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Abstract

There has been great progress in recent years in the understanding of the mathe-

matical structure of scattering amplitudes in Quantum Field Theory as well as the

development of powerful methods for their calculation, particularly in the arena of

N = 4 Super Yang-Mills where hidden and manifest symmetries lead to striking sim-

plifications. In this thesis, we will discuss the extensions of such methods away from

the case of on-shell amplitudes in conformal N = 4.

After introducing the necessary mathematical background and physical setting, we

consider in Chapter Three the form factors of BPS operators in N = 4 Super Yang-

Mills. These objects have several physical applications, and share many properties

with scattering amplitudes. However, they are off-shell, which makes them a natural

starting point to set out in the direction of correlation functions. After demonstrating

the computation of form factors by BCFW recursion and unitarity based methods,

we go on to show how the scalar form factor can be supersymmetrised to encompass

the full stress-tensor multiplet.

In Chapter Four, we discuss the Sudakov form factor in ABJM Theory. This

object, which first appears at two loops and controls the IR divergences of the the-

ory, is computed by generalised unitarity. In particular, we note that the maximal

transcendentality of three dimensional integrals is related to particular triple cuts.

Finally, in Chapter Five we consider massive amplitudes on the Coulomb Branch

of N = 4 at one loop. Here we find that vertex cut conditions inherited from the em-

bedding of the theory in String Theory lead to a restricted class of massive integrals.
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Chapter 1

Introduction

Although the venerable formalism of Feynman diagrams remains a useful tool in

many contexts, it does not respect the physical symmetries of the theory in question

at each intermediate step of the calculation. This causes particular issues in non-

Abelian gauge theories, where one must sum up vast numbers of diagrams to recover

results expressed as simple gauge invariant expressions. There has been tremendous

progress in recent years in understanding the structure of scattering amplitudes in

such theories and in perturbative quantum gravity by the use of new methods in

which physical symmetries are manifest throughout.

The central plank thereof, the unitarity based method, is not a new idea; indeed, it

was at the heart of the old S-matrix theory [1]. That program failed on account of its

fundamentalism; far more data is required to construct the full S-matrix. However, in

the 1990s a key development was made through the work of Bern, Dixon, Dunbar and

Kosower [2] who realised that by combining unitarity with known facts deriving from

the Feynman rules and dimensional regularization one could construct one-loop (and

higher) amplitudes from tree-level ones. It would take a decade for the state of the art

at tree level to catch up, beginning with the work of Witten [3] on the twistor space
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structure of scattering amplitudes which led to a flurry of interest from Theorists and

subsequently the development of MHV diagrams [4] and recursive on-shell methods [5]

for the construction of tree-level amplitudes.

These have been applied to gauge theory, and have been absolutely critical in com-

puting QCD background processes at the LHC, where the automated BlackHat [6]

code has enabled a vast array of one-loop amplitudes to be computed. In a completely

orthogonal direction, the discovery of colour-kinematic duality [7] has enabled a de-

tailed appraisal of the UV behaviour of the S-matrix of several supergravity theories.

In N = 4 Super-Yang-Mills we have gone much further. In addition to the sig-

nificant computational aid provided by maximal supersymmetry, application of these

methods has led to the discovery of hidden symmetries of the S-matrix that are com-

pletely invisible at the level of the Lagrangian. In particular, dual superconformal

symmetry [8] not only strongly constrains scattering amplitudes but suggests a beau-

tiful internal duality (or triality) also incorporating Wilson loops [9] [10] and certain

correlation functions [11].

In parallel programs of research, a Grassmannian formalism [12] [13] based on

on-shell diagrams has been developed to compute in principle the complete S-matrix

integrand; while the number-theoretic properties of the theory have been exploited

via the symbol map to compute loop amplitudes directly without reference to Feyn-

man integrals [14]. These developments have uncovered relations to many areas of

mathematics including the theory of motives and cluster algebras. The relation of

these on-shell properties to the integrability observed for the correlation functions of

certain operators remains an intriguing question.

Exciting as these developments are, a key question is the following: how much is

dependent on the particular qualities of the N = 4 S-Matrix? If we consider other

theories, or off-shell quantities, do we expect any of these properties to survive? If so,

9



which? Rather than being ambitious in this regard, we here confine ourselves to the

minimal departure from the familiar realm. Form factors are in some sense a minimal

departure from on-shell scattering amplitudes; indeed, they may be regarded as the

amplitudes arising from coupling to off-shell currents. By restricting ourselves to the

case of BPS operators we avoid the presence of ultraviolet singularities which may

complicate our analysis. They also can be regarded as building blocks for correlation

functions in the context of generalized unitarity, a direction which has been fruitfully

explored by [15]. By considering amplitudes on the Coulomb Branch of the theory, we

leave the realm of massless particles and remove the formerly vital crutch of conformal

symmetry, but do so in a highly controlled way which allows us to still exploit much

of what we have left behind.

ABJM Theory at first glance seems a very different arena to any Yang-Mills theory

since in a Chern-Simons-Matter Theory in (2 + 1)-dimensions the dynamical degrees

of freedom do not include the gauge field, but consist of (bi-)fundamental matter.

However, it bears the same relation toM -Theory thatN = 4 bears to Type IIB String

Theory; and has a fairly straightforward holographic dual on AdS4 × CP3. In this

sense the theories can be said to be cousins and like its cousin ABJM Theory exhibits

many remarkable properties in its S-matrix including a form of dual superconformal

symmetry. It provides a fascinating parallel laboratory for the study of scattering

amplitudes.

The outline of this thesis is as follows. In Chapter Two we review modern methods

for the computation of scattering amplitudes and introduce other observables of inter-

est. In Chapter Three we review the superconformal theories in which these methods

reveal startling hidden structures that both motivate and enable our work. These

provide a foundation for what follows. In Chapter Four we discuss results concerning

the form factors of N = 4 sYM, in particular their supersymmetric extension and a
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large class of solutions to their tree-level recursion relation, largely following [16]. In

Chapter Five we switch to ABJM Theory and in particular the computation of the

Sudakov form factor which was presented in [17]. Finally, in Chapter Six, we return

to N = 4, this time on the Coulomb Branch, to examine the one-loop amplitudes

with massive external states.
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Chapter 2

Scattering Amplitudes and Other

Observables

In this chapter our focus is on the description of the modern methods for computing

scattering amplitudes and other observables to which they are related. Our approach

is to be so far as possible agnostic with respect to the particular theory with which we

work, although our examples (being the simplest cases) are principally drawn from

N = 4 sYM. We work here principally in four dimensions in dimensional regulariza-

tion, although much what is said is valid in any number of dimensions (see 3.3.1 for

the three dimensional formalism).

2.1 Colour Ordering and the Planar Limit

The structure of scattering amplitudes is more clearly elucidated if they are decom-

posed into smaller gauge-invariant objects with a particular cyclic ordering of external

legs [18]. This not only describes the dependence of the amplitude on group-theoretic

data, but these objects are also analytically simpler than the full amplitude since
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their poles and branch cuts can only arise in channels formed from cyclically adjacent

momenta.

In an SU(N) gauge theory, gluons (and their superpartners) transform in the ad-

joint representation carrying the index a = 1, . . . N2−1; if there is (anti-)fundamental

matter (quarks) in the theory they carry (anti-)fundamental indices i(j̄) = 1, . . . N .

From the Feynman rules we see that the three-gluon vertex produces a factor of the

structure constant fabc, and the four-point vertex contributes a contraction of two

structure constants. The three-point gluon-quark-antiquark vertex carries a factor of

the gauge group generator (T a) j̄
i . Propagators in colour space take the form of delta

functions contracting their endpoints; a gluon propagator carries δab and a quark

propagator carries δj̄i . We may then replace the structure constants which appear

with generators using the defining relation

fabc = − i√
2
Tr[T a, [T b, T c]] (2.1.1)

which will leave us with a long string of traces. These can be simplified by application

of the identity

(T a)j̄1ii (T
a)j̄2i2 = δj̄2i1 δ

j̄1
i2
− 1

N
δj̄1i1 δ

j̄2
i2

(2.1.2)

where summation over the adjoint index is implicit. In this way all structure constants

may be written as sums over single-traces of generators. We may write the full

amplitude as a sum over colour ordered partial amplitudes multiplied by a colour

trace, which for a purely gluonic amplitude at tree level takes the form:

A(0)
n (pi, hi, ai) =

∑
σ∈Sn/Zn

Tr(T aσ(1) . . . T aσ(n))A(0)
n (σ(1)hσ(1) , . . . , σ(n)hσ(n)). (2.1.3)

The partial amplitudes An depend on the cyclic ordering of the external momenta and

contain all the kinematic dependence of the amplitude. All the colour dependence

is contained in the sum over traces, which must avoid double-counting the cyclic

permutations which leave the trace invariant.
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Beyond tree level, the colour structure is enriched by the presence of multi-trace

structures. For instance, at one loop the colour decomposition takes the form

A(1)(1, . . . , n) = A(1)
P +A(1)

NP

= N
∑

σ∈Sn/Zn

Tr(T aσ1 . . . T aσn)A
(1)
n;1(1, . . . , n)

+
∑

σ∈Sn/Sn;c

n/2+1∑
c−2

Tr(T aσ1 . . . T aσc−1)Tr(T aσcaσn)An;c(1, . . . , n). (2.1.4)

Note that in the limit N → ∞ the single trace term dominates producing a large

simplification. This regime, called the planar limit, will be the principle focus of our

subsequent study.

2.2 The Spinor Helicity Formalism

In order to solve any problem in an efficient way, it is necessary to use an efficient

notation. For scattering amplitudes involving massless particles, this is accomplished

by exploiting the properties of spinors to implicitly impose the on-shell mass condition

p2i = 0. Our discussion here largely follows that of [3].

Recall that the complexified Lorentz Group is locally isomorphic to SL(2)×SL(2),

whose finite dimensional represenations are classified by the integers (p, q). Spinors in

the (1/2, 0) are written λα, and those in the (0, 1/2) as λ̃α̇. Spinor indices are raised

and lowered with ϵαβ and it’s inverse, and likewise for dotted indices. Hence, we can

define the Lorentz invariant spinor products:

⟨ij⟩ = ϵαβλ
a
i λ

b
j (2.2.1)

[ij] = ϵα̇β̇λ̃
α̇
i λ̃

β̇
j (2.2.2)

in terms of which we will write scattering amplitudes. Note that these are antisym-

metric; ⟨ij⟩ = −⟨ji⟩ and that parity conjugation exchanges λα and λ̃α̇.
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Since spinors are two dimensional objects, we can write

λk = aλi + bλj. (2.2.3)

Contracting with either λi or λj allows us to solve for the coefficients a, b to find:

λk =
⟨kj⟩λi + ⟨ik⟩λj

⟨ij⟩
. (2.2.4)

Contracting with a fourth spinor λl we obtain the Schouten identity:

⟨ij⟩⟨kl⟩ = ⟨ik⟩⟨jl⟩+ ⟨il⟩⟨kj⟩. (2.2.5)

The vector representation of the Lorentz group is (1/2, 1/2). Therefore, a mo-

mentum vector pµ can be mapped to a bispinor through the Pauli Matrices σµ with

σ0 = 1.

pαα̇ = σµ
αα̇pµ (2.2.6)

and p2 = det(pαα̇). As the rank of a 2× 2 matrix is at most 2, it follows that lightlike

momenta can be written in terms of left and right-handed Weyl spinors as

pαα̇ = λαλ̃α̇. (2.2.7)

Note that while specifying λ, λ̃ determines pµ, the inverse is true only up to a scaling

λ→ tλ, λ̃→ t−1λ̃.

Kinematic invariants can now be written in terms of these spinors as:

sij = (pi + pj)
2 = ⟨ij⟩[ji]. (2.2.8)

In colour-ordered amplitudes, one encounters only invariants formed from groups of

cyclically adjacent momenta, and in an n-particle amplitude n+1 = 1 implicitly. We

can also contruct Lorentz invariant quantities by contracting spinors with momentum

bispinors in the following way:

⟨i|P |j] = λαi P
α̇
α λ̃jα̇ (2.2.9)

15



where P is not necessarily lightlike. We also note that cyclic strings of spinor products

can be reduced to traces:

⟨ij⟩[jk] . . . ⟨lm⟩[mi] = tr+(ijk . . . lm) (2.2.10)

with tr+(. . .) = tr((1− γ5) . . .).

We have now dealt with an efficient notation for the momentum dependence of

scattering amplitudes. For particles with spin, however, the amplitude must also be

a function of the helicities of external states. Given a momentum and a helicity, it

is not in general possible to specify a polarization vector uniquely; however, given a

particular decomposition pαα̇ = λαλ̃α̇ we can write

ϵ−αα̇ =
λαµ̃α̇

[λµ]
(2.2.11)

ϵ+αα̇ =
µαλ̃α̇
⟨λµ⟩

where µ is an arbitrary reference spinor. Note that ϵ± is invariant under rescalings

of µ, while the action µ → µ + c corresponds to a gauge transformation. Hence, we

can safely write the amplitude Â(λi, λ̃i, hi) as a function of the spinor variables and

helicities, satisfying n auxiliary conditions(
λαi

∂

∂λαi
− λ̃α̇i

∂

∂λ̃α̇i

)
Â(λi, λ̃i, hi) = −2hiÂ(λi, λ̃i, hi). (2.2.12)

At three points, this is in fact enough to determine the amplitudes. We make an

ansatz of the form

A(1h1 , 2h2 , 3h3) ∝ ⟨12⟩a1⟨23⟩a2⟨31⟩a3 (2.2.13)

and solve to find

A(h1, h2, h3) ∝ ⟨12⟩h3−h1−h2⟨23⟩h2−h1−h3⟨31⟩h1−h2−h3 . (2.2.14)

Taking the case of two negative and one positive helicity gluon, this gives us the first

of the famous Parke-Taylor amplitudes:

A(1−, 2−, 3+) =
⟨12⟩3

⟨23⟩⟨31⟩
. (2.2.15)
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Note that we could also consider an ansatz with all square brackets. In this case,

we would find a negative mass dimension which cannot be generated by a local La-

grangian, so it must be discarded. However, in the (++−) case this solution has the

correct dimension and is retained.

2.3 Computing Amplitudes at Tree Level

Equipped with this notation, we would now like to compute the amplitudes of physical

processes. Although all the information of perturbative field theory is contained in

the textbook Feynman diagram expansion, for amplitudes involving many particles

its computational complexity grows alarmingly quickly

External Legs 4 5 6 7 8 9 10

Diagrams 4 25 220 2485 34300 559405 10525900

Further, each of these terms can be extremely complex, carrying complicated ten-

sor structures, and are not independent of each other as the Feynman rules are off-shell

and do not manifest gauge symmetry term by term, only in the final result. However,

given these issues, it was long observed that the final expressions for amplitudes are

strikingly simple. In particular, for the so-called MHV amplitude:

A(1+, . . . , i−, . . . , j−, n+) =
⟨ij⟩4

⟨12⟩⟨23⟩ . . . ⟨n1⟩
(2.3.1)

conjectured by Parke and Taylor [19] and proven by Berends and Giele [20]. This

apparent simplicity suggests the existence of an underlying structure, which began

to be understood with the work of Witten [3] on the twistor space structure of MHV

amplitudes. This led to the development of the MHV vertex expansion [4], in which

MHV amplitudes form the building blocks of larger structures, and subsequently to
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the fully recursive formalism of BCFW [21] [5]. Since the former method can be

derived from the latter, we shall forsake the historical development and describe it

first.

2.3.1 The BCFW Recursion Relations

In order to seed the recursion relation from three points we must work in complex

momenta; and the techniques of complex analysis will prove a powerful weapon. We

define a complex shift of momenta [i, j⟩ by:

λi → λi − zλj (2.3.2)

λ̃j → λ̃j + zλ̃i

with z ∈ C. The amplitude is still on-shell, and momentum conservation is still

satisfied. This promotes the amplitude to a function A(z) of z, and leaves it open

to the powerful techniques of complex analysis. If we restrict ourselves to tree level

amplitudes, the analytic structure is necessarily very simple, being limited to poles

where an internal propagator goes on-shell, with no branch cuts. This requires:

(P + zλiλ̃j)
2 = P 2 + 2z⟨i|P |j] = 0 (2.3.3)

and so the poles in z are all simple and located away from the origin at

zP =
P 2

2⟨i|P |j]
(2.3.4)

. Now consider the contour integral

C =
1

2πi

∮
C
dz
A(z)

z
(2.3.5)

where C is a circle at infinity in the complex z plane. The integral captures all of

the poles zP , plus the pole at z = 0 which corresponds to the physical amplitude,
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provided A(z) vanishes as z → ∞. So we can write the physical amplitudes as a sum

over residues:

A(0) =
∑
zP

Res

[
A(z)

z

]
. (2.3.6)

As is well known, when a propagator goes on-shell the amplitude factorises into a

product of two sub-amplitudes:

A(z) → ÂL(z)
i

P̂ 2(z)
ÂR(z). (2.3.7)

Using 2.3.4 we can remove the z-dependence from the propagator and write:

A(1, . . . , n) =
∑
hP

∑
i,j

AL(i, . . . , j, P )
1

P 2
ij

AR(P, i+ 1, . . . , j − 1) (2.3.8)

where we have used the notation Pij = pi + pi+1 + . . . + pj. Now, if we know lower

point tree amplitudes, we can construct higher point ones directly and recursively

without use of Feynman diagrams.

Examples

The seed for any tree level recursion in Yang-Mills Theory is the three-point MHV

amplitude A(1−, 2−, 3+). For real momenta (hence physical processes) this vanishes,

since λ and λ̃ are related by conjugation. For complex momenta, we can proceed to

compute from the Feynman rules that:

A3 =
1√
2

(
ϵ1 · (p2 − p3)ϵ

−
2 · ϵ+3 + ϵ2 · (p3 − p1)ϵ

−
1 · ϵ+3 + ϵ3 · (p1 − p2)ϵ

−
1 · ϵ+2

)
. (2.3.9)

Choosing the reference momenta µ1 = µ2 and µ3 = p1 reduces the expression to one

term:

A3 = i
√
2ϵ−2 · ϵ+3 ϵ−1 · p2 (2.3.10)

=
⟨12⟩4

⟨12⟩⟨23⟩⟨31⟩
.
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Note that this expression is consistent with the spinor weight condition 2.2.12, which

can be used to derive the three-point amplitude.

To illustrate, the use of the recursion relations, we use first the four-point MHV

amplitude A(1−, 2−, 3+, 4+). There is only one diagram in the [1, 2⟩ shift,

..

1−

.

2−

.

4+

. −.

3+

.
P23

. +

Figure 2.1: The only class of diagram for MHV amplitudes in BCFW recursion.

A4 =
⟨1P̂ ⟩3

⟨P̂4⟩⟨41⟩
1

⟨32⟩[23]
[3P̂ ]3

[P̂2][23]
(2.3.11)

=
⟨1|P̂ |3]3

⟨4|P̂ |2]⟨41⟩⟨32⟩[23]2

=
⟨12⟩3

⟨23⟩⟨34⟩⟨41⟩

One can then continue to add three-point vertices to inductively construct the all-n

MHV amplitude.

Our second example is less trivial, the six-point NMHV amplitudeA(1−, 2−, 3−, 4+, 5+, 6+).

We use a [3, 4⟩ shift, which gives three diagrams: Diagram (B) vanishes since there is

no non-zero helicity configuration for the internal leg, and diagram (C) is related to

diagram (A) by conjugation. Hence, (A) is the only diagram that requires calculation.

(A) =
⟨23⟩3

⟨3P̂ ⟩⟨P̂2⟩
1

⟨23⟩[32]
⟨1P̂ ⟩3

⟨P̂ 4̂⟩⟨4̂5⟩⟨56⟩⟨61⟩
(2.3.12)

Note that unlike in the MHV case, the holomorphically shifted momentum appears in

a holomorphic spinor product. Hence we need to solve for z23 such that P̂23 = [23̂]⟨3̂2⟩
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..

(
A
)

.

3̂−

.

4̂+

.

2−

.

+

.

1−

.

5+

.

6+

.

P23

.

−

.
(
B
)

.

3̂−

.

4̂+

.

1−

.. 5+.

6+

.2− .

(
C
)

.

4̂+

.

3̂−

.

5+

.

+

.

6+

.

2−

.

1−

.

P45

.

−
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is on shell. This gives us

z = − [23]

[24]
(2.3.13)

Also,

⟨kP̂ ⟩ = ⟨k|2 + 3|4]
[P̂4]

(2.3.14)

Now we have

(A) =
⟨1|2 + 3|4]3

[24][34]P 2
24

1

⟨4̂5⟩⟨56⟩⟨61⟩
(2.3.15)

=
1

P 2
24

⟨1|2 + 3|4]3

[23][34]⟨56⟩⟨61⟩⟨5|3 + 4|2]
(2.3.16)

Combining with (C), we find

A(1−, 2−, 3−, 4+, 5+, 6+) =
1

⟨5|3 + 4|2]

(
1

P24

⟨1|2 + 3|4]3

[23][34]⟨56⟩⟨61⟩
+

1

P46

⟨3|4 + 5|6]3

[61][12]⟨34⟩⟨45⟩

)
(2.3.17)

2.3.2 The MHV Vertex Expansion

In this useful technique, MHV amplitudes are promoted to the status of interaction

vertices joined by off-shell propagators 1/P 2 to form amplitudes with generic helicity

configurations. This is accomplished by writing the internal momenta in terms of a

reference spinor

λPα = Pαα̇η
α̇ (2.3.18)

so that the spinor brackets take the form

⟨iP ⟩ = ⟨i|P |η]. (2.3.19)

Though first derived by considering the twistor space structure of tree amplitudes

by Cachazo, Svrcek and Witten, we can most readily arrive at this method from the

BCFW relation by considering the multiline shift [22]

|i⟩ → |i⟩, |i] → |i] + zci|η] (2.3.20)
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where
∑n

i=1 ci|i⟩ = 0. Using this shift, we see that an NMHV amplitude can be

written as a sum over MHV amplitudes

ANMHV =
∑
i

AMHV
L (1, 2, . . . P̂ )

1

P 2
AMHV

R (−P̂i, . . . , n− 1, n) (2.3.21)

where P̂ is shifted by the reference spinor according to 2.3.18, and because the shift

is holomorphic it does not affect any of the external momenta. We may then iterate

this argument for NkMHV amplitudes, to construct the vertex expansion.

Examples

We first consider the vanishing amplitude (−−−+). Here there are two diagrams:

The first gives

⟨12⟩3

⟨2P̂ ⟩⟨P̂1⟩
1

P 2

⟨P̂3⟩3

⟨34⟩⟨4P̂ ⟩
= − [4η]3

[1η][2η][3η]

⟨34⟩
[21]

(2.3.22)

and the second similarly gives

− [4η]3

[1η][2η][3η]

⟨32⟩
[41]

. (2.3.23)

The sum of these terms then vanishes due to momentum conservation.

A less trivial example is that for the 5-point MHV amplitude

A(1−, 2−, 3−, 4+, 5+) =
[45]4

[12][23][34][45][51]
. (2.3.24)

Here there are four diagrams:

Diagram (a) gives us:(
⟨12⟩3

⟨2P ⟩⟨P5⟩⟨51⟩

)
1

P 2

(
⟨P3⟩3

⟨34⟩⟨4P ⟩

)
=

⟨12⟩3⟨3|4|η]3

⟨15⟩⟨34⟩2[34]⟨2|3 + 4|η]⟨5|3 + 4|η]⟨4|3|η]
(2.3.25)
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and the other diagrams contribute

+
⟨23⟩3⟨1|2 + 3|η]3

⟨45⟩⟨51⟩2[23]⟨4|3 + 2|η]⟨2|3|η]⟨3|2|η]

+
⟨12⟩3⟨3|1 + 2|η]3

⟨34⟩⟨45⟩2[12]⟨5|1 + 2|η]⟨1|2|η]⟨2|1|η]

+
⟨23⟩3⟨1|5|η]3

⟨34⟩⟨51⟩2[51]⟨4|1 + 5|η]⟨2|1 + 5|η]⟨5|1|η]
(2.3.26)

This expression may be shown to give the Parke-Taylor expression after setting |η] →

|4] + |5] with the aid of symbolic manipulation.

2.4 Computing Amplitudes at Loop Level

Schematically, an ℓ-loop amplitude can be written as a sum over loop integrals with

coefficients:

AL−loop
n = iL

∑
j

cj

∫ ( L∏
i=1

dDℓi
(2π)D

)
nj∏
aj
P 2
aj

(2.4.1)

Where ℓi are the L loop momenta, aj labels the propagators, nj is a kinematic nu-

merator potentially containing the loop momenta. At one loop there is a well-defined

basis of integrals which in four dimensions consists of three topologies: boxes, trian-

gles and bubbles. In theories with massive propagtors, tadpoles may also appear; in

massless theories, these vanish.

Figure 2.2: The box, triangle and bubble topologies which can appear at one loop.
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While there have recently been developed methods for constructing the full loop

amplitude directly for certain amplitudes in certain theories, we will here focus on

methods by which we first deduce the loop integrand, and then evaluate the integrals.

2.4.1 The Unitarity Based Method

The S-Matrix may be written as S = 1 + iT where the forward part T contains all

scattering processes; scattering amplitudes are thus matrix elements of T with respect

to asymptotic states. The unitarity of any evolution operator is clearly necessary in

a consistent quantum theory, and applying this to the S-Matrix leads to the relation:

S†S = 1 ⇐⇒ −i(T − T †) = T †T (2.4.2)

Inserting a complete set of states
∫ ∑

j |pj⟩⟨pj| leads us to the Optical Theorem of

Cutkosky

iDiscA(i→ f) =
∑
j

∫
dLIPS A∗(i→ j)A(j → f) (2.4.3)

where

dLIPS =
n∏

i=1

dDqj
(2π)D

δ(+)(q2j −m2
j)(2π)

Dδ(D)(pi + pf −
∑
j

qj) (2.4.4)

is the Lorentz invariant phase space measure. |i⟩, |f⟩ are the intitial and final states,

and we sum over all possible intermediate states |j⟩. Note that the phase space

integral sets the internal states on-shell, so order by order in perturbation theory, we

can interpret this as a sum over the products of lower-loop amplitudes as illustrated

in 2.4.1.

