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Abstract

Conserving biodiversity often requires deciding which sites to prioritise for protection. Pre-

dicting the impact of habitat loss is a major challenge, however, since impacts can be distant

from the perturbation in both space and time. Here we study the long-term impacts of habitat

loss in a mechanistic metacommunity model. We find that site area is a poor predictor of

long-term, regional-scale extinctions following localised perturbation. Knowledge of the

compositional distinctness (average between-site Bray-Curtis dissimilarity) of the removed

community can markedly improve the prediction of impacts on regional assemblages, even

when biotic responses play out at substantial spatial or temporal distance from the initial per-

turbation. Fitting the model to two empirical datasets, we show that this conclusions holds in

the empirically relevant parameter range. Our results robustly demonstrate that site area

alone is not sufficient to gauge conservation priorities; analysis of compositional distinctness

permits improved prioritisation at low cost.

Author summary

Species are being driven extinct at a rate 1, 000–10, 000 times greater than natural back-

ground due to a suite of anthropogenic pressures on ecosystems. Conservation of biodi-

versity frequently involves localised interventions to protect communities of species from

such anthropogenic impacts. Due to the complexity and adaptability of ecosystems,

understanding the relationship between local impacts and regional-scale patterns in biodi-

versity is a major challenge. We use a computational model of a complex ecological assem-

blage, previously shown to reproduce a variety of key macroecological patterns, to study

the long-term impacts of localised perturbation on regional scale ecosystems. Using this

experimental approach, we characterise the ‘conservation value’ of different locations by

reference to the loss of species at the regional scale following local site destruction. We

find that, while both the area of the impacted site and the compositional rarity of the com-

munity it supports are important predictors of long-term conservation value, composition

is a more important predictor. In view of this result, we argue that local composition

should be given greater weight when assessing conservation priorities and designing con-

servation and management programmes.
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Introduction

Habitat loss due to conversion of natural landscapes is the leading cause of biodiversity loss

today [1, 2]. Immediate species losses that result when the habitats of endemic species are

destroyed only represent part of the impact of land conversion. Additional losses may occur as

‘extinction debts’ are paid [3]. These additional extinctions can arise due to a suite of complex

processes that ripple through the wider landscape, often involving multiple species [4–9]. The

complexity of these ecological responses to habitat loss makes predicting the long-term out-

comes of localised impacts a major challenge. Essential to meeting this challenge is an under-

standing of how changes in the abiotic and biotic structure of the landscape are likely to

interact [10].

Decisions in conservation ecology often require identification of the least worst outcomes

of landscape conversion [11]. For such assessments, sufficient mechanistic understanding of

the biodiversity impacts of habitat loss is required [12]. Predictions of such impacts often rely

on phenomenological models of species-area relationships (SAR) [12–14], which assume that

impacts follow simple scaling relationships (e.g. [15, 16]). However, the scaling of diversity

with area arises due the fact that ecological assemblages are internally heterogeneous: it is usu-

ally not area per se that determines species richness but the diversity of ecological associations

that a landscape can support. As such, it is plausible that metrics that directly quantify the

internal diversity structure of an assemblage may outperform area alone as predictors of a

site’s contribution to regional diversity.

Here, we explore the long-term outcomes of habitat destruction using a spatially explicit

simulation model called the Lotka-Volterra Metacommunity Model (LVMCM), which has

been shown to reproduce a large variety of well-documented macroecological patterns includ-

ing a strongly right-skewed range size distribution, a power-law SAR and related species time

relation, and the time invariance of key macroecological structures despite continuous turn-

over in species composition [17, 18]. The present study employs this model system to ask

applied questions about the impact of perturbation on regional biota.

We model habitat conversion as the complete removal of sites from a metacommunity,

study the impacts of those removals after simulating the metacommunity response, and find

that indeed the biotic impacts following site removal can be complex. Secondary extinctions

including extinction cascades are common. These cascades can cause extinctions of popula-

tions distant from the removed site. The area of the removed site only weakly correlates with

conservation value, which we define as the proportional loss of species at the regional scale

after a long relaxation. A stronger predictor of regional extinctions is often the compositional

distinctness of the removed community, despite the cascading, far-reaching impacts removal

can have. To test whether empirical systems fall into the parameter space where compositional

distinctness is a stronger predictor than area, we developed a method to fit the LVMCM to bio-

diversity patterns derived from empirical species-by-site tables. Using this method, we demon-

strate not only the higher predictive power of compositional distinctness for empirical

systems, but also the future potential for mechanistic metacommunity models as decision sup-

port tools in applied conservation [10].

