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Abstract

Image sequences with humans and human activities are everywhere.

With the amount of produced and distributed data increasing at an

unprecedented rate, there has been a lot of interest in building systems

that can understand and interpret the visual data, and in particular de-

tect and recognise human actions. Dictionary based approaches learn a

dictionary from descriptors extracted from the videos in the first stage

and a classifier or a detector in the second stage. The major drawback

of such an approach is that the dictionary is learned in an unsupervised

manner without considering the task (classification or detection) that

follows it. In this work we develop task dependent(supervised) dictio-

naries for action recognition and localization, i.e., dictionaries that are

best suited for the subsequent task. In the first part of the work, we

propose a supervised max-margin framework for linear and non-linear

Non-Negative Matrix Factorization (NMF). To achieve this, we impose

max-margin constraints within the formulation of NMF and simultane-

ously solve for the classifier and the dictionary. The dictionary (basis

matrix) thus obtained maximizes the margin of the classifier in the low

dimensional space (in the linear case) or in the high dimensional fea-

ture space (in the non-linear case). In the second part the work, we

develop methodologies for action localization. We first propose a dic-

tionary weighting approach where we learn local and global weights for

the dictionary by considering the localization information of the train-

ing sequences. We next extend this approach to learn a task-dependent

dictionary for action localization that incorporates the localization in-

formation of the training sequences into dictionary learning. The results

on publicly available datasets show that the performance of the system

is improved by using the supervised information while learning dictio-

nary.
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Chapter 1.

Introduction

There has been a rapid growth in the generation, transmission and storage of video

data over the past few years. This tremendous growth of data can be attributed to

the advancement of the Internet technology, low cost digital cameras, smart phones,

inexpensive disks, online storage sites, social networking sites etc. The statistics from

the popular online video site, YouTube reveals that 72 hours of video is uploaded every

minute, and over 4 billion hours of video are watched every month 1. In addition,

the forecast suggests that video traffic will be ≈ 55% of all consumer Internet traffic

by 2016 2. These figures indicate the growing interest of the users for video data. In

particular, the videos with human actions have received much attention because of its

potential applications in video retrieval, video surveillance, security, human-computer

interaction, gaming and so on. In this thesis, we present supervised dictionary learning

approaches for human action recognition and localization. The objective of the human

action recognition system is to assign a label to the video based on the action content

and the task of action localization involves the prediction of the spatial center, temporal

extent and label of the action in the video.

Computers have already outperformed humans in terms of the computational ability.

However, they are too far from matching the recognition capabilities of humans. The

human visual system can efficiently recognize hundreds of human activities in the pres-

ence of complex conditions like background clutter, changes in view angle, intra/inter

class variations and occlusion. Extending such capabilities to computers is one of the

main goals of the human action recognition system.

1http://www.youtube.com/yt/press/statistics.html
2http : //www.cisco.com/

2
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1.1. Applications

In this section, we briefly discuss a few applications of human action recognition and

localization systems.

Video Surveillance: One of the tasks in video surveillance is the process of monitoring

human activities and behavior. The video surveillance system consists of a number of

cameras constantly capturing the scenes at different locations of a building. These videos

are regularly monitored by a human to detect any abnormal behavior or suspicious

activity as shown in Fig. 1.1. Due to an increase in the concern over the safety and

security, there is a huge rise in the number of surveillance cameras which makes the

human monitoring tedious. This motivates for a system that can automatically detect

human activities and abnormal behaviors in videos.

Figure 1.1.: A Human constantly monitoring the videos

Video Retrieval: As the amount of video data is increasing at an unprecedented man-

ner, it is crucial to annotate, categorize and index the videos so that the retrieval is

fast. At the same time, it is equally important to retrieve the relevant videos. As the

manual annotation of videos is labour-intensive, most of the online video sites substan-

tially depend on the user tags for video retrieval. However, due to inconsistencies in the

interpretations of the users or unreliable tags, the retrieved video may not be relevant

to the query. This demands for a system that can automatically annotate the videos.

Gaming: With the advancement of computer vision and graphics, the gaming sector has

experienced a significant development. In contrast to the traditional gaming technology
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where the characters or objects were controlled by controller devices, the current systems

use a special sensor called Kinnect to sense the human body and uses tracking and action

recognition systems to simulate the human actions on the screen as shown in Fig. 1.2.

Figure 1.2.: Human actions are simulated on the screen using a Kinnect sensor

1.2. Challenges

Unlike other multimedia contents, videos are typically of large size with redundant in-

formation. In order to ease the interpretation for machines, there is a need for compact

representation of the video data. In addition, such representation and the system trained

on these representation should cope with many real world scenarios such as intra and in-

ter class variations, background clutter and occlusion. In this section, we briefly describe

the challenges for these systems.

(a) (b)

Figure 1.3.: a) shows the images from the CMU dataset [49] where the subjects perform
the action pickup in two different ways. b) shows the images having similar
appearance but belong to different classes two hand wave and jumping jacks
respectively

Intra-class variations: This represents the variations that occur within a class. An

action can be performed by different people in different ways. Fig. 1.3(a) shows the
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images form the CMU dataset [49] where the action pick up is performed by the subjects

in two different ways. The recognition system should categorize these actions into the

same class.

Inter-class variations: This represent the variations that occur between two classes.

Two actions belonging to different classes can have similar appearance and may differ

marginally in certain other aspects. For e.g . the actions jog and run have similar ap-

pearance but vary in the speed at which the actions are performed. Fig. 1.3(b) shows

the images from two different actions two hand wave and jumping jacks having similar

appearance. A good system should categorize the actions into respective classes.

(a) (b)

Figure 1.4.: a) shows videos having background clutter. b) shows actions where some parts
of the subject are occluded

Background clutter: Generally, the video data obtained from the real world appli-

cations like surveillance contain moving or dynamic background. For e.g ., the videos

captured by a camera in a public place contain moving vehicles, moving people, chang-

ing background as shown in Fig. 1.4(a). This poses a huge challenge for the systems to

extract foreground from the background. A robust system should be able to handle this.

Occlusion: This is the terminology used when some parts of the action of interest are

hidden or covered by some other objects. Hence some part of the data is non informative

and act as noise. Fig. 1.4(b) shows a few instances of occlusion.

1.3. Contributions:

The main goal of the thesis is to learn the dictionaries in a supervised manner for human

action recognition and localization. In the first part of the work, we propose a supervised

learning framework for a feature selection technique called Non-Negative Matrix Factor-

ization (NMF) and use the extracted features to classify the actions. Summarizing, the

main contributions of this part are:
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• We propose a max-margin framework for Semi Non-negative Matrix Factorization

(MNMF) which incorporates the maximum margin constraints within the Semi-

NMF formulation in order to obtain the basis vectors that can efficiently discrimi-

nate the features belonging to different classes.

• An optimization scheme that simultaneously solves for the separating hyperplane

of the max-margin classifier and the basis matrix. The constrained optimization

problem of the proposed framework is non-convex with respect to the unknown

parameters. We employ an iterative procedure where at each iteration we solve a set

of convex (quadratic or SVM-type) subproblems. Each of those convex subproblems

results from the original one when we fix some of the unknown parameters.

• We extend the above framework to the case of nonlinear NMF, i.e., KNMF. For

this, we incorporate the max-margin constraints into the formulation of KNMF

such that the resulting bases maximize the margin of the svm classifier (nonlinear)

in the reconstructed feature space.

In the second part of the thesis, we propose a supervised dictionary learning framework

action localization. We use a part based model called the Implicit Shape Model (ISM)

which internally uses k-means for learning dictionary of the parts. The work was mo-

tivated by the fact that the dictionaries learned in an unsupervised manner (k-means)

may not be optimal for the task of action localization. In order to adapt the dictionary

for the task of localization, we learn weights for the dictionary and then we extend this

approach to learn a task-dependent (supervised) dictionary. For this part, the main

contributions are:

• We design an approach to learn local weights for the matched codewords of each

feature based on the degree of match between the codeword and the feature. This

is achieved in a principled way by incorporating the Hough voting scheme into

Locality Constrained Linear Coding (LLC) [118] framework.

• We develop a framework that enables us to measure the discriminative response

at the output Hough space of the training sequences. We use this framework to

quantify the contribution from each dictionary atom to the location of the action

center or the hypothesis.

• We propose a discriminative weighting scheme to learn the global weights for the

dictionary that maximize the Hough voting response at the spatio-temporal location

of the activity compared to background of the training set.
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• We extend the above technique and design a framework that enables supervised

learning of the dictionary for the ISM, i.e., the proposed algorithm enables us to

incorporate the localization information into the dictionary learning. This is in

contrast to the ISM [60] that only uses the appearance information of the training

descriptors to learn the dictionary. To the best of our knowledge, this is the first

attempt to use the output Hough space information for dictionary learning.

• We employ the above framework to learn a task dependent dictionary which is

optimized for the detection task, i.e., we use the localization information of the

training sequences to learn a discriminative dictionary that maximize the response

at the spatio-temporal location and extend of the activity compared to background.

• We also extend the above approach to include the background information into the

dictionary learning which results in a dictionary that can discriminate between the

descriptors extracted at the foreground from that of the background.

1.4. Thesis Organization

This report summarizes the work carried out during my PhD. The rest of the thesis is

organized as follows.

Chapter 2 presents a brief survey of the related work in the field of action recognition

and localization. The first part of the chapter is dedicated to action recognition where

we categorize the methods into two classes namely global and local methods based on

the type of action representation and describe few popular algorithms. The second part

of the chapter briefly describes a few methods for action localization. The methods are

broadly classified into two categories namely pattern search and Hough voting methods

and a few algorithms in the respective categories are described. Finally the action

datasets used in the thesis are discussed.

Chapter 3 starts with a motivation for the supervised feature selection transform. A

brief overview of the works related to NMF are discussed. The remainder of the chapter

presents the methodologies for the supervised feature selection: incorporation of dis-

criminate information from the classifier to Semi-NMF, Solving for bases and classifier,

extension to the nonlinear version of the NMF. Finally the evaluation of the proposed

method on several computer vision datasets are presented.
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Chapter 4 proposes a dictionary weighting approach for action localization. The

first part of the chapter gives an overview of the part based model called the ISM. It inves-

tigates the assignment of a local features to the nearest codewords and presents a coding

method based on LLC. A framework that quantifies the output Hough space information

at the foreground and background and how we use the framework to learn a discrimi-

native global weighting scheme for the dictionary is also described. The performance of

the proposed method are compared with the baseline method and state-of-the-art.

Chapter 5 describes the shortcomings of the dictionary weighting approach and

proposes a framework for the incorporation of the output localization information into

dictionary learning. The details of using the framework to include a discriminative infor-

mation from the training sequences is presented. An approach to include the background

model into the learning of the dictionary is also presented.

Chapter 6 summarizes and concludes the work. The chapter also presents the future

directions of the work.
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Chapter 2.

Related Work

Action detection and recognition has been one of the most active topics of research in

the computer vision community. A number of methods have been proposed in literature

to solve this problem. In this chapter, we review a few methods for action detection

and recognition and describe the datasets used in our experiments. We discuss action

recognition methods in first part of the chapter and then proceed to action detection.

2.1. Action Recognition

State-of-the-art methods have been presented in several survey articles [5, 93, 112, 121].

The structure presented in this chapter is similar to [93]. Action recognition methods

can be broadly classified into two categories namely:

• Global representation: Extracts the region of interest (human body) in the video

using background subtraction or tracking. The extracted region is represented using

features and a model is learned on these features. The global methods are powerful

but heavily depend on accurate background subtraction or tracking for efficient

representation of the features and fails under uncontrolled conditions. Further,

these methods are also sensitive to occlusion, view point changes.

• Local representation: In contrast to global representation, the local representa-

tion model the observation as a collection of local parts or descriptors. By nature,

the local representations are less sensitive to view point changes, occlusion and in

most of the cases do not require background subtraction or tracking.

10
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Key frame MEI MHI Key frame MEI MHI Key frame MEI MHI 

Figure 2.1.: The key frames and corresponding MEI and MHI for three different actions

2.1.1. Global Representation

In this section, we discuss the algorithms that follow the global representation for action

recognition. The global representation describe the region of interest as a whole without

any notion of local parts. Thus it requires background subtraction or tracking to extract

the region of interest. These methods can be broadly classified into two categories namely

Silhouette based and Optical flow based methods.

Silhouette based methods

Bobick et al . [13] proposed a representation of action called temporal template that has

two components namely motion-energy image (MEI) and motion-history image (MHI).

MEI indicates where motion has occurred in an image sequence and MHI is an image

where the values of the image are a function of recency of motion as shown in Fig. 2.1.

The temporal templates are compared using Hu moments.

The method in Sullivan and Carlsson [108] stored a set of key frames to represent an

action. These key frames are matched to the frames of an image sequence to obtain a

point to point correspondence between them. This correspondence is used to transfer

the body part locations from the key frame to the actual frame which can then be used

for tracking as well as reanimation of the sequence.

Yilmaz et al . [128] generated a 3D spatio-temporal volume (STV) by stacking only the

object regions from the frames of the image sequences. A set of such STVs are called

action sketch for a category of actions. A set of descriptors corresponding to the changes

in direction, shape and speed of the parts (of contours) are computed using differential

geometry. These descriptors are categorized based on the sign of Gaussian and mean of

curvatures.

Gorelick et al . [41] followed a similar approach to extract space time shapes but the

descriptors such as local space-time saliency, action dynamics, shape structure, and

orientation are extracted from the 3D shapes using Poisson equation. The space-time
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Figure 2.2.: The space-time shapes and the solution of Poisson equation for space-time shapes

shapes and the solution of Poisson equation of space-time shapes for three action are

depicted in Fig. 2.2. During testing, the descriptors extracted from the shapes of the

test sequence are matched with the training shape-time descriptors in a sliding window

manner using k-nearest neighbor.

The action recognition method in [107] used R transform to extract shape descriptors

from silhouettes of the action. The main goal of the method is to represent the appear-

ance of an action from a single camera as a function of the view point of the camera,

however, it suffers from self occlusion due to the use of silhouettes based representation.

Optical Flow based Methods

These methods employ the descriptors obtained by the optical flow. The algorithm in [31]

describe a descriptor called spatio temporal motion descriptor which is an aggregate set

of features sampled in space and time, that describe the motion over a small time period.

The optical flow vector field from a figure centric sequence are extracted and are split

into horizontal and vertical components. These components are further quantized into

four non-negative channels and blurred with a Gaussian to form the final descriptor.

The classification is done using a nearest neighbor classifier by matching the descriptors

with a database of pre-classified actions.

Figure 2.3.: Computation of the low level descriptors in [33]
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Fathi et al . used a similar approach to extract the spatio temporal motion descriptors but

added another motion channel to the 4 channels mentioned in [31]. The construction of

low level features are shown in Fig. 2.1.1. The authors report that the low level features

at individual locations are not capable of discriminating between two classes and hence

they divide the figure centric volume into subvolumes and apply adaboost classifier to

the subvolumes to obtain a mid level descriptors. A final descriptor is obtained by

merging the mid level features which are again classified using the adaboost classifier.

Another method involving flow is proposed by [94] where the spatio-temporal regularity

flows (SPREF) are used as the features. The authors propose a template based method

for action recognition based on Maximum Average Correlation Height (MACH) filter

which can efficiently capture the intra-class variability. The SPREF are incorporated

into the synthesis of MACH filter using Clifford Fourier Transform, a generalization of

traditional Fourier transform to vector fields. The high computational cost commonly

incurred in template based methods is avoided by analyzing the filter response in fre-

quency domain.

Yan Ke et al . [48] introduced a volumetric feature framework for action detection by

extending Viola and Jones work [115] in spatial domain (2D) to spatio-temporal domain.

The framework is applied on the optical flow extracted from a video sequence to compute

the box features. Also the authors developed a data structure called integral video to

efficiently compute the box features which could achieve a real time performance.

Schindler and Van gool [98] used a short sub-sequences of the video called Action Snip-

pets instead of the entire video. The method use a hybrid approach where both shape

(Gabor filter responses) and motion (optical flow) information are extracted from the

snippets. The extracted filter responses are max-pooled and concatenated to obtain a

final descriptor and compared against the learned action templates.

2.1.2. Local Representation

For Local representation, the local space-time descriptors are extracted at different scales

from local regions of the video. Since the local descriptors are extracted independently,

the representation is robust to view point changes and occlusion and also does not

require any background subtraction or tracking. In this section, we briefly review a few

algorithms that employ the local representation for action recognition.
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In [53], the notion of interest points in spatial domain is extended to spatio-temporal

domain, in particular the authors build on the idea of Harris interest point operator [42].

The interest points are detected using the eigen values of the second moment matrix.

They analyzed the importance of scale (both spatial and temporal) for the detection of

interest points and proposed a method for simultaneous estimation of scale parameters.

They illustrated the robustness of spatio-temporal interest point by detection and pose

estimation of walking people in presence of occlusion and highly cluttered dynamic

background. Fig. 2.4 shows the detected interest points for walking action. A local svm

classifier was used in [101] to classify actions belonging to six categories of KTH dataset

where the local features were obtained using the spatio-temporal descriptors described

in [53].

Figure 2.4.: Spatio-temporal interest point detection in [53]: a) 3D plot of leg pattern (shown
upside side down), b) detected interest points

Piotr et al . [30] claim that the spatio-temporal corners are rare in videos like rodent

behavior recognition or facial expression even when there is a significant motion and

hence the spatio-temporal descriptor in [53] may not give good performance. They

proposed to detect interest points by applying Gaussian and Gabor filter on spatial and

temporal domains respectively and then choosing the local maxima of the response. The
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descriptors were obtained by extracting PCA-SIFT features from the cuboids around the

interest point locations.

A temporal extension of the salient feature detector in [47] is proposed by Oikonomopou-

los et al . in [88]. They consider cylindrical neighborhood around each location of the

video and compute entropy at different scales. The candidate scale is selected as the

scale at which entropy has a local maxima. The salient regions are obtained by clustering

the spatio-temporal points with similar location and scale.

Greet et al . [122] proposed a method to detect dense spatio-temporal interest points.

They used the determinant of the Hessian matrix to compute the saliency at each point.

The scale selection is done using non maxima suppression to obtain extrema on all five

dimensions (space, time and scale) and they employed integral video data structure to

efficiently compute the Hessian. SURF descriptors at the detected interest points are

used as features for the classification of actions.

Figure 2.5.: Schematic diagram of hierarchical spatio-temporal context modelling

Trajectory based methods:

Trajectories are obtained by tracking spatial interest points along time. In [82], a frame-

work similar to BOW is employed using trajectories. Trajectories are obtained using a

KLT tracker and a dictionary of trajectories is learned by clustering the trajectories. For
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a given test video, the trajectories are extracted and assigned to the nearest trajectory

center from the trajectory dictionary. The labels are accumulated in a k dimensional

vector which are normalized and used as a feature vector for the video. These feature

vectors are classified using SVM.

Messing et al . [83] tracked local features and then quantized the velocity over time using

log-polar coordinates with 8 bins for direction and 5 bins for magnitude. These are

called velocity history that form the basic feature. The activities are modeled using a

generative mixture model.

A framework to capture the spatio-temporal context in a hierarchical way is described

in [109]. The trajectories are obtained from a video using KLT and three types of

features are extracted. They are: 1) Point-level context (SIFT average descriptor), 2)

intra trajectory context (trajectory transition) and inter trajectory context (trajectory

proximity descriptor). The first two contexts are good at describing the solo actions

(action with one object) whereas the third context is good for actions with more than

one object, eg: handshaking, kissing. The descriptors are encoded using a Markov

process and finally classified using multi channel non linear SVMs. This is depicted in

Fig. 2.5

In [117], dense trajectories are employed to represent an action. Dense points from

each frame are tracked based on the displacement information and optical flow field.

The trajectories are encoded using a novel descriptor based on the motion boundary

histograms which is robust to camera motion. The videos are classified with a bag-of-

features approach.

2.2. Action Localization:

In this section, we discuss a few methods for action localization. We broadly classify the

methods into two categories namely pattern search methods and voting based methods.

2.2.1. Pattern search methods

These methods consider the action as a whole without any notion of parts. The video

is represented as a collection of spatio-temporal features and the subvolume containing

maximum response (local maxima) is searched.
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Figure 2.6.: The circles shows the STIPs with the red and blue corresponding to an action
class and background respectively. The highlighted subvolume shows a region
corresponding to an action where there is high response

In [132], the query video consisting of a group of STIPs are matched with the positive

and negative training STIPs using a classification scheme called naive Bayes mutual

information maximization (NBMIM) thus making it a discriminative matching. To

search for the subvolume containing maximum STIP score (shown in Fig. 2.6), they

decouple the spatial and temporal space and apply branch-and-bound and dynamic

programming to the spatial and temporal domain respectively.

Inspired by the sliding window search for objects in 2D images, the method in [104] used

a sliding window based search for detecting actions in video sequences. They extracted

trajectories from the videos and encoded it using the method in [109]. The five channel

descriptor is used to represent an action within a subvolume which are then classified

using SVM. They also proposed a method using greedy k nearest neighbor algorithm

which can automatically annotate the positive training data.

The method in [22] proposed a cross dataset action detection algorithm where the model

is trained on one dataset and tested on another dataset. The video is represented as

a collection of STIPs and they employ Gaussian Mixture Models (GMM) to learn the

prior distribution of the STIPs. The detection is carried out in a computational efficient

manner using branch-and-bound algorithm that finds a subvolume with maximum STIP

response.

An algorithm similar to [132] is proposed in [130] where an unsupervised random forest

is used to fastly compute the mutual information between the query and the training

STIPs. In order to facilitate faster detection of the action, a coarse to fine subvolume

search is used as opposed to branch-and-bound search in [132]. An interactive search

mechanism is also incorporated by which user can incrementally add labeled examples

to the query set.
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Konstantinos et al . [27] applied Gaussian third derivative filters to decompose the video

into a distributed representation according to 3D spatio-temporal orientation. The cor-

responding distribution of oriented energies of the template and the search video are

efficiently matched in a sliding window approach and a significant local maxima in the

similarity volumes are identified.

Yan Ke et al . [49] proposed a part-based matching method for action detection where

the volumetric representation of the template is matched against the over-segmented

spatio-temporal video volumes. The authors augment the shape based descriptors with

the flow descriptors which can be computed in the presence of cluttered background with

figure/ground separation. In contrast to the above methods where the whole template of

the action is matched, the authors propose a method to match the manually constructed

parts of the action that makes the matching robust to occlusion.

2.2.2. Hough voting methods

These methods employ a part based approach where the parts of the action vote for the

center, scale and extend of the action. The votes are collected in an output Hough space

where the location of the maxima corresponds to the location of action.

Oikonomopoulos et al . [87] extended the spatial Hough voting approach in images [61]

to spatio-temporal voting in videos. During training, a set of codebooks for each category

of the action is constructed using Gentleboost. The codebooks store the occurrence

distribution of the codewords that encode the location and scale at which each codeword

is activated during training. During testing, the detected local features are matched

against the codebooks and activated codewords cast votes to the spatio-temporal center

and extend of the action.

A similar Hough transform based scheme is proposed in [127] where the codebooks

are constructed using an adaptation of Hough voting to Random forest called Hough

forest. The trees of the Hough forest map the densely sampled features in the videos to

their corresponding votes in the Hough space. The authors apply Hough transform based

people detection [38] to detect the hypothesis in each frame. The extracted hypothesis

are linked using particle filter to form action tracks. Subsequently the action tracks vote

for the action label and center.
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2.3. Datasets

We present in this section, some of the datasets used to evaluate our method.

Figure 2.7.: A sample of the images used from the BU-3DFE dataset.

INRIA Pedestrian Dataset: The INRIA pedestrian dataset [26] consists mostly

front and background views of human. The dataset includes several variations caused

by partial occlusions and scale, pose, clothing and illumination changes. For our experi-

ments, we created a set of positive examples (containing pedestrians) and another one of

negative examples (by sampling the background). The extracted bounding boxes were

cropped to a size of 51× 100 pixels.

BU-3DFE Facial Expression Dataset: The BU-3DFE facial expression dataset [129]

consists of 100 subjects (about 60% female and 40% male). The dataset contains six

different facial expressions (anger, disgust, fear, happiness, sadness, surprise) performed

by each subject at four intensities plus an image of the neutral state, captured at 5 yaw

angles. In our experiments, we only used the 2D images of the frontal view. The original

images were cropped and down sampled to a size of 24× 40 pixels. Fig. 2.7 shows a set

of sample images used for the experiments.

Mediamill Dataset: The Mediamill [106] is a dataset used for object classification.

The dataset consists of 43907 sub-shots of 101 classes. Each image was represented

using a 120-dimensional feature vector. We randomly chose two object categories from

the available 101 ones and performed a binary classification task.

KTH Dataset: The KTH dataset [101] consists 600 videos of six human actions

(walking, jogging, running, boxing, hand waving, hand clapping ) performed by 25

subjects under 4 scenarios: outdoor s1, outdoor with scale variations s2, outdoor with

different clothes s3 and indoors s4. The sequences are downsampled to a spatial resolu-

tion of 160× 120. The background is static and homogeneous in most of the sequences.

Fig. 2.8 shows different actions of the KTH dataset.
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Figure 2.8.: Six different actions of the KTH dataset

CMU Dataset: The CMU dataset [49] consists of five actions (pickup, onehand wave,

twohand wave, jumping jacks, push button). The videos were acquired using a hand-

held camera in cluttered environments with moving people or cars in the background.

The dataset is designed to evaluate the performance of the algorithm in crowded envi-

ronments. The dataset consists of 110 events with resolution 160 × 120. The dataset

is challenging as there are variations in how the subjects performed actions and in the

background. The dataset also has significant variations in both spatial and temporal

scales.



Chapter 3.

