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Abstract 

Background:  

Lithium-ion (Li-ion) batteries are one of the most attractive and promising energy storage 

systems that emerge in different industrial sectors –at the top of them electrical vehicles (EVs) 

and electronic devices –regarding the tight collaboration of scientific community and industry. 

Among crucial factors on performance of Li-ion batteries, thermal management is of great 

importance as it directly impacted the system from different views.  

Methods: 

In the present review, state of the art of advance cooling systems’ (such as air/liquid-based 

cooling, PCM, refrigeration, heat pipe and thermoelectric) parameters of Li-ion batteries from 

different aspects are scrutinized. Exergy, economic and environmental (3E) analysis used as 

powerful tools to realize important parameters in battery thermal management. Furthermore, 

data-driven and machine learning applications in thermal regulation of Li-ion battery and their 

impact on putting the next steps in this context have been discussed.  

Significant findings: 

The pros and cons of each system considering aforementioned tools are realized. Particularly, it 

was realized that machine learning can be play a vital role in this context while other parameters 

with respect to 3E analysis can put several steps for better thermal management. Finally, 

concluding remarks and recommendations and research gaps as the future directions presented. 

Keywords: Li-ion Battery; Thermal Regulation; Artificial Neural Network (ANN); Deep 

Learning; Data-driven Methods; Energy Storage 

Nomenclature  

AC Alternating current 

BTMS Battery thermal management system 

EV Electrical vehicle  

Exe Exergetic 
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Ene Energetic 

HEV Hybrid electrical vehicle 

PCM Phase change material 

PSO Particle Swarm Optimization 

Li-ion Lithium-ion 

LIB Lithium-ion Battery 

COP Coefficient of performance 

TMS Thermal management system 

FVM Finite volume method 

P&ID Piping and instrument diagram 

SVR Support Vector Regression 

1. Introduction 

Energy in any form is the one of the important parts of human being. It is among the most 

constant-consumed goods that consistently have emerged through history and a vital element for 

global development. Generally speaking, energy in whatever forms, it can be commonly 

categorized into two parts: primary and secondary. Primary energy forms can be defined as those 

that only need to be extracted or captured with/without separation, cleaning, and /or grading 

before the energy contained in. In general, primary energy forms converted either to heat or 

mechanical work. This from of energy commonly would be found in nature and it can be referred 

any transformation and/or conversion processes. Obviously, most of the renewable and non-

renewable energy sources can put into this category. Some instance of primary energy forms are 

natural gas, oil, coal (in non-renewable context and wind, geothermal, tidal, solar, biomass, water 

(flowing-falling) for renewables. On the other side of the coin, secondary form of energy 

comprise all type of energy that obtain as the result of transforming primary energy form. 

Interestingly, the second forms of energy are the most utilized for end-users as they can be 

directly employed by human- also called energy carriers- and some of the prominent examples 

are diesel, gasoline, electricity, hydrogen, ethanol just to name a few. Moreover, by increasing 

the population the rate of the energy demand through the world is exponentially on the rise. 

According to the IEA report in the less than 50 years the rate of energy consumption on in the 

world becomes twice. As a result, many scenarios to provide energy (whether the primary or 
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secondary forms) are proposed. Meanwhile, different types of batteries are one of the most 

attractive methods to provide energy in this context. In this regard, lithium-ion batteries over 

other novel energy storage systems is of great importance due to the numerous advantages over 

other type of battery such as high energy density, low rate of self-discharging, low maintenance, 

broad application thorough different purpose, environmentally benign and high number of 

charging cycles [1]. Applications of lithium-ion batteries were defined in broad ranges from 

electrical vehicles to electronic devices. Figure 1 shows some of the most commonly used and 

emerged applications of lithium-ion batteries.  

 

Figure 1. Different applications of lithium-ion battery through industry 

 

Likewise any novel technology Li-ion battery also confronted with many challenges (Figure 2). 

In recent years among important challenges that associated in development of lithium-ion 

batteries, thermal management came into spotlight since it directly/indirectly would affect other 

parameters. Regarding the importance of battery thermal management numerous reviews from 

different views have been conducted in this context. A huge number of these reviews are 

highlighted advances and comparisons between different active/passive thermal management 

systems [2–7]. Moreover, other approaches such as the type of materials [8], degradation of 

battery [9], safety issues [10], modeling approaches [11], high performance anode and cathode 

electrodes[12–14], electrodes modification through thermal management improvement [15] and 

nanomaterials assisted in cooling of systems [16,17] were reviewed. However, the role of 

important thermodynamic, economic, environmental and artificial intelligent parameters in 

thermal management of lithium-ion batteries has been outshined. Hence, the main focus of 
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present review is to highlight the important parameters in cooling of lithium-ion battery 

considering exergy, economic, environmental and machine learning application. 

In the first part of manuscript various thermal management scenarios and their pros and cons are 

concisely discussed. In the second part, we discussed on exergy, economic and environmental 

analysis regarding different battery thermal management systems. Additionally, application of 

machine learning, data-driven and numerical methods for thermal management of Li-ion 

batteries examined. Finally, prospects and future works based on existing research gaps in open 

literature are recommended. 

 

 

Figure 2. The most well-known challenges in development of lithium-ion batteries 

2. Battery thermal issues 

The process of providing energy via batteries is on the basis of electrochemical reactions. In 

essence, exothermic reactions and ohmic losses are two main factors which have contribution in 

generating heat in batteries. As the heat generated, series of chain reactions in cells and modules 

occurred. Since temperature of cells as well as modules in battery is not mutually exclusive, 

increasing temperature directly affect cells and modules. It means, when a cell’s temperature 

increases it impacted the adjacent cell too which results in rising temperature through the 

module, hence, the heated module also transfer heat to its neighbors module. This chained-like 

phenomenon in cells and modules is the reason for increasing and distributing temperature in 

battery’s packs. Increasing temperature of batteries has several side effects from different 

viewpoints in broad ranges from performance to reliability and beyond that, the safety. From 

performance viewpoint, increasing temperature negatively impacted battery’s performance and 

diminished efficiency whilst it directly related on the reliability of using Li-ion batteries - 

particularly in electrical vehicles (EVs)- as the supplied-energy would not enough to drive EV in 
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different conditions. Importantly, the vital factor that directly connected to battery’s temperature 

is safety of passengers, since increasing temperature further than a specific threshold leading to 

thermally runaway in battery and it can lead to gas leaking, fire, and even explosion [18]. 

Generally, in Li-ion batteries there is an optimum temperature range between 15-35 °C where the 

battery performance is maximized in this range. Therefore, uniform temperature distribution and 

controlling the maximum temperature of batteries is the great matter of importance. Hence, 

thermal management of battery can be important from two prospects: (i) providing a uniform 

temperature distribution across cell-to-cell and module-to-module. (ii) preventing unusual 

temperature enhancement in cells and modules. In this regard, a number of methods have been 

proposed for battery thermal management system. Fig. 3 depicted the different cooling 

techniques to improve performance of batteries. 

 

Figure 3. Various methods applied for lithium-ion battery cooling 

3. Methods for cooling Li-ion battery 

3.1 Air cooling 

Air as the most common fluid around us has been scrutinized tremendously for Li-ion BTMS 

and is broadly implemented for commercial purposes. A good example is two hybrid EVs of 

Honda (Model “Insight”) and Toyota (Model “Prius”) that utilized cabin air for thermal 

management [19]. Typically, air-based battery cooling has been divided to passive and active 

mode where the passive mode defined when air (i.e., ambient air) is passing through the battery’s 

pack without using any electrical energy (and /or pre-cooled and post-cooled air) while in active 

cooling, many parts such blowers, air-condition system etc. are involved and the battery pack 
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used the pre/post air-cooled of cabin [20,21]. Among three modes of radiation, convection and 

evaporation heat transfer in air-based cooled systems, cooling of battery is on the basis of 

convective heat transfer. Interestingly, it was proved that convective heat transfer coefficient in 

active mode has superior performance by higher rate of heat dissipating rather than passive 

mode. Although active cooling shows higher performance [22], passive mode air cooling 

systems has several advantages such as lower cost/maintenance, simple structure, and 

lightweight [23]. Therefore, trade-off should be managed considering the pros and cons of each 

method; however, regarding the importance of thermal management system in battery lifespan 

and its performance, active mode primarily brought more into the spotlight from academic 

context to commercial application. In recent years, modifications on active mode air cooling 

system is predominantly focused on modifying geometry of structure, optimizing parameters and 

developing thermal models.  

3.2 Liquid cooling 

The other method for thermal management of batteries is liquid-based cooling systems which has 

prominent advantages such as higher temperature uniformity and compactness [24]. When 

liquid-based cooling system in term of heat transfer approach weigh up with air cooling, it is 

elucidated that the it has some advantages over air-based cooling system. Generally, the 

prominent advantage of liquid is that it has higher thermal conductivity rather than air-based 

cooling (natural and force) systems which makes it more interesting alternative compare to air. 

