table 22) but transfer of 

BCECF, 5-CFDA, 2-NBDG and esculin to much less extent (ca. 61 - 72 %; Table 

22), suggesting that SepJ is a key protein for transfer of bigger molecules 

independent of their charge. Loss of FraC and FraD (CSVT22) reduces transfer of all 

molecules dramatically with smaller and neutral molecules being less impaired in 

diffusion. Additional loss of SepJ (CSVM141) does not reduce transfer of molecules 

further. As deletion of fraC and fraD influences localisation of SepJ (Merino-Puerto 

et al., 2010) it is likely that both mutants possess a similar septal composition. 

Diffusion of all tested molecules into heterocysts was always much slower than 

between vegetative cells (Table 22). Differences were determined by comparing R 

values for heterocysts and for vegetative cells in the absence of combined nitrogen. 

Exchange of calcein, 5-CFDA and 2-NBDG remained at around 25 % while 

exchange of BCECF was slightly slower and exchange of esculin was slightly faster 

(Table 22). According to Giddings and Staehelin (1978) the number of septal 



3   Properties and pathways of transferred molecules 

 

152 

 

junctions is reduced between vegetative cells and heterocysts by 80 % which is in 

good agreement with the observed reduction of intercellular transfer. 

Table 22. Comparison of molecular exchange in Anabaena sp. PCC 7120. 

Differences in molecular exchange in mutant strains under different conditions are given in 

percentage. For vegetative cells exchange was compared to wild-type cells grown in BG11 

medium. Exchange between vegetative cells and heterocysts was compared to wild-type 

vegetative cells after nitrogen step-down (BG110). 

 vegetative cells heterocyst 

 wild-type     

 BG11 BG110 CSVM34 CSVT22 CSVM141  

calcein 100 134 24 15 29 22 

BCECF 100 120 62 9 5 11 

5-CFDA 100 89 61 14 28 27 

2-NBDG 100 79 65 33 33 24 

esculin 100 104 72 50 50 42 

In summary, both charge and size influence molecular diffusion between cells in 

filaments of Anabaena sp. PCC 7120. The importance of these properties for 

transport has also been shown for eukaryotic plasmodesmata (Tucker, 1982) and gap 

junction channels (Elfgang et al., 1995). However, the size exclusion limit for 

molecules in cyanobacteria remains to be determined. Analyses could reveal 

interesting insights whether small proteins diffuse through septal junctions. 
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Table 23. Predicted physico-chemical properties of fluorophores used to probe intercellular communication in Anabaena sp. PCC 7120. 

Properties are predicted for pH 7.0, corresponding to the pH in the cytoplasm of vegetative cells (Blanco-Rivero et al., 2005).  

property calcein BCECF 5-CFDA 2-NBDG 6-NBDG esculin sucrose 

molecular mass (Da) 622.5 520.4 460.4 342.3 342.3 340.3 342.3 

polar surface area (Å
2
) 231.7 195.7 125.4 184.2 184.2 145.9 189.5 

molecular surface area, solvent accessible (Å
2
) 794.8 618.9 575.8 413.8 411.8 414.6 456.5 

van der Waals volume (Å
3
) 510.4 427.4 372.4 266.5 266.5 278.0 289.0 

min. projection area (Å
2
) 67.0 73.9 79.7 42.9 41.7 45.8 57.1 

length perpendicular to min. projection area(Å) 19.7 18.0 13.3 14.4 14.7 14.8 11.5 

max. projection area (Å
2
) 139.1 133.4 111.2 78.6 84.1 90.1 78.0 

length perpendicular to max. projection area (Å) 10.4 10.7 11.0 8.0 7.9 7.0 9.2 

charge at pH 7.0 

(with % abundances of different charged species) 

-3 (48 %) 

-2 (25 %) 

-4 (25 %) 

-5 (2 %) 

-5 (84 %) 

-4 (16 %) 

-1 (100 %) 0 (100 %) 0 (100 %) 0 (93 %) 

-1 (7 %) 

0 (100 %) 

diffusion coefficient in water at 25°C (10
-5

 cm
2
 s

-1
)*      0.52* 

*CRC Handbook of Chemistry and Physics. 95th ed. CRC Press: Boca Raton, FL, 2014-2015. 



4   Overexpression of sepJ 

154 

 

4 Overexpression of sepJ in Anabaena sp. PCC 7120 

Although it has been shown by deletion mutants that the septal protein SepJ is 

important for filament integrity, heterocyst formation (Flores et al., 2007; Nayar et 

al., 2007; Mariscal et al., 2011) and intercellular transfer of fluorescent tracers such 

as calcein (Mullineaux et al., 2008), 5-CFDA (Mariscal et al., 2011), BCECF 

(chapter 3.3), esculin (chapter 3.1) and NBD-glucose derivatives (chapter 3.2) the 

exact function of the protein is still unknown. To reveal further insights into the role 

of SepJ for multicellularity in cyanobacteria mutants of Anabaena sp. PCC 7120 

were generated that possess an increased level of sepJ expression. These mutants 

were analysed with respect to filament length, heterocyst spacing pattern and 

molecular transfer of calcein and 5-CFDA. Furthermore, the additional SepJ proteins 

in Anabaena sp. PCC 7120 were localised by confocal microscopy using a GFP-

tagged version of SepJ. 

4.1 Generation of mutants with increased sepJ expression in 

Anabaena sp. PCC 7120 

To increase the level of sepJ expression in Anabaena sp. PCC 7120, various 

constructs with promoters of different strength were generated ( 

Figure 28). Constructs pCSDN1 and pCSDN2 possess C.K1 cassettes with a 

constitutive promoter upstream of sepJ that has been used in earlier studies to 

increase the level of transcription and expression in Synechococcus elongatus PCC 

7942 (Espinosa et al., 2010; Moronta-Barrios et al., 2013). In order to avoid making 

observations caused by polar effects, both constructs were generated with the two 
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possible orientations of the C.K1 cassette upstream of the target gene, resulting in 

plasmids pCSDN1A and pCSDN2A with the C.K1 in the same orientation as sepJ 

and pCSDN1B and pCSDN2B with the C.K1 cassette in opposite orientation. While 

the pCSDN1A/B constructs were integrated into the chromosome of Anabaena sp. 

PCC 7120 by single recombination resulting in strains CSDN1A and CSDN1B 

respectively, vectors pCSDN2A/B were maintained as replicative plasmids in strains 

CSDN2A and CSDN2B that are derivatives of pCSAM200 (Ionescu et al., 2010). 

These plasmids contain the pDU1 replicon from Nostoc sp. PCC 7524 that replicates 

in various cyanobacteria of different sections including Anabaena spp. and Nostoc 

spp. (Section IV; Schmetterer and Wolk, 1988), Fischerella muscicola PCC 7414 

and Chlorogloeopsis fritschii PCC 6912 (Section V; Stucken et al., 2012) and 

Chroococcidiopsis spp. (Section II; Billi et al., 2001), and it has been shown for a 

similar plasmid to be present in Anabaena sp. PCC 7120 at approximately 17 copies 

per chromosome (Lee et al., 2003). Accordingly, expression of sepJ would be at 

medium level. In a third approach, the sepJ gene was inserted downstream of the 

C.K3 cassette in plasmid pRL278 (Black et al., 1993) and the resulting construct 

pCSDN3 integrated into the chromosome of Anabaena sp. PCC 7120 by single 

recombination. In the C.K3 cassette the strong constitutive promoter PpsbA from the 

chloroplast of Amaranthus hybridus (Hirschberg and McIntosh, 1983; Dzelzkalns et 

al., 1984; Elhai and Wolk, 1988b) is present which has been shown to highly 

increase expression of genes in Nostoc punctiforme ATCC 29133 (Ekman et al., 

2013). 
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Figure 28. Construction of sepJ overexpression plasmids and genotypes of the corresponding strains.
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Figure 28 

DNA fragments of C.K1-sepJwere obtained from plasmids pCSVM59A and 

pCSVM59B depending on the orientation of the C.K1 cassette upstream of sepJ. 

While in plasmid pCVM59A the C.K1 cassette is orientated in the same direction as 

sepJ, plasmid pCSVM58B bears the C.K1 cassette in opposite orientation. C.K1-

sepJ was extracted from plasmids pCSVM58A/B using the restriction sites XhoI and 

SalI and inserted into plasmid pCSV3 via SalI, resulting in constructs pCSDN1A/B 

(A). To generate plasmids pCSDN2A/B the C.K1-sepJ fragments were then 

restricted from pCSDN1A/B and inserted into the self-replicating vector pCSAM200 

via EcoRI (B). The C.K3 based expression vector pCSDN3 was generated by 

inserting sepJ derived from pCSVM58 by SalI and XhoI digestion into the XhoI-

restricted plasmid pRL278 (C). Constructs pCSDN1A, pCSDN1B and pCSDN3 

were integrated into the chromosome by single recombination. The resulting genetic 

modifications are displayed, including the expected level of transcription, indicated 

by the thickness of the arrows below the genes. pCSDN2A and pCSDN2B are self-

replicating plasmids that are maintained in Anabaena sp. PCC 7120. 

All constructs were introduced into Anabaena sp. PCC 7120 by conjugation. To test 

whether the ΔsepJ phenotype can be complemented by plasmid pCSDN2A, the 

plasmid was transferred into the sepJ deletion mutant CSVM34, resulting in strain 

CSVM34-DN2A. Additionally, plasmid pCSDN2B was transferred into CSVM34 as 

a negative control, resulting in strain CSVM34-DN2B. 

All mutants were restreaked for at least three times on BG11 plates supplemented 

with appropriate antibiotics. While mutants CSDN1A, CSDN1B, CSDN2A, 

CSDN2B, CSVM34-DN2A and CSVM34-DN2B could be successfully generated, 

the generation of mutant CSDN3 failed. It is likely that over-expression of sepJ or 

the resistance cassette gene became lethal for the cells. Thus, mutant CSDN3, which 

is expected to show the highest level of expression, is unable to survive. 
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To test the generated mutants for increased levels of SepJ protein, membranes were 

isolated and Western Blotting with an anti-SepJ antibody carried out (Mariscal et al., 

2011). Although earlier studies revealed that transcription and protein level could be 

increased by adding the C.K1 cassette with its constitutive promoter upstream of the 

target gene in Synechococcus elongatus PCC 7942 (Espinosa et al., 2010; Moronta-

Barrios et al., 2013) a higher level of SepJ protein in the Anabaena sp. PCC 7120 

mutant CSDN1A could not be detected (Figure 29). However, the level of SepJ 

protein in CSDN2A was approximately 4.3 times higher than in the wild-type 

(Figure 29). Hence, plasmid pCSDN2A is suitable to increase the level of gene 

expression in cells of Anabaena sp. PCC 7120, allowing study of the effects of 

higher levels of SepJ protein on multicellularity. However, it is also notable that the 

amount of SepJ in CSDN2B was approximately 2.3 times higher than in the wild-

type (Figure 29). 

 

Figure 29. SepJ protein levels in Anabaena sp. PCC 7120 wild-type and 

overexpression strains. 
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Figure 29. Western Blotting with an anti-SepJ antibody on isolated membranes. 

Same amount of protein from membrane fractions loaded. Molecular masses of a 

protein marker are displayed in kDa (left). The sepJ deletion mutant CSVM34 does 

not show any band. The black arrow indicates the position of SepJ on the gel of 

approximately 72 kDa. (Western blotting was performed by Vicente Mariscal.) 

4.2 Influence of sepJ overexpression on filament length 

It has been shown earlier for Anabaena sp. PCC 7120 that septal protein SepJ is 

important for filament integrity (Flores et al., 2007; Nayar et al., 2007; Mariscal et 

al., 2011). Deletion of sepJ results in extensive filament fragmentation with an 

average filament length of about 7 cells in BG11 medium and approximately 2 cells 

following nitrogen depletion (Mariscal et al., 2011). The filament fragmentation 

phenotype of CSVM34 was complemented by adding plasmid pCSDN2A. Strain 

CSVM34-DN2A reveals a similar filament length distribution as the wild-type and 

significantly longer filaments as CSVM34 when grown in presence of nitrate while 

strain CSVM34-DN2B does not show increased filament length (Figure 30). When 

grown in the absence of combined nitrogen CSVM34-DN2A shows stronger 

filament fragmentation than the wild-type but filaments remain initially longer than 

for the ΔsepJ mutant (Figure 30). However, filament fragmentation becomes obvious 

after prolonged incubation in BG110 medium, suggesting that the level of 

intracellular SepJ protein is not sufficient to maintain filament integrity. It remains 

unknown whether the C.K1 promoter leads to overexpression of sepJ under nitrogen 

limiting conditions or whether plasmid loss occurs during the prolonged incubation. 

Additional studies using either Western or Northern blotting are required to answer 

this question. 



4   Overexpression of sepJ 

160 

 

Further studies using CSDN2A, CSDN2B and Anabaena sp. PCC 7120 wild-type 

revealed no obvious influence of SepJ on filament length. Filaments of all three 

strains exhibit similar filament lengths under all tested conditions. In conclusion, 

plasmid pCSDN2A is suitable to complement the phenotype of mutant CSVM34 by 

increasing filament length but enhanced expression of sepJ in Anabaena sp. 

PCC 7120 does not alter filament length. 
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Figure 30. Influence of sepJ overexpression on filament length in Anabaena sp. 

PCC 7120. 

Filament length in the presence of nitrate (BG11) and at different time points after 

nitrogen step-down (BG110), Colour intensities indicate the number of cells per 

filament. Images were taken with a light microscope and analysed manually. 30 to 

100 filaments were counted per condition and strain. 

4.3 Influence of sepJ overexpression on diazotrophic growth and 

heterocyst spacing pattern 

Inactivation of sepJ in Anabaena sp. PCC 7120 results not only in intensive filament 

fragmentation but also in impaired heterocyst formation and consistently in a failure 

of the organism to grow diazotrophically (Flores et al., 2007; Nayar et al., 2007; 
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Mariscal et al., 2011). When introducing plasmid pCSDN2A into CSVM34 the strain 

is able to grow in the absence of combined nitrogen by differentiating heterocysts in 

a regular spacing pattern (Figure 31). These results are in good agreement with our 

earlier observation that filament integrity can be restored in CSVM34-DN2A. Thus, 

plasmid pCSDN2A is capable of complementing the phenotype of CSVM34 by 

expression of sepJ in BG11 and the initial phase after nitrogen step-down. 

Interestingly, when the level of SepJ protein is further increased an altered heterocyst 

spacing pattern was observed with more vegetative cells between two heterocysts. In 

CSDN2A the number of vegetative cells between two heterocysts increases to 

15.95 ± 5.90 after incubation for 18 h in BG110 and after 96 h to 18.69 ± 10.06 while 

in filaments of Anabaena sp. PCC 7120 heterocysts are separated by 10.64 ± 3.63 

cells (18 h) and 14.33 ± 6.51 cells (96 h) respectively (data were kindly provided by 

Vicente Mariscal). 