Max-Margin Non-negative Matrix

Factorization

3.1. Introduction

Representing a data vector (signal) as linear combination of a set of basis vectors (signals)

is one of the most popular techniques used in signal processing, machine learning and

statistics. The set of basis vectors are referred to as a dictionary [74] and each of

the basis vectors is called an atom of the dictionary. The dictionary can be a set of

pre-defined bases such as wavelets [80] or a data-dependant dictionary [6] in which the

dictionary atoms are learned from a training set. Among these the latter has received

more attention in the computer vision community recently due to its applications in

denoising [6,77] and image classification [75,76,135]. Non-Negative Matrix Factorization

(NMF) [57, 64] is a special case of the dictionary learning [7, 28, 74] where the size of

the dictionary (the number of basis vectors) is less than the dimension of the input

data and also has positivity constraints on the dictionary and the codes. Learning

the bases (dictionary) adaptive to the data can significantly improve the reconstruction

accuracy of the data as compared to the case where pre-defined bases [6]. However,

these representative characteristics of the data may not be optimal for a classification

task, where the objective is to learn a discriminative dictionary, that can be used to

distinguish the data belonging different categories. In this work, we develop a method

to learn the bases of NMF in a supervised manner by considering the sample labels

along with the data. We incorporate the discriminative information obtained by an svm

classifier into the dictionary such that the representation obtained by such dictionary

maximizes the margin of the svm classifier.

21
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3.2. Related Work

The Non-Negative Matrix Factorization (NMF) algorithm is one of the most popular

Machine Learning techniques for finding parts-based representations of the non-negative

data. It has been widely used in several computer vision applications such as image

retrieval, face and gesture recognition, object detection and action recognition. NMF

decomposes the data matrix into non-subtractive combinations of non-negative bases

[64]. Its ability to produce parts-based representations has been theoretically justified

and experimentally demonstrated in [57]. By contrast, other dimensionality reduction

methods, such as the Principal Component Analysis (PCA) [103] result in bases and

projection coefficients that can take either positive or negative values.

NMF was initially proposed in [57,89]. In both approaches, the bases and coefficient

matrices were obtained by minimizing the reconstruction error, that is the discrepancy

between the approximation obtained by the matrix factorization algorithm and the orig-

inal data. The reconstruction error was quantified either using the Kullback-Leibler

divergence [57] or the least squares error [90]. In [58] the authors proposed an efficient

implementation that uses a set of multiplicative update rules that were derived from

the optimization of an upper bound of the cost function. In [66] the authors showed

that the minimization of the upper bound indeed reduces the cost function but does

not guarantee the convergence of the algorithm to the stationary point of the original

optimization problem. In [65] the authors proposed two projected gradient-based meth-

ods for NMF that exhibited strong optimization properties. Motivated by the fact that

the multiplicative update rules for computing the factor matrices converge slowly and

aiming at reducing expensive NMF update steps, a few matrix initialization techniques

that ensured rapid error reduction rate and faster convergence were proposed in [18].

Although NMF usually results in a part-based representation, its various parts are

not always well-localized. In order lo better localized (sparse) representation, local

constraints were imposed along with the non-negativity constraints [23,64]. Several other

algorithms aiming to achieve sparsity with tunable parameters were also developed [44,

70,91]. In [44,70], sparseness constraints were imposed on the elements of the coefficient

matrix and a parameter was used to control the trade-off between the sparseness and the

accuracy of the reconstruction. Such methods have an implicit control over the degree

of sparseness. The approaches presented in [91] impose explicit sparseness constraints

on both the base and coefficient matrices, allowing in that way an explicit control on

the degree of sparseness.
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The fact that NMF leads to a low-rank approximation of the data makes it suitable for

subspace learning, that is for embedding high dimensional data into a low dimensional

subspace. In this context, it has been extensively used for facial analysis including

detection [23], recognition [64], verification [133] and expression recognition [50, 119].

Several other applications of NMF in Computer Vision include pose estimation [3], action

recognition [96,111], object recognition [69], subspace learning [20] and clustering [29].

In [3], NMF bases and coefficients were learned using a set of features extracted from

clutter-free images containing objects. In [96], the NMF coefficients were extracted using

appearance features and motion vectors. These coefficients were subsequently used to

train a cascaded Linear Discriminant Analysis (LDA)-based classifier. The method pre-

sented in [111] followed an approach similar to [3] for the detection of humans in image

sequences, where NMF was employed to learn a set of pose primitives. In [69], two ap-

proaches were followed in order to improve the recognition rate using features extracted

by NMF. The first used a Riemannian metric for the learned feature vectors instead of

the classic Euclidean distance, while the second orthonormalized the NMF bases and

then used the features projected onto these bases. The authors in [20] introduced the

Graph Regularized NMF (GNMF) that modelled the data subspace as a sub-manifold

embedded in an ambient space. By learning NMF on such a manifold, GNMF showed

better discriminative ability when compared to NMF that only considers the Euclidean

space. Semi-NMF was introduced in [29] for clustering by relaxing the non-negativity

constraints on the bases matrix. This lead to a bases matrix that contained the cluster

centers and non-negative coefficients that can be interpreted as cluster indicators. A non

linear extension to NMF, the so-called Kernel NMF (KNMF), was presented in [134].

Only few NMF-based works obtain the matrices in a supervised manner, that is, by

utilizing the label information of the samples. In [133] the authors introduced discrimina-

tive constraints in order to extract bases that correspond to discriminative facial regions

for the problem of face recognition. The proposed Discriminant NMF (DNMF) [133]

results in bases corresponding to salient facial features such as eyes and mouth, that

are useful for discrimination. The authors in [50] proposed the Projected Gradients

DNMF (PGDNMF) algorithm for facial expression recognition which extends DNMF in

two major ways. First, projected gradients were used instead of multiplicative update

rules in order to guarantee the convergence of the algorithm to a limit point that is also

a stationary point of the original optimization problem. Second, discriminant analysis

was employed on the classification features and not on the reconstructed data. In both

of the above mentioned approaches the discriminant constraints were introduced in the
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cost function, yielding in this way discriminative bases. However, the introduced con-

straints were tailored for a rather simplistic LDA-based classifier. Here, we propose a

method in which the acquired projections are chosen so that they maximize the discrim-

inative ability of a Support Vector Machine (SVM) classifier, a fact that results in higher

classification performance as will be demonstrated in the experimental results section.

In this chapter, we first introduce soft max-margin constraints to the objective func-

tion of NMF in order to obtain a bases matrix that will enable us to extract features that

maximize the classification margin. More precisely, in the proposed scheme we optimize

a weighted combination of the reconstruction error term, that is used in the typical

NMF formulations, and the cost function, that is used in typical SVM formulations, un-

der SVM-type linear inequality constraints. The optimization is performed with respect

to the unknown bases, the projection coefficients and the parameters of the separating

hyperplane and is solved in an iterative manner, where at each iteration we solve only

for a subset of the unknown parameters while keeping the others fixed. The resulting

sub-optimization problems are either instances of Quadratic programming with linear

inequality constraints or classical SVM-type problems. We proceed with extending the

above framework to include the nonlinear version of NMF (KNMF) [134]. In that way

we are able to obtain a bases matrix that maximizes the classification margin of the

classifier in the reconstructed high dimensional feature space. The proposed method

is applied to publicly available databases (the INRIA pedestrian, the BU-3DFE, the

KTH action and the Mediamill datasets) where we demonstrate that it consistently out-

performs SVM classification schemes that use features extracted using Semi-NMF [29],

KNMF [134] and DNMF [133].

Summarizing, the main contributions of this chapter are

• A max-margin framework for Semi Non-negative Matrix Factorization (MNMF) is

proposed, which incorporates the maximum margin constraints within the Semi-

NMF formulation, in order to jointly find both the factorization matrices and the

separating SVM hyperplane.

• An optimization scheme that solves simultaneously for the separating hyperplane

of the max-margin classifier and the factorization matrices. The constrained opti-

mization problem of the proposed framework is a non-convex one with respect to

the unknown parameters. We propose an iterative procedure where at each itera-

tion we solve a set of convex (quadratic or SVM-type) subproblems. Each of those
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convex subproblems results from the original one when we fix some of the unknown

parameters.

• We extend the above framework to the case of nonlinear NMF, i.e., KNMF. For

this, we incorporate the max-margin constraints into the formulation of NMF such

that the resulting bases maximize the margin of the svm classifier (nonlinear) in

the reconstructed feature space.

The rest of the chapter is organized as follows. In Section 3.3.1, we briefly describe

the NMF and Semi-NMF algorithms. In Section 3.3.3, we formulate the proposed max-

margin framework for semi-NMF and present an algorithm that solves the corresponding

optimization problem. In Section 3.3.5, we discuss convergence issues of the proposed

MNMF algorithm. In Section 3.4, we introduce the Kernel NMF algorithm. In Sec-

tion 3.5 we present experimental results on several Computer Vision and Multimedia

problems using publicly available datasets. Finally, we conclude in Section 3.6.

3.3. Max-Margin Semi-NMF (MNMF)

In this section, we give a brief overview of the NMF and its variant semi-NMF algorithm

for matrix decomposition and proceed with formulating the proposed maximum margin

NMF framework.

3.3.1. Non-negative Matrix Factorization

Let X ∈ Rm×n represent a non-negative matrix having n examples in its columns. The

NMF algorithm [57] decomposes X into two non-negative matrices, the bases matrix G ∈
Rm×k and the coefficients matrix H ∈ Rk×n such that X ≈ GH, i.e., X is approximated

by the product GH. In order to obtain a low dimensional representation of the data, k

is typically chosen to be small, (< min(m,n)). The columns of G can be regarded as

the bases vectors and thus each example can be represented as the linear combination

of those bases vectors as xi ≈ Ghi. Here xi and hi are the ith columns of X and H,

respectively. From now onwards we will use the notation H � 0 to express that the

elements of the matrix H are non-negative. Fig. 3.1 illustrates the reconstruction of face

images using NMF, Vector Quantization (VQ) and PCA. NMF reconstructs the image

using a sum of non-subtractive bases, i.e., both the bases and coefficients are positive.
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VQ reconstructs the image by choosing the nearest basis and PCA reconstructs the

image by taking a linear combination (both +ve and -ve) combination of the bases.

From Fig. 3.1 it is evident that NMF results in part-based representation whereas VQ

and PCA results in holistic representation.

Figure 3.1.: Comparison of NMF bases with Vector Quantization(VQ) and PCA [57]: The
three learning methods were applied to a database of faces containing 2429
images with size 19 × 19 pixels. The number of bases is restricted to 49 which
is shown by 7× 7 grid on the left side. A small grid on the right side shows the
corresponding coefficients for each of the bases in the reconstruction. Positive
values are indicated with black color and negative values with red color. NMF
results in a part-based representation whereas the VQ and PCA results in a
holistic representation.
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The base matrix G and the coefficient matrix H are obtained by minimizing the

reconstruction error ‖X−GH‖2F or the divergence D(X||GH) w.r.t. G and H:

arg min
G�0,H�0

‖X−GH‖2F = arg min
G�0,H�0

∑
ij

(
Xij −GijHij

)2
(3.1)

which yields the multiplicative update rules for G and H

Gij ← Gij
(XHT )ij

(GHHT )ij
, Hij ← Hij

(GTX)ij
(GTGH)ij

(3.2)

or

arg min
G�0,H�0

D(X||GH) = arg min
G�0,H�0

∑
ij

(
Xij log

Xij

GijHij

−Xij + GijHij

)
(3.3)

resulting in the update rules for the matrices G and H as

Gij ← Gij

∑
k HjkXik/(GH)ik∑

k Hjk

Hij ← Hij

∑
k GkiXkj/(GH)kj∑

k Gki

(3.4)

3.3.2. Semi Non-negative Matrix Factorization

Ding et al . [29] proposed a variation of the NMF called Semi-NMF which relaxes the non-

negativity constraints on G and the data matrix X. The rationale behind its creation was

based on the case of clustering with G representing the cluster centers and H denoting

the cluster indicator. The unknown matrices G and H are estimated by minimizing the

reconstruction error,

arg min
H�0

‖X−GH‖2F = arg min
H�0

∑
ij

(
Xij −GijHij

)2
(3.5)

w.r.t. G and H. The above minimization problems are iteratively solved with respect

to the matrices G and H using a set of update rules [29]:

Step 1: Update G by keeping H fixed

G = XHT (HHT )−1 (3.6)
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Step 2: Update H by keeping G fixed,

H = H�

√
[GTX]+ + [GTGH]−

[GTG]+H + [GTX]−
(3.7)

where � represents the element-wise multiplication, M+ and M− correspond to a posi-

tive and a negative part of the matrix M, respectively, given by

M+
ik =

1

2
(|Mik|+ Mik), M−

ik =
1

2
(|Mik| −Mik).

3.3.3. Max-Margin Semi-NMF (MNMF)

As stated above, the Semi-NMF algorithm [29] minimizes the cost function defined in

Eq. 3.5 imposing at the same time non-negativity constraints only on the coefficeint

matrix H. This relaxation of non-negativity constraints on the bases extends the range

of applications of NMF as Semi-NMF can also be applied on the negative data. Several

NMF variants incorporating discriminant constraints were proposed in [29,50,133]. The

variations were obtained by introducing application specific discriminant constraints to

the cost function. Inspired by this, we propose to incorporate discriminant constraints

into the formulation of Semi-NMF. More specifically, we aim at creating a framework

that allows us to find a set of basis vectors that maximizes the margin of an SVM

classifier.

Let {xi, yi}ni=1 denote a set of data vectors and their corresponding labels, where

xi ∈ Rm, yi ∈ {−1, 1}. Our aim is to determine a base matrix G that can be used to

extract features that are optimal under a max-margin classification criterion. This is

accomplished by imposing constraints on the feature vectors derived from G. In this

work, similar to [14,50, 133], the features that are extracted from a data example x are

given by GTx. That is, they are the projections of the data example x on the basis

vectors stored in G. Then, the optimization problem is given by

arg min
G,H,w,b,ξi

λ‖X−GH‖2F +
1

2
wTw + C

n∑
i=1

ξi (3.8)

s.t. yi(w
TGTxi + b) > 1− ξi

ξi > 0, 1 ≤ i ≤ n, H � 0,



Max-Margin Non-negative Matrix Factorization 29

where ξ = {ξ1, . . . , ξi, . . . ξn} is the slack variable vector, λ is a scalar that controls

the relative importance for the NMF cost and C a scalar that controls the relative im-

portance of the penalty imposed for the training examples that are either too close to

the separating hyperplane or misclassified. The first term of the above optimization

Input
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Figure 3.2.: Framework for MNMF: The input descriptors are projected onto the base matrix
and a svm classifier is learned on the projected features. Subsequently the
coefficient matrices are updated. This procedure is repeated until convergence.
The objective is to find a base matrix (or a subspace) such that the projected
features maximize the margin of the classifier in the subspace

problem (λ‖X−GH‖2F ) is a classical NMF-type reconstruction error, while the second

(
1

2
wTw) and the third term (C

∑n
i=1 ξi) is an SVM-type cost. Notice that the slack vari-

ables ξi in third term control the misclassification errors. Notice also that the inequality

constraints yi(w
TGTxi + b) > 1 − ξi that involve the slack variables, depend on both

the parameters w of the classifier and on the data projection matrix GT that is used

to extract the features GTx. In this way, we jointly optimize with respect to both the

Semi-NMF data projections and the maximum margin classifier.

Notice, that classical NMF-based algorithms use G† = (GTG)−1GT as the projection

matrix, that is the features that are extracted for a data example x are given by x́ = G†x.

By contrast we follow [14,50,133] and use GT as the projection matrix. Both NMF and

our MNMF find a base matrix G and express an arbitrary x as a (non negative) linear

combination (with coefficients h) of the column vectors of G. Using G† as the projection

matrix results in features that are the (non-negative) coefficients h that minimize the

MSE. The projection GTx that we propose, uses as features the projection of the vector

x on the basis vectors. Both choices are equally valid. Ours is easier to work with and

results to a formulation that is quadratic with respect to G.
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In order to optimize the cost function in Eq. 3.8, we follow an iterative optimiza-

tion procedure. More precisely, at each iteration we solve for subsets of the unknown

parameters G, H and w, b, ξi by keeping the remaining parameters fixed. The optimiza-

tion procedure is described below, and the steps followed in the proposed max-margin

Semi-NMF framework are summarized in Algorithm 1.

Solve for G, ξ by keeping H,w and b fixed: Since w is fixed, the optimization

problem in Eq. 3.8 is simplified as

arg min
G,ξi

λ‖X−GH‖2F + C

n∑
i=1

ξi (3.9)

s.t. yi(w
TGTxi + b) > 1− ξi

ξi > 0, 1 ≤ i ≤ n.

The above formulation can be derived from Eq. 3.8 if the second term is omitted. It is a

weighted combination of the reconstruction error (‖X−GH‖2F ) and soft constraints or

penalizations for the examples that do not maintain the appropriate distance (margin)

from the separating hyperplane (
∑n

i=1 ξi). In this step, we solve for a projection matrix

that projects the input examples to a lower dimensional feature space and the slack

variables ξi’s so as to jointly optimise for the projection and the classifier margin error.

This results in a set of basis vectors G that simultaneously reduce the reconstruction

error while ensuring a low misclassification error. Solving Eq. 3.9 is equivalent to solving

arg min
G,ξi

‖X−GH‖2F + θ
n∑
i=1

ξi (3.10)

s.t. yi(w
TGTxi + b) > 1− ξi

ξi > 0, 1 ≤ i ≤ n.

where θ = C/λ. We should note that Eq. 3.10 is an optimisation problem of a func-

tion that is either quadratic or linear with respect to the unknowns, subject to linear

inequality constraints. The Lagrangian of Eq. 3.10 is given by

L(G, ξi, αi, βi) = Tr

[
(X−GH)(X−GH)T

]
+

θ

n∑
i=1

ξi −
n∑
i=1

αi
[
yi(w

TGTxi + b)− 1 + ξi
]
−

n∑
i=1

βiξi (3.11)

αi, βi > 0, 1 ≤ i ≤ n
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where αi, βi are the Lagrangian multipliers. Taking the derivative w.r.to the primal

variables and equating to 0, we get

G =

(
2XHT +

n∑
i=1

αiyixiw
T

)
(2HHT )−1 (3.12)

∂L

∂ξi
= 0 ⇒ 0 ≤ αi ≤ θ, 1 ≤ i ≤ n (3.13)

where θ = C/λ. Substituting the value of G in Eq. 3.11 and simplifying, we get the

dual problem

arg max
α

αT (T1 −T2)α+ (t3 − t4 − t5 − t6 + t7)α

s.t. 0 ≤ αi ≤ θ (3.14)

where

α ∈ Rn, T1,T2 ∈ Rn×n , t3, t4, t5, t6, t7 ∈ R1×n,

T1ij =

[
n∑
z=1

yiyjh
T
z BMT

i MjBhz

]
ij

T2ij =
[
yiyjw

TBMT
j xi
]
ij

t3i =

[
4

n∑
z=1

yih
T
z BHXTMiBhz

]
1i

t4i =

[
2

n∑
z=1

yih
T
z BwxTi xz

]
1i

t5i =
[
2yiw

TBHXTxi
]
1i
, t6i = b [yi]1i

t7 = [111 · · · 1]1×n , B = (2HHT )−1, Mi = xiw
T ,

(3.15)

and hz is the zth column of the matrix H.

The above problem is quadratic in α, thus can be solved by using conventional

quadratic programming tools. The estimated α is then used to compute G using

Eq. 3.12. The constant term θ in Eq. 3.14 is used as a tuning parameter. Large values

of λ (when compared to C), result in low values of θ something that leads to small αi.

This in turn causes the second term in Eq. 3.12 to disappear making the update rule of

G to be the one used in semi-NMF, as given in Eq. 3.6. Hence for large values of λ, the
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update rule for G tends to approach the update rule of semi-NMF, something that is

also evident in Eq. 3.9.

Solve for w, b, ξ by keeping G and H fixed: In the previous step, we computed

the updated bases matrix G. We now proceed in solving for the hyperplane that max-

imizes the margin of the classifier keeping the bases matrix G and weights matrix H

fixed. The features are obtained by projecting the data points onto the updated basis

matrix G as calculated in the previous step. Since G and H are fixed, the optimization

problem in Eq. 3.8 is simplified to a form that strongly resembles that of a classical

SVM:

arg min
w,b,ξi

1

2
wTw + C

n∑
i=1

ξi (3.16)

s.t. yi(w
TGTxi + b) > 1− ξi

ξi > 0, 1 ≤ i ≤ n.

The hyperplane parameters w, and b and the slack variable vector ξ are obtained using

an off-the-shelf SVM classifier.

Solve for H by keeping G, w, ξ and b fixed: Having already acquired the

values for G,w, b and ξ from the previous steps, we proceed with solving for the weights

matrix H by keeping all the other variables fixed. Since only the reconstruction error

term of the optimization problem (Eq. 3.8) depends on H, the objective function is

simplified as

arg min
H
‖X−GH‖2F ,

s.t. H � 0. (3.17)

The ith column of H, hi contributes only to the ith data point xi and hence the columns

of H can be solved independent of each other. The above optimization problem can be

solved using quadratic programming or using the update equation Eq. 3.7. Here, we

adopt the update rule to solve for hi. In particular, the objective function in Eq. 3.17

can be rewritten as

arg min
hi

(xi −Ghi)
T (xi −Ghi),

s.t. hi � 0 ∀i. (3.18)
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The Lagrangian of the above cost function is

L(hi) = (xi −Ghi)
T (xi −Ghi)− γThi, γ > 0 (3.19)

where γ ∈ Rk is a vector of positive Lagrangian multiplier.

quadratic programming: Differentiating the above equation w.r.t. hi and equating

to zero, we get

hi = (2GTG)−1(2GTxi + γ). (3.20)

The dual formulation for Eq. 3.19 is given by

arg max
γ>0

1

2
γTBγ + 2γTBGTxi (3.21)

where B = (2GTG)−1.

The above problem is quadratic in γ, so a quadratic programming solver can be used

to solve it. The weight vector hi is obtained by substituting the computed value of γ in

Eq. 3.20. This procedure is repeated for all columns of H. Note that the Eq. 3.20 will

not result in a non negative hi for an arbitrary γ, but it is warranted that Eq. 3.20 gives

a non negative hi for the γ that results from Eq. 3.21.

Update Rules: Taking under consideration the KKT conditions [11], we get:

∇L(hi) = 0, (3.22)

γjhij = 0 and (3.23)

γj ≥ 0, (3.24)

where hij is the j-th element of hi. Let F (hi) = ‖xi −Ghi‖2, From Eq. 3.22 we get:

∇L(hi) = 0⇒ ∇F (hi)− γ = 0⇒ [∇F (hi)]j = γj (3.25)

Since γjhij = 0⇒ [∇F (hi)]jhij = 0. Therefore

∇F (hi) = −2GTxi + 2GTGhi (3.26)

= −
(
[2GTxi]

+ − [2GTxi]
−)+

(
[2GTGhi]

+ − [2GTGhi]
−) (3.27)

= −
(
[2GTxi]

+ + [2GTGhi]
−)+

(
[2GTGhi]

+ + [2GTxi]
−) . (3.28)
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Hence

hi = hi �
(
[GTxi]

+ + [GTGhi]
−)

([GTGhi]+ + [GTxi]−)
. (3.29)

This procedure is repeated for all columns of H.

Algorithm 1: Algorithm for MNMF

input : X, Ginit, Hinit, MAXITER, λ, C
output: G, H, w, b
begin

G = Ginit;
H = Hinit;
repeat

S1 : Solve for α in Eq. 3.14
S2 : Compute G using Eq. 3.12
S3 : Find the classifier parameters, w, b, ξi for the updated G
S4 : foreach column hi of H do

Compute hi using Eq. 3.29
end

until iter ≤MAXITER or convergence;

end

During testing, the input test vector xtest is projected onto the basis matrix to obtain

the feature vector, ftest = GTxtest. This feature vector is then given as input to the

max-margin classifier which predicts the class ŷtest = sign(wT ftest+b) where w, b,G are

computed during training.

3.3.4. Experiments on a Synthetic Toy Dataset

In order to provide an insight to the way the proposed MNMF algorithm works, we first

conduct experiments on a toy dataset consisting of two classes each of which contains 100

points that are sampled from 50-dimensional Gaussian distributions. For visualization

purposes, we restrict the number of bases taken under consideration to be equal to

two (k = 2). The bases matrix G and the weights matrix H are computed using the

Semi-NMF algorithm and the input data points are projected onto the lower dimensional

subspace using the acquired G. In Fig. 3.3(a) we show the projections of the points after

applying a common dimensionality reduction technique, namely Principal Component

Analysis (PCA) [103]. Fig. 3.3(b) depicts the projections of the input datapoints using



Max-Margin Non-negative Matrix Factorization 35

−20 −10 0 10 20
−30

−25

−20

−15

−10

−5

0

5

10

15

20

x

y

 

 
data1
data2
hyperplane

(a)

2.05 2.1 2.15 2.2 2.25 2.3

x 10
4

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

x 10
4

x

y

 

 

data1
data2
hyperplane

(b)

1.95 2 2.05 2.1 2.15 2.2

x 10
4

1.85

1.9

1.95

2

2.05

x 10
4

x

y

 

 
data1
data2
hyperplane

(c)

2.2 2.4 2.6 2.8 3

x 10
4

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
x 10

4

x

y

 

 
data1
data2
hyperplane

(d)

Figure 3.3.: The projections and the SVM separating hyperplane using: 3.3(a) PCA; 3.3(b)
Semi-NMF bases; 3.3(c) Max-margin NMF bases (1st iteration); 3.3(d) MNMF
bases (6th iteration)

the bases extracted using Semi-NMF. Fig. 3.3(c) and Fig. 3.3(d) show the projections

of the proposed MNMF algorithm after the first and the sixth iterations, respectively.

It is clear that the projections acquired from the proposed MNMF algorithm make the

classes more separable.

In order to examine the discriminative power of the features extracted by each of the

above mentioned methods we trained an SVM classifier on the acquired projections and

report the obtained classification accuracies. When PCA, Semi-NMF (at convergence,

i.e., after 2000 iterations) and the proposed MNMF algorithm (at convergence, i.e.,

after only 6 iterations) were applied, the accuracies obtained were equal to 96.5%, 97%

and 100%, respectively. This verifies the fact that the proposed algorithm updates the
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bases in such a way that the margin of the classifier in the projected space is maximized,

thus achieving lower misclassification error.

3.3.5. Convergence Issues

In this section, we discuss the convergence of the proposed MNMF framework. The

objective function proposed in Eq. 3.8 is a weighted combination of the NMF cost and

the classifier (SVM) cost. We optimize this objective function using a block coordinate

descent where at each step we solve a set of convex sub-problems each of which is

guaranteed to converge. Therefore, the whole procedure converges to a (local) minimum.

A proof of the convergence is provided in B.