Practically, liquid-based cooling categorize as direct and indirect cooling [5]. Briefly, direct 

liquid-based cooling defined whereas coolants are in direct contact with battery modules and it 

can realize by submerging battery’s modules in the cooling medium. The indirect cooling-as its 

name is obvious- method is realized when the cooling medium is not in direct contact with 

modules and there is a jacket-like (or tube) heat exchanger that modules are located and by 

passing cooling fluid the heated jacket/tube transfer heat to the coolant [25]. One of the 

important differences between direct and indirect cooling methods is that the thermal resistance 

during indirect cooling unavoidably increases since the heat first should pass through the heat 

exchanger and after that it absorbed by the cooling medium while direct cooling is more efficient 

from this prospect. However, the disadvantage of direct cooling is high power consumption 

(because in this scenario usually coolants with high viscosity such as oil utilized) whilst in the 

case of the indirect cooling, water (which have lower viscosity) is an appropriate as well as 
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conventional medium. Various types of liquids (experimentally and theoretically) such as water 

[26], ethylene glycol-oil [27,28] and nanofluids [29–31] were suggested.  

3.3 Phase change materials (PCM) 

Compare to the air-based and water-based cooling, thermal management by phase change 

materials (PCMs) has some advantages over the above mentioned systems. Although utilizing 

PCMs consider as passive cooling method, it has a high potential to regulate the temperature of 

battery [2]. The advantage of using PCM can be mention as: (i) less components are needed 

compare to other cooling systems. (ii) generally, less space is required in PCM-based cooling 

system and the cost of installing is low. (iii) no need to electrical components such as pump and 

blower, thus, no power consumed. (iv) high latent heat which results in absorbing a huge amount 

of energy. (v) non-corrosive/toxic and good thermal stability characteristics which  make it a safe 

and reliable medium for cooling [20]. In PCM-based system, the process of regulating 

temperature directly happened which means battery’s cells are in direct contact with PCM. 

Generally, there are two types of the PCM-based cooling systems - solid-to-liquid and liquid-to-

gas- for BTMS [32]. However, in a new approach, Xu et al. proposed a new method of using 

PCM comprising heat transfer via solid-to-solid process [33]. It should be noted that all sides of 

PCM are surrounded by metal absorber to dissipate the absorbed heat by PCM into the 

environment. It is worthy to mention that our point about PCM in this paper is referred to solid-

to-liquid PCMs such as paraffin wax. 

3.4 Heat pipes 

Utilizing heat pipe is another innovative strategy for thermal management of batteries. Actually, 

heat pipes can be consider as a sub-sector PCM-based cooling systems because thermal 

regulation in this method is also based on evaporation and condensation process of working 

fluid. Heat pipes are more attractive compare to it counterparts PCM-based systems because of 

their excellent thermal conductivity and low thermal resistance [4]. Heat pipes consist of three 

important parts that are evaporation, condensation and adiabatic section [34]. Briefly, the 

working fluid in the beginning is located in the evaporator section and by raising the temperature 

fluid (heat sink), the liquid phase transform to gas [20]. Due to the internal pressure difference 

the gas moves to the condenser section where it release the absorbed heat (by natural or force 

convection using as liquid or air) to the environment and turn to the liquid phase again. Then the 

liquid back to the evaporator section through the adiabatic section that usually equipped by 
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wicks. As it can be see, heat pipes are also consider as passive cooling method without any need 

to electricity.  

3.5 Thermoelectric 

The other method that recently suggested by researchers for thermal management of batteries is 

thermoelectric modules. Thermoelectric modules can utilize as a triple-purpose device. It can 

generate electricity by temperature difference in the hot and cold sides [35]. It can consider as 

heating device [36] as well as cooling device where it needs to dissipate the generated heat by 

systems (as well as surfaces) [37]. The structure of thermoelectric is based on metal (or 

semiconductor) legs that electrically and thermally connected each other in series and parallel 

respectively. In the battery thermal management systems, the main application of the 

thermoelectric is to diminish battery’s temperature pack. It is worthy to be mentioned that 

increasing the temperature of hot side of thermoelectric has negative effect on the cooling 

performance and efficiency, therefore a number of strategy to dissipate the generate heat from 

the hot side such as aluminum heat sinks [38], air-cooling etc. are employed.  

3.6 Refrigerator cycle 

The refrigeration cycle for battery thermal management is almost like the liquid-based cooling 

systems but with some extra components. Same as the air-condition system of car; it uses a vapor 

compression cycle. The evaporator of refrigerator cycle is attached in parallel with evaporator of 

vehicle’s air-condition and the vapor compression cycle runs both of them. Utilizing the 

refrigerator cycle alongside vehicle’s air-condition system leads not only to reduce the vehicle 

weight but higher temperature of cooling with respect to improving specific energy consumption 

and economic benefits are also obtained [2,4]. In this type of cooling system, the liquid pumped 

into the evaporator where it absorbed the heat of battery and change the phase from liquid to 

vapor at low pressure and low temperature. Afterwards, the vapor passes through the compressor 

where it compressed and turns into the high-pressure high-temperature fluid and it enters to 

condenser section and discharge the absorbed heat into the environment and turn to liquid again. 

The refrigerant’s liquid expanded by an expansion valve and pump to the evaporator section. 

3.7 Hybrid methods 

Each method for BTMS has it pros and cons and there is no “grand-master” method with only 

positive in which covered all aspects. Subsequently, researchers have been employed other 
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methods to benefit all of their advantages simultaneously. Thus, different cooling strategy 

methods can be integrated together. It seems that air-based cooing system because of the simple 

structure and flexibility is one of the appropriate candidates to combine with other methods. 

However, it is not a law and it possible for other methods to be utilized in an integrated design. 

Table 1 presented the pros and cons of different cooling methods. 

 

 

Table 1. A general comparison between different cooling scenarios 

Cooling Type Strong Points Weakness Points 

Air cooling 

(passive) 

Low primary and operation cost 

Simple layout and easy maintenance 

Direct contact 

Lightweight 

Low efficiency 

Low specific heat 

Non-uniform air flow distribution 

Air cooling 

(active) 

Simple layout and easy maintenance 

Direct contact 

Lightweight 

Low efficiency 

Low specific heat 

Non-uniform air flow distribution 

Additional costs due to utilizing fans 

Liquid 

Cooling 

(passive) 

Low primary and maintenance cost 

Easy maintenance 

High efficiency  

Superior specific heat capacity 

Superior thermal conductivity  

Leakage 

Liquid cooling 

(active) 

High efficiency  

Direct contact 

Superior specific heat capacity 

Complex layout 

High cost 

Short lifetime 

Leakage 

PCM cooling Cheap method 

Longtime operation 

Uniform temperature regulation 

Superior latent heat 

High efficient 

Low thermal conductivity 

Leakage 

Heat pipe 

cooling 

Exceptional thermal conductivity 

Superior efficiency 

Costly 

Leakage  

Complex layout 

High primary and operation cost 

 

Refrigerator 

cycle 

High efficiency 

Superior low-temperature operation 

Adjustable temperature ranges 

Reliable operation 

High cost 

Leakage 

Complex configuration 
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Thermoelectric 

cooling 

No moving part 

None chemical reaction 

Noise free 

Longtime operation 

None GHGs emission 

Low to moderate maintenance cost 

Low efficiency 

External electricity requirement  

 

4 Exergy analysis  

The most beneficial work that can be produced by any energy system (whether the renewable or 

non-renewable) in the pursuit of thermodynamic energy balance is exergy [39]. For evaluating 

the performance of energy system diverse methods of thermodynamic are adopted, among them 

exergy analysis is of great interest of researchers. Exergy is a powerful tool to evaluate the 

performance of thermal system considering the second law of thermodynamics, and the 

mass/energy balance [40]. Generally, exergy analysis brought the processes of systems in 

practical applications and comparing them to elucidate the causes/locations of thermodynamic 

losses more plainly in comparison of energy analysis. In this regards, exergy approach would be 

assisted for modifying and optimizing of designs [41]. Table 2 displayed the summary of 

different researches on thermal regulation of Li-ion batteries based on exergy. The results 

showed that the highest amount of exergy efficiency was obtained in electrical vehicle with using 

heat pipe, refrigerator cycle and air condition as a cooling method, which was equal to 44.2% at 

temperature of 35 oC. Additionally, the ambient temperature has a negative influence with 

exergy efficiency and positive influence with exergy destruction in the cooling system of Li-ion 

batteries. 

