
A Comparison Of Deep Learning MOS Predictors
For Speech Synthesis Quality

Alessandro Ragano
School of Computer Science

University College Dublin
Dublin, Ireland

alessandro.ragano@ucd.ie

Emmanouil Benetos
School of EECS

Queen Mary University of London
London, United Kingdom

emmanouil.benetos@qmul.ac.uk

Michael Chinen
Chrome Media Audio

Google LLC
San Francisco, USA
mchinen@google.com

Helard Becerra Martinez
School of Computer Science

University College Dublin
Dublin, Ireland

helard.becerra@ucd.ie

Chandan K A Reddy
Chrome Media Audio

Google LLC
San Francisco, USA

chandanka@google.com

Jan Skoglund
Chrome Media Audio

Google LLC
San Francisco, USA

jks@google.com

Andrew Hines
School of Computer Science

University College Dublin
Dublin, Ireland

andrew.hines@ucd.ie

Abstract—Speech synthesis quality prediction has made re-
markable progress with the development of supervised and self-
supervised learning (SSL) MOS predictors but some aspects
related to the data are still unclear and require further study. In
this paper, we evaluate several MOS predictors based on wav2vec
2.0 and the NISQA speech quality prediction model to explore
the role of the training data, the influence of the system type, and
the role of cross-domain features in SSL models. Our evaluation
is based on the VoiceMOS challenge dataset. Results show that
SSL-based models show the highest correlation and lowest mean
squared error compared to supervised models. The key point
of this study is that benchmarking the statistical performance
of MOS predictors alone is not sufficient to rank models since
potential issues hidden in the data could bias the evaluated
performances.

Index Terms—speech quality prediction, speech synthesis

I. INTRODUCTION AND MOTIVATIONS

The perceived quality of speech synthesis techniques such
as text-to-speech (TTS) [1] and voice conversion (VC) [2] is
crucial to determine the acceptability of a system. Measuring
the quality of synthesized speech is typically carried out with
subjective listening tests and objective metrics. Subjective
listening tests are the gold standard to assess speech synthesis
quality but they are time-consuming and not usable in real-time
applications. Objective quality metrics have been proposed to
replace listening tests in the above-mentioned scenarios. They
are based on predicting the mean opinion score (MOS) of
quality without human intervention and are evaluated using
quality scores obtained with listening tests.

Supervised deep learning-based techniques have shown su-
perior performance to traditional objective metrics for both
synthetic speech [3]–[5] and natural speech (e.g. the NISQA
metric [6]). These techniques can be trained directly on
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the degraded utterances without a reference signal which is
beneficial for speech synthesis.

To mitigate the scarcity of annotated corpora, new speech
synthesis MOS prediction techniques based on self-supervised
learning (SSL) [7] emerged. Finetuning the model wav2vec
2.0 [8] turns out to generalize better than the other approaches
for both utterance and system-level evaluation [9]. One ad-
vantage of SSL-based techniques like wav2vec 2.0 is to reach
high-performance using a relatively small labelled training set.

The above-mentioned techniques have shown superior per-
formance compared to traditional objective metrics. Most
of the effort has been put into better architectures but the
quality of the data needs further analysis when training speech
synthesis MOS predictors to avoid potential data bias. The
following properties of the training data are poorly explored
and require further analysis and discussion:

1) Whether using natural speech data would benefit SSL-
based objective MOS predictors for synthetic speech.
Since one of the key factors of high-quality synthetic
speech is naturalness [10], augmenting the synthetic
fine-tuning set with natural speech observations that are
labeled with MOS could improve model performance.
Deep models typically benefit from high diversity in the
training dataset. However, training MOS predictors with
synthesized utterances is limited by the availability of
synthesis systems that are used. Natural speech instead
has the advantage of simulating artificial degradations to
help increase dataset diversity.