 

Figure 31. Heterocyst formation in CSVM34-DN2A (A) and CSDN2A (B). 

Cells were visualised with a conventional light microscope. Heterocysts were 

labelled with Alcian Blue and are highlighted with white arrows. 
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4.3.1 Influence of sepJ overexpression on intercellular communication 

In order to test whether the increase of SepJ molecules in the cell could generate the 

altered heterocyst spacing pattern by influencing molecular exchange between cells, 

FRAP experiments with the fluorescent tracers calcein and 5-CFDA were performed. 

Calcein and 5-CFDA are taken up into the cytoplasm of the filaments, enabling 

quantitation of the kinetics of the diffusion between adjacent cells by bleaching out 

the fluorescence of a specific cell, following its recovery over time and determining 

the recovery rate constant R as previously described by Merino-Puerto et al.(2011). 

No significant difference for molecular exchange of both fluorophores between 

vegetative cells in Anabaena sp. PCC 7120 wild-type and strain CSDN2A was 

observed (Table 24). The R values remain similar for adjacent vegetative cells in the 

presence and absence of nitrate as nitrogen source. However, exchange of calcein is 

significantly faster between heterocysts and vegetative cells 48 h after nitrogen 

depletion while exchange for 5-CFDA remains similar (Table 24). 

Considering that SepJ is a key protein for the molecular transfer of calcein in 

Anabaena sp. PCC 7120 (Mullineaux et al., 2008; Mariscal et al., 2011), it is notable 

that additional SepJ molecules do not increase the rate for molecular transfer 

between vegetative cells. Although Western Blot analyses revealed an increased 

level of SepJ protein in membranes of CSDN2A (Figure 29) it is possible that the 

additional proteins are not localised at the septa of neighbouring cells and thus, do 

not contribute to intercellular transfer. In order to determine the specific localisation 

of additional SepJ molecules, a mutant that overexpresses a fluorescent-labelled sepJ 

variant was generated. 
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Table 24. Kinetics of calcein and 5-CFDA exchange from FRAP measurements on Anabaena filaments overexpressing sepJ. 

 Calcein 5-CFDA 

Measurement (number of replicates) R [s
-1

] (± s.d.) E [s
-1

] (± s.d.) R [s
-1

] (± s.d.) E [s
-1

] (± s.d.) 

1. vegetative cells in presence of nitrate     

a) Anabaena sp. PCC 7120                                (35/41) 0.083 ± 0.032  0.133 ± 0.049  

b) CSDN2A                                                       (34/18) 0.075 ± 0.031  0.110 ± 0.052  

c) CSAM137                                                      (16/15) 0.097 ± 0.043  0.117 ± 0.050  

d) CSDN11                                                        (15/20) 0.099 ± 0.028  0.116 ± 0.056  

2. vegetative cells 48 h after nitrogen deprivation      

a)Anabaena sp. PCC 7120                                 (21/19) 0.102 ± 0.025  0.101 ± 0.052  

b) CSDN2A                                                       (24/18) 0.109 ± 0.039  0.094 ± 0.033  

3. heterocysts 48 h after nitrogen deprivation     

a)Anabaena sp. PCC 7120                                  (15/5) 0.022 ± 0.013 0.022 ± 0.013 0.027 ± 0.012 0.027 ± 0.012 

b) CSDN2A                                                       (10/10) 0.038 ± 0.021 0.038 ± 0.021 0.030 ± 0.024 0.030 ± 0.024 

Mean exponential recovery rate constants (R) and exchange coefficients (E) for filaments grown ± combined nitrogen. R values were standardised by dividing by 

2 for cells with 2 connecting junctions. Student's t-test show R is significantly different for calcein between (3a) and (3b) (p = 0.021). No significant differences 

were detected for calcein and 5-CFDA between (1a) and (1b); (1c) and (1d); (2a) and (2b); and for 5-CFDA between (3a) and (3b). 
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4.4 Influence of sepJ overexpression on protein localisation and 

molecular exchange of calcein and 5-CFDA 

In order to determine the specific localisation of additional SepJ molecules, sepJ was 

fused to gfp and the expression level increased by using the strong constitutive 

promoter PpsbA (Figure 32). 

 

Figure 32. Construction of the sepJ-gfp overexpression mutant CSDN11. 

The DNA fragment sepJ-gfp was amplified from genomic DNA of strain CSAM137 

(Flores et al., 2007) by PCR using primer alr2338_7 (fw) and pRL500_1 (rv) and 

directly cloned into vector pSPARK
®
, resulting in plasmid pCSDN10. Correctness of 

the inserted sequence was verified by sequencing. pCSDN10 contains additional 

restriction sites that were present in the multiple cloning site of the pSpark
®
 vector. 

sepJ-gfp was cut from pCSDN10 using the restriction endonuclease SalI and inserted 

into the XhoI-restricted pRL278 plasmid. The resulting plasmid pCSDN11 bears the 

C.K3 cassette upstream of sepJ-gfp in the same orientation as the target gene. 
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Construct pCSDN11 was transferred into Anabaena sp. PCC 7120 by conjugation 

using triparental mating (Elhai and Wolk, 1988a). During this process the E. coli 

helper strain carrying the conjugative plasmid pRL443 (Elhai et al., 1997) and the 

E. coli donor strain carrying the mobilisable plasmid pCSDN11 and the methylases 

encoding plasmid pRL663 (Elhai et al., 1997) are mixed with the recipient strain 

Anabaena sp. PCC 7120. When checking the cultures at an early stage of the 

segregation process fluorescent E. coli cells were observed by confocal microscopy 

surrounding Anabaena sp. PCC 7120 filaments (Figure 33). The signal was specific 

for GFP indicating that expression of sepJ-gfp in E. coli cells is possible by using 

plasmid pCSDN11. However, the fluorescence signal was present throughout the 

entire cytoplasm of the cells suggesting that either SepJ-GFP cannot be localised in 

the membrane of E. coli or GFP is cleaved off SepJ resulting in free GFP in the 

cytoplasm. This question was approached by Western blotting using an anti-GFP 

antibody on cells of the E. coli strain carrying pCSDN11 and the native E. coli strain 

as a control. A specific band for free GFP with a molecular mass of approximately 

29 kDa was detected (data not shown) suggesting that GFP is cleaved off SepJ when 

the fused gene is expressed in E. coli. 
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Figure 33. Fluorescent E. coli cells surrounding Anabaena sp. PCC 7120 during 

conjugation. 

Images show GFP fluorescence of E. coli cells bearing plasmid pCSDN11 (green), 

autofluorescence of Anabaena sp. PCC 7120 (magenta), a bright field view (grey) 

and a merged image of all three channels. Scale bars, 10 µm. 

After several restreaks strain CSDN11 was visualised by confocal microscopy. 

Images revealed that additional SepJ proteins are localised in the membranes at the 

septa of neighbouring cells similar to the localisation of the protein under naturally 

occurring expression levels (Figure 34). However, additional SepJ molecules are not 

localised as distinctly as observed in strain CSAM137 (SepJ-GFP). While in 

CSAM137 SepJ is localised in distinct spots (Figure 34B), SepJ is spread over the 

full length of the septum in CSDN11 (Figure 34A). The difference in SepJ 
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distribution was further studied by plotting fluorescence intensity against the position 

of a defined rectangular region of interest at the septum and fitting a Gaussian model 

to the data. A representative example is displayed in Figure 34C. Based on the fit the 

full width at half-maximum (FWHM) was determined and compared between strains 

CSDN11 and CSAM137. The average values for the FWHM in both strains were 

significantly different as indicated by a Student's t-test. In CSDN11 SepJ is around 

two times more widely distributed than in CSAM137 with a FWHM value of 1.22 ± 

0.13 µm in comparison to 0.64 ± 0.12 µm for CSAM137. The number of considered 

septa was 36. In order to determine the effect of the imaging system and the used 

settings on the spread of the recorded fluorescence signal observed for SepJ-GFP 

filaments of Anabaena sp. PCC 7120 wild-type were stained with the fluorescent dye 

FM1-43FX. According to Schneider et al. (2007) FM1-43FX highlights the 

cytoplasmic membrane in cyanobacteria and thus defines a distinct distance of 

approximately 45 nm in Anabaena sp. PCC 7120 (Nicolaisen et al., 2009a). The 

fluorescence signal detected by confocal microscopy using the same settings as for 

the visualisation of SepJ-GFP revealed an average FWHM value of 0.32 ± 0.06 µm 

for 36 measurements. To correct the estimate of SepJ-GFP distribution, the point 

spread value was subtracted off the FWHM for CSAM137 and CSDN11, resulting in 

a FWHM of 0.90 ± 0.14 µm for CSDN11 and 0.32 ± 0.13 µm for CSAM137. 
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Figure 34. Localisation of SepJ-GFP in Anabaena sp. PCC 7120 strains CSDN11 

and CSAM137. 

SepJ-GFP fluorescence is shown in green for CSDN11 (A) and CSAM137 (B). Scale 

bars, 5 µm. The difference in distribution was analysed by plotting the fluorescence 

intensity against the position of the signal at the septum and fitting a Gaussian model 

to the data for which an example is shown in panel (C). The Gaussian model 

equation is given by                      
    

 
 
 

 . The definition of the 

full width at half maximum (FWHM) is shown for CSAM137 with fmax being the 

maximal fluorescence intensity. Following the Gaussian model the FWHM is defined 

by           . 
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Whether the additional SepJ-GFP proteins influence intercellular communication 

was investigated by FRAP experiments using calcein and 5-CFDA as fluorophores. 

No difference in molecular transfer was observed for both molecules between 

vegetative cells in strains CSAM137 and CSDN11 (Table 24) supporting the earlier 

results that additional SepJ molecules do not alter molecular diffusion between 

vegetative cells. 

To test whether the generated construct pCSDN11 is capable of complementing the 

phenotype observed for sepJ deletion mutants, the plasmid was transferred to 

CSVM34 (ΔsepJ) and CSVM141 (ΔsepJ ΔfraC ΔfraD). Strain CSVM34-DN11 

shows long filaments with SepJ being localised in distinct spots at the septum of 

neighbouring cells as observed in CSAM137 (Figure 35A) indicating the suitability 

of the construct for complementation. When sepJ-gfp is expressed in strain 

CSVM141 a slightly altered localisation was observed. GFP fluorescence was less 

focussed, being more spread at the septum rather than forming a distinct spot (Figure 

35B). This is in good agreement with the study by Merino-Puerto et al. (2010), 

showing the influence of fraC and fraD on the localisation of SepJ-GFP. The loss of 

each protein caused a less focussed localisation of SepJ-GFP similar to what was 

observed for strain CSVM141-DN11. To conclude, plasmid pCSDN11 is suitable for 

expressing sepJ-gfp. Its product is localised in the ‘correct’ position at the septa.  
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Figure 35. Localisation of SepJ-GFP in CSVM34-DN11 (A) and CSVM141-

DN11 (B). 

Images show GFP fluorescence (green), autofluorescence (magenta) and an overlay 

of both channels. Scale bars, 5 µm. 

When cultures of Anabaena sp. PCC 7120 are deprived of combined nitrogen 

vegetative cells differentiate into heterocysts by undergoing extensive biochemical 

and morphological changes (Maldener and Muro-Pastor, 2010). To enable 

nitrogenase activity in the heterocysts the oxygen concentration is strongly reduced 

by increasing the activity of oxidases, synthesising additional layers around the cell 

as gas-diffusion barriers (known as envelope) and diminishing the entry of O2 into 

heterocysts by reducing the area of cell-cell connection between vegetative cells and 

heterocysts to a small pore (Walsby, 2007). These changes require extensive 

modifications of the septa including proteins such as SepJ. Confocal microscopy 

revealed that SepJ-GFP in strain CSDN11 is localised in distinct spots at the septa of 

heterocyst and vegetative cells with some molecules spreading into the neck region 
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of the heterocyst 48 h after nitrogen step-down while SepJ-GFP proteins remain as 

widely distributed at the septa of adjacent vegetative cells as observed in the 

presence of combined nitrogen (Figure 36B). A similar localisation for SepJ-GFP at 

the septa of heterocysts and vegetative cells was observed in CSAM137 (Figure 36A; 

Flores et al. (2007)) suggesting that additional SepJ molecules undergo the same 

remodelling process. 

 

Figure 36. Localisation of SepJ-GFP in Anabaena sp. PCC 7120 strains 

CSAM137 (A) and CSDN11 (B) 48 h after nitrogen step down. 

Images show GFP fluorescence (green), autofluorescence (magenta) and a merged 

image. Heterocysts are highlighted by white arrows. Scale bars, 5 µm. 

4.5 Conclusion 

The data presented in this chapter reveal that overexpression of sepJ in Anabaena sp. 

PCC 7120 can be achieved by using the self-replicating plasmid pCSDN2A. When 

expressed in the background of the sepJ deletion mutant CSVM34 the generated 
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strain CSVM34-DN2A is capable of growing in long filaments that show cell 

differentiation under nitrogen depletion. Thus, pCSDN2A is suitable to complement 

the phenotype observed for CSVM34 (Mariscal et al., 2011). When pCSDN2A is 

introduced in the Anabaena sp. PCC 7120 wild-type, the heterocyst spacing pattern 

is altered with more vegetative cells separating two heterocysts. As earlier studies 

could show that SepJ is important for the transfer of molecules between cells such as 

calcein (Mullineaux et al., 2008) and 5-CFDA (Mariscal et al., 2011), it is likely that 

additional SepJ molecules might increase diffusion of these molecules between 

neighbouring cells. However, no influence on the transfer of calcein or 5-CFDA was 

observed between vegetative cells, suggesting that the additional SepJ molecules 

might not contribute to the formation of septal junction complexes or nanopores. It 

remains to be investigated whether the number of nanopores in CSDN2A remains 

similar to that found in the wild-type. Alternatively, SepJ might change cell-cell 

adhesion. Localisation studies using a GFP-tagged SepJ fusion protein indicate that 

additional SepJ molecules are not as focussed at the septa of neighbouring vegetative 

cells as observed for a strain showing the natural expression level. Transmission 

electron microscopy experiments could reveal further insights into the influence of 

SepJ on the organisation of the septum. Further studies could also involve 

overexpression of the septal proteins FraC and FraD which have been shown to be 

important for filament integrity, intercellular communication and the proper 

localisation of SepJ in Anabaena sp. PCC 7120 (Merino-Puerto et al., 2010; 2011b). 

An increased level of FraC and FraD proteins might accelerate molecular transfer. 