We verified, experimentally, that the proposed optimization procedure does reduce at

each step the objective function in Eq. 3.8 and that the Frobenius norm of the differences

(between subsequent iterations) in G,H and hyperplane parameter w converge to zero.

In order to demonstrate this, we use a subset of the KTH dataset consisting of the action

classes Run and Walk. The details of the experiment are given in Section 3.5.4. The

plot in Fig. 3.4(a) shows that the objective function decreases and converges after few

iterations. The convergence of the parameters G, H and w is also evident from Fig

3.4(b), 3.5(a), and 3.5(b), respectively.
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Figure 3.4.: (a) Objective function in Eq. 3.8 vs Iterations, (b) ‖Gi+1 −Gi‖2F vs Iterations

Note that in the proposed framework, we solve for ξ in two places, i.e., in Eq. 3.9 and

Eq. 3.16. Alternatively we could for example solve for ξ only in Eq. 3.9 and substitute the

obtained values in Eq. 3.16. As optimization strategies, both are valid block-coordinate
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Figure 3.5.: (a) ‖Hi+1 −Hi‖2F vs Iterations, (b) ‖wi+1 −wi‖2 vs Iterations

descent optimizations, which at each step reduce the objective function and therefore

lead to local minima. However, we notice that a change in either the projection matrix G

or the hyperplane parameters can violate the inequality wTGTxi+b ≥ 1−ξi. Fixing the

slack variables when solving for, say, w in Eq. 3.16 would make the inequality constraints

hard, therefore lead to worse solutions of w (in terms of the objective function). By

contrast, if we solve for the penalty term ξ in both Eq. 3.9 and Eq. 3.16, the constraints

are soft in both cases. Fig. 3.6 shows the plot of
∑

i‖ξi − ξ′i‖2 where ξi is obtained by

solving for ξi in Eq. 3.9 and ξ′i is obtained by solving for ξi in Eq. 3.16. From Fig. 3.6,

we see that the sum of the differences converges to zero, that is, ξi and ξ′i converge to

the same values.

3.4. Max-Margin Kernel NMF (KMNMF)

In the previous Section, we presented our proposed framework assuming that a linear

Semi-NMF was used. However, linear NMF algorithms cannot properly capture the

non-linear structure that the data may follow. To tackle this problem the authors

in [134] proposed the Kernel extension of NMF (KNMF) and showed that it significantly

improves the performance over NMF in classification applications. In the following

sections, we extend the max-margin framework described in the previous section to

include KNMF.
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Figure 3.6.: Plot of
∑

i‖ξi − ξ′i‖2 vs iterations where ξi is obtained by solving Eq. 3.9 and ξ′i
is obtained by solving Eq. 3.16

3.4.1. Overview of KNMF

Let Φ denote a non-linear transformation that maps data x ∈ Rm in the input space to

a higher dimensional feature space, i.e., Φ : x ∈ Rm → Φ(x) ∈ Rf , typically f � m. Let

Φ(X) = [Φ(x1), Φ(x2) · · ·Φ(xn)] denote the data matrix where each example Φ(xi) ∈ Rf .

KNMF decomposes the data matrix as

Φ(X) ≈ GΦH (3.30)

where the base matrix GΦ ∈ Rf×k contains the basis vectors in the feature space and

the coefficients matrix H ∈ Rk×n indicates the contribution of each basis vector in the

reconstruction of the example. In practice, the computation of Φ(X) and GΦ are im-

practical and thus the kernel trick [12] is employed to efficiently compute the similarities

in the feature space,

K ≈ YH,

where K = ΦT (X)Φ(X) is the kernel matrix and Y = ΦT (X)GΦ. The coefficient vector

htest for a test example xtest is given by,

htest = Y†Ktest,

where Ktest = ΦT (X)Φ(xtest) and † denotes the pseudo-inverse.
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3.4.2. Max-Margin Kernel NMF (KMNMF)

In this section, we formulate our proposed framework by imposing max-margin con-

straints within KNMF. We aim at finding a set of basis vectors in the feature space,

derived using KNMF, that maximizes the margin of an SVM classifier in the recon-

structed feature space. This is illustrated in Fig. 3.7
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Figure 3.7.: Framework for KMNMF: The input descriptors are reconstructed in the high
dimensional feature space where a linear svm classifier separates the samples.
The objective is to find a base matrix such that the reconstructed samples in
the high dimensional feature space maximize the margin of the classifier

Cost Function for KMNMF

Let {Φ(xi), yi}
n
i=1 denote a set of data vectors in the feature space and their correspond-

ing labels, where Φ(xi) ∈ Rf , yi ∈ {−1, 1}. The objective is to determine a set of basis

vectors acquired using KNMF that can be used to reconstruct the data in the feature

space in such a way that they are optimal under a max-margin classification criterion.

This is accomplished by imposing constraints on the reconstructed data computed using

the bases matrix GΦ. Let the reconstructed vector for a data example Φ(xj) be given

as Φ(x̃j) ≈ GΦhj where hj is the coefficient vector.
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The optimization problem for the proposed criterion is given by

arg min
GΦ,H,wΦ,b,ξi

λ‖Φ(X)−GΦH‖2F +
1

2
wΦ

TwΦ + C
n∑
i=1

ξi (3.31)

s.t. yi(wΦ
TGΦhi + b) > 1− ξi

ξi > 0, 1 ≤ i ≤ n, H � 0

where Φ(X) = {Φ(xi)}ni=1 and λ is the weight factor for the KNMF cost. The first term

(λ‖Φ(X) − GΦH‖2F ) corresponds to the KNMF reconstruction error, the second term

(
1

2
wΦ

TwΦ) corresponds to the maximum margin classifier in the reconstructed space and

the third term (C
∑n

i=1 ξi) is the common term shared by the two previously mentioned

terms, used to penalize the misclassified examples with respect to the input projections

acquired from KNMF. The above formulation aims at maximizing the margin of the

support vectors while at the same time minimizing the reconstruction and misclassifica-

tion errors. The classifier is trained on the reconstructed data points GΦh, obtaining in

this way the hyperplane parameter wΦ ∈ Rf . We follow the same procedure described

in the previous section and iteratively solve for one of the terms GΦ, H and wΦ, b, ξ

while keeping the remaining parameters fixed.

We should note here that since the columns of the bases matrix GΦ, the data matrix

Φ(X) and the SVM hyperplane parameter wΦ lie in the feature space, their explicit

computation is not necessary. Instead we solve explicitly for the parameters of the dual

formulations of their corresponding constrained optimization problems and use them in

order to calculate quantities in the form of dot products in the feature space. More

specifically, when we calculate GT
ΦGΦ and GT

ΦΦ(X), while when we solve for the max-

margin hyperplane wΦ we calculate wT
ΦwΦ and wT

ΦΦ(X). For the data kernel matrix

Φ(X)TΦ(X) we use the Gaussian kernel [12],

k(x,y) = exp

(
−‖x− y‖2

σ2

)
. (3.32)

The steps followed in the proposed max-margin KNMF framework are summarized in

Algorithm 2.

Solve for GΦ and ξ by keeping H,wΦ and b fixed: Since wΦ remains fixed, the

optimization problem in Eq. 3.31 is simplified as
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arg min
GΦ,ξi

λ‖Φ(X)−GΦH‖2F + C

n∑
i=1

ξi (3.33)

s.t. yi(wΦ
TGΦhi + b) > 1− ξi

ξi > 0, 1 ≤ i ≤ n.

The above formulation is derived from Eq. 3.31 if the second term is omitted. It is a

weighted combination of the reconstruction error caused by the KNMF (1st term) and

the soft constraints/penalizations for the examples that do not maintain the appropriate

distance (margin) from the separating hyperplane (3rd term). Our aim is therefore to

find a set of bases GΦ that simultaneously reduce the reconstruction and misclassification

errors. The cost function in Eq. 3.33 can also be written as

arg min
GΦ,ξi

‖Φ(X)−GΦH‖2F + θ
n∑
i=1

ξi (3.34)

s.t. yi(wΦ
TGΦhi + b) > 1− ξi

ξi > 0, 1 ≤ i ≤ n.

where λ = C/θ. We should note that the cost function in Eq. 3.34 is either a quadratic

or linear function that imposes linear inequality constraints on the set of unknowns. We

proceed with solving it using its dual formulation. The Lagrangian of Eq. 3.34 is given

by

L(GΦ, ξi, αi, βi) = Tr

((
Φ(X)−GΦH

)(
Φ(X)−GΦH

)T)
+

θ
n∑
i=1

ξi −
n∑
i=1

αi
[
yi(wΦ

TGΦhi) + b)− 1 + ξi
]
−

n∑
i=1

βiξi (3.35)

αi, βi ≥ 0, 1 ≤ i ≤ n

where αi, βi are the Lagrangian multipliers. Taking the derivative w.r. to the primal

variables and equating to 0, we have

GΦ =

(
2Φ(X)HT +

n∑
i=1

αiyiwΦhTi

)
(2HHT )−1 (3.36)

∂L

∂ξi
= 0 ⇒ 0 ≤ αi ≤ θ, 1 ≤ i ≤ n (3.37)
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Substituting the value of GΦ in Eq. 3.35 and simplifying, we get the dual problem

arg max
α

αT (T1 −T2)α+ (t3 − t4 − t5 − t6 + t7)α s.t. 0 ≤ αi ≤ θ (3.38)

where

α ∈ Rn, T1,T2 ∈ Rn×n , t3, t4, t5, t6, t7 ∈ R1×n,

T1ij =

[
n∑
z=1

yiyjh
T
z Bhiw

T
ΦwΦhjBhz

]
ij

T2ij =
[
yiyjw

T
ΦwΦhTi Bhj

]
ij

t3i =

[
4

n∑
z=1

yih
T
z BHΦ(X)TwΦhiBhz

]
1i

t4i =

[
2

n∑
z=1

yih
T
z Bhiw

T
ΦΦ(X)

]
1i

t5i =
[
2yiw

TΦ(X)HTBhi
]
1i
, t6i = b [yi]1i

t7 = [111 · · · 1]1×n , B = (2HHT )−1

(3.39)

and hz is the zth column of the matrix H. The above problem is quadratic in α, thus

enabling us to use conventional quadratic programming tools to solve it. Once α is

estimated we can compute

GT
ΦGΦ = BT

(
4HΦ(X)TΦ(X)HT + 4

n∑
i=1

αiyiHΦ(X)T

wΦhTi + wT
ΦwΦ

n∑
i=1

n∑
j=1

αiαjyiyjhih
T
j

)
B (3.40)

and

GT
ΦΦ(X) = B

(
HΦ(X)TΦ(X) +

n∑
i=1

αiyihiw
T
ΦΦ(X)

)
(3.41)

that are used in the subsequent optimization problems (e.g. Eq. 3.44).

The constant term θ in Eq. 3.38 is used as a tuning parameter. Large values of λ

(when compared to C), result in low values of θ which cause αi to decrease and the
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second term of Eq. 3.36 to disappear. Hence for large values of λ, the KMNMF cost

function resembles that of KNMF.

Solve for wΦ, b, ξ by keeping GΦ and H fixed: Having computed the updated

bases matrix GΦ from Eq. 3.36 and keeping the weights matrix H fixed, we proceed

with calculating the maximum margin of the classifier. The features are obtained by

reconstructing the data points in the feature space using the updated bases matrix. The

optimization problem in Eq. 3.31 in that case strongly resembles that of a classical SVM:

arg min
wΦ,b,ξi

1

2
wT
ΦwΦ + C

n∑
i=1

ξi (3.42)

s.t. yi(w
T
ΦGΦhi + b) > 1− ξi

ξi > 0, 1 ≤ i ≤ n.

The above optimization problem intends to maximize the margin of the classifier in

the feature space while reducing the misclassification error appearing when using the

projections acquired from KNMF. The hyperplane parameters wΦ, and b are obtained

using a off-the-shelf SVM classifier. The later takes as input the kernel matrix in the

feature space, that is HTGT
ΦGΦH. This can be calculated using H and the GT

ΦGΦ that

is explicitly computed in Eq. 3.40. After obtaining the support vectors and the solution

of the dual formulation of the problem, we can explicitly compute wT
ΦwΦ and wT

ΦΦ(X).

Solve for H by keeping GΦ, wΦ, b, and ξ fixed: We proceed with solving for

the weights matrix H by keeping all the remaining variables fixed (GΦ, wΦ, b, and ξ ).

Since only the reconstruction error term of the optimization problem (Eq. 3.31) depends

on H, the objective function in Eq. 3.31 is simplified as

arg min
H
‖Φ(X)−GΦH‖2F ,

s.t. H � 0. (3.43)

The ith column of H, hi, contributes only to the ith data point Φ(xi) and hence the

columns of H can be solved independent of each other. We adopt the update rule

similar to the one used in MNMF to solve for hi:

hi = hi �
(
[GT

ΦΦ(xi)]
+ + [GT

ΦGΦhi]
−)

([GT
ΦGΦhi]+ + [GT

ΦΦ(xi)]−)
. (3.44)

This procedure is repeated for all columns of H.
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Algorithm 2: Algorithm for KMNMF

input : X, Hinit, MAXITER, λ, C,σ
output: GT

ΦGΦ, H, wΦ, b
begin

H = Hinit;
repeat

S1 : Solve for α in Eq. 3.38
S2 : Compute GT

ΦGΦ using the values of α as in Eq. 3.40
S3 : Compute the kernel matrix HTGT

ΦGΦH
S4 : Use the computed kernel matrix to find the classifier parameters,
wΦ,b.
S5 : foreach column hi of H do

Compute hi using Eq. 3.44
end

until iter ≤MAXITER or convergence;

end

During testing, the coefficeint vector ĥt for the test data xt is computed as

ĥt = arg min
ht

‖Φ(xt)−GΦht‖2 s.t ht > 0 (3.45)

The above equation can be solved using quadratic programming. Eq. 3.45 requires the

computation of GT
ΦGΦ which is computed as in Eq. 3.40 and also GT

ΦΦ(xt) which can

be computed by substituting X with xt in Eq. 3.41. The kernel matrix between the

training and test samples is computed as HTGT
ΦGΦĥt and is used as input to the SVM

classifier that classifies the given test sample.

3.5. Experimental Results

In the following sections, we demonstrate the performance of the proposed framework

using real, publicly available datasets. More specifically, we use the INRIA-pedestrian

dataset [26], the BU-3DFE [129] facial expression dataset, the Mediamill [106] dataset

and the KTH actions dataset [101]. To allow comparisons with previously reported meth-

ods, we report results obtained by SVM classifiers trained with the features extracted

using the Semi-NMF [29] and the KNMF [134] algorithms. We also report results with

the DNMF algorithm [133] followed by a K Nearest Neighbors (KNN) classifier. We

show that the classification performance of the proposed algorithms that jointly learn
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the classifier parameters and the matrix factorization is consistently higher, especially

when only few dimensions are retained. In our experiments, the parameter σ was set

equal to the standard deviation of the data, that is σ2 =
1

N

∑N
i=1‖xi − x‖2 [134]. We

set the parameter values C = 100 and λ = 100 for MNMF and C = 100 and λ = 105 for

KMNMF.

3.5.1. INRIA Dataset

First, we tested our algorithm on the INRIA pedestrian dataset [26] described in Sec-

tion 2.3. In order to handle possible illumination changes we used as features His-

togram of Oriented Gradients (HOGs) [26]. The HOGs were extracted by creating a

non-overlapping spatial grid size of 8 × 8, using 9 orientation bins per histogram. For

each histogram four different normalizations were computed using adjacent histograms.

This procedure resulted in a vector of length equal to 36 per region. For color images,

the gradient was separately computed for each channel and the one with maximum

magnitude was chosen, resulting in feature vectors of size 1440. In total we used 3548

positive examples and 3795 negative examples. For training, we randomly chose 200

positive and 200 negative images from the positive and negative image sets and used

the remaining images for testing. This procedure was repeated several times and we

averaged the acquired accuracies to calculate the accuracy of the classifier. In Fig. 3.8

a set of positive (pedestrian) and negative (background) examples extracted from the

INRIA dataset are depicted.

Figure 3.8.: A sample of the positive and negative image examples used from the INRIA
dataset.

A set of bases images obtained using the proposed MNMF are shown in Fig. 3.9.

For comparison reasons, we also depict the equivalent bases images acquired when using

classic NMF. As we can see, the proposed algorithm results in bases images that have

good localization characteristics.
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(a) (b)

Figure 3.9.: An example of the bases acquired for (a) NMF and (b) proposed MNMF algo-
rithms.

In order to compare the performance of our algorithm with semi-NMF and KNMF,

we report the classification performance of the unsupervised scenarios , i.e., SVM clas-

sifiers trained with the features extracted using the Semi-NMF and the KNMF. We also

report the classification performance of DNMF combined with a KNN classifier. The

classification performance for different number of bases considered, that is for various

values of k, is summarized in Fig. 3.10. We note that for each k we repeat the experi-

ments with different training sets sampled from the main dataset and report the average

accuracy over all runs. For simplicity, for each value of k, we used the value of C that

provided the best results for the semi-NMF+SVM algorithm as input for all the rest of

the methods tested (including ours). It can be seen that the proposed method clearly

outperforms all other methods in terms of the recognition accuracy for all values of k.
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Figure 3.10.: The accuracy obtained for the INRIA dataset.
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Table 3.1.: Comparison of MNMF and KMNMF with baseline techniques (INRIA dataset).

Method SNMF + SVM DNMF + KNN KNMF + SVM MNMF KMNMF

Accuracy 92.29% 90.47% 92.51% 93.27% 94.96%

In Table 3.1 we report the performance of the proposed MNMF and KMNMF algo-

rithms as well as that of the baseline techniques in terms of recognition accuracy. As we

can see, both the proposed MNMF and KMNMF outperform the baseline techniques.

3.5.2. BU-3DFE Dataset

We then applied the proposed algorithms on the BU-3DFE [129] facial expression dataset.

To extract features, we calculated the difference image for each subject, by subtracting

the image corresponding to the neutral state from the equivalent image corresponding

to the fully formed expression (highest intensity). A Gabor filter [72] of 2 scales and

4 orientations was applied on these difference images to yield feature vectors of size

7680× 1.

For testing, we adopted a five-fold cross validation protocol. The dataset of 100

subjects was divided into 5 non overlapping groups of 20 subjects each. We used images

from one group to form the test set and the images corresponding to the remaining 4

groups to create the training set. This procedure was repeated 5 times so that each

group would be used for testing and the average classification accuracy was considered

for the classifier. The number of bases (k) was set to 100. In order to perform multi-class

classification, we employed a All-versus-All approach, i.e., a binary classifier was built

for each pair of classes. During testing, the class that received the maximum number of

votes won.

In Table 3.2 we report the classification accuracy of the proposed MNMF and KM-

NMF, as well as that of some baseline techniques (Semi-NMF and KNMF followed by

SVM and DNMF followed by KNN). As we can see, the proposed MNMF and KMNMF

both outperform the baseline techniques SNMF + SVM, DNMF + KNN and KNMF

+ SVM, with accuracy rates equal to 69.00%, 71.67%, 66.5%, 65.00% and 70.00%, re-

spectively. Therefore, the introduction of the maximum margin constraints within the

factorization procedure efficiently leads to better performance in terms of recognition

accuracy.
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Table 3.2.: Comparison of MNMF and KMNMF with baseline techniques (BU-3DFE
dataset).

Method SNMF + SVM DNMF + KNN KNMF + SVM MNMF KMNMF

Accuracy 66.5% 65.00% 70.00% 69.00% 71.67%

Table 3.3.: Confusion matrices for the proposed MNMF and KMNMF.

% anger disgust fear happiness sadness surprise

anger 60 7.5 5 1.5 24.5 1.5

disgust 11.5 66 10 3.5 6 3

fear 7.5 7.5 57 10.5 11 6.5

happiness 1.5 6 6.5 83 1.5 1.5

sadness 21 2.5 9 1 65.5 1

surprise 4.5 4.5 5 1 3 82

% anger disgust fear happiness sadness surprise

anger 59 8 4.5 1 27 0.5

disgust 10 68 8 3.5 7 3.5

fear 7.5 5.5 66 6.5 10.5 4

happiness 1 4.5 8.5 84.5 1 0.5

sadness 16.5 3.5 9 0.5 69 1.5

surprise 4.5 3.5 5.5 0.5 2.5 83.5

3.5.3. Mediamill Dataset

We next studied the performance of the proposed algorithms on object classification

using the Mediamill [106] dataset. For training, we randomly chose 200 images from

each class and used the remaining images for testing. This procedure was repeated

several times and the average classification accuracy was regarded as the classification

accuracy of the classifier.

The nonlinear kernel parameter σ in Eq. 3.32 was chosen to be same for both the

proposed KMNMF and KNMF [134] algorithms, to ensure a fair comparison. As baseline

techniques, we again used the Semi-NMF and KNMF algorithms followed by a SVM

classifier and the DNMF algorithm followed by a KNN classifier. We should note here

that for each k, we repeat the experiments with different training sets sampled from the

main dataset and report the average accuracy over all the runs. For all experiments,

for each value of k, we used the value of C (100) that provided the best results for the

KNMF+SVM algorithms.

The classification performance for different number of bases (k) is summarized in

Fig. 3.11. It can be seen that the proposed method clearly outperforms all other methods

in terms of the classification error for all values of k. In particular, we notice that the

proposed method significantly outperforms other methods when the number of basis

vectors is small.
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Figure 3.11.: Comparison of the performance of the MNMF and KMNMF algorithms with
DNMF +KNN [133] , Semi-NMF [29] + SVM, KNMF [134] + SVM versus the
number of bases k for different categories of Mediamill dataset.
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Table 3.4.: Confusion matrices of the proposed MNMF and KMNMF on the KTH dataset

% box clap wave jog run walk

box 90 2 2 2 2 2

clap 4 88 7 1 0 0

wave 5 3 92 0 0 0

jog 0 1 1 87 11 0

run 1 0 0 8 89 2

walk 1 0 0 1 3 95

% box clap wave jog run walk

box 92 2 2 2 0 2

clap 1 91 7 1 0 0

wave 1 6 92 1 0 0

jog 0 1 0 84 13 2

run 0 0 0 4 94 2

walk 0 1 1 0 0 98

3.5.4. KTH Action Dataset

Subsequently, we studied the performance of the proposed algorithm on the KTH dataset.

For each action, we considered a period of 9 ‘naively’ chosen frames (not time-scaled).

In order to have a better alignment for the training data we extracted bounding boxes

of size 60× 80 around the objects. Possible illumination changes were handled using as

features HOGs. The HOGs were extracted as described in Section 3.5.1. The number

of bases k was set 135. In order to perform multi-class classification we employed the

same all-versus-all strategy that we adopted in the experiments conducted for the BU-

3DFE database. The leave-one-person-out cross validation approach was used to test

the performance of the algorithms.

Table 3.4 shows the confusion matrices for the proposed MNMF and KMNMF on

the KTH action dataset. From Table 3.4, we notice that both the algorithms achieve

low performance for the action jog and run. This is due to the similarity between the

actions jog and run. Since we only consider the appearance of the actions (intra frame

information) and ignore the temporal information (inter frame information), the algo-

rithm achieves low accuracy for theses classes. We also note that KMNMF outperforms

the MNMF for all classes except jog which suggests that the classes in the KTH dataset

are not linearly separable.

In Table 3.5 we report the performance of the proposed MNMF and KMNMF algo-

rithms as well as that of the baseline techniques (SNMF + SVM, KNMF + SVM and

DNMF + KNN) in terms of recognition accuracy. As we can see, both the proposed

MNMF and KMNMF outperform the baseline techniques. KMNMF also introduces a

1.66% increase in recognition accuracy over MNMF, something that implies that the
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Table 3.5.: Comparison of MNMF and KMNMF with baseline techniques (KTH dataset).

Method SNMF + SVM DNMF + KNN KNMF+SVM MNMF KMNMF

Accuracy 87.50% 84.00% 91.30% 90.17% 91.83%

classes included in the KTH dataset are better separated when non-linear techniques

are used.

3.5.5. Effect of Parameter λ

Having already shown that the proposed MNMF and KMNMF algorithms outperform

schemes that employ factorization techniques followed by a SVM classifier, we further

study the effect of the parameter λ on the cost function Eq. 3.8 and on ξi. As we have

defined in Eq. 3.13, the weight for the NMF cost λ is inversely proportional to the tuning

parameter θ, i.e., θ = C/λ. High values of λ result in low values of αi, since αi is upper

bounded by θ. Thus for high values of λ the second term in Eq. 3.12 approaches zero

and the update rules for G are similar to the update rules of Semi-NMF [29] while for

lower values of λ the second term in Eq. 3.12 is introduced formulating in that way our

framework. In Fig. 3.12 we plot the classification accuracy achieved for the train and

test sets of the KTH dataset versus the value log(λ). As we can see the proposed MNMF

achieves a higher training and testing classification accuracy when a smaller value for the

parameter λ is considered. For larger values of λ the classification accuracy of MNMF

converges to the same value with that of SNMF followed by SVM.

3.6. Conclusions

In this chapter, we propose a maximum margin framework for the linear and non-linear

Non-negative Matrix Factorization algorithm. Our aim is to impose soft max-margin

constraints on the cost function of NMF in order to calculate the decomposition matri-

ces that will enable us to perform classification while reducing simultaneously both the

reconstruction and misclassification errors. In that way, we obtain the maximum margin

of the classifier in the low or high dimensional space (for the case of linear and non linear

NMF, respectively) while ensuring that it achieves the highest classification accuracy.

To accomplish this, we formulate a novel cost function that combines the reconstruc-
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Figure 3.12.: Classification accuracy versus log(λ).

tion error term introduced by the matricization algorithm and the misclassification error

introduced by the maximum margin classifier, bound together under SVM-type linear in-

equality constraints. The introduced cost function formulates a non-convex constrained

optimization problem with respect to the bases and the separating hyperplane, which

we solve following an iterative optimization procedure. At each iteration we solve for

a set of convex (constrained quadratic or Support Vector Machine-type) sub-problems

employing typical quadratic programming tools. We demonstrate the performance of the

proposed algorithms on several computer vision problems such as pedestrian detection,

image retrieval, facial expression recognition and action recognition using not only toy

datasets but also publicly available ones (the INRIA, the BU-3DFE, the KTH action

and the Mediamill datasets).



Chapter 4.