The traditional approach of the old S-Matrix formalism [23] would be to compute

these dispersion integrals directly. However, we know that the amplitude must be

expressed in terms of some basis of integral functions,and instead consider an ansatz
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g6T
(0)†
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(1)
4

.

g6T
(0)†
5 T

(0)
5

Figure 2.3: Unitarity cuts for one and two-loop four-point amplitudes.

for the amplitude of the form

A(ℓ)
n =

∑
i

ciIi (2.4.5)

We then systematically examine the cuts in all kinematic channels by the sewing

procedure described above. By comparing the cut in each channel to the cuts of the

integral functions, we may then construct and solve a linear system for the ci and

reconstruct the full amplitude from its cuts. The method is illustrated by example

subsequently.

2.4.2 Examples

The simplest example of this method is the computation of the four-point one-loop

amplitude A(g−, g−, g+, g+) in N = 4 Super Yang-Mills [2]. There are two kinematic

channels of interest, shown in figure 2.4.2. In the s-channel cut the helicity of the

internal particles is fixed across the cut, so this cut is the same as in pure Yang-Mills.
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.
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.

ℓ

Figure 2.4: The s-channel(top) and t-channel(bottom) cuts of the four-point ampli-

tude at one loop.

It is given

A1−loop(1−, 2−, 3+, 4+)|s−cut =

∫
Atree(1−, 3−, ℓ+,−k+)× Atree(k+,−ℓ−, 3+, 4+)

=

∫
⟨12⟩3

⟨2ℓ⟩⟨ℓk⟩⟨k1⟩
× ⟨ℓk⟩2

⟨ℓ3⟩⟨23⟩⟨4k⟩
. (2.4.6)

We may easily extract a factor of the tree amplitude to leave under the integrand

⟨23⟩⟨14⟩⟨ℓk⟩2

⟨2ℓ⟩⟨ℓ3⟩⟨4k⟩⟨k1⟩
=

(
⟨3k⟩
⟨ℓ3⟩

+
⟨2k⟩
⟨2ℓ⟩

)(
⟨1ℓ⟩
⟨k1⟩

+
⟨4ℓ⟩
⟨4k⟩

)
(2.4.7)

=
tr(3k1ℓ)

(ℓ · p3)(k · p1)
± Permutations (2.4.8)

where we have used the Schouten identity to expand some spinor products. Expanding

the traces in the numerator using 2.2.10 gives us terms like

−1

4
su

1

(k − p1)2(k + p4)2
+

(p3 · k)(p1 · ℓ)
(ℓ · p3)(k · p1)

+ 1 (2.4.9)

27



where the first term corresponds to the cut of a scalar box integral, the second can be

expanded to a mixture of boxes and triangles, and the third corresponds to a bubble.

Summing over the four permutations, the latter two classes cancel and we find

A1−loop(1−, 2−, 3+, 4+)|s−cut = Atree × stI
(1)
4 (s, t)|s−cut (2.4.10)

where

I
(1)
4 (s, t) =

∫
ddℓ

(2π)d
1

ℓ2(ℓ− p1)2(ℓ− p1 − p2)2(ℓ+ p4)2
(2.4.11)

is a scalar box integral.

In the t-channel, the helicity of internal states is unconstrained. Therefore we

must sum over all states in the theory.

∑
h

nh

∫
dDℓ2
(2π)D

(
⟨1ℓ⟩⟨2k⟩
⟨1k⟩⟨2ℓ⟩

)2−2h

AL(1, 4,−k, ℓ)AR(k,−ℓ, 2, 3). (2.4.12)

The matter content of N = 4 is, in addition to the gluon, four Weyl fermions and

their conjugates and six scalars. Therefore, the helicity sum is of the form (u − 1)4,

which after application of the Schouten identitiy becomes(
⟨12⟩⟨ℓk⟩
⟨1k⟩⟨2ℓ⟩

)4

. (2.4.13)

Returning to the cut expression, we can easily extract a factor of the tree amplitude

to find under the integral

Atree × ⟨12⟩⟨43⟩⟨ℓk⟩2

⟨4ℓ⟩⟨ℓ1⟩⟨k2⟩⟨k3⟩
(2.4.14)

which is identical to the s-cut expression after cyclic permutation, and identifies

the t-channel cut of the same integral. Hence we have identified the single integral

contributing to this amplitude, and can uplift the cut expressions to

A1-loop(1−, 2−, 3+, 4+) = Atree × I
(1)
4 (s, t). (2.4.15)
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For the n-point MHV amplitude, we must consider cuts in all possible kinematic

channels, that is all partitions of external legs on either side of the cut. The com-

putation proceeds similarly to the four-point t-channel cut, leading to an expression

proportional to

Atree
n

⟨lk⟩2⟨m2m2 + 1⟩⟨m1m1 − 1⟩
⟨n2ℓ⟩⟨km1⟩⟨m2 + 1ℓ⟩⟨m1 − 1k⟩

(2.4.16)

which leads to the sum of cut boxes with numerator

N = (2P ·m1P ·m2 − P 2m1 ·m2)

+ (P +m1) ·m2(ℓ−m1)
2 + (P +m2) ·m1(k +m2)

2

+ (ℓ−m1)
2(k +m2)

2. (2.4.17)

As before, the first term corresponds to the cut of a scalar box integral, the second

cancels one propagator to form a triangle and third cancels two to form a bubble.

Also as before on summing all terms only the first survives so we may write

A1-loop
n = Atree

n ×M (1)
n (2.4.18)

M (1)
n =

∑
m1,m2

F 2me(m1,m2, P,Q). (2.4.19)

F 2me is the so-called two-mass easy box function

F 2me(p, q, P 2, Q2) =

∫
ddℓ

(2π)d
1

ℓ2(ℓ− P )2(ℓ− P − q)2(ℓ+ p)2
(2.4.20)

=
1

ϵ2

[(
−s
µ2

)−ϵ

+

(
−t
µ2

)−ϵ

−
(
P 2

µ2

)−ϵ

−
(
Q2

µ2

)−ϵ
]

+ Li2(1− aP 2) + Li2(1− aQ2)− Li2(1− as)− Li2(1− at)

where the invariants s = (P + p)2 and t = (P + q)2 and a is the combination

a =
P 2 +Q2 − s− t

P 2Q2 − st
. (2.4.21)
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2.4.3 Generalized Unitarity

In the above, we cut two propagators to find the cut of an amplitude in a particular

kinematic channel. Many integrals can contribute to the same cut, and the same

integral may have cuts in many channels. We may also consider cutting more prop-

agators to reduce the number of integrals surviving in each cut. In D dimensions,

there are D independent vectors; hence, one may cut up to Dℓ propagators simulta-

neously. Applying this procedure the quadruple cut isolates the coefficient of a single

box integral [24].

As an example, consider the five-point one-loop MHV amplitudeA(1−, 2−, 3+, 4+, 5+).

Cutting four propagators completely fixes the coefficient of a box integral in a given

channel. There are five possible one-mass box integrals to examine, with massive

corners P12 = (p1 + p2), P23, P34, P45 and P51. The coefficient of the integral

I12 =

∫
ddℓ

(2π)d
1

ℓ2(ℓ+ p1 + p2)2(ℓ− p5)2(ℓ− p5 − p4)2
(2.4.22)

is determined from figure 2.4.3.

Figure 2.5: .

The helicity configuration of cut legs is fully constrained, so we find the coefficient
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as a product of four tree amplitudes is given by:

c12 = A(−ℓ+4 , 1−, 2−, ℓ+1 )A(−ℓ−1 , 3+, ℓ+2 )A(ℓ−2 , 4+, ℓ−3 )A(ℓ+3 , 5+, ℓ−5 )

=
⟨12⟩3

⟨ℓ41⟩⟨2ℓ1⟩⟨ℓ1ℓ4⟩
[3ℓ2]

3

[ℓ13][ℓ2ℓ1]

⟨ℓ2ℓ3⟩3

⟨ℓ24⟩⟨4ℓ3⟩
[ℓ35]

3

[5ℓ4][ℓ4ℓ3]

=
⟨12⟩3[3|ℓ2ℓ3|5]

⟨2|ℓ1|3]⟨4|ℓ2ℓ1ℓ4|5]⟨1|ℓ4ℓ3|4⟩
, (2.4.23)

which may be written as a function only of ℓ2

c12 =
⟨12⟩3⟨4|ℓ2|3]2[45]3

⟨2|ℓ2|3]⟨34⟩⟨15⟩[45]⟨4|ℓ2|5]

=
s34s45⟨12⟩3

⟨23⟩⟨34⟩⟨45⟩⟨51⟩

= s34s45A
tree
5 (1−, 2−, 3+, 4+, 5+). (2.4.24)

The coefficients of the other integrals may be obtained by cyclic permutation of

external legs.

2.5 Methods for Evaluating Feynman Integrals

We are far from finished in any calculation at this point, since the Feynman integrals

of the form 2.4.1 are in general highly non-trivial. Many methods have been derived

for their evaluation going back to Feynman himself, on which a superb pedagogical

reference is [25]. Many are based on differential equation, though here we focus on

those that exploit the introduction of auxiliary parameters.

2.5.1 Reduction to Master Integrals

Although tensor integrals may be a more physically natural basis in many situations

(see in particular 5.3, [26] [27]), for calculation it is generally most efficient to reduce

them to a basis of scalar master integrals.
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Passarino-Veltman Reduction

For one loop integrals, one may use purely algebraic identities to perform tensor

reduction completely [28]. We accomplish this by writing for a generic linear integral

In[ℓ
µ] =

∫
ddℓ

(2π)d
ℓµ

ℓ2(ℓ− q1)2 . . . (ℓ− qn)2
=

n−1∑
i=1

ciq
µ
i (2.5.1)

where the right-hand side may be written as a linear combination over n−1 momenta.

Note that for n > 4 these cannot all be linearly independent, so we may work with

only some subset. We then contract with each qi to find

In[ℓ · qi] =
∫

ddℓ

(2π)d
ℓ · qi

ℓ2(ℓ− q1)2 . . . (ℓ− qn)2
=

n−1∑
i=1

ci∆ij (2.5.2)

where ∆ij = qi · qj is called the Gram matrix. We may then write the dot product in

terms of propagators through such formulae as

q · ℓ = 1

2

(
(ℓ+ q)2 − ℓ2 − q2

)
(2.5.3)

in order to cancel propagators and write the elements of the Gram matrix in terms of

scalar integrals. We thus construct a linear system of equations which may be solved

for the coefficients ci in terms of these integrals. As an example, we consider the

linear zero-mass box

I4[ℓ
µ] =

∫
ddℓ

(2π)d
ℓµ

ℓ2(ℓ− p1)2(ℓ− p1 − p2)2(ℓ+ p4)2
= c1p

µ
1 + c2(p1 + p2)

µ + c4p
µ
4 .

which we will write in terms of the scalar box I4[0] and the scalar triangles

Tri(sij) =

∫
ddℓ

(2π)d
1

ℓ2(ℓ− pi)2(ℓ− pi − pj)2
. (2.5.4)

Applying (2.5.3) leads to the system of equations

c2s+ c4t = Tri(t)− Tri(s)

c1 + 2c2 − c4 = I4[0]

c1t− c2s = Tri(s)− Tri(t).
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which is solved by

c1 =
1

2

s

u
I4[0] + Tri(s)− Tri(t) (2.5.5)

c2 =
1

2

t

u
I4[0] + Tri(t)− Tri(s)

c4 = −c1.

We note that this integral in principle appears in the four-point one-loop amplitude

2.4.7 through the expansion of the trace

Tr(4k1ℓ) = 2(p4 · ℓ)(p1 · ℓ) +
1

2
t(p2 · ℓ)−

1

2
s(p4 · ℓ)−

1

2
u(p1 · ℓ) (2.5.6)

and similar terms, where it is contained in the linear terms. We may now apply this

result to the particular numerator 2.5.6, to find

I4[Tr(421ℓ)] =
1

4
st I4[0] (2.5.7)

as required.

Integration By Parts Identities

At higher loops, one must also employ integration by parts identities of the form

0 =

∫
ddℓ1 . . . d

dℓL
∂

∂ℓi
·
(
qj

1

P λ1
1 . . . P λn

n

)
=

∫
ddℓ1 . . . d

dℓL OijF (λ1, . . . , λn) (2.5.8)

where the qj include both loop and external momenta. Note that we may write tensor

integrals in terms of propagators with negative powers. The Oij are the generators

of a Lie algebra with commutation relations

[Oij, Ojk] = δilOkj − δkjOil (2.5.9)

and have the explicit forms

Oij = dδij +
L∑

m=1

(1 + δmi)smj
∂

∂smj

(2.5.10)
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where sij are the scalar products involving the loop momentum. These may be

expressed in terms of the propagators as

sij =
∑
a

Aa
ij(Pa −m2

a) (2.5.11)

∂

∂sij
=

N∑
a=1

Aij
a

∂

∂Pa

(2.5.12)

for some coefficients Aij. Now the operator ∂
∂Pa

raises the power λa by one; and the

operator Pa lowers it by one. Thus we may define the operators λi, i
+, i− 1 which act

to raise and lower integer powers

niF (λ1, . . . , λi, . . . , ℓn) = λiF (λ1, . . . , λi, . . . , ℓn) (2.5.13)

i+F (λ1, . . . , λi, . . . , ℓn) = F (λ1, . . . , λi + 1, . . . , ℓn) (2.5.14)

i−F (λ1, . . . , λi, . . . , ℓn) = F (λ1, . . . , λi − 1, . . . , ℓn). (2.5.15)

The shift operators commute with each other, whilst

[i±, λj] = δiji
±. (2.5.16)

We may use these operators to construct IBP relations of the form

∑
i

αiF (λ1 + bi,1, . . . , bi,n) = 0 (2.5.17)

where αi is a polynomial in λi and bi are fixed integers. By making appropriate

choices of λi one may relate a complex integral to a sum of simpler ones. In general,

the goal is to reduce a given integral to a sum over scalar Master Integrals which may

be readily evaluated.

As a simple example of this, consider the one-loop triangle with arbitrary powers

in the propagators:

I(λ1, λ2, λ3) =

∫
ddℓ

1

P λ1
1 P λ2

2 P λ3
3

(2.5.18)

1It is possible, if not particularly enlightening, to write down the Oij in terms of the Aij and i±.
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where

P1 = ℓ2 P2 = (ℓ− p1)
2 P3 = (ℓ− p1 − p2)

2. (2.5.19)

We may write down IBP identities like∫
ddℓ

∂

∂ℓµ

p1µ

P λ1
1 P λ2

2 P λ3
3

= 0 (2.5.20)

and realise them by writing out the derivatives of propagators in terms of themselves:

p1µ
∂

∂ℓµ
P1 = 2p1 · ℓ = P2 − P1 (2.5.21)

p1µ
∂

∂ℓµ
P2 = 2p1 · ℓ+ 2p21 = P2 − P1

p1µ
∂

∂ℓµ
P3 = 2p1 · ℓ+ 2p1 · p2 = P2 − P1 + q2.

So 2.5.20 gives us

0 =

∫
ddℓ

1

P λ1
1 P λ2

2 P λ3
3

(
λ1 − λ2 − λ1

P2

P1

+ λ2
P1

P2

+ λ3
P1

P3

− λ3
P2

P3

− λ3
q2

P3

)
(2.5.22)

which may be interpreted as the IBP relation

0 = (λ1−λ2−λ11+2−+λ21
−2++λ31

−3+−λ32−3+−λ3q23+)I(λ1, λ2, λ3). (2.5.23)

The IBP identities for qj = p2µ, ℓµ give the relations

0 = (λ2 − λ3 − λ1(1
+2− − 1+3−)− λ22

+3− + λ32
+3− + λ1q

22−)I(λ1, λ2, λ3)

0 = (d− 2λ1 − λ2 − λ3 − λ21
−2+ − λ31

−3+ + λ3q
23+)I(λ1, λ2, λ3) (2.5.24)

and we may now use these relations to reduce integrals with particular values of

λ1, λ2, λ3. For the simplest non-trivial case, with λ1 = λ2 = λ3 we may write the

integral I(2, 1, 1) using the second IBP identity as

sI(2, 1, 1) = I(2, 1, 0) + I(1, 2, 0)− I(2, 0, 1)− I(1, 0, 2) (2.5.25)

= 2I(2, 1, 0)− 2I(2, 0, 1). (2.5.26)
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One can easily see that the first term is a vanishing bubble, while the second can be

passed through the third IBP relation to find

−sI(2, 0, 1) = (d− 3)I(1, 0, 1)− I(2, 0, 0) (2.5.27)

where the second term is a tadpole, which vanishes. The integral is reduced to

I(2, 1, 1) =
2(d− 3)

q4
I(1, 0, 1) (2.5.28)

where I(1, 0, 1) is called a Master Integral for the triangle topology. As this case was

very simple we found only a single Master Integral; but in general there may be very

many.

2.5.2 Feynman Parameters

An approach common to many methods is to introduce integration over auxiliary

variables. We do so by use of the identity

1

P λ1
1 P λ2

2 . . . P λn
n

=
Γ (
∑n

i λi)∏n
i Γ(λi)

∫ 1

0

(
n∏
i

dnξi ξ
λi−1
i

)
δ (
∑n

i ξi − 1)

[ξ1P1 + ξ2P2 + . . . ξnP2]
n (2.5.29)

Example: The One-Loop Triangle

Tri(1)(q2) =

∫
ddℓ

(2π)d
1

ℓ2(ℓ− p1)2(ℓ+ p2)2
(2.5.30)

Applying 2.5.29 twice casts the integrand in the form∫ 1

0

dx

(ℓ2 − 2xℓ · p1)2(ℓ− p2)2

=

∫
dxdy

y

ℓ2 − 2xyℓ · p1 + 2(1− y)ℓ · p2

=

∫
dxdy

y

(ℓ′2 − xy(1− y)q2)3
. (2.5.31)

We may perform the integration over ℓ′ yielding∫
ddℓ

(2π)d
1

(ℓ2 −∆)n
=

(−1)n

(4π)d/2
Γ(n− d/2)

Γ(n)

(
1

∆

)n− d
2

(2.5.32)
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leaving us with the auxiliary integral∫ 1

0

dx

x1−ϵ

∫ 1

0

dy yϵ(1− y)ϵ−1 =
1

ϵ
B(1 + ϵ, ϵ). (2.5.33)

Putting the two together and applying elementary identities for the Γ and B functions

gives us the result

Tri(q2, ϵ) = −(−q2)−ϵΓ(1 + ϵ)Γ2(ϵ)

Γ(1 + 2ϵ)
. (2.5.34)

Example: The Zero-Mass Box Function

In general, applying Feynman paramaterization to a one-loop n-gon scalar integral

with masless propagators in 4 + ϵ dimensions gives

In = Γ(n− 2 + ϵ)

∫ 1

0

dnxiδ(1−
n∑
i

xi)
1[∑n

i,j=1 Yijxixj

]n−2+ϵ (2.5.35)

after performing the loop integration, where

Yij = −1

2
(ki + kj−1)

2, Yii = 0. (2.5.36)

For a box integral with massive corners m1,m2,m3,m4 the denominator is

n∑
i,j=1

Yij = −sx1x3 − tx2x4 −m2
1x1x2 −m2

2x2x3 −m2
3x3x4 −m2

4x4x1. (2.5.37)

In the simplest case, the massless box 2.4.11, this takes the form

I
(1)
4 = Γ(2 + ϵ)

∫ 1

0

d4xiδ(1−
4∑

i=1

xi)
1

[−sx1x3 − tx2x4]
2+ϵ (2.5.38)

which may be directly integrated after the substitution

x1 = y(1− x), x2 = z(1− y), x3 = (1− y)(1− z), x4 = xy (2.5.39)

which factorises the integrand in the form

I4 = Γ(2 + ϵ)

∫ 1

0

dy [y(1− y)]−2−ϵ

∫ 1

0

dxdy

[−s(1− x)(1− z)− txz]2+ϵ (2.5.40)

=
Γ(2 + ϵ)Γ(−ϵ)2

Γ(−2ϵ)

∫ 1

0

dxdy

[−s(1− x)(1− z)− txz]2+ϵ (2.5.41)
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where we have performed the integral over y. Performing the integral over x leaves

us with

I4(s, t) =
Γ(2 + ϵ)Γ(−ϵ)2

Γ(−2ϵ)

∫ 1

0

dz

s− (s+ t)z
[(−t)−1−ϵz−1−ϵ + (−s)−1−ϵ(1− z)( − 1− ϵ)

(2.5.42)

=
Γ(2 + ϵ)Γ(−ϵ)2

Γ(−2ϵ)
[f(s, t; ϵ) + f(t, s; ϵ)] (2.5.43)

where we have defined

f(s, t; ϵ) = (−t)−1−ϵ

∫ 1

0

dz

s− (s+ t)z

[
z−1−ϵ +

(
s

s+ t

)−1−ϵ
]
. (2.5.44)

The result, to all orders in ϵ, is given in terms of hypergeometric functions

I4(s, t) =
Γ(2 + ϵ)Γ(−ϵ)2

stΓ(−2ϵ)

[
(−s)−ϵ

2 F1

(
1,−ϵ; 1− ϵ; 1 +

s

t

)
+ (−t)−ϵ

2 F1

(
1,−ϵ; 1− ϵ; 1 +

t

s

)]
.

(2.5.45)

2.5.3 Mellin-Barnes

This method is based upon the identity

1

(X + Y )λ
=

1

Γ(λ)

1

2πi

∫ +i∞

−i∞
dzΓ(λ+ z)Γ(−z) X

z

Y λ+z
(2.5.46)

where contour is chosen to separate poles with a Γ(. . . + z) dependence (called left

poles) from those with a Γ(. . .− z) dependence.
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Figure 2.6: An example of a Mellin-Barnes integration contour.

The most basic application is to convert massive propagators into massless ones

and integrate over a massless integral, but it may also be applied to Feynman para-

metric representations, which as we have seen are generically of the form 2.5.46, in

order to break up terms in the denominator. After doing so, the integral is cast in

the form of an n-fold Mellin-Barnes Representation

R =
1

2πi

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞

∏
i

dzif(z1, . . . , zn; s1, . . . , sp;λ1, . . . , λq; ϵ)

∏
j Γ(Aj + Vj + cjϵ)∏

k Γ(Bk +Wk + dkϵ)

(2.5.47)

where si are the kinematic invariants and λi are the powers of the propagators. Aj

and Bk are linear combinations of λis; Vj and Wk are linear combinations of zis;

and cj, dk are constants. The function f is in general a product of powers of si.

The construction of such representations has been automatized in the Mathematica

package AMBRE [29], which we shall utilize extensively. As a simple example which may

be done by hand, consider the massless box integral with Feynman parametrization
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2.5.40. We may apply 2.5.46 with Y = −sx1x3 and X = −tx2x4 to find∫ 1

0

dxdy

[−s(1− x)(1− y)− txy]2+ϵ
=

1

Γ(2 + ϵ)

1

2πi

∫ +i∞

−i∞
dzΓ(2+ϵ+z)Γ(−z)

∫ 1

0

dzdy(xy)z

[(1− x)(1− y)]2+ϵ+z

(2.5.48)

and we may immediately evaluate the Feynman parameter integral in terms of Γ

functions. The result gives the MB representation for the massless box

I4(s, t) =
iπd/2

Γ(−2ϵ)(−s)2+ϵ

1

2πi

∫ +i∞

−i∞
dz

(
t

s

)z

Γ(2+ϵ+z)Γ(1+z)2Γ(−1−ϵ−z)2Γ(−z).

(2.5.49)

Once acquired, these representations may often be simplified by the application

of Barnes’s lemmas∫ +i∞

−i∞
dz Γ(a+ z)Γ(b+ z)Γ(c− z)Γ(d− z) =

Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d)

(2.5.50)∫ +i∞

−i∞
dz

Γ(a+ z)Γ(b+ z)Γ(c+ z)Γ(d− z)Γ(e− z)

Γ(a+ b+ c+ d+ e+ z)

=
Γ(a+ d)Γ(a+ e)Γ(b+ d)Γ(b+ e)Γ(c+ d)Γ(c+ e)

Γ(a+ b+ d+ e)Γ(a+ c+ d+ e)Γ(b+ c+ d+ e)
. (2.5.51)

In some cases, this procedure saturates all the z integrations and one finds an exact

expression in terms of Γ functions.

When no exact solution can be derived, there are two common approaches to

extract the ϵ expansion of the MB representation. We proceed by following what is

called in the literature Strategy B, following the work of [30] [31].

We note that in general although the condition that the integration contour sep-

arate right and left poles is necessary to guarantee the equivalence of the MB repre-

sentation and the original loop integral it cannot in general be satisfied for physically

meaningful values of the dimension and the powers of the propagators, ie. those

where ϵ is close to zero. We proceed therefore by beginning with a contour where the

separation condition is satisfied and then analytically continue to the ϵ→ 0 regime.
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• We chose our integration contours to be straight lines parallel to the Im axis,

such that the real parts of the arguments of all Γ functions are positive.

• This condition determines allowed values of ϵ, including some starting value ϵ0

and a boundary value ϵ1 where the contour first intersects a pole. Here we will

work with ϵ < 0 so that ϵ1 is a maximum, but the argument applies analogously

for ϵ > 0. If ϵ can be taken to zero without intersecting a pole, we may safely

expand about ϵ = 0.

• For ϵ1 < 0, we must determine the residue where the pole crosses the contour.

Then we may write

R(ϵ0) = R(ϵ1)± Res[R]|zi=z∗ (2.5.52)

The residue term is now an (n− 1)-fold MB representation, which is added for

a left pole and subtracted for a right pole.

• We have thus analytically continued from ϵ = ϵ0 to ϵ = ϵ1. We now iterate the

process starting from ϵ1 until we may expand about ϵ = 0.

Since this process is algorithmic, it may be implemented computationally, notably

by the Mathematica package MB. One obtains a sum of analytic Γ functions and

remaining contour integrals which in general must be attacked numerically.

2.5.4 Infrared Divergences

A general feature of the S-Matrix in theories with massless particles is the presence

of infrared divergences. Unlike UV divergences, these are not renormalized away but

instead cancel in the computation of physical quantities such as the cross sections

of colour singlet states. There are two types of integration region which give rise to

such divergences; the low-energy region of some virtual particle and the region where
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a vertical particle is collinear with some external state. Both lead to integrals of the

form ∫
dk

k1+ϵ
∝ 1

ϵ
(2.5.53)

and since they may occur simultaneously the leading singularity at ℓ loops is at most

1/ϵ2ℓ. As an illustration, consider one mass triangle at one-loop in 4 + ϵ-dimensions

Tri(1)(q2) =

∫
ddℓ

(2π)d
1

ℓ2(ℓ− p1)2(ℓ+ p2)2

= (−q2)−ϵ

[
− 1

ϵ2
+
ζ2
2
+O(ϵ)

]
(2.5.54)

where in the limit ℓ→ 0 we also have ℓ1 → p1 and ℓ2 → p2. In general, this behaviour

will be observed for any integral with adjacent massless legs2.