However, it needs to be pointed out that additional SepJ molecules increase the rate 

of calcein exchange between heterocysts and vegetative cells, suggesting that the 

altered heterocyst spacing pattern could be a result of an enhanced rate of molecular 
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diffusion between heterocysts and vegetative cells. It has been shown by Yoon and 

Golden (1998) that the product of the patS gene is a main regulator for establishing 

the regular heterocyst spacing pattern in Anabaena sp. PCC 7120. Inactivation of 

patS results in formation of heterocysts in the presence of combined nitrogen and in 

the formation of multiple contiguous heterocysts (MCH) under nitrogen deprivation 

(Yoon and Golden, 1998), whereas overexpression of the gene suppresses heterocyst 

formation (Liu and Golden, 2002) presumably by interacting with HetR (Huang et 

al., 2004; Risser and Callahan, 2009; Feldmann et al., 2011; Higa et al., 2012). It is 

likely that an enhanced diffusion of PatS occurs in CSDN2A which could result in a 

further diffusion of the peptide along the filament than in the wild-type and hitherto 

in a change of the heterocyst spacing pattern. However, this is just speculation at this 

stage and needs further investigation. 
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5 Regulation, redistribution and remodelling of 

intercellular communication in Anabaena sp. PCC 7120 

after filament fragmentation 

Filament fragmentation is a characteristic feature of all filamentous cyanobacteria 

that are associated with heterocyst formation and reproduction by hormogonia 

(Rippka et al., 1979; Golubić et al., 1996). Both processes are one of the few known 

developmental ‘dead ends’ among prokaryotes (Meeks et al., 2002). While 

hormogonia formation mostly occurs by randomly localised dead cells that have been 

termed necridia (Kohl, 1903; Lamont, 1969; Rippka et al., 1979) heterocyst 

differentiation follows a regular spacing pattern in most cyanobacteria such as 

Anabaena spp. (Wilcox et al., 1973). As mature heterocysts are unable to divide, the 

filament fragments when these cells die (Meeks et al., 2002). Accordingly, the death 

rate of cells is highest under nitrogen depletion conditions when heterocysts are 

abundant (Lee and Rhee, 1997). It has been suggested that filament fragmentation 

during nitrogen fixation might be unavoidable but could improve the efficiency of 

this process by forming dense mats where oxygen and nutrients could be more 

effectively managed (Fay, 1992; Bauer et al., 1995). There are also other factors 

known that influence filament length. Adverse growth conditions such as long-term 

sulphate starvation usually reduce filament length and it has been proposed that this 

process might be a genetically programmed response in order to allow dispersal to 

favourable growth conditions (Bauer et al., 1995). The presence of programmed cell 

death in Anabaena spp. has been strongly supported by later studies (Lee and Rhee, 

1999; Ning et al., 2002). However, it remained unknown how filament viability is 

maintained during the fragmentation process which exposes the cytoplasmic 
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channels linking adjacent cells (see e.g. Giddings and Staehelin, 1978; Mullineaux et 

al., 2008; Lehner et al., 2013; Omairi-Nasser et al., 2014). In the following part of 

this chapter the influence of filament fragmentation on intercellular communication 

is investigated by subjecting filaments of Anabaena sp. PCC 7120 to sonication and 

comparing the data to fragmentation occurring in old cultures. 

5.1 Filament fragmentation by sonication and its influence on cell 

viability 

In the presence of combined nitrogen Anabaena sp. PCC 7120 forms long filaments 

that can be composed of several hundreds of cells. In order to reduce filament length 

filaments of Anabaena sp. PCC 7120 were subjected to sonication, a method 

routinely used during the generation of mutants of Anabaena spp. (e.g. Mannan et 

al., 1991; Wu et al., 2007). To test whether this method is suitable for reducing 

filament length but also for maintaining cell viability filaments of Anabaena sp. 

PCC 7120 were fragmented by mild sonication; growth of the culture monitored over 

24 h by confocal microscopy. The results indicate that mild sonication reduces 

filament length significantly with nearly all cells remaining alive and continuing to 

divide (Figure 37). Even unicellular cells start forming short filaments after 24 h of 

incubation under optimal growth conditions (Figure 37). Thus, sonication is a 

suitable method for filament fragmentation in Anabaena sp. PCC 7120 without 

influencing cell viability negatively. 



5   Regulation, redistribution and remodelling of intercellular communication 

177 

 

 

Figure 37. Growth of Anabaena sp. PCC 7120 after fragmentation. 

The image shows an overlay of the autofluorescence shortly after fragmentation 

(magenta) and 24 h after incubation under optimal growth conditions (green). Note 

that even unicellular cells survive the fragmentation process and start dividing (white 

arrows). Scale bar, 15 µm. 

5.2 Influence of filament fragmentation on molecular exchange of 

5-CFDA 

In order to survive the fragmentation process it appears logical that efflux of 

molecules through the exposed channels at the new terminus of the filament needs to 

be prevented. However, a final proof has been lacking so far. Cytoplasmic transfer of 

molecules between neighbouring cells can be visualised by loading a fluorescent 

tracer into the cytoplasm of the filament, bleaching out the fluorescence of a single 

cell and monitoring its recovery over time. This method is known as FRAP and has 

been established for filamentous cyanobacteria by Mullineaux et al. (2008) to 
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quantitate molecular exchange. Although several new fluorophores have been 

introduced for FRAP experiments within this work (see chapter 3) the best studied 

tracers are the fluorescein derivatives calcein and 5-CFDA (Mullineaux et al., 2008; 

Merino-Puerto et al., 2010; Lehner et al., 2011; Mariscal et al., 2011; Merino-Puerto 

et al., 2011b; Berendt et al., 2012; Nürnberg et al., 2014). As 5-CFDA is slightly 

smaller than calcein, exhibiting a molecular mass of 460.4 Da in comparison to the 

622.5 Da of calcein the molecule is more likely to leak into the surrounding medium 

if the channels stay open after filament breakage. Filaments of Anabaena sp. 

PCC 7120 were labelled with 5-CFDA, fragmented by sonication and visualised by 

confocal microscopy. These results indicate that short filaments remain fluorescent 

after fragmentation (Figure 38), supporting the hypothesis that efflux of molecules is 

prevented after the fragmentation event by channel closure. However, to be certain 

about the position of the filament breakage and accordingly to clarify whether the 

visualised filament is a fragmented one or just a short filament in general, a different 

approach was taken, based on the localisation of SepJ. 

 

Figure 38. 5-CFDA labelled filaments of Anabaena sp. PCC 7120 after 

fragmentation by sonication. 

Images show 5-CFDA fluorescence (green), autofluorescence (magenta) and an 

overlay of both channels. After filament fragmentation the dye remains in the 

cytoplasm indicating that channels are closed. Scale bars, 5 µm. 
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5.3 Co-localisation of SepJ and 5-CFDA in Anabaena sp. PCC 7120 

SepJ is localised in distinct spots at the septum of two adjacent cells but is not 

present at the terminus of a filament in Anabaena sp. PCC 7120 (Flores et al., 2007). 

When filament breakage is induced in a strain of Anabaena sp. PCC 7120 that 

expresses a GFP-tagged version of sepJ (CSAM137; Flores et al. (2007)) the new 

terminus is highlighted by the presence of the distinct SepJ-GFP spot that is normally 

found in between two neighbouring cells (Figure 41). Thus, localisation of SepJ can 

be used as an indicator to determine whether a short filament was formed by 

fragmentation using sonication or whether it was formed naturally. However, GFP 

and 5-CFDA possess similar emission and excitation spectra which prevent the co-

localisation of both fluorophores simultaneously in the same filaments. To overcome 

this difficulty an Anabaena sp. PCC 7120 mutant was generated that possesses an 

mTurquise2-labelled SepJ protein. The fluorescent protein mTurquise2 is an 

improved cyan variant of GFP from Aequorea victoria that has recently been 

designed by Goedhart et al. (2012). It exhibits high photostability, fast maturation 

and one of the highest quantum yield measured for a monomeric fluorescent protein 

making it ideal for localisation studies. 

mTurquise2 was amplified from plasmid pmTurquise2-C1 (Goedhart et al., 2012) by 

PCR using primer fw_mTq2_EcoRV and rv_mTq2 which generates and additional 

EcoRV restriction site upstream of mTurquise2. The resulting DNA fragment was 

introduced into the multiple cloning site of the pGEM
®
-T Easy vector (Promega), 

resulting in construct pCSDN27. The correctness of the sequence of mTurquise2 was 

verified by sequencing. mTurquise2 was then introduced into pCSDN24 via EcoRV 

and PstI, generating plasmid pCSDN28. Plasmid pCSDN24 encodes a SepJ-CFP 
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variant. The construct was generated by exchanging the eyfp gene downstream of 

sepJ from plasmid pCSDN7 (see below) by cfp from plasmid pCSVT10 (Victoria 

Merino-Puerto, unpublished) using restriction sites EcoRV and ApaI. Construct 

pCSDN7 (sepJ-eyfp) was generated by amplifying eyfp from plasmid pSKS3-cph2(1-

6)-eYFP (Annegret Wilde, unpublished) using primer YFP-1 and YFP-2. The 

resulting DNA fragment was introduced into the multiple cloning site of pSpark
®

, 

producing plasmid pCSDN5. The correctness of the amplified sequence eyfp was 

verified by DNA sequencing. eyfp was then introduced into pCSAM135 (Flores et 

al., 2007) by replacing the gfp gene downstream of sepJ using restriction sites 

EcoRV and ApaI. The generated construct was labelled as pCSDN6. Finally, sepJ-

eyfp was transferred into pCSV3 via KpnI digestion, resulting in plasmid pCSDN7. 

Plasmid pCSDN7 was transferred into Anabaena sp. PCC 7120 resulting in strain 

CSDN7.Plasmid pCSDN28 was conjugated into Anabaena sp. PCC 7120, generating 

strain CSDN28. 

Strain CSDN28 was labelled with 5-CFDA and tested for its co-localisation 

properties by confocal microscopy. Both fluorophores could be detected 

simultaneously by using a single exciting wavelength (Figure 39). While 5-CFDA is 

visible in the cytoplasm of the cells SepJ-mTurquise2 forms distinct spots at the 

septa of adjacent cells (Figure 39). The overlap of both emission spectra appears 

marginal and does not influence the co-localisation. In comparison, co-localisation 

studies using strain CSDN7 could not resolve the different localisation of 5-CFDA 

and SepJ-eYFP clearly even when using separate and optimal excitation wavelengths 

for each fluorophore (Figure 40). When exciting with the optimal wavelength for 

eYFP strong emission was visible for 5-CFDA in the detection range (Figure 40). 
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Thus, localisation of SepJ-eYFP becomes visible only if filaments are weakly stained 

with 5-CFDA. 

 

Figure 39. Co-localisation of SepJ-mTurquise2 and 5-CFDA in strain CSDN28. 

Cells were excited with a single wavelength of λex= 458 nm. Images show SepJ-

mTurquise2 fluorescence (cyan; λem= 460-490 nm; A), 5-CFDA fluorescence (green; 

λem= 500-530 nm; B), autofluorescence (magenta, λem= 670-720 nm; C) and an 

overlay of all three channels (D). Scale bars, 5 µm. 
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Figure 40. Co-localisation of SepJ-eYFP and 5-CFDA in strain CSDN7. 

Cells were either excited with a wavelength of λex = 514 nm (eYFP, 

autofluorescence) or λex = 488 nm (5-CFDA). Images show SepJ-eYFP fluorescence 

(yellow; λem= 520-535 nm; A), 5-CFDA fluorescence (green; λem = 500-520 nm; B), 

autofluorescence (magenta, λem = 670-720 nm; C) and an overlay of all three 

channels (D). Scale bars, 10 µm. 

Filaments of CSDN28 were then subjected to mild sonication and tested for their 

ability to retain the fluorescent tracer within the cells. Images indicate that filament 

fragmentation does not lead to efflux of 5-CFDA. Filaments showing a terminal 

SepJ-mTurquise2 spot remained labelled with 5-CFDA (Figure 41), supporting the 

proposed channel closure after cell breakage. 
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Figure 41. Co-localisation of SepJ-mTurquise2 and 5-CFDA in strain CSDN28 

after fragmentation by sonication. 

Images show SepJ-mTurquise2 fluorescence (cyan), 5-CFDA fluorescence (green), 

and an overlay of both channels. The terminal SepJ-mTurquise2 spots are 

highlighted with white arrows. Scale bars, 5 µm. 

Interestingly, fragmentation studies by Nicolaisen et al. (2009) revealed that uptake 

of glutamate, aspartate, glutamine and sucrose was significantly higher for 

fragmented filaments than for untreated filaments of Anabaena sp. PCC 7120, and 

based on micrographs of these filaments the authors suggested that substrates diffuse 

through holes at the site of breakage into the periplasmic space and are then 

transported into the cytoplasm. Accordingly, when a filament breaks its viability can 

only be maintained if molecules remain in the cytoplasm and do not leak or are 

transported into the open and continuous periplasm in high quantity. A study by 

Brown and Rutenberg (2012) suggested that export occurs at significantly lower rate 

than import. In conclusion, the presented cytoplasmic channel closure appears to be 

the main mechanism avoiding cell death after fragmentation by molecular efflux. 
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5.4 Influence of filament fragmentation on intercellular 

communication 

The influence of fragmentation on intercellular communication was investigated by 

FRAP measurements using 5-CFDA. Cells of strain CSDN28 were labelled with 5-

CFDA, subjected to fragmentation and the recovery of fluorescence of cells within 

the filament followed over time. The fragmented filaments were identified by 

localising the SepJ-mTurquise2 proteins at the termini. FRAP measurements reveal 

that 5-CFDA fluorescence recovers after fragmentation (Figure 42), indicating that 

the fluorophore remains mobile and diffuses between neighbouring cells. 

Accordingly, efflux of 5-CFDA would be possible if channel closure did not occur 

after cell breakage. These results also show that filament fragmentation does not 

cause channel closure between other cells within the filament, suggesting that the 

closure process is likely to be passive as a result of channel collapse caused by the 

applied sonication stress. 

 

Figure 42. Recovery of 5-CFDA in CSDN28 after filament fragmentation by 

sonication. 

The terminal cell of a fragmented filament was identified by the position of the SepJ-

mTurquise2 spot at the end (A). Panel B shows an exemplary FRAP experiment with 

a 5-CFDA labelled terminal cell (white arrow). After taking an initial image (pre), 

fluorescence of the terminal cell was bleached by increased laser intensity (t=0) and 

its recovery followed for 32 s. Scale bars, 5 µm. 
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5.5 Ultrastructure of fragmented filaments 

Finally, we raised the question where cells break when they are fragmented by 

sonication. TEM images show that a part of the lysed cell remains attached to the 

intact filament, including the cytoplasmic membranes and the outer membrane of 

both cells with the peptidoglycan layer in between (Figure 43). A similar result was 

obtained by Nicolaisen et al. (2009) for cells which were fragmented by repeated 

passage through a syringe. Both results support the hypothesis of a tightly fused 

peptidoglycan layer in between neighbouring cells (Maldener et al., 2014). The 

electron micrograph also shows that the membrane curvature at the terminal cell pole 

changes after fragmentation (Figure 43). The membranes are pushed outward 

(positive curvature) presumably as a result of osmotic changes. 

 

Figure 43. Electron micrograph of an ultra thin section through the septal 

region of Anabaena sp. PCC7120 after fragmentation by sonication. 