2) Whether objective MOS predictors perform similarly on
both VC and TTS synthesis types. Training sets might
include both VC and TTS synthesized utterances where
each exhibits unique acoustic properties. Exploring how
the models perform on the synthesis types is important
since raters tend to prefer TTS over VC utterances [11].
The risk of introducing a confounding factor in the
training set is high if datasets are designed with low



MOS utterances sampled from VC systems and high
MOS utterances sampled from TTS systems. In the
latter case, objective metrics might learn to discriminate
the two system types instead of learning the quality
prediction task.

3) Whether finetuning wav2vec 2.0 can be further im-
proved by combining different feature representations.
The usage of cross-domain features from both frequency
and time-domain representations has not been explored
yet for speech synthesis quality. The model wav2vec
2.0 is designed to learn feature representations that are
sufficient by themselves, avoiding the need for hand-
crafted features such as mel spectrograms. However, it
is not clear whether the combined approach can further
improve the quality prediction performance.

In this paper, we present a comparison of speech synthesis
MOS predictors addressing the above-mentioned issues related
to the data. The experiments in this paper are all conducted
using the VoiceMOS dataset [9] for synthetic speech, the
NISQA [6] and the PSTN [12] corpus for natural speech.
Assessing these issues will assist with curating better datasets
for speech synthesis quality prediction and understanding
better the limits of the state-of-the-art architectures.

II. ARCHITECTURE COMPARISON

In this section, we describe all the architectures that we
evaluate. Throughout the paper, we distinguish the term model
from architecture. We use the term model to refer to an ar-
chitecture trained on a specific dataset. For example, wav2vec
2.0 trained on the VoiceMOS dataset is a different model from
wav2vec 2.0 trained on the NISQA corpus but they have the
same architecture. Using this terminology, we first describe the
architectures that are used and then the models by specifying
on which datasets the architectures are trained. A detailed
overview of the architectures and models used in this paper is
reported in Table I.

A. NISQA

NISQA has been proposed to predict natural speech quality
and it is based on a framewise CNN that maps a mel
spectrogram patch of size 48 × 15 (48 mel bands, 15 time
frames) to 6×1×64 features where 64 is the number of filters

TABLE I: An overview of the evaluated model. The models
Fusion 1 and Fusion 2 are pretrained with Librispeech960
(LS960) for wav2vec 2.0 solving the SSL task while Lib-
rispeech100 (LS100) is used to pretrain the framewise CNN
by training an autoencoder (AE).

Model Architecture Train Set Pretrain Dataset Pretrain Task
ConvMaxPool ConvMaxPool VoiceMOS Train // //
ConvMaxPool* ConvMaxPool VoiceMOS Train LS100 AE
NISQA NISQA VoiceMOS Train // //
w2v VoiceMOS w2vMOS VoiceMOS Train LS960 SSL
w2v NISQA w2vMOS NISQA corpus LS960 SSL
w2v PSTN w2vMOS PSTN corpus LS960 SSL
Fusion 1 Fusion 1 VoiceMOS Train LS960, LS100 SSL, AE
Fusion 2 Fusion 2 VoiceMOS Train LS960, LS100 SSL, AE

of the last convolutional layer. The features are flattened into
384-dimensional vectors and fed to a self-attention layer. The
latter creates feature vectors that capture the time dependency
of the patches across the whole speech utterance. Self-attention
output vectors are the input of an attention-pooling network
that predicts a single continuous value (MOS).

B. ConvMaxPool

The NISQA architecture is made of ≈ 218K parameters.
To evaluate a lighter network we apply the following changes
to the NISQA architecture. At the output of the framewise
CNN, we extract features using a global average pooling
(GAP) layer. The latter averages all the feature maps of
the last layer producing 64-dimensional feature vectors, one
corresponding to each spectrogram patch. The dimension of
the GAP layer output depends on the number of filters used
in the last convolutional layer which is 64 in our case.
Next, we apply temporal max-pooling on the feature sequence
obtaining one 64-dimensional vector representing the whole
speech utterance. Finally, a fully connected (FC) layer is used
to predict MOS. To predict MOS within the range 1-5 we apply
a shifted and scale sigmoid at the output of the FC layer. These
changes give us an architecture 40% smaller than NISQA the
number of parameters (≈135K vs. ≈218K). This architecture
is called ConvMaxPool which stands for convolutional max-
pooling.