 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Table 2. Summary of exergy-based studies on the thermal regulation of lithium-ion batteries 

Ref. Type of system Type of study Capacity of 

battery 

Coolant COP (Exe) Exergy Efficiency Remarks 

[42] Electrical 

Vehicle 

Mathematical 

modeling 

145 Ah Air/R134a 0.32 (0.26-39) - Heat transfer between 

system-environment as well 

as fluid’s friction with 

components were the major 

contributors in 

irreversibility 

[43] Hybrid EV Mathematical 

modeling 

NA Octadecane 2.78-2.85 32.2-34.8% Exergy Efficiency in the 

scenario of Using PCM was 

higher 5.04% rather than no 

PCM 

Low exergy efficiency of 

system components can be 

address by diminishing the 

mean temperature 

difference of working fluids 

[44] Electrical 

Vehicle 

Numerical 

simulation 

7 Ah Heat pipe 

Refrigerator 

cycle 

Air condition 

2.61-4.71 

(T=25°C) 

2.94-5.76 

(T=30°C) 

3.33-

7.19(T=35°C) 

42.1% (T=25°C) 

43.17% (T=30°C) 

44.2% (T=35°C) 

The maximum temperature 

of battery remind below 

40°C and the large 

difference between 

temperature at initial stage 

make up by compressor 

cooling capacity 

[45] Electrical 

Vehicle 

Theoretical and 

experimental 

51.2 Ah Water - - The highest performance of 

the system was obtained in 

water-cooled system was in 

inlet to middle-positioned. 

[46] - Numerical - - - 30-40 % 

 

Ambient temperature has an 

inverse relation with exergy 

efficiency of EVs but it 

directly related to exergy 

destruction. 

[47] Electrical Theoretical and - R134a 1.7-4 for various 26-29% Exergy destruction has an 
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Ref. Type of system Type of study Capacity of 

battery 

Coolant COP (Exe) Exergy Efficiency Remarks 

Vehicle experimental R290 

R600 

R600a 

R1234yf 

DME 

evaporation and 

condensation 

temperatures 

inverse relation with COPexe 

By applying 

exergoeconomic and 

exergoenvironmetal 

optimization exergy 

efficiency can be improved 

by about 13% and 5% 

respectively 

[48] Hybrid Electrical 

Vehicle 

Numerical 

simulation 

60 Ah Refrigerant-

cooling 

2.9-3.9 22-28% Exergy efficiency can 

increases improved by 

optimizing the heat 

exchanger components due 

to their high exergy losses 

[49] Hybrid Electrical 

Vehicle 

- - R134a (in 

refrigerator 

cycle) 

Water- glycol 

(in battery) 

1.5- 4.5 (COPene) 

0.27-0.52 

(COPexe) 

- Increasing the evaporation 

temperature results in 

higher energetic/exergetic 

COPs while decreasing 

condensation temperature 

lead to diminish 

energetic/exergetic COPs of 

system 

[50] Hybrid Electrical 

Vehicle and 

Electrical 

Vehicle 

Theoretical - R134a (in 

refrigerator 

cycle) 

Water (in 

battery) 

2 (COPene) 

 

0.32 (COPexe) 

33% - 

[51] Electrical 

Vehicle 

Theoretical - R744 

R152a 

R134a 

R290 

R600 

R600a 

R1234yf 

DME 

0.25-0.31 

(COPexe) 

2.21- 2.76 

(COPene) 

- Although integrating two-

level transcritical CO2 lead 

to improvement of the 

system, the COPexe of the 

proposed system still is 

lower in comparison with 

refrigerants-based cooling 

methods. 
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Ref. Type of system Type of study Capacity of 

battery 

Coolant COP (Exe) Exergy Efficiency Remarks 

[52] Electrical 

Vehicle 

Theoretical 16.1 Ah Refrigerator 

cycle (R134a) 

PCM 

(octadecane 

and 

pentadecane) 

2.5 16.7% From exergetic point of 

view the PCM-cycle has 

superiority over the 

refrigerator cycle but the 

PCM-cycle required greater 

of amount of energy for 

circulating of PCM. 

The required power for 

PCM circulation depended 

on the number of 

parameters such as 

concentration, tube 

configurations and 

operational conditions 

[53] Electrical 

Vehicle 

Experimental 20 Ah - - - - 
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Hammut et al. [42] mathematically applied the exergy analysis on thermal management system 

of an electrical vehicle with putting the ambient temperature as the main objective of the study to 

evaluate the performance of the system at high temperatures (ambient temperature between 0-

60°C). The values of energetic COP, exergetic COP and sustainability index calculated by 

around 2, 0.32, and 1.32 whilst it varied between 1.8 - 2.4, 0.26 - 0.39 and 1.28 - 1.37 

respectively. Findings elucidated that the major effect on COPexe is the temperature of ambient. 

Fig. 4 illustrates the effect of ambient and evaporator temperatures of the system. 

 

Figure 4. Effect of ambient and evaporator temperatures with exergetic COP Reprinted with 
permission from Ref [42]  

Javani et al. [43] examined the effect of mass fraction of phase PCM on BTMS of a hybrid EV 

by utilizing octadecane from exergetic and energetic viewpoints by applying multi-objective 

optimization to maximize the exergy efficiency. The results revealed that augmenting PCM mass 

fraction play an important role in enhancing exergy efficiency whereas increasing 15% of PCM 

mass fraction leads to improvement in COPexe and exergy efficiency by around 0.08 and 1.1% 

respectively. Yao et al. [44] suggested the use of heat pipe and refrigerator cycle in an integrated 

design with an AC system for cooling of Li-ion battery of EVs. The proposed cooling apparatus 

for cooling the battery package was set for three preset temperatures of 25, 30 and 35°C. The 

findings revealed that the at higher preset temperatures (i.e., 35°C) higher energy, exergy and 

COP improvement was obtained because of higher evaporation temperature. The average exergy 

efficiency of systems when the temperature increased from 25°C to 30°C and 35°C improved by 

around 2.63% and 5.07% while for COP it improved 16.95% and 38.41% respectively. Xu et al. 

[45] theoretically and experimentally examined the effect of water entering position on the 

cooling performance of lithium ion battery considering exergy approach. Their results based on 
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exergy optimization for four scenarios showed that entering cooling fluid from the middle of the 

Li-ion battery pack not only lead to lowest exergy loss of system but lead to highest temperature 

uniformity in package. Ramandi et al. [46] employed exergy analysis as a tool to scrutinize the 

effect of PCM in different configurations comprises single-PCM shell and double-PCMs shells 

as the heat sink for BTMS with and without walls insulation. A numerical study by 

implementing finite volume method (FVM) for four scenarios showed that the double-PCMs 

shells (consists of cobaltous nitrate and capric acid) in terms of exergy efficiency has superiority 

over single-PCM shell while walls are insulated whilst the highest overall exergy efficiency 

exceeded 40%. Hamut [47] in a comprehensive experimental investigation and theoretical 

validation examined the performance of thermal management system with a refrigerator cycle 

with different coolant from different point of views including energetic, exergetic, environmental 

and economic analysis, as depicted in Fig. 5. Results elucidated that among different scenarios 

the Dimethylether has the highest exergy efficiency. Interestingly, due to the nature of exergy 

destruction of components which can be express as exogenous/endogenous and 

unpreventable/preventable, they declared as exogenous exergy is substantial part of the exergy 

destruction in components and it could be potentially diminished.  

 

Figure 5. Module structure of lithium-ion battery with cooling Reprinted with permission 
from Ref  [44]  

As shown in Fig. 6, Shen and Gao [48] theoretically studied the dynamic interaction of a 

refrigerator cycle with air condition system of an electric vehicle under high temperature and 
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high speed dynamic conditions. The simulation results for the high speed conditions and 1000 

W/m2 solar radiation falling to the cabin elucidated that augmenting the rate of discharge as well 

as heat generation lead to higher reduction in energetic and exergetic COPs. 

 

Figure 6. a) P & ID diagram b) Thermal regulator system of the electrical vehicle Reprinted 
with permission from Ref [48]  

Hamut et al. [54] examined the effect performed a multi-objective optimization based on exergy 

approach. Their findings showed that exergy efficiency, cost and environmental impacts can 

improve by about 27%, 10% and 19% respectively at the state of non-optimized results. Fig. 7 

displayed the hybrid electrical vehicle BTMS. 
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Figure 7. Illustration of a hybrid electrical vehicle thermal management system Reprinted 
with permission from Ref [54]  

Hamut and Dincer [49] conducted a theoretical study on a refrigerator-based system of cooling 

system of battery for a HEV. Based on various design parameters consists of pressure drop, air 

mass flow rate (max 0.5 m/s), sub-cooling superheating temperature (max to 15°C), varied 

evaporation (0-15°C) and condensation (40-55°C) temperature, the exergetic COP increases by 

around 8% by applying sub-cooling and superheating in heat exchanger while pressure drop in 

the system due to augmenting flow rate up to 60 kPa results in reduction of exergetic COP by 

around 12%. Hamut et al. [50] compared three methods of passive cooling (air), active (R134a) 

and hybrid active (R134a+Water) cooling for Li-ion BTMS in terms of increasing and 

uniformity of cells temperatures as well as entropy generation. Their results showed that 

increasing cells temperature were 5.2°C, 4.6°C, 3.9°C while the median temperatures uniformity 

stands on 7.75°C, 10°C, 2.52°C and entropy generated were 0.037 W/K, 1.315 W/K, 0.012 W/K 

for passive, active, and hybrid active scenarios respectively, which indicated that the active 

hybrid methods is the most appropriate option. Acar et al. [55] investigated the use of phase 

change materials in three different scenarios for cooling Li-ion battery from energetic and 

exergetic point of views and concluded that the system that has better and uniform temperature 

distribution obtained higher exergy efficiency. Hamut [51] utilized multi-level vapor 
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compression transcritical CO2-based refrigerator alongside internally heat exchanger with water-

glycol coolant for Li-ion TMS. The results showed that using multi-level compression leading to 