Note that a part of the lysed cell remains attached to the part of the intact cell 

between the two arrows. Scale bar, 500 nm. 
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5.6 Influence of fragmentation on the localisation of SepJ 

As shown earlier in this chapter, fragmentation leads to formation of short filaments 

that show a fluorescent SepJ spot at the new terminus facing the environment (Figure 

41). SepJ is likely to be composed of three domains including a C-terminal permease 

domain which is predicted to possess 11 transmembrane helices spanning the 

cytoplasmic membrane (Flores et al., 2007). Considering that cell breakage leaves 

the cytoplasmic membrane of the neighbouring cell attached to the shortened 

filament (Figure 43) it is likely that also the SepJ proteins from the detached cell 

remain localised at the pole. This question was addressed by using strain CSAM137 

which possesses a GFP-tagged variant of SepJ, subjecting it to sonication and 

comparing the intensities of the SepJ-GFP spot between two cells with that found at 

the new terminus. A ratio of 1.21 ± 0.34 (n=32) was determined, indicating that 

slightly more GFP molecules are present in between two neighbouring cells than at 

the terminus. The nearly 1:1 ratio implies that after filament breakage the SepJ-GFP 

molecules of the former adjacent cell remain attached. 

To determine the role of SepJ in this process further, the localisation of the SepJ-GFP 

spots after fragmentation was followed over time using confocal microscopy. 

Directly after fragmentation the SepJ-GFP remains at the new terminal pole of the 

vegetative cells, but disappears then within approximately 24 h from its initial 

position (Figure 44), suggesting that there exist mechanisms to recognise the position 

of filament breakage and remodel channel structure. An important factor for the 

redistribution of SepJ proteins is likely to be the altered membrane curvature at the 

cell pole (Figure 43). It has been reported that the specific localisation of some 

proteins depends on the membrane curvature in Bacillus subtilis and E. coli (see 
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review by Ramamurthi (2010)). Hitherto, a changed curvature could either attract 

proteins important for the degradation of present SepJ molecules or alternatively lead 

to the redistribution of the proteins such as the division plane (Flores et al., 2007). 

 

Figure 44. Redistribution of SepJ-GFP after fragmentation on strain CSAM137. 

SepJ-GFP (green) remains after fragmentation at the new cell terminus facing the 

environment (A), but disappears within 24 h (B). Terminal SepJ-GFP spots are 

highlighted by white arrows. Autofluorescence is shown in magenta. Scale bars, 

5 µm. 

5.7 Cell death in an aging culture of Anabaena sp. PCC 7120 

In another approach the influence of naturally occurring filament fragmentation on 

channel closure and the role of SepJ was explored. The factors that lead to natural 

filament fragmentation are still poorly understood. It has been suggested that long-

term starvation for sulphate reduces filament length which is mentioned by Bauer et 

al. (1995) based on personal communication with Bianca Brahamsha. In this work 
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cultures of Anabaena sp. PCC 7120 were grown to the stationary phase and left for 

several weeks standing on the bench at room temperature. This treatment produced 

cultures that showed dying filaments and filaments with dying cells within the 

filament (indicated by the absence of autofluorescence and their fainted contrast in 

bright-field microscopy) (Figure 45;Figure 46). Filaments were then stained with 5-

CFDA and visualised by confocal microscopy (Figure 45). As 5-CFDA is a live-cell 

stain which is added as a non-fluorescent and hydrophobic acetoxymethylester (AM) 

derivative that only becomes fluorescent after uptake into the cell and hydrolysis by 

esterases (Mullineaux et al., 2008), it is possible to test whether the fluorophore 

diffuses from living stained cells into neighbouring dead cells. Confocal images 

reveal that the fluorophore does not diffuse into a dead cell from a living filament 

(Figure 45), indicating that channel closure occurs to avoid molecular efflux by a 

possible breakage of the filament at this position. 
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Figure 45. Labelling of an aging culture of Anabaena sp. PCC 7120 with 

5-CFDA. 

Images show 5-CFDA fluorescence (green), autofluorescence (magenta), a bright-

field view (grey) and an overlay of all three channels. 5-CFDA labelled filaments 

(white arrow) show dead, unlabelled cells within the same filament (black arrows). 

Scale bars, 10 µm. 

As shown earlier in this chapter filament fragmentation involves redistribution of 

SepJ. The influence of aging on the localisation was investigates using the sepJ-gfp 

expressing strain CSAM137 and visualising the fluorescent-tagged protein after 

keeping the culture standing for several weeks at room temperature. Images indicate 

no SepJ-GFP spots at the septa of dead and living cells while SepJ-GFP spots remain 

visible in between two living cells (Figure 46). These results support the hypothesis 

of redistribution and remodelling of the septal junctions during filament 
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fragmentation. Furthermore, they prove that the earlier presented results are not an 

artificial effect induced by the sonication procedure. 

 

Figure 46. Localisation of SepJ-GFP in an aging culture of CSAM137. 

Images show GFP fluorescence (green), autofluorescence (magenta), a bright-field 

view (grey) and an overlay of all three channels. Scale bars, 5 µm. 

5.8 Conclusion 

In this chapter the influence of filament fragmentation on intercellular 

communication was investigated, addressing the questions whether channels close 

after filament breakage and if there are remodelling processes of the septa involved. 

Mild sonication is a suitable method for inducing filament fragmentation in 

Anabaena sp. PCC 7120 without influencing filament and cell viability. Filaments 
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that were subjected to sonication continued dividing. After fragmentation the 

fluorescent tracer 5-CFDA remains in the cytoplasm of Anabaena sp. PCC 7120 

indicating that channel closure occurs to prevent molecular efflux and subsequent 

cell death. The new terminus of the filament after fragmentation can be visualised by 

the presence of mTurquise2-tagged version of the SepJ protein at the new pole of the 

cell in the presence of 5-CFDA. Both dyes exhibit different emission spectra when 

using a single excitation wavelength. After fragmentation remodelling of the septum 

occurs. SepJ is redistributed from the terminal cell pole by a yet unknown 

mechanism which could involve the altered membrane curvature observed at the new 

cell pole. Either degradation or diffusion processes could be possible mechanisms. 

Similar results were obtained for an aging culture of Anabaena sp. PCC 7120 where 

dead cells were visible in an intact filament. 5-CFDA and SepJ-GFP were only 

visible in the living part of the filament. Thus, channel closure occurs prior to 

fragmentation and possibly involves other mechanisms than simple channel collapse. 
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6 Morphological complexity and intercellular 

communication in the Section V cyanobacterium 

Mastigocladus laminosus 

While our understanding of multicellularity in Section IV cyanobacteria has 

deepened considerably by studying Anabaena sp. PCC 7120 as model organism, 

there is little known about cyanobacteria of Section V. The best understood organism 

within this section is probably Mastigocladus laminosus, which is a major 

component of epilithic microbial mats at White Creek, Yellowstone National Park, 

USA (Miller et al., 2006), and can be found in geothermal sites and hot springs 

worldwide with an upper temperature limit of 63°C (Schwabe, 1960). The organism 

was first isolated and described by Cohn (1862) from hot springs in Carlsbad in the 

Czech Republic. Later reports document the presence of the organism in Costa Rica 

(Finsinger et al., 2008), the Antarctic (Melick et al., 1991), Greenland (Roeselers et 

al., 2007), Myanmar (Soe et al., 2011), New Zealand (Castenholz, 1976), Japan, and 

Chile (Schwabe, 1960; Mackenzie et al., 2013). 

Under most conditions, M. laminosus forms a dense network of intertwined narrow 

and wide trichomes (also known as type II (secondary) and type I (primary) 

trichomes respectively (Schwabe, 1960)). While cells of narrow trichomes have a 

uniform cylindrical shape, cells of wide trichomes are rounded and pleomorphic, 

usually giving rise to true branches, the characteristic feature for cyanobacteria of 

Section V (Anagnostidis and Komárek, 1990; Golubić et al., 1996; Komárek et al., 

2003) (Figure 47). Microfossil records from Rhynie, Aberdeenshire, Scotland 

support the presence of this complex morphotype already around 400 million years 
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ago (Croft and George, 1959) and according to the phylogenetic analyses by 

Schirrmeister et al. (2011; 2013) multicellularity in cyanobacteria evolved possible 

as early as the Great Oxygenation Event that took place 2.48 to 2.32 billion years ago 

(Bekker et al., 2004). True branching includes several different types, which have 

been named for simplicity after their morphological appearance, including ‘T’, ‘V’, 

‘X’, and (reverse) ‘Y’ branching (Anagnostidis and Komárek, 1990; Golubić et al., 

1996) (Figure 47). Lateral ‘T‘’, ‘V’ and (reverse) ‘Y’ branches are formed of 

cylindrical cells (Desikachary, 1959; Fogg et al., 1973; Golubić et al., 1996). 

Branches can differentiate into motile hormogonia which are released from the main 

filament by death and disintegration of the branching point (Balkwill et al., 1984) 

(Figure 47). The released hormogonia glide away from the parental colony, and form 

new colonies by differentiating into spherical cells, which give rise to new lateral 

branches (Hernandez-Muniz and Stevens, 1987; Robinson et al., 2007). 

According to ultrastructural investigations, cell division in M. laminosus and 

Fischerella ambigua differs from that seen in filamentous cyanobacteria of Sections 

III and IV (Thurston and Ingram, 1971; Martin and Wyatt, 1974; Nierzwicki et al., 

1982). It was suggested that rounded cells in wide trichomes became separated by 

the surrounding sheath (Martin and Wyatt, 1974). This would suggest that their 

filamentous character is maintained only by sheath material, so cyanobacteria of 

Section V may not represent the pinnacle of development among cyanobacteria but 

rather a primitive and basic form linking coccoid and filamentous forms (Martin and 

Wyatt, 1974). Under nitrogen deprivation almost every cell can differentiate into a 

heterocyst, following no regular spacing pattern, often forming multiple contiguous 

heterocysts (MCH) in wide trichomes (Nierzwicki-Bauer et al., 1984a; Nierzwicki-
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Bauer et al., 1984b; Stevens et al., 1985). This raises the question of how cells 

communicate in M. laminosus. 

 

Figure 47. Morphological complexity of M. laminosus. 

The main trichome is formed of rounded cells which give rise to ‘T’ and (reverse) 

‘Y’ branches composed of cylindrical cells. Motile filaments (hormogonia (horm)) 

are released from the main trichome by formation of necridia (necr). Images show 

FM1-43FX staining (yellow), autofluorescence (magenta), the bright-field view 

(grey) and the merged image of the three channels. Scale bars, 10 µm. 

In this chapter intercellular communication in M. laminosus is investigated by 

loading the fluorescent tracer 5-CFDA into the cytoplasm, and performing FRAP 

experiments to observe intercellular exchange of dye molecules. The questions 

addressed are whether the branch and the main trichome communicate in M. 
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laminosus, and whether exchange depends on the cell morphotype. The development 

of different types of branches and the localisation of heterocysts is discussed. 

Furthermore, the role of SepJ in M. laminosus is investigated by identifying the gene, 

localising the protein and generating and characterising a sepJ inactivation mutant. 

Work presented in this chapter has been partially published in Molecular 

Microbiology (Nürnberg et al., 2014). 

6.1 Development of different branching types in M. laminosus 

As described in the paragraph above, M. laminosus forms mainly two 

morphologically distinct types of true branches with slight variations: (reverse) ‘Y’ 

(Figure 48A) and ‘T’ branches (Figure 48B). Both types of branches are not only 

present in the same culture, but even in the same filament (Figure 47), raising the 

question of whether the differences between the two branching types are merely 

superficial, or whether they arise from different developmental processes. 

To approach this question the cytoplasmic membrane was visualised during branch 

formation using confocal microscopy and TEM. For confocal microscopy cells were 

stained with the fluorescent dye FM1-43FX, which highlights the cytoplasmic 

membrane in cyanobacteria (Schneider et al., 2007). The results indicate that the 

(reverse) ‘Y’ and ‘T’ branches are topologically equivalent. In both cases branch 

formation is initiated by the growth of a cell in a direction other than the main axis of 

the filament (Figure 48A,C). This is generally followed by septum formation across 

the mid-line of the cell, as is the usual rule in bacteria (Meier and Goley, 2014) 

(Figure 48A). As a result of septum formation one of the daughter cells is connected 

to three cells: two in the main trichome and one in the developing branch (Figure 

48A,B). A ‘T’ branch results from cell elongation in a direction roughly 
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perpendicular to the filament axis (Figure 48B), whereas a (reverse) ‘Y’ branch 

results from cell elongation at a more acute angle to the filament axis (Figure 

48A,C), but the two cases are only superficially different. This implies that branching 

is the result of a randomisation of the direction of cell elongation. When cell 

elongation is constrained to occur along the filament axis, branch formation is 

repressed. A developmental switch leading to randomisation of the direction of cell 

elongation allows branches to form. 

 

Figure 48. Different types of branching in M. laminosus, and their development 

revealed by confocal (A,B,D) and transmission electron microscopy (C). 
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Figure 48 

Two main types of branching are present in M. laminosus, namely (reverse) ‘Y’- (A) 

and ‘T’-branching (B). While the division plane is localised parallel to the main 

filament axis in ‘T’-branching (B), it remains nearly transversal to the main filament 

axis during the formation of a (reverse) ‘Y’-branch (A,C). Cells at the terminus of 

the main trichome grow into the direction of the main filament but alter their cell 

shape (D). (A,B) The images show FM1-43 FX fluorescence (yellow; left), 

chlorophyll fluorescence (magenta, middle), and an overlay of both (right). Scale 

bars, 5µm. (C) Electron micrograph of a thin section prepared with KMnO4. Scale 

bar, 2µm. (D) Bright field image. Scale bar, 5µm. 

This conclusion is consistent with the message from recent genome sequence 

analyses of several cyanobacteria of Section V, which did not detect any specific 

signature protein for cyanobacteria of Section V (Dagan et al., 2013; Shih et al., 

2013). Furthermore, it was shown by Singh and Tiwari (1969) that true branching 

can be induced in the non-branching filamentous cyanobacterium Nostoc linckia 

(Roth) Born. et Flah. (Section IV) by random mutagenesis using ultraviolet 

irradiation, which implies that branching can be induced by loss of gene function 

rather than being the result of a complex developmental programme. This fits with 

the conclusion that branching results from the selective relaxation of a stringent 

control over the direction of cell elongation. No obvious patterns in the spacing of 

branches were observed, even two adjacent cells start occasionally forming branches 

which remain either connected (Figure 49A) or separate (‘false branching’; Figure 

49B). The role of the peptidoglycan layer during branch formation remains to be 

investigated. Images suggest that if the separation process of the peptidoglycan 

layers fails cells remain connected at the basis of an elongating branch (Figure 49C). 
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Figure 49. Variations of branching in M. laminosus. 