Summary of methods

Model overview

Lotka-Volterra models with additional terms describing dispersal have been studied in various

contexts (e.g. [19–21]). Here we forgo common model validation analyses which have been a

repeated focus of previous work and instead use this tried and tested approach to ask applied
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questions with direct relevance to conservation biology. The LVMCM [17, 18] extends the

conventional Lotka-Volterra competition model to a spatially explicit system of connected

sites (Fig 1). It models the dynamics of a metacommunity formed by a guild of competing spe-

cies. Sites differ in their suitability for each species and their total area (see Section A in S1

Text for details on scaling local site area), and nearby communities are connected by dispersal.

The underlying environment is modelled as a spatially autocorrelated random field with mean

zero and unit standard deviation. Species responses to the environment are modelled by qua-

dratic environmental response functions, with each species allocated a random environmental

optimum. Species disperse between sites according to an exponential dispersal function. We

kept the width of the environmental response function, w, and the characteristic dispersal

length ℓ fixed for all species in a given simulation, but varied them systematically between sim-

ulations. For this study we kept the number of sites fixed at 20 while, under variation of these

key parameters, the regional γ-diversity ranged from 250 to 2500 species. In this way we gener-

ated a large and heterogeneous set of simulated metacommunities from which we aim to infer

general relationships between long-term impacts and the area or compositional distinctness of

the removed site.

We allowed metacommunity models to self-organise via a regional assembly process [22]

through which species invade the metacommunity and distribute across the landscape,

responding to the abiotic and biotic conditions in the sites. We then systematically perturbed

assembled metacommunities by removing each site in turn, simulating the biotic response and

measuring long-term impacts of single site removal at the regional scale. Simulated perturba-

tion experiments are of great value in this context since a thorough empirical test would

Fig 1. Elements of the metacommunity model. A: Temporal dynamics in local biomass (Bix) are modelled as functions of local

intrinsic growth rates (Rix) mediated by competitive interactions (AijBjx) and immigration pressure, a function of the distance from

adjacent sites (BiyDxy). The abiotic environment is represented by a spatially autocorrelated distribution of at least one variable. The

spatial network is a random planar graph in which local sites of unequal area are modelled by scaling the local interaction

coefficients by λx and l
0

x (see Section A in S1 Text for details). B: Intrinsic growth rates R = Rix, representing species’

Hutchinsonian niches, are modelled as quadratic functions of the environmental variables. Niche width is controlled by a

parameter w and each species is assigned a randomly sampled environmental optimum Eopt
i (solid lines exemplify large w, dashed

lines small w, colours represent different species). C: Three examples illustrating of how niche width w affects the distribution of

areas of positive R over the landscape, highlighting the relationship between niche width and effective heterogeneity.

https://doi.org/10.1371/journal.pcbi.1010804.g001

PLOS COMPUTATIONAL BIOLOGY Predictors of conservation value

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010804 January 30, 2023 3 / 15

https://doi.org/10.1371/journal.pcbi.1010804.g001
https://doi.org/10.1371/journal.pcbi.1010804


involve systematic removal of sites and extinctions of species in the real world. Such an

approach would be a) highly unethical (though not entirely unheard of, [23]) and b) require

many decades to perform due to the need to start each new experiment from a ‘healthy’ meta-

community. More details on the assembly and perturbation procedures are given in the

Methods.

Predicting long-term species losses

Process-based metacommunity models like the LVMCM permit direct comparison between

the immediate effects and long-term outcomes of perturbations. Immediate species losses can

be predicted by asking which species have a global range limited to the removed site. We

denote the predicted immediate species loss Δγ0. In contrast, we denote by Δγ the actual long-

term species loss determined by simulating metacommunity dynamics. We define the conser-

vation value of the removed site as the proportional long-term species loss, relative to the pre-

disturbance regional species richness γ�.
We first asked how Δγ/γ� depends on model parameters. Determining these parameters

empirically, however, can be costly. Therefore we also tested how well Δγ/γ� can be predicted

by the proportion of biomass immediately removed, B�x=B
�, where B�x and B� represent the pre-

disturbance biomass of the removed site x and of the entire metacommunity, respectively. We

use B�x as a proxy for the area of site x, with the advantage that B�x is directly represented in

LVMCM model communities. As a second predictor we use a measure of compositional dis-

tinctness, �bx, defined as the mean Bray-Curtis [24] dissimilarity of the focal site x to all other

sites.

We assessed the effects of B�x=B
�, �bx and various spatial network properties (centrality mea-

sures) on proportional species losses Δγ/γ� using simple multivariate linear regression, with

predictors scaled to mean zero and unit variance and the best model being selected by compar-

ison of AIC [25]. Goodness-of-fit of predictive models was assessed using the adjusted R2. The

proportions of variance explained by area and compositional distinctness were then parti-

tioned using partial regression redundancy analysis [26].