8% improvement in exergy efficiency while integrating internally heat exchanger with multi-

level compression results in 22% enhancement in exergy efficiency. Moreover, among different 

refrigerants applied, Dimethylether has slightly (~3%) higher COP based on exergy compare to 

R290, R600, and R600a. Hamut et al. [56] in a comparative study utilized a number of 

commercial refrigerants including R134a, butane, isobutene, tetraflouropropene and 

Dimethylether for Li-ion cooling in EV and HEVs. Their findings revealed that using 

Dimethylether as refrigerant the COPene and COPexe of the system improved by about 7.9% and 

8.2%, however, when tetraflouropropene used in the cycle the COPene and COPexe were reduced 

4.9% and 4.2% compared to reference model respectively. Zhang et al. [52] compared the 

performance of three cooling methods of battery in EV which are direct cabin air blower, 

refrigerant cycle, and PCMs. The cabin air method chose for mild climatic conditions while two 

scenarios of R134a-based refrigerator cycle as well as octadecane and pentadecane as PCMs are 

selected for extreme hot and cold climate conditions respectively. Their findings illustrated that 

the PCM-based cycle in terms of exergy efficiency has 23% greater over the refrigerator cycle 

under cooling and heating modes. Fig. 8 shows the use of nano/PCM in cooling of Li-ion battery. 
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Figure 8. illustration of a) battery module, b) pack c) actual view of slurry PCM d) Fe-SEM 
image of Nano-PCM Reprinted with permission from Ref [52]  

Malik et al. [53] used a braze plate heat exchanger made by aluminum and water as cooling fluid 

to evaluate the effect of different coolant temperatures (from 10°C to 40°C) and discharge rates 

(from 1C to 4C) on the electrical, energy and exergy efficiencies of the system and found that 

30°C fluid temperature is the most optimum temperature in terms of energy and exergy 

efficiency. Furthermore, it was elucidate that the rate of exergy destruction augmented by 

increasing the rate of discharge. Similarly, Hamut et al. [57] reported system’s exergy efficiency 

of a refrigerator-based cycle for TMS of Li-ion battery by around 24%. 

5 Economic analysis 

Economic analysis is the most crucial part in any project from macro to micro/nano-scales. It is 

vital to realize the cost assessment of systems since the proposed structure/system may have a 

great results from technical point of view but economically would not be feasible due to the high 

costs or the economic conditions for a some regions (such as poor communities in developing 

world). Economic analysis based on the type of system can be applied for different types of 
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energy systems, subsequently, involving different parameters from insurance costs to salvage 

value, added value, sinking fund factor, etc. [58] are of great importance. Furthermore, in the 

context of lithium ion battery thermal management this is verily imperative as the BTMS is 

usually related to the economic analysis of EVs. Subsequently, from economic standpoints a part 

of developing EVs are related to the cost analysis of battery and cooling apparatus. It should be 

noted that from technical viewpoint if the temperature uniformity in the cell package maintain in 

a logical range as well as the increasing temperature remain in a specific rational range (the 

preset temperature) the lifetime of the battery would increase. Therefore, from the economic 

view of EVs, the cost associated with battery which is one of the main obstacles in developing 

EVs is also decrease. Meanwhile, evaluating the system from exergoeconomic that is the 

combination of exergy+economic to realize a cost-effective approach on the feasibility of the 

system is also of great importance. Importantly, the battery lifespan is directly related to the 

economic analysis because of the fact that if battery degraded more than 80% of its nominal 

value, it cannot be consider as competitive as normal vehicle (with internal engine) from this 

prospect [59]. Table 3 depicted the economic and exergoeconomic comparison of various 

methods on cooling of Li-ion batteries. The outcomes depicted that the by increasing the life 

span of battery, the cost of the system decreases. Also, the highest sensitive parameters on 

performance of the Li-ion are the chiller dimension and compressor speed. 
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Table 3. Summary of the economic-based analysis of Li-ion cooling methods 

Ref. Study type Objectives Concluding Remarks 

[59] Theoretical study Formulating economic charging-cost 

realizing the impact of voltage cut-off, resistance, 

surrounding temperature on the performance of charging 

Developing a high-reliable economy-conscious charging 

regarding the speeding charge and thermal changes 

The constant current has great impact on the 

charge of battery. 

 

[60] Theoretical study 

(Case study) 

To bring the cost of into the life cycle analysis 

To compare different cooling methods regarding their cost-

benefits 

To realize different cooling scenarios with respect to main 

contributors of costs in the context of life cycle cost 

By increasing the battery lifetime by around 

2 folds the cycle cost reduced 33% while 

decreasing the lifetime by about 50% results 

in 52% augmenting in lifespan costs 

The total life cycle cost of optimized tab-

cooled decrease 40% compare to air-cooled 

[61] Theoretical study To develop a predictive model for power generation of Li-

ion battery 

Coupling the power model in the framework of predictive 

non-linear economic model based on important parameters 

Developing a high accurate model with considering all 

constrains with least errors 

Implementing model predictive control on 

the basis of economic lead to solving 

complex multi-variable inputs and 

constraints of battery. 

The accuracy of model in predicting state of 

power in a wide range of operating 

conditions and dynamic loads is high enough 

that only less than 0.2% error was observed. 

[62] Theoretical study The five energy storage methods (EES, SHTES, PCM, 

CAES, LAES) were applied as a coolant to improving the 

performance of the Li-ion battery.   

The couple of LAES and PCM can have a 

high effect for cooling technique in 

comparison with EES, SHTES, CAES 

methods. 

[63] Theoretical study Feasibility investigation Li-ion and Pb-Acid batteries for 

EVs and PVs based on economic analysis 

Comparing three Li-ion cooling systems for different 

applications 

Parameters such as the period of return investment, battery 

applications and operation years chose as the most 

important criteria for BTMS. 

Type of application is an important criterion 

for selecting the battery on the basis of 

economic analysis 

Pb-acid is preferable for 3 and 5 years of 

operation but Li-ion for 10 and 15 years 

operation. 

Regardless of economic aspects, the space 
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Ref. Study type Objectives Concluding Remarks 

 need for BTMS is also an important factor 

[57]  Applying exergoeconomic and cost analysis on 

components of refrigerator cycle for BTMS 

From exergoeconomic point of view the 

pump and expansion valves has the least 

priority because of their high exergy 

efficiency 

 

[64] 

 Realizing a cost-effectiveness approach by applying 

conventional and advance exergoeconomic. 

Splitting the investment cost to avoidable and unavoidable 

costs. 

Components efficiency and operating conditions can lead 

to cost optimization of BTMS system. 

Trade-off should be managed between 

efficiency and operating conditions of   

components with investment cost 

Theoretically, on the basis of advanced 

exergoeconomic, up to 81% of total cost is 

avoidable 

[65] Theoretical study Evaluating the performance of two enclosure shapes filled 

by PCM for BTMS from economic viewpoint. 

 

The shape of enclosure is of great 

importance where elliptical shape enclosure 

from energetic and economic viewpoints is 

more preferable than circular 

[66] Numerical and 

experimental studies 

The proposed model was used of the Li-ion thermal 

management system to optimize three various standard 

driving cycles with different variables including the 

compressor rpm, fan rpm, chiller dimension, radiator 

dimension, and condenser dimension. 

The highest sensitive parameters on 

performance of the Li-ion are the chiller 

dimension and compressor speed. 

[67] Theoretical study Developing a transient method for Li-ion battery 

temperature regulation for two active (fan) and passive 

(PCM) methods 

Examining the life cycle cost assessment when fan and 

PCM used as the cooling method 

While the rate of cooling by active method is 

better than passive but battery’s temperature 

is more uniform in passive method. 

Active cooling method in term of cyclic cost 

has superiority over passive method 

[68] Experimental study The F2-type of the cooling fluid system using M mode 

shape of cooling sheet with considering the discharge rate, 

inlet temperature and flow rate was evaluated. 

The high cooling water flow rate at various 

charging and discharging cycle were showed 

the cooling water flow rate should be no 

lower than 6 and 12 L/h when batteries are 

discharged at the rates of 1 and 2C, 

respectively. 
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Liu et al. [59] coupled the costs of electrical-loss and battery-age in design of the Li-ion battery 

charging in different scenarios from economical point of view by multi objective optimization 

using genetic algorithm. The rate of battery degradation for different cycle from 0-1200 cycles 

via five cases was evaluated. Their findings indicated that until the first 70 cycles the rate of 

battery degradation for both objectives of minimum charge-cost and minimum charge-time is 

similar but by increasing the number of cycles to 1200, the rate of degradation in the scenario of 

minimum charge-time is 9.9% (almost 0.245 Ah) lower than the case of minimum charge-cost. 