Learning Dictionary Weights for

Action Localization

4.1. Introduction

The task of detecting actions in video sequences is challenging as the system is not

only required to distinguish the action from other action categories but also locate the

actions in the video. A good system for such task should have a model of the action with

low intra-class and high inter-class variability. In addition a robust system should be

able to perform well under various real world conditions such as illumination changes,

variations in the size and speed of the action, occlusion, cluttered background etc. While

the appearance of the action can dramatically change for different instances of the same

class under above conditions, it has been observed that the appearance of the small local

parts are less variable. This calls for a part-based model similar to [4, 61, 85] where the

object is decomposed into parts or components and the local appearance of theses parts

are modeled independently. The Implicit Shape Model [61] is a part-based model where

the parts of the object provide information about the spatial location, scale and size of

the object. i.e during training, the spatial configuration of the parts are learned relative

to the object center. Although the spatial configuration of different training instances

may vary significantly, the model is flexible enough to combine parts from different

training examples to represent a test object with novel articulation and thus the model

can be learned from a few examples. In this work we employ the Implicit Shape Model

(ISM) [61] for detecting actions in video sequences. As the generative approach of the

ISM does not consider the discriminative information for separating the object from

53
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the background, we introduce discriminative weights for the dictionary learned from the

training sequences.

The rest of the chapter is organized as follows. We briefly describe the ISM in the

section Section 4.2. We give an overview of the proposed method in Section 4.3. In Sec-

tion 4.4, we discuss the global weights, local weights and the discriminative votemaps.

Section 4.5 describes the resulting objective function and the training and testing algo-

rithms. We discuss the experimental results in Section 4.6 and finally we conclude in

Section 4.7.

4.2. Implicit Shape Model

The Implicit Shape Model proposed by Leibe et al . [60,61] for combined object detection

and segmentation is one of the popular part-based approaches. As we are interested in

detection aspect of the ISM in this thesis, we will only describe how the shape models

are learned and used for object detection task. The ISM framework can be divided into

two stages namely

• Codebook generation

• Learning spatial occurrence distribution

4.2.1. Codebook generation

The wide usage of part-based methods for object detection can be devoted to the follow-

ing facts [43]: (i) Most of the object categories can be represented by a few characteristic

object parts and their geometrical relationships; (ii) the appearance of some object parts

vary less under pose changes as compared to the whole object; and (iii) part-based ap-

proaches are less susceptible to occlusion than the whole object .

These methods can be broadly classified into two categories based on the approach

used to select parts. The methods in [43,85,95] follow a part-classifier based approach in

which a limited number of hand-picked components of the object are treated as parts and

a complex classifier is learned for each part. These methods attempt to learn a robust

detector for semantically meaningful parts so that objects’ presence can be detected

from a few parts. Since a single detector is learned for each part, these methods require

a large number of training samples (positive and negative) to capture all the variations
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Figure 4.1.: Codebook representation [59]. (a) The points represent the appearance distri-
bution of some object part. (b) The methods in [43, 85, 95] try to find complex
decision surface that separates all part appearances from non-part appearances.
(c) The codebook approach represents the appearance distribution by a set of
compact prototypes

in the parts. In contrast to this, the methods in [4, 34, 36, 61, 120] follow a codebook 1

approach for building the part model. The codebook is a vocabulary of local descriptors

(or parts). For a given training set, the local descriptors of the objects are extracted at

interest points and these local descriptors are grouped based on the visual similarity using

an unsupervised clustering algorithm. The codebook approach results in a large number

of simple and compact appearance prototypes that represent the complex appearance

distribution of the part.

Fig. 4.1 describes the method employed to model the parts in the above approaches.

Let 4.1 (a) represent a complex appearance distribution of some object. Instead of

trying to find a complex distribution that tries to discriminate the part and non-part

appearances [43, 85,95] as in 4.1 (b), the codebook approach represents the appearance

distribution of parts by compact prototypes as shown in 4.1 (c). A point is classified as

belonging to a certain prototype if the distance between the point and the prototype is

less than a threshold. Learning a large number of prototypes in an unsupervised manner

also enables the codebook approach to use far more object parts than when the parts

need to be manually annotated. This is very useful when the object contains a large

number of semantically meaningful parts.

To learn a codebook during the training stage, a large number of local patches are

extracted from the images using interest point detectors. Extracting the patches at

the interest point detectors results in the parts or components that can characterize

1 We will use the terms dictionary and codebook interchangeably in the rest of the chapter.
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Figure 4.2.: Codebook Generation [61]: The patches are extracted from the training im-
ages and clustered using an unsupervised clustering algorithm. The resultant
codewords or cluster centers are shown

the objects and also reduces the number of patches to be processed. In addition the

repeatability property of the interest point detectors enables us to extract similar patches

in different objects. These extracted patches are grouped based on the visual similarity

using an unsupervised clustering algorithm to form a small compact prototypes of local

appearances (codebook). Fig. 4.2 shows the steps involved in the codebook generation

process.

4.2.2. Learning Spatial Occurrence Distribution

The ISM uses the codebook to discriminate the patch appearances and to learn the

structural information of the parts. This is done by comparing the training patches

against the clusters (also called codewords) in the codebook. The conventional way

of matching is assigning the patch to the nearest neighbor, however, it is important

consider the uncertainty in matching and propagating the uncertainty forward to the

later stages. An important assumption in codebook approach is that a codeword is a

characteristic representative of the image patch [114]. Due to continuous nature of the

visual appearance, it is difficult to choose a single representative codeword for a patch.

In realistic situations, most of the patches are matched to more than one codeword.

If the patch is matched to only one codeword then there is no ambiguity but if the

patch is matched to more than one codeword, then there is uncertainty called codeword

uncertainty [114].
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Figure 4.3.: Codeword uncertainty [59]. (a) The local patches p1,p2,p3 are assigned to the
closest codewords D2,D3,D3 respectively. This assignment is unstable as a
slight change in the patch can result in different codewords being assigned. (b)
The patches are assigned to all the codewords within a threshold distance. This
is more robust as a slight variation in the patch does not alter the codeword
assignment

This illustrated in the Fig. 4.3. In Fig. 4.3 (a), each patch is matched to the closest

codeword. The patch p3 represented by the trapezoid does not have the codeword

uncertainty as it is close to only one codeword, i.e., codeword D3 whereas the patches

represented by star p1 (close to D1 and D2) and diamond p2 (close to D2 and D3) have

the codeword uncertainty. The matching process in Fig. 4.3 (a) is unstable as a small

change in appearance of the patch p1 will result in matching with the codeword D1

instead of D2. Similarly a slight change in the appearance of the patch p2 will activate

the codeword D2. In order to obtain a stable codebook representation, the matching

should consider the codeword uncertainty and propagate the uncertainty to the next

stage.

The ISM [60] uses the Normalized cross correlation as the similarity measure for

matching, i.e., a codeword is matched to a patch if the similarity between the patch and

the codeword is greater than a threshold. If a patch is matched to a codeword, then we

store the relative location of the patch w.r.t. the object center and the scale at which

the interest point was detected. These stored occurrence locations reflect the spatial

distribution of a codeword over the object area in a non-parametric form. The spatial

occurrence distribution of a codeword specifies the spatial locations within the object,

where the patches associated with the codeword in question can be found. The spatial
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Figure 4.4.: Spatial occurrence distribution for four sample codewords [61]. The spatial
occurrence distribution are plotted with x, y and scale axes

occurrence distribution for each codeword is estimated in a non-parametric manner.

Fig. 4.4 shows the spatial occurrence distribution for four sample codewords.

Algorithm 3: Algorithm to compute the spatial occurrence distribution [61]

begin
foreach Codeword Di do

Occ[i]← ∅ // Initialize occurrence of codeword Di

end
foreach interest regions lk = (lx, ly, ls) with descriptor fk do

foreach Codeword Di do
if sim(Di, fk) > κ then

// Record an occurrence of codeword Di

Occ[i]← Occ[i] ∪ (cx − lx, cy − ly, ls)
end

end

end
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4.2.3. Object Detection with Implicit Shape Model

Let D denote a codebook obtained using k-means algorithm and let Dj denote jth

codeword which corresponds to a cluster center. The spatial occurrence distribution is

learned by matching the training patches against the codebook. For all matched patches

the scale and spatial information are stored in the codeword as described in Algorithm

3. During testing, the patches of fixed size are extracted from the test images at the

locations indicated by the interest point detectors. These patches are compared against

codebook with the criterion mentioned above and activate codewords. The votes for

the possible center and scale of the object is casted using generalized Hough transform

framework [9, 71], i.e., the activated codewords use the spatial and scale information

stored during training to cast probabilistic votes in an output space called Hough space.

The consistent hypothesis are searched as local maxima in the Hough space using a

meanshift mode estimation algorithm [24,25].

Probabilistic Hough Voting

Let xi be a feature located at location li of the input image. The probability of matching

the patch with jth codeword Dj can be given by p(Dj|xi, li). Every matched codeword

can vote for different objects O and locations y. Let S(O, y|xi, li) denote the probabilistic

Hough score collected at location y of the object O from the feature (xi, li). Then

S(O, y|xi, li) =
∑
j

p(O, y|Dj,xi, li)p(Dj|xi, li) (4.1)

Since the matching is independent of the location of the patch, we have p(Dj|xi, li) =

p(Dj|xi). Also, note that the probabilistic Hough vote from a codeword is independent

of the appearance of the input feature, i.e., p(O, y|Dj,xi, li) = p(O, y|Dj, li).

S(O, y|xi, li) =
∑
j

p(O, y|Dj, li)p(Dj|xi) (4.2)

=
∑
j

p(y|O,Dj, li)p(O|Dj, li)p(Dj|xi) (4.3)

The term p(O, y|Dj, li) in Eq. 4.2 is the probabilistic Hough vote for the object location

given the codeword and the feature. The term p(O|Dj, li) specifies the probability that

the codeword Dj is matched to the object O as opposed to background and the third

term represents the quality of the match between the codeword and the patch.
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Figure 4.5.: The Recognition procedure with the ISM: The image patches are extracted us-
ing interest point detectors and matched against codebook. The activated code-
words cast probabilistic Hough votes in the output Hough voting space. A
Mean-shift mode estimation algorithm is applied to detect the hypothesis

In order to handle multiple scale, the scale is included as a third dimension in the

Hough space. Let the tth patch of an image be located at (xt, yt, st) where st is the

scale at which the patch was found. If the patch is matched to the codeword with entry

(xcw, ycw, scw), then the voting location in the Hough space is given by

xvote = xt − xcw(st/scw) (4.4)

yvote = yt − ycw(st/scw) (4.5)

svote = st/scw (4.6)

The above votes are computed for all the learned entries in a codeword. The votes are

collected in an output space called Hough space that has the same dimension as the

number of parameters to be estimated. The hypothesis corresponds to the maxima of

the Hough space. The ISM in [61] employs a uniform distribution for the last term

in Eq. 4.2, i.e., p(Dj|xi) =
1∑k

j=1 |d(Dj,xi) > κ|
where |.| represents is the indicator

function. The probabilistic Hough vote from a codeword is also assumed to follow an

uniform distribution, i.e., p(y|O,Dj, li) = 1
bj

where bj is the total number of patches

matched to the jth codeword during training. The final voting score is obtained by

combining the evidence from all the patches in the test image:

score(O,y) =
∑
i

p(O, y|xi, li) (4.7)

The overall steps involved in the detection process is shown in Fig. 4.5
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4.3. Learning Discriminative Weights for the

Codebook

In practice the nature of the generative models makes it robust to various real world

conditions such as partial occlusion, illumination changes, view-point changes and so

on. The ISM has a generative probabilistic model which can represent a category of

objects in an efficient manner. Since each patch of the image can vote independently of

the other patches for the center of the object, the model is flexible enough to combine

the local parts seen on different training images. Thus the model can achieve high recall

rates for any general object category but this flexibility leads to an increase in the false

positive rate [37,79]. This motivates the use of a discriminative methods along with the

ISM. Recently, a number of methods have been proposed that combines the advantages

of a generative model with a discriminative model [21,37,79,81,127,136,137].

The method in [81] introduced a spatial weighting approach to discriminate the back-

ground from the foreground for object detection. The weights of the features that agree

on both the location and the shape object are boosted while the weights of the back-

ground features are suppressed thus making the method more robust to background

clutter. Zhang et al . [136] proposed a boosting approach for the codebook construc-

tion where codebooks are learned in a sequential manner by using the discriminative

information that was not learned by the previous codebooks and their corresponding

classifiers. Cai et al . [21] used a codebook weighting approach for image classification

based on the criteria that the weighted similarity between the same labeled images is

greater than that between differently labeled images with largest margin.

In particular the flexibility of the ISM has motivated the researches to develop meth-

ods [37, 79, 127, 137] that combine the representative power of ISM with a discrimina-

tive model. In [127] a set of decision trees were used to learn a mapping between the

densely sampled feature patches and the corresponding votes in the spatio-temporal

Hough space. The leaf nodes of the trees are the discriminative codebooks that store

information about the location of the object of interest. A common appearance code-

book for the generative and discriminative models is learned in [37]. For a query image,

the generative part of the algorithm produces several hypothesis using the appearance

codebook and these generated hypothesis are verified by the discriminative part of the

algorithm using the same codebook activations. The method in [137] puts the Hough

transform into a max-margin framework such that the Hough transform detector can be



Learning Dictionary Weights for Action Localization 62

used to obtain the decision scores of the svm classifier at every location and scale of the

image. Maji et al . [79] used a max-margin approach to learn weights for the codewords

by maximizing the Hough voting response at the correct locations of the object over the

incorrect ones. Motivated by these works, we propose a codebook weighting approach

in which the local parts cast weighted votes to the center and scale of the action. In

addition the success of the soft quantization over hard quantization also motivated us

to develop a local weight for the codewords. The objective of the localization is to dis-

criminate the object locations from the non-object locations. Since the spatio-temporal

location of the action is known during training, we can compute the weighted votes for

the location of the action and the background for each training feature and use this

information to efficiently compute the global weights for the codebook. Summarizing,

the main contributions of this chapter are:

• We present an approach to learn local weights for the matched codewords of each

feature based on the degree of match between the codeword and the feature. This

is achieved in a principled way by incorporating the Hough voting scheme into

Locality Constrained Linear Coding (LLC) [118] framework.

• We develop a framework that enables us to incorporate the discriminative output

Hough space information into training, i.e., we compute the contribution of votes

from each codeword to the Hough space of the training sequences. This information

is used to quantify the contribution of votes from each codeword to the center of

the action and other locations.

• Using the above framework, we propose a discriminative weighting scheme to learn

global weights for the codebook that maximize the Hough voting response at the

spatio-temporal location of the activity compared to background.

4.4. Proposed Framework

Most of the methods mentioned in Section 4.3 [60,79,137] use a codebook learned using

k-means algorithm which has been the most popular and widely used codebook gener-

ation method. However, it is reported in literature [21, 46, 114] that k-means codebook

results in codewords that are highly biased towards the high density regions as compared

to the low density regions and also it is noted by [15, 46] that the most frequent fea-

tures are not essentially the most discriminative features. This leads to codebook with
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redundant codewords and can increase the number of false positives if the codewords

are uniformly weighted. To overcome this, codebook weighting approaches are used that

discriminate the informative codewords from the non-informative ones [21, 79]. Further

Gemert et al . [40,114] showed that instead of using uniform weights for the codewords,

soft assignment to a few codewords based on degree of matching can improve the per-

formance. In this work we use the k-means codebook for detection of actions in videos

and propose a codebook weighting approach based on the Hough voting spaces of the

training sequences.

The ISM [61] learns a set of codewords from training patches and keeps track of

the location of the codewords with respect to the object centre. During testing, the test

patches are matched against the codewords and the matched codewords cast probabilistic

votes to the object centre. Let xi be a feature located at location li of the input image.

The patch is matched against the jth codeword Dj with a probability p(Dj|xi, li). As

described in Section 4.2.3, the Hough score S(O, y|xi, li) collected at location y of the

object O from the feature (xi, li) is given by

S(O, y|xi, li) =
∑
j

p(y|O,Dj, li)p(O|Dj, li)p(Dj|xi) (4.8)

Many variations of the Hough voting scheme have been proposed [79, 127, 137]. In

[79] the second term is learned discriminatingly using Max-Margin classifier whereas

the approach in [127] discriminatingly learns the third term using Hough forests. The

method in [137] reformulate the Hough voting scheme so as to fit it to the kernel classifier.

The third term is computed for each local feature of the input video. Hence we call it

as the local weights for the votes. Similarly second term can be regarded as the global

weight for the votes. In this work, we propose a method to learn global weights (second

term) and also the local weights (third term) for the codebook.

4.4.1. Learning Local Weights

In the ISM, the local patches are compared with multiple codewords in order to cope

up the ambiguity generated by mapping the continuous image patch to discrete visual

codewords. Recently there has been an increasing interest in the machine learning

community to learn the mapping between the local features and codewords to which the

features are assigned. This can be also referred to as the coding step [17] where the input

features are locally transformed into representations with some desirable properties such
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as compactness, sparseness etc. The codes can also be interpreted as the coefficients

obtained by decomposing the feature on a codebook or as the local weights for the

codewords. Let xi denote a local feature and hi denote the corresponding coefficient

and Dj denote the jth codeword. There are several ways of assigning a local feature to

the codeword [17,68]. They are:

Hard-assignment coding : The feature xi is matched to a single nearest codeword.

Hence only one entry in hi is one and all other entries are zero, i.e.,

hij =

 1 j = arg minj=1,2···K‖xi −Dj‖2

0 otherwise
(4.9)

Soft-assignment coding : In contrast to hard-assignment, the soft-assignment dis-

tribute the probability mass to multiple codewords based on the degree of match between

the local feature and the codeword.

hij =
exp(−β‖xi −Dj‖2)∑K
k=1 exp(−β‖xi −Dk‖2)

(4.10)

where β is the smoothing factor.

Sparse Coding : In sparse coding, the local feature is expressed as a linear combination

of a few codewords. The objective function minimizes a combination of the `2 norm of

the reconstruction error and `1 norm of the coefficient vector hi [17, 124,125],

ĥi = arg min
hi

‖xi −Dhi‖2 + λ‖hi‖1 (4.11)

where ‖hi‖1 denotes the `1 norm of hi, λ is the regularization parameter that controls

the sparsity of hi and D denotes the codebook or dictionary of the local features.

Gemert et al . [114] termed the ambiguity in assigning the local feature to multiple

codewords as codeword uncertainty and proposed soft-assignment coding as given in

Eq. 4.10. It was also shown in [17, 114] that soft-assignment improves the recognition

performance over hard-assignment. Further it was shown in [17] that sparse coding

improves over soft quantization (soft-assignment coding). However, the nature of the

regularization term in sparse coding makes it highly sensitive [39] to the data, i.e., `1

term is not smooth [118]. This causes the similar local features to have different coeffi-

cient vectors thus losing the correlation between the codes. Yu et al . [131] empirically
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pointed out that the sparse codes need not necessarily select the codewords that are

local to the feature and presented a technique called Local Coordinate Coding (LCC)

which explicitly constrains the codewords to be local. They also suggested that un-

der certain assumptions locality is more important than sparsity [118] for successful

nonlinear function learning. But similar to sparse coding [124], it is computationally

expensive as it requires to solve `1 minimization problem. Recently Wang et al . pro-

posed Locality Constrained Linear Coding (LLC) [118] that remarkably outperformed

the sparse coding [124] techniques. LLC assigns the features to the local codewords by

imposing locality constraint on the codes. The success of the local coding methods such

as [118,131] justifies the assumption that local features lie on a low dimensional manifold

in an ambient descriptor space [68] and also highlight the importance of assigning the

features to the local codewords. In this work we employ LLC to learn local weights for

the codewords. We briefly describe the LLC in the next section.

Locality Constrained Linear Coding

The LLC [118] imposes locality constraint on the codes in contrast to sparseness con-

straints [124,125]. This results in low weights for the codewords that are far away from

the feature. Let X = [x1, . . . ,xn] ∈ Rm×n denote a set of input data vectors and let

D = [d1, . . . ,dk] ∈ Rm×k denote a dictionary or codebook such that the data vector

can be approximately represented as a linear combination of a few columns of D, i.e.,

xi ≈ Dhi, hi being the sparse representation of the sample. The LLC algorithm in [118]

uses the locality criteria to obtain a representation of the sample, i.e.,

arg min
hi

‖xi −Dhi‖2 + λ‖gi � hi‖2 s.t 1Thi = 1, ∀i (4.12)

where � denotes element-wise multiplication. The weights gi is given by

gi =

[
exp

(
‖xi −D1‖22

σ

)
, exp

(
‖xi −D2‖22

σ

)
, · · · , exp

(
‖xi −Dk‖22

σ

)]
(4.13)

σ is used for adjusting weight decay speed. The constraint 1Thi is for the shift-invariant

requirements of the LLC code. Fig. 4.6 shows the codeword assignment scheme for

different coding techniques. Fig. 4.6a shows the codeword assignment in the case of

the Hard assignment coding where the feature is assigned to a single nearest codeword.

Fig. 4.6b shows the sparse coding technique in which the feature is assigned to a few

codewords of the codebook. Note that the codewords need not necessarily be the local
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a b c 

Figure 4.6.: Assignment of codewords for different coding techniques [118]: a. Hard-
assignment coding in which a feature vector is assigned to the single nearest
codeword. b. Sparse coding where the feature is assigned to only few (not nec-
essarily the local) codewords of the codebook. c. LLC assigns the features to
the nearest codewords

codewords. Fig. 4.6c shows the LLC where the codewords are assigned to the local

codewords.

Solving for hi in Eq. 4.12 results in coefficients that are sparse denoting that the

data vectors can be approximated by a linear combination of few local dictionary atoms.

Hence instead of solving for hi ∈ Rk in Eq. 4.12, the authors also proposed an approxi-

mated LLC method where data vector is represented as a linear combination of q nearest

dictionary atoms and the coefficients hi are obtained as

ĥi = arg min
hi

‖xi −Dihi‖2 s.t 1Thi = 1, ∀i (4.14)

where Di ∈ Rm×q is a matrix containing q nearest codewords of xi. Typically the number

of nearest codewords q is much lesser than the total number of codewords k and hence

reduces the computational complexity.

The probabilistic Hough score for an object O at a location y given a feature xi

is expressed as in Eq. 4.8. It is also evident from Eq. 4.8 that ISM can cope with

codeword uncertainty as the local features are assigned to multiple codewords as shown

in Fig. 4.3. However, Leibe et al . [60, 61] assumed a uniform distribution for p(Dj|xi) ,

i.e., p(Dj|xi) = 1∑k
j=1 |d(Dj ,xi)<κ|

where |.| represents the indicator function. This causes

all the matched codewords to vote with same weight irrespective of the degree of match

between the local feature and the codeword. This is illustrated in Fig. 4.7. The diamond

represents a local feature and D1 - D7 represent the codewords around the feature in
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the feature space. The codewords D1 - D5 are matched to the feature. Similar to [61],

we say a feature xi is matched to a codeword Dj if the distance between the feature and

the codeword is less than a pre-defined threshold κ, i.e., d(Dj,xi) < κ, the function d

is Euclidean distance in our case. Fig. 4.7a shows the assignment of weights by the ISM

where equal weights m are assigned to all the matched codewords (D1 - D5). Note that

weighting scheme adopted by the ISM does not consider the distance between the feature

and the codeword. For E.g . the distance between the feature and the codeword D1 is

greater than that between the feature and the codeword D2, i.e., d(D1,xi) > d(D2,xi)

but the ISM assigns equal weights to the votes from these codewords. Thus the votes

from codewords that are consistent in location and appearance with the feature are

equally weighted as the votes from the ones that are inconsistent with the feature. This

can lead to votes at inconsistent locations in the output Hough space and can increase

the false positives. To overcome this, we assign weights to the codewords based on its

degree of matching with the feature.

The ISM also suggested a soft-assignment scheme for assigning weights to the code-

words. However, [17, 131] showed that LCC is better than the soft-assignment scheme.

In addition, the studies in [68] show that the assignment of weights by considering the

local manifold leads to improvement in the performance. In this work we design a frame-

work that assign weights in a principled way by incorporating the Hough voting scheme

into LLC framework.

Let hi ∈ Rk denote the weight vector for a feature xi. We add a constraint cThi = 1

to satisfy the local manifold assumption in [68, 110] which states that the Euclidean

distance is meaningful within a local region where it can approximate the geodesic

distance well. The parameter c ∈ Rk is given by

cj =

 1 if dist(Dj,xi) < κ

0 otherwise
(4.15)

Thus the probabilistic Hough score in Eq. 4.2 can be written as

S(O, y|xi, li) =
k∑
j=1

p(O, y|Dj, li)p(Dj|xi) (4.16)

=
k∑
j=1

p(O, y|Dj, li)hij = bTi (y)hi (4.17)
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Figure 4.7.: Assignment of weights to the codewords: The diamond represents the local
feature and the and D1 - D7 represent the codewords. The codewords D1 -
D5 are matched to the feature. a) The ISM assigns equal weights (m) to all
the matched codewords. b) The proposed method employs LLC to assign the
weights based on the degree of match between the feature and the codewords.

where bi(y) ∈ Rk is a vector with the spatial probability entries for the codewords that

are matched to the feature,

bij(y) =

 1
|Dj | if d(Dj,xi) < κ

0 otherwise
(4.18)

Here bi(y) is the vote map for the ith feature and |Dj| is the number of features that

are matched matched to jth codeword during training.

4.4.2. Learning Global Weights

As discussed in the previous section, the LLC leads to a local weighting for votes from the

feature as the weights are feature specific, i.e., the weights computed for a feature only

depend on the degree of match between that feature and the codebook and independent

of the other features. In this section, we discuss an approach to assign global weights for

the votes from each codeword. We use a k-means codebook learned using the appearance

of the training features. The construction of the codebook does not take the location
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information of the features into consideration and hence may not be optimal for the task

of localization. Also, as discussed in Section 4.4, k-means leads to more codewords at

high density regions and lacks codewords at low density regions. Thus the contribution

of votes from the codewords to the object center will not be uniform. This calls for a

weighting scheme for the votes from the codewords such that the learned weights are

optimized for localization. Intuitively, if the local part of an object is repeatative (occurs

at most instances of the object) and occurs at a consistent location with respect to the

object center, then the codeword corresponding to such part contributes more votes

to the center of the object. Instead of assigning uniform weights for votes from the

codewords as in ISM, we assign weights for the votes from the codewords based on their

contribution to the object center, i.e., the codewords that contribute more votes to the

object center is assigned high votes as compared to others.