Fitting the LVMCM to empirical data

We demonstrate how the LVMCM can be fit to data using two datasets, one describing the dis-

tribution of diatoms (D) in lakes straddling the Peruvian-Bolivian border [27], the other the

distribution of Lichen-Fungi (L) in Eastern Brazil [28]. These datasets were chosen for their

high species richness and because we can assume that the ecological interaction networks of

these guilds are reasonably represented by competition within a single trophic level. For data-

set D, which covers a large region, we selected a subset of the full database for which the first

two principal components of the key environmental variables formed a distinct cluster, includ-

ing 19 sites and 221 taxa (Fig 2A). For dataset L we reduced the total number of sites (and the

computational effort) by pooling observations separated by less than 20km. This left 12 sites

and 784 taxa (Fig 2B). For this dataset, environmental variables were extracted from publicly

available remote sensing databases.

In Sections B and C in S1 Text we give a detailed summary of the model fitting procedure

that we outline here. The spatial structure (spatial distance matrix) and key environmental var-

iables from the empirical dataset were input directly into the model, defining the distance

between sites and the underlying abiotic environment. Additionally, the observed richness of

local sites, αobs was used to define the effective area of the sites in the corresponding simula-

tion model. We then used a battery of simulations to estimate the abiotic niche width parame-

ter w that best fit the empirical species by site table. This was done by quantitatively comparing
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the occupancy frequency distribution (OFD) [29] for the empirical observation to that of the

simulation under systematic variation of w.

The LVMCM is a parameter rich model, making direct fitting to data impossible. Therefore

we developed a simplified patch occupancy model that predicts high-level metacommunity

properties with a single fitting parameter, which we termed the ‘mixing rate’ m. By construc-

tion this mixing rate defines the ratio between the mean rate at which sites are colonised by

populations in adjacent communities and the rate of invasion into the assemblage from outside

of the metacommunity. While unsuitable for in-depth analyses of biotic responses to perturba-

tion, the simplicity of the patch occupancy model means it can be directly fitted to both empir-

ical observations and LVMCM model communities, thus serving as a bridge between the

complex LVMCM simulations and empirical ecosystems. Using an intermediate model to fit

the LVMCM to observation data in this way is an unconventional procedure, but gives a rea-

sonable indication of the approximate location in the model’s parameter space that best corre-

sponds to the real-world assemblage. The theory behind this simple model and the procedure

for model fitting are summarised in Section D in S1 Text.

The parameter m can be estimated from the OFD for a given dataset. OFD generally offer

little scope for estimating niche widths since they include no information of spatial structure

or environmental heterogeneity. Here, however, we use LVMCM models with spatial and

environmental distributions matching the empirical observation and therefore are in a posi-

tion to approximate typical niche widths from OFD. For LVMCM models with underlying

heterogeneity taken from the empirical observation, the abiotic niche width parameter space

of the model was scanned. The value of w that best reproduces the mixing rate of the empirical

OFD was then located. This value gives a meaningful estimate of the typical niche widths rela-

tive to the total environmental variation in the assemblage that, importantly, includes some

explicit consideration of the impact of biotic interactions on species ranges. Note that, should

more complex dispersal dynamics or ecological interaction types be included in the model,

these might additionally impact the shape of the OFD and therefore require parameter

Fig 2. Datasets used to fit the LVMCM. A: The subset of the Andean diatom database [27] straddling Lake Titicaca and the Peruvian-Bolivian border.

B: The Brazilian lichen-fungi database [28] with nearby samples pooled together. The colour of the points represents the ranked impact of site removal

on regional diversity in in silico removal experiments, with the lightest colour corresponding to the site with the greatest impact. The size of the points

represents the observed species richness αobs. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

https://doi.org/10.1371/journal.pcbi.1010804.g002
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estimation. Such complexity is absent from the framework used here and therefore we fit the

LVMCM to the empirical OFD by varying w alone.

Results and discussion

Even though none of the sites removed in simulation experiments comprised more than 12%

of the total regional biomass/area, we detected regional extinction of at least one species in

over 75% of cases. The highest impact of a single site removal was a proportional loss of Δγ/γ�

= 0.23.

The dynamics of extinction following habitat removal

Proportional long-term species loss Δγ/γ� decreased with increasing abiotic niche width

(Fig 3A). This is plausible, since with wider niches single-site removal tends to remove a

smaller proportion of the area representing a species’ Hutchinsonian niche. By contrast we

found that dispersal length had surprisingly little effect on Δγ/γ� (Fig 3A).