Lander and co-workers [60] developed a mathematical model and coupled the Li-ion cells’ 

temperature as the function of battery lifespan for thermal management of packing by taking the 

life cycle cost of the system into the consideration via four important parameters which are 

battery, vehicle, electricity, and maintenance costs. Meanwhile, they compared four TMS 

methods of air-cooling, tab-cooling, surface-cooling and immersion-cooling with respect to the 

battery degradation and number of cycles and reported the surface, and immersion methods are 

best scenarios (Figure 9-a). The life cycle cost of system for immersion method showed 27% 

improvement (almost 0.06 $/km) than the air-cooling method while the cost of investment of 

immersion-cooling system is more than 2 fold compare to air-based cooling. Sensitivity analysis 

indicated that by doubling the lifespan, life cycle cost reduced by around 33% while reducing 

lifespan by around 50% lead to increasing the life cycle cost nearly 52% (Figure 9-b).  

 

Figure 9. Life Cycle cost a) for different cooling methods b) Considering the effect of lifetime 
Reprinted with permission from Ref [60]  
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Zou et al. [61] developed an economic-based non-linear model for power generated by Li-ion 

battery under dynamic loads regarding parameters of charging states, cell’s temperature, currents 

and voltage. Furthermore, they considered dynamic temperature during state of power (which 

usually is negligible in modeling) in non-linear economic model for high accurate model. The 

simulation outcomes indicated while considering temperature make the procedure complex but 

the temperature of battery is beyond the allowable limits (43.9°C) during charging process which 

showed the importance of using a proper BTMS for safety and lifetime of battery. Comodi et al. 

[62] performed a techno-economic analysis on using Li-ion battery alongside four technologies 

of chiller, PCM and air/liquid energy storage as cooling methods for different capacity of energy 

systems. Their findings based on different criteria of which are complexities, technology, 

availability, safety and sustainability elucidate that Li-ion scenario is an inappropriate option and 

most expensive cooling method for energy application regardless of the size of system. 

Importantly, this can bring one interesting note into the spotlight that the Li-ion energy storage as 

a standalone technology of cooling cannot be consider as previously discussed; in the capital 

investment cost of Li-ion battery packs, the cooling cost of the battery is a small portion of total 

cost (less than 7%) and the rest of costs belong to Li-ion battery. Khan et al. [63] conducted a 

comprehensive techno-economic comparative analysis for Li-ion battery and lead-acid battery 

with respect to the three cooling systems that are: air-cooling, water-cooling, and refrigerant 

cycle for two different applications of the EV and photovoltaic modules. The findings in 

different lifespans from 3 to 15 years of operation showed that in the short term scenario when 

the system intended to work less than 5 years on the basis of returning investment, the lead acid 

system is most appropriate option but for long-term applications when the system is to work up 

to 15 years or higher the Li-ion battery is the most appropriate option. Furthermore they 

concluded that the type of cooling system for Li-ion battery based on economic criteria is a 

depended on the application where the liquid-cooling with refrigerator is more suitable for EVs 

and the refrigerator cycle and air-cooling is better options for PVs. Hamut et al. [57] applied 

exergoeconomic analysis on the refrigerator-based cooling system for Li-ion BTMS. Their 

findings revealed the cost in the case that a component has a low exergoeconomic value; it is still 

possible for saving costs for the whole system by augmenting components efficiency even if the 

total cost of component escalates. Hamut et al. [64] performed conventional and advanced 

exergoeconomic analysis of on a refrigerator-based BTMS for a hybrid EV. The results elucidate 
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that the compressor investment cost has the highest impact on total cost of BTMS, whilst the 

higher compressor efficiency leads to the higher total cost as well as higher exergoeconomic 

values. Subsequently, it was concluded that there is an optimum point while the compressor 

maintain its efficiency (that is 0.77) the cost and exergy destruction get minimize. Furthermore, 

the advanced exergoeconomic analysis showed that while Li-ion battery’s cost play the dominant 

in economic, reducing the cost of evaporator and condenser (while maintain the compressor and 

chiller as the same) also results in cost-benefits BTMS. As shown in Fig. 10, Tian et al. [65] 

compared the performance of PCM-based system (in two different enclosure shapes) as the 

passive mode and air blower as active method for BTMS of Li-ion from thermodynamic and 

economic point of views for three countries of the UK, Finland and France. Economic analysis 

performed based on the different air blower velocities of 0.0005-0.002 m/s and different cost of 

electricity at each country. Their findings revealed that from economic standpoint in all 

countries, when the blower work at moderate speed there is not difference between power’s cost 

but increasing blower’s speed (up to maximum 0.002 m/s) augmented cost of electricity 

substantially for the UK rather than Finland and France due to higher rate of price. However, 

they have not presented an optimum speed for the blower to satisfy both criteria. 

 

Figure 10. Electricity costs for different countries in different shapes of BTMS a) eliptical, b) 
circular. Reprinted with permission from Ref [65]  

Asef et al. [66] developed a transient simulation and optimization on a Li-ion TMS for actual 

conditions with a focus on total cost ownership and concluded that chiller size and the 

compressor speed are sensitive parameters of cooling system from economic point of view. Chen 
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et al. [67] performed a cost analysis on two methods of air cooling and PCM for Li-ion thermal 

regulation system. They proposed an economic correlation indicator which acts as a bridge 

between battery’s cost, power consumption and battery life cycle to translate the performance of 

cooling methods into the cost. Their findings revealed that air-cooling system in terms of cyclic 

cost is much profitable than PCM-cooling because the cycle life of PCM due to its limitation is 

lower than air-cooling. Xu et al. [68] designed and experimented aluminum roll liquid plates in 

three honeycomb shapes with different heat transfer areas as the lithium-ion thermal 

management system, as depicted in Fig. 11. The cooling systems worked with water as coolant. 

The economic analysis for the system was not performed, however, the cost of plate heat 

exchanger examined as low as 7.8 $ which can consider as one of the lowest BTMS systems 

presented so far. 

 

Figure 11. Roll-bond liquid cooling plate a) rectangular shape b) partial rectangular c) partial 
cone-rectangular d) paralell pipeline Reprinted with permission from Ref [68]  

6 Environmental Analysis 

Anthropogenic activities lead to heavy barriers to the environment via different routes from 

wastewater and contaminated biological that severely affected the aqueous environment [69–71] 

to greenhouse gas emission- at the forefront of them CO2- that negatively impacted the 

atmosphere, leading the climate change side effects [72,73]. In this regard, realizing the 
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environmental impacts of energy systems is the most important parameter since the multi-

dimensional environmental issues turn to a global challenge. However, environmental analysis in 

battery thermal management systems has not been explicitly and extensively studied and the 

number of studies in this context is limited. It should be noted that environmental analysis of 

battery can be categorized in four sub-sectors which are: (i) the production stage (ii) during the 

use of battery (iii) after cascade utilization and (iv) battery recycling. Briefly, the battery 

production refers to the process of producing battery including battery materials and electricity 

consumption which results in the carbon emission. The cascade utilization refers to reuse retired 

batteries in a different scenario such as electricity supply or residential [74]. In the present study 

our aim is to discuss environmental impact of batteries during usage which involve the operation 

conditions as important parameters including the battery’s pack temperature since it is critically 

important to realize the pros and cons of a thermal management system from environmental 

point of view. Hamut et al. [75] combined the environmental analysis with exergy approach and 

developed a model to realize the exergoenvironmental analysis on the Li-ion battery with liquid 

cooling. Findings revealed the highest environmental impact associated with anode and cathode 

of battery which used copper and gold. Seemingly, the study highlighted the environmental 

impact of the battery at production stage and not during the usage. Similarly, Hamut et al. 

conducted an environmental analysis on battery thermal management and examined that the 

lifetime of battery which directly related to the thermal management connected to the 

environmental impact where 5% improvement in battery efficiency results in 23% reduction 

global warming potential [56]. Importantly, Lander et al. [60] comprehensively investigated the 

effect of different cooling scenarios of Li-ion battery in an EV on the life cycle cost and carbon 

footprint for some of the European country conditions. It was realized that among four scenarios 

of air cooling, tab-cooling, surface cooling and immersion cooling; tab-cooling has more 

promising results in terms of life cycle and carbon footprint. 