The term p(O|Dj, li) in Eq. 4.8 is the probability that the codeword votes for the

class O as opposed to some other classes. If we assume this independent of the location

of the patch, i.e., p(O|Dj, li) = p(O|Dj), then p(O|Dj) can be computed as,

p(O|Dj) =

|nO|
|nOtr|∑

c∈C

|nc|
|nctr|

(4.19)

where |nO| is the number of votes to the object O from the codeword Dj, |nOtr| is the

total number of features used to learn the class O. This is referred as Naive Bayes

weights in [79] as the probability p(O|Dj) only considers the appearance of the feature

and ignores the spatial distribution of the features. It was also shown in [79] that such

assumption leads to poor localization performance. Hence it is necessary to jointly

consider the appearance and spatial location p(O|D, l) of the codeword to compute the

weights. From Eq. 4.16, we have

S(O, y|xi, li) =
∑
j

p(O|Dj, li)p(y|O,Dj, li)hij

=
∑
j

wjp(y|O,Dj, li)hij

=
(
w � bi(y)

)T
hi (4.20)
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where w = [w1, w2, · · · , wk] is the global weight vector, wj = p(O|Dj, li). The Eq. 4.20

can also be written as

S(O, y|xi, li) = wTA(y) (4.21)

where A(y) = (hi � bi(y)) are the activations. Since the activation term A(y) is a

function of the location y, we can discriminatively learn the weights by considering the

localization information of the training sequences. Eq. 4.20 shows the final expression

for the weighted votes for an object O at a location y where w is global weight and hi is

the local weight. The overall procedure for obtaining the global weights is summarized

in Fig. 4.9.

4.4.3. Discriminative Votemaps

In this section, we discuss the generation of discriminative vote maps for each feature.

The local features use the matched codewords to cast weighted votes for the probable

Action center. These votes are accumulated in an output space called Hough space. In

order to have a good localization, the votes at the spatio-temporal center of the action

should be high compared to the other locations (background). Since the groundtruth

annotations are available for the training set, we can generate output Hough spaces of

the training sequences and use this to compute discriminative weights that maximize

the response at the location of the center of action compared to other locations.

Let S(y) denote the probabilistic Hough votes at a location y in the Hough space of

the action. Let Yc denote an area around the center of the action as shown in Fig. 4.8.

The objective is to maximize the votes at the centre of the action compared to other

locations, i.e., to maximize the sum of votes inside Yc as compared to sum of the votes

at other locations. This can be expressed as(∑
y∈Yc

S(y)−
∑
y/∈Yc

S(y)

)
(4.22)
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Figure 4.8.: Discriminative votemaps: The Hough space of an image. The gray area rep-
resents a bin or an area around the center of the object. The discriminative
votemaps are computed as the difference of the sum of votes inside Yc and sum
the votes in the rest of the Hough space excluding the region Yc.

This is equivalent to minimizing the quantity(∑
y/∈Yc

S(y)−
∑
y∈Yc

S(y)

)
=

(∑
y/∈Yc

(
w � bi(y)

)T
hi −

∑
y∈Yc

(
w � bi(y)

)T
hi

)
= (w � ai)

Thi (4.23)

where

ai =
(∑
y/∈Yc

bi(y)−
∑
y∈Yc

bi(y)
)

(4.24)

denote the sum of the Hough votes at the non-object location from ith feature xi. For

each feature in the training set, we accumulate the votes at the Hough space of the

sequence to which it belongs and compute discriminative vote maps as described in

Eq. 4.24. Note that the vote maps bi(y) in Eq. 4.18 computes the un-weighted votes

from the matched codewords at any location y of the sequence whereas the discriminative

votes maps in Eq. 4.24 computes the difference of un-weighted votes from matched
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codewords at the center and non-center locations. Also unlike the vote maps bi(y), the

discriminative votemaps ai is independent of the term y and contains the discriminative

information in it. We can also introduce a weighting for the aggregation of votes in

Eq. 4.24. For e.g . we have used a binned aggregation in Eq. 4.24 which is equivalent to

uniform weighting for all the votes in the region Yc. Instead we can use a soft weighting

scheme in which a vote near the center is given high weight and the weight decays as

the votes are farther from center.

Local 
Features

xi=1…N

Hough
Voting
Space





yYc

Discriminative 
votemaps

ai=1…N

Quadratic
programming

yYc

-

+
hi=1…N

w

Figure 4.9.: Computation of global weights: A local feature is compared with the code-
book to select the nearest codewords and the local weights for theses codewords
are computed using LLC. The feature then votes for the Hough space of the
sequence to which it belongs and discriminative votemaps are obtained by com-
puting the difference of sum of votes at the center and non-center locations. The
discriminative votesmaps along with the local weights are used by a quadratic
programming module to compute the global weights w.

4.5. Objective Function

In this section, we propose to incorporate Hough voting scheme into the LLC framework.

The LLC described in Section 4.4.1 considers only the appearance of the feature in the

objective function Eq. 4.12. We add discriminative information derived from the local-

ization information of the training sequences into the objective function. The combined

objective function is given by

f(h1, · · · ,hn,w) = λ

n∑
i=1

‖xi−Dhi‖2 + η‖gi � hi‖2 +
n∑
i=1

(w � ai)
Thi + γwTw (4.25)

s.t 1Tw ≤ µ, cThi = 1, hi > 0, w > 0, ∀i
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where hi ∈ Rk are the coefficients that indicate the local weight of the training samples.

The term ‖xi −Dhi‖2 and the term ‖gi � hi‖2 corresponds to the reconstruction error

and the locality constraint as described in Eq. 4.12 and the term (w� ai)
Thi is a linear

function of the probabilistic Hough votes. The discriminative votemaps ai is computed

from the Hough voting spaces of the training sequence as described in Eq. 4.23 and

Eq. 4.24. The last term is a regularization term used to compute weights. Although

l1 norm is popularly used to impose sparseness constraints, we obtain sparse weight

vector using l2 norm similar to the approaches in [21,79] that have an objective function

similar to SVM [19]. The LLC objective function in Eq. 4.12 imposes the constraint

1Thi = 1 which forces all k codewords to contribute for the reconstruction of xi whereas

the objective function in Eq. 4.25 uses only those nearest codewords that are within a

certain distance from the feature to reconstruct xi. The value of c is given by Eq. 4.15.

The constraints cThi = 1 and hi > 0 ensures that c�hi is a valid probability distribution,

w > 0 imposes positivity constraints on the weights. In addition we also add a constraint

on the global weights 1Tw ≤ µ to handle scaling. Solving for hi in Eq. 4.25 yields a

sparse coefficient vector with significant weights for the local codewords. Hence similar

to the approach in [118], we select q nearest codewords for the data vector xi and solve

a smaller system of equations. Then objective function can be rewritten as

f(h1, · · · ,hn,w) = λ
n∑
i=1

‖xi−Dihi‖2 +
n∑
i=1

(w � ai)
Thi + γwTw (4.26)

s.t 1Tw ≤ µ, cThi = 1, hi > 0, w > 0, ∀i

where Di ∈ Rm×q is a subset of the whole dictionary D containing q nearest neighbors

to the data vector xi and hi ∈ Rq. This modification also results in significant reduction

in the computational complexity since q � k. The constants λ and γ are the weights for

the reconstruction error term and the regularization term. The values these constants

can be chosen using the cross-validation. Note that the cost function in Eq. 4.26 is non-

convex w.r.to the variables w and hi and hence cannot be solved together. In order to

optimize the cost function in Eq. 4.26, we follow an alternating optimization procedure.

More precisely, we solve for one of the unknown parameter w and hi by keeping the

other parameter fixed. The training procedure of the proposed method is as shown in

Fig. 4.10.
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4.5.1. Solving for hi and w

We first solve for the coefficients hi by keeping the weights w fixed. The cost function

in Eq. 4.26 reduces to

ĥi = arg min
hi

λ‖xi −Dihi‖2+(w � ai)
Thi (4.27)

s.t cThi = 1, hi > 0, ∀i

Since the global weights w are fixed, the third term vanishes. As the local features are in-

dependent of each other, we solve for each coefficients hi separately with the constraints

that the coefficients should be positive and should sum to one. These constraints are

imposed to ensure that the coefficients hi is equivalent to p(Dj|xi). The global weights

w and the discriminative votemaps ai can be assumed to be independent of the coeffi-

cients hi. Thus Eq. 4.27 is quadratic with respect to hi and hence can be solved using a

conventional quadratic solvers [123]. After obtaining the local weights hi from Eq. 4.27,

Extract
Local 

features

Compute 
KNN 

Compute
Discriminative 

Votemaps

ai=1…N

Compute 
local 

weights

hi=1…N

Quadratic
Programming {D,w}
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(D)

Figure 4.10.: Pipeline for training: During training, a codebook and the weights for the votes
from the codeword are learned. Initially a codebook is learned from the local
features using an unsupervised clustering algorithm. This codebook is used to
compute local weights for each feature. The feature then votes for the Hough
space of the sequence using the local codewords and this Hough space is used
to compute discriminative votemaps for each feature. Finally the local weights
and the discriminative votemaps are employed to compute global weights.

we compute the discriminative votemaps for the training features by carrying out the

voting procedure and aggregating the votes from the Hough spaces of the training se-

quences. we then solve for the global weights w by keeping hi fixed. The cost function
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in Eq. 4.26 reduces to

ŵ = arg min
w

n∑
i=1

(hi � ai)
Tw+γwTw (4.28)

s.t 1Tw ≤ µ, w > 0

The Eq. 4.28 is quadratic with respect w and a conventional quadratic solvers [123] can

be used to compute w.

4.5.2. Action Localization

The aim of this work is to spatio-temporally localize instances of actions in video se-

quences, i.e., to predict the location of the object and also the start and end of the action.

The Fig. 4.11 shows the overview of the system. To achieve this, we follow the spatio-

Figure 4.11.: Overview of the system: The spatio-temporal descriptors extracted from the
video sequence use the codebook to vote for the spatio-temporal center (green
arrows) and start and end (red arrows) of the action
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temporal Hough voting framework similar to [87]. During training, we detect salient

points in video sequences using spatio-temporal interest point detectors and extract de-

scriptors at these interest point locations. In order to capture the actions at different

sizes and speed, descriptors are extracted at different spatial and temporal scales at the

interest point locations. A codebook is created from these descriptors using k-means

algorithm. The codewords are then compared against each of the training descriptors.

If the codeword is matched to a descriptor, then the codeword records the information

about the descriptors such as the relative location and scale. Let (l, f) denote the spatial

location and frame number (temporal location) at which a descriptor was detected, σ, τ

denote the detected spatial and temporal scales respectively. If a feature is matched to

a codeword, then the codeword records the relative spatial location lm = l − lc, relative

temporal locations, fsm = f − fs, fem = f − fe and the spatial, temporal scales σm, τm

respectively where lc is the spatial centre of the object and fs, fe denote the start and

end frame of the action respectively.

Algorithm 4: Algorithm for the proposed framework

input : X, λ, l, γ
output: D,w
begin

S1 : Compute Codebook (D) using k-means algorithm
S2 : Compare the codewords against each feature and store the relative

location of the feature with respect to spatio-temporal centre
S3 : Compute au for all the training features using Eq. 4.29
S4 : Compute local weights hi for all the training features using Eq. 4.27
S5 : Compute the global weights w using Eq. 4.28

end

The codebook is used to compute the discriminative votemaps for a feature in the

training set using Eq. 4.24 , i.e., the discriminative votemaps are computed by accumu-

lating the votes casted by the feature in the Hough space and computing the difference

of votes at the foreground and background. Since we are interested in predicting the

spatial center, start and end (frame) of the action, we need three Hough spaces, i.e.,

a 2D Hough space to accumulate the votes for spatial center, two 1D Hough spaces to

accumulate the votes for start frame and end frame. In order to give equal weights to

the Hough spaces, we compute the discriminative votemaps for each of the Hough spaces

and add them together. Let lc, fs, fe denote the spatial centre which corresponds to the

center of the human (or bounding box containing the human), start and end frame of a

sequence in the training set respectively. let Lc, Fs, Fe denote bins around the centres of
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the Hough spaces. For uth feature from the sequence, we have,

acu =

(∑
y/∈Lc

bu(y)−
∑
y∈Lc

bu(y)

)

asu =

(∑
y/∈Fs

bu(y)−
∑
y∈Fs

bu(y)

)

aeu =

(∑
y/∈Le

bu(y)−
∑
y∈Le

bu(y)

)
and the discriminative votemap for the uth feature, au is computed as

au = acu + asu + aeu (4.29)

During training, a feature detected at a location (lt, ft) votes to the spatial location

l = lt −
σt
σm

lm and the start frame fst = ft −
τt
τm
fsm, end frame fet = ft −

τt
τm
fem where

σt, τt denote the spatial and temporal scales of the detected descriptor. Then the local

weights hi for each of the training features are computed using Eq. 4.27. The computed

local weights are then used to compute the global weights w using Eq. 4.28. The training

algorithm is summarized Algorithm 4.

During testing, a test feature xt is compared against the codebook and q nearest

codewords are selected. The local weights for these codewords are computed by solving

for ht,

ĥt = arg min
ht

‖xt −Dtht‖2 (4.30)

s.t cTht = 1, ht > 0

where Dt ∈ Rm×q contains q nearest codewords of xt. Only those codewords for which

d(Dt,xt) < κ cast weighted votes (weighted by the global weights) to the spatio-temporal

location of the action in the Hough space and also to the start and end frame of the

action. The maxima of the Hough space is computed using Meanshift algorithm [24].

The overall procedure for testing is shown in Fig. 4.12.
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Figure 4.12.: Pipeline for testing: The local features extracted using interest point detec-
tors are compared with the codebook. The nearest matching codewords and
the corresponding local weights are computed for each feature. The nearest
codewords are used by the feature to cast votes that are weighted by the local
weights. These probabilistic votes are further weighted by the global weights
computed during training. Finally a mean-shift algorithm is employed to detect
the peaks in the Hough space which corresponds to the hypothesis

4.6. Experimental Results

In this section, we demonstrate the performance of the proposed dictionary weighting

approach on a subset of KTH action dataset [101] and CMU action dataset [49]. The

term action refers to a simple dynamic pattern by a human over a short duration of time.

For our experiments, we consider a single repetition of an activity as an action instance

.e.g . pickup, handwave. In this work, we only consider still actions for the evaluation of

the algorithm.

We set the value of nearest neighbors, l = 20 for our experiments. The weighting

for the reconstruction error λ and the regularization term γ are chosen in the range of

10 ≤ λ ≤ 300 and 10 ≤ γ ≤ 300 respectively for our experiments. During training,

we generate a dictionary for each action separately by using the features extracted from

the training sequences. The number of codewords (size of the dictionary) is chosen

empirically according to the rule ≈ n/4 where n is the number of features used to train

the dictionary. We can also use cross-validation to compute the size of the dictionary.

During testing, the test video is matched against all the dictionaries and the output

Hough spaces are generated for all the categories. Subsequently the category of the

hypothesis is chosen as the the Hough space containing maximum Hough response. For

validation, a detection is considered correct if the detected action label is same as the

ground truth action label and the volumetric overlap is greater than 50%, i.e., the

intersection to union ratio of the hypothesis and the ground truth is greater than 0.5,
(V ∩G)
(V ∪G)

> 0.5 where V is the hypothesis and G is the groundtruth.
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Figure 4.13.: Effect of λ on the detection performance (a) the precision recall curves for
various values of λ. A good performance is observed for λ = 50. (b) The
average precision values for various values of λ. The detector performance
degrades for very high and low values of λ.
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Figure 4.14.: Effect of the parameter γ on the detection performance (a) the precision recall
curves for various values of γ. (b) The average precision values vs γ. The
detector performance degrades for low values of γ.

4.6.1. Effect of the Parameters λ and γ

The purpose of the experiment is to demonstrate the effect of the parameters λ and

γ on the detection result. We employ the videos from the Boxing category of KTH

dataset for this experiment. We divide the videos into three non-overlapping sets and

use two sets for training and the one set for testing. We repeat the test three times
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such that each video set is tested once and report the average performance. We first

demonstrate the effect of the parameter λ on the performance of the algorithm. It can

be observed from Eq. 4.26 that the parameter λ acts as a weight to the reconstruction

error term. Fig. 4.13.a shows the precision-recall curves for three different values of λ.

From the figure we observe that the detector performs well for λ = 50. Fig. 4.13.b shows

the average precision values for various values of λ. For low values of λ the weight on

the reconstruction error term is low. This leads to non-optimal reconstruction of the

input data and hence degrades the performance of the detector. For high values of λ,

the first term in Eq. 4.26 becomes dominant and the discriminative term (second term)

computed from the localization information of the training images does not contribute

to the objective function. Thus the performance of the detector is similar to the ISM

which uses a generative model for the detection task. From the graph, it is also evident

that the values of λ in the range 10 ≤ λ ≤ 300 are optimal for detection.

We next demonstrate the influence of the parameter γ on the detection performance.

The parameter γ is the weighting for the term wTw in Eq. 4.26. It can be seen from

Fig. 4.14.a that the detector gives a similar performance for high values of γ but poor

performance for low value (γ = 0.01). Fig. 4.14 shows the graph for average precision

vs γ. The significant decrease in the detector performance at low values of γ is due to

the constraint 1Tw ≤ µ because the low values of γ causes w to take higher values in

Eq. 4.28 but the above constraint restricts the values of w. For higher values γ, the w

scales by a constant factor and hence the performance of the detector remains same.

4.6.2. Comparison to the Baseline and State-of-the-art

KTH dataset: In this section, we compare our method with the baseline line method,

ISM [60] on the KTH dataset. We use a subset of the KTH dataset (actions where

the human subject is stationary) for the evaluation. The KTH subset for this experi-

ment consists of 25 subjects in four scenarios performing three actions (box, handclap,

handwave). Each video consists of a single action. Among 25 videos, we use 16 for

training and remaining 9 for testing. This procedure is repeated three times such that

all the videos are tested atleast once and we report the averaged values. For training,

we use a subset of the action instances from each class of the training video sequences

and extract HOG and HOF features [54] (dimension=162) at the interest point detected

using Harris3D detector [54]. We use k-means algorithm to generate the dictionary.

The precision and recall are computed using the relation Precision = TP/(TP + FP ),
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Figure 4.15.: Precision-Recall curves for three actions of the KTH dataset: a) Boxing, b)
Handclapping and c) Handwaving. The blue curve shows the recall for the
baseline method [60] and the green curve shows the performance of the pro-
posed algorithm.

Recall = TP/nT where TP is the the number of true positives, FP is the number of

false positives and nT is the total number of positive instances in the test dataset [27].

Please note that FP also includes the undetected actions. The groundtruth data was

obtained using hand annotated bounding boxes for selected frames of the video and

the annotations for the intermediate frames were obtained using linear interpolation.

We compare our results with the Implicit Shape Model [60] that uses the codebook

constructed using the k-means algorithm.

Fig. 4.15 shows the Precision-Recall curves for boxing, handclapping and handwaving

actions of the KTH dataset. The methods are trained on the training part of the

dataset and validated on the testing part of the each fold. Fig. 4.15(a) shows the

precision-recall curves for the Boxing action. It is evident from the figure that our
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Figure 4.16.: Precision-Recall curves for five actions of the CMU dataset: a) pickup, b)
one hand wave, c) jumping jacks d) two hand wave and e) push button. The
magenta, red and blue curves correspond to the algorithms in [15], [49] and [27]
(as published in [49] and [27]). The green curve shows the performance of the
proposed approach

method significantly outperform the baseline method at all precision rates. For action

handclapping Fig. 4.15(b), the performance of algorithm is similar to the baseline method

and for handwaving Fig. 4.15(c), the our method marginally outperforms the the ISM.
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Table 4.1.: Average Precision values for Three actions of KTH dataset

Action/Method ISM [60] Proposed

Boxing 0.40 0.59

Handclap 0.85 0.84

Handwave 0.94 0.97

Avg 0.73 0.80

The average precision for the actions are show in Table 4.1. From the table, we see

that our method (59%) significantly outperform the baseline algorithm (40%) for the

action boxing. For handclapping, the average precision for the proposed method (84%)

is slightly lower than the baseline (85%) and for handwaving, the proposed method

obtains 3% improvement in the average precision compared to [60]. Overall, the mean

average precision values for our method is 7% better than the baseline method.

CMU dataset: We now compare the performance of the proposed method with

the state-of-the-art methods [49], [15], [27] on the CMU dataset [49]. We divide each

action category into two non-overlapping sets, train the model on one of the sets and

test the model on the other. This is repeated such that all videos are tested once. For

training, we construct a k-means codebook by the features extracted from the training

set using the HOG and HOF features.

Table 4.2.: Average Precision values for CMU dataset

Action/Method [15] [49] [27] Proposed

pick up 0.09 0.46 0.9 0.89

one hand wave 0.01 0.28 0.52 0.17

jumping jacks 0.14 0.21 0.55 0.84

two hand wave 0.29 0.57 0.37 0.40

push button 0.1 0.45 0.74 0.74

Average 0.13 0.4 0.61 0.60

Fig. 4.16 shows the precision-recall curves for five actions of the CMU dataset. The

green curve shows the recall for our method whereas the magenta, red and blue curves

show the recall for [15], [49] and [27] respectively. For the actions pick up [Fig. 4.16(a)]

and push button [Fig. 4.16(e)] our method is similar to the state-of-the-art at high

precision rates. Our method outperforms all the others algorithms for the action jumping
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jacks [Fig. 4.16(c)]. The reduction in the performance of the proposed method for the

action two hand wave [Fig. 4.16(d)] is due to the confusion with the action jumping

jacks. We also see a drop in the performance of the action one hand wave [Fig. 4.16(b)]

as the action contains significantly less number of features at the location of the action

as compared to the background. Table 4.2 compares the average precision values for

the proposed method with the other algorithms. From the values it is evident that

the proposed method has a similar average precision values (≈ 90% and 74% ) for

the actions pick up and push button and also we can note that the proposed method

has significantly higher average precision (84%) compared to the state-of-the-art (55%).

Overall the proposed method (60%) performs better than the algorithms in [15] (13%)

and [49] (40%) and on par with the algorithm in [27] (61%).

4.7. Conclusions

In this chapter, we presented an action detection algorithm based on a codebook gen-

erated using k-means algorithm. In order to overcome the limitations of the generative

model of the ISM, we introduced a discriminative approach for the voting in the ISM

where the discriminate information is obtained by the localization information of the

training sequences, i.e., we proposed a weighting approach which assigns weights for the

votes generated by the codebook. We proposed two kinds of weighting for the codebooks.

The local weights quantify the degree of matching between the codeword and the feature.

In order to compute the local weights, we employed LLC where the codes obtained using

LLC are used as the local weights. Further, we proposed a discriminative global weight-

ing scheme for the codebook that maximize the response at the spatio-temporal location

of the activity compared to background of the training set. The proposed method is

tested on a subset of the KTH dataset where it is shown that the proposed method

significantly outperforms the codebook generated using k-means algorithm. Also the

experiments on the CMU dataset shows that our algorithm performs on par with the

state-of-the-art.



Chapter 5.

Supervised Dictionary Learning for

Action Localization

5.1. Introduction

In the previous Chapter 4, we described the ISM [60] that consists of a probabilistic

generative model where the parts of the object provide evidence about the center and

scale of the object. However, it is reported in [37] that the powerful generative capa-

bilities of the ISM results in high false positives. To cope with the false positives, a

few methods have been proposed where a discriminative classifier is used along with the

generative model [37, 51, 79]. In the previous chapter 4, we proposed a discriminative

weighting for the codebook that maximizes votes at the center of the object compared

to the background. However, regardless of these efforts the codebook learning stage

is unsupervised in all of the above mentioned methods. In this chapter, we learn a

task-dependent dictionary that is adapted for the task of action localization.

The generative models have widely been used in the computer vision problems due to

its advantages such as robustness to partial occlusions, variations in viewing conditions,

intra-class variations etc. ISM is one such generative model that can provide a greater

flexibility in representing a target category. ISM employs a codebook (or dictionary)

to map a descriptor from the continuous descriptor space to a set of representative

codewords which are in-turn mapped to a set of votes in the output Hough space. Since

the local descriptors independently vote for the center of the object, the model can

interpolate between the local parts seen on different training images and hence it can

achieve a good detection results on the target category. However, this greater flexibility

85
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comes at the price of high false positive rates. This is due to the unsupervised approach

employed in learning the codebook for ISM. In order to overcome these drawbacks,

discriminative models are used in conjunction with the generative models where the

generative model generates the hypothesis which are verified by their discriminative

counterpart. But recently there has been an increasing interest in developing algorithms

that combine the advantages of the generative and discriminative models, i.e., to learn

a task dependent dictionary. In this chapter, in contrast to the ISM [60,61] which learns

the dictionary in an unsupervised manner by considering only the appearance of the

local descriptors, we incorporate the localization information into the learning of the

dictionary.

Recently many methods have been proposed [17,45,55,73,75,76,92,126,135] to learn

the in a supervised manner. The methods in [17,45,76] couple the the dictionary learn-

ing and the classifier stage by incorporating the classifier information into the dictionary

learning stage. The codes in all these methods were obtained using sparse coding algo-

rithm. But the promising results in [118] where codes are learned from LLC by imposing

the locality constraint (as opposed to sparsity constraint) suggest that locality is more

important than sparsity. Inspired by this, we employ LLC to learn a supervised dic-

tionary for action detection. We employ the ISM in which the descriptors extracted at

the interest points of the video cast probabilistic votes to the spatial location and the

temporal extent of the action using an unsupervised codebook. While this unsupervised

codebook might be statistically adapted to the data but it may not be optimal for local-

ization. Since the ground truth localization information is available for the training set,

we can use this information to learn a codebook optimized for localization. We compute

the Hough voting maps for the training sequences and incorporate this information to

update the dictionary. This results in a discriminative dictionary that maximizes the

Hough voting response at the spatio-temporal location of the activity as compared to

the background. Summarizing, the main contributions of this chapter:

• We develop a framework that enables supervised learning of the dictionary for ISM,

i.e., the proposed algorithm computes the localization information from the output

space of the training sequences and this discriminative information is incorporated

into dictionary learning. This is in contrast to the ISM [60] that only uses the

appearance information of the training descriptors to learn the dictionary. To the

best of our knowledge, this is the first attempt to use the output Hough space

information for dictionary learning.
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• We employ the above framework to learn a task dependent dictionary optimized

for the localization task. More precisely, we use the localization information of the

training sequences to learn a discriminative dictionary that maximize the response

at the spatio-temporal center of the activity compared to background.