The process by which species are lost following site removals was often complex. In Fig 3B

we show a random sample of these complex extinction dynamics for various dispersal lengths

with abiotic niche width fixed at w = 0.63, the value for which impacts were greatest. We find

that site removals can either lead to the loss of endemics only (cummulative extinctions effec-

tively independent of time lag), or trigger extinction cascades, which can play out over long

times. These extinction cascades, particularly prevalent in higher dispersing metacommunities,

demonstrate the complexity of potential metacommunity responses to site removal.

The secondary extinctions of non-endemics can be categorised into two distinct types.

Those occurring due the disruption of mass effects (sink populations which are lost following

the removal of source sites), and those occurring due to a complex restructuring of the meta-

community as species ranges shift in space. Extinctions of the first type typically occur within

around 50 unit times and in sites adjacent to the removed site. The average distance between

the site in which a species was last detected and the original perturbation was 0.05L, where L is

the side length of the model landscape, in the first 50 unit times (smallest niche width, across

Fig 3. Species extinctions following site removal. A: The average across sites and replicate simulation models of the proportional species losses Δγ/γ�

for all combinations of the abiotic niche width and dispersal length. B: Documentation of secondary extinctions resulting from the interruption of

source-sink dynamics and extinction cascades. Here we show the outcome of removing sites for the smallest niche width w = 0.63. When dispersal

lengths ℓ are particularly short and mass effects weak, secondary extinctions due to spatial restructuring do not occur.

https://doi.org/10.1371/journal.pcbi.1010804.g003
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dispersal lengths). The second type can occur much later and at almost any site in the meta-

community. For extinctions occurring after more than 50 unit times, the average distance of

the final local extinction in a given species’ decline to extinction was 0.45L. For species lost

after 120 unit times, the distance from the initial perturbation had a mean 0.5004L, statistically

indistinguishable from the average inter-site distance 0.5002L, suggesting the location of sub-

sequent species losses was essentially random with respect to the initial impact.

Predicting long-term impacts based on empirically measurable quantities

Predicting the outcome of single site removals, given the complexity of the biotic response, is

non-trivial. It is not the case that species losses in the model can be generically explained by

reference to immediate losses of endemics. Instead, we test whether area and compositional

distinctness, both empirically accessible properties of communities, correlate with the long-

term outcomes of the often complex structural redistribution precipitated by single site

removal.

We find a clear positive association between the conservation value of sites and B�x=B
�, but

with substantial spread (Fig 4, Spearman’s ρ = 0.33, all parameter combinations pooled). In

contrast, long-term species losses were more strongly associated with compositional distinct-

ness of the removed site �bs
x (Fig 4, ρ = 0.52, all parameter combinations pooled).

The best model selected by AIC included both proportional area removed and composi-

tional distinctness of removed site as predictors of long-term species losses. Surprisingly, none

of the standard centrality measures available (degree-, closeness-, betweenness-, eigenvector

centrality) were selected as predictors.

Decomposing the simulation results by w, we find that the strength of the association

between long-term impacts and the properties of the removed site varies considerably with

nice width. In Fig 5 we show how the R2 and the regression coefficients of the multivariate lin-

ear models vary over the parameter space.

Fig 4. Predicting long-term species losses. The proportional long-term species losses following site removal plotted against the

proportion of biomass removed initially, a proxy for site area, and the compositional distinctness of the removed site. Here we show a

random subset of the simulated removal experiments for visual clarity. Dispersal length had little impact on long-term outcomes. In

contrast, proportional losses were greatest for small niche widths w largely due to the self-organised link between niche width and

local community distinctness.

https://doi.org/10.1371/journal.pcbi.1010804.g004

PLOS COMPUTATIONAL BIOLOGY Predictors of conservation value

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010804 January 30, 2023 7 / 15

https://doi.org/10.1371/journal.pcbi.1010804.g004
https://doi.org/10.1371/journal.pcbi.1010804


For the smallest niche widths studied here, the R2 (bars in Fig 5) of the full model (both pre-

dictors) increased up to 0.55 for the smallest niche width. For large niche widths R2 stabilised

at 0.13. Thus, predicting Δγ/γ� when niche widths are large relative to environmental variation

is particularly challenging. This is partly due to the fact that long-term species losses are rare

when environmental filtering is weak, but may also reflect the fact that the biotic response to

perturbation depends much more on dispersal and local competitive effects—absent from the

multivariate regression—where environmental effects are largely neutral.