7 Machine Learning 

Machine learning is one of the ever-fastest growing methods of artificial intelligent in the new 

millennium which vastly emerged from laboratory to the real world applications [76]. In essence, 

machine learning aim is to answer two fundamental scientific questions. (i). How can one 
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construct computer systems spontaneously modify via experience? (ii). What are the 

fundamental statistical computational-information-theoretic laws that govern all learning 

systems, including computers, humans, and organizations? [77]. Generally, machine learning 

algorithms categorized to three branches of supervised, unsupervised, and reinforcement 

learning. Machine learning assisted across of different algorithms from nature-inspired 

approaches to statistical methods. In the last two decades machine learning consider as an 

effective tool in different disciplines and fields such as biological/medical related sciences 

including drug delivery [78], genetics & genomic [79], cardiovascular [80], wildlife 

conservations [81], cancer diagnostics [82,83], surgery [84], mental disorders [85], medical 

images [86] as well as in physics comprises discovering new fundamental in physics [87], high 

energy density physics [88], astrophysics [89], photonics and light-matter [90,91], and chemistry 

and material  including colloidal [92], nanoparticle synthesizing [93], exploring chemical 

compounds [94], catalysis [95], alloys [96] solar-driven power generation [97,98], desalination 

and energy storage. In the context of energy storage -particularly Li-ion battery- huge attention 

have been devoted to assist machine learning to further develop and optimize different battery 

parts. Figure 12 shows some of the most important machine learning review topics in Li-ion 

batteries. In this regard, machine learning vastly implemented for thermal management of li-ion 

battery from different point of views. Table 4 illustrates the summary of machine learning 

technique applied on performance of Li-ion battery using different cooling methods. As can be 

seen, the machine learning methods have been used on various cooling methods of Li-ion battery 

with errors less than 10%. Therefore, this method can help to researchers to find a best cooling 

methods on increase performance of batteries. Moreover, the error of system with input 

parameters of air flow rate, air temperature, PCM thickness, spacing unit and discharge rate was 

lower than 2.73%. 
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Figure 12. Major machine learning reviews for lithium-ion batteries 
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Table 4. Summary of the machine learning, data-driven and numerical methods applied on thermal regulation of Li-ion batteries 

Refs Input Output  Coolant Charge/ 

Discharge 

rate 

LIB Model Applied Method 

(ML/optimization) 

[99] Thermophysical 

properties of 

Negative electrode, 

separator and 

Positive electrode 

Temperature Copper foam+ 

Paraffin wax 

1/3 C Newman pseudo 

model 

convolutional 

neural networks 

[100] Ambient 

temperature 

 Compressor speed 

 Air flow rate of 

the external 

condenser 

COP. 

Cooling capacity 

Water+ EG with heat 

pump-based AC 

NA Not available SVR + PSO 

[101] Voltage 

Current 

Temperature of 

Surface 

Temperature Water+ EG cooling NA Lumped model RBF NN 

[102] Current 

Heat generated 

Temperature 

deviation 

Maximum 

temperature 

Power 

consumption 

 

Water+ EG  cooling 

(50% + 50%) 

0.5C, 1C, 

1.5C, 2C, 

and 2.5 

- Regression neural 

network 

[103] Initial temperature 

Mass flow rate 

Heat source 

Temperature 

Next time step 

Air Variable 

during 

operation 

- Neural network 

with Levenberg–

Marquardt 

algorithm (LMA) 

[104] Coolants’ velocity 

Coolants’ 

Temperatures of 

battery, PCM, and 

Air 

Water 

- Fourier Model Neural network 
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Refs Input Output  Coolant Charge/ 

Discharge 

rate 

LIB Model Applied Method 

(ML/optimization) 

temperature 

Time 

Heat generation by 

battery 

pack 

 

PCM 

[105] Coolant’s flow rate 

temperature 

Rate and depth of 

discharging 

 

 

Average battery 

temperature 

Maximum surface 

temperature 

Water 1-5 C Experimental 

study 

Neural network 

[106] Space between 

channels 

Air flow rate 

Temperature 

Power 

consumption 

Air 1.5 C A commercial 

battery used as 

reference 

Neural network 

with PSO 

[107] Liquid rate 

Charging rate 

Temperature PCMs 

(Paraffin & RT-18) 

1C, 1.5C, 

2C 

A commercial 

battery used as 

reference 

Neural network 

[108] Discharge current, 

Temperature 

(Ambient) 

Inlet flow rate 

Maximum 

temperature 

Ethylene glycol as 

coolant and 

Polyethylene glycol as 

PCM 

2C, 3C, 

4C 

Second order 

circuit mode 

Neural network 

[109] Maximum 

temperature 

Heat transfer 

coefficient 

Skin friction 

coefficient 

Water 1/5 C NA Non-dominated 

sorting genetic 

algorithm II 

(NSGA-II) 

Response surface 

optimization 

[110] Density and 

concentration of 

PCM 

Position of PCM 

Maximum 

temperature 

Temperature 

difference 

Graphite with paraffin 

wax (GPCM) 

1C, 3C, 

5C 

Doyle/Fuller/Ne

wman (DFN) 

model 

PSO, NSGA-III, 

SEPA-II 
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Refs Input Output  Coolant Charge/ 

Discharge 

rate 

LIB Model Applied Method 

(ML/optimization) 

Height and radius 

of PCM 

[111] Air flow rate 

Air temperature 

PCM thickness 

Spacing unit 

Rate of discharge 

Maximum battery 

temperature 

Air+ PCM 2-5 C Commercial 

battery 

Neural network + 

GA 

[112] Air flow rate 

Tube’s diameter 

Number of heat 

transfer units 

Air  Commercial 

battery 

GA 

[113]  Maximum 

temperature 

Temperature 

difference 

Air - Commercial 

battery 

GA 

[114] Plate thickness 

Coolant flow rate 

Water temperature 

Maximum 

temperature 

Temperature 

difference 

Water 3C Bernardi Model second-generation 

non-dominated 

sorting genetic 

algorithm (NSGA-

II) 

[115] Capacity/nominal 

voltage 

maximum 

discharge rate 

Cut-off voltages for 

charging 

The length, width 

and thickness of 

cells 

Fins Diameter 

Maximum 

temperature 

Water 5C Commercial 

battery 

Multi-island 

genetic algorithm 

(MIGA) 

[116] Size of battery  

Rated capacitance   

Maximum 

temperature 

Water 0.8C 3D thermal 

model  based 

GA 
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Refs Input Output  Coolant Charge/ 

Discharge 

rate 

LIB Model Applied Method 

(ML/optimization) 

Rated voltage  

Internal resistance  

Convective heat 

transfer coefficient 

Temperature 

difference 

Pressure drop 

rectangular 

coordinate 

[117] Angles 

convergence 

Widths 

convergence 

Air flow rate 

Maximum 

temperature 

Temperature 

difference 

Power 

consumption 

Air  Heat dissipation 

model 

Stud Genetic 

 

[118] Angles 

convergence 

Widths 

convergence 

Air flow rate 

Maximum 

temperature 

Temperature 

difference 

Power 

consumption 

Air  Heat dissipation 

model 

Stud Genetic 

Algorithm 

NSGA-III_DE 

[119] Properties of a 

commercial (brand 

Samsung) Li-ion 

battery  

Spacing units Air  Bernard Model Tunicate Swarm 

(TS) 

Search & Rescue 

optimization 

algorithm (SROA) 

Enhanced Elephant 

Herding (EEH) 

[120] Thermo-physical 

parameters of the 

sleeve, water and 

battery 

Diameter 

Flow rate 

Pitch 

Maximum 

temperature 

Deionized water 5 C  NSGA-II with 

MCDM 
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Refs Input Output  Coolant Charge/ 

Discharge 

rate 

LIB Model Applied Method 

(ML/optimization) 

[121] 

 

Pitch 

Number of fins 

Flow rate 

 

Maximum 

temperature 

Air  Heat dissipation 

model 

GA 
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Felix et al. [99] applied convolutional neural networks in combination with a 2D finite element 

method to study the performance of copper-foam@paraffin passive method of cell’s temperature 

during charge/discharge for cooling a lithium ion with six cells. To realize the accuracy of the 

neural network (NN) method compare to FEM, the maximum temperature rise for both methods 

depicted and for two scenarios the highest temperature difference was less than 0.005% and 

0.015%. Further findings showed the rise of cell’s temperature during discharging process is 

greater than charging while it was revealed that using CNN lead to high-precise prediction of 

temperature rather than implementing fully-FEM whilst using multi-scale approach results in 

high accurate prediction and strategy for coolants medium with complexity. Tang et al. [100] 

integrated the particle swarm optimization (PSO) method with support vector regression (SVR) 

to examine the cooling capacity and coefficient performance BTMS of a Li-ion battery with 

water+ethylene glycol coolant alongside heat pump based air conditioning system regarding 

three parameters of air flow rate , ambient temperature, and compressor speed. Results indicated 

that the COP of 2.36 under harsh condition when the ambient temperature is greater than 40 °C 

can be maintained. Furthermore, it was concluded that when the PSO applied to three parameter 

of SVR the correlation of coefficient for system’s cooling capacity and COP were improved by 

around 2.1% and 2.8% respectively. Furthermore it was declared that the developed SVR-PSO 

method can make an interrelation between COP and cooling with other parameters not limited to 

those evaluated. Afzal et al. [122] compared a single-layer with a deep NN for predicting the 

average Nusselt number as the important factor in BTMS considering six inputs of velocity, type 

of coolant, battery dimension, thermal conductivity, cell’s space and heat generation. The 

findings with 85% of data for training comprise used four functions of linear, Gaussian, 

Hyperbolic, and sigmoid based on the random errors and correlation of coefficient  for all 

scenarios showed Gaussian outperform over other functions for both NN methods, however, it 

was realized that deep NN is predicted the Nusselt number better than single-layer NN. Liu et al. 