The IR divergences of QED and of Gravity analysed by Weinberg [32] in the 1960s

are much simpler than those of non-abelian gauge theories, since the self coupling is

for photons absent and for soft gravitons very weak. In fact, it was speculated at

the time that the problem of IR divergences in Yang-Mills theory may rule it out

as a description of nature! A general n-point amplitude in non-Abelian Yang-Mills

Theory may be factorised in the following way [33]

An = J

(
Q2

µ2
, α(µ), ϵ

)
× S

(
pi,

Q2

µ2
, α(µ), ϵ

)
× hn

(
pi,

Q2

µ2
, α(µ), ϵ

)
. (2.5.55)

Here Q2 is some characteristic scale for particles of momentum pi, α(µ) is the running

coupling and µ is a renormalization scale. J is a jet function describing collinear

behaviour, the soft function S and the hard function hn is an IR finite piece which

contains the short-distance dynamics. An and the finite hard function hn are vectors

in the space of colour structure, while S is a matrix; however, if we restrict ourselves

to planar theories (or leading colour), it is proportional to the identity and may be

absorbed into the definition of J .
2We do not always chose to make this manifest. For instance, in the case of the two-mass easy

box function, we write the divergent part as 1
ϵ2

[(
−s
µ2

)−ϵ

+
(

−t
µ2

)−ϵ

−
(

−P 2

µ2

)−ϵ

−
(

−Q2

µ2

)−ϵ
]
, which

yields only a 1/ϵ pole after expanding the terms of the form s−ϵ.
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Figure 2.7: IR structure of planar scattering amplitudes. The straight lines represent

hard external states, the curly lines carry soft or collinear momenta. Exchange occurs

only between adjacent “slices”. Taken from [34]

As shown in figure 2.7, in the planar limit soft exchanges are restricted to wedges

between adjacent external lines [34]. Then the divergence is proportional to the

amplitude for the decay of some colour singlet into two external states.

In N = 4 Super Yang-Mills, an excellent candidate is the form factor of the

shortest BPS operator

F (q2, λ; ϵ) = ⟨ϕ12(p1)ϕ12(p2)|Tr(ϕ12ϕ12|0⟩ (2.5.56)

since it is protected from UV divergences by supersymmetry. Then the amplitude

may be written as

An =

[
n∏

i=1

F (si,i+1, λ; ϵ)

]1/2
× hn(pi, λ; ϵ). (2.5.57)

This form factor obeys renormalization group equations [35] [36] [37] owing to the
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necessity of independence on the factorization scale Q2. These are solved for N = 4

by [34]

An = exp

[
−1

8

∞∑
ℓ=1

aℓ

(
γ
(ℓ)
K

(ℓϵ)2
+

2G
(ℓ)
0

ℓϵ

)
n∑

i=1

(
µ2

si,i+1

)ℓϵ
]
× hn (2.5.58)

where γK is the cusp anomalous dimension and G0 is the collinear anomalous dimen-

sion. This may be further refined to

An = exp

[
∞∑
ℓ=1

aℓf (ℓ)(ϵ)În(ℓϵ)

]
h̃n (2.5.59)

where Î(ℓϵ) is the divergent part of the one-loop amplitude with the substitution

ϵ→ ℓϵ and

f (ℓ)(ϵ) = f
(ℓ)
0 + ϵf

(ℓ)
1 + ϵ2f

(ℓ)
2 . (2.5.60)

Although the description above is given for N = 4, the argument is applicable to a

broad range of gauge theories.

2.6 Wilson Loops

A natural class of observables in any gauge theory are the Wilson Loops

W (C) =
1

N
⟨0|TrP exp

(
ig

∮
C

dxµAµ

)
|0⟩ (2.6.1)

corresponding naturally to the path integral contribution of a particle in a background

field. Gauge invariance is guaranteed by the closure of the contour. These objects

in principle form a complete set of observables just as local operators do. It can

easily be seen by expanding the exponential that the Wilson Loop has a perturbative

expansion of the form

W (C) ∝ 1 + ig

∮
dxµ⟨Aµ(x)⟩+ (ig)2

∮
dxµdyν⟨Aµ(x)Aν(y)⟩+ . . . . (2.6.2)
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The (ig) coefficient vanishes for any theory with unbroken Poincare symmetry, so the

first order term has the interpretation of integrating a propagator over the possible

endpoints on the contour.

2.6.1 Divergences and Renormalization

UV divergences of Wilson Loops occur in the integration region where propagators

are pinched to a point. The first case to consider is a smooth contour, where in

general the divergence in linear in the cut-off and proportional to the length of the

contour, and often disappears in dimensional regularization [38]. It can be absorbed

into an overall factor:

W (C) = e−KL(C) × finite (2.6.3)

which has an interpretation as the mass renormalization of a test particle.

This linear divergence is the only one present for a smooth contour [39] [40]. The

interesting behaviour occurs when the contour possesses cusps. For instance, it was

shown by Polyakov [38] that for cusp angle α at one loop

W (C) = 1− 2g2CF [αcotα− 1] log

(
L

a

)
(2.6.4)

where CF is the fundamental quadratic Casimir and a is the short-distance cut-off.

More generally, the cusp divergence can be removed by multiplicative renormalization

WR(C) = Z(α)W (C). (2.6.5)

The divergence depends on the contour only via the cusps, which are locally indepen-

dent, so the renormalization associated with multiple cusps factorise:

Z(α1, α2, . . . , αn) = Z(α1)Z(α2) . . . Z(αn). (2.6.6)

One may derive [41] a renormalization group equation for the Wilson loop. leading
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the to the general result

Z−1(α, g, ϵ) = exp

[∫ g

0

dg′γK(α, g
′, ϵ)/β(g′, ϵ)

]
(2.6.7)

where γK is the same cusp anomalous dimension as in 2.5.59. In N = 4 sYM this is

solved by

Z(α, g, ϵ) = exp

[
∞∑
ℓ=1

g2ℓ

2ℓ

γ
(ℓ)
K (α, g)

ϵ

]
(2.6.8)

and we see that like the IR divergences of scattering amplitudes the UV divergences

of Wilson Loops exponentiate.

2.6.2 Lightlike Contours

A particularly important class of Wilson Loops are those defined by polygonal con-

tours where each segment is lightlike. The contribution from a propagator starting

and ending on the same segment vanishes in dimensional regularization, so the lowest

order contribution is then given by the following two diagrams:

Figure 2.8: Case (a), the lightlike cusp diagram.
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Figure 2.9: Case (b), the finite contribution where the propagator stretches between

two non-adjacent segments.

Case (a) is a special case of the cusp diagram discussed above. Here we work in

dimensional regularization using the propagator in Feynman gauge:

∆µν(z) = −Γ(1− ϵ)

4π2−ϵ

ηµν
(−z2 + iϵF )1−ϵ

(2.6.9)

so the cusp diagram is given by

− (ig)2
Γ(1− ϵ)

4π2−ϵ

∫
dσdτ

(pi · pj)
[(piσ − pjτ)2]

1−ϵ

=− (ig)2
Γ(1− ϵ)

4π2−ϵ

[
1

2

(−sij)−ϵ

ϵ2

]
. (2.6.10)

Diagram (b) is finite, so we may evaluate it in four dimensions. For simplicity we

consider the case of the tetragon, where we have:

−(ig)2
1

2

Γ(1− ϵ)

4π2−ϵ
Fϵ (2.6.11)
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and

F0 =

∫
dσdτ

−s12 − s14
−s12σ + s14τ − s12 + s14στ

= −Li2

(
s12
s14

)
− Li2

(
s14
s12

)
=

1

2
log2

(
s12
s14

)
+
π2

2
(2.6.12)

where between the second and third lines we have used the identity

Li2(z) + Li2(1/z) +
1

2
log2(−z) + π2

6
= 0. (2.6.13)

Note the functional dependence is on polylogarithms of weight two, which is a natural

consequence of the perturbative structure of this Wilson Loop as an iterated integral.

2.7 Form Factors

The first step in investigating off-shell quantities is to consider form factors. These

are the matrix elements of Gauge Invariant Operators,

F (1 . . . n) = δ(4)(q −
n∑
i

pi)⟨1 . . . n|O(0)|0⟩ =
∫

d4xe−iqx⟨1 . . . n|O(x)|0⟩, (2.7.1)

and as such interpolate between scattering amplitudes and correlation functions. In

particular, using the methods of generalized unitarity, we may construct loop-level

correlation functions by sewing tree level form-factors [15].

We have already seen the important connection of one form factor to infrared

divergences. Form factors also have physical application in their own right, in par-

ticular when considering effective couplings to off-shell currents. For instance, in the

Standard Model the Higgs does not couple to the gluons directly but to the quarks

via Yukawa couplings

LY = −H
v

(∑
l

mlqlq̄l +Mttt̄

)
(2.7.2)
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where v is the Higgs VEV and l labels the light quarks. Since the coupling to the

Higgs is proportional to the mass we separate the top quark contribution as this is

dominant.

Figure 2.10: The dominant contribution to the process H → gg. Note that the coupling

to the Higgs is proportional to mt.

In the heavy top limit mt → ∞ the coupling has been shown to be independent

of mt so it may be integrated out, leaving an effective term in the Lagrangian [42]

Leff ∝ αS

12πv
HtrF 2. (2.7.3)

It may then be seen that the amplitudes H → n gluons is given to first order by

the form factor of this operator, which bears many similarities to objects we will

consider in this thesis. Another famous case is that of e+e− → Hadrons, where O is

the hadronic electromagnetic current.

Having on-shell external states, the methods described above for scattering am-

plitudes are amenable to the study of form factors as well. Consider, for instance, the

simplest form factor in N = 4 sYM, the Sudakov form factor described above, at one

loop. The operator under consideration is the scalar bilinear O = Tr(ϕ12ϕ12). The

form factor is then F = ⟨ϕ(p1)ϕ(p2)|O(0)|0⟩, with q := p1 + p2. At tree level, this

object is trivially unity. It has just the one kinematic channel, captured by 2.7(a)

and doubled by the contribution of the case ℓ1 ↔ ℓ2. The four-scalar amplitude is

given:

A(ϕ12(p1), ϕ12(p2), ϕ̄12(ℓ1), ϕ̄12(ℓ2) =
⟨12⟩⟨ℓ1ℓ2⟩
⟨2ℓ1⟩⟨ℓ21⟩

(2.7.4)
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Figure 2.11: (a) Shows the q2 channel cut of the Sudakov form factor. The cut

identifies the one-mass triangle integral (b).

Now we see that to cut leads to

F (1)(q2)|q2-cut = 2

∫
dLIPS

⟨12⟩⟨ℓ1ℓ2⟩
⟨2ℓ1⟩⟨ℓ21⟩

= −2q2
∫

dLIPS
1

(ℓ2 + p2)2
(2.7.5)

which can immediately be lifted to a loop integral since there is but one kinematic

channel.

We may also use BCFW recursion to construct form factors with additional gluonic

external states, since all the factorization theorems apply to form factors. We use the

three-point amplitude

A(1ϕ, 2ϕ, 3
+) =

[23][31]

[12]
(2.7.6)

together with the Sudakov form factor to seed the recursion relations. For the simplest

case, that of the three-point form factor F (1ϕ, 2ϕ, 3
+) we have

F (1ϕ, Pϕ; q)
1

P 2
A(Pϕ, 2ϕ, 3

+) = 1 · 1

⟨23⟩[32]
[23][3P̂ ]

[P̂2]

=
1

⟨23⟩
⟨1|2 + 3|3]
⟨1|2 + 3|2]

=
⟨12⟩

⟨23⟩⟨31⟩
(2.7.7)
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so we may write:

FMHV
3 (iϕ, jϕ, k

+) =
⟨ij⟩

⟨jk⟩⟨ki⟩
, F3(iϕ, jϕ, k

−) =
[ij]

[jk][ki]
. (2.7.8)

We may now iterate the above process to derive an infinite sequence of form factors

FMHV(1+, . . . iϕ, . . . jϕ, . . . n
+; q) =

⟨ij⟩2

⟨12⟩⟨23⟩ . . . ⟨n1⟩
. (2.7.9)

More complex solutions to the form factor recursion relations will be discussed in

depth in later chapters.
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Chapter 3

Computable Models

Having appraised the armaments, we now survey the battlefield. In science as in war

it is important to chose battles one can win; and though the techniques outlined in

the previous chapter are generally applicable, there are certain theories in which their

application is elegantly simple and we may progress far further than in the tangled

forest of reality. These theories possess enhanced symmetry which places strict con-

straints on observable quantities. Both supersymmetry and conformal symmetry are

by now old and well-understood; but the theories in which this phenomenon is most

emphatic also possess additional hidden symmetries which in principle render them

integrable.

3.1 Superconformal Symmetry

Supersymmetry and conformal symmetry place very strong constraints on field the-

ories.

It should be noted that in principle we may not define asymptotic states in a

conformal field theory, and consequently the scattering cross-section is not an IR-
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safe observable. We must regard the amplitudes we compute as existing only in the

presence of an IR regulator. Working in dimensional regularization this carries little

physical meaning; if we wish we may regard the CFT as the UV fixed point of an RG

flow, and an IR cut-off must be applied at some scale. We may also see a more physical

picture in the case of N = 4 sYM by using the massive Coulomb branch regulator

of [43] [44] [45]. Alternatively, we may regard amplitudes in conformal theories as

building blocks of amplitudes in other theories where scattering is completely well-

defined. In particular, we may write the one-loop amplitude for gluon scattering in

QCD as

AQCD = AN=4 − 4AN=1 + AN=0 (3.1.1)

where AN=1 is the amplitude with a chiral N = 1 multiplet running in the loop and

AN=0 is that with a complex scalar.

3.1.1 Conformal Transformations

In a conformal theory, the metric is invariant up to a local rescaling

x→ x′ gµν → g′µν = ρ(x)gµν (3.1.2)

which also preserves angles. Starting from an infinitesimal transform

x′µ = xµ + kµ (3.1.3)

one may show that the most general form of the killing vector kµ in d > 2 is given by

kµ = aµ + ωµνx
ν + λxµ + 2(x · b)xµ − bµx2. (3.1.4)

Here aµ and ωµν parametrises the translations and rotations of the familiar Poicare

group. λ parametrizes dilatations, while bµ is the parameter for the so-called special

conformal transformations or conformal boosts. The generators for these are given
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by

D = −ixµ∂µ (3.1.5)

Kµ = −i(xµxν∂ν − x2∂µ) (3.1.6)

respectively. In addition to the familiar commutation relations of the Poincare alge-

bra, we also have

[D,Pµ] = iPµ [Kρ,Mµν ] = i(ηρµKν − ηρνKµ) (3.1.7)

[D,Kµ] = −iKµ [KµPν ] = 2i(ηµνD −Mµν) (3.1.8)

which defines the conformal algebra. We note that if we define the anti-symmetric

operators Jab with a = 0, 1, . . . d+ 1 by

Jµν =Mµν Jd,d+1 = D, Jµd =
1

2
(Pµ −Kµ) Jµ,d+1 =

1

2
(Pµ +Kµ) (3.1.9)

these follow the commutation relations of the rotation group

[Jab, Jcd] = i(ηadJbc − ηacJbd + ηbcJad − ηbdJac) (3.1.10)

with signature (+− . . .−+). Hence, we see that the conformal group in d dimensions

is SO(2, d) and has (d+ 1)(d+ 2)/2 generators. In d = 4 these fifteen comprise four

translations, six Lorentz transformations, one dilatation and four special conformal

transformations.

We now turn our attention to finite transformations. For translations, Lorentz

transformations and rotations these clearly take the form

x′µ = xµ + aµ x′µ = Λν
µx

ν x′µ = λxµ. (3.1.11)

For the special conformal transformation one finds

x′µ =
xµ − bµx2

1− 2b · x+ x2b2
. (3.1.12)

54



This may be readily obtained by introducing the finite transformation of conformal

inversion

I : xµ → xµ

x2
(3.1.13)

which clearly satisfies and then applying

I ◦ P ◦ I : xµ → xµ

x2
→ xµ

x2
− bµ → xµ − bµx2

1− 2b · x+ x2b2
. (3.1.14)

Hence, we may also say that conformal symmetry is built from Poincare symmetry

plus dilatations and inversions, although the latter lack an infinitesimal form and do

not form part of the algebra. It is in general much easier to consider to the scaling of

quantities under inversions than under special transformations.

3.1.2 Conformal Primaries

The transformation of a scalar field under a finite conformal transformation takes the

form

ϕ′(x′) =

∣∣∣∣∂x′∂x

∣∣∣∣∆/d

ϕ(x). (3.1.15)

Under dilations this reduces to ϕ(x) → λ−∆ϕ(x), where ∆ is the scaling dimension.

In general this receives quantum corrections, so we may write

∆ = ∆0 + γ (3.1.16)

where γ is called the anomalous dimension. For a general field with Lorentz indices

α we have

Φ′
α(x

′) =

∣∣∣∣∂x′∂x

∣∣∣∣∆/d

Rβ
αΦβ(x) (3.1.17)

where Rβ
α is the appropriate representation of the Lorentz transformation.

We can build representations of the conformal group in the following way. The

action of the dilatation operator on a general local operator takes the form

[D,O(x)] = i (−∆+ x∂x)O(x).(3.1.18)
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We may now let D act of [Kµ,O(0)] which leads via the Jacobi identity to

[D, [Kµ,O(0)]] = [[D,Kµ],O(0)] + [Kµ, [D,O(0)]]

= −i(∆− 1)[Kµ,O(0)] (3.1.19)

Thus we see that acting withKµ lowers the dimension of an operator by 1. In a unitary

theory the dimesnions of all operators must be positive (excluding the identity), so if

we iterate this process we must at some point terminate; ie, there must exist some Õ

such that

[Kµ, Õ] = 0. (3.1.20)

Such operators are called primary. Given a primary operator we may build operators

with higher dimension by acting on it with the generators of the conformal algebra;

these are called the conformal descendants of Õ. Note that since the conformal boosts

always shift the dimension by an integer, the anomalous dimension of all operators

in such a representation is the same.

3.1.3 Correlation Functions

Conformal symmetry strongly restricts the form observables. Consider for example

the two-point correlator of the scalar operators O1, O2 with dimensions ∆1, ∆2 re-

spectively. From Poincare invariance we know it can only depend on the Lorentz

invariant x12 = (xµ1 − xµ2)
2 so we may write

⟨O1(x1)O2(x2)⟩ = f(x12). (3.1.21)

Now we also demand covariance under dilatations, which requires

⟨O1(x1)O2(x2)⟩ = c(x12)
(−∆1+∆2)/2 (3.1.22)
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where c is some constant. Finally we note that covariance under conformal boosts

requires

⟨O1(x1)O2(x2)⟩ = c(x12)
−∆ for ∆1 = ∆2, otherwise 0 (3.1.23)

and the two-point function is totally constrained by symmetry. Similar reasoning

applies at three points, where we find

⟨O1(x1)O2(x2)O3(x3)⟩ = c(x12)
−(∆1+∆2−∆3)/2(x23)

−(∆2+∆3−∆1)/2(x31)
−(∆3+∆1−∆2)/2

(3.1.24)

and operators with spin are similarly constrained.

Something new happens at four points, where we may begin to write down new

conformal invariants called conformal cross ratios of the form

x2ijx
2
kl

x2ikx
2
jl

. (3.1.25)

At four points, there are two such:

u =
x212x

2
34

x213x
2
24

v =
x214x

2
23

x213x
2
24

, (3.1.26)

so the four-point function contains a theory-dependent function of u, v with a prefac-

tor carrying the conformal weights at the external points. For instance for four scalar

operators of dimension 2:

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩ =
1

x212x
2
24x

2
43x

2
31

f(u, v). (3.1.27)

We note here the important point that for massless on-shell kinematics such as found

in scattering amplitudes, the arrival of cross ratios is delayed until six points.

3.1.4 Superconformal Symmetry

In a conformal theory with supersymmetry, we enhance the symmetry by commuting

the supercaharges with the special conformal generators:

[Kµ, QαA] = 2σµ
αα̇ϵ

α̇β̇S̃β̇A [Kµ, Q̃A
α̇ ] = 2σµ

αα̇ϵ
αβSA

β (3.1.28)
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S, S̃ are called the superconformal generators, since they bear the same relation to

the conformal boosts as the supercharges bear to momentum:

{SA
α , S

B
α̇ } = 2σµ

αα̇Kµδ
AB (3.1.29)

and they analogously act to lower the dimension of a local operator by 1/2. Therefore

one may define a superconformal primary operator by

[S,O]± = 0 (3.1.30)

and its superconformal descendants by acting thereon with Q. As for conformal

primaries, all descendants have the same anomalous dimension. Note that all super-

conformal primaries are primary with respect to Kµ, but the converse is not true.

With the addition of the superconformal primaries, the algebra is enhanced to include

{QαA, S
B
β } = −iϵαβγIJ B

A RIJ + 2σµν
αβδ

B
AMµν −

1

2
δBAD. (3.1.31)

A particularly important class of superconformal primary operators are those that

commute with some of the supercharges

[QA
α ,O] = 0 for some A, α. (3.1.32)

It then follows that

[{QαA, S
B
β },O] = [−iϵαβγIJ B

A RIJ + 2σµν
αβδ

B
AMµν −

1

2
δBAD,O]. (3.1.33)

If O is a scalar, this reduces to a relation between the action of the R-symmetry and

the dimension:

γIJ B
A [RIJ ,O] = ∆δBAO (3.1.34)

which is satisfied for at most half the supersymmetries when the R-charge equals the

dimension. In extended supersymmetries where the R-charge is a vector, we need

only consider operators with R-charge (J, 0, . . . , 0) and ∆ = J since any rotations
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thereof will sit in the same representation of the R-symmetry. These operators are

called BPS operators, or Chiral Primaries.

In general, the dimension of an operator depends on the coupling g. As we have

seen, descendants of a given primary have the same anomalous dimension, and we

have shown that BPS operators commute with some of the supercharges for all values

of the coupling. Since the dimension is proportional to the R-charge, which is a

discrete quantity, it cannot change with the variation of a continuous parameter like

the coupling; therefore, the anomalous dimension of BPS operators vanishes and their

correlation functions are free of UV divergences.

3.1.5 Classical and Quantum CFTs

Which theories can possess conformal symmetry? The mass operator m2 = p2 does

not commute with dilatations

eiαDp2e−iαD = e2αp2. (3.1.35)

Consequently, conformal symmetry requires either a massless theory or one with a

continuous mass spectrum. More generally, it is clear that theories with dimensionful

couplings will never be conformally invariant.

At the classical level it can be shown [46] that all theories with dimensionless non-

derivative and Yang-Mills couplings are conformal. It is then possible [47] to redefine

the canonical energy-momentum tensor Tµν by the addition of total derivatives such

that

Jµ = kνθ
µν , θµν = θνµ, ∂µθ

µν = 0, (3.1.36)

where Jµ is the Noether current associated to a conformal transformation and kµ

is the Killing vector defined in 3.1.4. Hence, we may write the conservation of the
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current as

∂µJ
µ =

1

2
(∂µkν + ∂νkµ)θ

µν =
1

2
(∂ · k)θµµ (3.1.37)

and conformal symmetry is equivalent to the vanishing of the trace of the energy

momentum tensor. This tracelessness may be violated by an anomaly in the quantum

theory, which is in general proportional to the β functions. For instance, in massless

QCD the conformal anomaly is given by β(g)/(2g)F 2 [48]. This matches our classical

intuition that for conformal invariance to hold the couplings must be dimensionless.

We can then say that a quantum theory has conformal symmetry iff

• The classical couplings are dimensionless.

• β(g) = 0 for all g.

3.2 N = 4 Super Yang-Mills

Lagrangian and Field Content

N = 4 Super Yang-Mills is the maximally supersymmetric renormalizable field theory

in four dimensions, consisting of a single N = 4 Vector multiplet with the associated

R-symmetry SU(4). The Lagrangian may be obtained from N = 1 sYM in ten

dimensions [49].

L10 = Tr

(
−1

4
FMNF

MN +
ig

2
Ψ̄ΓNDNΨ

)
. (3.2.1)

The dimensional reduction is made by requiring that the fields do not depend on six

of the spacetime dimensions, i.e.

∂4+mAN = 0, ∂4+mΨ = 0, ∂4+mΨ̄ = 0, m = 1, . . . , 6. (3.2.2)
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One must then make a choice of representation of the ten-dimensional Γ matrices in

terms of the four and six dimensional γ matrices. One such is

Γµ = γµ ⊗ 1 for µ = 1, . . . , 4,Γ4+m = γ5 ⊗ Γ̃m for m = 1, . . . , 6 (3.2.3)

where γµ and γ5 are the standard four dimensional Dirac matrices and Γ̃m are the six

dimensional euclidean Dirac matrices given by

Γ̃m =

 0 σ̃m

σ̃−1
m 0

 . (3.2.4)

We also get six scalars from the remaining components of the gauge field AN

ϕm = A4+m. (3.2.5)

Using the six dimensional σ̃m we can write

ϕAB = −1

2
(σ̃m)ABϕm. (3.2.6)

This leads to the following Lagrangian in four dimensions.

L4 =Tr

(
− 1

4
FµνF

µν + iλAσ
µDµλ̄

A +
1

2
DµϕABD

µϕAB (3.2.7)

+ igλA[λB, ϕ
AB] + igλ̄A[λ̄B, ϕAB] + g2[ϕAB, ϕCD][ϕ

AB, ϕCD]

)
.

The matter content is a gauge field Aµ, four complex fermions λαA and six real scalars

ϕAB, all in the adjoint representation of the gauge group. Note that this formulation

makes the R-symmetry manifest as SU(4); it is also common in the literature not to

implement 3.2.6 and consider the SO(6) R-symmetry of the six scalars ϕm, which are

often combined into the complex scalars Z = ϕ1 + iϕ2, W = ϕ3 + iϕ4, X = ϕ5 + iϕ6.

Conformal Symmetry and UV Finiteness

The form and relative factors of 3.2.7 are fixed by supersymmetry; there is a single

coupling constant g. It’s β function has been shown to vanish up to three loops by
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direct calculation [50] [51] [52] and there exist numerous arguments that this holds

to all loops [53], [54], [55], [56]. Therefore, superconformal symmetry is preserved in

the quantum theory and SUSY-invariant quantities are UV-finite.