• We also extend the above approach to include the background information into

the dictionary learning. This results in a dictionary that can discriminate the

descriptors extracted at the foreground and background.

The rest of the chapter is organized as follows. In Section 5.2, we briefly describe the

Hough voting procedure. In Section 5.3, we explain the procedure for obtaining the

local, global weights for the dictionary. Section 5.4.2 describes the dictionary updation

process and we extend this model to incorporate the background into dictionary training

in Section 5.5. We discuss the experimental results in Section 5.6 and finally we conclude

in Section 5.7.

5.2. Hough Voting

As described in Section 4.2 of chapter 4 the Implicit Shape Model (ISM) proposed by

Leibe et al . [61] learns a set of codewords from the training descriptors. These codewords

map the input descriptors to a set of probabilistic votes on the Hough image. During

testing, the test patches are extracted at the interest point locations and compared

against all the codewords. The matched codewords cast probabilistic votes that are

collected in a Hough space. The mode of the Hough space corresponds to the location

of the hypothesis. Let xi denote a descriptor extracted at the location li of the input

image and let Dj denote the jth codeword. A feature xi is said to be matched to a

codeword Dj if the distance between the feature and the codeword is less than a pre-

defined threshold κ, i.e., dist(Dj,xi) < κ. Let S(O, y|xi, li) denote the Hough score for

the object O collected at location y from the feature (xi, li), i.e.,

S(O, y|xi, li) =
∑
j

p(O, y|Dj, li)p(Dj|xi) (5.1)

=
∑
j

p(y|O,Dj, li)p(O|Dj, li)p(Dj|xi) (5.2)

The first term in Eq. 5.2 indicates the probabilistic Hough vote for the object location

y from the codeword Dj and the feature xi. The second term specifies the confidence
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that the codeword Dj at location li is matched on the object O as opposed to other

objects. And the third term indicates the quality of the match between the codeword

and the patch. We proposed a dictionary weighting approach in Chapter 4 to learn

the third term using LLC and second term by considering the Hough voting space of

the training images. In this work, we present a method that employs the localization

information from the Hough voting space of the training sequences to learn a supervised

dictionary. In the first part of this chapter, we build a task-dependent dictionary by

only considering the descriptors extracted at the object location (foreground) and ignore

the descriptors extracted at the background, i.e., we update the first term in Eq. 5.1

to include the discriminative information obtained by the localization of the training

sequences. In second part of this chapter we incorporate the class information of the

training descriptors into the model which allows us to discriminate the foreground from

background and hence we update the first and the second term in Eq. 5.2.

5.3. Discriminative Voting for Localization

Generally the algorithms that use the implicit shape model [51, 61, 79, 137] use either

a codebook learned using an unsupervised algorithm or by incorporating Hough voting

scheme into the random forest framework [127]. Though the Hough forest algorithm [127]

incorporates the voting information for codebook generation, it does not consider the

resulting Hough voting space of the training sequences (at the sequence level) during

training. In this work we propose to learn an adaptive codebook for action localization

that maximizes the response of the Hough votes at the spatio-temporal location of the

activity compared to background. , i.e., we compute the contribution of votes to the

spatio-temporal location of the activity and background for each local descriptor of the

training sequences and use this information to update the dictionary as illustrated in

Fig. 5.1(b). The ISM compares the descriptor with all the codewords and all matched

codewords cast votes but in this work, similar to Chapter 4, we impose locality constraint

on the codewords , i.e., we compare the descriptor with only q nearest neighbors for

matching. We employ LLC [51, 118] to compute local weights (LLC codes) for the

matched codewords as opposed to [60,79,137] where uniform weights are assigned to the

matched codewords. This avoids the error that could occur due to hard quantization of

the codewords [17, 40]. In the following section, we briefly summarize the computation

of the local weights and the generation of discriminative votemaps discussed in chapter

4.
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5.3.1. Local Weights

The probabilistic Hough vote for an object O at a location y casted by a feature xi is

given by Eq. 5.2. The term p(Dj|xi) indicates the degree of match between the codeword

Dj and the feature xi. It can also be considered as the local weight for the votes from the

codeword Dj. Instead of assuming a uniform distribution [60] for p(Dj|xi), we proposed

LLC to compute p(Dj|xi). Let hi ∈ Rk denote the weight vector for a feature xi where

hi is computed using LLC. Further adding the constraints [51] on the weight vector ,

cThi = 1 and hi > 0 ensures that c � hi is a valid probability distribution. Thus, the

probabilistic Hough vote for an object O at a location y casted by a feature xi can be

written as

S(O, y|xi, li) =
k∑
j=1

p(O, y|Dj, li)hij = bTi (y)hi (5.3)

where bi(y) ∈ Rk is a vector with entries

bji (y) =

 1
|Dj | if dist(Dj,xi) < κ

0 otherwise
(5.4)

here bi(y) is the vote map for the ith feature and |Dj| is the number of features that are

matched to the jth codeword during training.

5.3.2. Discriminative Vote Maps

In this section, we discuss the generation of discriminative vote maps [51] for each feature.

In order to have a good localization, the hough space response at the spatio-temporal

center of the action should be high compared to the other locations (background). Since

the location of the center, spatio-temporal extent of the actions are available during

training, we can incorporate these information into the learning of the dictionary. This

enables us to adaptively learn a dictionary that maximize the response at the center of

the action compared to background. Let S(y) denote the probabilistic Hough votes at

a location y of the Hough space of a sequence. Let Yc denote a small area around the

center location of the sequence as shown in Fig. 4.8. The objective is to maximize the

votes at the centre compared to other locations, which is equivalent to maximizing the
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quantity (∑
y∈Yc

S(y)−
∑
y/∈Yc

S(y)

)
(5.5)

where the first term represents sum of the votes at an area around the center and the

second term indicates the votes at the background. This is equivalent to minimizing the

quantity (∑
y/∈Yc

S(y)−
∑
y∈Yc

S(y)

)
(5.6)

=

(∑
y/∈Yc

bTi (y)hi −
∑
y∈Yc

bTi (y)hi

)
= aTi hi (5.7)

where

ai =
(∑
y/∈Yc

bi(y)−
∑
y∈Yc

bi(y)
)

(5.8)

denote the discriminative vote map for the ith feature xi. For each feature in the training

set, we accumulate the votes at the Hough space of the sequence to which it belongs and

compute discriminative vote maps as described in Eq. 5.8. Note that the vote maps bi in

Eq. 5.4 computes the un-weighted votes from the matched codewords at any location y

of the sequence whereas the discriminative votes maps in Eq. 5.8 computes the difference

of un-weighted votes from matched codewords at the object and background.

5.4. Dictionary Learning

In this section, we describe the procedure for updating the dictionary. The combined

objective function is given by

f(D,hi) =
n∑
i=1

‖xi −Dhi‖2+η‖gi � hi‖2 + λ
n∑
i=1

aTi hi (5.9)

s.t cThi = 1, hi > 0 ∀i

where hi ∈ Rk are the coefficients that indicate the local weight for the training samples.

The term ‖xi −Dhi‖2 and ‖gi � hi‖2 corresponds to the reconstruction error and the
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(a)

(b)

Figure 5.1.: a) General approach: The codebook is generated in an unsupervised way without
considering the localization information of the training sequences. b) Proposed
Supervised approach which considers the localization information of the train-
ing sequences in the codebook generation process. Each training feature votes
for the spatial center, start and end of the action which are collected in the
respective Hough voting spaces. The discriminative vote map for each feature
is generated as the sum of votes at the background (as represented by yellow) -
the sum of votes at (or small bin around) the center represented by green. The
discriminative localization information from three different voting maps of the
training sequences are combined and supplied as input to the codebook

locality constraint as described in Eq. 4.12 and the term
∑n

i=1 aTi hi is a linear function
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of the probabilistic Hough votes. The discriminative vote maps ai is pre-computed from

the Hough voting spaces of the training sequence as described in Eq. 5.6. The parameter

c ∈ Rk is given by

cj =

 1 if dist(Dj,xi) < κ

0 otherwise
(5.10)

The constraints cThi = 1 and hi > 0 ensures that c�hi is a valid probability distribution.

Note that the vector 1 used as the constraint in [118] is replaced by c in this work. This

is because the constraint 1Thi forces hi to have non zero weights for the un-matched

codewords which is inconsistent with the Hough voting. Also note that the cost function

in Eq. 4.25 is a function of the local weight hi and the global weight w since the algorithm

does not update the dictionary whereas the objective function in this work (Eq. 5.9) is

a function of the dictionary D and hi.

Solving for hi in Eq. 5.9 yields a coefficient vector with significant weights for the local

codewords. Hence similar to the approach in [118], we can select q nearest codewords for

the data vector xi and solve a smaller system of equations. Then the objective function

can be rewritten as

f(D,hi) =
n∑
i=1

‖xi−Dihi‖2 + λ
n∑
i=1

aTi hi (5.11)

s.t cThi = 1, hi > 0 ∀i

where Di ∈ Rm×q is a subset of the complete dictionary D that contains q nearest

codewords to the data vector xi, hi ∈ Rq and ai ∈ Rq are the coefficient vector and the

discriminative vote maps for the feature xi respectively. This modification also results

in significant reduction in the computational complexity since q � k. Note that the cost

function in Eq. 5.11 is non-convex w.r.t the D and hi. In order to optimize it, we follow

an alternating optimization procedure. More precisely, we solve for one of the unknown

parameter D and hi while keeping the other parameter fixed.
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5.4.1. Solving for hi

We first solve for the coefficients hi by keeping the dictionary fixed [51]. When Di is

fixed the cost function in Eq. 5.11 can be solved as

ĥi = arg min
hi

‖xi −Dihi‖2 + λaTi hi (5.12)

s.t cThi = 1, hi > 0, ∀i

, i.e., we solve for each hi separately with the constraints that the coefficients should

be positive and should sum to one. These constraints are imposed to ensure that the

coefficients hi model p(Di
j|xi). Eq. 5.12 is quadratic with respect to hi and hence can

be solved using a conventional quadratic solver.

5.4.2. Dictionary Update

The approaches in [17, 76] incorporate the discriminative information into dictionary

learning by introducing classification cost into the objective function. In contrast, we

use the localization information of the training sequences computed using discriminative

vote maps to update the dictionary. We solve for D by keeping the coefficients computed

in Eq. 5.12 fixed. Note that ai ∈ Rl is a function of bi which in turn is a function of the

dictionary D as given in Eq. 5.4. Thus the jth element of the vector denoted by aji is a

function of the term |Dj|, which indicates the total number of descriptors matched to

the jth column of D during training. We model the count of offsets for each codeword

using the sum of sigmoid functions. From Eq. 5.4,

bji =
L(xij)

Q(Dj)
, where Q(Dj) =

n∑
i=1

L(xij) (5.13)

the term Q(Dj) approximates the count of offsets |Dj| in Eq. 5.4 and

L(xij) =

[
1 + exp

(
dist(Dj,xi)− κ

σ

)]−1
(5.14)

is the sigmoid function which assigns a value ≈ 1
|Dj | to bji only if the feature xi matches

with the jth codeword Dj. dist(Dj,xi) computes the distance between the input data

vector xi and the jth codeword Dj. For each input descriptor we only consider a subset

of the nearest codewords Di as the dictionary, and update the subset Di instead of the
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whole dictionary D. The cost function in Eq. 5.11 is non-convex function w.r.t Di. We

can use either batch methods such as batch gradient descent or the on-line methods

such as stochastic gradient descent [16]. From the experiments we noticed that the

batch methods converges slowly as compared to the on-line methods. Hence we use the

stochastic gradient descent algorithm which takes a sample at random, computes the

coefficients and updates the dictionary at each iteration. The derivative of Eq. 5.11 for

a single sample w.r.t Di is given by

∂f

∂Di
= −2(xi −Dihi)h

T
i + λ

∂

∂Di
(aTi hi) (5.15)

where the first term is the derivative of the reconstruction error and the second term is

the derivative of the discriminative votemaps.

Computation of ∂
∂D

(aTi hi): Similar to the approach in chapter 4, we use a hough

voting framework for action detection where the descriptor extracted at the interest

point detectors vote for the center of the action as well as the start and end frame of

the action as shown in Fig. 4.11. This results in three Hough spaces as described in

Section 4.5.2, one for accumulating the spatial votes and two for accumulating temporal

votes. We employ discriminative information extracted from all these spaces and to

learn the dictionary. Let lc, fs, fe denote the spatial centre, start and end frame of a

sequence in the training set respectively. let Lc, Fs, Fe denote bins around these centres

as shown in Fig. 4.8. If xi is a feature from the sequence, then the discriminative voting

maps are given by

aci =
(∑
y/∈Lc

bi(y)−
∑
y∈Lc

bi(y)
)

(5.16)

asi =
(∑
y/∈Fs

bi(y)−
∑
y∈Fs

bi(y)
)

(5.17)

aei =
(∑
y/∈Le

bi(y)−
∑
y∈Le

bi(y)
)
. (5.18)

where aci, asi and aei represent the discriminative votemaps for the spatial, start and

end Hough spaces and the combined vote map is computed as

ai = aci + asi + aei (5.19)

If the feature xi is matched to the codeword Dj, then the feature uses the offsets recorded

at Dj to cast votes. The discriminative votemaps in Eq. 5.8 represent the difference
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between the fraction of votes at the background and the foreground. Let |Di
j| represent

the number of offsets at Dj and let nc, ns and ne represent the number of votes inside

the bins Lc, Fs and Fe respectively. Then the fraction of votes inside the bins is given

by nc
|Di

j |
, ns
|Di

j |
and ne

|Di
j |

respectively. From Eq. 5.8 and Eq. 5.13, the jth term of aci can be

computed as

ajci =

[(
1− nc
|Di

j|

)
−
(
nc
|Di

j|

)]
L(xij) (5.20)

where the term 1− nc
|Di

j |
indicates the fraction of votes at the background. Substituting

Eq. 5.20 in Eq. 5.19, we get,

aji =

[(
1− nc
|Di

j|
− nc
|Di

j|

)
+

(
1− ns
|Di

j|
− ns
|Di

j|

)
+

(
1− ne
|Di

j|
− ne
|Di

j|

)]
L(xij) (5.21)

=

[
3− 2

(
nc + ns + ne
|Di

j|

)]
L(xij) (5.22)

During training, |Di
j| is approximated using Q(Di

j). Hence replacing |Di
j| by Q(Di

j) in

Eq. 5.21, we see that aji is a product of functions of Di
j and this derivative can be solved

using the product rule which also requires the derivative of 1
Q(Di

j)
. The codewords are

computed from the input descriptors and hence can be assumed to be independent of

each other. This assumption enables us to treat the columns of Di independent and

compute derivative w.r.t each column of Di separately, i.e.,

∂(aTi hi)

∂Di
=

[
∂(a1ih

1
i )

∂Di
1

· · · ∂(aqih
q
i )

∂Di
q

]
(5.23)

where azi , h
z
i represent the zth terms of the vectors ai and hi respectively and Di

z repre-

sents the zth column of the dictionary Di. We can substitute the value of aji in Eq. 5.21

and use the derivatives

∂

∂Di
j

(
1

Q(Di
j)

)
=

2

σ[Q(Di
j)]

2

n∑
i=1

L(xi)[1− L(xi)](D
i
j − xi) (5.24)

∂

∂Di
j

(
L(xij)

)
=

2

σ
L(xij)

[
L(xij)− 1

]
(Di

j − xi) (5.25)

to compute the derivative of the second term in Eq. 5.15. We use the Euclidean distance

for the function dist in Eq. 5.14. The dictionary is finally updated using stochastic
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gradient descent,

Dt+1 ← Dt − γ√
t

∂f

∂D
(5.26)

where the derivative is computed using Eq. 5.15. The parameters t and γ represent the

iteration index and the learning rate respectively. The D thus obtained is projected onto

the unit circle. In our implementation, we select q nearest codewords for a feature xi at

each iteration, compute the coefficients hi, and then update the corresponding columns

of D using hi.

Algorithm 5: Algorithm for the proposed framework

input : X, Dinit, MAXITER, λ, σ, l, γ
output: D
begin

D = Dinit;
repeat

S1 : Randomly select a sample xi from X
S2 : Compute q nearest codewords (nn) to the sample xi and form a local

dictionary Di with these codewords , i.e., Di = D(:, nn)
S3 : Solve for the coefficients hi using Eq. 5.12
S4 : Compute the derivative of Di using Eq. 5.15 and Eq. 5.24.
S5 : Update the dictionary using Eq. 5.26.
S6 : Project Di onto the unit circle, Di ← Di/‖Di‖2
S7 : Update corresponding columns of the dictionary, D(:, nn) = Di

S8 : Compare each sample with the updated codewords and recompute the
offsets for each updated codewords.
S9 : Compute the discriminative vote maps ai using updated dictionary

until iter ≤MAXITER or convergence;

end

5.4.3. Implementation

In this section, we briefly describe the detection process employed in our work. The

goal of our work is to spatio-temporally localize instances of actions in video sequences,

i.e., to predict the center and temporal extent of the action. To achieve this we follow,

the spatio-temporal Hough voting framework described in the Section 4.5.2 of chapter

4. In order to extract descriptors at salient points from the training video sequences,

spatio-temporal interest point detectors are applied on the training sequences and the
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descriptors are extracted at the detected salient points. To handle the actions at dif-

ferent sizes and speed, descriptors are extracted at different spatial and temporal scales

at the interest point locations. An initial codebook is created from these descriptors

using k-means algorithm. The codewords are then compared against each of the train-

ing descriptors and the relative location of matched descriptors are stored. We next

incorporate the discriminative localization information into the dictionary by randomly

selecting the descriptors from the training set and updating the dictionary, i.e., for the

randomly chosen descriptor of the training sequence we compute the local weights us-

ing Eq. 5.12. we then compute the discriminative votemaps using Eq. 5.21 and update

the dictionary using Eq. 5.26. This procedure is repeated until convergence. The steps

involved in training the algorithm is summarized in Algorithm 5.

During testing, a test feature xt is compared against the codebook and q nearest

codewords are selected. The local weights for these codewords are computed by solving

for ht,

ĥt = arg min
ht

‖xt −Dtht‖2 s.t cTht = 1, ht > 0 (5.27)

where Dt ∈ Rm×l contains q nearest codewords of xt. Only those codewords for which

dist(Dt,xt) < κ cast weighted votes to the spatio-temporal location of the action in the

Hough space and also to the start and end frame of the action. The maxima of the

Hough space is computed using Meanshift algorithm [24].

5.5. Background Modelling

In the previous sections, we used the ISM without considering the class information of the

descriptors or we have trained the model by only considering the descriptors extracted

from the foreground. Thus we have ignored the second term p(O|Dj, li) in Eq. 5.2 that

specifies the confidence with which the codeword Dj votes for class O as opposed to

other classes. It can also be viewed as a weight for the votes from the codeword Dj.

The objective is to assign high weights for the votes from the foreground descriptors and

suppress the votes from the background descriptors. Learning the weights p(O|Dj, li)

allows us to model the background and discriminate the descriptors extracted at the

background from the foreground. It is shown in [79] that the performance of the ISM



Supervised Dictionary Learning for Action Localization 98

can be improved by learning the weights p(O|Dj, li). In this section, we extend the ISM

described in previous sections to learn the weights for the codewords.

5.5.1. Computation of Discriminative Votemaps

The Hough score for an object O collected at location y from the feature (xi, li) is given

by Eq. 5.2. The weight p(O|Dj, li) can be computed as

p(O|Dj) =

|nO|
|nOtr|∑

∀c∈C

|nc|
|nctr|

(5.28)

where |nc| is the number of votes to the object c from the codeword Dj, |nctr| is the

total number of features used to learn the class c. Incorporating the weights into the

computation of discriminative vote maps in Eq. 5.21, the quantity we need to minimize

is, (∑
y/∈Yc

(
w � bi(y)

)T
hi −

∑
y∈Yc

(
w � bi(y)

)T
hi

)
= (w � ai)

Thi (5.29)

where each entry of the weight vector w is given by wj = p(O|Dj) can be computed

using Eq. 5.28 and ai is computed as in Eq. 5.8. The coefficients for the input descriptors

are obtained by fixing the dictionary D and incorporating the weighted vote maps,

ĥi = arg min
hi

‖xi −Dihi‖2 + λ(wi � ai)
Thi (5.30)

s.t cThi = 1, hi > 0, ∀i

where wi ∈ Rl are the weights corresponding to the nearest codewords of the the de-

scriptor xi.

5.5.2. Updating Dictionary

The inclusion of the weights for the discriminative vote maps in Eq. 5.30 changes the

dictionary update process described in Section 5.4.2 as the weights given by p(O|Dj) is



Supervised Dictionary Learning for Action Localization 99

a function of the dictionary. Hence Eq. 5.15 can be re-written as

∂f

∂Di
= −2(xi −Dihi)h

T
i + λ

∂

∂Di

(
(wi � ai)

Thi
)

(5.31)

Following the assumption made in Section 5.4.2 that the dictionaries are independent of

each other, the second term in Eq. 5.31 can be written as

∂

∂Di

(
(wi � ai)

Thi

)
=

[
∂(a1iw

1
i h

1
i )

∂Di
1

· · · ∂(aqiw
q
ih

q
i )

∂Di
q

]
(5.32)

wzi , a
z
i are the zth elements of wi, ai and computed using wzi = p(O|Di

z) and Eq. 5.22

respectively. We compute the above derivative using product rule where the derivative

of wi is given by

∂

∂Di
j

(
wji
)

=
T1 − T2(∑

u∈{O,B}

∑
z∈u L(xzj)

|nutr|

)2 (5.33)

where

T1 =

[
1

|nOtr|

( ∑
u∈{O,B}

∑
z∈u L(xzj)

|nutr|

)(∑
z∈O

∇Dj
L(xzj)

)]

T2 =

[(∑
z∈O L(xzj)

|nOtr|

)( ∑
u∈{O,B}

∑
z∈u∇Dj

L(xzj)

|nutr|

)]

∇Dj
L(xzj) =

∂(L(xzj))

∂Di
j

is computed using Eq. 5.25. The derivative of the term azi is

computed using Eq. 5.24 and Eq. 5.25. Finally we update the dictionary using Eq. 5.26.

5.6. Experimental Results

We have employed two datasets to evaluate our algorithm. We first evaluate the algo-

rithm on a subset of KTH action dataset [101] with three actions and secondly more

challenging CMU dataset [49] with five actions. We consider the single repetition of

an activity as an action instance. During training we build a dictionary for each action

category separately. In particular, we consider two cases for the experiments. In the first

case, we only consider the descriptors extracted at the foreground (i.e., the descriptors

inside the action volume) for dictionary construction and hence the background is not

modeled. We refer to this case as Proposed-A while reporting the results . In the second
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Figure 5.2.: Sum of weighted Discriminative votemaps (
∑

aTh) vs Iterations for various
values of λ on action category boxing of the KTH dataset.

case, we learn a dictionary by extracting the descriptors both at the foreground and

the background. Hence the model can discriminate the votes from the foreground and

background. We refer to this case as Proposed-B in our experiments. For training, we

apply Harris-3d interest point detector to detect salient points in the video sequence and

extract HOG and HOF features [54] (dimension=162). We set the number of codewords

to approximately n/4 where n is the total number of training descriptors. We set nearest

neighbors q = 20 for our experiments. For a test video we extract the descriptors at the

interest points and we construct a Hough space for each action category by voting with

the corresponding dictionaries. The category that produces the highest response in the

output Hough space is considered as the action category. The localization of the action

is considered correct if the detected action label is same as the ground truth action label

and the intersection to union ratio of the hypothesis and the ground truth is greater

than 0.5, i.e., (V ∩G)
(V ∪G)

> 0.5 where V is the hypothesis and G is the ground truth.

5.6.1. Effect of Parameters Parameters λ and γ

In this section, we describe an experiment to show the effect of the parameters λ and γ

on the objective function and discriminative vote maps. During training, we note that

the objective function in Eq. 5.11 decreases and the second term which corresponds to
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Figure 5.3.: Plot for a) Objective function vs Iterations, b)
∑

aTh vs Iterations for various
values of γ.

the sum of weighted discriminative votes (sum of the response at the background - sum

of the responses at the action location) also decreases for a range of values of γ and λ.

Fig. 5.2 shows the plots for the sum of weighted discriminative votemaps (
∑

aTh)

vs iterations for different values of λ for the action boxing of the KTH dataset. As the

value of λ increases, the weight on the sum of discriminative votes (
∑

aTh) increases

and results in low
∑

aTh values. But we notice that the objective function fails to

converge for high values of λ (> 0.4). We also note that the quantity
∑

aTh decreases

with the iterations for small values of λ (< 0.09) but for higher values of λ (> 0.09),∑
aTh increases which are shown by yellow and black curves. This is due to poor

reconstruction of the descriptors (an increase in first term) which leads to poor learning

of the spatial occurrence distribution and hence the sum of discriminative votemaps.

We choose 0.04 ≤ λ ≤ 0.4 for our experiments.

Table 5.1.: Average Precision values for Three actions of KTH dataset

Action/Method ISM [60] Dictionary
weighting

Proposed-A

boxing 0.40 0.59 0.75

handclap 0.85 0.84 0.87

handwave 0.94 0.97 0.98

Avg 0.73 0.80 0.87
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Figure 5.4.: Precision-Recall curves for three actions of the KTH dataset: a) Boxing, b)
Handclapping and c) Handwaving. The red and green curves show the recall
for the baseline method [60] and the dictionary weighting approach proposed
in chapter 4, blue curve shows the performance of the proposed (Proposed-A)
algorithm. Since the KTH dataset does not contain the descriptors extracted at
the background, the results Proposed-A and Proposed-B are same

The parameter γ in Eq. 5.26 represent the learning rate for the dictionary update.