[101] theoretically estimated the cell’s temperature of Li-ion battery and validated with 

laboratory experimented data. The radial basis kernel used as the activation function and extend 

Kalman filter utilized to increase the reliability of the model and improving accuracy. The 

developed model is precisely estimated the internal temperature where the maximum errors in 

estimated temperature is lower than 0.25°C. It was declared that the model was generalized and 

would use for other types of battery’s temperature estimation by combined lump thermal model 
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and neural network. Chen et al. [102] developed a neural network model based on the linear 

regression for thermal management of Li-ion battery during the fast charge process. The NN 

model was trained by 81 sets of data from laboratory experiments of eight cells that connected in 

series. The experimented conducted for different charging process and liquid flow for 0.5  C, 1.5 

C, and 2.5 C and 36 mL/min, 72 mL/min, and 108 mL/min respectively. The optimal design by 

NN validated by experimental data and the results of regression for three objectives of maximum 

temperature, temperature deviation, and consumed power achieve high accuracy of 99.35%, 

99.33%, and 98.38% respectively. Liu et al. [103] assisted the MPC strategy alongside with 

neural network that used LMA training algorithm to predict and develop a self-adjustable 

intelligent method using a fan for cooling of Li-ion battery in an EV, as depicted in Fig. 13. The 

findings revealed that the integration of MPC with NN results in better temperature uniformity 

rather than standalone NN strategy while energy consumption at optimum condition evaluated by 

around 14.67 kJ, leading to 15.8% improvement rather than NN method. Interestingly, they 

showed the advantage of MPC-NN strategy over standalone NN is that it is consider the changes 

in inputs and external sources where NN just consider temperature in the last step. 

 

Figure 13. Experimental setup of air-based cooling of Li-ion battery b) A framework for 
thermal control of the J-type lithium-ion battery thermal management system c) The whole 
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framework of the neural network-based MPC strategy Reprinted with permission from Ref 
[103]  

Mesgarpour et al. [104] utilized NN method and compared two methods of air and water cooling 

alongside PCM for battery temperature management, as shown in Fig. 14. Since the developed 

machine learning method was physics-informed it can predict the stability of temperature of 

battery’s pack for a long period of time in order to give an appropriate insight between cooling 

methods. It was revealed that the water cooling results in greater temperature reduction compare 

to air cooling. Further results showed that while increasing the air velocity improve the 

temperature regulation, after a certain value, increasing the flow rate has not any effect on the 

temperature. As it mentioned before, application of nanofluids and fins in through data-driven 

and numerical methods has extensively brought into the spotlight by researchers. Kiani et al. 

[123] numerically scrutinized the effect of nanofluid at two concentrations of 1% and 2% in a 

PCM-based cooper foam BTMS and compared the results with conventional water cooling 

system in LI-ion battery. They verified the numerical results with experimental apparatus and it 

was revealed that higher concentration of leading the extend the PCM melting time leading the 

better temperature regulation, however, the pressure drop of nanofluid in the channel remains a 

challenge wich should be addressed.  Wu and Rao [124] developed a Lattic Boltzmann model to 

examine the effect of copper nanofluid in concentration of 0-6% with 1% increment rate and 

reported higher temperature shrinks by around 6.5% for nanofluid at 6%. Similarly, Hou and Rao 

[125] investigated the effect of alumina nanofluid at different concentration of 1-4% in 

cylindrical shape BTMS and reported 7% cells’ temperature reduction at 4% nanoparticle 

fraction. Abdullah utilized hybrid nanofluid with nano-PCM in two different circular and 

elliptical shapes of BTMS and developed a mathematical model based on FEM method where 

reported 13% higher rate of temperature reduction in circular shape compares to elliptical. 

Mohammadian and Zhang [126] presented a 3D transient model that utilized aluminum pin fins 

and foams in four scenarios where fins and foam utilized simultaneously as well as solely to 

examine the cooling performance of BTMS. Their findings indicated that utilizing fins and foam 

leading to higher battery pack temperature reduction while it maintains more temperature 

uniformity across cells. Ping and co-workers. [127] implemented 1D electrochemical model in 

3D transient thermal model to realize the effect of fins in a PCM-based BTMS cooling system. 

The fins distance as an objective function optimized and it was revealed that the PCM-fins would 
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minimize the maximum temperature by around 34%. Egab et al. [128] in a 3D thermal model 

evaluated the effect of using fins and dimples in an air-based cooling in different scenarios of 

using fins and dimples solely and simultaneously. The findings revealed that simultaneous use of 

dimples and fins in low Reynolds number results in higher rate of cooling the battery by around 

3°C. 

 

Figure 14. a) different arrangements of cells’ cooling b) schematic of two considered surfaces 
for contact resistance Reprinted with permission from Ref [104]  

Kalkan et al. [105] experimentally studied the performance of liquid-based cooling method of Li-

ion battery with two different shapes of mini-channel plate and serpentine tube. Among 

experimental data around 70%, 15%, and 15% were used for training, validating and testing 

model. It was showed that develop FF-BLP-NN method lead to high accuracy in predicting and 

optimizing the important inputs for the temperature management of the battery’s pack. Fig. 15 

depicted the experimental setup of thermal management system in Li-ion battery using cooling 

method by mini-channel cold plate. 
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Figure 15. a) the battery and cold plates composition, half section views of b) serpentine tube 
cold plate c) mini channel cold plate d) overview of experimental setup Reprinted with 
permission from Ref [105]  

Due to the high cost and uncertainties of other cooling methods in practical application, Wang et 

al. [106] focused on optimizing an air-cooling system (as the most used method) in Li-ion 

battery. A multi objective optimization based on NN and PSO developed to optimize the energy 

consumption of the fan while maintain constant the cost and weight of structure. The 

optimization results indicated that the cells space in X-axis and Y-axis should not be equal whilst 

the optimize spaces are examined. Talele et al. [107] evaluate two PCMs (Paraffin wax and RT-

18) for cooling a Li-ion battery and compared the results with reference battery without PCM 

cooling. A neural network that trained by numerical raw data taken form a CFD simulation 

alongside with linear regression model employed to evaluate the maximum time taken for cells 

to reach the highest temperature. Multi-objective optimization for optimal condition of each 

scenario of charging was performed. The findings showed that paraffin wax has better 

performance than R18, because of its low melt temperature, leading battery cells cooled faster 

(or prevent to reach higher temperatures in lower time). As illustrated in Fig. 16, Yang et al. 

[108] in an experimental study used a honeycomb-shape with hexagonal/rectangular cooling 

plate and PCM in an integrated design for efficient cooling of lithium-ion battery. Effects of 
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different parameters such as the shape of plate, the number of plates on the thermal management 

of battery are examined. It was revealed that the hexagonal shape cooling has slightly better 

performance in terms of maximum temperature (0.36 K) whilst between the number of plates (1, 

2, 3 plates) the difference in temperature difference of module was marginal, however, using two 

plates recommended. A back propagation neural network was utilized for two driving pattern (in 

urban regions) considering the inlet flow rate to realize the battery temperature and temperature 

difference. Based on the 80% of trained data it was estimated that the cell’s temperature and 

temperature difference for long-term drive are 312 K and 3.5 K respectively. Further results 

showed that the flow rate has highest impact on the maximum temperature while the temperature 

difference substantially affected by the ambient temperature and rate of discharge. Regarding the 

findings of machine learning in the open literature in battery thermal management systems, 

increasing the rate of discharge was leading to the raise of temperature. Importantly, the machine 

learning results and experimental data showed that temperature raise in cells during discharge 

time at 1C was not significant while higher fluctuation occur at higher discharge rate [110]. In 

this regard, many researchers utilized discharge rate higher than 2 C up to 10 C to examine the 

performance of the thermal management systems. It should be point out that, even though 2 C 

discharge rate in many studies used as the starting point, other researchers argue that temperature 

raise in battery pack in 2 C is not high enough and consider 3 C as the input [121]. Furthermore, 

for fluid-based cooling methods (i.e., air and water cooling) the results of optimization and 

prediction of ML methods alongside with experimental data showed that increasing the fluid 

flow reduces cells’ temperature significantly, however, higher rate of fluid flow in the case of 

active method (i.e., when using fans and pumps) leading to increase the power consumption by 

system which could be affected the system from economic standpoint. Hence, one important 

thing that should be consider when implementing machine learning is to consider electrical costs 

in calculation to make the most efficient decision among different scenarios. 
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Figure 16. Detail schematic of honey-comb shape battery thermal management system 
Reprinted with permission from Ref [108]  

Deng et al. [109] applied multi objective optimization with an experimental study to realize the 

effect of double layer bifurcation cooling plate for Li-ion battery thermal management system to 

maximize and minimize convective heat transfer and skin fraction coefficients respectively. 

Findings elucidated that the thickness of channel and length ration have critical impact on the 

cooling performance of system. Importantly, based on NSGA II and RS optimization it was 

revealed that the pressure drop in the proposed cooling plate is half of conventional serpentine 

tube. Yang et al. [110] numerically studied the cooling performance of stretchable Li-ion battery 

in three scenarios of without cooling and with graphite paraffin wax (GPCM) for initial and 

optimized conditions. The authors applied three different optimization methods of PSO, NSGA 

III, and SEPA-II and concluded that SEPA-II has the most promising results whilst the scenario 

of the GPCM in optimal design results in the best cooling performance by improving the 

maximum temperature and temperature difference 11.94% and 10.27% compare to case without 

cooling respectively. Liu & Li [129] developed a neural network-based algorithm for 

temperature distribution of a cylindrical lithium ion battery and based on the physical model and 

numerical simulation reported that the model is appropriate for real-time monitoring. Lin et al. 