No regular branching pattern is observed. Cells continue dividing next to an already 

formed branch, resulting in either connected (A) or separated double branches ((B); 

‘false branching’). Occasionally, cells remain connected at the basis of a branch, 

forming an elongated (reverse) ‘Y’ branch (C). The images show FM1-43 FX 

fluorescence (yellow; left). autofluorescence (magenta, middle) and an overlay of 

both (right). Scale bars, 10 μm. 

Terminal cells of wide trichomes do not branch and have a different, elongated shape 

(Figure 48D), which has been described as a ‘terminal hair’ by Anagnostidis and 

Komárek (1990). The attachment of another cell, or even a cell fragment, at the 

terminus of the filament is sufficient to inhibit cell elongation (Figure 50). A similar 

topology can be found e.g. in the filamentous cyanobacterium Oscillatoria 

acuminate (Section III; Geitler, 1960). 
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Figure 50. Inhibition of terminal filament growth by remaining cell fragments. 

A remaining cell fragment at the terminus of a filament (arrow) inhibits further 

growth. Cell were monitored for 44 h. The images show bright field (left), 

autofluorescence (magenta, middle) and FM1-43 FX fluorescence (yellow; right). 

Scale bars, 10 μm. 
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6.2 Intercellular communication between branch and main 

trichome in M. laminosus 

Until now it has remained unknown whether the branch and the main trichome 

communicate in cyanobacteria of Section V. A prerequisite for answering this 

question is to load a fluorescent molecule into the cytoplasm of cells of both the 

branch and the main trichome. In this study the fluorescent tracers 5-CFDA and 

calcein were tested for M. laminosus. The efficiency of cell labelling with 5-CFDA 

was much higher than that with calcein (data not shown), and hence suitable for 

further studies. 

The question of connectivity between branch and main trichome cannot be answered 

simply by photobleaching and following fluorescence recovery of the cell at the 

branch point, as fluorescence recovery might be possible from three directions. 

Branch formation could be induced by transferring filaments of M. laminosus to 

fresh growth medium and agitating the culture for 24h. This is consistent with a 

previous observation by Thurston and Ingram (1971) that branch formation is 

induced by conditions favouring rapid growth. Cells were then loaded with 5-CFDA, 

and fluorescence of entire short branches bleached by scanning the region of the 

branch at increased laser intensity (Figure 51). All the cells in a branch, regardless 

whether they formed a ‘T’ (Figure 51) or (reverse) ‘Y’ branch (data not shown), 

showed recovery. A quantified analysis of recovery, shown for a specimen ‘T’ 

branch in Figure 51, in which the bleached out branch was defined as one region of 

interest (ROI), reveals that recovery is mediated by cells from both sides next to the 

branching point. The fluorescence intensity decreases in the adjacent cells over time. 

Accordingly our results demonstrate that trichomes of M. laminosus form a complex 
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interconnected cell communication network. A newly formed branch remains 

connected to its main trichome. 

 

Figure 51. Intercellular transfer of 5-CFDA between branch and main trichome 

in a ‘T’-branch of M. laminosus. 

(A) FRAP image sequence. Only 5-CFDA fluorescence is shown. The left image was 

recorded prior to bleaching (pre). After bleaching out fluorescence in the branch (t = 

0), the change in fluorescence intensity was followed over 32 s. Scale bars, 5 µm. (B) 

Quantitation of cell fluorescence of the FRAP sequence displayed in (A). Regions of 

interest (ROI) were defined as shown in the left image, the ‘T’-branch formed of 

three cells was considered as one ROI (‘cell 3’). The corresponding fluorescence 

recovery is indicated in the right graph. Scale bars, 5 µm. 

6.3 Visualisation of septal junctions in M. laminosus 

The exchange of molecules between the cytoplasm of cells requires the presence of 

cell-to-cell connecting structures penetrating the peptidoglycan layer and the plasma 

membranes of both cells. The occurrence of such structures, which have been termed 
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microplasmodesmata, septosoems or septal junctions, has been well characterized in 

Anabaena spp. by various methods, such as thin-section TEM (e.g. Wildon and 

Mercer, 1963), freeze-fracture EM (Giddings and Staehelin, 1978; Giddings and 

Staehelin, 1981) and electron tomography (Wilk et al., 2011; Omairi-Nasser et al., 

2014), but it has remained unclear whether these structures exist in M. laminosus. A 

first indication of their presence in M. laminosus was given by Marcenko (1962), 

who could identify pores with an average diameter of 15 nm in the cross-walls of 

isolated cell wall sacculi. Electron micrographs of thin sections through the septal 

regions of M. laminosus clearly show structures pervading the septa between 

vegetative cells (Figure 52A) and between heterocysts and vegetative cells (Figure 

52B). Different methods of sample preparation for TEM can also be used to reveal 

insights into the composition of intercellular channels (Wilk et al., 2011). Our results 

are in good agreement with the proposed proteinaceous nature of the septal junctions 

found in Anabaena sp. PCC 7120 (Wilk et al., 2011). While septal junctions appear 

as positively stained structures in a KMnO4-based preparation method (Figure 52A), 

they are negatively stained in an OsO4-based preparation (Figure 52B). 
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Figure 52. Electron micrographs of ultra thin sections through the septal region 

of M. laminosus. 

Electron micrographs indicate the presence of structures connecting the cytoplasm of 

adjacent cells (arrows) in M. laminosus, using either a KMnO4- (A) or an OsO4-

based preparation method (B). Septal junctions are present between vegetative cells 

(A), and between vegetative cells and heterocysts (B). Note that the outer membrane 

does not enter the septum. CP – cyanophycin. Scale bars, 200nm. 

Although the presence of pores penetrating the septum was shown earlier in 

Stigonema hormoides, Fischerella muscicola, and F. ambigua, which belong to 

cyanobacteria of Section V, it has been suggested that these pores do not pierce the 

underlying plasma membranes, and accordingly do not mediate a direct connection 

of the protoplasts (Thurston and Ingram, 1971; Butler and Allsopp, 1972). The 

results from fluorescent dye exchange, however, show the continuity of the 

cytoplasm throughout the entire filament network, which is likely achieved by 

structures resembling septal junctions. 
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6.4 Identification and composition of SepJ in M. laminosus 

A potential key player in the formation of septal junctions is the protein SepJ. In 

Anabaena sp. PCC 7120 SepJ is not only necessary for filament integrity (Flores et 

al., 2007; Nayar et al., 2007; Merino-Puerto et al., 2010) but also essential for 

intercellular exchange of molecules (Mullineaux et al., 2008; Mariscal et al., 2011). 

Although a sepJ deletion mutant still exhibits septal junctions, the spacing between 

the two plasma membranes of the neighbouring vegetative cells is significantly 

reduced (Wilk et al., 2011). The question arises whether SepJ is also present in M. 

laminosus. Due to the lack of a genome sequence for this cyanobacterium, primers 

were designed based on DNA sequence similarity between the sepJ and the hetR 

sequences deposited in the GenBank
®
 database (Benson et al., 2011). As hetR is 

usually located downstream of sepJ a highly conserved region between six 

cyanobacterial strains of Section V within this gene was selected, and defined it as 

primer rv_mlam_hetR (Figure 53A). The design of primer fw_mlam_sepJ was based 

on an alignment of the sepJ sequences from four species, which are filamentous and 

heterocyst forming (Figure 53B). 
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Figure 53. Design of primers for the identification of sepJ in M. laminosus based 

on sequence alignments using ClustalW 2.1 (Larkin et al., 2007). 

(A) Reverse primer. Alignment of the first 50 nucleotides of hetR (partial) from 

different cyanobacteria of Section V. Chlo9212 - Chlorogloeopsis sp. PCC 9212; 

Chlo6912 - C. fritschii PCC 6912; Fis7414 - Fischerella muscicola PCC 7414; 

Fis1427 - F. muscicola SAG 1427-1; Fis1829 - F. muscicola UTEX 1829; Fis7521 - 

F. thermalis PCC 7521. The binding region of primer rv_mlam_hetR is underlined. 

(B) Forward primer. Alignment of the first 50 nucleotides of sepJ from the 

cyanobacteria Anabaena sp. PCC 7120 (A7120), A. variabilis ATCC 29413 (Avar), 

'Nostoc azollae' 0708 (Nazol) and N. punctiforme PCC 73102 (Npun). Primer 

fw_mlam_sepJ is underlined. ‘*’ indicates identity, ‘.’ semi-conserved substitutions 

for panel (A) and (B). 

The PCR with both primers generated a DNA product that contained a sequence with 

a high similarity to sepJ. The corresponding amino acid sequence revealed that SepJ 

of M. laminosus consists of three domains, including a coiled-coil domain, a highly 

repetitive linker region, and a permease domain which is found in nearly all 

filamentous, heterocyst-forming (and branching) cyanobacteria of Sections IV and V 

(see introduction 1.5, appendix: Table 26). Interestingly, the amino acid sequence of 

SepJ from M. laminosus SAG 4.84 is almost identical to that of Fischerella 
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muscicola PCC 7414. This is especially interesting due to the great spatial separation 

of their origins of isolation. M. laminosus SAG 4.84 was originally collected from a 

thermal spring from Reyhjanes/Isafjord on Iceland, whilst F. muscicola PCC 7414 

was isolated from a hot spring on New Zealand (Rippka et al., 1979). It has been 

proposed that microbes which show a great tolerance of freezing and desiccation can 

facilitate long distance airborne dispersal, and might facilitate a cosmopolitan 

distribution; all characteristics which Mastigocladus spp. possess (Melick et al., 

1991; Castenholz, 1996; Roeselers et al., 2007). Considering that the geologically 

diversification of the M. laminosus clade was a recent event, originating from a 

common ancestor associated with the western North American hot spot located 

below Yellowstone National Park (Miller et al., 2007), and that intercontinental 

dispersal e.g. by transpacific winds is possible (Smith et al., 2013), it might explain 

the presence of ‘similar’ strains of M. laminosus in widely separated habitats, such as 

New Zealand and Iceland. 

A phylogenetic analysis based on 16S rRNA sequences (Figure 54) strongly supports 

the close relationship between F. muscicola PCC 7414 and M. laminosus SAG 4.84. 

Both strains form a distinct group with M. laminosus Greenland-8, M. laminosus 

CCMEE 5272, CCMEE 5321, CCMEE 5323, CCMEE 5324, and CCMEE 5326. 

Whilst most of the latter species originate from Iceland and Greenland (Figure 54), 

M. laminosus CCMEE 5272 was isolated from the Azores, Portugal, around 

3,000 km south of Iceland, supporting the hypothesis of easy dispersal of 

M. laminosus. Although the amino acid sequence of SepJ from M. laminosus 

SAG 4.84 and Fischerella sp. PCC 7414 show a high similarity, it has to be pointed 

out that sepJ from Fischerella sp. PCC 7414 might exhibit a stop codon in the highly 

repetitive linker region. 
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Figure 54. 16S rRNA phylogenetic tree of Mastigocladus/Fischerella spp. 
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Figure 54 

The BlastN search (Zhang et al., 2000) was performed with the partial 16S rRNA 

sequence of M. laminosus SAG 4.84 as query. Only the first 100 BlastN results were 

used for the phylogenetic reconstruction using the Phylogeny.fr platform (Dereeper 

et al., 2008). Nucleotide sequences were aligned with MUSCLE. Conserved blocks 

from the alignment were identified with Gblocks. Phylogenetic analyses were 

performed with PhyML using the substitution model GTR and the Approximate 

Likelihood-Ratio Test (aLRT; SH-like) to test branch support. The resulting tree was 

obtained with TreeDyn. Origin of strains forming the highlighted group in the 

phylogenetic are displayed next to the box according to Rippka et al. (1979), Ishida 

et al. (2001), Miller et al. (2007) and Roeselers et al. (2007). 

6.5 Localisation of SepJ in M. laminosus 

In order to localise SepJ in M. laminosus immunofluorescence labelling was 

performed using the antibody against the coiled-coil domain of SepJ from Anabaena 

sp. PCC 7120 (Mariscal et al., 2011). The experiments show that SepJ is always 

located in the centre of intercellular septa of M. laminosus (Figure 55). There is also 

a dispersed background fluorescence signal in the cytoplasm. However this signal is 

also seen in the absence of the primary anti-SepJ antibody and therefore does not 

reflect SepJ localisation (Figure 55B,C). SepJ forms distinct spots not only in the 

main wide trichome (Figure 55A), but also in the narrow branch (Figure 55D). A 

newly-formed branching point shows three distinct regions of SepJ located to the 

adjacent cells (Figure 55A). The positioning of SepJ likely takes place during the cell 

division, when the protein forms a ring at the division plane (Figure 55D). These 

findings are in good agreement with those in Anabaena sp. PCC 7120 (Flores et al., 

2007) and support the importance of SepJ at the septal region of filamentous, 

heterocyst-forming cyanobacteria. 
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Figure 55. Localisation of SepJ by immunofluorescent labelling in M. laminosus. 
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Figure 55 

SepJ is localised in distinct spots at the septa between two adjacent vegetative cells 

(A, B, D). A control experiment without incubation with the primary antibody (anti-

SepJ) shows no fluorescent spots at the septum between cells (B). A branching point 

shows three distinct regions where SepJ is present (A; arrow). During cell division 

SepJ forms a ring at the division plane (D; arrow).The images show SepJ 

immunolabelling (green), autofluorescence (magenta), bright-field views (grey) and 

overlay images. Scale bars, 5 µm. 

6.6 Generation and characterisation of a sepJ inactivation mutant 

of M. laminosus 

To reveal further insights into the importance of sepJ for other cyanobacteria than 

Anabaena sp. PCC 7120 a sepJ inactivation mutant of M. laminosus was generated. 

Although it has been shown previously that foreign genes can be transferred into 

cyanobacteria of Section V (Flores and Wolk, 1985; Stucken et al., 2012), a protocol 

for the generation of mutants by genome modification was lacking. 

In order to introduce the resistance cassette into sepJ, a BamHI restriction site was 

generated within the gene by overlap PCR. DNA fragments of sepJ were amplified 

by PCR using primer fw_d_sepJ_ML_up_SpeI and rv_d_sepJ_ML_up_BamHI, and 

fw_d_sepJ_ML_down_BamHI and rv_d_sepJ_ML_down_PstI. Both products were 

used as DNA template for the overlap PCR with primers fw_d_sepJ_ML_up_SpeI 

and rv_d_sepJ_ML_down_PstI. The product was ligated into vector pRL271 (Black 

et al., 1993) via SpeI and PstI, resulting in plasmid pDN40. In order to interrupt sepJ 

the kanamycin resistance cassette C.K1 from pRL161 (Elhai and Wolk, 1988a) was 

inserted in the BamHI restriction site of pDN40. The resulting vector pDN42 was 

transferred to M. laminosus by conjugation as described in the materials and methods 

section 2.4.6.2. The standard protocol normally used for plasmid transfer to 
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Anabaena sp. PCC 7120 was slightly modified by subjecting M. laminosus to 

homogenisation by several passages through a syringe needle and extensive washing 

with growth medium prior to conjugation. According to Stucken et al. (2012) an 

important step in transferring DNA to cyanobacteria of Section V is the partial 

removal of the exopolysaccharide sheath by salt washing. However, this was not the 

case for M. laminosus: salt washing did not lead to a higher conjugation frequency. 