The proportion of variance explained by area following partial regression redundancy anal-

ysis was largely consistent across niche width parameterisations. In contrast, the proportion of

variance explained by compositional distinctness decayed with increasing niche width. As a

result, for the largest niche widths studied, the variance explained by area actually exceeds that

by composition, though only once total R2 had dropped to its minimum. The standardised

regression coefficients estimated after scaling the predictors to mean zero and unit variance

(points in Fig 5) show that for all but the widest abiotic niches, the effect of compositional dis-

tinctness exceeded that of area on long-term losses (solid and dashed lines respectively).

By repeating this analysis for random sub-sets of the simulated metacommunities contain-

ing a fixed number of species, we verified that these differences are not due to differences in

overall species richness of low- and high-w metacommunities.

Thus, we conclude that compositional distinctness typically outperforms biomass as a pre-

dictor of long-term losses, despite the fact that the population scale impacts are not uniquely

felt in or near the impacted site. In order to estimate the long-term effects of habitat

Fig 5. Dependence of predictive power on niche width. We find a clear decay with increasing niche width w in the

variance explained (bars) by both the full model (combining both predictors B�x=B� and �bx) and the model which

includes only distinctness (�bx). In contrast, the proportion of variance explained by area (B�x=B
�) was largely

independent of w. Coincident with the decay in variance explained, the standardised regression coefficients (points)

also decayed with niche width. The standardised effect of area (dashed line) was consistently lower than that of

compositional distinctness (solid line).

https://doi.org/10.1371/journal.pcbi.1010804.g005
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destruction on biodiversity, it is critically important to take the community composition of the

affected areas into account.

Fitting the LVMCM to empirical observation

In view of the strong parameter dependence of the predictive power of compositional distinct-

ness, it is critical to identify which region of the parameter space is most representative of natu-

ral ecosystems at large scales. We constructed a set of LVMCM metacommunities with spatial,

environmental and local species richness distributions taken from the two empirical datasets.

Using the best fitting patch occupancy model as an intermediate between the empirical data

and the LVMCM simulation models we found a quantitative match between the OFD of data-

set D and the corresponding simulation when w = 3.46. For dataset L, w = 1.08 gave the closest

match between the simulation and the observation.

The simulated OFD deviate from the empirical OFD in two important respects (Fig 6A).

The empirical OFDs tend to have a sharper peaks at single site occupancy than the simulations

and slightly wider right tails. This is most likely due to the model’s simplifying assumption that

all species have the same abiotic niche width. Inspection of the OFD for various niche widths

(Fig D in S1 Text) suggests that a better fit to the empirical distribution could be achieved by

including some interspecific differences in abiotic niche width. We did not attempt to incorpo-

rate such differences in our model to avoid over-parameterization.

Despite these differences, our simple fitting procedure generated model metacommunities

with macroecological OFD approximately matching that of the empirical observation. The key

finding is that both datasets are fit by abiotic niche widths of order w� 1—representing

around one standard deviation of the landscape scale heterogeneity—suggesting the parameter

space in which removal experiments predict compositional dissimilarity substantially exceeds

biomass as a predictor of conservation value is the most biologically relevant.

The primary goal of this fitting procedure was an assessment of the empirically relevant

parameter space. However, this indirect fitting procedure also gave us an opportunity to apply

the same removal experiment to a simulated metacommunity with spatial, environmental,

local richness and species occupancy properties matching real-world assemblages. From these

simulated experiments using fitted models, we made a mechanistic assessment of the rank con-

servation priority of each site (Fig 2). Simulated metacommunities with macroecological char-

acteristics matching empirical data sets offer a valuable arena within which to explore the

impacts of perturbations regional biota, though we note that further work to refine this fitting

procedure is needed.

In these experiments the proportional drop in regional diversity Δγ/γ� after removal of a

single site ranged from 0.03 to 0.13 for dataset D and 0.004 to 0.15 for dataset L (Fig 6B). In

both cases and in common with previous results on random metacommunities not fit to obser-

vations, B�x=B
� was a rather poor predictor of simulated species losses. On the other hand, a

strong non-linear relationship between long-term impact and �bs
x was found, consistent with

the outcomes shown in Fig 5. For dataset D, conservation priority typically increased with site

altitude as spatial isolation and deviation from regionally typical abiotic conditions increased.

Surprisingly, for dataset L the greatest impacts occurred when either of the two smallest sites

were removed. This apparently incongruous result is predominantly explained by the fact that

for this dataset observed species richness was negatively associated with environmental rarity

measured as the mean Euclidean distance of the focal site from all other sites in environment

space (Spearman’s ρ = −0.56, p = 0.057). Compositional distinctness typically correlates with

environmental rarity, though additional metacommunity processes (biotic filtering, mass

effects) can also account for a proportion of internal biotic heterogeneity [30]. Thus, the least
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species rich sites were also the most abiotically and biotically distinct and therefore of highest

conservation value. For the remaining sites in the models matching the macroecology of data-

set L, proportional species losses were largely independent of site area.