Dynamical Phases

The scalar potential term is

−g2[ϕAB, ϕCD]
2. (3.2.8)

This potential is flat, so there are two classes of ground states:

• The superconformal phase, where ⟨ϕAB⟩ = 0 for all A,B. The gauge group and

superconformal symmetry are unbroken.

• The Coulomb phase, where ⟨(ϕAB)
I
J⟩ ̸= 0 for some choice of R-indices A,B

and gauge indices I, J . The detailed dynamics will depend on the particular

choice of residual symmetry, but in general the gauge group will be broken to a

product U(N1)×U(N2)× . . . and the R-symmetry will break to some subgroup.

Some of the scalars and their superpartners will acquire a mass so conformal

symmetry is also spontaneously broken.

3.2.1 Superamplitudes

Now we turn to the S-Matrix in N = 4. Supersymmetry imposes many relations

between amplitudes in the form of super Ward identities arising from the expansion

of

0 = ⟨0|[Q̄A
α̇ , φ(1), . . . φ(n)]|0⟩ =

n∑
i=1

⟨0|φ(1) . . . [Q̄A
α̇ , φ(i)] . . . φ(n)|0⟩. (3.2.9)

On shell, the supersymmetry algebra is

{qIα, q̄Jα̇} = δIJ λαλ̃α̇ (3.2.10)
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and we can decompose the spinor qIα into

qIα = λαq
I
1 + µαq

I
2 (3.2.11)

with ⟨λµ⟩ ̸= 0. By contracting with λα we see that q2 and q̄2 anticommute with

all generators, and can be set to zero. Then we see that the superalgebra can be

represented by Grassmann variables

{qI1 , q̄1J} = δIJ qI = ηI q̄I =
∂

∂ηI
. (3.2.12)

Therefore, we can define the Nair superwavefunction [57]

Φ(p, η) := g+(p) + ηAλ
A(p) +

ηAηB
2!

ϕAB(p) + ϵABCD ηAηBηC
3!

λ̄D(p) + η1η2η3η4g
−(p)

(3.2.13)

We can now write a superamplitude, as a function of both p and η, that contains all

external states of the theory

An(λi, λ̃i, ηi) = A(Φi) (3.2.14)

and the component amplitudes are exrtracted by expanding to appropriate powers in

η. For instance, the fully gluonic MHV amplitude will be the coefficient of (ηi)
2(ηj)

2.

In this formalism the super Ward identities are fully equivalent to the annihilation

of the superamplitude by the supermomenta Q, Q̄. In spinor helicity notation these

take the form

QA
α =

∑
i

λiαη
A
i , Q̄α̇A =

∑
i

λ̃iα̇
∂

∂ηA
. (3.2.15)

We note that the fermionic delta function encoding supermomentum conservation has

the form

δ(8)(QA
α ) =

∏
A

∏
α

QA
α =

∏
A

⟨ij⟩ηAi ηAj . (3.2.16)

which is annihilated by Q̄α̇A on account of momentum conservation. Therefore half

of the supersymmetry constraints are imposed automatically if the amplitude is of
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the form

An = δ(4)

(∑
i

λiαλ̃iα̇

)
δ(8)

(∑
i

λiαη
A
i

)
Fn (3.2.17)

with the other half placing constraints on the degree 4n grassmann polynomial Fn.

We then note that expanding the fermionic delta function to the order (ηi)
4(ηj)

4

produces the numerator of the Parke-Taylor formula, so we may succinctly write the

tree-level superamplitude as [8]

An =
δ(4)(

∑
i λiλ̃i)δ

(8)(
∑

i λiηi)

⟨12⟩⟨23⟩ . . . ⟨n1⟩
Pn (3.2.18)

Pn = 1 + PMHV
n + PNMHV

n + . . .+ PMHV
n (3.2.19)

where the SU(4) R-symmetry constrains each term PNkMHV
n to be of degree 4k.

As well as allowing us to efficiently describe relations between amplitudes, this

description is also highly efficient for loop-level calculations where we must sum over

particles in cuts. If we consider the one loop superamplitude in a generic cut as in

section 2.4, we may now write

An|P,Q-cut =

∫
d4ηℓd

4ηk ALAR. (3.2.20)

Now we consider the product of fermionic delta-functions which will appear in the

above. We note that the support of the second delta-function allows us to write the

important identity∫
d4ηℓd

4ηk δ
(8)(QL)δ

(8)(QR) = δ(8)(Q)

∫
d4ηℓd

4ηk δ
(8)(QR). (3.2.21)

We then expand the delta function under the integral using equation 3.2.16 and

perform the fermionic integration, which picks out the term proportional to η4ℓη
4
k

giving us a factor of ⟨ℓk⟩4. The cut expression now takes the form

A(0)
n

⟨ℓk⟩2⟨m2m2 + 1⟩⟨m1m1 − 1⟩
⟨n2ℓ⟩⟨km1⟩⟨m2 + 1ℓ⟩⟨m1 − 1k⟩

(3.2.22)
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whence we can proceed as described above, where the fermionic integration has re-

placed the sum over states.

We can also use superamplitudes in computations at tree level. The BCFW shifts

earlier introduced do not respect supermomentum conservation; and [i, j⟩ shift also

shifts qAα by −zηjλi. They must be modified by shifting fermionic variables by

ηi → ηi(z) = ηi + zηj (3.2.23)

which induces the following on the supermomentum

qi → qi(z) = qi + zηjλi. (3.2.24)

The sum over all internal helicity configurations can be carried out, like at loop level,

by a Grassmann integral, so we may write the supersymmetric BCFW relation as

An =
∑
i,j

∫
d4ηP ÂL

1

P 2
ij

ÂR. (3.2.25)

3.2.2 Amplitudes on The Coulomb Branch

Here we describe amplitudes on a particular point on the Coulomb branch, which have

been studied at tree level by [58]. We move to a particular point on the Coulomb

Branch by considering a stack of (N +M) D3-Branes. We separate M Branes from

the rest, choosing non-zero scalar VEVs

⟨(ϕ12)IJ⟩ = ⟨(ϕ34)JI ⟩ = vδIJ for I, J ∈ U(M)

⟨ϕab⟩ = 0 otherwise. (3.2.26)

This preserves N = 4 supersymmetry, but breaks the R−symmetry to Sp(4) ⊃

SU(2) × SU(2) and the gauge group to U(N) × U(M). We now have massive N =

4 multiplets arising from strings streched between branes, in the bifundamental of
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U(N) × U(M) with mass m2 = g2v2 containing massive W-bosons, their fermionic

partners and five scalars w.

To write massive amplitudes we will use the massive spinor helicity formalism

of [59]. We introduce a null reference vector q and write

pi = p⊥i +
m2

i

pi · q
q with p⊥2

i = 0 (3.2.27)

where mi is the mass of the ith particle. One then writes amplitudes in terms of the

spinors ⟨i⊥|, ⟨q| and their conjugates associated with the null vectors p⊥i and q. For

transversely polarised vector bosons the three-point amplitudes are then:

⟨W−
1 W̄

+
2 g

+
3 ⟩ =

[2⊥3]3

[1⊥2⊥][2⊥3]

⟨W+
1 W̄

+
2 g

−
3 ⟩ =

[1⊥2⊥]3

[2⊥3][31⊥]
(3.2.28)

exactly as in the conformal phase with appropriately perped momenta. Since mass

can be considered momenta transverse to the branes, we have the important condition

∑
i

mi = 0 (3.2.29)

in any amplitude. Crucially this means that for uniform VEVs there must be an even

number of massive particles in each amplitude. Also, the broken R−symmetry admits

helicity configurations forbidden in the conformal phase; of particular importance is

the Ultra Helicity Violating (UHV) amplitude

⟨W−W̄+g+g+⟩ = m2⟨q1⊥⟩2[34]
⟨q2⊥⟩2⟨34⟩(t+m2)

(3.2.30)

which is the first in an infinite sequence of such amplitudes (here t is the standard

Mandelstam variable). Note that it smoothly disappears as m2 → 0. The four-point

MHV amplitude is given:

⟨W−W̄−g+g+⟩ = ⟨1⊥2⊥⟩2[34]
⟨34⟩(t+m2)

(3.2.31)
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To write superamplitudes on the Coulomb Branch, the SUSY invariants are split

between the two SU(2) subsectors. For some solvable functions Kn and with µi =

mi/[qi
⊥]:

δ12 =δ
(4)(|i⊥⟩) +K4δ

(2)(⟨qi⊥⟩ηia)δ(2)(µiηia)

+K ′
4

[
δ(2)(|i⊥⟩]ηi1)δ(⟨qi⊥⟩ηi2)δ(µiηi2) + δ(2)(|i⊥⟩]ηi1)δ(⟨qi⊥⟩ηi2)δ(µiηi1)

]
+K2δ

(2)(⟨qi⊥⟩ηia) +K6δ
(4)(|i⊥⟩ηia)δ(2)(µiηia) (3.2.32)

and similarly for R = 3, 4. The complete four-point superamplitude is given:

A4 =
[1⊥2⊥][34]

⟨34⟩x13(x23 +m2)
δ12 × δ34. (3.2.33)

Note that this is an η-polynomial of mixed degree, from η6 to η12 which mixes MHV

and UHV amplitudes.

The structure of the superamplitude simplifies significantly if we introduce the a

linear orthogonality condition on q such that the perped momenta satisfy momentum

conservation among themselves: ∑
i

p⊥i = 0. (3.2.34)

For two massive lines, this implies that q · (p1 + p2) = 0 and the K-functions simplify

dramatically, leading to the following factorised form of δ12:

δ12 =

[
δ(4)(|i⊥⟩ηia) +

m⟨1⊥2⊥⟩
⟨q1⊥⟩⟨q2⊥⟩

δ(2)(⟨qi⊥⟩ηia)
]
×
[
1− [q1⊥][q2⊥]

m[1⊥2⊥]
δ(2)(µiηia)

]
.

(3.2.35)

A similar factorisation condition holds for four or more massive lines, but in such

cases the remaining K-functions do not simplify quite so dramatically.
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3.2.3 BPS Operators

Since all fields transform in the adjoint, it is clear that the simplest gauge invariant

operators take the form of traces of products

O = Tr(χ1χ2 . . . χn). (3.2.36)

where χI can be any of the covariantly transforming fields, possibly including covari-

ant derivatives. We can build more operators by taking products of traces; in the

planar limit the dimension of a product of operators becomes equal to the sum of their

dimensions, so all information about the spectrum of local operators is contained in

the single trace operators.

The chiral primary, or half-BPS operators satisfying the condition 3.1.34 carry

R-charge (J, 0, 0). This is clearly satisfied at zero coupling by operators of the form

OJ = Tr(ϕJ
AB) (3.2.37)

or any other product of scalars that does not contain both ϕAB and ϕ̄AB for any A,B.

Since the dimension of this operator is protected, this is holds for all coupling. Our

paradigmatic example shall be the operator

OABCD = Tr(ϕABϕCD)−
1

12
ϵABCDTr(ϕ̄

LMϕLM) (3.2.38)

transforming in the 20′ of SU(4). This operator forms the lowest weight state of the

stress-tensor multiplet also containing the on-shell Lagrangian L and the stress-energy

tensor Tµν .

3.2.4 Form Factors

We discuss here the bosonic form factors of BPS operators. Without loss of generality

we consider the operator

O = Tr(ϕ12ϕ12) (3.2.39)
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which is a component of the 1/2-BPS operator 3.2.38. We have already shown in

section 2.7 that at one loop the Sudakov form factor is given by

F (1) = 2q2Tri(q2, ϵ). (3.2.40)

Two-Loop Sudakov

As at one loop there is a single kinematic channel so we may perform two particle

cuts and lift to an integral. There are two distinct configurations to consider: in the

first a tree-level form factor and a one-loop amplitude enter the cut, in the second

the cut divides a one-loop form factor from a tree level amplitude. We will focus on

former case, where we must for the first time consider non-planar contributions even

at leading N [60].

Including colour indices, the tree-level form factor is given F (0)(q2) = δaℓ1aℓ2 . At

one loop the full amplitude may be written

A(1)(1, . . . , n) = A(1)
P +A(1)

NP

= N
∑

σ∈Sn/Zn

Tr(T aσ1 . . . T aσn)A
(1)
n;1(1, . . . , n)

+
∑

σ∈Sn/Sn;c

n/2+1∑
c−2

Tr(T aσ1 . . . T aσc−1)Tr(T aσcaσn)An;c(1, . . . , n) (3.2.41)

where Sn;c is the subset of permutations leaving the double-trace structure invariant.

Considering first the planar part there are six possible structures

Tr(1, 2, ℓ1, ℓ2), Tr(1, 2, ℓ2, ℓ1), Tr(1, ℓ1, ℓ2, 2), Tr(1, ℓ2, ℓ1, 2)

Tr(1, ℓ1, 2, ℓ2), Tr(1, ℓ2, 2, ℓ1). (3.2.42)

Using the identity 2.1.2 we see that those with adjacent loop momenta are leading

in colour when contracted with the form factor. All four traces give NTr(a1a2) =

69



N2δa1a2 . The contribution to the cut from the planar integrand is then

N2δa1a2
(
A

(1)
4;1)(1, 2, ℓ1, ℓ2) + A

(1)
4;1)(1, 2, ℓ2, ℓ1) + A

(1)
4;1)(2, 1, ℓ1, ℓ2) + A

(1)
4;1)(2, 1, ℓ2, ℓ1)

)
.

(3.2.43)

The non-planar amplitude at four points is given by

A(1)
NP = Tr(12)Tr(ℓ1ℓ2)A

(1)
4;3(1, 2, ℓ1, ℓ2) + Tr(1ℓ1)Tr(2ℓ2)A

(1)
4;3(1, ℓ1, 2, ℓ2) + . . . (3.2.44)

where the leading colour structure contracted with the form factor is Tr(12)Tr(ℓ1ℓ2)

which carries N2δa1a2 . The combination A
(1)
4;3 is given

A
(1)
4;3 =A

(1)
4;1(2, 1, ℓ1, ℓ2) + A

(1)
4;1(2, ℓ1, 1, ℓ2) + A

(1)
4;1(ℓ1, 2, 1, ℓ2)

+ A
(1)
4;1(1, 2, ℓ1, ℓ2) + A

(1)
4;1(1, ℓ1, 2, ℓ2) + A

(1)
4;1(ℓ1, 1, 2, ℓ2). (3.2.45)

Thus the two-loop cut integrand is given by

F (2)(q2)|q2-cut = 2N2δa1a2
∫

d LIPS
[
4A(1)(1, 2, ℓ1, ℓ2) + 2A(1)(1, ℓ1, 2, ℓ2)

]
. (3.2.46)

The one-loop amplitude is proportional to the tree amplitude

A(1)(1, 2, 3, 4) = A(0)(1, 2, 3, 4)F 0m(1, 2, 3, 4) (3.2.47)

so by the same calculation as 2.7 we find

F (2)a1a2(q2) = N2δa1a2F (2)(q2) (3.2.48)

where

F (2)(q2) = 2
[
4LT(q2) + CT(q2)

]
. (3.2.49)

Here LT (q2) and CT (q2) are the scalar ladder and crossed triangles given by A.2.1

and A.2.3 respectively. One can compare with the exponentiation formula 2.5.59

finding

F (2)(q2, ϵ)− 1

2

[
F (1)(q2, ϵ)

]2
= (−q2)−2ϵ

[
ζ2
ϵ2

+
ζ3
ϵ
+O(ϵ)

]
(3.2.50)

which is of the correct form with

f
(1)
0 = −2ζ2, f

(1)
1 = −2ζ3. (3.2.51)
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MHV Form Factors at One Loop

We will now consider the one-loop MHV form factors first computed in [61]. In a

general kinematic channel we have

Figure 3.1: The cut of the MHV form factor in a generic kinematic channel.

F (1)|sa+1,b−1−cut =

∫
dLIPS(ℓ1, ℓ2, Pa+1,b−1)

F (0)(−ℓϕ2 ,−ℓ
ϕ
1 , b

+, . . . , a+)

× A(ℓ1, ℓ2, (a+ 1)+, . . . , iϕ, . . . jϕ, . . . (b− 1)+). (3.2.52)

This leads to the following cut integrand:

F (0) × ⟨a a+ 1⟩⟨ℓ1ℓ2⟩2⟨b− 1 b⟩
⟨aℓ2⟩⟨ℓ2 a+ 1⟩⟨b− 1 ℓ1⟩⟨ℓ1b⟩

(3.2.53)

which we recognise as being in the same form as 2.4.16, and we can apply the same

analysis. This leads us to a sum of four terms

R(b, a+ 1) +R(b− 1, a)−R(b, a)−R(b− 1, a+ 1) (3.2.54)

with

R(b, a) =
⟨aℓ1⟩⟨bℓ2⟩
⟨aℓ2⟩⟨bℓ1⟩

= 1 +
(pbP )

2(pbℓ1)
+

(paP )

2(paℓ2)
+

(paP )(pbP )− P 2(papb)

2(pbℓ1)(paℓ2)
(3.2.55)

71



where P = pa+ . . .+pb. Thus each R(i, j) gives rise to the cut of a box, two triangles

and a two-mass easy box function with massive corners P 2 and (P − q)2. As in the

case of the scattering amplitude, the bubbles cancel when all the terms are included.

The same is true of the triangles, except in the case a = b, when there survives one

contribution

2
(paP )

2(paℓ1)
(3.2.56)

corresponding to a two-mass triangle with massless leg pa and massive legs P 2
a−1,a+1

and q2. Otherwise permuting the legs on either side of the cut merely runs through

the partitions of masses assigned to the corners as for the scattering amplitude.

Figure 3.2: The box and triangle integrals contributing to the one-loop MHV form

factor

3.2.5 Hidden Symmetries and Dualities

Dual Superconformal Symmetry

The S-Matrix of N = 4 has several remarkable symmetry properties that are com-

pletely invisible at the level of the Lagrangian. The first of these is the so-called dual
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superconformal symmetry, which may be seen by writing the amplitude as a function

of dual variables xi such that

pµi = xµi − xµi+1 = xµi,i+1, xµi+n = xµi (3.2.57)

xαα̇i − xαα̇i+1 = λαi λ̃
α̇
i . (3.2.58)

Then, for example, the box integral that appears in the one-loop amplitude takes the

form

stI
(1)
4 =

∫
ddℓ

(2π)d
1

ℓ2(ℓ− p1)2(ℓ− p1 − p2)2(ℓ+ p4)2

=

∫
ddxl
(2π)d

x213x
2
24

x21lx
2
2lx

2
3lx

2
4l

. (3.2.59)

Poincare symmetry is trivially preserved in x-space, as are dilatations, while inversions

act as

x2ij →
x2ij
x2ix

2
j

ddxl →
ddxl
(x2l )

d
. (3.2.60)

Hence we see that the integrand is covariant under conformal transformations for

d = 4. Introducing dimensional regularization explicitly breaks this covariance, so

the symmetry is anomalous. Dual supermomentum variables can then by defined

through

θαAi − θαAi+1 = λαi η
A
i = QαA

i (3.2.61)

leading to a separate dual superconformal symmetry which acts canonically on the

chiral superspace xi, θi. The action of inversions on the original on-shell superspace

is

I[λαi ] =
xα̇βi λiβ
x2i

I[λ̃α̇i ] =
xαβ̇i λ̃iβ̇
x2i

(3.2.62)

I[⟨ii+ 1⟩] = ⟨ii+ 1⟩
x2i

I[[ii+ 1]] =
[ii+ 1]

x2i+2

. (3.2.63)

Hence, we can see that the tree-level superamplitude is dual conformal covariant.
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Amplitude/Wilson Loop Duality

In terms of the embeddings of N = 4 in String Theory, dual conformal symmetry is

a consequence of a T-duality that relates the D-Brane description to the Holographic

description. This leads to the remarkable equivalence of various observables [9].

At strong coupling, a natural way to approach gluon scattering in String Theory

is by considering the scattering of open strings ending on a stack of D3-Branes. If

we place this stack in AdS5 far from the boundary at radial coordinate z1, then the

proper momentum of the strings is kz/R. Hence, for a given amplitude, this set up

corresponds to the scattering of strings with large momentum at fixed angle, a regime

that is well described by classical String Theory [62].

Figure 3.3: T-duality exchanges Dirichlet for Neumann boundary conditions, send-

ing string scattering states on a stack of D-Branes to a polygonal contour near the

boundary.

1z can be regarded as an IR regulator. After T -duality, it becomes a UV regulator.
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Applying T−duality preserves the AdS5 metric while acting on our system in the

following way:

• The stack is sent close to the boundary by the action in the radial direction

z → R2/z.

• The Neumann boundary conditions governing string scattering are exchanged

for Dirichlet conditions, which constrain the worldsheet to end on the concate-

nated lines ∆yµ = 2πkµ.

Note that the second is exactly the transformation to dual variables 3.2.57. Momen-

tum conservation and the on-shell conditions ensure that these segments form a closed

light-like polygon.

We have now mapped the scattering of gluons at strong coupling to the calcula-

tion of a minimal surface on the boundary of AdS5 ending on a polygon defined by

the duality transformation of the external momenta. This is exactly the criterion for

computing a Wilson Loop in the AdS/CFT correspondence; hence, we have identi-

fied an equivalence at strong coupling between scattering amplitudes and polygonal

lightlike Wilson Loops. The dual conformal symmetry of the amplitudes corresponds

to the conformal symmetry on the Wilson Loop side, and vice versa, with the IR

divergences of the amplitudes corresponding to the UV divergences of the Wilson

Loop.

At weak coupling, this equivalence holds order by order in perturbation theory.

Note in particular the equivalence between equations 2.4.11 and 2.6.12; the lightlike n-

gon was also shown to reproduce the one-loop two-mass easy box functions in [10]. At

strong coupling, powerful integrability techniques may be used to construct a solution

to the minimal surface problem in terms of a Y -system, and it was subsequently shown

by Maldacena and Zhiboidev [63] that an open Wilson Line computes the form factor

75



of any operator with a dimension small compared with λ.

The Dual Conformal Anomaly, The BDS Ansatz and the Remainder Func-

tion

As we have seen, the MHV amplitude take the form

An = Atree
n ×Mn(a) (3.2.64)

where the helicity blind function Mn(a) contains all depenence on the coupling con-

stant. We have also seen that the IR divergences exponentiate in a controlled way.

Analysis of the particular integral functions appearing for four and five-point ampli-

tudes led Bern, Dixon and Smirnov [34] to conjecture that this extends also to the

finite part of the amplitude, and the full amplitude is given iteratively by

Mn(a) = 1 +
∑
ℓ

aℓM (ℓ)
n = exp

[∑
ℓ

aℓf (ℓ)M (1)
n (ℓϵ) + C(ℓ) + E(ℓ)(ϵ)

]
. (3.2.65)

Although this conjecture breaks down at higher points, it is a useful starting point

to see how the hidden symmetries we have described constrain the amplitude. The

Wilson Loop description allows us to treat the violation of dual conformal symmetry

directly in terms of anomalous Ward identities. We recall that the integration measure

in d = 4−2ϵ does not match the weight of the Lagrangian, leading to a non-vanishing

variation of the action:

δS =
2ϵ

g2µ2ϵ

∫
ddxL(x). (3.2.66)

For the Wilson Loop this adds an operator insertion ⟨δSWn⟩ leading to anomalous

terms for the action of the dual conformal generators [64]:

Dlog⟨Wn⟩ = − 2iϵ

g2µ2ϵ

∫
ddx

⟨L(x)Wn⟩
⟨Wn⟩

(3.2.67)

Kν log⟨Wn⟩ = − 4iϵ

g2µ2ϵ

∫
ddx xν

⟨L(x)Wn⟩
⟨Wn⟩

(3.2.68)
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which due to the factor of ϵ depends only on the divergent part of the correlator on

the right hand side. Writing log⟨Wn⟩ = Zn + Fn, where Zn is the divergent and Fn

the finite part, it may be shown that

KµFn =
1

2
γK

n∑
i=1

log

(
x2i,i+2

x2i−1,i+1

)
xµi,i+1 (3.2.69)

which leads to a differential equation for the Fn. For n = 4, 5 it has the unique

solutions:

F4 =
1

4
γK log

2

(
x213
x224

)
+ const. (3.2.70)

F5 = −1

8
γK

5∑
n=1

log

(
x2i,i+2

x2i,i+3

)
log

(
x2i+1,i+3

x2i+2,i+4

)
+ const. (3.2.71)

which match precisely the BDS form for the finite part of the amplitude. However,

starting at six points we may begin to build conformal cross ratios

u1 =
x213x

2
46

x214x
2
36

u2 =
x224x

2
15

x221x
2
45

u3 =
x235x

2
26

x236x
2
25

(3.2.72)

which are annihilated by Kµ. Hence, Fn also depends on some arbitrary function

Rn(ui) which is unconstrained by dual conformal symmetry. In general the amplitude

can be written

Mn =MBDS
n ×Rn (3.2.73)

and computing the n-point amplitude is reduced to the problem of computing the

remainder function.

3.3 ABJM Theory

ABJM Theory describes the world-volume dynamics of multiple M2-Branes at a Zk

Orbifold singularity [65]. It is anN = 6 superconformal Chern-Simons-Matter Theory

described by the N = 2 quiver figure 3.3
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Figure 3.4: The quiver representation of ABJM Theory. The Nodes represent Chern-

Simons Gauge Groups, the arrows bifundamental chiral multiplets transforming in

the fundamental of the head and the antifundamental of the tail.

with the product gauge group U(N)k × U(N)−k and four bifundamental chiral

multiplets A1, A2, B1, B2, endowed with the superpotential

W =
2π

k
ϵijϵklTr(AiBjAkBl). (3.3.1)

The superpotential clearly posesses SU(2)A × SU(2)B R-symmetry, but this is en-

hanced by further SU(2)s acting on the doublet (Ai, B
†
i ). These combine to form

the full SU(4)R R-symmetry, with the scalars ϕI = (A1, A2, B
†
1, B

†
2) transforming in

the fundamental representation. Due to the topological nature of the Chern-Simons

action

LCS =
k

4π

∫
d3x ϵµνλtr

(
1

2
Aµ∂νAλ +

i

3
AµAνAλ

)
(3.3.2)

the gauge fields and their superpartners are non-dynamical and may be regarded as

auxiliary fields.