In this study M. laminosus cultures were transferred from a resting state into an 

active growing state by changing medium, agitation and temperature. As described 

above changes in growth conditions lead to branching and the formation of narrow 

trichomes with less exopolysaccharides which could account for the observed 

transfer efficiency without salt washing. However, it also needs to be considered that 

cyanobacteria of Section V show a high morphological and metabolic variability 

(Anagnostidis and Komárek, 1990) and thus thickness of the exopolysaccharide 

sheath could vary naturally between different species. 

Mutant strain MLDN42 was generated using double-crossover recombination. Gene 

sepJ was interrupted by the neomycin resistance cassette C.K1 in opposite direction 

to the gene and inserted after the predicted coiled-coil domain of sepJ (Figure 

56A,B). A homologous region of 600 to 700 bp on each site of the desired position 

of insertion was sufficient to integrate the resistance cassette into the genome of M. 

laminosus. However, several attempts using single-crossover recombination to 

interrupt sepJ in M. laminosus failed. PCR with primers binding to sequences outside 

the inserted region confirmed that mutant MLDN42 was fully segregated, and hence 

no amplified product of the size of the wild type was present in MLDN42 (Figure 

56C). The final verification by sequencing confirmed the correct position and 

sequence of the resistance cassette C.K1 in MLDN42. 
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Although a mutant of M. laminosus could be successfully generated in this work it is 

notable that the efficiency was quite low with approximately only one colony per 3 

µg of chlorophyll a. It is likely that DNA is degraded by specific restriction 

endonucleases that are present in Mastigocladus spp. and Fischerella spp. 

(Duyvesteyn and de Waard, 1980; Lyra et al., 2000; Stucken et al., 2012). 

Identification and characterisation of theses enzymes could help to design plasmids 

for the methylation of specific restriction sites and thus increase efficiency of 

transformation. 

 

Figure 56. Generation and verification of the sepJ inactivation mutant 

MLDN42. 
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Figure 56 

(A) Scheme of the final genetic construct. The C.K1 cassette bearing the neomycin 

transferase gene was inserted into the sepJ gene of M. laminosus in opposite 

direction after the coiled-coil domain (CC) encoding region of sepJ. Further domains 

of SepJ are the linker region (L) and the permease domain (P). (B) Orientation of the 

C.K1 cassette in MLDN42 confirmed by PCR using primers fw_mlam_sepJ (1), 

fw_neo (2) and rv_mlam_sepJ_seq (3). A PCR product was only obtained when 

using primers fw_mlam_sepJ and fw_neo (1+2) but not with primers fw_neo and 

rv_mlam_sepJ_seq (2+3). (C) Confirmation of full segregation of MLDN42. The 

amplified product from the genomic DNA of MLDN42 with primers binding outside 

the modified genomic region (fw_mlam_sepJ (1) and rv_mlam_sepJ_seq (3)) is ca. 

1300 bp bigger than the product amplified from the genomic wild type DNA 

(ML-WT), corresponding to the length of the C.K1 cassette. C. Orientation of the 

C.K1 cassette in MLDN42 confirmed by PCR using primers fw_mlam_sepJ (1), 

fw_neo (2) and rv_mlam_sepJ_seq (3). A PCR product was only obtained when 

using primers fw_mlam_sepJ and fw_neo (1+2) but not with primers fw_neo and 

rv_mlam_sepJ_seq (2+3). 

6.7 Characterisation of the sepJ inactivation mutant MLDN42 

It has been shown earlier that SepJ in Anabaena sp. PCC 7120 is not only important 

for molecular communication between cells (Mullineaux et al., 2008; Mariscal et al., 

2011), but also for filament integrity and diazotrophic growth (Flores et al., 2007; 

Nayar et al., 2007; Mariscal et al., 2011). Interestingly, MLDN42 shows full 

morphological complexity, forming not only different types of branches and 

hormogonia, but also heterocysts under nitrogen deprivation (Figure 57A). FRAP 

experiments using the fluorescent tracers 5-CFDA and calcein revealed that 

MLDN42 is capable of exchanging both molecules between vegetative cells in 

different filament types (exemplarily shown for calcein for cells within a narrow 

trichome in (Figure 57B). indicating that SepJ does not inhibit intercellular 
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communication of molecules with these properties. In conclusion, sepJ seems to be 

less important for filament integrity, diazotrophic growth and intercellular 

communication in M. laminosus: Mutant MLDN42 misses the phenotypic 

characteristics found in a ΔsepJ mutant of Anabaena sp. PCC 7120. 

Considering that M. laminosus is closely related to Fischerella sp. PCC 7414 (Figure 

54) which possesses a sepJ with a stop codon in the linker region (Dagan et al., 

2013) but does not show the classical ΔsepJ phenotype neither, it would be 

interesting to investigate the function of the coiled-coil domain in Anabaena sp. 

PCC 7120. 

Furthermore, it is likely, that an important component for maintaining filament 

integrity in M. laminosus is its ability to form a thick surrounding sheath which is 

consistent with the observation that filaments with heterocysts do not tend to 

fragment under nitrogen deprivation as reported for Anabaena sp. PCC 7120. No 

single heterocysts or short filaments with terminal heterocysts were observed for 

cultures of M. laminosus after nitrogen step-down.  

In this context, it is also interesting to investigate the role of the N-Acetylmuramyl-

L-alanine amidases (Ami), in particular AmiC1 and AmiC2, which are important for 

filament integrity, heterocyst development and nanopore formation in Nostoc 

punctiforme ATCC 29133 and Anabaena sp. PCC 7120 (Lehner et al., 2011; Berendt 

et al., 2012; Lehner et al., 2013; Maldener et al., 2014). Whether these proteins have 

a similar function in M. laminosus has yet to be investigated. 
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Figure 57. Characterisation of mutant MLDN42. 

(A) Bright-field microscopy of MLDN42 gown in Castenholz ND medium. 

MLDN42 shows full morphological complexity under nitrogen deprivation, forming 

branches, e.g. a (reverse) ‘Y’-branch (Y), and heterocysts (arrow). Scale bar, 10 µm. 

(B) Calcein FRAP measurement on trichomes of MLDN42. The left image was 

recorded prior to bleaching (pre). After bleaching out fluorescence of a cell (t = 0), 

recovery was followed over 24 s. The region of interest is indicated with a white 

arrow. Scale bars, 5 µm. 
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6.8 Intercellular communication between cells of different trichome 

types in M. laminosus 

While branches formed of long, narrow, cylindrical cells, main trichomes consist of 

large, rounded-up cells (e.g. Schwabe, 1960; Nierzwicki et al., 1982). Although cells 

in branch and main trichomes show distinct differences in their cell shape, their 

ultrastructure is similar, varying mainly in the number of carboxysomes and 

peripherally located lipid bodies. Wide cells possess a higher number of these 

inclusions than narrow cells (Nierzwicki et al., 1982; Nierzwicki-Bauer et al., 

1984b), and it has been suggested that they might be functionally active rather than 

being in a resting state (Balkwill et al., 1984). To gain further information about the 

possible function of these different morphotypes, molecular exchange of 5-CFDA 

was investigated by FRAP experiments. A parameter to quantify the kinetics of dye 

exchange between cells is the ‘exchange coefficient’ (E), which can be calculated as 

previously described (Mullineaux et al., 2008). E has units of s
-1

 and relates the rate 

of molecular flux between adjacent cells to the difference in dye concentration 

between the cells. However, E is not the best parameter to use for making 

comparisons of the connectivity of morphotypes with significantly different cell 

volumes, because the concentration changes resulting from flux of molecules across 

the cell junction depend on cell volume as well as the flux across the junction. 

Therefore a new parameter, the ‘flux coefficient’ F, defined as (E x cell volume), 

with units of µm
3
s

-1
 was introduced. F corrects for the influence of cell volume on E, 

to give a value that allows comparison of molecular exchange activity at junctions 

between different morphotypes. 
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To take the influence of the high degree of cell polymorphism in M. laminosus on the 

cell volume into account, four different geometrical shapes, including cylinder, 

prolate spheroid, sphere, and oblate spheroid were chosen. While cylindrical cells 

were considered to represent cells in narrow trichomes, both spherical and spheroidal 

cells were considered to represent cells of wide trichomes. Our results indicate that 

cells in narrow trichomes exhibit significantly higher E and F values than cells in 

wide trichomes (Table 25), suggesting that not only the change in concentration of 

molecules but also the flux of molecules between cells depends on the trichome type. 

The mechanism which leads to the significant decrease in communication between 

cells during the process of maturation from a narrow to a wide trichome remains to 

be investigated. 

Table 25. Exchange (E) and flux coefficients (F) for 5-CFDA in M. laminosus. 

measurement mean E [s
-1

] (± s.d.) mean F [µm
3
s

-1
] (± s.d.) 

1. cells in narrow trichomes 0.159 ± 0.072 7.65 ± 5.19 

2. cells in wide trichomes 0.058 ± 0.044 3.60 ± 2.47 

3. cells in hormogonia 0.132 ± 0.063 3.14 ± 1.04 

t-tests indicate that E and F are significantly different in (1) and (2) (P < 0.00001). Number 

of experiments performed for (1) 27, (2) 57, and (3) 9. 

A high degree of cell-cell communication might be essential to ensure a sufficient 

supply of nutrients and regulators within a fast-growing narrow trichome. To 

investigate this hypothesis, further cell differentiation processes in M. laminosus, 

which are supposed to require cell-cell communication, including the formation of 

heterocysts and motile hormogonia were considered. 
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Nitrogen limitation stimulates extensive heterocyst differentiation in M. laminosus. 

Almost any vegetative cell can differentiate into a heterocyst (Nierzwicki-Bauer et 

al., 1984b; Stevens et al., 1985). Heterocysts can be distinguished from vegetative 

cells by their diminished pigmentation and the presence of cyanophycin plugs at the 

cell poles. Bright-field microscopy revealed that any cell in the branching region is 

capable of undergoing cell differentiation, resulting in the formation of heterocysts in 

the branching point of a ‘T’-branch and a (reverse) ‘Y’-branch (Figure 58A-D). The 

position of the cyanophycin plugs in these cells is notable. Heterocysts at the origin 

of a branch show three cyanophycin plugs, while neighbouring heterocysts in the 

branching region of ‘T’ and (reverse) ‘Y’-branches only possess two cyanophycin 

plugs (Figure 58B,C). These microscopic observations support the previous FRAP 

results that M. laminosus forms a complex network of various trichome types, which 

exchange metabolites, including products of nitrogen and carbon fixation. The key 

function of the main trichomes might be to provide the basis for growth of the 

organism under favourable environmental conditions. 

Earlier observations by Nierzwicki-Bauer et al. (1984a) that M. laminosus forms 

multiple contiguous heterocysts in the main trichomes under nitrogen deprivation 

support this hypothesis. Although the formation of multiple contiguous heterocysts 

was rarely observed in the main trichome of M. laminosus SAG 4.84, double 

heterocysts could be regularly found in the branches (Figure 58E). It is possible that 

the different heterocyst localisation is caused either by the altered growth conditions 

or the diversity of Mastigocladus spp. and Fischerella spp. strains in general, even a 

strain of M. laminosus Cohn has been described which lacks the ability to form 

heterocysts (Melick et al., 1991). The formation of double heterocysts is again 

interesting with regard to the position of cyanophycin plugs. Each heterocyst shows 
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two cyanophycin plugs, resulting in a double cyanophycin plug between both 

heterocysts (Figure 58E). 

 

Figure 58. Position of heterocysts in filaments of M. laminosus. 

(A-D) Heterocysts (arrows) can be found either in the branching start of ‘T’- (A) or 

(reverse) ‘Y’-branches (C), or in the new formed lateral branches (B and D, 

respectively). Note the position of cyanophycin granules in the heterocysts. They are 

always located close to cells they are connected with. Scale bars, 5 µm. (E) Double 

heterocyst in a narrow trichome of M. laminosus (arrows). Cyanophycin granules are 

located at each pole of the cell, resulting in two cyanophycin plugs between two 

heterocysts. Scale bar, 10 µm. (F) Electron micrograph of an ultra-thin section of a 

heterocyst in M. laminosus. A cyanophycin plug (CP) is present in the neck region. 

Rearrangements of thylakoid membranes are visible. The sample was prepared using 

the KMnO4 method. Scale bar, 1 µm. 

To characterise the heterocyst-heterocyst connection further the fluorescent dye 

FM1-43FX was used to highlight the cytoplasmic membrane (Schneider et al., 

2007). Confocal images indicate that both heterocysts are connected via two neck 

regions (Figure 59). 
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Figure 59. Heterocyst-heterocyst connection in a narrow trichome of M. 

laminosus. 

Adjacent heterocysts are connected via two neck regions (arrow). The images show 

FM1-43 FX fluorescence (yellow), autofluorescence (magenta), an overlay of both 

fluorescent images, and the bright field view (grey). Scale bars, 2 μm. 

Another important stage in the life cycle of M. laminosus is the formation of 

hormogonia, motile filaments which glide slowly away from the parental filament, 

before finally differentiating into a sedentary wide trichome and forming a new 

colony (Hernandez-Muniz and Stevens, 1987; Robinson et al., 2007). Hormogonia 

show a high variability in surface velocity, which differs not only between 

hormogonia but also for the same hormogonium over time, and a high variability in 

the directions they move (Hernandez-Muniz and Stevens, 1987). Their ability to 

reverse the direction of gliding (Hernandez-Muniz and Stevens, 1987) suggests a 

high degree of cell-cell communication. In order to determine the exchange and flux 

coefficient for hormogonia the cell dimensions of a moving hormogonium were 

measured and correlated to the tracer exchange data represented earlier. This ensures 

that also hormogonia are considered which were not moving during the FRAP 

experiments. As hormogonia are formed by cell division without biomass increase, 

they can be distinguished from other filament types by their distinctly smaller cell 

size (Campbell and Meeks, 1989). Accordingly, hormogonia of M. laminosus were 

defined by cell diameter, cell length, and the diameter to length ratio, resulting in a 

group of cells characterised by an average cell diameter of 2.76 ± 0.31 µm, an 



6   Morphological complexity and intercellular communication in M. laminosus 

221 

 

average cell length of 3.61 ± 0.88 µm, and a diameter to length ratio of 0.80 ± 0.19 

(n = 80). While the mean exchange coefficient E is similar to that found between 

cells in narrow trichomes (E = 0.159 ± 0.072 s
-1

) and meets the expectation that 

cellular communication is fast in hormogonia, the flux coefficient F is significantly 

lower, showing a value similar to that found in wide trichomes (F = 3.60 ± 2.47 

µm
3
 s

-1
) (Table 25). Therefore communication between cells in hormogonia is rapid 

in the sense that intercellular diffusion of molecules is fast enough to lead to rapid 

changes in the cytoplasmic concentration of putative signalling molecules. However, 

as compared to cells in the parental filament, this rapid communication is achieved 

by reducing the cell volume rather than by accelerating the flux of molecules across 

the cell junctions. Therefore signal transduction to coordinate movement (and 

possibly other aspects of the biology) of hormogonia is probably accelerated by the 

reduction of the cell volume rather than by increased flux of signalling molecules 

across the cell junctions. 