We acknowledge that testing the accuracy of these predictions is a challenge, however the

present study demonstrates the possibility of bespoke, simulation-based assessment of conser-

vation value, but leaves further refinements and validation of the procedure to future work.

Conclusions

The biotic response of metacommunities to localised perturbation can be complex and far

reaching. While endemic species are by definition lost immediately, secondary extinctions can

be substantial as metacommunities restructure. Predicting the long-term impacts of this

Fig 6. Fitting the LVMCM to empirical OFD and simulated habitat loss. A: Bars represent the empirical OFDs. The

grey curves are the steady state OFD of the patch occupancy model with the mixing rate fitted to the observation. Grey

points are the mean occupancies of 10 replicate LVMCM simulations with parameters that best fit the empirical

observations. B: Having fitted the simulation to the broad macroecology of the empirical systems, we then performed

simulated removal experiments on the best fitting models (OFDs of these shown with grey points in panel A). In B we

show the outcomes of these removal experiments for simulated metacommunities which best match the Andean

diatom (D, blue) and Brazilian lichen-fungi (L, green) datasets. Each point represents a site. In all panels, error bars

represent standard deviation over 10 replicate assemblies.

https://doi.org/10.1371/journal.pcbi.1010804.g006
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restructuring is a major challenge, and one that currently can only be studied using process-

based metacommunity models like the LVMCM. With this study we have shown that compo-

sitional distinctness can substantially exceed area alone as a predictor of long-term impacts,

including secondary extinctions, on biodiversity following habitat destruction.

Compositional distinctness, measured in terms of average dissimilarity, is likely to be

empirically accessible because Bray-Curtis dissimilarity between sites is numerically domi-

nated by the locally dominatant populations, the sizes of which are readily quantified. How-

ever, the usefulness of the predictor is based not only on what it tells about the dominating

species, but also what the dominating set of species tells about the abiotic characteristics of a

site. The compositional distinctness of the dominant taxa is therefore likely to be informative

of the distinctness of the non-dominant taxa, which is harder to measure.

While at first sight it might appear that application of this predictor requires a well-defined

metacommunity to average over (which in practice may be ambiguous), this is not actually the

case. Addition or omission of sites from a dataset affects ordering of two sites in terms of mean

Bray-Curtis dissimilarity only for those other sites in the dataset that have compositions simi-

lar to either of the two sites.

To illustrate the relevance of our results, we note that the recently published first draft of

the Post-2020 Global Biodiversity Framework [31] sets as a its primary goal the enhancement

of ecosystem integrity, including increasing the area and connectivity of natural ecosystems,

ensuring the robustness of populations and the reduction in extinction rates. Accompanying

this document is a set of indicators proposed to help monitor progress toward these goals [32].

We can roughly categorise the 56 indicators applicable to the primary goal of the Framework

into those relating to (i) area, extent or coverage, (ii) species-level assessments (of extinction

risk, habitat integrity etc.) (iii) intactness (describing the proportion of historical assemblages

that persists today) and (iv) spatial beta diversity intrinsic to an ecological unit (region,

nation). The number of indicators in each category in the current draft are (i) 19, (ii) 12, (iii) 3

and (iv) 2. Thus, while our demonstration that compositional rarity is a key biotic quantity

that must be conserved in order to protect regional biotas may be intuitive in hindsight, the

weighting of area and composition in key management tools currently remains strongly

skewed toward area-based measures. We therefore advocate for increased prioritisation of

descriptors of the internal structure of biodiversity when predicting impacts and setting con-

servation targets.

Detailed methods

Environmental heterogeneity and spatial structure

Environmental heterogeneity (Fig 1A) was modelled by assigning to each site x a set of K inde-

pendent random variables Ekx (1� k� K), representing, e.g. the principal component(s) of

abiotic environmental variation. The Ekx were sampled from spatially correlated Gaussian ran-

dom fields [33] with mean 0, standard deviation 1, and correlation length 1.

Each species i in the model was allocated environmental optima Eopt
ik for each environmental

variable k, sampled from uniform distributions in the range [1.25 �minx Exk; 1.25 �maxx Exk].
The effective heterogeneity of the environment was controlled by varying the niche width

parameter w. The intrinsic growth rate of the ith species in site x was computed as

Rix ¼ 1 �
2

w

� �2XK

k¼1

ðEkx � Eopt
ik Þ

2
; ð1Þ
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that is, to simplify parameterisation, we assumed identical niche widths for all species and all n
independent components of environmental variation. For the random metacommunities we

set n to either 1 or 2 and observed no major change in outcomes. For the fitted metacommu-

nites, the first two principal components of the observed environmental variation were used.