Like N = 4 ABJM Theory has a well understood holographic dual in Type IIA

String Theory on AdS4 ×CP3. As well as being a window into M2-Brane physics, in

this context at finite temperature with a chemical potential it has provided a popular

78



toy model for condensed matter systems at strong coupling, particularly supercon-

ductors [66]. Our interest lies in taking our exploration of on-shell methods into

what prima-facie is a very different theory to N = 4 sYM. Surprisingly, the ampli-

tudes of both theories share many important qualities; most pertinently, ABJM has

been found to be integrable [67] [68] and its amplitudes possess dual superconfor-

mal symmetry [69]. Although issues with fermionic T-duality preclude the existence

of Wilson Loop duality beyond four points [70] [71] the amplitudes display uniform

transcendentality.

3.3.1 The Spinor Helicity Formalism in Three Dimensions

We are considering a theory in (2 + 1) dimensions, where the spinors are in SL(2,R)

and the little group is Z2. A null momentum is then given by

pαβ = λαλβ (3.3.3)

and therefore all Lorentz invariants are built from one kind of bracket

⟨ij⟩ = ϵαβλ
α
i λ

β
j , sij = ⟨ij⟩2. (3.3.4)

We note that the reality of these spinors requires the vanishing of three-point ampli-

tudes, so recursion must proceed from four points. A crucial feature of the BCFW

recursion relations was that the momentum shift q must keep all legs on-shell, ie. it

must satisfy

q · pi = q · pj = q2 = 0. (3.3.5)

In three dimensions, uniquely, this condition cannot be satisfied unless q = 0. Indeed,

it cannot be satisfied for any linear transformation. We must rather use [69] λi

λj

 = R(z)

 λi

λj

 , R(z) =
1

2

 z + z−1 i(z − z−1)

−i(z − z−1) z + z−1

 . (3.3.6)
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With this shift on arbitrary legs i, j, we can extract the physical amplitude as a sum

of residues via a contour integral,

A(z = 1) = − 1

2πi

∑
χ,k

∮
z=zk,χ

dz

z − 1

ÂL(z)ÂR(z)

P̂ 2
χ(z)

(3.3.7)

where χ labels the factorization channels and zkχ are the two poles of the propagator

P̂ 2
χ(z). The quadratic equation for the poles can be solved, and after further algebra,

leads to

A(z = 1) =
∑
χ

1

P 2
χ

(H(z1,χ, z2,χ)AL(z1,χ)AR(z1,χ) + (z1,χ ↔ z2,χ)) (3.3.8)

where

H(z, w) =


z2(w2−1)
z2−w2 , (i− j) even

z(w2−1)
z2−w2 , (i− j) odd.

(3.3.9)

At loop level, the basis of integrals can be reduced to triangles and bubbles.

Of particular interest, the one-loop triangles with massless corners vanish; while

the fully massive triangle is a rational function of the masses

I3 =

∫
d3ℓ

2π3

1

ℓ2(ℓ− p1)2(ℓ+ p3)2

= − iπ
2

1√
−p21 − iϵ

√
−p22 − iϵ

√
−p23 − iϵ

. (3.3.10)

So new analytic structures enter only at two loops and higher. If we require dual

conformal symmetry we observe that the integral

I3 =

∫
ddxℓ

x21ℓx
2
2ℓx

2
3ℓ

(3.3.11)

is not invariant under inversions, which must be compensated for by the factor√
−x212

√
−x223

√
−x231 =

√
−p21 − iϵ

√
−p22 − iϵ

√
−p23 − iϵ (3.3.12)

and we see that the three-mass triangle is constant [72]. This is consistent with the

fact that one cannot construct a conformal cross-ratio from three momenta.
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3.3.2 Superamplitudes

Since the Chern-Simons gauge field is non-dynamical, scattering amplitudes can con-

tain only the scalars and fermions. We can capture the states of ABJM Theory as

functions on N = 3 superspace using two superfields [73]:

Φ(λ, η) = ϕ4(λ) + ηAψA(λ) +
1

2
ϵABCη

AηBϕC(λ) +
1

3!
ϵABCη

AηBηCψ4(λ) (3.3.13)

Φ̄(λ, η) = ψ̄4(λ) + ηAϕ̄A(λ) +
1

2
ϵABCη

AηBψ̄C(λ) +
1

3!
ϵABCη

AηBηC ϕ̄4(λ). (3.3.14)

Note that only SU(3) R-symmetry is manifest. The Supersymmetry generators have

the form

QαA = λαηA Qα
A = λα

∂

∂ηA
, (3.3.15)

and the R-symmetry generators have the form

RAB = ηAηB RA
B = ηA

∂

∂ηB
− 1

2
δAB RAB =

∂

∂ηA
∂

∂ηB
. (3.3.16)

From the second of these, we see that the fermionic degree of an n-point scattering

amplitude is 3n/2. This is in stark contrast to the case of N = 4 sYM where the

fermionic degree depends on the MHV level. The only amplitude that resembles its

four-dimensional counterpart is that for n = 4

A =
δ(3)(

∑4
i=1 λiλi)δ

(6)(
∑4

i=1 λiηi)

⟨12⟩⟨23⟩
. (3.3.17)

which is fixed by little group scaling.

Note also that for a colour-ordered amplitude

A(Φ1, Φ̄2, . . . , Φ̄n−1,Φn) (3.3.18)

gauge invariance with respect to the product gauge group requires that n is even and

that Φ and Φ̄ alternate.

81



3.3.3 The Four-Point Amplitude at One and Two Loops

The four-point amplitude at two loops was first computed by [74]. As a superconfor-

mal theory, we expect the one-loop amplitudes can be expanded in terms of one-loop

triangle functions. Since one and two-mass triangles vanish in three dimensions, we

expect the one-loop amplitude to also vanish below six points. However, the one loop

integrand will be important for form factor calculations, so we will describe it here.

To obtain a non-zero integrand we must consider two-particle cuts, so we will

be computing numerated boxes. It will also behove us to work with a basis of dual

conformal integrals. This achieved by selecting

I
(1)
4 =

∫
d3xℓ
(2π)3

2x25ℓϵµνρx
µ
21x

ν
31x

ρ
41 + 2x231ϵµνρx

µ
ℓ1x

ν
21x

ρ
41

x21ℓx
2
2ℓx

2
3ℓx

2
4ℓ

=

∫
d3ℓ

(2π)3
2ℓ2ϵµνρp

µ
1p

ν
2p

ρ
4 + 2sϵµνρℓ

µpν1p
ρ
4

ℓ2(ℓ− p1)2(ℓ− p1 − p2)2(ℓ+ p4)2
(3.3.19)

which is best seen by regarding three dimensional conformal symmetry as five-dimensional

Lorentz symmetry.

The cut in the s-channel gives us

cs = δ(3)(P )

∫
d3ηℓd

3ηk
δ(6)(QL)

⟨21⟩⟨1ℓ⟩
δ(6)(QR)

⟨ℓk⟩⟨ℓ4⟩
. (3.3.20)

Combining the delta functions and performing the η integrations leads to∫
d3ηℓd

3ηkδ
(6)(QL)δ

(6)(QR) = δ(6)(Q)⟨ℓk⟩3 (3.3.21)

so we may write

cs = δ(6)(P )δ(6)(Q)
⟨ℓk⟩3

⟨21⟩⟨1ℓ⟩⟨ℓk⟩⟨ℓ4⟩
= A(0) ⟨12⟩2⟨ℓ1⟩⟨41⟩⟨4ℓ⟩

(ℓ+ p4)2(ℓ− p1)2
(3.3.22)

which corresponds to the s-cut of the box integral 3.3.19. A similar calculation

conforms that

A(1)
4 = A(0)

4 I
(1)
4 (3.3.23)
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which vanishes since after PV reduction I
(1)
4 reduces to a sum of one-mass triangles.

At two loops, we begin by constructing a basis of linearly independent dual con-

formally invariant integrals:

Figure 3.5: The basis of dual conformal integrals; the dotted blue lines represent

numerators. Taken from [74]

I1s =

∫
d3x5d

3x6
(2π)6

x413
x251x

2
53x

2
56x

2
61x

2
63

, (3.3.24)

I2s =

∫
d3x5d

3x6
(2π)6

x413x
2
42

x251x
2
53x

2
54x

2
61x

2
62x

2
63

(3.3.25)

I3s =

∫
d3x5d

3x6
(2π)6

x213x
2
42

x251x
2
54x

2
56x

2
62x

2
63

(3.3.26)

I4s =

∫
d3x5d

3x6
(2π)6

x413x
2
52x

2
64

x251x
2
53x

2
54x

2
56x

2
61x

2
62x

2
63

(3.3.27)

and the corresponding cyclic rotations with s ↔ t. It will also be helpful to include

the combination

I0s =
1

2
(I1s − I2s + I3s + I3t + I4s) (3.3.28)

which plays the analogous role to I
(1)
4 as a natural 5d invariant. We may now write

an ansatz for the amplitude of the form

A(2)
4 = A

(0)
4

3∑
i=0

[cisIis + (s→ t)] (3.3.29)

which we stress can only be written at this stage due to the presence of a dual confor-

mal basis. There are now two distinct classes of cut unrelated by cyclic permutations:
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In the double s-channel cut one finds by sewing tree amplitudes:

Figure 3.6: The double s-channel cut (a) is obtained by sewing three four-point tree

amplitudes. The triple cut (b) must vanish as it contains tree amplitudes with an odd

number of legs. Taken from [74]

Cs = A(0)
4 ρ1s

2⟨14⟩⟨4ℓ1⟩⟨ℓ1ℓ2⟩⟨ℓ21⟩ (3.3.30)

with

ρ−1
1 = ⟨4ℓ1⟩2⟨ℓ1ℓ2⟩2⟨ℓ21⟩2. (3.3.31)

Only the integrals I0s, I1s, I2s contribute in this channel. Their cut integrands are:

I0s|s−s-cut = s2ρ1(⟨ℓ14⟩⟨ℓ21⟩ − ⟨14⟩⟨4ℓ1⟩⟨ℓ1ℓ2⟩⟨ℓ21⟩), (3.3.32)

I1s|s−s-cut = s2ρ1⟨ℓ14⟩2⟨ℓ21⟩2, (3.3.33)

I2s|s−s-cut = s2ρ1⟨14⟩2⟨ℓ1ℓ2⟩2 (3.3.34)

where we have employed the Schouten identities to express each expression in terms

of linearly independent spinor products. We must now solve

(c0sI0s + c1sI1s + c2sI2s)|s−s-cut = ρ1s
2⟨14⟩⟨4ℓ1⟩⟨ℓ1ℓ2⟩⟨ℓ21⟩ (3.3.35)

which leads to

c0s = −1, c1s = 1, c2s = 0. (3.3.36)
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Figure 3.7: The two possible triples cuts of the integrals appearing in

The triple cut (b) necessarily vanishes, since it sews tree amplitudes with an odd

number of legs. It receives contributions from the integrals I0s, I3s, I0t, I1t, I3t; it

should be noted that some of the integrals 3.7 have two possible cuts, which must be

summed over. We will not dwell on the details here, but the cut conditions lead to a

system of equations solved by:

c0s = c0t = −c1s = −c1t = −1, c2s = c2t = c3s = c3t = 0. (3.3.37)

Combining the result of the two cuts we find:

A(2)
4 =

(
N

k

)
A(0)

4 [−I0s + I1s + (s→ t)] . (3.3.38)

The integrals can be evaluated using Feynman parameters and Mellin-Barnes repre-

sentations. The final result is:

A(2)
4 = − 1

16π2
A(0)

4

[
(−s/µ2)

ϵ2
+

(−t/µ2)

ϵ2
− 1

2
log2

(s
t

)
− 4ζ2 − 3log22

]
. (3.3.39)

3.3.4 Colour Ordering

Colour ordering in ABJM differs somewhat from the cases we have discussed thus far

on account of the product gauge group. Complete tree amplitudes, which we call Ã,
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are given by [67,75]

Ã(1̄, 2, . . . , n) =
∑
Pn

sgn(σ)A(0)
(
σ(1̄), σ(2), σ(3̄), . . . , σ(n)

) [
σ(1̄), σ(2), σ(3̄), . . . , σ(n)

]
,

(3.3.40)

where Pn := (Sn/2 × Sn/2)/Cn/2 are permutations of n sites that only mix even

(bosonic) and odd (fermionic) particles among themselves, modulo cyclic permu-

tations by two sites, and the function sgn(σ) is equal to −1 if σ involves an odd

permutation of the odd (fermionic) sites, and +1 otherwise. A(0)(1̄, 2, 3̄ . . . , n) are

colour-ordered tree amplitudes, and we have also defined

[
1̄, 2, 3̄, . . . , n

]
:= δ ī1

ī2
δi2i3δ

ī3
ī4
· · · δini1 , (3.3.41)

and in the following we will just write
[
1, 2, · · · , n] without specifying if a particle is

barred (i.e. fermionic) or non-barred (bosonic), with the understanding that the first

entry in the bracket always represents a fermionic field.

As an example, we consider the complete four-point amplitude at tree level. It

includes the two colour structures [1, 2, 3, 4] and [1, 4, 3, 2] (see Figure 3.8) and is given

by the following expression:

Ã(0)(1̄, 2, 3̄, 4) = A(0)(1̄, 2, 3̄, 4)
([

1, 2, 3, 4
]
−
[
1, 4, 3, 2]

)
. (3.3.42)

We have also used that

A(0)(1̄, 2, 3̄, 4) = A(0)(3̄, 2, 1̄, 4) , (3.3.43)

a fact that follows from (3.3.17).

3.3.5 Half-BPS operators

The quivers of ABJM theory and the conifold theory encode the same data. Hence,

one would expect the BPS operators to be of the form O2n = Tr(ϕI1ϕ̄J1 . . . ϕ
Inϕ̄Jn).
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Figure 3.8: The two possible colour orderings [1, 2, 3, 4] and [1, 4, 3, 2] appearing in the

four-point tree-level amplitude (3.3.42).

For the shortest case, consider the variation of operators of the form Tr
(
ϕI ϕ̄J

)
with

I ̸= J . Setting for example I = 1 and J = 4, this expands to

δTr
(
ϕ1ϕ̄4

)
= Tr

(
δϕ1ϕ̄4 + ϕ1δϕ̄4

)
. (3.3.44)

Following [76], we use the transformations:

δϕI = i ωIJψJ , (3.3.45)

δϕ̄I = i ψ̄JωIJ . (3.3.46)

The ωIJ ’s are given in terms of the (2 + 1)-dimensional Majorana spinors, ϵi (i =

1, . . . , 6) which are the supersymmetry generators:

ωIJ = ϵi(Γ
i)IJ , (3.3.47)

ωIJ = ϵi
(
(Γi)∗

)IJ
, (3.3.48)

that are antisymmetric in I, J . The 4× 4 matrices Γi are given by:

Γ1 = σ2 ⊗ 12 , Γ4 = −σ1 ⊗ σ2 , (3.3.49)

Γ2 = −iσ2 ⊗ σ3 , Γ5 = σ3 ⊗ σ2 , (3.3.50)

Γ3 = iσ2 ⊗ σ1 , Γ6 = −i12 ⊗ σ2 , (3.3.51)

and satisfy the following relations,{
Γi,Γj†} = 2δij , (Γi)IJ = − (Γi)IJ , (3.3.52)

1

2
ϵIJKLΓi

KL = −
(
Γj†)IJ =

(
(Γi)

∗)IJ
, (3.3.53)
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leading to (
ωIJ
)
α
= ((ωIJ)

∗)α , ωIJ =
1

2
ϵIJKLωKL . (3.3.54)

Explicitly, ωIJ is given by the following matrix:

ωIJ =


0 −iϵ5 − ϵ6 −iϵ1 − ϵ2 ϵ3 + iϵ4

iϵ5 + ϵ6 0 ϵ3 − iϵ4 −iϵ1 + ϵ2

iϵ1 + ϵ2 −ϵ3 + iϵ4 0 iϵ5 − ϵ6

−ϵ3 − iϵ4 iϵ1 − ϵ2 −iϵ5 + ϵ6 0


. (3.3.55)

The term ϕ1δϕ̄4 yields

ϕ1δϕ̄4 = ϕ1
[
−ψ̄1(ϵ3 + iϵ4) + iψ̄2(ϵ1 + iϵ2)− iψ̄3(ϵ5 + iϵ6) + 0

]
. (3.3.56)

Therefore, requiring ϕ1δϕ̄4 = 0 the conditions are:

ϵ1 + iϵ2 = 0 ,

ϵ3 + iϵ4 = 0 ,

ϵ5 + iϵ6 = 0 ,

(3.3.57)

which relate half of the generators with the other half by constraining the components

ω4J = 0.

Note that because of the relations (3.3.54) which set components of the form

ω4L to zero, the entries ωIJ with I, J ∈ (1, 2, 3) automatically vanish implying that

δϕI = 0 ⇐⇒ I ∈ (1, 2, 3). This procedure may be iterated to show that generally the

operators Tr
(
ϕ̄Iϕ

J
)
for I ̸= J are indeed half-BPS. In the present work the operators

under consideration are of the type

O = Tr (ϕAϕ̄4) , (3.3.58)

where A ̸= 4.
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Chapter 4

Super Form Factors in N = 4 Super

Yang-Mills

In this chapter we present the results of [16]. We expand the analysis of form factors

of half-BPS operators in N = 4 super Yang-Mills. In particular, we extend vari-

ous on-shell techniques known for amplitudes to the case of form factors, including

MHV rules, recursion relations, unitarity and dual MHV rules. As an application,

we present the solution of the recursion relation for split-helicity form factors. We

then consider form factors of the stress-tensor multiplet operator and of its chiral

truncation, and write down supersymmetric Ward identities using chiral as well as

non-chiral superspace formalisms. This allows us to obtain compact formulae for

families of form factors, such as the maximally non-MHV case. Finally we generalise

dual MHV rules in dual momentum space to form factors.
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4.1 Tree-level methods

In this section we will develop and extend tree-level methods for form factors by

generalising the corresponding methods for amplitudes, namely MHV diagrams [4]

and on-shell recursions relations [5, 21].

We then proceed to obtain several new results including the NMHV and all split-

helicity cases. We will not present the calculations with both methods for all examples

but wish to stress here that we have made extensive checks to confirm that the results

obtained with either method always agree. The supersymmetrisation of these methods

will be considered in Section 4.

4.1.1 MHV diagrams

We start with a simple extension of the MHV diagram method [4] to form factors.

We will test this here only in tree-level calculations, but the extension to loop level,

following [77], is straightforward.

Specifically, we will be interested in calculating NMHV form factors of the simplest

class of operators in N = 4 SYM, namely the half-BPS operators Tr(ϕ12ϕ12). They

take the form

⟨ g+(p1) · · ·ϕ12(pi) · · ·ϕ12(pj) · · · g+(pn−1) g
−(pn) |Tr(ϕ12ϕ12)(x)| 0 ⟩ , (4.1.1)

where all but one of the gluons have positive helicity. The strategy of the calculation

is very simple – we need to augment the set of usual MHV vertices for amplitudes by

including a new family of MHV vertices, obtained by continuing off shell the tree-level

MHV form factors of the half-BPS operators. The expressions for these quantities
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were derived in [60], and are given by∫
d4x e−iqx ⟨g+(p1) · · ·ϕ12(pi) · · ·ϕ12(pj) · · · g+(pn)|Tr(ϕ12ϕ12)(x)|0⟩

= gn−2(2π)4δ(4)(
n∑

k=1

λkλ̃k − q) FMHV , (4.1.2)

where

FMHV =
⟨ij⟩2

⟨12⟩ · · · ⟨n1⟩
. (4.1.3)

Here pm := λmλ̃m are on-shell momenta of the external particles, and q :=
∑n

m=1 pm

is the momentum carried by the operator insertion. It was observed in [60] that, since

(4.1.3) is a holomorphic function of the spinor variables, the MHV form factors are

localised on a complex line in twistor space, similarly to the MHV amplitudes [3].

Using localisation as an inspiration, we propose to use an appropriate off-shell

continuation of 4.1.3 as a new vertex to construct the perturbative expansion of

non-MHV form factors of the operator Tr(ϕ12ϕ12). The off-shell continuation is the

standard one introduced in [4]. The momentum L of an internal, off-shell particle

is decomposed as L = l + zξ, where l = λLλ̃L is an on-shell momentum and

ξ an arbitrary reference null momentum. The off-shell continuation of [4] consists

then in using the spinor λL as the spinor variable associated with the internal leg of

momentum L, where

λL,α =
Lαα̇ξ̃

α̇

[λ̃L , ξ̃]
. (4.1.4)

The denominator in the right-hand side of (4.1.4) will be irrelevant for our applications

since each MHV diagram is invariant under rescalings of the internal spinor variables.

Hence, we will discard it and simply replace λL,α → Lαα̇ξ̃
α̇.
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NMHV form factors

Using the MHV rules outlined in the previous section, we now present an example of

derivation of an NMHV form factor. Specifically, the form factor we consider is

FNMHV(1ϕ12 , 2ϕ12 , 3g− , 4g+) := ⟨ϕ12(p1)ϕ12(p2)g
−(p3)g

+(p4)|Tr(ϕ12ϕ12)(0)|0⟩ . (4.1.5)

There are four MHV diagrams contributing to (4.1.5), depicted in Figure 4.1. A

(b)(a)

A

3−

2φ

F

4+

1φ

F

1φ

2φ

A

4+

3−

F1φ A

4+

2φ

3−

(d)

F2φ A

1φ

3−

4+

(c)

φ φ φ

φ+ −

φ

φ

Figure 4.1: The four MHV diagrams contributing to the NMHV form factor (4.1.5).

short calculation shows that these are given by the following expressions:

Diagram (a) =
[2ξ]

[ξ3]

1

[32]⟨41⟩
⟨1|q − p4|ξ]
|⟨4|q − p1|ξ]

,

Diagram (b) =
⟨23⟩

⟨34⟩s234
⟨3|p2 + p4|ξ]2

⟨2|p3 + p4|ξ]⟨4|p2 + p3|ξ]
,

Diagram (c) =
⟨12⟩
[43]

[ξ4]3

[3ξ]

1

⟨2|p3 + p4|ξ]⟨1|p3 + p4|ξ]
,

Diagram (d) =
1

s341

⟨13⟩2

⟨34⟩⟨41⟩
⟨3|p4 + p1|ξ]
⟨1|p3 + p4|ξ]

. (4.1.6)

We have checked that the sum of all MHV diagrams is independent of the choice of

the reference spinor ξ̃. A particularly convenient choice of ξ̃ is ξ̃ = λ̃4, in which case

we get

FNMHV(1ϕ12 , 2ϕ12 , 3g− , 4g+) =
[24]

[34]

1

⟨4|p2 + p3|4]

[ ⟨1|q|4]
[23]⟨41⟩

+
[24]⟨23⟩2

⟨34⟩
1

s234

]
+

⟨13⟩2[14]
⟨41⟩⟨34⟩[43]

1

s341
. (4.1.7)
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It is straightforward to apply this procedure to more general form factors but for

brevity we will not present them here. However, we mention that all results derived

in the next subsection using recursion relations have been compared with formulae

obtained from MHV diagrams finding a perfect match in all cases.

4.1.2 Recursion relations

In this subsection we study the application of recursion relations to the derivation

of tree-level form factors. As a warm-up we will re-derive the NMHV form factor in

(4.1.5) finding agreement with (4.1.7), and then move on to consider more general

cases including split-helicity configurations. Since form factors contain a single oper-

ator insertion, it is clear that every recursive diagram will contain one amplitude and

one form factor as the factorisation properties used in the case of tree-level recursions

for amplitudes also apply to tree-level form factors. This is the only modification

to the on-shell recursion relations of [21]. In Appendix A we discuss the behaviour

of form factors under large complex deformations, and confirm the validity of the

calculations below, i.e. we show that under the shifts used the form factors vanish as

z → ∞.

Let us begin by re-deriving the NMHV form factor (4.1.5). We will use a [34⟩

shift, namely

ˆ̃λ3 := λ̃3 + zλ̃4 , λ̂4 := λ4 − zλ3 . (4.1.8)

There are two recursive diagrams, depicted in Figure 4.2 below. A short calculation

shows that

Diagram (a) =
[24]2

[23][34]

1

s234

⟨1|q|4]
⟨1|q|2]

,

Diagram (b) =
⟨13⟩2

⟨34⟩⟨41⟩
1

s341

⟨3|q|2]
⟨1|q|2]

, (4.1.9)
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so that

FNMHV(1ϕ12 , 2ϕ12 , 3g− , 4g+) =
1

⟨1|q|2]

[
[24]2

[23][34]

1

s234
⟨1|q|4] +

⟨13⟩2

⟨34⟩⟨41⟩
1

s341
⟨3|q|2]

]
.

(4.1.10)

It is interesting to note that the 1/⟨1|q|2] pole is in fact spurious. This can be shown

by using the identities

⟨1|q p4|3⟩+ ⟨1|q p2|3⟩ = ⟨13⟩s234 ,

[4|p3 q|2] + [4|p1 q|2] = [42]s341 , (4.1.11)

which allow to recast the form factor in the alternative form

FNMHV(1ϕ12 , 2ϕ12 , 3g− , 4g+) =
1

s34 [23]⟨41⟩

[
⟨14⟩⟨23⟩[24]2

s234
+

[41][32]⟨13⟩2

s341
+ [24]⟨13⟩

]
.

(4.1.12)

We have checked that our result (4.1.7) for the form factor derived using MHV dia-

grams, and (4.1.12), obtained using recursion relations, are in agreement.

4̂+

1φ

F A

2φ

3̂−

A F

(a) (b)

3̂−

2φ

4̂+

1φ

φ φ φ φ

Figure 4.2: The two recursive diagrams contributing to the NMHV form factor (4.1.5).

Recursion relations for the split-helicity form factor

In the previous section we found that the BCF recursion relation for the NMHV form

factor with a [3, 4⟩ shift has just two diagrams. This property in fact holds for all

form factors of the form Fϕ2;q−2,n−q(1ϕ, 2ϕ, 3
−, . . . , q−, (q+1)+, . . . , n+), which we call

henceforth split-helicity. As we will show shortly, performing a [q, q + 1⟩ shift leads

to a general, closed-form solution of the BCFW recursion relations for this special
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class of form factors. Note that all split-helicity gluon scattering amplitudes were

computed in [78] – we construct here a similar solution for form factors.