6.9 Barriers to cell-cell communication in the life cycle of M. 

laminosus 

The release of a hormogonium from its parental trichome is mediated by the 

formation of releasing, dead cells, called necridia, which are possibly best studied in 

Oscillatoria/Microcoleus spp. (Kohl, 1903; Lamont, 1969; Brown et al., 2010). 

Beside heterocysts (Meeks et al., 2002), necridia are one of the few known 

developmental ‘dead ends’ among prokaryotes, and can be seen as a basic form of 

programmed cell death (apoptosis). Since a necridium can be found early after the 

branching event in the growing narrow trichome (Figure 60A-C), it was investigated 

whether exchange of molecules is still possible between the branch and the main 
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trichome. After loading the fluorescent tracer 5-CFDA into the cytoplasm, the 

fluorescence of the part of the branch which was separated by the necridium was 

bleached out and its change in fluorescence intensity recorded (Figure 60A). The 

bleached region did not show any recovery within 24 s (Figure 60A) indicating that a 

necridium inhibits cell-cell communication completely. Accordingly, the fate of a 

trichome is determined early after branch formation; molecular exchange not being 

possible once a necridium is formed. 

To get an impression of the complexity of this event and its importance for the 

filamentous network, the position of necridium formation was explored. Necridia can 

be easily detected by enhanced red fluorescence in the region of formation, possibly 

as a result of degradation of the photosynthetic apparatus (Figure 60B-D, Figure 

61A). Necridia also show brighter staining with the membrane dye FM1-43FX 

(Figure 60B-D), probably because leakiness of the cytoplasmic membrane allows the 

dye to penetrate to the interior of the cell. Necridia are not only located in the 

branching point, as reported in an earlier study (Balkwill et al., 1984), but also in 

various other positions within narrow trichomes, such as the beginning of the 

recently formed branch (Figure 60C), indicating that almost any cell within a 

filament can differentiate into a necridium. Even within the same filament several 

necridia can be found, contiguous or separated only by a single cell (Figure 60D), 

suggesting that necridia formation in M. laminosus seems to follow no regular 

pattern of spacing and distribution. 
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Figure 60. Function of necridia in intercellular communication, and their 

localisation in filaments of M. laminosus. 
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Figure 60 

(A) FRAP image sequence of 5-CFDA loaded cells. Intercellular transfer is inhibited 

between main trichome and branch by the formation necridium (grey arrow).The left 

image was recorded prior to bleaching (pre). After bleaching out fluorescence in the 

branch (t = 0), recovery was followed over 24 s. The ROI is indicated with a white 

arrow. Scale bars, 5µm. (B-D) Position of necridia and reorganisation of membranes 

in filaments of M. laminosus. Necridia (arrows) can be found in the branching start 

(B), at the beginning of a recently formed branch (C), or at various positions within a 

narrow trichome (D). Their position follows no regular pattern. Two necridia can be 

even found in a single filament, separated only by one vegetative cell (D).The images 

show FM1-43 FX fluorescence (yellow; left), autofluorescence (magenta, middle) 

and an overlay of both (right). Scale bars, 5 µm. 

The final release involves remodelling the septal region on both sides of the 

necridium. To avoid cell death of the entire cellular network by efflux of molecules, 

the membranes of the neighbouring cells have to stay intact, and the channels must 

be closed (see chapter 5). Electron micrographs confirm that the plasma membrane 

and outer membrane are sealed at the terminal cell (Figure 60B). Although it was 

observed that necridia usually consist only of a single cell, they can be formed by 

two cells (Figure 60B,D). A possible mechanism to prevent efflux of molecules in 

other cyanobacteria, e.g. Symploca muscorum and M. vaginatus might be by the 

synthesis of an additional cell wall layer at the new terminus (‘calyptra’; Pankratz 

and Bowen, 1963; Lamont, 1969). It remains to be investigated whether this structure 

also exists in M. laminosus. 

Filament breakage, however, is only possible by the disintegration of the membranes 

of the necridium. To investigate this process the cytoplasmic membrane stain 

FM1-43FX (Figure 60B-D) and the DNA stain Hoechst 33258 (Figure 61A) were 

used. The fluorescence micrographs indicate that during necridium formation the 
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cytoplasmic membrane of the necridium deteriorates mainly from one terminus of 

the cell (Figure 61B-D), leaving an ‘open’ and empty (DNA-free) cell attached to the 

released filament (Figure 61), while only a small part of membranes remains at the 

terminus of the parental filament. 

 

Figure 61. Appearance of necridia after filament release. 
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Figure 61 

(A) Localisation of DNA in a hormogonium of M. laminosus. DNA was visualised 

by staining cells with Hoechst 33258 (blue). Autofluorescence is shown in magenta. 

An overlay with the bright-field image illustrates the position of DNA in the 

hormogonium, while a dead part remains at the end of the released filament (arrow). 

Scale bars, 5µm. (B) Electron micrograph of an ultra-thin section of a branch 

terminus after filament breakage via necridium formation. Note that plasma 

membrane (PM) and outer membrane (OM) are sealed at the terminal cell to prevent 

cell death by molecule efflux. The sample was prepared with the method based on 

KMnO4. Scale bar, 1 µm. 

6.10 Conclusion 

M. laminosus forms a complex cellular network, in which the main trichome and 

branches communicate via intercellular connections which resemble septal junction 

complexes. Furthermore, FRAP measurements revealed that exchange between cells 

within a culture is regulated, depending on cell morphology. Young, narrow 

trichomes exhibited faster exchange rates among cells than older, wider trichomes 

showed reduced rates. Accordingly, wide trichomes might not only provide a 

platform for the outgrowth of branches, but they might also support the growth of 

branches by supplying metabolites in the presence and absence of a combined 

nitrogen source. Under nitrogen deprivation heterocysts can be found frequently in 

the branching region, sometimes even in the branching start, forming a heterocyst 

with three cyanophycin plugs. The integrity of the filament network is only 

interrupted by the formation of necridia, which inhibit further molecular exchange, 

and, hence, determining the fate of a developing branch, likely to become a 

hormogonium, early after the branching event. Interestingly, signal transduction to 

coordinate movement of the released hormogonia might be accelerated by the 

reduction in cell volume. 
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Cell differentiation seems to be generally less regulated than in Section IV 

cyanobacteria; the formation of heterocysts (Nierzwicki-Bauer et al., 1984a; 

Nierzwicki-Bauer et al., 1984b; Stevens et al., 1985) and necridia (this work) seem 

to follow no regular spacing and distribution pattern. The analyses of different types 

of branches also suggest a degree of randomness in cell development, leading to the 

hypothesis that ‘T’ and (reverse) ‘Y’ branches are basically equivalent: the different 

forms simply result from loose control of the positioning of the cell elongation 

machinery. 

As a possible component of the cell-cell connecting structures SepJ was identified in 

M. laminosus. The protein consists of the typical three domain architecture found in 

other filamentous, heterocyst-forming cyanobacteria such as Anabaena sp. PCC 7120 

(Section IV), and immunofluorescence labelling revealed its localisation at the septa. 

A cell in the branching point exhibits three SepJ spots, suggesting that although M. 

laminosus shows branching, the septa are similar to those described in Anabaena sp. 

PCC 7120. However, SepJ seems to be less important for filament integrity, 

intercellular communication and diazotrophic growth in M. laminosus as a generated 

sepJ inactivation mutant did not show the phenotype observed in Anabaena sp. 

PCC 7120. 

Earlier studies had suggested that rounded cells in wide trichomes seem to be 

completely separated by their surrounding sheath (Thurston and Ingram, 1971; 

Martin and Wyatt, 1974; Nierzwicki et al., 1982) which would imply a lack of 

communication between these cells. According to ultrastructural and FRAP analyses 

this is however not the case. M. laminosus shows intercellular communication and 

highly-structured cell junctions between cells of various shapes, forming a complex 

network of cell communication. The hypothesis that cyanobacteria of Section V 
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represent a primitive and basic form linking coccoid and filamentous forms (Martin 

and Wyatt, 1974), is not supported by this study. Overall, the presented results from 

cell division and intercellular communication experiments indicate that Section V 

cyanobacteria are similar to cyanobacteria of Section IV, but show the highest degree 

of morphological complexity and diversity within the phylum. 
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7 Summary and outlook 

Development of true multicellularity involves three major and mutually-dependent 

processes: cell-cell adhesion, intercellular communication and cell differentiation 

(Flores and Herrero, 2010). This study focussed on investigating intercellular 

communication in the well-established model organism of Section IV cyanobacteria, 

Anabaena sp. PCC 7120 (chapter 3-5) and the Section V cyanobacterium, 

Mastigocladus laminosus (chapter 6). 

When cells of Anabaena sp. PCC 7120 and M. laminosus are deprived of combined 

nitrogen, photosynthetically-active vegetative cells differentiate into nitrogen-fixing 

heterocysts, making intercellular communication essential for maintaining filament 

viability. This study revealed that molecular exchange in both organisms occurs 

mainly via septal junctions, connecting the cytoplasms of neighbouring cells 

(chapter 3 and 6). FRAP experiments on filaments of Anabaena sp. PCC 7120 

showed that a range of fluorescent molecules is cytoplasmically exchanged between 

vegetative cells and heterocysts, including the fluorophores calcein (Mullineaux et 

al., 2008; Mariscal et al., 2011; chapter 3.3 and 4.3.1), BCECF (chapter 3.3), 5-

CFDA (Merino-Puerto et al., 2010; Mariscal et al., 2011; Merino-Puerto et al., 

2011b; chapter 3.3 and 4.3.1), 2- and 6-NBDG (chapter 3.2) and esculin (chapter 

3.1). However, it cannot be excluded at this stage that a fraction of molecules 

diffuses from cell to cell via a continuous periplasm (Flores et al., 2006; Mariscal et 

al., 2007). Further studies using fluorescent tracers, specifically located to the 

periplasmic space, are required to resolve the question of periplasmic transport. 
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For the first time transfer of physiologically-important molecules was shown. In 

contrast to the ‘artificial’ fluorescein variants, calcein, 5-CFDA and BCECF, uptake 

of the fluorescent sucrose analogue esculin and the fluorescent glucose derivatives 2- 

and 6-NBDG is mediated by specific transporters. Addition of sucrose reduces the 

rate of esculin uptake, while import of glucose-derivatives was increased by 

expressing genes from Nostoc punctiforme ATCC 29133, encoding the glucose 

permease GlcP (Npun_R5323) and the OprB-like porin Npun_R5320 in Anabaena 

sp. PCC 7120. These results support earlier studies, suggesting the importance of 

sucrose and glucose as carbon carriers (Haury and Spiller, 1981; Jüttner, 1983; 

Schilling and Ehrnsperger, 1985; Wolk et al., 1994; Curatti et al., 2002; Cumino et 

al., 2007; Marcozzi et al., 2009; López-Igual et al., 2010; Vargas et al., 2011). 

Whether fructose is additionally transferred between cells as suggested by Haury and 

Spiller (1981) and Jüttner (1983) remains to be investigated. This question could be 

addressed by using the fluorescent fructose variant 1-NBDF which has been 

introduced to label breast cancer cells (Levi et al., 2007). Although it has been shown 

recently that Anabaena sp. PCC 7120 grows chemo-organoheterotrophically in the 

presence of high concentrations of fructose (Stebegg et al., 2012), using an 

Anabaena sp. PCC 7120 mutant that expresses the frtRABC genes from A. variabilis 

ATCC 29413 might be more efficient as fructose uptake occurs at much higher level 

in this strain than in the wild-type (Ungerer et al., 2008). 

Further studies should also investigate which metabolites function as nitrogen 

carriers. It has been suggested that ammonia or a substance derived from it such as 

glutamine (Fogg, 1949; Wolk et al., 1976; Thomas et al., 1977) and the amino acids 

which form the storage compound cyanophycin, i.e. aspartate, arginine, or its 

smallest subunit β-aspartyl-arginine (Carr, 1988; Richter et al., 1999; Ke and 
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Haselkorn, 2013; Burnat et al., 2014) are transferred between heterocysts and 

vegetative cells in Anabaena spp. Fusing arginine, aspartic acid or 

β-aspartyl-arginine to a fluorescent tag such as NBD (nitrobenzoxadiazole) could not 

only reveal insights into the role of these molecules in intercellular communication 

but also into their function in the metabolism of cyanophycin. Although it has been 

shown for Anabaena sp. PCC 7120 that aspartic acid and arginine are taken up by 

specific transporters (Pernil et al., 2008), it remains unknown whether the fluorescent 

amino acids are taken up by the same transporters or whether Anabaena sp. 

PCC 7120 possesses a specific transporter for β-aspartyl-arginine. 

But intercellular communication in Anabaena sp. PCC 7120 requires not only 

exchange of nutritional compounds. In order to establish the regular heterocyst 

spacing pattern, regulators need to be transferred between cells. It has been suggested 

that the spacing pattern is a result of periodic concentration gradients of an inhibitor 

along the filament that allows heterocyst formation only at the position of the lowest 

concentration (Fogg, 1949). In Anabaena sp. PCC 7120 this inhibitor is likely to be 

the product of the gene patS (Yoon and Golden, 1998). Although patS encodes a 

polypeptide of 17 amino acids (Corrales-Guerrero et al., 2013), a shortened PatS 

variant of 5 C-terminal amino acids (RGSGR (PatS5)) is sufficient to inhibit 

heterocyst differentiation when added to the growth medium (Yoon and Golden, 

1998; Huang et al., 2004; Wu et al., 2004). Recent immunofluorescence localisation 

studies by Corrales-Guerrero et al. (2013) showed that RGSGR-containing peptides 

such as PatS accumulate in cells adjacent to the differentiating proheterocysts, 

suggesting that these peptides are transferred between cells. However, direct transfer 

of the potential inhibitor has not been visualised yet. In collaboration with Prof Jason 

Micklefield, Dr Anna-Winona Struck and Matthew Bennett I was able to undertake a 
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preliminary study using a fluorescent-labelled version of PatS5 which is shown in 

this chapter due to its preliminary nature. In our approach an NBD-molecule was 

attached to the N-terminus of the pentapeptide, generating the fluorophore NBD-

PatS5. Confocal microscopy revealed that the fluorescent pentapeptide is 

incorporated into the cytoplasm of Anabaena sp. PCC 7120 filaments (Figure 62A,B) 

and FRAP experiments confirmed that NBD-PatS5 diffuses cytoplasmically between 

vegetative cells (Figure 62C).  