The spatial network of sites (Fig 1A) was modelled by randomly sampling Cartesian coordi-

nates from a uniform distribution in the range ½0;
ffiffiffiffi
N
p
�, where N is the number of sites. As in

previous studies [17, 18], we linked nearby sites using a Gabriel graph [34].

Scaling local site area

An essential technical innovation that made this study possible is a technique we developed to

model local differences in site area by scaling the intensity of local ecological interactions. The

precise functional form of the area dependence of intra- and inter-specific ecological interac-

tions is not currently known. In order to overcome this knowledge gap we assembled meta-

communities of different total area a and measured the decay in effective interaction strengths.

Previous work has shown that regional scale interaction coefficients Cij describing the interac-

tion between species i and j can be estimated for models by perturbing the biomass of each spe-

cies in turn and summing the impacts on all other species over the metacommunity ([17] and

Section A in S1 Text). The resulting interaction matrix C captures the combined effects of dif-

ferences in environmental preference, limited dispersal, indirect and direct interactions.

The decay in average interaction strength with area, which we refer to as the competition
area relation (CAR), can be modelled by two power laws, one for inter-specific interactions,

Cij / av (i 6¼ j), and one for intra-specific interactions, Cii / av0 (Fig Aa in S1 Text). The expo-

nents v and v0 depend on model parameters, in particular the abiotic niche width w, which

strongly affects species’ range sizes (we found the effect of dispersal length to be weak by com-

parison). The CAR can be incorporated into the model dynamics in order to model variation

in the local biomass (area) between sites by scaling the site-specific interaction matrix Ax.

Thus we model each site as an implicit sub-network of various nodes and scale the interactions

to those expected for the corresponding (sub-)metacommunity.

Formally, if A0 is a hollow matrix with zeros on the diagonal, the scaled matrix is given by

Ax ¼ l
0

xIþ lxA0: ð2Þ

where I is the identity matrix, and

lx ¼
ax
a0

� �v

; ð3aÞ

l
0

x ¼
ax
a0

� �v0

: ð3bÞ

Here ax is the area of the xth site and a0 the area of a reference site with (unscaled) interac-

tion matrix A = I + A0. We measure site area in units such that a0 = 1. For random metacom-

munities, the ax values were randomly assigned to sites x such that they covered the range

from 1 to 30 biomass units in equal intervals. For fitted metacommunities, the ax were

extracted from the empirical species by site tables (see below). The exponents v and v0 were set

based on the relationships between the CAR and SAR found in simulations, assuming that

within-site SARs are typically linear (see Section A in S1 Text).
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Metacommunity dynamics

Metacommunity dynamics were modelled using a spatial extension to the classic Lotka-Vol-

terra community model [17, 18]

dBix

dt
¼ Rix � l

0

xBix �
XS

j¼1

lxAijBjx

 !

Bix þ
XN

y¼1

BiyDxy; ð4Þ

where Bix represents the biomass of the ith species in the xth site. Rix are the intrinsic growth

rates, which vary across the landscape.

For simplicity, the unscaled local interspecific interaction coefficients Aij were sampled

from a discrete distribution with P(Aij = 0.3) = 0.3, and Aij = 0 otherwise. Dxy are the elements

of the spatial connectivity matrix describing the inter-site dispersal. Emigration and immigra-

tion rates are given by Dxx = −e, Dxy = (e/ky) exp(−dxy/ℓ) for sites x, y connected by the spatial

network, and Dxy = 0 otherwise; e is an emigration rate, dxy the distance between sites x, y, and

ℓ the characteristic dispersal length, which was systematically varied. The normalisation ky rep-

resents the unweighted degree of the yth site.

Metacommunity assembly and removal experiments

Model metacommunities were assembled by iteratively generating species i with randomly

sampled Eopt
ik and Aij, and introducing them as invaders to the model at low biomass. Dynamics

were then simulated over 500 unit times using Eq 4. Before each invasion, the metacommunity

was scanned for any species whose biomass had fallen below the extinction threshold of 10−4

biomass units in all sites. These species were considered regionally extinct and removed from

the model. Metacommunity models assembled in this fashion eventually saturated with respect

to both average local and regional species richness [17] due to the onset of ecological structural

instability [35]. After saturation is reached, each invasion generates, on average, a single

extinction.

Following pilot studies metacommunities were assembled with w assigned 10 values loga-

rithmically spaced in the range 0.5� w� 15. The parameter ℓ was logarithmically spaced in

the range 2�10−2� w� 10, again with 10 distinct values included. In both cases, a couple of

extreme values were excluded from the analysis either because beyond a threshold, no further

change in outcomes was observed or, in the case of ℓ, because very small values lead to numeri-

cal errors in the simulation.