Each recursive diagram with a [q, q+1⟩ shift contains a three-point amplitude and

an (n− 1)-point form factor. We can neatly combine the three-point amplitude and

the propagator in a prefactor to write1

Fq−2,n−q =
[q − 1q + 1]

[q − 1q][qq + 1]
Fq−3,n−q(1ϕ, 2ϕ, 3

−, . . . , q̂ − 1
−
, q̂ + 1

+
, . . . , n+)

+
⟨qq + 2⟩

⟨qq + 1⟩⟨q + 1q + 2⟩
Fq−2,n−q−1(1ϕ, 2ϕ, 3

−, . . . , q̂−, q̂ + 2
+
, . . . n+) ,

(4.1.13)

where the shifted spinors of the external momenta that appear in the lower-point

form factors are

λq̂+1 =
[q − 1|Pq,q+1

[q − 1 q + 1]
, (4.1.14a)

λ̃q̂ =
Pq,q+2|q + 2⟩
⟨q q + 2⟩

, (4.1.14b)

with Pa,b = pa + . . . + pb. Furthermore, the shifted spinors associated with internal

legs are relabelled as

λP̂q−1 q
(z = zq−1 q) → λq̂−1 =

Pq,q+1|q + 1]

[q − 1 q + 1]
, (4.1.15a)

λ̃P̂q+1 q+2
(z = zq+1 q+2) → λ̃q̂+2 =

⟨q|Pq,q+2

⟨q q + 2⟩
, (4.1.15b)

so that the notation remains compatible with subsequent recursions. Crucially, all

lower-point form factors appearing in (4.1.16) are of split-helicity form, so that the

split helicity form factors are closed under recursions. Once we have reduced the

form factor to expressions that involve only MHV and MHV terms, we can insert the

shifted momenta.

1For the rest of this section we will always assume that the operator O = Tr(ϕ12ϕ12) is inserted

and will not mention it explicitly. Although the solution is presented for this particular insertion,

the construction can be generalised to form factors involving other operators.

95



It is useful to illustrate the structure of the recursion relations for split-helicity

form factors using a square lattice as in Figure 4.3. Consider for example the form

factor F2,2. In this case, the first iteration using equation (4.1.16) relates F2,2 to the

form factors F2,1 and F1,2, which however are neither MHV nor MHV. The next

iteration leads to an expression involving one F2,0, two F1,1’s and one F0,2 evaluated

at some shifted momenta. A final iteration would then allow us to express the answer

in terms of MHV and MHV form factors alone, or even to reduce everything down

to F0,0. It is also easy to see that this pattern generalises to arbitrary split-helicity

form factors and that each term generated by subsequent recursions corresponds to

a unique path between the form factor and the MHV or MHV edges of the lattice, as

illustrated in Figure 4.3.

Recursion relations for the split-helicity form factor

In the previous section we found that the BCF recursion relation for the NMHV form

factor with a [3, 4⟩ shift has just two diagrams. This property in fact holds for all

form factors of the form Fϕ2;q−2,n−q(1ϕ, 2ϕ, 3
−, . . . , q−, (q+1)+, . . . , n+), which we call

henceforth split-helicity. As we will show shortly, performing a [q, q + 1⟩ shift leads

to a general, closed-form solution of the BCFW recursion relations for this special

class of form factors. Note that all split-helicity gluon scattering amplitudes were

computed in [78] – we construct here a similar solution for form factors.

Each recursive diagram with a [q, q+1⟩ shift contains a three-point amplitude and

an (n− 1)-point form factor. We can neatly combine the three-point amplitude and
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the propagator in a prefactor to write2

Fq−2,n−q =
[q − 1q + 1]

[q − 1q][qq + 1]
Fq−3,n−q(1ϕ, 2ϕ, 3

−, . . . , q̂ − 1
−
, q̂ + 1

+
, . . . , n+)

+
⟨qq + 2⟩

⟨qq + 1⟩⟨q + 1q + 2⟩
Fq−2,n−q−1(1ϕ, 2ϕ, 3

−, . . . , q̂−, q̂ + 2
+
, . . . n+) ,

(4.1.16)

where the shifted spinors of the external momenta that appear in the lower-point

form factors are

λq̂+1 =
[q − 1|Pq,q+1

[q − 1 q + 1]
, (4.1.17a)

λ̃q̂ =
Pq,q+2|q + 2⟩
⟨q q + 2⟩

, (4.1.17b)

with Pa,b = pa + . . . + pb. Furthermore, the shifted spinors associated with internal

legs are relabelled as

λP̂q−1 q
(z = zq−1 q) → λq̂−1 =

Pq,q+1|q + 1]

[q − 1 q + 1]
, (4.1.18a)

λ̃P̂q+1 q+2
(z = zq+1 q+2) → λ̃q̂+2 =

⟨q|Pq,q+2

⟨q q + 2⟩
, (4.1.18b)

so that the notation remains compatible with subsequent recursions. Crucially, all

lower-point form factors appearing in (4.1.16) are of split-helicity form, so that the

split helicity form factors are closed under recursions. Once we have reduced the

form factor to expressions that involve only MHV and MHV terms, we can insert the

shifted momenta.

It is useful to illustrate the structure of the recursion relations for split-helicity

form factors using a square lattice as in Figure 4.3. Consider for example the form

factor F2,2. In this case, the first iteration using equation (4.1.16) relates F2,2 to the

form factors F2,1 and F1,2, which however are neither MHV nor MHV. The next

2For the rest of this section we will always assume that the operator O = Tr(ϕ12ϕ12) is inserted

and will not mention it explicitly. Although the solution is presented for this particular insertion,

the construction can be generalised to form factors involving other operators.
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iteration leads to an expression involving one F2,0, two F1,1’s and one F0,2 evaluated

at some shifted momenta. A final iteration would then allow us to express the answer

in terms of MHV and MHV form factors alone, or even to reduce everything down

to F0,0. It is also easy to see that this pattern generalises to arbitrary split-helicity

form factors and that each term generated by subsequent recursions corresponds to

a unique path between the form factor and the MHV or MHV edges of the lattice, as

illustrated in Figure 4.3.

..F0,0

.

F1,0

.

F0,1

.

F2,0

.

F1,1

.

F0,2

.

F3,0

.

F2,1

.

F1,2

.

F0,3

.

F2,2

....

M
H
V

.

M
H
V

.

N
M
H
V

.

N
M
H
V

Figure 4.3: The iterative structure of split-helicity form factors illustrated by a square

lattice. The three coloured paths ending on the MHV line are in one-to-one correspon-

dence with terms that appear in the iterated recursion of F2,2. Similarly there will be

three paths (terms) that end on the MHV line.

In principle, all we need to do to compute a split-helicity form factor is to collect

all prefactors picked up at each step of the recursion process and follow the iterated

momentum shifts along a particular path on the lattice.

Solution for the split-helicity form factor

A very efficient way to organise the recursion is in terms of zig-zag diagrams, like

those introduced in [78] for split-helicity gluon amplitudes. It is natural to split the
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terms of the solution into those corresponding to paths ending on the MHV or MHV

lines, respectively.

Zig-zag diagrams that correspond to recursion terms with an MHV form factor

will be denoted as MHV zig-zags and the ones with an MHV form factor as MHV

zig-zags. Note that we have therefore two types of diagrams, in contrast to the case

of amplitudes in [78]. One can make this separation also for amplitudes as it only

means that we terminate the iterated recursion once we reach an MHV term, instead

of recursing it further down to F0,0 (or A2,2 for the case of amplitudes). In the path

picture of the previous section, this separation corresponds to the fact that there is

a unique path between any MHV form factor and F0,0, hence one can replace that

part of the recursion directly with an MHV form factor. Because the MHV zig-zags

defined below are not compatible with two point objects such as F0,0 we chose to use

this formalism with two types of diagrams. This has the added advantage that it

makes the parity symmetry of Fq−2,q−2 form factors manifest.

The MHV zig-zags are parameterised with 2k + 1 labels

2 ≤ a1 < · · · < ak < q − 1 and n ≥ b1 > · · · > bk+1 > q, k ≥ 0,

representing expressions in the following manner

..
2

.

1

.

n

.

b1 + 1

.

b1

.

b2 + 1

.

b2

.

q + 2

.

q + 1

.

a1

.

a1 + 1

.

q − 1

.

q

=
N1N2N3

D1D2D3

(4.1.19)

while the MHV zig-zags are parametrised with 2k + 1 labels

2 ≤ b̄1 < · · · < b̄k+1 < q and n ≥ ā1 > · · · > āk > q + 1, k ≥ 0,
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representing expressions, similarly shown below

..
2

.

1

.

3

.

b̄1

.

b̄1 + 1

.

b̄2

.

b̄2 + 1

.

q − 1

.

q

.

n

.

ā1 + 1

.

ā1

.

q + 2

.

q + 1

=
N̄1N̄2N̄3

D̄1D̄2D̄3

(4.1.20)

where N1,2,3 and D1,2,3 are defined as

N1 = ⟨1|P2,b1Pa1+1,b1Pa1+1,b2Pa2+1,b2 · · ·Pq,bk+1
|q⟩

× [2|Pa1+1,b1Pa1+1,b2Pa2+1,b2 · · ·Pq,bk+1
|q⟩2

N2 = ⟨b1 + 1 b1⟩⟨b2 + 1 b2⟩ · · · ⟨bk+1 + 1 bk+1⟩

N3 = [a1a1 + 1] · · · [ak ak + 1]

D1 = P 2
2,b1
P 2
a1+1,b1

P 2
a1+1,b2

P 2
a2+1,b2

· · ·P 2
q,bk+1

D2 = Zq,1Z̄2,q−1

D3 = [2|P2,b1 |b1 + 1⟩⟨b1|Pa1+1,b1 |a1][a1 + 1|Pa1+1,b2 |b2 + 1⟩ · · · ⟨bk+1|Pq,bk+1
|q − 1]

(4.1.21a)

N̄1 = [q + 1|Pb̄k+1+1,q+1, . . . , Pb̄2+1,ā2 , Pb̄2+1,ā1 , Pb̄1+1,ā1 |1⟩
2

× [q + 1|Pb̄k+1+1,q+1, . . . , Pb̄2+1,ā2 , Pb̄2+1,ā1 , Pb̄1+1,ā1Pb̄1+1,1|2]

N̄2 = [b̄1 b̄1 + 1] · · · [b̄k+1 b̄k+1 + 1]

N̄3 = ⟨ā1 + 1 ā1⟩ · · · ⟨āk + 1 āk⟩

D̄1 = P 2
b̄1+1,1P

2
b̄1+1,ā1

P 2
b̄2+1,ā1

. . . P 2
b̄k+1,q+1

D̄2 = Z̄2,q+1Zq+2,1

D̄3 = ⟨1|Pb̄1+1,1|b̄1][b̄1 + 1|Pb̄1+1,ā1 |ā1 + 1⟩⟨ā1|Pb̄2+1,ā1 |b̄2] . . . [b̄k + 1|Pb̄k+1,q+1|q + 2⟩,

(4.1.21b)

with

Zi,j = ⟨i i+ 1⟩ · · · ⟨j − 1 j⟩, Z̄i,j = [i i+ 1] · · · [j − 1 j]. (4.1.21c)
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The split-helicity form factor is then the sum of all recursion terms, or equivalently

the sum of all possible MHV and MHV zig-zags, which is equal to

Fq−2,n−q−2 =
∑

{ai,bi}

N1N2N3

D1D2D3

+
∑

{āi,b̄i}

N̄1N̄2N̄3

D̄1D̄2D̄3

. (4.1.22)

Notice that for the form factors with equal number of negative and positive helic-

ity gluons, the MHV zig-zags can be obtained from the MHV ones by changing

(2, 3, . . . , q) → (1, n, . . . , q + 1) and ⟨ij⟩ → [ji].

Let us now explain the precise relation between the zig-zag diagrams and the

paths on the split-helicity form factor lattice. Let a path with r1 steps to the right,

l1 steps to the left followed by r2 steps to the right etc. be represented by

Rrk · · ·Rr2Ll1Rr1 . (4.1.23)

Then an MHV zig-zag labelled by {ai, bi} corresponds to the path:

La1−1Rb1−b2 · · ·Lak−ak−1Rbk−bk+1Lq−1−akRbk−(q+1),

while an MHV zig-zag labelled by {āi, b̄i} corresponds to the path:

Rā1+1Lb̄2−b̄1 · · ·Rāk−āk−1Lb̄k+1−b̄kRāk−q−1Lq−b̄k+1−1 .

Note that if there are no ai indices in the MHV zig-zag diagram we set a1 = 1; and if

there are no āi in the MHV zig-zag diagram we set ā1 = n. All powers in the above

formulae are modulo n.

Examples

Here we present some examples to show that the solution (4.1.22) reproduces the

correct expressions.

MHV case
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The zig-zag diagrams collapse onto a point between 1 and 2 as there are neither bi

nor āi. Hence, the only contributions are N1 = ⟨12⟩ and D2 = F2,1 and

F1,n−3(1ϕ, 2ϕ, 3
+, . . . , n+) =

⟨12⟩
⟨23⟩⟨34⟩ . . . ⟨n1⟩

, (4.1.24)

as required. The situation for MHV amplitudes is similar [78]. An equivalent calcu-

lation for the MHV zig-zag gives the MHV form factor.

NMHV case

At four points, there is exactly one MHV and one MHV zig-zag, representing one

move to the left and one move to the right. Comparing with equations (4.1.19) and

(4.1.20) one can read off b1 = 4 for the MHV zig-zag and b̄1 = 2 for the MHV zig-zag.

..

F1,1

. = ..

2

.

1

.

3

.

4

=
[24]2

[32][43]

⟨1|q|4]
⟨1|q|2]

1

s234
(4.1.25)

..

F1,1

. = ..

2

.

1

.

3

.

4

=
⟨13⟩2

⟨34⟩⟨41⟩
⟨3|q|2]
⟨1|q|2]

1

s341
(4.1.26)

This result is in agreement with the previous section.

In general, for the NMHV form factors, there is one MHV zig-zag corresponding

to the path which proceeds along the NMHV line until it reaches the MHV edge of

the lattice, and n− 3 MHV zig-zags where the path shifts onto the MHV edge before

it arrives at the MHV edge. The MHV paths and the corresponding zig-zags are

shown in Figure 4.4.

An N2MHV example

As it can be seen from the lattice in Figure 4.3, there are three MHV and three

MHV terms in the recursion of the six-point split-helicity form factor. These are

listed below, where the subscripts encode the shape of the path as described earlier.
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..

F1,n−3

..

= ..
2

.

1

.

n

.

n− 1

.

5

.

4

.

3

Figure 4.4: Correspondence of lattice paths and MHV zig-zags for NMHV form fac-

tors.

For example, FRLL is the term which corresponds to the path that starts with a step

to right and terminates at the MHV edge with two steps to the left. The MHV terms

are:

• b1 = 5, no a:

FLL = ..
2

.

1

.

3

.
4

.

5

.

6

= − [25]2

[23][34][45]⟨61⟩
1

P 2
2,5

[5|P2,4|1⟩
[2|P2,5|6⟩

(4.1.27a)

• b1 = 6, no a:

FRLL = ..
2

.

1

.

3

.
4

.

5

.

6

=
1

⟨45⟩⟨56⟩[23]
1

P 2
2,6P

2
4,6

⟨1|P2,6P4,6|4⟩[2|P4,6|4⟩2

[2|P2,6|1⟩⟨6|P4,6|3]

(4.1.27b)

• b1 = 6, b2 = 5, a1 = 2:
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FLRL = ..
2

.

1

.

3

.
4

.

5

.

6

=
1

[34][45]

1

P 2
2,6P

2
3,6P

2
3,5

⟨1|P2,6P3,6P3,5|5][2|P3,6P3,5|5]2

[2|P2,6|1⟩⟨6|P3,61|2][3|P3,5|6⟩

(4.1.27c)

The MHV terms are:

• b̄1 = 3, no ā

FRR = ..
2

.

1

.

3

.
4

.

5

.

6

=
⟨14⟩2

⟨45⟩⟨56⟩⟨61⟩[23]
1

P 2
4,1

⟨4|P4,1|2]
⟨1|P4,1|3]

(4.1.28a)

• b̄1 = 2, no ā

FLRR = ..
2

.

1

.

3

.
4

.

5

.

6

=
1

[34][45]⟨61⟩
1

P 2
3,5P

2
3,1

⟨1|P3,5|5]2[5|P3,5P3,1|2]
⟨1|P3,1|2][3|P3,5|6⟩

(4.1.28b)

• b̄1 = 2, b2 = 3, ā1 = 6

FRLR = ..
2

.

1

.

3

.
4

.

5

.

6

=
1

⟨45⟩⟨56⟩
1

P 2
3,1P

2
3,6P

2
4,6

⟨4|P4,6P3,1|1⟩2⟨5|P4,6P3,6P3,1|2]
⟨1|P3,1|2][3|P3,6|1⟩⟨6|P4,6|3][4|P4,6|6⟩

(4.1.28c)

We have checked this result against an MHV diagram calculation and both methods

yield the same result.
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4.2 Supersymmetric form factors and Ward iden-

tities

The purpose of this section is to write down supersymmetric Ward identities for

certain appropriately defined form factors of supersymmetric operators. By solving

these Ward identities, we will learn about the structure of these form factors.

To begin, we recall the familiar fact that inN = 4 SYM one can efficiently package

all scattering amplitudes with fixed total helicity and fixed number of particles n into

a superamplitude [57], thereby making manifest some of the supersymmetries of the

theory. This object depends on auxiliary fermionic variables ηi,A, one for each particle

i = 1, . . . , n, with A an anti-fundamental SU(4) index. The superamplitude can be

Taylor-expanded in the η variables, with a specific correspondence between powers of

η and particular external states. This correspondence can be read off from the Nair

super-wavefunction [57], which encodes all the annihilation operators of the physical

states,

Φ(p, η) := g+(p) + ηAλ
A(p) +

ηAηB
2!

ϕAB(p) + ϵABCD ηAηBηC
3!

λ̄D(p) + η1η2η3η4g
−(p) ,

(4.2.1)

where (g+(p), . . . , g−(p)) are the annihilation operators of the corresponding states.

In order to select a state with a particular helicity hi, we need to expand the super-

amplitude and pick the term with 2− 2hi powers of ηi.

This familiar framework becomes richer for form factors. Indeed, one can consider

form factors of bosonic operators – such as Tr(ϕABϕAB) – with an external supersym-

metric state described using the Nair approach, but one can also supersymmetrise

the operator itself, as we shall see in the next section.

A comment on notation – we denote a form factor as ⟨0|Φ(1) · · ·Φ(n)O |0⟩ or
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equivalently ⟨1 · · ·n| O |0⟩, where |i⟩ := Φ†(i)|0⟩ is a Nair superstate, which satisfies

⟨ i |P = ⟨ i | pi , ⟨ i |Q = ⟨ i |λiηi , ⟨ i | Q̄ = ⟨ i | ∂

∂ηi
λ̃i , (4.2.2)

where the derivative in the last equation acts on the state on its left. We also adopt

the notation ⟨1 · · ·n| := ⟨0|Φ(1) · · ·Φ(n).

4.2.1 Form factor of the chiral stress-tensor multiplet oper-

ator

We now consider the form factor of the chiral supersymmetric operator3 T (x, θ+)

considered recently in [11, 81]. This operator is the chiral part of the stress-tensor

multiplet operator, T (x, θ+) := T (x, θ+, θ̄− = 0, u) and we report here its expression

from [11] for convenience,

T (x, θ+) = Tr(ϕ++ϕ++) + i2
√
2θ+a

α Tr(λ+α
a ϕ++)

+ θ+a
α ϵabθ

+b
β Tr

(
λ+c(αλ+β)

c − i
√
2F αβϕ++

)
− θ+a

α ϵαβθbβTr
(
λ+γ
(a λ

+
b)γ − g

√
2[ϕ+C

(a , ϕ̄C+b)]ϕ
++
)

− 4

3
(θ+)3 aα Tr

(
Fα
β λ

+β
a + ig[ϕ+B

a , ϕ̄BC ]λ
Cα
)
+

1

3
(θ+)4 L . (4.2.3)

Notice that the (θ+)0 component is nothing but the scalar operator Tr(ϕ++ϕ++),

whereas the (θ+)4 component is the on-shell Lagrangian.

Next we describe how to use supersymmetric Ward identities in order to constrain

form factors, slightly extending the usual procedure for amplitudes. Ward identities

associated with a certain symmetry generator s which leaves the vacuum invariant

3A quick reminder of harmonic superspace [79, 80] conventions, following closely [11, 81]. We

introduce the harmonic projections of the θAα and θ̄α̇A superspace coordinates and of the supersym-

metry charges Qα
A, Q̄

A
α̇, as θ

+a
α := θAαu

+a
A , θ̄α̇−a := θ̄α̇Aū

A
−a, and Qα

±a := ūA
±aQ

α
A, Q̄

+a
α̇ := u+a

A Q̄A
α̇ with

the harmonic SU(4) u and ū normalised as in Section 3 of [11].
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are obtained in a standard way [82–85] by expanding the identity

0 = ⟨0|[s ,Φ(1) · · ·Φ(n)O ]|0⟩ , (4.2.4)

or

0 = ⟨0|Φ(1) · · ·Φ(n) [s , O] |0⟩ +
n∑

i=1

⟨0|Φ(1) · · · [s , Φ(i)] · · ·Φ(n)O|0⟩ . (4.2.5)

For instance, by considering s to be the momentum generator P and using [Pµ,O(x)] =

−i∂µO(x) as well as the first equation of (4.2.2), we obtain

−i ⟨0|Φ(1) · · ·Φ(n) ∂µO(x) |0⟩+ (
n∑

i=1

pi)⟨0|Φ(1) · · ·Φ(n)O(x)|0⟩ = 0 . (4.2.6)

Fourier transforming x to q and integrating by parts one obtains

(q −
n∑

i=1

pi)F (q; 1, . . . , n) = 0 , (4.2.7)

where

F (q; 1, . . . , n) :=

∫
d4x e−iqx ⟨1 · · ·n|O(x) |0⟩ . (4.2.8)

From this it follows that

F (q; 1, . . . , n) = C · δ(4)(q −
n∑

i=1

pi) . (4.2.9)

C can be fixed by further integrating both sides of (4.2.9) with a d4q measure and

using (4.2.8), which leads to C = ⟨0|Φ(1) · · ·Φ(n)O(0) |0⟩ = ⟨1 · · ·n|O(0) |0⟩ .

Similarly, we now consider Ward identities for the harmonic projections Qα
±a,

a = 1, 2, of the Q-supersymmetry generators. We obtain

0 = ⟨0|Φ(1) · · ·Φ(n)[Q± , T (x, θ+)] |0⟩+
n∑

i=1

⟨0|Φ(1) · · · [Q± , Φ(i)] · · ·Φ(n) T (x, θ+) |0⟩ .

(4.2.10)

We now have to discuss how supersymmetry acts on the chiral part of T (x, θ+) as

well as on the states.

In general the supersymmetry algebra closes only up to gauge transformations

and equations of motion,4 however we consider here gauge-invariant operators such

4We would like to thank Paul Heslop for a useful conversation on these issues.
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as T which, furthermore, are made only of a subset of all fields, namely ϕAB, λAα and

Fαβ. It is an important fact that the algebra of the Q-generators closes off shell on

the chiral part of T [11], and hence these generators can be realised as differential

operators. Of course, representing the Q̄-generators in terms of differential operators

is, in general, problematic, because the full supersymmetry algebra closes only on

shell.

Moreover, for the chiral operator T (x, θ+) we have broken Q̄− since we have set

θ− = 0 and hence we do not have a representation for this operator. For the Q±-

variation of T (x, θ+) we have,

[Q− , T (x, θ+)] = 0 , [Q+ , T (x, θ+)] = i
∂

∂θ+
T (x, θ+) . (4.2.11)

Note that since we consider the chiral part of the stress-tensor multiplet we have set

θ̄ = 0 and hence we have dropped θ̄ dependent terms in the realisation of Q and

Q̄. Then the first relation is obvious since T (x, θ+) is independent of θ−. This also

makes manifest the fact that all component operators of T (x, θ+) are annihilated by

Qα
−a [11]. On the other hand, Qα

+a relates different components of the supermultiplet,

as the second relation in (4.2.11) shows.

We define the super form factor as the super Fourier transform of the matrix

element ⟨1 · · ·n|T (x, θ+) |0⟩, i.e.

FT (q, γ+; 1, . . . , n) :=

∫
d4x d4θ+ e−(iqx+iθ+a

α γα
+a) ⟨ 1 · · ·n |T (x, θ+) |0⟩ , (4.2.12)

where γα+a is the Fourier-conjugate variable to θ
+a
α . Note that there is no γα−a variable,

since θ−a
α has been set to zero in order to define the chiral part of the stress-tensor

multiplet. The Ward identities (4.2.10) can then be recast as( n∑
i=1

λiη−,i

)
FT (q, γ+; 1, . . . , n) = 0 ,

( n∑
i=1

λiη+,i − γ+
)
FT (q, γ+; 1, . . . , n) = 0 , (4.2.13)
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where we have also introduced

η±a,i := ūA±aηA,i . (4.2.14)

In arriving at (4.2.13) we have used (4.2.11) as well as the second relation in (4.2.2).

Next, we observe that (4.2.13) are solved by

FT (q, γ+; 1, . . . , n) = δ(4)(q −
n∑

i=1

λiλ̃i) δ
(4)
(
γ+ −

n∑
i=1

η+,iλi
)
δ(4)
( n∑

i=1

η−,iλi
)
R,

(4.2.15)

for some function R which in principle depends on all bosonic and fermionic variables.

The simplest example is that of the MHV form factor, where the function R has a

particularly simple expression derived in [60], namely

RMHV =
1

⟨12⟩ · · · ⟨n1⟩
. (4.2.16)

Notice that for an NkMHV form factor, R has fermionic degree 4k.

We can further constrain R by using some of the Q̄-supersymmetries. More pre-

cisely, an inspection of the supersymmetry transformations of the fields reveals that a

Q̄− transformation on the chiral part of the stress-tensor multiplet produces operators

which are part of the full stress-tensor multiplet but not of its chiral truncation. Also,

since [Q−, T (x, θ+)] = 0 we cannot realise Q̄− such that its anticommutator with Q−

gives a translation. One could of course still write a Ward identity for Q̄−, but this

would involve operators of the full multiplet.

On the other hand, the Q̄+-supersymmetry charge moves in the opposite direction

of Q+ across the different components of T (x, θ+), and is therefore realised as Q̄+
α̇ =

−θ+α∂/∂xα̇α.