 

Figure 62. Uptake and diffusion of NBD-PatS5 in Anabaena sp. PCC 7120 

grown in BG11. 

(A) Uptake of NBD-PatS5. Filaments were incubated for 30 min with NBD-PatS5 

and visualised by confocal microscopy using an excitation wavelength of 476 nm 

and an emission range of 520-540 nm for detection. Images show NBD-PatS5 

fluorescence (green), chlorophyll fluorescence (magenta) and overlays. Control with 

unlabeled cells is shown in (B). (C) FRAP time-series. NBD-PatS5 fluorescence 
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prior to the bleach (pre), immediately after bleaching out fluorescence in the 

highlighted cell (t = 0), and 30 s later. Scale bars, 5 µm. 

To test whether attaching the NBD molecule to PatS5 influences its physiological 

function, NBD-PatS5 was added to Anabaena sp. PCC 7120 cultures after nitrogen 

step-down. While the control culture (same culture without NBD-PatS5) showed 

fully developed heterocysts after 36 h of incubation (Figure 63A), no heterocysts 

were observed after adding NBD-PatS5 (Figure 63B) or PatS5 (Figure 63C). Thus, 

NBD-PatS5 is considered as functional. 

 

Figure 63. Physiological importance of NBD-PatS-5. 



7   Summary and outlook 

234 

 

Under nitrogen deprivation Anabaena sp. PCC 7120 forms mature heterocysts within 

36 h after nitrogen deprivation (A). Addition of 5 µM NBD-PatS-5 (B) and 5 µM 

PatS-5 (C) inhibit heterocyst formation in the absence of a combined nitrogen source. 

Scale bars, 10 µm. 

Further FRAP experiments are required to quantitate the rate of molecular exchange 

between vegetative cells and between vegetative cells and heterocysts. In addition, 

the influence of the septal proteins SepJ, FraC and FraD could be tested by using the 

corresponding mutants for FRAP measurements. Although these experiments are 

preliminary, they show that molecules even bigger than calcein (730 Da in 

comparison to 622 Da) can be transferred between cells via septal junction 

complexes. However, the size exclusion limit for molecules in cyanobacteria remains 

to be determined. 

The expansion of the range of molecular probes for intercellular communication 

described in this work, revealed insights into the selectivity of the septal junction 

complexes mediating transfer between cells in Anabaena sp. PCC 7120 (chapter 3). 

In the presence of a combined nitrogen source, charge and size are important 

properties of the transferred molecules. Calcein and BCECF exhibit significantly 

slower recovery rates than the smaller and less charged molecules 5-CFDA, 

2-NBDG and esculin. When cultures of Anabaena sp. PCC 7120 are deprived of 

combined nitrogen, exchange of calcein increases significantly in comparison to 

conditions when a combined nitrogen source is present. As no significant differences 

were observed between plus and minus N conditions for the smaller but partly 

similar charged fluorophores BCECF, 5-CFDA, 2-NBDG and esculin, it is 

hypothesised that molecule size is the main property that affects diffusion between 

vegetative cells in the absence of combined nitrogen. Comparison of the recovery 
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rates of all tested molecules under minus N conditions reveals that the smallest 

molecule, esculin, is exchanged fastest between vegetative cells. 

In Anabaena sp. PCC 7120 the septal proteins FraC, FraD and SepJ are important 

components mediating intercellular transfer of calcein and 5-CFDA (Mullineaux et 

al., 2008; Mariscal et al., 2011; Merino-Puerto et al., 2011b). Comparison of all 

published FRAP data and data obtained in this study revealed that deletion of SepJ 

strongly impairs transfer of calcein (ca. 24 % of wild-type) while transfer of BCECF, 

5-CFDA, 2-NBDG and esculin is reduced to a lesser extent (approximately 

61 - 72 %), indicating that SepJ is a key protein for transfer of bigger molecules 

independent of their charge. Furthermore, overexpression of sepJ led to an increase 

of calcein transfer between vegetative cells and heterocysts and an altered heterocyst 

spacing pattern with more vegetative cells between two heterocysts (chapter 4). It is 

likely that the additional SepJ molecules allow faster diffusion of inhibitors such as 

PatS from heterocysts into neighbouring vegetative cells. FRAP experiments using 

NBD-PatS5 could clarify this question. Increasing the rate of molecular exchange 

between heterocysts and vegetative cells could also be an interesting possibility of 

enhancing the productivity of heterocysts as anaerobic cell factories, producing 

hydrogen and combined nitrogen. 

Loss of FraC and FraD in Anabaena sp. PCC 7120 reduces transfer of all tested 

molecules dramatically with smaller and neutral molecules being less impaired in 

diffusion. Additional deletion of sepJ in this mutant does not reduce transfer of 

molecules further, suggesting that additional proteins are involved in mediating 

transfer between cells which remain to be identified. Overexpression studies of fraC 

and fraD might reveal further insights into the importance of both proteins for 
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intercellular communication and the formation of a regular heterocysts spacing 

pattern in Anabaena sp. PCC 7120. 

Diffusion of all tested molecules into heterocysts was always much slower than 

between vegetative cells. Exchange of calcein, 5-CFDA and 2-NBDG remains at 

around 25 % while exchange of BCECF is slightly slower and exchange of esculin is 

slightly faster. According to Giddings and Staehelin (1978) the number of septal 

junctions is reduced between vegetative cells and heterocysts by 80 % which is in 

good agreement with the observed reduction of molecule transfer. As heterocysts are 

unable to undergo cell division, they represent one of the few developmental ‘dead 

ends’ among prokaryotes (Meeks et al., 2002). To avoid death of the entire filament 

after death of a single heterocyst, the channels between vegetative cells and 

heterocysts need to be closed after the fragmentation event. A first indication that 

channel closure occurs, was given by the loss of intercellular transfer of esculin in a 

significant fraction of older heterocysts in Anabaena sp. PCC 7120 (chapter 3.1.5). 

Further studies using fragmented filaments and confocal microscopy revealed that 5-

CFDA labelled filaments remained fluorescent after filament fragmentation by 

sonication and that SepJ is redistributed or degraded within 24 h after the 

fragmentation event (chapter 5). Thus, it is hypothesised that Anabaena sp. PCC 

7120 exhibits mechanisms to regulate intercellular communication to avoid filament 

death. 

Regulation of intercellular transfer was also observed in M. laminosus (chapter 6). 

Morphologically different filament types exhibit different rates of molecular 

exchange. Cells in young, narrow trichomes and hormogonia exhibited faster 

exchange rates than cells in older, wider trichomes. Although SepJ is present and 
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localised in distinct spots at the septa, the protein seems to be less important for cell 

differentiation, filament integrity and cell communication than in Anabaena sp. PCC 

7120. A sepJ inactivation mutant did not show the phenotype observed for CSVM34. 

Further experiments should investigate the role of FraC and FraD in M. laminosus. 

Inactivation mutants and localisation studies could give new insights into the 

importance of the proteins for cyanobacteria. 
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Table 26. Distribution and composition of SepJ-like proteins and DME-family 

permeases among cyanobacteria (Nürnberg et al., 2014). 

  organism 
Sequence 

length [aa] 

no. of 

domains 

pred. 

TMHs
#
 

CC
§
 L

+
 P 

S
ec

ti
o

n
 I

 

Acaryochloris marina MBIC11017
T
 312 1 10    1 

Acaryochloris marina MBIC11017
T
 291 1 10   1 

Acaryochloris sp. CCMEE 5410 315 1 11   1 

Acaryochloris sp. CCMEE 5410 291 1 10   1 

Cyanothece sp. PCC 7425 316 1 10   1 

Dactylococcopsis salina PCC 8305 305 1 10   1 

Gloeocapsa sp. PCC 7428 316 1 11   1 

Halothece sp. PCC 7418 312 1 10   1 

Synechococcus sp. PCC 7335 332 1 10   1 

Synechocystis sp. GT-S, PCC 6803 329 1 10   1 

Synechocystis sp. PCC 6803 329 1 10   1 

Synechocystis sp. PCC 6803, GT-I 329 1 10   1 

Synechocystis sp. PCC 6803, PCC-N 329 1 10    1 

II
 

Chroococcidiopsis thermalis PCC 7203 321 1 10    1 

Pleurocapsa sp. PCC 7327 318 1 10    1 

S
ec

ti
o

n
 I

II
 

Arthrospira maxima CS-328 574 2 11 1  1 

Arthrospira platensis C1 574 2 11 1  1 

Arthrospira platensis NIES-39 566 2 10 1  1 

Arthrospira platensis Paraca 566 2 10 1  1 

Arthrospira sp. PCC 8005 574 2 11 1  1 

Crinalium epipsammum PCC 9333 560 2 10 1  1 

Cyanobacterium sp. JSC-1 642 3 10 1 1 1 

Cyanobacterium sp. ESFC-1 566 2 10 1  1 
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organism 
Sequence 

length [aa] 

no. of 

domains 

pred. 

TMHs
#
 

CC
§
 L

+
 P 

Cyanobacterium sp. ESFC-1 573 2 11 1  1 

Geitlerinema sp. PCC 7105 596 2 10 1  1 

Geitlerinema sp. PCC 7407 317 1 10   1 

Geitlerinema sp. PCC 7407 602 3 9 1 1 1 

Leptolyngbya boryana PCC 6306 387 1 10   1 

Leptolyngbya sp. PCC 6406 318 1 10   1 

Leptolyngbya sp. PCC 6406 598 2 10 1  1 

Leptolyngbya sp. PCC 7375 558 2 10 1  1 

Leptolyngbya sp. PCC 7375 327 1 9   1 

Leptolyngbya sp. PCC 7376 563 2 10 1  1 

Lyngbya sp. CCY 8106 569 2 11 1  1 

Microcoleus chthonoplastes PCC 7420 579 2 11 1  1 

Microcoleus sp. PCC 7113 568 2 11 1  1 

Microcoleus sp. PCC 7113 314 1 10   1 

Microcoleus vaginatus FGP-2 592 2 10 1  1 

Nodosilinea nodulosa PCC 7104 310 1 10   1 

Nodosilinea nodulosa PCC 7104 627 3 9 1 1 1 

Oscillatoria acuminata PCC 6304 613 3 9 1 1 1 

Oscillatoria acuminata PCC 6304 330 1 10   1 

Oscillatoria formosa PCC 6407 588 2 10 1  1 

Oscillatoria nigro-viridis PCC 7112 591 2 10 1  1 

Oscillatoria sp. PCC 10802 627 3 11 1 1 1 

Oscillatoria sp. PCC 6506 588 2 10 1  1 

Oscillatoriales sp. JSC-1 312 1 10   1 

Oscillatoriales sp. JSC-1 642 3 10 1 1 1 

Oscillatoriales sp. JSC-12 614 3 10 1 1 1 

Prochlorothrix hollandica PCC 9006 199 1 4   1 
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organism 
Sequence 

length [aa] 

no. of 

domains 

pred. 

TMHs
#
 

CC
§
 L

+
 P 

Prochlorothrix hollandica PCC 9006 624 3 9 1 1 1 

Pseudanabaena sp. PCC 6802 555 2 10 1  1 

Pseudanabaena sp. PCC 7367 565 2 10 1  1 

Pseudanabaena sp. PCC 7429 348 1 10   1 

Pseudanabaena sp. PCC 7429 584 2 11 1  1 

Spirulina major PCC 6313 556 2 10 1  1 

Spirulina major PCC 6313 314 1 10   1 

Spirulina subsalsa PCC 9445 573 2 10 1  1 

Spirulina subsalsa PCC 9445 588 2 9 1  1 

Trichodesmium erythraeum IMS101 583 2 10 1  1 

Trichodesmium erythraeum IMS101 315 1 10    1 

S
ec

ti
o

n
 I

V
 

Anabaena cylindrica PCC 7122 791 3 9 1 1 1 

Anabaena sp. PCC 7108 770 3 9 1 1 1 

Anabaena variabilis ATCC 29413 751 3 11 1 1 1 

Anabaena variabilis ATCC 29413 316 1 10   1 

Calothrix desertica PCC 7102 704 3 10 1 1 1 

Calothrix sp. PCC 6303 628 3 10 1 1 1 

Calothrix sp. PCC 7103 703 3 10 1 1 1 

Calothrix sp. PCC 7507 301 1 10   1 

Calothrix sp. PCC 7507 806 3 9 1 1 1 

Cylindrospermopsis raciborskii CS-505 79 1 1   1 

Cylindrospermopsis raciborskii CS-505 529 3 6 1 1 1 

Cylindrospermum stagnale PCC 7417 847 3 9 1 1 1 

Microchaete sp. PCC 7126 750 3 9 1 1 1 

Nodularia spumigena CCY9414 853 3 9 1 1 1 

Nostoc azollae 0708 728 3 9 1 1 1 

Nostoc punctiforme PCC 73102 779 3 10 1 1 1 
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organism 
Sequence 

length [aa] 

no. of 

domains 

pred. 

TMHs
#
 

CC
§
 L

+
 P 

Nostoc sp. PCC 7107 737 3 10 1 1 1 

Nostoc sp. PCC 7120 751 3 11 1 1 1 

Nostoc sp. PCC 7524 747 3 9 1 1 1 

Raphidiopsis brookii D9 677 3 10 1 1 1 

Rivularia sp. PCC 7116 634 3 10 1 1 1 

Scytonema hofmanni PCC 7110 637 3 10 1 1 1 

Scytonema hofmanni UTEX 2349 812 3 10 1 1 1 

S
ec

ti
o

n
 V

 

Chlorogloeopsis fritschii PCC 6912 633 3 10 1 1 1 

Chlorogloeopsis fritschii PCC 9212 633 3 10 1 1 1 

unidentified cyanobacterium PCC 7702 607 2 10 1  1 

Fischerella muscicola PCC 73103 760 3 10 1 1 1 

Fischerella muscicola PCC 7414 213 1* 0 1   

Fischerella muscicola PCC 7414 359 1 10   1 

Fischerella sp. JSC-11 650 3 10 1 1 1 

Fischerella sp. PCC 9339 821 3 10 1 1 1 

Fischerella sp. PCC 9431 818 3 10 1 1 1 

Fischerella sp. PCC 9605 690 3 10 1 1 1 

Fischerella thermalis PCC 7521 231 1* 0 1   

Fischerella thermalis PCC 7521 407 1 10   1 

Mastigocladopsis repens PCC 10914 647 3 10 1 1 1 

Mastigocladus laminosus SAG 4.84 699 3 11 1 1 1 

* Sequences show a stop codon after the predicted CC domain. 
#
Transmembrane helices 

(TMHs) were identified using the TMHMM server 2.0 (http://www.cbs.dtu.dk/ 

services/TMHMM/). 
§
Potential CC domains were identified using Coils/PCoils 

(http://toolkit.tuebingen.mpg.de/pcoils). 
+
Internal repeats were detected using TRUST 

(Szklarczyk and Heringa, 2004). 
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