After assembling model metacommunities of 20 sites to regional diversity limits, each site

in turn, and all associated edges were systematically removed and the simulation advanced

over 104 unit times. Regional diversity was then assessed by reference to the same extinction

threshold and compared to pre-disturbance levels. For completeness, the dispersal matrix D

was updated to reflect the new degree distributions. More complex removal experiments

including multiple sites, perhaps removed sequentially, could be an interesting extension to

the methodology employed here, however the combination of sites removed or the temporal

sequence would greatly add to an already highly complex biotic response. Therefore we limit

removals to single sites for simplicity.

Supporting information

S1 Text. Supporting information for “Community composition exceeds area as a predictor

of long-term conservation value”.

(PDF)
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28. da Silva Cáceres ME, Aptroot A, Lücking R. Lichen fungi in the Atlantic rain forest of Northeast Brazil:

the relationship of species richness with habitat diversity and conservation status. Brazilian Journal of

Botany. 2017; 40(1):145–156. https://doi.org/10.1007/s40415-016-0323-6

29. McGeoch M, Gaston KJ. Occupancy frequency distributions: patterns, artefacts and mechanisms. Bio-

logical Reviews. 2002; 77(3):311–331. https://doi.org/10.1017/S1464793101005887 PMID: 12227519

30. Cottenie K. Integrating environmental and spatial processes in ecological community dynamics. Ecol-

ogy Letters. 2005; 8(11):1175–1182. https://doi.org/10.1111/j.1461-0248.2005.00820.x PMID:

21352441

31. Convention on biological diversity (CBD). First draft of the post-2020 global biodiversity framework;.

https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf.

32. Convention on biological diversity (CBD). Indicators for the post-2020 global biodiversity framework;.

https://www.cbd.int/sbstta/sbstta-24/post2020-indicators-en.pdf.

33. Adler RJ. The Geometry of Random Fields. SIAM; 2010.

34. Gabriel KR, Sokal RR. A New Statistical Approach to Geographic Variation Analysis. Systematic Zool-

ogy. 1969; 18(3):259–278. https://doi.org/10.2307/2412323

35. Rossberg AG. Food Webs and Biodiversity: Foundations, Models, Data. John Wiley & Sons; 2013.

PLOS COMPUTATIONAL BIOLOGY Predictors of conservation value

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010804 January 30, 2023 15 / 15

https://doi.org/10.1016/j.tree.2009.04.011
https://doi.org/10.1016/j.tree.2009.04.011
http://www.ncbi.nlm.nih.gov/pubmed/19665254
https://doi.org/10.1111/ele.13398
http://www.ncbi.nlm.nih.gov/pubmed/31612627
https://doi.org/10.1038/nature02121
http://www.ncbi.nlm.nih.gov/pubmed/14712274
https://doi.org/10.1371/journal.pone.0058941
https://doi.org/10.1371/journal.pone.0058941
http://www.ncbi.nlm.nih.gov/pubmed/23527053
https://doi.org/10.1111/ele.13294
https://doi.org/10.1111/ele.13294
http://www.ncbi.nlm.nih.gov/pubmed/31243848
https://doi.org/10.1038/s41467-021-23769-7
https://doi.org/10.1038/s41467-021-23769-7
http://www.ncbi.nlm.nih.gov/pubmed/34131131
https://doi.org/10.1073/pnas.1915313117
http://www.ncbi.nlm.nih.gov/pubmed/32518107
https://doi.org/10.1103/PhysRevE.102.062405
http://www.ncbi.nlm.nih.gov/pubmed/33465982
https://doi.org/10.1371/journal.pcbi.1007827
https://doi.org/10.1371/journal.pcbi.1007827
http://www.ncbi.nlm.nih.gov/pubmed/32413026
https://doi.org/10.1016/0025-5564(83)90002-0
https://doi.org/10.2307/1934857
https://doi.org/10.2307/1942268
https://doi.org/10.1002/ece3.4305
http://www.ncbi.nlm.nih.gov/pubmed/30250669
https://doi.org/10.1007/s40415-016-0323-6
https://doi.org/10.1017/S1464793101005887
http://www.ncbi.nlm.nih.gov/pubmed/12227519
https://doi.org/10.1111/j.1461-0248.2005.00820.x
http://www.ncbi.nlm.nih.gov/pubmed/21352441
https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf
https://www.cbd.int/sbstta/sbstta-24/post2020-indicators-en.pdf
https://doi.org/10.2307/2412323
https://doi.org/10.1371/journal.pcbi.1010804