We show the effect of the parameter γ on the objective function in Eq. 5.11 and the

discriminative votemaps
∑

aTh. Fig. 5.3(a) shows the plots for the objective function

vs iterations for various values of the learning rate. For small values of γ (< 0.09), the

objective function converges slowly to a local minima. The convergence rate increases

as the value of γ increases. For high values of γ (> 0.09) the algorithm fails to converge.

This instability is due to large steps taken (large γ) while updating the dictionary. The

variation of
∑

aTh for different values of γ are shown in Fig. 5.3(b). From the figure,

we note that the quantity
∑

aTh shows a similar behavior as the objective function,
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i.e., it decreases quickly as the γ increases but the values of
∑

aTh starts to increase

at high values of γ which is shown by the yellow curve. For our experiments, we choose

the learning rate in the range 0.04 ≤ γ ≤ 0.2.

5.6.2. Comparison with Baseline and State-of-the-art

KTH Dataset: For evaluation of the algorithm on the KTH dataset, we select a

subset consisting of 25 subjects in four scenarios performing three actions (box, handclap,

handwave). Each video consists of a single action. The resolution of the video is 160×
120. We employ three-fold cross validation for evaluation, i.e., among 25 videos, we use

16 for training and remaining 9 for testing. This procedure is repeated such that all

videos are tested once. Since the video consists of a large number of cycles of similar

repeatative activity, similar to [127], we use one or two cycles of the action for training

and testing.

We learn separate dictionaries for each of the actions. The initial dictionaries are

generated using k-means algorithm. The regularization parameter λ and the learning

rate γ was selected empirically as 0.4 > λ > 0.04 and 0.2 > γ > 0.04. The parameter σ

in Eq. 5.14 was set 0.001 to have a sharp cut-off between the matched and unmatched

features.

The Precision-Recall curves for boxing, handclapping and handwaving actions of the

KTH dataset are shown in Fig. 5.4. The methods are trained on the training part of

the dataset and validated on the testing part of the each fold. The red and green curves

show the recall for the baseline method [60] and the dictionary weighting approach pro-

posed in chapter 4, blue curve shows the performance of the proposed (Proposed-A)

algorithm. Since the KTH dataset does not contain the background descriptors, the re-

sults for the two proposed algorithms Proposed-A and Proposed-B are same. Fig. 5.4(a)

shows the precision-recall curves for the Boxing action. It is evident from the figure that

the Proposed-A method significantly outperform the baseline and the dictionary weight-

ing approach at all precision rates. For action handclapping Fig. 5.4(b), the proposed

algorithm marginally performs better than the other two algorithms at lower precision

rates and for handwaving Fig. 5.4(c), the Proposed-A method performs similar to the

dictionary weighting approach and marginally outperforms the ISM. The average pre-

cision for the actions are show in Table 5.1. From the table we see that the proposed

method (75%) significantly outperform the baseline algorithm (40%) and the dictionary

weighting approach (59%) for the boxing category. For handclapping, the average pre-
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Figure 5.5.: Precision-Recall curves for five actions of the CMU dataset: a) pickup, b) one
hand wave, c) jumping jacks d) two hand wave and e) push button. The magenta,
black, red and blue curves correspond to the algorithms in [15], [49] , [27] (as
published in [49] and [27]) and chapter 4. The cyan and green curves show
the performance of the proposed approach for the dictionary learned without
background (Proposed-A) and with background (Proposed-B) respectively.

cision for the proposed method (87%) is slightly better than the other two algorithms

(85% and 84% for baseline and dictionary weighting approach) and for handwaving, the
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(a) Proposed− A (b) Proposed−B

Figure 5.6.: Some false positives and misdetections for the CMU dataset: (a) First column
shows the detected bounding boxes and the corresponding spatial Hough space
for the method Proposed−A. (b) Second column shows the detected bounding
boxes and the corresponding spatial Hough space for the method Proposed−B.
The green box shows the ground truth and the blue box shows the detected
bounding boxes

proposed method obtains 4% improvement in the average precision compared to [60].

Overall, the average of the average precision values for our method is 14% better than

the baseline method [60] and 7% better than the dictionary weighting approach.

CMU dataset: We next compare the performance of the proposed method with the

state-of-the-art methods [15], [49], [27] and the dictionary weighting approach proposed

in chapter 4 on the CMU dataset [49]. We divide each action category into two non-

overlapping sets, train the model on one of the sets and test the model on the other.
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(a) Proposed− A (b) Proposed−B

Figure 5.7.: Some detection results on CMU dataset: (a) First column shows the detected
bounding boxes and the corresponding spatial Hough space for the method
Proposed − A. (b) Second column shows the detected bounding boxes and
the corresponding spatial Hough space for the method Proposed − B. We can
see that modelling the background significantly reduces the background clutter
and increase the votes at the center location of the object
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This is repeated such that all videos are tested once. For training, we construct the

initial dictionary using k-means algorithm by extracting the features from the training

set using the HOG and HOF features.

Fig. 5.5 shows the precision-recall curves for five actions of the CMU dataset. The ma-

genta, black, red and blue curves correspond to the algorithms in [15], [49] , [27] (as pub-

lished in [49] and [27]) and chapter 4. The cyan and green curves show the performance

of the proposed approach for the dictionary learned without background (Proposed-A)

and with background (Proposed-B) respectively. For actions pick up [Fig. 5.5(a)], the

proposed (Proposed-A and Proposed-B) method performs similar to the state-of-the-

art at all precision except at low precision rates. The proposed-B method outperforms

all the others algorithms for the action jumping jacks [Fig. 5.5(c)] and push button

[Fig. 5.5(e)]. The reduction in the performance of the proposed method for the actions

one hand wave [Fig. 5.5(b)] is due to significantly less number of features at the location

of the action as compared to the background. The reduction in the performance of the

algorithm for action two hand wave [Fig. 5.5(d)] can be attributed to the confusion with

the action jumping jacks. Table 5.2 compares the average precision values for the pro-

posed method with the other algorithms. From the table, it is evident that the proposed

method (94%, 95%, 91% ) has a higher average precision values for the actions pick up,

jumping jacks and push button as compared to the state-of-the-art algorithms (90%,

55%, 74%). Overall the proposed method (70%) performs better than the algorithms

in [15] (13%), [49] (40%), [27] (61%) and the dictionary weighting approach (60%). From

Fig. 5.5 and Table 5.2 it is evident that the dictionary constructed using descriptors from

both the foreground and background (Proposed-B: 70%) performs better than the dic-

tionary constructed using only the descriptors from the foreground (Proposed-A: 66%).

Fig. 5.7 shows some detection results and the corresponding spatial Hough spaces for

the methods Proposed − A and Proposed − B. From Fig. 5.7, it is evident that the

background clutter is significantly reduced by modeling the background (Proposed−B).

Fig. 5.6 shows some false and mis-detection results on the CMU dataset.

5.7. Conclusions

In this chapter, we have introduced a novel supervised dictionary learning approach for

action detection. It uses the ISM in which the spatio-temporal descriptors extracted

from the input sequence vote for the spatio-temporal center and the start and end of
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Table 5.2.: Average Precision values for CMU dataset

Action/
Method

Flow [15] Shap +
Flow [49]

ST -
Struc-

tured [27]

Dictionary
weight-
ing [51]

Proposed-
A

Proposed-
B

pick up 0.09 0.46 0.90 0.89 0.89 0.94

one hand
wave

0.01 0.28 0.52 0.17 0.31 0.23

jumping
jacks

0.14 0.21 0.55 0.84 0.82 95

two hand
wave

0.29 0.57 0.37 0.40 0.48 0.49

push
button

0.1 0.45 0.74 0.74 0.81 0.91

Average 0.13 0.4 0.61 0.60 0.66 0.70

the action. The ISM uses a dictionary to map the input descriptors in the continuous

descriptor space to representative dictionary atoms. The descriptors use these matched

dictionary atoms to vote for the hypothesis. In this work, we employ Locality Constraint

linear Coding that assigns weights to votes from dictionary atoms based on the degree

of match between the descriptor and the dictionary atom. This is in contrast to the

ISM that assigns equal (uniform) weights. In addition, we proposed a framework that

enables us to incorporate the localization information for learning the dictionary. More

specifically, we measure the contribution of the votes from each dictionary atom to

the hypothesis and background of the training sequences and use this discriminative

information to update the dictionary. This is in contrast to the ISM that only use

the appearance information of the descriptors to learn the dictionary. The resulting

dictionary maximizes the response at the spatio-temporal center and temporal extent

of the action and hence adapted for the task of localization. In order to discriminate

the background descriptors from the foreground descriptors, we extended the proposed

model to include background information while learning the dictionary.

We tested the algorithm on the challenging CMU and a subset of the KTH datasets.

The proposed method Proposed−A outperforms the dictionary weighting method which

indicates the importance of updating the dictionary according to the subsequent task.

Furthermore, the method Proposed − B outperforms Proposed − A which shows the

advantages of learning a discriminative dictionary that can distinguish the foreground

and background descriptors.



Chapter 6.

Conclusions And Future Work

In this thesis, we have investigated supervised dictionary learning methods for action

recognition and action localization. In chapter 3, we employed NMF as a feature extrac-

tion technique for action recognition. In contrast to the traditional approaches where

the NMF stage and the classifier stage are separated, we proposed to incorporate the

discriminative information from the classifier to the learning of NMF. This is achieved

by imposing max-margin constraints on the formulation of NMF (in the linear case) or

the KNMF (in the non linear case). We converted this non-convex optimization problem

into convex subproblems by employing block coordinate descent algorithm in which we

fixed a subset of the parameters and solve for the remaining parameters. The resulting

bases maximize the margin of the classifier in the low dimensional subspace (for the

linear case) or the high dimensional feature space (for the non-linear case).

We showed experimentally that the factorization matrices and the classifier param-

eters (G, H, w) converge after few iterations indicating that the objective function is

guaranteed to converge to a local minima. We first evaluated the method on a toy

dataset which demonstrated the advantages of incorporating the supervised information

(class information) during learning of the dictionary. Furthermore, we evaluated the

performance of the algorithm on several computer vision applications such as facial ex-

pression recognition, object classification, pedestrian detection and action recognition.

In all the cases, the proposed method outperformed its unsupervised counterpart. The

KMNMF outperforms the MNMF in all the experiments, but at the cost of increased

computational power.

In the second part (Chapter 4 and Chapter 5) of the thesis, we proposed two algo-

rithms for the task of action localization. We employed a part-based object detection

technique called the ISM for action localization in which the local descriptors extracted
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from the video cast votes for the spatial center, start and end frames (temporal ex-

tent) of the action. In order to efficiently assign the local descriptors to the dictionary

atoms, we incorporated the Hough voting scheme into LLC framework which assigns

local weights for the codewords based on the degree of match between the descriptor

and the codewords. Since the dictionary is learned in an unsupervised manner using

the k-means algorithm, all the dictionary atoms may not contribute votes equally to

the hypothesis. So we introduced a weighting scheme that assigns global weights to the

dictionary atoms based on the contribution of votes to the hypothesis.

We demonstrated the effectiveness of learning weights to the dictionary through a

series of experiments. The experiments in Section 4.6.1 showed that the algorithm

approaches ISM for large values of λ and a good performance is achieved for certain range

of λ. In the subsequent sections, we compared our dictionary weighting approach with

the ISM and state-of-the-art methods. We achieved 7% improvement in the performance

compared to the ISM and on par with the state-of-the-art method.

We showed in Chapter 4 that the performance of the detector is improved by learning

weights for the dictionary atoms. However the underlying dictionary is learned using un-

supervised k-means algorithm. This motivated us to develop task dependent dictionary

for action localization (Chapter 5). This is accomplished by developing a framework

that incorporates the Hough voting information into training stage of the dictionary.

We computed discriminative votes from the output Hough space of the training images

and employ this information to learn the ISM dictionary. In this way, we learned a task

dependent (supervised) dictionary by incorporating the localization information of the

training sequences. The resultant dictionary maximize the Hough voting response at the

location of the center of the action as compared to the background. We also extended

the above approach to include the background model into dictionary learning.

We evaluated the performance of the proposed method and compared it with state-

of-the art methods in Section 5.6. The experiments showed that the objective function

reduces the sum of discriminative votes indicating that the response at the center of the

action is increased as compared to the background. In addition, we also showed that

by learning the dictionary in a supervised manner, we achieve 7% and 6% improvement

in the performance compared to the dictionary weighting approach for KTH and CMU

datasets respectively. Furthermore, the proposed method outperforms the ISM by 14%

and state-of-the-art method by 5%.
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The work in this thesis shows that the performance of the action recognition and

localization systems that use the dictionary learning algorithms can be significantly im-

proved by incorporating the supervised information while learning the dictionary. Typ-

ically, the dictionary learning algorithms employ a generic reconstruction error criterion

to learn the dictionaries from the input data. However in literature, it is shown that

such representation capabilities of the dictionary may not be optimal for the discrim-

ination between two classes. A good dictionary for the classification task should also

include the supervised information while learning the dictionary. This is evident from

the experiments in Chapter 3. Further, we have shown in Chapter 5 that when learning

a dictionary for a specific task, it is important to include the task specific information

into the dictionary learning stage so that the learned dictionary is adaptive to the task.

6.1. Future Work

We first describe the future directions for the MNMF algorithm. The non-negative con-

straints on the bases and the coefficients of NMF results in a part-based representation.

However it was showed in [23, 64] that more meaningful parts can be obtained by ex-

plicitly imposing local constraints on the bases and the coefficients. Imposing explicit

local constrains along with max-margin could result in the bases that can clearly dis-

tinguish the features belonging to different classes. But this formulation introduces two

quantities that are functions of the bases and coefficients into the objective function

making it tedious. Further, the MNMF framework described in this thesis is limited

to binary classification. An extension to multi-class problems would be interesting. It

is also interesting to develop a theoretical framework that can automatically select the

parameters used in the experiment.

We now describe the future developments for the supervised dictionary learning prob-

lem described in Chapter 5. In this work, we learn a dictionary for each of the action

classes. Since the dictionaries are learned independently, the dictionary learning may

not capture the inter-class variations. A possible direction of research could be to learn a

single dictionary for all the classes which can efficiently capture the intra and inter-class

variations. This would also reduce the number of parameters required for learning the

dictionary. Also it would be interesting to develop a theoretical framework that can

automatically select the parameters required for dictionary learning.
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Appendix A.

A Discriminative Voting Scheme for

Object Detection using Hough

Forests

In this chapter, we describe our preliminary work on object detection where we proposed

a supervised framework for learning the trees of a Hough Forest. Due to its simplicity,

versatility and speed, Random Forests have been widely used for many computer vision

tasks such as Face feature detection, object detection, pose estimation, action recognition

etc. In this chapter, we first give a brief survey of the object detection techniques. We

describe an adaptation of Random forests for object detection called Hough forests.

Further, we propose a supervised framework for Hough forest that discriminates the

object parts from the background for object detection and we finally demonstrate the

performance of the proposed algorithm using publicly available datasets.

A.1. Related Work

In this section, we discuss an overview of features and approaches employed for the task

of object detection. A local feature is an image pattern which differs from its immediate

neighborhood [113]. A local features or key points are necessary for the visual tasks

because a) they might have specific semantic interpretation pertaining to a certain ap-

plication. b) they provide a limited set of localized and individually identifiable anchor

points. c) they can be used as a set of robust image representation. The overall per-

formance of a detector also depends on the reliability, accuracy, invariance to certain
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image attributes and repeatability with which key points can be detected for a cer-

tain class. The most commonly used key point detectors are Harris edge detector [42],

Laplacian [67], Difference-of-Gaussians(DoGs) [71], Laplacian of Gaussian (LoG) [84],

Histogram of Oriented Gradients (HoG) [26], SUSAN [105], SIFT [71], SURF [10] etc.

Most of the object detection techniques follow either the sliding window approach

[26, 35, 78, 97, 99] or the Hough transform [9, 60, 62, 79] framework. Kanade et al . [97]

used sliding windows for the extraction of facial images in images. Small windows of

size 20 × 20 are extracted at different scales from the image and pre-processed before

passing through a neural-network classifier which detects whether the input window has

the face or not. In [99], the object detector consists of multiple classifiers, each spanning

a different range of orientation that predict the object in a given window of the image.

Each classifier computes the part (a transform from a subset of wavelet coefficients to

a discrete set of values) values within the local window and looks up their associated

class conditional probabilities. The classifier then uses a likelihood ratio test to make a

decision.

Dalal et al . [26] used a collection of Histogram of Oriented Gradients (HoGs) com-

puted at small spatial regions called “cells” within a detector window. A linear SVM

classifier is employed to classify the window. Ramanan et al . [35] follows a similar ap-

proach where each window consists of a root filter and several part models. Each part

model specifies a spatial model and a part filter. The spatial model defines a set of

allowed placements for a part relative to a detection window, and a deformation cost for

each placement. The score for a detection window is the score of the root filter on the

window plus the sum over parts, of the maximum over placements of that part, of the

part filter score on the resulting subwindow minus the deformation cost. HoG features

are used as descriptors for both root and part filters. In [78], histogram intersection

kernel SVM’s (IKSVM’s) are applied on multilevel features extracted from a window to

classify the window. To obtain multilevel features, a grayscale window is convolved with

eight filters oriented in different direction to obtain oriented energy responses. These

responses are then L1 normalized over all directions in each 16×16 blocks independently

to obtain normalized responses. Multilevel features are then extracted by construction

histograms of oriented gradients by summing up the normalized response in each cell.

Mohan et al . [85] used a part-based object model where a set of hand-picked parts

of the image (arms,face,legs) are learned during training. During testing, component

detectors are applied to a window of the image. The response of these component

detectors are applied to a combined classifier which predicts the window as “person”
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or “non-person”. Heisele et al . [43] followed a similar approach as [85] but instead of

hand-picked components as in [85], the algorithm learns the components automatically.

As opposed to sliding window approach which classifies the windows extracted at all

locations at different scales of the image, a part-based approach [1,60,62,79] divides the

object into patches and use the information from the parts of the object to detect the

hypothesis. Leibe et al . [60,62] introduced Implicit Shape Model (ISM) where the parts

of the object are used for detection as opposed to the sliding window approaches. During

learning, a vocabulary of visual patches called codebooks are learned using training

patches in an unsupervised manner. During testing a generalized Hough transform [9] is

used by the patches of the images to cast votes to the center of the object. In [1], a similar

ISM is used where boundary fragments (from the boundaries of the training objects) are

used instead of appearance of the patches. It also constructs a strong detector (rather

than a classifier) by boosting over a set of weak detectors built on boundary fragments.

Malik et al . [79] employed a discriminative approach by computing weighs for the votes

from the patches. The learning framework takes into account both the appearance of

the part and the spatial distribution of its position with respect to the object center and

parts which are both repeatable and occur at a consistent location are assigned higher

weights. This is accomplished using a max-margin formulation.

In this work, we use Hough forest technique [38] that uses random forests for learning

the visual codebooks for the ISM. Random forests have been used in many computer

vision problems such as classification [2], segmentation [100], object detection [38] and

so on. Most of the recent image classification techniques treat images as a collection of

patches characterized by local visual descriptors. Patches can be obtained by sampling

the images densely or at selected salient points. These patches are encoded as vectors

by extracting various features. The features can be as simple as gray level values or

can be complex features like SIFT, PHOG, SURF etc. These feature vectors are vector

quantized or clustered to form visual codebooks. Many of the methods use unsupervised

k-means for the construction of visual codebooks. For good classification performance, a

large codebook is required [38], this makes learning computationally expensive. Similarly

during testing, each feature vector is compared with all the codebooks which also is time

consuming. Further, a single data structure cannot capture the richness and diversity of

the high dimensional feature vectors [86]. All these reasons led to the use of ensemble

trees [56] for clustering which is known for its simplicity, speed and performance.

Moosmann et. al. [86] used extremely randomized trees for building fast discrimi-

native visual codebooks. Each leaf node of each tree is assigned a distinct region label
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(visual word). A histogram of labels is obtained for an image and this histogram is classi-

fied using a global SVM classifier. Lepetit et al. [63] introduced randomized trees for fast

keypoint recognition. In this method, trees are used not only for keypoint matching but

also to select two pixels in the neighborhood of keypoints which improves the matching

performance. Gall et al . [38] used Random forests for object detection where the class

as well as the spatial information of the patches are learned in a supervised manner.

The leaves of the trees form a discriminative codebook and store the spatial information

along with the class information. This spatial information encodes the location of the

center of the object and is used to cast probabilistic Hough votes to the center of the

object. Fanelli et al . [32] followed a similar Hough forest approach for the localization

of the mouth in facial images.

A.2. Hough Forests for Object Detection

Numerous approaches have been used for object detection in recent years. Among these,

the Implicit Shape Model (ISM) introduced by Leibe [60, 62] forms the basis for many

object detection algorithms that use a part-based approach. As the name suggests, the

ISM does not define an explicit model for all possible shapes of an object class but instead

define allowed shapes implicitly in terms of which local appearances are consistent with

each other. This makes the model more flexible and also the shapes can be learned

with fewer examples [60]. In this section, we describe the Hough forest technique for

object detection [38]. The overall steps involved in [38] can be summarized as shown

in Fig. A.1. . During training, the ISM learns a model of the spatial occurrence

distributions of local patches with respect to anchor points, such as the object center.

During testing, this learned model is used to cast probabilistic votes to the location of

the center of the object based on the generalized Hough transform technique [9].

A.2.1. Codebook Generation

The codebook generation is a process in the training where the patches extracted from

training samples are learned to build a vocabulary of local appearances. In [60], an

interest point detector is applied on the training images to extract features of the image.

This results in reduced amount of data to be processed as compared to uniform sampling

of the image. A patch of size 25×25 pixels is extracted around each interest point. These
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Figure A.1.: Block diagram for Training and Testing [38]

patches are grouped based on the visual appearance using a clustering algorithm. The

similarity between the patches is measured using Normalized Grayscale Correlation and

the clusters are represented by the cluster mean.

In order to reduce uncertainty due to nearest-neighbor assignment, a patch is com-

pared against all codebooks and assigned to all the “activated” codebooks. A codebook

is “activated” if the similarity between the patch and the cluster center is above a

threshold t. This also results in increased robustness of the matching process. Tradi-

tional clustering algorithms such as k-means or Agglomerative clustering can be used to

build these codebooks. The codebooks thus constructed can efficiently represent unseen

parts of the object and also more robust to partial occlusion. However the procedures

involved are highly computationally expensive. In order to efficiently model the object,

a large number of generative codebooks are required. These codebooks are generated by

applying computationally expensive clustering algorithms on a large number of train-

ing patches. Further, a patch is compared against a large number of codebooks during

testing which is time consuming. Secondly, the codebook generation process follows a

generative approach and does not utilize the class labels of the patches while training.
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Discriminative codebooks can be constructed by making use of the class labels of the

training patches.

A.2.2. Hough Forests

Gall et al . [38] introduced “Hough Forests” for object detection that learns a direct

mapping between the appearance of the patch and its Hough vote. The mapping is

accomplished within random forest framework and hence computationally efficient. Un-

like [60], the codebooks are generated in a supervised manner by considering the label

of the training patches. While Hough forests inherit the properties of general random

forests, they also posses a few additional object specific properties [38]. They are:

• The set of leaf nodes of each tree can be regarded as a discriminative codebook.

The information stored in each leaf node during training can be used to classify

whether the patch belongs to the object or not and to predict the location of the

center of the object with respect to the patch location.

• The trees are optimally constructed to reduce uncertainty in probabilistic votes

towards leaves.

• Trees are constructed in a fully supervised manner using all the supervision available

about the patch namely 1) the class label which specifies whether the patch is a

positive or negative example 2) the offset that specifies the position of the centroid

with reference to the patch.

• Similar to random forests, Hough forests can be used to train a large, high di-

mensional features without significant overfitting. For e.g ., the dimension of the

features and the size of the training set is 8192 and 50000 respectively in [38]

• Matching a patch against a tree is logarithmic in the number of leaves. Conse-

quently, the number of comparisons during testing is reduced making Hough forests

efficient at runtime. This enables a dense sampling of the input image rather than

only considering interest points.

• Hough forests can handle significant amount of noise and errors in the training

data. Thus bounding box annotated data can be used as opposed to pixel-accurate

segmentations.
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Figure A.2.: a) Three patches emphasized on a test image [38]: the patches with red and
blue are sampled from object and green from background. b) Votes casted by
these patches to the centroid of the object: votes from the object patches (red
and blue) are prominent while votes from the background patch (green) are less
prominent and scattered. c) Probabilistic Hough votes accumulated on Hough
image. d) The hypothesis is detected by seeking the local maxima in the Hough
image

Hough forests is an ensemble of random binary trees used for combined classification

and regression of the patches. Each non-leaf node of the tree consist of a binary test that

decides whether the entered patch should go to the left or right child node. This binary

test is chosen during training stage based on the training patches arrived at that node.

Based on the set of patches that ends up in a leaf node during training, a prior knowledge

about the center of the object is computed and stored. During testing, a test image patch

is passed through the trees until a leaf node is reached. A generalized Hough transform

technique uses the information gathered at the leaf node during training along with the

patch information to predict probable location of the object center. This is demonstrated

in Fig. A.2. In what follows, we describe the training and testing procedures involved

in the Hough forests technique.

Tree Construction

The computational complexity of clustering in [60] increases as the number of patches

increases whereas Random forest can handle large amount of data with less computa-

tional complexity. Hence we uniformly sample the positive and negative training images

to obtain the training patches. During training, a set of random trees are constructed

using these training patches. The Hough forests in [38] is not invariant to scale. Hence

the patches are extracted from the training images having the same object size. To

handle scale variations, the test image is applied to the algorithm at different scales



A Discriminative Voting Scheme for Object Detection using Hough
Forests 132

to obtain Hough images. Finally, a 3D meanshift algorithm is applied on these set of

Hough images to obtain local maxima which corresponds to the object location.

Figure A.3.: Tree construction [38]: At each node, two pixels of the patches are compared
and the patch is passed to one of the child nodes based on the result of the
comparison

Let F = {fj}Mj=1 denotes M feature channels of the patch P and fj ∈ RM is the feature

vector of the jth feature channel (e.g. for color images, j = 1 .. 3 are indexes to the

color components). Let us denote with c ∈ {0, 1} the class label, that is background or

foreground and d ∈ R2, the offset between the center of the bounding box and the center

of the patch. Once a tree is constructed, any patch P can be propagated through it and

end upto one of its leaves, following the path from the root to the leaves according to

a test that takes place at each node. The tree expands by performing several random

tests at each node and passing the patches to the child nodes based on the result of the

tests. The test t for a patch P is given by

t(P) =


0 if fj(p) < fj(q) + τ,

1 otherwise

(A.1)

where p, q are the coordinates of the randomly chosen indexes in the feature channel

fj, 1 ≤ j ≤M and τ is a randomly chosen threshold.