Pretraining using deep autoencoders has been effective for
speech [13], [14] and audio-visual quality prediction [15].
For this reason, we pretrain the framewise CNN block with
an autoencoder trained on a partition of the Librispeech
corpus1 [16]. The model pre-trained with the autoencoder is
called ConvMaxPool*.
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Fig. 1: Fusion 1. This architecture combines the ConvMaxPool
features with the predicted MOS of the base version of
w2vMOS. During training, the weights of the ConvMaxPool
features and the FC layer are optimized while the rest is not
updated.

1To pretrain the autoencoder we use the Librispeech partition 100-train-
clean that we call Librispeech100.
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Fig. 2: Fusion 2. This architecture combines the ConvMaxPool
features with the predicted MOS and the features of the
base version of w2vMOS. During training the weights of
ConvMaxPool features and the FC layer are optimized while
the rest is not updated.

C. SSL Models

Finetuning the SSL model wav2vec 2.0 showed the best
performance in the VoiceMOS challenge 2022 [9]. We use
only the BASE version which is composed of 12 Transformer
layers and 768-dimensional feature vectors for each time
frame. This architecture is called w2v MOS.

Both ConvMaxPool and NISQA use mel spectrograms
as input features while w2vMOS works directly from the
time-domain waveform. To understand whether wav2vec 2.0
finetuned features show benefit if fused with spectral domain
features, we evaluate 2 fusion approaches combining Con-
vMaxPool and w2vMOS.

The first approach Fusion 1 combines ConvMaxPool fea-
tures with the predicted MOS of w2vMOS (Figure 1). The
second approach Fusion 2 further adds the features from
w2vMOS (Figure 2). It should be noted that we add features
from w2vMOS which are the weights that are finetuned on
the MOS prediction task and not the ones trained to solve the
SSL task.

III. MODEL COMPARISON

This section describes all the models that are used. The term
model refers to an architecture trained on a specific dataset.
To describe the models we first outline a brief overview of the
datasets used.

A. Datasets

The VoiceMOS dataset [9] represents the corpus employed
for the VoiceMOS challenge. It is divided into the main track
and the out-of-domain track. Only the main-track data is
used in this study. The main-track corpus is composed of
187 speech synthesis systems including TTS, VC, and natural
speech. The speech synthesis systems include TTS utterances
from the Blizzard challenge (BC) and the ESPNet systems,

while the VC utterances are taken from the Voice Conversion
Challenge (VCC). Natural speech is taken from all the 3
system types (BC, VCC, and ESPNet). Several speakers and
utterances are collected and a listening test has been conducted
in the lab using 8 listeners for each speech sample [11]. The
VoiceMOS dataset is split into training, validation, and test set.
The training set of the VoiceMOS corpus includes roughly 5k
training samples.

The NISQA corpus has been used to design the NISQA
architecture. It is composed of 14k natural speech samples
degraded with both real-world conditions (e.g. video call
services and mobile phones) and synthetic degradations (e.g.
codecs, background noise). From the NISQA corpus, we only
use the training sets. 5 listeners are used on average for rating
the speech samples of the training sets which account for
roughly 11k samples.

The PSTN corpus includes ≈80k speech samples with
public switched telephone network degradations obtained with
real phone calls. Due to the large size of the PSTN corpus,
we extract a random subset of 7k samples that has the same
distribution as the original size.