We should stress at this point that the supersymmetry algebra on component

fields closes only up to equations of motion and gauge transformations (the latter

drop out since we consider gauge invariant operators). An important exception is the
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subalgebra formed by the Q’s alone which does close off-shell for the fields appearing

in T (x, θ+) [11]. Now we use the fact that matrix elements of terms proportional to

equations of motion vanish at tree level, to argue that for our tree-level form factors

the algebra formed by Q+ and Q̄+ does close and, therefore, can be realised in the

fashion described above. Thus, we can consider the Q̄+ Ward identity, which gives,

after integrating by parts and using the third relation of (4.2.2),

( n∑
i=1

λ̃i
∂

∂η+,i

− q
∂

∂γ+

)
FT (q, γ+; 1, . . . , n) = 0 . (4.2.17)

Acting on (4.2.15), we obtain the following relation for R,

δ(4)(q−
n∑

i=1

λiλ̃i) δ
(4)
(
γ+−

n∑
i=1

η+,iλi
)
δ(4)
( n∑

i=1

η−,iλi
) [( n∑

i=1

λ̃i
∂

∂η+,i

− q
∂

∂γ+

)
R

]
= 0 .

(4.2.18)

Notice that (4.2.18) implies a realisation of the supersymmetry generators on the

form factor as

Qα
+a =

n∑
i=1

λαi η+a,i − γα+a , Qα
−a =

n∑
i=1

λαi η−a,i , (4.2.19)

whereas for Q̄+a
α̇ ,

Q̄+a
α̇ =

n∑
i=1

λ̃i,α̇
∂

∂η+a,i

− qαα̇
∂

∂γα+a

. (4.2.20)

4.2.2 Examples

In the previous section we have derived the general form of the supersymmetric form

factor defined in (4.2.12). This expression is given in (4.2.15), and was obtained by

solving Ward identities related to translations and Q±-supersymmetries. The use of

Q̄+ supersymmetry led to the constraint (4.2.18) on the function R. For the sake of

illustration, we now present a few examples of component form factors derived from

(4.2.15).
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Form factor of Tr(ϕ++ϕ++)

Our first example is the form factor of Tr(ϕ++ϕ++), which appears as the (θ+)0-term

in the expansion of T (x, θ+) in (4.2.3). In this case, since∫
d4θ+ eiθ

+a
α γα

+a = (γ+)
4 , (4.2.21)

we need to extract the (γ+)
4 component of (4.2.15). This gives∫

d4x e−iqx ⟨1 · · ·n|Tr(ϕ++ϕ++)(x)|0⟩ = δ(4)(q −
n∑

i=1

λiλ̃i) δ
(4)
( n∑

i=1

η−a,iλ
α
i

)
R ,

(4.2.22)

or

⟨1 · · ·n|Tr(ϕ++ϕ++)(0)|0⟩ = δ(4)
( n∑

i=1

η−a,iλ
α
i

)
R . (4.2.23)

Notice that with the help of (4.2.23) we can rewrite the supersymmetric form factor

FT (q, γ+; 1, . . . , n) as

FT (q, γ+; 1, . . . , n) = δ(4)(q −
n∑

i=1

λiλ̃i) δ
(4)
(
γ+ −

n∑
i=1

η+,iλi
)
⟨1 · · ·n|T (0, 0)|0⟩ ,

(4.2.24)

since T (0, 0) := Tr(ϕ++ϕ++)(0). In other words, the function R appearing in the

T (x, θ+) form factor can be calculated from the form factor of its lowest compo-

nent5 Tr(ϕ++ϕ++)(0). Similar considerations apply to form factors of other half BPS

operators such as Tr(ϕ++)n with n > 2.

Form factor of the on-shell Lagrangian

As a second important example, we now consider the form factor for the on-shell

Lagrangian, whose expression is [11]

L = Tr
[
− 1

2
FαβF

αβ +
√
2gλαA[ϕAB, λ

B
α ]−

1

8
g2[ϕAB, ϕCD][ϕAB, ϕCD]

]
. (4.2.25)

5One could arrive at (4.2.24) in a much more straightforward way by noticing that T (x, θ+a
α ) =

exp(iPx) exp(iQα
+aθ

+a
α )T (0, 0) exp(−iPx) exp(−iQα

+aθ
+a
α ) and using the invariance of the vacuum

under supersymmetry and translations.
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Notice that it contains the self-dual part of Tr(F 2). The on-shell Lagrangian appears

as the (θ+)4 coefficient of the expansion of T (x, θ+) in (4.2.3). The corresponding

Fourier transform gives ∫
d4θ+ e−iθ+a

α γα
+a(θ+)4 = 1 , (4.2.26)

i.e. we have to take the O(γ0) component of (4.2.15). This is simply

⟨1 · · ·n|L(0)|0⟩ = δ(8)
( n∑

i=1

ηiλi
)
·R . (4.2.27)

It is interesting to note that for an MHV form factor, (4.2.27) is formally identi-

cal to the tree-level MHV superamplitude, except for a delta function of momentum

conservation which now imposes
∑

i pi = q rather than the usual momentum con-

servation of the particles. This allows us to make an interesting observation for the

limit q → 0 in which this form factor reduces simply to the correspond scattering

amplitude. Actually, it turns out that any form factor with the on-shell Lagrangian

L inserted reduces to the corresponding scattering amplitude in the q → 0 limit,

since the insertion of the action corresponds to differentiating the path-integral for

the amplitude with respect to the coupling [86–88].

Another observation is that for the case of a gluonic state with MHV helicity

configuration, (4.2.27) agrees with the Higgs plus multi-gluon or “ϕ-MHV” amplitude

considered in [89]. Indeed, if we have a gluonic state, we can effectively replace the on-

shell Lagrangian (4.2.25) with its first term, the square of the self-dual field strength.

Why is the maximally non-MHV form factor so simple?

The simplest tree-level form factor is the MHV form factor, e.g.

⟨1+2+ · · · i− · · · j− · · · (n− 1)+n+|Tr(F 2
SD)(0) |0⟩ =

⟨ij⟩4

⟨12⟩⟨23⟩ · · · ⟨n 1⟩
. (4.2.28)

Interestingly, there are non-MHV form factors whose expression is also remarkably

simple. Consider for example that of the self-dual field strength with an all negative-
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helicity gluons state – we refer to this as the “maximally non-MHV” form factor. The

result for this quantity is [89]

⟨1− · · ·n−|Tr(F 2
SD)(0) |0⟩ =

q4

[1 2][2 3] · · · [n 1]
. (4.2.29)

In the following we wish to show that the simplicity of (4.2.29) is determined by the

supersymmetric Ward identity discussed earlier, and is linked to that of the MHV

super form factor (4.2.16).

Recall from (4.2.24) that the super form factor of the chiral part of the stress-

tensor multiplet T (x, θ+) has the form

FT = δ(4)(q −
n∑

i=1

λiλ̃i) δ
(4)
(
γ+ −

n∑
i=1

η+,iλi
)
Fϕ2 , (4.2.30)

where

Fϕ2 := ⟨1 · · ·n|Tr(ϕ++ϕ++)(0) |0⟩ = δ(4)
( n∑

i=1

η−,iλi
)
R . (4.2.31)

For the MHV helicity configuration, the function RMHV is given in (4.2.16),

FMHV
ϕ2 =

δ(4)
(∑n

i=1 η−,iλi
)

⟨12⟩ · · · ⟨n1⟩
. (4.2.32)

We can now use this fact and perform a Grassmann Fourier transform in order to

derive the maximally non-MHV super form factor,

FNmaxMHV
ϕ2 =

n∏
i=1

∫
d4η̃i e

iηi,Aη̃Ai
δ(4)
(∑n

i=1 η̃
+
i λ̃i
)

[12] · · · [n1]
. (4.2.33)

Thus, the maximally non-MHV super form factor for the chiral part of the stress-

tensor multiplet is

FNmaxMHV
T = δ(4)(q −

n∑
i=1

λiλ̃i) δ
(4)
(
γ+ −

n∑
i=1

η+,iλi
)
FNmaxMHV

ϕ2 . (4.2.34)

We now focus on the component corresponding to the self-dual field strength, which
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can be obtained from the coefficient of (γ+)
0. This is given by6

δ(4)
( n∑

i=1

η+,iλi
) n∏

i=1

∫
d4η̃i e

iηiη̃i
δ(4)
(∑n

i=1 η̃
+
i λ̃i
)

[12] · · · [n1]

= δ(4)
( n∑

i=1

η+,iλi
) ∑i<j[ij]

∑
k<l[kl]

[12] · · · [n1]
η41..η

3
i ..η

3
j ..η

3
k..η

3
l ..η

4
n

=

∑
i<j⟨ij⟩[ij]

∑
k<l⟨kl⟩[kl]

[12] · · · [n1]
η41 · · · η4n

=
q4

[12] · · · [n1]
η41 · · · η4n . (4.2.35)

Equation (4.2.35) shows that there is a non-vanishing maximally non-MHV form

factor for the self-dual field strength, whose expression is precisely given by (4.2.29).

4.2.3 Form factor of the complete stress-tensor multiplet

In this section we consider the form factor of the the full, non-chiral stress-tensor

multiplet T (x, θ+, θ̃−). We can write this as7

T (x, θ+, θ̃−) := Tr(W++W++)

= eiθ
+Q++iθ̃−Q̄−

Tr(ϕ++ϕ++)(x) e−iθ+Q+−iθ̃−Q̄−
(4.2.36)

= Tr(ϕ++ϕ++) + (θ+)4L+ (θ̃−)
4L̃+ (θ+σµθ̃−)(θ

+σν θ̃−)Tµν + · · · ,

where we have indicated only some terms of the full multiplet.

The right-hand side of (4.2.36) is an expansion in the chiral as well as anti-chiral

variables θ+ and θ̃−. We can parallel this feature in the states by using a non-chiral

description as in [90] with fermionic variables η+ and η̃−. With this choice, the

6In the following equation we omit a trivial delta function of momentum conservation.
7Notice that the second equality is true only up to equations of motion because the non-chiral

algebra closes only on shell. In the following we will work at tree level and hence this point will not

affect our considerations.
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supersymmetry algebra is realised on states as

⟨ i |Q+ = ⟨ i |λiη+,i , ⟨ i |Q− = ⟨ i |λi
∂

∂η̃−i
,

⟨ i |Q̄− = ⟨ i |λ̃iη̃−i , ⟨ i| Q̄+ = ⟨ i |λ̃i
∂

∂η+,i

. (4.2.37)

This non-chiral representation can be obtained via a simple Fourier transform of half

of the chiral superspace variables. In terms of the Nair description of states, this

amounts to introducing a new super wavefunction,

Φ(p, η+, η̃
−) :=

∫
d2η− eiη−η̃−Φ(p, η) (4.2.38)

= g+(p)(η̃−)2 + · · ·+ ϕ++(η+)
2(η̃−)2 + ϕ−− + · · ·+ g−(p)(η+)

2 .

As a result, operators and superstates live in a non-chiral superspace. The non-chiral

form factor in this representation is defined as

F(q, γ+, γ̃
−; 1, . . . , n) :=

∫
d4x d4θ+ d4θ̃− e

−i(qx+θ+γ++θ̃−γ̃−) ⟨1 · · ·n| T (x, θ+, θ̃−)|0⟩ .

(4.2.39)

In order to write down Ward identities for (4.2.39), we consider the action of super-

symmetry generators on the operator T (x, θ+, θ̃−):

[Q+, T (x, θ+, θ̃−)] = i
∂

∂θ+
T (x, θ+, θ̃−) , [Q−, T (x, θ+, θ̃−)] = −θ̃−

∂

∂x
T (x, θ+, θ̃−) ,

[Q̄−, T (x, θ+, θ̃−)] = − ∂

∂θ̃−
T (x, θ+, θ̃−) , [Q̄+, T (x, θ+, θ̃−)] = iθ+

∂

∂x
T (x, θ+, θ̃−) .

(4.2.40)

Following closely the derivation of the Ward identities described in the previous sec-

tion, we arrive at the following relations for each supersymmetry generator,

Q+ : (η+λ− γ+)F = 0 , Q− :
(
q
∂

∂γ̃−
− λ

∂

∂η̃−

)
F = 0 , (4.2.41)

Q̄− : (η̃−λ̃− γ̃−)F = 0 , Q̄+ :
(
q
∂

∂γ+
− λ̃

∂

∂η+

)
F = 0 , (4.2.42)

and hence the form factor in (4.2.39) takes the form

F = δ(4)(q −
n∑

i=1

λiλ̃i) δ
(4)
(
γ+ −

n∑
i=1

η+,iλi
)
δ(4)
(
γ̃− −

n∑
i=1

η̃−i λ̃i
)
Fnc

ϕ2 , (4.2.43)
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for some function Fnc
ϕ2 .

A useful observation is that Fnc
ϕ2 can be obtained from the corresponding function

introduced in (4.2.30) for the chiral form factor via a half-Fourier transform on the η

and η̃ variables, as

Fnc
ϕ2 (λ, λ̃, η+, η̃

−) =
n∏

i=1

∫
d2η−,i e

iη−,iη̃
−
i Fϕ2(λ, λ̃, η+, η−) . (4.2.44)

In the remaining part of this section we would like to show a few applications of this

formulation.

To begin with, we specialise to the MHV case, for which we have

FMHV, nc
ϕ2 =

n∏
i=1

∫
d2η−,i e

iη−,iη̃
−
i
δ(4)
(∑n

i=1 η−,iλi
)

⟨12⟩ · · · ⟨n1⟩

=
⟨kl⟩2

⟨12⟩ · · · ⟨n1⟩

n∏
i ̸=k,l

(η̃−i )
2 + · · · . (4.2.45)

The MHV form factor of Tr(ϕ+)2 is then obtained by extracting the coefficient of

(γ+)
4(γ̃−)4 in (4.2.43), and thus it is immediately seen to give the correct answer. The

form factor with an insertion of the chiral Lagrangian L (which includes Tr(F 2
SD)) is

obtained by taking the coefficient of (γ+)
0(γ̃−)4:

FMHV
L = δ(4)

( n∑
i=1

η+,iλi
)
FMHV

ϕ2 =
⟨kl⟩4

⟨12⟩ · · · ⟨n1⟩

(
η2+,kη

2
+,l

n∏
i ̸=k,l

(η̃−i )
2
)
+ · · · ,(4.2.46)

as expected. Finally, in order to obtain the form factor with L̃ (which includes

Tr(F 2
ASD)), we extract the coefficient of (γ+)

4(γ̃−)0:

FMHV
L̃ = δ(4)

( n∑
i=1

η̃−i λ̃i
)
FMHV

ϕ2 =

∑
i<j⟨ij⟩[ij]

∑
k<l⟨kl⟩[kl]

⟨12⟩ · · · ⟨n1⟩

n∏
i=1

(η̃−i )
2

=
q4

⟨12⟩ · · · ⟨n1⟩

n∏
i=1

(η̃−i )
2 , (4.2.47)

which is indeed also correct.
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4.3 Supersymmetric methods

In this section we take a brief survey of various methods that can be used to calculate

form factors of the complete stress-tensor multiplet, at tree and loop level. These are

simple but interesting extensions of well-known techniques for scattering amplitudes

– MHV diagrams [4], on-shell recursion relations [5, 21] and (generalised) unitarity

[2,24,91,92] – thus we will limit ourselves to highlighting the peculiarities we encounter

when dealing with form factors. The non-supersymmetric versions of these methods

have been considered earlier in Section 2 and in [60].

A preliminary observation is that the form factor of the complete stress-tensor

multiplet operator T (x, θ+, θ̃−) can be expressed in terms of that of its lowest bosonic

component Tr(ϕ++ϕ++), as we have shown in (4.2.43), namely

F = δ(4)(q −
n∑

i=1

λiλ̃i) δ
(4)
(
γ+ −

n∑
i=1

η+,iλi
)
δ(4)
(
γ̃− −

n∑
i=1

η̃−i λ̃i
)
Fnc

ϕ2 , (4.3.1)

where Fnc
ϕ2 := ⟨1 · · ·n|Tr(ϕ++ϕ++)(0)|0⟩ and the superstate ⟨1 · · ·n| is here in the

non-chiral representation. One can then switch instantly to the chiral representation

via a half-Fourier transform from the η̃− to the η+ variables. Hence, we only need to

devise methods to calculate the form factor ⟨1 · · ·n|Tr(ϕ++ϕ++)(0)|0⟩ using a chiral

representation for the external state. This is the problem we address in the following.8

4.3.1 Supersymmetric MHV rules

We begin with a lightning illustration of super MHV rules. Here, the super MHV

form factor,

FMHV(1, 2, · · · , n; q) = δ(4)(q −
∑

i λiλ̃i) δ
(4)(
∑

i λiηi,−)

⟨1 2⟩⟨2 3⟩ · · · ⟨n 1⟩
, (4.3.2)

8To simplify our notation, we will drop from now on the subscript in Fϕ2 .
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is continued off shell with the standard prescription (4.1.4) of [4], and used as a

vertex in addition to the standard MHV vertices. Form factors have a single operator

insertion, hence we only draw diagrams with a single form factor MHV vertex. As

an example, consider the NMHV tree-level super form factor. It can be computed by

summing over all diagrams in Figure 4.5(a), whose expression is

F (0)
NMHV =

n∑
i=1

i+n−2∑
j=i+1

∫
d4Pij

∫
d4ηP A(0)

MHV(i, .., j, Pij)
1

P 2
ij

F (0)
MHV(j+1, .., i−1,−Pij; q)

=F (0)
MHV

n∑
i=1

i+n−2∑
j=i+1

⟨i−1 i⟩⟨j j+1⟩
⟨i−1 Pij⟩⟨Pij i⟩⟨j Pij⟩⟨Pij j+1⟩

1

P 2
ij

δ(4)
( j∑

k=i

⟨Pij k⟩ηAk
)
.(4.3.3)

We have also calculated tree-level N2MHV super form factor up to six points and

checked that the results are all independent of the choice of reference spinor. We

have also re-derived the split-helicity form factors, and checked numerical agreement

with the results presented in Section 4.1.2.

As an additional example, consider the one-loop MHV super form factor. Follow-

ing [77], this can be computed by summing over all diagrams in Figure 4.5(b), and is

given by

F (1)
MHV =

n∑
i=1

i+n−1∑
j=i

∫
dDL1

L2
1 + iε

dDL2

L2
2 + iε

∫
d4ηL1

∫
d4ηL2 (4.3.4)

A(0)
MHV

(
i . . . , j, L1, L2

)
F (0)

MHV(−L2,−L1, j+1, . . . , i−1; q) .

i

j

i

j

A
MHV

F
MHV

A
MHV

F
MHVPij

L1

L2

(a) (b)

Figure 4.5: (a) MHV diagram for a tree-level NMHV form factor. (b) MHV diagram

for a one-loop MHV form factor.
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Finally, we note that the MHV vertex expansion may be proved at tree level along

the lines of [93], namely by using a BCFW recursion relation with an all-line shift

and showing that this is identical to the MHV diagram expansion.

4.3.2 Supersymmetric recursion relations

Now we consider a simple extension of the supersymmetric version [94, 95] of the

BCFW recursion relation [5,21]. We choose to work with an [i, j⟩ shift, λ̃i → λ̃i+zλ̃j,

λj → λj − zλi, ηi → ηi + zηj. Factorisation requires that each term in the recursion

relation must contain one form factor and one amplitude. Hence, for each kinematic

channel we need to sum over two diagrams, with the form factor appearing either on

the left-hand or right-hand side, see Figure 4.6. The result one obtains by summing

over these two classes of diagrams has the form

F(0) =
∑
a,b

∫
d4Pd4ηP FL(z=zab)

1

P 2
ab

AR(z=zab)

+
∑
c,d

∫
d4Pd4ηP AL(z=zcd)

1

P 2
cd

FR(z=zcd) . (4.3.5)

One point deserves a special attention, namely the large-z behaviour of the form

î

ĵ

a

b

AL FR
î

ĵ

c

d

FL AR

(a) (b)

Figure 4.6: The two recursive diagrams discussed in the text.

factor. Recall that in order to have a recursion relation without boundary terms

we need F(. . . p̂i, . . . , p̂j, . . .) → 0 as z → ∞. We discuss this important point in

Appendix B, where we prove that the condition mentioned above is indeed satisfied.

We would also like to point out that the basic seeds in the form factor recursion

relation are the two-point form factor, together with the three-point amplitudes.

119



4.3.3 Supersymmetric unitarity-based method

Supersymmetric generalised unitarity, as well as supersymmetric MHV rules, are

easily applied to form factors. Consider for example a two-particle cut, depicted in

Figure 4.7. On one side of the cut we have a tree-level form factor, on the other a tree

scattering amplitude. For the case of a one-loop supersymmetric MHV form factor,

the two-particle cut is equal to

F (1)
MHV

∣∣∣
sa+1,b−1−cut

=

∫
dLIPS(l1, l2;P )

∫
d4ηl1

∫
d4ηl2 (4.3.6)

F (0)
MHV(−l2,−l1, b, . . . , a; q)A

(0)
MHV

(
l1, l2, (a+ 1) . . . , (b− 1)

)
,

where the Lorentz-invariant phase-space measure is

dLIPS(l1, l2;P ) := dDl1 d
Dl2 δ

+(l21)δ
+(l22)δ

D(l1 + l2 + P ) . (4.3.7)

The sum over all possible states which can propagate in the loop is automatically

q

l2

l1

pa+1

pa+2

pb−1

pa

pb

F A

Figure 4.7: A two-particle cut diagram for a one-loop form factor.

performed by the fermionic integration. A simple calculation gives

F (1)
MHV

∣∣∣
sa+1,b−1−cut

= F (0)
MHV

∫
dLIPS(l1, l2;Pa+1,b−1)

⟨a a+ 1⟩⟨l2 l1⟩
⟨a l2⟩⟨l2 a+ 1⟩

⟨b− 1 b⟩⟨l1 l2⟩
⟨b− 1 l1⟩⟨l1 b⟩

,

(4.3.8)

which reproduces the result derived in [60] using component form factors and ampli-

tudes.

120



It was shown in [96] that the expectation value of supersymmetric Wilson loops

in momentum twistor space generates all planar amplitudes in N = 4 SYM, and

dual MHV rules in momentum twistor space were proposed in [97]. Inspired by

these results, dual MHV rules directly formulated in dual momentum space were

introduced in [98]. In these rules a lightlike closed polygon formed by linking the

on-shell momenta of the external particles following their colour ordering plays an

important role. Note that the same polygon appears in the amplitude/Wilson loop

duality [9, 10,99].

In this section we extend these rules to the calculation of form factors of the special

operator considered in previous sections, namely the chiral part of the stress-tensor

multiplet operator. It turns out that the rules for the amplitude have to be modified

only slightly. More precisely, there are no new vertices to be introduced, and we only

have to modify (super)momentum conservation of the particles in order to account

for the (super)momentum injected by the operator. In the dual momentum picture,

this implies the breaking of the closed null contour describing the particle’s momenta.

The vertices of this open polygon in dual supermomentum space are labelled by

(xi,Θi) [8], with
9

xi − xi+1 := pi = λiλ̃i , Θi −Θi+1 := λiηi , (4.3.9)

with

xi − xi+n =
n∑

j=1

pj = q , Θi −Θi+n =
n∑

j=1

λjηj = γ , (4.3.10)

where q (γ) is the (super)momentum carried by the operator. Note that in the

previous equation we have effectively injected the (super)momentum of the operator

between on-shell states labelled by i − 1 and i and this is where the breaking of

9In order to avoid confusion with the variables θ’s introduced in earlier sections, we denote by Θ

the variables living in dual super momentum space.
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the polygon occurs. For each diagram an appropriate choice for the location of the

breaking will have to be made. Furthermore, in this section we consider the chiral

operator T (x, θ+) for which γ− = 0, and hence Θi;− − Θi+n;− = 0. For amplitudes

we have of course q = 0 and γ = 0 which would bring us back to a closed lightlike

polygon.

In practice it is useful to convert the open polygon for form factors into a periodic

configuration in dual momentum space with period q (γ) in the bosonic (fermionic)

direction as in Figure 4.8. This is partially motivated by a duality observed at strong

coupling in [63, 100] where form factors are related to the area of minimal surfaces

ending on an infinite periodic sequence of null segments at the boundary of AdS.

In [60] an attempt was made to map this geometric picture to weak coupling, in a

way similar to the amplitude/Wilson loop duality [10,99].

q

p3

p2

p1

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

q

q

Figure 4.8: The kinematic configuration in dual momentum space used to calculate

three-point form factors using dual MHV rules.

The emergence of a periodic configuration is also natural from a field-theoretic

point of view once one takes into account that the operator insertion is a colour

singlet, and hence does not interfere with the colour ordering of the external state. In

other words, the (super)momentum carried by the operator can be inserted between

any pair of particle momenta without spoiling the ordering. Precisely by resorting to

a periodic configuration we can account for this property, as Figure 4.8 clearly shows.

One can also consider this periodic kinematic configuration in momentum twistor
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space [101], as shown in Figure 4.9, with space-time points being mapped to lines in

twistor space: (xi,Θi) ∼ Zi−1 ∧ Zi, where

Zi = (λi, νi, χi) , νi = xiλi = xi+1λi , χi = Θiλi = Θi+1λi . (4.3.11)

Z0

Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8

Z9

Z10

Figure 4.9: The same kinematic configuration presented in Figure 4.8, in terms of

momentum twistor space variables.

4.3.4 Examples

In this section we want to explain the dual MHV rules by discussing a number of

simple examples of tree-level and one-loop form factors. The dual MHV rules in dual

momentum space for N = 4 amplitudes are summarised for the reader’s convenience

in Appendix B, and we refer to [98] for full details.

The first example is that of an NMHV three-point form factor. The corresponding

diagrams are shown in Figure 4.10, and are in one-to-one correspondence with three

conventional MHV diagrams, depicted in Figure 4.11. Notice that the three diagrams

in Figure 4.10 can be obtained by selecting the appropriate period in Figure 4.8.

q
(a) (b) (c)

q

q

x1

x3

x2

x4

x3

x5

x2
x3

x4

x4

x5

x6

Figure 4.10: Dual MHV diagrams for the three-point tree NMHV form factor.
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3
1

(b)

A
MHV

F
MHV

q 3

1
2

(c)

A
MHV

F
MHV

q1

2
3

(a)

A
MHV

F
MHV

q

x3

x1

x4

x2

x5

x3

Figure 4.11: Corresponding MHV diagrams for the three-point tree NMHV form fac-

tor.