The training is performed in a supervised manner by utilizing the class label and

offset information of the patches. The leaves of the trees make following predictions

about the patches that end up in it. Firstly, the probability of the patch being an object

patch and secondly the probable locations of the center of the object in the Hough image.

In order to have a good decision about the object center with less ambiguity, the main
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focus of the tree construction is to have leaves with minimum uncertainties about the

class and offset information of the patch. Once constructed, each leaf node L stores the

class information CL and the offset information DL = {d} of the patches that end upto

it. The class information CL is the proportion of the object patches (i.e patches with

label 1) and DL is the set of offsets for the patches that end up to the leaf node. Each

non-leaf node is assigned a test by choosing the best test from a pool of tests.

Figure A.4.: a) Bounding box of the positive and negative training images [38]. b) The
offsets are clustered at the leaves thereby reducing the uncertainties in the
casted votes, the leaf node in the last column has no positive patches and hence
CL = 0. c) Patches collected at each leaf node: patches having same appearance
are grouped together

The tests are chosen such that the uncertainties in class labels and offsets are reduced

towards leaves. This is accomplished by using two measures namely the class uncertainty

Ec and the offset uncertainty Eo. The class uncertainty measure at a node N is given

by

Ec(N) = −|N |
(
CN log(CN) + (1− CN) log(1− CN)

)
(A.2)

where CN is the proportion of object patches at the node N . The offset uncertainty

measure is given by

Eo(N) =
∑

di∈DN

(di − d)2, (A.3)

where d is the mean of the offset vectors in DN . The negative patches corresponding

to the background images are ignored here. At each node, the values of p, q and τ are
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randomly chosen for each test and the patches are passed to child nodes according to

the test in Eq. A.1. The best test among the K tests is chosen as

k = arg min
k

[
E∗(N

k
l ) + E∗(N

k
r )
]

(A.4)

where Nk
l and Nk

r are the child nodes for the kth test and ∗ is chosen randomly between

c or o at each node. In general c or o is chosen with equal probability unless the

number of negative patches is less than 5% in which case node is chosen to minimize

offset uncertainty. The construction of a tree stops when either the depth of the tree

reaches Dmax or the number of patches in a node drops below a certain threshold. By

interleaving between the class uncertainty and offset uncertainty, the tree construction

procedure ensures that the patches in a leaf node have less variations in both class labels

and offsets.

A.2.3. Object Detection using Hough Forests

In this section, we describe the application of Hough forests for localization of an object.

Let W ×H be the size of the bounding box which is assumed to be fixed during training

as well as testing. Hence the parameter that describes the bounding box is the centroid

of the bounding box.

Let P (y) be a patch from the test image with center y and feature vector Fy. Let

cy(unknown variable) be the class label of the patch which specifies whether the patch lies

inside the object or not. Let E(x) denote a random event corresponding to the existence

of the object center at location x in the Hough image. The task is to determine the

probabilistic evidence p(E(x)|Fy) that a patch with appearance Fy brings about the

object center at location x. Let B(x) denote a bounding box with center x. Since we

consider only the votes from the object patches, we are interested in y ∈ B(x), i.e., the

patches within the bounding box. Hence

p
(
E(x)|Fy

)
= p
(
E(x), cy = 1|Fy

)
= (A.5)

p
(
E(x)|cy = 1,Fy

)
.p
(
cy = 1|Fy

)
=

p
(
dy = y − x|cy = 1,Fy

)
.p
(
cy = 1|Fy

)
where dy is the estimated offset for the patch P (y). The first term in Eq. A.6 corresponds

to the location of the vote and the second term specifies the confidence of the vote.
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Both the values for a patch can be computed by passing the patch through the tree

to determine the leaf node and using the information corresponding to that leaf node

computed during training.

Let us assume that the patch P (y) ends up in a leaf node L for a tree T and CL, DL

be the class and offset information for the leaf stored during training. The first term can

be computed using Parzen-window estimate based on the offset vectors DL. The second

term can be approximated by CL. Intuitively, if the patch reaches a leaf node with more

number of object patches than background (CL > 0.5), then the patch casts votes with

high confidence. For a single tree T , the probability estimate p
(
E(x)|Fy;T

)
is given by,

p

(
E(x)|Fy;Tk

)
=

[
1

|DL|
∑
d∈DL

1

2πσ2
exp

(
− ‖(y − x)− d‖2

2σ2

)]
CL (A.6)

where σ2I is the covariance of the Gaussian Parzen window.

Since the Random forests make decisions with an ensemble of trees, a similar ap-

proach is followed in Hough forests. The predictions for the location of the object

centers are gathered from all K trees by passing the patch through each tree and com-

puting the probabilistic votes p
(
E(x)|Fy;Tk

)
as given in Eq. A.6. The probabilistic vote

for the entire forest {Tk}Kk=1 is computed by averaging the probabilistic votes for the

individual trees, i.e.,

p
(
E(x)|Fy; {Tk}Kk=1

)
=

1

K

K∑
k=1

p
(
E(x)|Fy;Tk

)
(A.7)

The above Equation provides the probabilistic vote for a single patch. The combined

vote at a location x of a Hough image V is computed by accumulating the votes obtained

from all the patches within the bounding box B(x),

V (x) =
∑

y∈B(x)

p
(
E(x)|Fy; {Tk}Kk=1

)
(A.8)

The Hough image V (x) values serves as the confidence measure for the prediction

of the hypothesis. The steps mentioned in Eq. (A.6, A.7, A.8) are computationally

expensive. Instead, the Hough image can be computed by going through each pixel

location y, passing the appearance of the patch P (y) through each tree of the forest

and adding a value CL
|DL|

to all pixels at location {y − d|d ∈ DL}. This is followed by

a Gaussian filtering to obtain the final Hough image. Then a Mean shift algorithm
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Figure A.5.: Figures a,b,c and d show the Hough images obtained at different scales a) s =
1.1, b) s = 1, c) s = 0.9, d) s = 0.8, e) Input test image

is applied on the Hough image to locate the maxima which correspond to the object

hypothesis.

Since the algorithm is trained with a single scale, it can detect the objects of the

same size in the test image. To handle multiple scales, the input test image is applied to

the algorithm at multiple scales s. For each scale, the corresponding Hough image V s is

obtained. These Hough images are resized to the original size and a Gaussian filtering

is applied in the third(scale) dimension. A 3D mean shift algorithm is then employed

to find the maxima which returns the hypothesis
(
x, s, V (x)

)
. The location and size of

the bounding box for this hypothesis is given by x
s

and W
s
× H

s
.

A.3. A Discriminative Voting Scheme for Object

Detection

In this work, we propose an offset uncertainty measure that is defined on the Hough

images of the training set. This is in contrast to the Hough forest algorithms in [32,38]

that use a classical regression tree measure, namely the RSS (Residual Sum of Squares)

on the leaf nodes, to compute offset uncertainty [116]. In our method, we compute

Hough spaces for all the training images when evaluating how good the test split is.

The Hough voting spaces are incrementally constructed when building the tree by an

algorithm that has a slight overhead (10%) in comparison to the classical one. Our

objective is to discriminate the location of the object centers from the background. In
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order to achieve that we choose the test that has the maximum ratio of votes at objects’

center to votes at other locations. The main contribution of the work is a framework

for choosing an optimal test which discriminates the object from background at each

node. With this, we achieve application specific Hough forests for object detection that

can outperform the general Hough forest technique. The framework also allows us to

incorporate different evaluation criterion for training according to the desired output.

Figure A.6.: The patch P(yj) with center y from the jth training image arriving at a node N
casts votes to the jth Hough image V j(x) at locations x = y−d where d ∈ DN

The Hough forest technique for object detection [38] employs a set of trees which

basically perform two tasks namely, 1) classification: where the patches are classified

into object and non-object patches and 2) regression: which predicts the location of the

center of the object with respect to the patch. During training, the trees are constructed

to reduce the class label uncertainty (classification) and offset uncertainty (regression)

towards leaves. In this section we first discuss the construction of intermediate Hough

spaces and propose a new offset uncertainty criteria for choosing the test at a node based

on the constructed Hough spaces. The method in [38] follows a classical tree construction

approach by calculating the variance in the child nodes for the computation of the offset

uncertainty measure. This approach tends to reduce the impurity of the offset vectors

towards the leaf nodes but it does not consider the actual Hough space. Since the

object center location is known for training set images, it can be utilized to verify the

predicted object centers which in turn, can be used to evaluate the quality of the tests

during training. In this work, we propose an offset uncertainty measure by determining
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intermediate Hough spaces for training images at each node for each test and choose a

test that maximizes the ratio of the votes at the center of the objects over the votes at

other locations.

A.3.1. Computation of Intermediate Hough Spaces

The value at a pixel x of the Hough image is computed accumulating the votes from

all the patches in the original image and averaging over all the trees. To compute the

Hough image, the whole procedure needs to be repeated for all the pixels in the Hough

image, a procedure that is computationally expensive. Alternatively, the Hough space

can also be computed by passing a patch P(y) through the trees to determine a leaf node

L and adding CL
|DL|

to the location {y − d|d ∈ DL}. Then smoothing with a Gaussian

kernel gives the result of Eq. A.6.

Here we compute intermediate Hough spaces at each node. More specifically, for each

non-leaf node N , we calculate the parameters CN and DN where CN is the proportion

of the object patches in N and DN = {d} is the set of offsets in N . The object patches

arriving at node N cast votes to the Hough space using the set of offsets in N . This is

demonstrated in Fig. A.6. Let V j
i (x) denote the intermediate Hough space for the jth

training image and i denote the test index. Let P(yj) be a patch from the jth training

image arriving at node N . This patch casts votes to the jth Hough image V j(x) at

locations x = y − d where d ∈ DN . This procedure is repeated for all the patches

arriving at N .

Figure A.7.: Output image (first), Hough space for the proposed method (middle)[max val-
ues: 0.289, 0.299], Hough space for [38] (last) [max values: 0.222, 0.222]
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A.3.2. Proposed Offset Uncertainty Criteria

The Hough forest tree construction process is governed by Eq. A.2 and Eq. A.3. The

class uncertainty criteria attempts to reduce the uncertainties in the class labels towards

leaves. The offset uncertainty criteria attempts to reduce the uncertainty in the location

of the casted votes. In this work, we propose an offset uncertainty criteria which attempts

to maximize the votes at the center of the object locations in the combined Hough image

while suppressing responses at other locations. The combined Hough votes for the kth

test are computed by considering the votes from the intermediate Hough spaces of all

the training images,
∑

x V
j
k (x).

The objective is to discriminate the location of the object from the background. Let

xjc be the location of the center of the object in the jth Hough image. Let Xj
c denote an

area with few pixels around the center xjc of the object. The proposed offset uncertainty

criteria Eho is then given by

Eho =

∑T
j=1

∑
x∈Xj

c
V (x)∑T

j=1

∑
x 6=Xj

c
V (x)

(A.9)

where at the denominator is the accumulated votes at other parts of all the training

images. The above uncertainty criteria is computed for the left and right child nodes of

a node and the test that maximizes Eho is chosen at the node under consideration. More

specifically, we use the class label uncertainty (Eq. A.2) along with the proposed offset

uncertainty criterion (Eq. A.9) to construct the trees. At each node, a test is chosen

from a pool of tests by evaluating the criterion

T1 : arg min
k

[
Ec(N

k
l ) + Ec(N

k
r )
]

(A.10)

or

T2 : arg max
k

[
Eho(N

k
l ) + Eho(N

k
r )
]

(A.11)

where Nk
l and Nk

r are the left and right child nodes for kth test and a test T1 or T2 is

chosen randomly. Similar to the approach discussed in Section A.2.2, during testing we

detect objects at local maxima of the Hough image that are above a threshold.

The proposed uncertainty criterion is based on the response in the output space. Fur-

ther, additional object specific constraints can be imposed to evaluate the tests thereby
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improving the performance of the forest. In contrast to the classical offset uncertainty

measure (Eq. A.3) which ignores the class information, the proposed uncertainty measure

utilizes the class information CN at a node to compute the intermediate Hough space.

Since the centers and offsets of the patches for the training images are known apriori,

the location of the resulting votes can be pre-computed. This reduces the computational

cost during training and significantly improves the tree construction speed.

The proposed method computes the Hough space for each test at each node and hence

can be computationally expensive. In order to reduce the computational complexity,

we observe that the training patches arriving at a node in question cast votes using

the offsets of the training patches at the node in question. Since the patch centers

and offsets for training patches are known apriori, the voting location for each patch-

offset combination can be pre-computed. By pre-computing the voting locations, the

computation time is significantly reduced. The proposed method requires 10% more

computation time as compared to the classical Hough forests.

A.3.3. Experimental Results

We evaluated the performance of the proposed method on three datasets, namely the

UIUC-cars, the TUD-pedestrians and the INRIA-pedestrians dataset. In all cases we

used 25000 positive and 25000 negative patches for training. We set the maximum depth

of the trees to 20 and the threshold for the number of examples/patches in a leaf node to

20. This means that a node is not split if either the maximum depth is reached, or if the

number of examples/patches in the node in question are below the threshold. During

tree construction, we evaluated 1500 tests at each node and in each case selected the

one that minimizes the proposed criterion.

We constructed 15 trees for each forest in each dataset and followed a boosting

approach to learn hard examples, in which the training examples/patches for a given

tree are selected based on the classification result that is obtained using the previously

constructed trees. More specifically, hard examples (i.e. misclassified patches) are dupli-

cated in the initial training set. We repeat this procedure every other five trees. For all

datasets, we consider the size of the bounding box fixed and deal with scale variations

by resizing each test image to a number of scales (4 in our experiments), each one of

which we pass through the forest in order to obtain a spatial Hough space. Then, a

meanshift algorithm is applied in the 3D scalespace in order to obtain hypotheses about

the location and scale of the objects.
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a) Hough forest

b) Proposed method

Figure A.8.: Detected objects (blue), miss detection (green), false positives (red) on UIUC-
Single car dataset: a) Hough forest. b) Proposed method

For the TUD and INRIA datasets, we used 16 feature channels namely the RGB

color channels, the magnitude of the horizontal and vertical gradients, the magnitude of

second-order derivatives in both horizontal and vertical directions, and the 9 HOG chan-

nel descriptors. The HOG descriptors were obtained by accumulating the normalized

magnitude in 9 orientation directions computed over a 5 × 5 window centered around

each pixel. To handle variations in clothing, illumination, articulation of parts, the

channels were filtered with a max-filter on 5× 5 windows centered around a pixel.

b) Proposed method

a) Hough forest

Figure A.9.: Detected objects (blue), miss detection (green), false positives (red) on UIUC-
Multi car dataset: a) Hough forest. b) Proposed method

We first present results on the UIUC-cars dataset. The training set for this dataset

consists of 550 positive examples of images depicting side views of cars and 500 negative

images each of size 100 × 40 pixels. To construct the trees we used 400 positive and

400 negative images from the dataset. We used the three feature channels, namely the
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gray level values and the absolute values of the horizontal and the vertical gradients.

The test set consists of 170 images of the objects with same scale. A location output by

the algorithm is counted as a correct detection if it lies within an ellipse with center at

the true location and axes 25% of the object dimensions in each direction. In addition,

only one detection per object is allowed - if two or more detected windows satisfy the

above criteria for the same object, only one is counted as correct; the others are counted

as false detections. The proposed method achieves 98.5% Equal Error Rate (EER) for

the UIUCSingle, and therefore performs better than our implementation of the Hough

forest [38] which achieves 98% EER for UIUCSingle and is in par with the state-of-

the-art methods which achieve the same EER Lampert et al . [52]. Fig. A.8 compares

the performance of the Hough forest [38] and the proposed method on UIUCSingle car

dataset.

We also tested the algorithm on UIUCMulti that contains cars at multiple scales. To

handle scale variations, we resized the original image into different scales s and applied

the algorithm on these resized images. We then combine these Hough images uisng 3d-

meanshift algorithm where the third dimension is in the scale space. We have considered

seven values for s (0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1). The test set UIUCMulti consists of

107 cars at different scales. A location-scale pair output by the algorithm is counted as

a correct detection if it lies within an ellipsoid with center at the true location-scale and

axes 25% of the true object dimensions in each direction. The proposed method achieves

nearly same performance as Hough forests with 98% at Equal Error Rate (EER) for the

UIUCMulti. In Fig. A.9, we compare the performance of proposed method and the

Hough forest technique [38].

For the same dataset, we demonstrate the effect of width of the area around the

ground truth location of the object center of the intermediate Hough spaces xc on the

final Hough image. Xc in Eq. A.9 denotes an area of a few pixels around the actual center

of the object in question. In order to do so, we constructed Hough forests by varying the

size of the area Xc. In Fig. A.10 we present the final Hough images for ‖Xc1‖ < ‖Xc2‖ <
‖Xc3‖ for three test images. It can be seen in the figure that the Hough image that

are obtained using a small area size (i.e. ‖Xc1‖) produces high responses at the object

locations in the final Hough image and low responses (i.e. small ambiguity/spread) at

other locations. As the area increases from ‖Xc1‖ = 52 to ‖Xc3‖ the response at the

object location decrease and the ambiguity in the location of the center increases. The

average values of the maximum responses over all training set images are 0.0192, 0.0188

and 0.0184 for Xc1 , Xc2 and Xc3 respectively while the average responses at other areas
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Figure A.10.: First column: Test images. Second, third and fourth columns: Hough image
for ‖Xc1‖ = 52, ‖Xc2‖ = 370 and ‖Xc3‖ = 862 respectively

are 0.0061, 0.0063 and 0.0065 respectively. In all of our experiments we choose ‖Xc1‖ =

52, a value that defines an area equal to the 13/100 of the size of the object bounding

box.

Average values Xc1 Xc2 Xc3

Inside Xc 0.0192 0.0188 0.0184

Other locations 0.0061 0.0063 0.0065

a) sample background images

b) sample object bounding boxes

Figure A.11.: Sample training images (100× 51) of TUD-pedestrian dataset: a) background
bounding boxes extracted from INRIA training set, b) object bounding boxes

We then demonstrate the performance of the algorithm on the more challenging

TUD-pedestrian dataset [8]. The training set for this dataset consists of 400 images with
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pedestrians. We trained the Hough forest using positive examples that were constructed

by extracting the object bounding boxes and resizing them to fixed dimensions of size

100× 51. We constructed 400 negative examples/images by randomly sampling patches

from the background areas in the images. As the diversities of the background were

low, we combined it with background images of INRIA pedestrian dataset. The test

set consists of 250 images containing 311 fully visible people who exhibit significant

variation in clothing and articulation. The evaluation criteria used to measured the

detection quality are, cover, overlap and relative distance. Cover and overlap measure

how much the ground truth bounding box is covered by the detected bounding box and

vice versa. Relative distance measures the distance between the center of the bounding

boxes. We inscribe an ellipse in the ground truth bounding box and relate the measured

distance to the radious of the ellipse at the corresponding angle [102]. In our experiments,

only hypothesis that have cover and overlap more that 50% and relative distance less

that 0.5 are accepted as the correct detection.

a) Hough forest

b) Proposed method

Figure A.12.: Detected objects (blue), miss detection (green), false positives (red) on TUD
pedestrian dataset: a) Hough forest. b) Proposed method

Fig. A.7 depicts the Hough space obtained with our own implementation of the

approach in [38] and of the proposed method. It is clear that with the proposed method

the number of votes at the center are significantly higher than the number of votes at the

background a fact that indicates higher discrimination capability. Fig. A.14 compares

quantitatively the performance of the proposed method and the Hough forest algorithm

[38]. The performance curves were generated by changing the acceptance threshold on

the hypotheses vote strength V (x). When generating recall-precision curves, we rejected

the detection hypotheses with centroids inside the bounding boxes detected with higher
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confidence in order to avoid multiple detections of the same instance. We notice that, the

proposed method clearly outperforms [38], at high precision values and exhibits similar

performance elsewhere. In particular, the proposed method shows 7% improvement

over Hough forests at a precision value of 0.93. From the recall-precision curve, it is

evident that the proposed method outperforms the Hough forest algorithm for the TUD

-pedestrian dataset.

0.0267 0.0366 0.0276 0.0288 0.0236 0.02710.0249

0.0289 0.0374 0.0293 0.0350 0.0264 0.0306 0.0309

c) Proposed method

b) Hough forest

a) INRIA test images

Figure A.13.: Detected objects (blue), miss detection (green), false positives (red) on INRIA
pedestrian dataset. The values indicate the maximum values of the Hough
image. a) Hough forest. b) Proposed method

We next demonstrate the performance of the algorithm on INRIA-pedestrian dataset

[26]. We used 2416 positive and 2416 negative images for training. The negative images

were obtained by sampling the person-free training images. The test set consists of 288

cropped and pre-scaled images with objects and 453 images without the object. Fig. A.13

shows the Hough images obtained for the images from INRIA dataset. We can see that

the Hough images obtained using the proposed method has votes more clustered at the

center compared to the Hough images with [38]. Further, the maximum values of the

Hough images indicate that the proposed method produces Hough images with stronger



A Discriminative Voting Scheme for Object Detection using Hough
Forests 146

response at the object location as compared to the same with Hough forests. Fig. A.14

shows the recall vs False Positives per Window curves for the proposed and Hough forest

algorithms. It is clear that the propose method outperforms the classical Hough forests

particularly at low false positives per window.

Figure A.14.: Recall-precision curves for TUD (first column) and INRIA (second column)

In order to apply the algorithm for localization of actions in video sequences, we

used the video sequences from the KTH dataset. The dataset contains six categories

of actions: boxing, clapping, jogging, running, walking and waving . There were 25

subjects performing each action four times in four different environments, resulting in

about 600 video sequences in total. It is relatively simple to localize actions in three

actions namely boxing, clapping and waving as the subject is stationary on for all the

frames of the sequence. We demonstrate the performance of the algorithm on actions

running and jogging. We apply the algorithm at six scales in order to handle changes in

size of the subject. The model is learnt using INRIA pedestrian dataset. The algorithm

is applied on each frame of the video sequence at six different scales. The final hypothesis

is obtained by finding the peak response in the Hough image using meanshift algorithm.

Fig. A.15, and Fig. A.16 shows the results on running and jogging actions respectively.

A.4. Conclusions

We introduced a novel framework for object detection using Hough forests that uses

the knowledge of the objects center locations in training images to efficiently construct

the trees. During training, we compute at each node the Hough space for each of the

training images and use this Hough space to evaluate the tests at the node in question.

The test with maximum ratio of votes at the center to the other parts of the combined

Hough space is chosen as the candidate test for that node. In that way, we obtain Hough

spaces that succesfully discriminate the object from the background. We demonstrated
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Figure A.15.: Performance of the algorithm on KTH running sequence
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Figure A.16.: Performance of the algorithm on KTH jogging sequence
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the efficiency of the proposed algorithm through several experiments. We tested the novel

framework on standard datasets and have experimentally shown that it outperforms the

classical Hough forests.



Appendix B.

Proof of Convergence of the

Iterative Optimization Procedure

Here, we provide a proof of convergence for the proposed algorithms. More precisely, the

iterative optimization method used, also known as alterative projections, never increases

the value of Eq. 3.8 between two successive iterations, as it can be regarded to be a

monotonic function (see also Fig. 1a). We define a continuous function of the form:

D : {G,H,w, ξi, b} × R→ R (B.1)

where G ∈ G ⊂ Rm×k, H ∈ H ⊂ Rk×n
+ and w ∈ W ⊂ Rm. We define the following

three functions

D1 : G× R→ R

D2 : W× R→ R

D3 : H→ R

(B.2)

defined as D1(G, b) = D(G, ξi, b; H,w) (i.e, acquired fixing H and w) and D2(w, b) =

D(w, ξi, b; G,H), (i.e, acquired fixing G and H) and D3(H) = D(H; G,w, ξi, b), (i.e,

150
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acquired fixing G, w, ξi and b) . By definition the function D has 3 mappings:

g1(G
∗, b∗) , arg min

G,b
D1(G, b) (B.3)

g2(w
∗, b∗) , arg min

w,b
D2(w, b) (B.4)

g3(H) , arg min
H

D3(H) (B.5)

and ∗ denotes optimality.

The sequence of produced solutions are characterized by the following relationships:

D1(G
∗, b∗) ≥ D1(G, b)

D2(w
∗, b∗) ≥ D2(w, b)

D3(H
∗) ≥ D3(H).

(B.6)

Given an initial estimate {G0,H0,w0, b0}, the proposed algorithm generates a se-

quence of solutions {G(t),H(t),w(t), b(t)} via

g1(G
∗
(t), b

∗
(t)) , arg min

G,b
D1(G(t), b(t)) (B.7)

g2(w
∗
(t), b

∗
(t)) , arg min

w,b
D2(w(t), b(t)) (B.8)

g3(H
∗
(t)) , arg min

H
D3(H(t)). (B.9)

The sequence of produced solutions are characterized by the following relationships:

a1 = g1(G
∗
(1), b

∗
(1,1))

≥ g2(w
∗
(1), b

∗
(1,2))

≥ g3(H
∗
(1))

≥ · · · ≥

≥ g1(G
∗
(t), b

∗
(t,1))

≥ g2(w
∗
(t), b

∗
(t,2))

≥ g3(H
∗
(t)) = a2 (B.10)

where t→∞ and a1, a2 are limit values in R and b∗(1,1) is the value for b acquired when

solving for G at time 1, while b∗(1,2) is the value for b acquired when solving for w at time

1. Therefore we can regard the alternating optimization procedure to be a composition
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of 3 subalgorithms defined as:

Ω1 : (G, b)→ Rm×k × R (B.11)

Ω2 : (w, b)→ Rm × R (B.12)

Ω3 : (H)→ Rk×n × R. (B.13)

producing G,H,w and b. Then Ω = Ω1 ◦ Ω2 ◦ Ω3 = ◦3d=1Ωd is closed when all G,H,W
are compact. We should emphasize here that since all subalgorithms decrease the value

of D, Ω is monotonic with respect to D. Consequently, we can say that the alternating

projection method converges.
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