B. Models

All the architectures are trained using the VoiceMOS train-
ing partition while the architecture w2vMOS is also trained
on the NISQA and the PSTN corpora. The architecture Con-
vMaxPool is evaluated both with the autoencoder and trained
from scratch. To explore the augmentation of the synthetic
speech dataset with natural speech, a model fine-tuned on
the combination of the two dataset types should be trained.
However, we decided to avoid this approach since the label
space between two different datasets is not the same. For
instance, the NISQA corpus and the VoiceMOS dataset have
been labeled with two different methodologies and different
content stimuli. This implies that each dataset has some unique
bias and that combining datasets will invalidate the ranking of
the MOS labels. Instead of combining the datasets, we measure
how using natural speech only affects the performance of
synthetic speech to gain insight into the utility of the natural
speech data. In the case promising results are obtained, a
suggestion would be to add natural speech when labelling
synthetic speech or to combine dataset by learning the bias
in each corpus which is outside the scope of this paper.

C. Training

The models ConvMaxPool, ConvMaxPool*, NISQA, Fu-
sion 1, and Fusion 2 are trained with Adam optimizer and a
learning rate of 0.001 while the models using the architecture
w2vMOS (w2v VoiceMOS, w2v NISQA, and w2v PSTN)
are trained with stochastic gradient descent using 0.0001 as
the learning rate. Training is stopped if the loss measured
on the validation set did not improve after 20 epochs. The
L1 loss is used as done in [9] and it is calculated per
speech sample during training. The validation set used for the
early stopping of training is always the VoiceMOS validation
partition because we compare all the performances on the



VoiceMOS test set. Choosing similar validation and test sets
is important to avoid misleading results on the test set.

IV. RESULTS

The models are all compared on the VoiceMOS test set
using the mean squared error (MSE), the linear correlation
coefficient (LCC), and the Spearman’s rank correlation co-
efficient (SRCC) which are common measures to evaluate
objective speech synthesis quality metrics [9]. Performance
measures are calculated per utterance and per system where
the predictions and the ground truth are aggregated by taking
the mean of all the speech samples synthesized with the
same speech synthesis system. Each model is trained 10
times with random weight initialization for the non-pretrained
layers since initial experiments were showing some differences
of the combined models (Fusion 1, Fusion 2) compared to
w2v VoiceMOS depending on the weight initialization.

The compared models have been trained with corpora that
are labeled with different subjective experiments that do not
have common anchors. This affects the MSE performance
since MOS is mapped to a different scale in each training
set. To compensate for the variance of each listening test, we
fit a first-degree polynomial of the predicted MOS with the
ground truth MOS of the VoiceMOS test set as recommended
by the ITU-T Rec. P.1401 [17].

Table II shows the model performance using the mean and
the 95% confidence intervals over the 10 different runs. The
results in Table II show that all the models based on wav2vec
outperform the others. To interpret the results from Table II we
conduct a statistical analysis based on the analysis of variance
(ANOVA) and post-hoc corrections for both utterance-level
and system-level results. The analysis is needed to avoid
misleading conclusions which might depend on a particular
model instance. The multiple comparison analysis is conducted
with the Tukey method after obtaining that the null hypothesis
(i.e. all the means are equal) is rejected with ANOVA.

The comparison analysis reported in Table III shows that
NISQA and ConvMaxPool* do not show any difference as
well as both Fusion models and w2v VoiceMOS. Likewise,
ConvMaxPool and w2v NISQA show no difference in all the
performance metrics. We only report the comparisons where
at least one null hypothesis is not rejected by the Tukey
test. Therefore, all the pairs not reported in Table III show
statistically different performances in all the measures.

A. Performance by System Type

The results above do not inform whether the performance
difference is related to a particular synthesis system type. The
VoiceMOS dataset includes text-to-speech utterances from BC
and ESPNet, voice conversion samples from VCC systems,
and natural speech. To conduct this investigation, we use
utterance-level performances since system-level metrics could
be less informative due to the non consistent sample size
(i.e. the number of utterances per each system) between the
systems in the VoiceMOS test set [18]. Indeed, we found that
4 out of 5 systems with poorest system-level performances all
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Fig. 3: Utterance-level performance comparison (MSE, SRCC,
LCC) between TTS (BC, ESPNet) and VC (VCC) subsets.

belong to TTS and unlike VC systems all exhibit a low sample
size. Therefore, system-level performances might mislead the
comparison between TTS and VC speech. Figure 3 shows
the mean and the 95% confidence intervals of MSE, SRCC,
and LCC. It can be seen that correlations are higher for VC
utterances in all the models but the MSE is the same in all
the models except for ConvMaxPool*.