[111] integrated NN with GA to find optimal parameters of a Li-ion battery thermal management 

that used by phase change materials and air as cooling. Their results showed that while the rate 

of discharge is constant, the air speed and air temperature are the most important parameters on 
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the maximum temperature of battery pack. Furthermore, it was realized that thickness of PCM 

has the main role in maximum temperature of battery while spaces between unit cell is has the 

key role in cells temperature difference. Mousavi et al. [112] used genetic algorithm to find the 

optimum condition of the air-cooled based Li-ion battery with respect to the tube diameter and 

reported that increasing the tube diameter while the air flow rate remain constant at 2.55 m/s 

maximize the number of transfer unit. As shown in Fig. 17, Wang et al. [113] proposed to locate 

spoilers in spaces of air-based cooling system of a Li-ion battery to augment and improve the 

temperature uniformity and decrease the maximum temperature. Impact of different spoilers’ 

parameters on the temperature of battery by applying genetic algorithm was examined. It was 

determined that among three shapes of straight, arc, and parabolic; the straight-shaped spoiler 

results in higher reduction in maximum temperature. Meanwhile, it was showed that increasing 

the length of spoiler directly impacted the maximum temperature but the number of spoiler is not 

proportional with temperature. 

 

Figure 17. A 50AH battery model. (a) actual view (b) Initial view. (c) Plan 1 view. (d) Front 
view of plan 1. Reprinted with permission from Ref [113]  

Su et al. [114] incorporated NSGA II algorithm with a surrogate Li-ion battery thermal model to 

optimize the maximum and uniformity of Li-ion battery temperature in a U-shape box with 
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cooling water regarding four variables of the cooling plate’s wall and bottom thickness, cooling 

water temperature and flow rate velocity. The findings revealed that the inlet temperature of 

cooling water with 59.8 % contribution in examining the maximum temperature has the crucial 

impact on these parameters whilst with 12.1% it has little effect on the temperature distribution 

battery. On the other hand, the geometry of plate and cooling water velocity has the most impact 

in regulating temperature distribution. Based on the NSGA II results, it was concluded that the 

optimum conditions can be obtained when the cooling plate is increased while the walls 

thickness was small and the cooling water has low temperature with high velocity. Zhao et al. 

[115] carried out an experimental study assisted by CFD simulation on the effect utilizing non-

uniform pin-fins in the cooling channel of Li-ion battery to modify the arte of heat dissipation as 

well as temperature uniformity in cells. They used multi-island genetic algorithm to optimize the 

variables for optimal conditions. The results illustrated that under optimum conditions of pin-fins 

the electricity consumption, channel’s weight, and standard temperature deviation would be 

diminish by around 29.8%, 29% and 17.4% while the highest cells temperature decreased by 

about 1.04°C. Wang et al. [116] realized the effect of coolant direction in three different 

scenarios in an aluminum channel plate for cooling Li-ion battery and realized that the when 

cooling water direction interchange alternately the best BTMS was obtained. Multi objective 

optimization based on the genetic algorithm revealed that under optimum conditions the average 

temperature difference of battery reduced by around 4.9% while the pressure drop in the channel 

due to optimizing the inlet flow rate was reduced nearly 13.2% which directly affected the 

consumed pumping power. Further results showed that the maximum temperature of battery 

modified and can reduced by around 2.79°C. Chen et al. [117] used genetic algorithm to realize 

crucial parameters for optimizing the maximum temperature and temperature difference as well 

as the battery area. Their results indicated that the convergence and divergence of plate’s angle 

and minimal convergence width are directly related to the temperature difference while by 

minimizing the battery unit and minimal width divergence the maximum temperature of the pack 

is optimized and remained in allowable regions. Further results indicated that by optimizing the 

rate of air flow in the battery the pack’s space reduced by around 6.24%. Chen et al. [118] used 

heat dissipation and flow resistance approach to model the air flow rate and a Li-ion battery heat 

generation respectively, and incorporated the NSGA-III Differential Evolution algorithm assisted 

by sensitivity analysis to find optimal condition of important parameters in thermal management 
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system. The outcomes indicted that the utilizing large angles and minimum widths of 

convergence modified the important objectives in thermal management system where the 

temperature difference and power consumption reduced by around 60.7% and 16.7% 

respectively and highest temperature decrease by about 3.4°C compare to the baseline case. Wan 

[119] combined Tunicate Swarm and Search & Rescue (TSSR) optimization algorithms to 

optimize the spacing between channels of a battery in order to reduce the maximum temperature 

of Li-ion battery. The performance of TSSR algorithm for similar conditions to examine the 

optimal spacing was compared with other methods such as EEH, ANN, and NN from 

computational time viewpoint and it was revealed that the TSSR has lower computational time 

more than 55%, 110% and 170% respectively. Dong et al. [120] theoretically investigated the 

performance of liquid-based battery thermal management system with double-helix by consider 

three objects of liquid flow rate, diameter, and pitch groove to minimize the Li-ion cells’ 

temperature. It was found that augmenting the flow rate until the certain rate of 0.0002 g/s and 

pitch at 60mm results in to maintain the temperature less than 40 °C. The NSGA-II with MCDM 

multi objective optimization was employed it was found that the optimum conditions for flow 

rate, diameter, and pitch grove are 0.000194 g/s 0.04 m, and 0.1 m respectively. Cheng et al. 

[121] examined the effect of using fins on air-cooled Li-ion battery by applying multi objective-

optimization with genetic algorithm. The results revealed the using fins in the channel of battery 

leads to substantial reduction on the maximum temperature and standard deviation temperature 

by about 17.63% and 39.3% respectively. Multi objective optimization results showed that 

standard deviation temperature can be reduce by about 50.19% while the cooling volume 

enhanced nearly 74.13%. Afzal et al. [130] performed a multi objective optimization by two 

algorithms of cuckoo search and artificial bee colony optimization considering generated heat, 

conductivity, Reynolds number, spacing and Prandtl number to optimize parameters of 

maximum temperature, Nusselt number and coefficient friction. The outcomes revealed multiple 

results. Increasing heat generation has not effect significant effect on the Nusselt number and 

coefficient fraction while it highly affected the maximum temperature. In the same way, 

conductivity ratio showed on similar effect on those parameters. Importantly, spacing is the only 

parameters that impacted three parameters. Eventually, they compared the performance of both 

algorithms and it was revealed that greater convergence fitness by artificial bee colony obtained 

rather than cuckoo search.  
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8 Conclusions and future directions in field  

 

In the present review, various active and passive cooling methods of lithium-ion battery through 

different approaches of exergy, economic, environmental and machine learning are discussed. 

Each type of passive and active cooling methods has their pros and cons. Generally, passive 

cooling has simple structure than active cooling. Air-based cooling system (Through the natural 

and/or forced convection) -whether from ambient or cabin- as one of the simplest method has 

been widely utilized, however, regarding the low efficiency and specific heat capacity it would 

not be an appropriate for under high-load conditions. Thus, an auxiliary passive cooling 

approach such as PCMs, fins, dimples etc. could be as an appropriate strategy to improve the 

performance. Moreover, PCMs as another innovative passive approach should be carefully 

selected based on battery conditions as the melting temperature can significantly impacted 

cooling of battery while viscosity of PCM when it intend to circulate through the battery and the 

electrical energy consumption is another parameter that would take into account. In active 

cooling methods, refrigerator-based systems has prominent advantage for high-load conditions, 

however, further improvement can be achieved through reducing compressor’s exergy 

destruction, however, using high efficient oil in compressor also suggested as an appropriate 

physical modification. Moreover, for liquid-based cooling system the optimum flow rate and the 

entering path of fluid considering the pressure drop in channels as one of the important functions 

should be consider in this context. Developing novel modeling methods based on the artificial 

intelligent to obtain accurate results is highly desirable. Furthermore, integration of machine 

learning and data-driven methods would lead to more reliable results while utilizing novel deep 

learning approaches which outshined in this context is greatly recommended. Interestingly, it 

was revealed that some algorithms leading to more accurate results than other, therefore 

comparing the results of different algorithms for future studies is suggested. Since lifespan of the 

battery has substantial impact on the economic and environmental analysis, more research on life 

cycle assessment and carbon footprint are suggested as interesting topics for future researches. 

Besides all of aforementioned criteria, there are other factors that could affect the thermal 

management of Li-ion batteries such as driving pattern, however, in modeling and simulation 

researchers consider a standard driving pattern. Thus, developing novel modeling approaches for 

battery temperature regulation based on different driving patterns under various climatic 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



conditions would be another step toward more practical and realistic cooling scenarios for Li-ion 

batteries. 
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