V. DISCUSSION

In Section 1 we asked whether SSL-based models for
synthetic speech MOS prediction can benefit from the usage
of natural speech data. The results show that the wav2vec
2.0 architecture is sensitive to the training set used. Although
finetuning wav2vec 2.0 on natural speech (w2v NISQA and
w2v PSTN) shows comparable performance with other archi-
tectures trained on synthetic speech (ConvMaxPool) they are
worse than w2v VoiceMOS which is finetuned on synthetic
speech. So, using natural speech datasets like the NISQA and
the PSTN corpora to finetune wav2vec 2.0 does not generalize
well on synthetic speech quality. This implies that they might
be less useful for augmenting the synthetic speech training



TABLE II: Test Set Results.

Utterance Level System Level
MSE LCC SRCC MSE LCC SRCC

ConvMaxPool 0.36±0.01 0.76±0.01 0.76±0.01 0.19±0.01 0.85±0.01 0.85±0.01
ConvMaxPool* 0.31±0.01 0.80±0.01 0.79±0.01 0.16±0.01 0.87±0.01 0.87±0.01
NISQA 0.30±0.01 0.80±0.01 0.80±0.01 0.14±0.01 0.89±0.01 0.89±0.01
w2v VoiceMOS 0.20±0.01 0.87±0.00 0.87±0.00 0.10±0.01 0.93±0.01 0.92±0.01
w2v PSTN 0.42±0.02 0.71±0.02 0.75±0.02 0.27±0.02 0.78±0.01 0.80±0.02
w2v NISQA 0.34±0.02 0.78±0.01 0.77±0.01 0.20±0.02 0.84±0.01 0.84±0.01
Fusion 1 0.20±0.00 0.88±0.01 0.87±0.00 0.10±0.00 0.93±0.00 0.92±0.00
Fusion 2 0.20±0.00 0.88±0.00 0.88±0.00 0.10±0.00 0.92±0.00 0.92±0.00

TABLE III: Post-hoc Tukey, ✓means that the null hypothesis
(i.e. equal means) is not rejected (p-value≥0.05). Only the
pairs with at least one not rejected null hypothesis are reported.

Utterance Level System Level
MSE LCC SRCC MSE LCC SRCC

ConvMaxPool*-NISQA ✓ ✓ ✓ ✓ ✓ ✓
Fusion1-Fusion2 ✓ ✓ ✓ ✓ ✓ ✓
Fusion1-w2v VoiceMOS ✓ ✓ ✓ ✓ ✓ ✓
Fusion2-w2v VoiceMOS ✓ ✓ ✓ ✓ ✓ ✓
ConvMaxPool-w2v NISQA ✓ ✓ ✓ ✓ ✓ ✓
ConvMaxPool-w2v PSTN ✓
ConvMaxPool*-w2v NISQA ✓

set. We suggest that other confounding factors beyond natural
speech could also contribute to the domain gap and require
further discussion. For example, the MOS distribution of the
NISQA Corpus training set (Figure 4 (a)) shows a lower
resolution than the VoiceMOS training set (Figure 4 (b)).
Unlike the VoiceMOS set which is labeled in the lab, the
NISQA Corpus training set is annotated with crowdsourcing
using 5 listeners on average. The discrimination between close
signals in quality is likely lost in the training set of the NISQA
Corpus. Another interpretation of the domain gap between
natural and synthetic speech data might be related to the
overlap between the speech synthesis systems in the training
and the test set of the VoiceMOS dataset. Chinen et al. [18]
showed that using the system ID as the only input feature
contains a reasonable amount of information on the quality
scores in the VoiceMOS set. This might suggest that the model
trained on the VoiceMOS training set (w2v VoiceMOS) might
learn to discriminate the synthesis systems which represents a
confounding factor for quality. This study found no improve-
ment when training with natural speech but we suggest that
the overlap of the systems in the in-domain data scenario (i.e.
same synthetic speech systems in both training and test data)
should be explored in more detail to better understand if the
performance evaluations are fair.

The predictors evaluated in this paper do not exhibit sim-
ilar quality prediction performance for TTS utterances (BC,
ESPNet) and VC utterances (VCC). Despite the number of
VC utterances is smaller than the TTS ones (ESPNet=5.37%,
Natural=5.45%, VCC=37.41%, BC=51.77%) the correlation
scores are higher for voice conversion utterances in all the
models while the MSE is the same. The contrast between
SRCC and MSE means that both monotonic (SRCC) and linear
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Fig. 4: MOS histogram of the NISQA Corpus training set (a)
and the VoiceMOS training set (b).

(LCC) relationship are weaker in the case of TTS utterances
despite the same MSE. We suggest that this could be explained
by how the MOS labels of VC and TTS systems are distributed
in the dataset. Figure 5 shows the MOS histogram of TTS
systems (BC, ESPNet), VC systems (VCC), and natural speech
in both the training and test set of the VoiceMOS corpus
where 5 histogram bins are obtained from the MOS percentile
calculated per-system. It can be seen how the lowest MOS
group consists of mostly VC systems while the highest MOS
group is heterogeneous and includes all the system types. This
implies that the model might learn to map some acoustic
properties that are unique of VC systems to bad quality. More
specifically, our analysis suggests that mixing together VC
systems and TTS systems affects the model capacity to predict
a monotonic or linear relationship of TTS techniques. Speech
synthesis based on TTS has advanced significantly in recent
years (e.g. ESPNet systems) which encourages the develop-
ment of MOS predictors that can discriminate the nuances
between high-quality TTS systems. This opens the question
as to whether datasets that exhibit a higher representations of
recent TTS systems and no presence of VC systems might be
more advantageous to develop MOS predictors for TTS.

We also posed a question in Section 1 concerning the
combination of time and spectral feature representations of
the data. The multiple comparisons showed that the two
fusion approaches (Fusion 1, and Fusion 2) do not improve
w2vMOS. Even though some small differences occur between
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Fig. 5: MOS histogram with 5 bins obtained from the MOS
percentile of TTS (BC, ESPNet), VC (VCC), and natural
synthesis systems in the VoiceMOS training set (a) and the
VoiceMOS test set (b). MOS is calculated per-system.

the fusion-based approaches and w2v VoiceMOS, overall the
statistical analysis does not show any difference. This result
confirms that wav2vec 2.0 learns robust features from the raw
waveform which allows us to avoid hand-crafted features like
mel spectrograms. Finally, we showed that the performance
difference between NISQA and ConvMaxPool* is not statisti-
cally significant. ConvMaxPool* allows us a 40% reduction of
the network size with the expense of training an autoencoder
first. However, having a lighter network is advantageous when
memory constraints occur.

VI. CONCLUSIONS

In this paper, we have compared several speech synthesis
MOS predictors based on wav2vec 2.0 and NISQA to explore
some potential problems in the dataset used. Our experiments
highlight the following issues in the data. 1) SSL-based
models generalize less when trained on on out-of-domain
data (natural speech labeled from different listening test). 2)
The system types play a key role in the VoiceMOS training
set as we found that all the evaluated models predict the
quality of voice conversion systems consistently better than
text-to-speech systems (SRCC, LCC) despite the VoiceMOS
training set is imbalanced in favor of TTS audio. 3) Combined
feature representations (raw audio and mel spectrograms) does
not affect the correlation with listening test MOS confirming
the ability of pre-trained SSL-based models to learn robust
features from raw audio.
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