The extension to n-point NMHV form factors is immediate – we consider all

dual MHV diagrams where one propagator connects two external vertices within one

period. The final result is given by summing over all translationally inequivalent

diagrams as

F (0)
NMHV = F (0)

MHV

n∑
i=1

i+n−1∑
j=i+2

⟨i−1 i⟩
⟨i−1 ℓij⟩⟨ℓij i⟩

⟨j−1 j⟩
⟨j−1 ℓij⟩⟨ℓij j⟩

1

x2ij

∫
d4ηij δ

0|8(ℓijηij+Θij) ,

(4.3.12)

where the spinor |ℓij⟩ associated to the internal leg is defined as

|ℓij⟩ := |xij|ξ] , (4.3.13)

and where |ξ] is an arbitrary reference spinor. Notice that the particle labels of spinor

variables i and i + n are identified in this expression. Importantly, the fact that

we are calculating a form factor rather than an amplitude – and the corresponding

dependence on q and γ – is completely encoded in the periodic kinematic configuration

as defined earlier. Furthermore, we observe that every diagram in the sum corresponds

to a particular period (see Figures 4.10 and 4.11).

Notice that diagrams where a propagator connects two adjacent points give a

vanishing result, and therefore are not included in the summation. On the other hand,

diagrams where a propagator connects two points separated by exactly one period

or more are non-vanishing, and have to be excluded since there is no corresponding

conventional MHV diagram. For instance, among the three-point diagrams in Figure

4.10 we do not include the diagram with a propagator connecting points x1 and x4.
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This is an example of a more general fact: diagrams where a single propagator connects

points xi and xj with |i−j| ≥ n have to be discarded. This applies to any loop order.

The reason for this rule is that there are no corresponding supersymmetric MHV

diagrams.

As an aside we mention that (4.3.12) can also be written in terms of momentum

twistor variables as

F (0)
NMHV = F (0)

MHV

n∑
i=1

i+n−1∑
j=i+2

[∗, i−1, i, j−1, j] , (4.3.14)

where Z∗ is the reference momentum twistor, chosen as

Z∗ = (0, ξ, 0) , (4.3.15)

and [∗, i−1, i, j−1, j] is defined in Appendix B.

The case of one-loop MHV form factors is similar to the tree-level NMHV case.

The n-point one-loop MHV form factor is given by

F (1)
MHV = F (0)

MHV

∫
d4xId

8ΘI

n∑
i=1

i+n−1∑
j=i+1

⟨i−1 i⟩
⟨i−1 ℓiI⟩⟨ℓiI i⟩

⟨j−1 j⟩
⟨j−1 ℓIj⟩⟨ℓIj j⟩

(4.3.16)

1

⟨ℓiIℓIj⟩⟨ℓIjℓiI⟩
1

x2iI

∫
d4ηiI δ

0|8(ℓiIηiI +ΘiI)
1

x2Ij

∫
d4ηIj δ

0|8(ℓIjηIj +ΘIj)

+ F (0)
MHV

∫
d4xId

8ΘI

n∑
i=1

⟨i−1 i⟩
⟨i−1 ℓiI′⟩⟨ℓiI′ ℓiI⟩⟨ℓiI i⟩

1

⟨ℓiIℓi+nI⟩⟨ℓi+nIℓiI⟩
1

x2iI

∫
d4ηiI δ

0|8(ℓiIηiI +ΘiI)
1

x2i+nI

∫
d4ηi+nI δ

0|8(ℓi+nIηi+nI +Θi+nI)∫
d4xI′d

8ΘI′δ
4(xI′I − xii+n)δ

0|8(ΘI′I −Θii+n) .

Notice that we have treated a special class of diagrams differently, corresponding to

the last three lines in (4.3.16). These are diagrams where the two propagators have

momenta xiI and xi+nI . An example of such a diagram in the case of a three-point

form factor is shown in Figure 4.12.
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(a) (b)
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MHV
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x4

2 qA
MHV

Figure 4.12: A special diagram with two propagators with momenta xiI and xi+nI . In

the dual MHV diagram there are two propagators with momenta x1I and x4I , and two

vertices, x1 and xI . Such diagrams correspond to the last three lines of (4.3.16).

The three-point dual MHV diagrams at one loop are shown in Figure 4.13. The

diagrams in Figure 4.13 (g)-(i) are of the special class described earlier in Figure

4.12. Note that in the case of loop diagrams we also have to include diagrams where

(b)

qx2

x4

x3

x5

xI

q
(a)

x1

x3x2

x4

xI

(c)

qx3

x5

x4

x6xI

(h)

qx2

x4

x3

x5

xI

q
(g)

x1

x3x2

x4

xI

(i)

q

x3

x5

x4

x6

xI

(f)

qx3

x5

x4

x6

xI

(e)

qx2

x4

x3

x5

xI

q
(d)

x1

x3x2

x4

xI

Figure 4.13: Dual MHV diagrams for the three-point MHV form factor at one loop.

two adjacent points or two points separated by exactly one period are connected by

two or more propagators (see Figure 4.13 diagrams (a)-(c) and (g)-(i) respectively).

We should also stress that all diagrams where two points xi and xj with |i − j| >

n are connected must be discarded. Generalisations to non-MHV form factors are

straightforward.
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Finally we compare the dual MHV diagrams with the periodic Wilson line dia-

grams studied in [60]. We can see that an identical truncation was necessary in order

to obtain the correct result: in a single MHV diagram the external vertices which are

connected to propagators must reside within one period, and the whole form factor

is obtained by summing over all translationally inequivalent diagrams.

4.3.5 Higher-loop diagrams

At higher loops, the situation becomes more involved. To illustrate the main novelty

we consider the two-point MHV form factor at two loops.10

As prototypical examples, we consider two particular diagrams, depicted in Fig-

ures 4.14 and 4.15. In the first diagram, the form factor MHV vertex is inserted in

the exterior part of the diagram, whereas in the second situation it is inserted in the

interior. On the right-hand side of each figure we also draw the corresponding dual

MHV diagram. Let us start with the first, simpler situation. There is no subtlety in

defining the internal region momenta xI and xJ . The momenta in the propagators

in the outer loop are x2I , x3J and x1J , and it is straightforward to write down the

two-loop dual MHV integrand. In the notation of Appendix B, there are two internal

vertices, two external vertices at x1 and x2 (with x1 being a two-point vertex) and

four propagators, as shown by dark bullets and dark wavy lines in Figure 4.14 (b).

Consider now the second, more subtle situation drawn in Figure 4.15. In order

to assign region momenta consistently to all regions in this diagram, we need to

10Incidentally, we recall that while at one loop it has been proved that (four-dimensional) MHV

diagrams reproduce complete amplitudes [102], there is no such statement at two loops and beyond.

However, MHV diagrams at two loops and beyond can be used effectively to compute unregulated

integrands of amplitudes (and form factors, as demonstrated here) which have recently attracted

great interest in their own right [103].
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xJ ′

xI

xJ

x1

x2

x3

xJ

xI ′

x0 x4

Figure 4.14: (a) First MHV diagram for a two-loop, two-point MHV form factor. (b)

The corresponding dual MHV diagram.

introduce an additional loop momentum xJ ′ such that xJ − xJ ′ = q, in exactly the

same way as x1−x3 = q. Similarly, one can also introduce xI′ such that xI′ −xI = q.

The dual MHV diagram is shown in Figure 4.15(b).

xI

AMHV

p1

xJ

FMHV

p2

AMHV

(a) (b)

x2

x1

x2

x3xI
x1

xJ xJ ′

x0

p1
p2p2

xI ′

x4

Figure 4.15: (a) Second MHV diagram for a two-loop, two-point MHV form factor.

(b) The corresponding dual MHV diagram.

As before, we consider only translationally inequivalent diagrams within one pe-

riod. Each such diagram will have two one-point external vertices, two three-point

internal vertices and four propagators, as shown by dark bullets and dark wavy lines
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in Figure 4.15(b). The expression of this dual MHV diagram is then∫
d4xId

8ΘI
1

⟨ℓI2ℓIJ⟩⟨ℓIJℓIJ ′⟩⟨ℓIJ ′ℓI2⟩

∫
d4xJd

8ΘJ
1

⟨ℓJ1ℓJI′⟩⟨ℓJI′ℓJI⟩⟨ℓJIℓJ1⟩
⟨12⟩

⟨1ℓ2I⟩⟨ℓ2I2⟩
⟨21⟩

⟨2ℓ1J⟩⟨ℓ1J1⟩
(4.3.17)

1

x2I2

∫
d4ηI2 δ

0|8(ℓI2ηI2 +ΘI2)
1

x2J1

∫
d4ηJ1 δ

0|8(ℓJ1ηJ1 +ΘJ1)

1

x2IJ

∫
d4ηIJ δ

0|8(ℓIJηIJ +ΘIJ)
1

x2IJ ′

∫
d4ηIJ ′ δ0|8(ℓIJ ′ηIJ ′ +ΘIJ ′)∫

d4xI′d
8ΘI′δ

4(xII′ + x13)δ
0|8(ΘII′ +Θ13)

∫
d4xJ ′d8ΘJ ′δ4(xJJ ′ − x13)δ

0|8(ΘJJ ′ −Θ13) .

Notice in the last line of (4.3.17) the delta functions which enforce the periodicity

of the super region momenta xI′ and xJ ′ . One can check that (4.3.17) is indeed

equivalent to the result of the conventional MHV diagram in Figure 4.15(a).

p1

p2

p1

p2

(b)

xJ

xI

x1
x2

(a)

xJ

xI

x1
x2

Figure 4.16: (a) Cylinder picture for the MHV diagram in Figure 4.14. (b) Cylinder

picture for the MHV diagram in Figure 4.15. The period of the cylinder is q.

The dual MHV rules for form factors described above can be understood more

naturally if we put the periodic configuration on a cylinder of period q, see Figure 4.16.

In particular, Figure 4.16(b) corresponds to the MHV diagram in Figure 4.15. The

two coloured propagators connecting xI and xJ form a loop with winding momentum

q, which exactly correspond to the coloured lines in the MHV diagram in Figure

4.15(a). We would like to stress a general feature of the rules we have described

before, namely that no single propagator can stretch for one or more than one period

around the cylinder.
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The dual MHV rules can be applied to generic form factors. As in the case of

amplitudes, in order to calculate an NkMHV form factor at L loops, we need to sum

over all allowed diagrams with

#(internal vertices) = L , #(propagators) = k + 2L . (4.3.18)

It would be very interesting to map the dual MHV rules described here to a dual

Wilson line picture for form factors. We leave this question for future work.
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Chapter 5

The Sudakov Form Factor in

ABJM

This chapter summarises the results of [17] regarding the computation of the two-

loop Sudakov form factor in three-dimensional N = 6 superconformal Chern-Simons

theory via generalised unitarity. As an intermediate step, we derive the non-planar

part of the one-loop four-point amplitude in terms of box integrals. Our result for

the Sudakov form factor is given by a single non-planar tensor integral with uniform

degree of transcendentality, and is in agreement with the known infrared divergences

of two-loop amplitudes in ABJM theory. We also discuss a number of interesting

properties satisfied by related three-dimensional integral functions.
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5.1 The complete one-loop amplitude

5.1.1 Results

In this section we present our result for the complete four-point amplitude at one loop

in ABJM. As mentioned earlier, this amplitude will be needed in order to construct

the two-particle cuts of the two-loop form factor. The one-loop four-point amplitude

is given by the sum of a planar and non-planar contribution1:

Ã(1)(1̄, 2, 3̄, 4) = A(1)
P (1̄, 2, 3̄, 4) + A(1)

NP(1̄, 2, 3̄, 4) , (5.1.1)

where

A(1)
P (1̄, 2, 3̄, 4) = iN A(0)(1̄, 2, 3̄, 4) I(1, 2, 3, 4)

([
1, 2, 3, 4] +

[
1, 4, 3, 2]

)
, (5.1.2)

and

A(1)
NP(1̄, 2, 3̄, 4) =− 2 iA(0)(1̄, 2, 3̄, 4)

[(
I(1, 2, 3, 4)− I(4, 2, 3, 1)

)
[1, 2][3, 4]

−
(
I(2, 3, 4, 1)− I(1, 3, 4, 2)

)
[1, 4][3, 2]

]
.

(5.1.3)

Note that the double-trace structure [1, 2] is

[1, 2] = δ ī1
ī2
δi2i1 . (5.1.4)

The complete one-loop amplitude can also be written in the following way,

Ã(1)(1̄, 2, 3̄, 4)

A(0)(1̄, 2, 3̄, 4)
= i
{
I(1, 2, 3, 4)

[
N
(
[1, 2, 3, 4] + [1, 4, 3, 2]

)
− 2[1, 2][3, 4]− 2[1, 4][3, 2]

]
+ 2
[
I(4, 2, 3, 1)[1, 2][3, 4]− I(1, 3, 4, 2)[1, 4][3, 2]

]}
. (5.1.5)

1We work here in ABJM rather than ABJ, so there is the one gauge group rank N .
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5.1.2 Symmetry properties of the one-loop amplitude

Before discussing the derivation of (5.1.1), it is instructive to prove that A(1)
P and

A(1)
NP are antisymmetric under the swap 1̄ ↔ 3̄. In order to show this one needs to

use (3.3.43) and the following relations satisfied by the one-loop box (3.3.19):

I(a, b, c, d) = − I(b, c, d, a) , I(a, b, c, d) = −I(c, b, a, d) . (5.1.6)

These relations state that by cyclically shifting the labels of the external legs of the

box function 3.3.19 by one unit one picks a minus sign; and similarly if one swaps two

non-adjacent legs. Both relations are straightforward to prove using the definition

3.3.19 of the box function. One then finds,

I(3, 2, 1, 4)− I(4, 2, 1, 3) = I(2, 3, 4, 1)− I(1, 3, 4, 2) ,

I(2, 1, 4, 3)− I(3, 1, 4, 2) = I(1, 2, 3, 4)− I(4, 2, 3, 1) . (5.1.7)

Using (5.1.7) we get

A(1)
P (1̄, 2, 3̄, 4) = −A(1)

P (3̄, 2, 1̄, 4) ,

A(1)
NP(1̄, 2, 3̄, 4) = −A(1)

NP(3̄, 2, 1̄, 4) . (5.1.8)

Notice the presence of a minus sign between the two non-planar colour structure

[1, 2][3, 4] and [1, 4][3, 2] appearing in the non-planar one-loop amplitude (5.1.3).

5.1.3 Derivation of the complete one-loop amplitude from

cuts

We now briefly outline the strategy for the derivation of the complete one-loop ampli-

tude (5.1.1), which is very similar to that in N = 4 SYM, see for example [104]. We

consider the two-particle cuts of the complete one-loop amplitude, which are obtained
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by merging two tree-level amplitudes summed over all possible colour structures and

internal particle species. We will see that each cut can be re-expressed in terms of

cuts of sums of box functions. The sum over internal species is (partially) performed

via an integration over the Grassmann variables ηℓ1 and ηℓ2 associated to the cut

momenta. If one of the particles crossing is bosonic and the other is fermionic we also

have to add to this the same expression with ℓ1 ↔ ℓ2 – this is necessary only for the

s- and t-cuts. For instance, the s-cut integrand of the one-loop amplitude is2

Ã(1)(1̄, 2, 3̄, 4)|s−cut =
1

2

∫
d3ηℓ1d

3ηℓ2 Ã(0)(1̄, 2,−ℓ̄2,−ℓ1)×Ã(0)(3̄, 4, ℓ̄1, ℓ2)+ ℓ1 ↔ ℓ2 .

(5.1.9)

The one-loop amplitude has cuts in the s-, t- and u-channels, for which we find the

following integrands:

Ã(1)(1̄, 2, 3̄, 4)|s−cut =
i

2
A(0)(1̄, 2, 3̄, 4) cs S12I(1, 2, 3, 4)|s−cut , (5.1.10)

Ã(1)(1̄, 2, 3̄, 4)|t−cut =
i

2
A(0)(1̄, 2, 3̄, 4) ct S23I(1, 2, 3, 4)|t−cut ,

Ã(1)(1̄, 2, 3̄, 4)|u−cut =
i

2
A(0)(1̄, 2, 3̄, 4) cu S13I(3, 1, 2, 4)|u−cut ,

where the colour factors cs, ct, cu are

cs = N [1, 2, 3, 4] +N [1, 4, 3, 2]− 2[1, 2][3, 4] ,

ct = N [1, 2, 3, 4] +N [1, 4, 3, 2]− 2[1, 4][3, 2] ,

cu = 2[1, 2][3, 4]− 2[1, 4][3, 2] , (5.1.11)

and we recall that by A(0)(1̄, 2, 3̄, 4) we denote the colour-ordered four-point ampli-

tude. Furthermore, we indicate by SabI(a, b, c, d)|sab−cut, the sab-cut of the one-loop

box function I(a, b, c, d) in (3.3.19), symmetrised in the cut loop momenta ℓ1 and ℓ2,

2For convenience we include here a factor of 1
2 in the definition of the (symmetrised) cuts. In

practice it means that we take the average of the two contributions in the s- and t-cuts, and multiply

the u-cut with a symmetry factor as two identical (super)particles cross the cut.
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which are defined such that ℓ1 + ℓ2 = pa + pb,

S12I(1, 2, 3, 4)|s−cut =
sTr(ℓ1p1p4)

(ℓ1 − p1)2(ℓ1 + p4)2
+ ℓ1 ↔ ℓ2 ,

S23I(1, 2, 3, 4)|t−cut =
(−t)Tr(ℓ1p1p2)

(ℓ1 − p1)2(ℓ1 + p2)2
+ ℓ1 ↔ ℓ2 ,

S13I(3, 1, 2, 4)|u−cut =
uTr(ℓ2p3p4)

(ℓ2 − p3)2(ℓ2 + p4)2
+ ℓ1 ↔ ℓ2 . (5.1.12)

We should stress here that despite the simplified notation the cut momenta ℓ1 and

ℓ2 are different for the three distinct channels under considerations. For instance,

ℓ1+ ℓ2 = p1+p2 for the s-cut, while ℓ1+ ℓ2 = p2+p3 in the t-cut and ℓ1+ ℓ2 = p1+p3

in the u-cut. Recall that the symmetrisation in the cut momenta in the s- and t-

channel coefficients originates from summing over all possible particle species that

can propagate on the cut legs, while in the u cut there is a single configuration

allowed, and the result turns out to be automatically symmetric in ℓ1 and ℓ2.

Next we merge the cuts into box functions. For the planar structures [1, 2, 3, 4] and

[1, 4, 3, 2] this is immediate as the only function consistent with the s- and t-cuts in

5.1.10 and vanishing u-cut is I(1, 2, 3, 4). Hence, the corresponding planar amplitude

is

iA(0)(1̄, 2, 3̄, 4) N
(
[1, 2, 3, 4] + [1, 4, 3, 2]

)
I(1, 2, 3, 4) , (5.1.13)

thus arriving at the expression 5.1.2 for the planar part of the full one-loop ampli-

tude.3 For the non-planar terms [1, 2][3, 4] and [1, 4][3, 2] we need to use the results

of Appendix B.3.2 and in particular B.3.13, which we reproduce here,

SabI(a, b, c, d)|sab−cut = SabI(a, b, d, c)|sab−cut . (5.1.14)

Firstly, we note that an immediate consequence of this result is that

S23I(2, 3, 4, 1)|t−cut − S23I(2, 3, 1, 4)|t−cut = 0 , (5.1.15)

3Note that at the level of the integral we can simply replace S12I(1, 2, 3, 4) by 2 I(1, 2, 3, 4).
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in other words the combination I(2, 3, 4, 1) − I(2, 3, 1, 4), symmetrised in the loop

momenta ℓ1 and ℓ2, with ℓ1+ℓ2 = p2+p3, has a vanishing t-channel cut as expected for

the coefficient of the [1, 2][3, 4] colour structure (see 5.1.11). For the same combination

we find, using I(2, 3, 4, 1) = −I(1, 2, 3, 4), the symmetrised s-cut as

−S12I(1, 2, 3, 4)|s−cut , (5.1.16)

and similarly, for the symmetrised u-cut we obtain

S13I(3, 1, 4, 2)|u−cut = S13I(3, 1, 2, 4)|u−cut , (5.1.17)

where we have used I(2, 3, 1, 4) = −I(3, 1, 4, 2) and B.3.13, which allows us to swap

the last two legs on the symmetrised u-cut. Comparing with 5.1.10 and 5.1.11 we can

uniquely fix the coefficient of the non-planar structure [1, 2][3, 4]:

2 iA(0)(1̄, 2, 3̄, 4) [1, 2][3, 4]
[
I(2, 3, 4, 1)− I(2, 3, 1, 4)

]
, (5.1.18)

or, using the first relation of 5.1.6,

−2 iA(0)(1̄, 2, 3̄, 4) [1, 2][3, 4]
[
I(1, 2, 3, 4)− I(4, 2, 3, 1)

]
. (5.1.19)

One can proceed similarly for the coefficient of the other non-planar structure [1, 4][3, 2],

arriving at the result quoted earlier in 5.1.3. Note that in that result we use the

freedom to rename loop momenta in order to eliminate the various symmetrisations

introduced by the operation Sab above.

5.2 The Sudakov form factor at one and two loops

We now move on to the form factors of gauge-invariant, single-trace scalar operators

O = Tr
(
ϕA1ϕ̄B1ϕ

A2ϕ̄B2 . . . ϕ
ALϕ̄BL

)
χB1...BL
A1...AL

, (5.2.1)
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ℓ2

Figure 5.1: The q2 cut of the Sudakov form factor. Note that the amplitude on the

right-hand side of the cut is summed over all possible colour orderings.

where I and J are indices of the 4 and 4̄ representation of the R-symmetry group

SU(4). The operators 5.2.1 are half BPS if χ is a symmetric traceless tensor in all

the Ai and Bi indices separately (see for example [68, 105]). For L = 2, the relevant

operator is

OA
B = Tr

(
ϕAϕ̄B − δAB

4
ϕK ϕ̄K

)
. (5.2.2)

In the rest of this chapter we will focus on the Sudakov form factor

⟨(ϕ̄4)
ī1
i1
(p1) (ϕ

A)i2
ī2
(p2)|Tr(ϕ̄4ϕ

A)(0)|0⟩ := [1, 2] F (q2) , (5.2.3)

where q := p1 + p2 and A ̸= 4, and we recall that [1, 2] := δ ī1
ī2
δi2i1 . At tree level,

F (0)(q2) = 1 . (5.2.4)

We will now derive this quantity at one and two loops.

5.2.1 One-loop form factor in ABJM

At one loop it is possible to determine the integrand of the form factor from a single

unitarity cut in the q2 channel. As shown in Figure 5.1, on one side of the cut there

is the Sudakov form factor and on the other side the complete four-point amplitude,

both at tree level. The colour-ordered tree amplitude is given in 3.3.17. Let us work

out the colour factor first. It is given by

δ
īℓ2
īℓ1
δ
iℓ1
iℓ2
(δ ī1

ī2
δi2iℓ1

δ
īℓ1
īℓ2
δ
iℓ2
i1

− δ ī1
īℓ2
δi2i1δ

īℓ1
ī2
δ
iℓ2
iℓ1
) = (N ′ −N)δ ī1

ī2
δi2i1 . (5.2.5)
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Obviously, the one-loop form factor vanishes identically in ABJM theory, because in

this case N ′ = N .

We now consider the kinematic part. Since the operator is built solely out of

scalars, only the four-point scalar amplitude can appear in the cut. To match the

particles of the tree amplitude in Figure 5.1, we pick the (η1)
1(ηℓ1)

3(ηℓ2)
2(η2)

0 com-

ponent from the δ6(Q) to write the q2 cut of the one-loop form factor as:

δ(6)(Q)
∣∣
(η1)1(ηℓ1 )

3(ηℓ2 )
2(η2)0

⟨1 2⟩⟨2 ℓ1⟩
=

⟨ℓ1 ℓ2⟩2⟨1 ℓ1⟩
⟨1 2⟩⟨2 ℓ1⟩

=
⟨1 2⟩⟨1 ℓ1⟩
⟨2 ℓ1⟩

= −Tr(ℓ1p1p2)

2(ℓ1 · p2)
, (5.2.6)

which can be immediately lifted to a full integral as it is the only possible cut of the

form factor. Thus we get,

F (1)(q2) = (N ′ −N)

∫
dDℓ1
iπD/2

Tr(ℓ1p1p2)

ℓ21 (ℓ1 − p2)2(ℓ1 − p1 − p2)2
. (5.2.7)

The integral in 5.2.7 is a linear triangle and is of O(ϵ). Hence, we conclude that

the one-loop Sudakov form factor in ABJ theory vanishes in strictly three dimen-

sions. Moreover, the three-dimensional integrand vanishes in ABJM theory but is

non-vanishing for N ̸= N ′ and can (and does) participate in unitarity cuts at two

loops. Note, that the vanishing of the one-loop form factors in ABJ(M) is consistent

with the infrared finiteness of one-loop amplitudes in ABJ(M).

5.2.2 Two-loop form factor in ABJM

Next, we come to the computation of the two-loop Sudakov form factor. In order to

construct an ansatz for its integrand we will make use of two-particle cuts, and fix

potential remaining ambiguities with various three-particle cuts described in detail in

Section 5.2.2.

Three-particle cuts are very useful because they receive contributions from planar

as well as non-planar integral functions at the same time, and thus are particularly
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constraining. A special feature of ABJM theory is that all amplitudes with an odd

number of external particles vanish and, as a consequence, all cuts involving such

amplitudes are identically zero [106]. In our case this observation will be important

for triple cuts, where three- and five-particle amplitudes would appear.

A particular type of such cuts, first considered in [106] in the context of loop

amplitudes in ABJM, involves three adjacent cut loop momenta meeting at a three-

point vertex. The vanishing of these cuts imposes strong constraints on the form

of the loop integrands. We will discuss and exploit this later in this section, where

we will also make the intriguing observation that integral functions with numerators

satisfying such constraints are transcendental.

Two-particle cuts

We begin by considering the cut shown in Figure 5.2, which contains a tree-level

Sudakov form factor merged with the integrand of the complete one-loop, four-point

amplitude. The internal particle assignment is fixed and is determined by the partic-

ular operator we consider. The integrand of this cut is given by, schematically,∫
d3ηℓ1d

3ηℓ2 F
(0)(ℓ̄2, ℓ1)[ℓ2, ℓ1] Ã(1)(1̄, 2,−ℓ̄1,− ℓ2) , (5.2.8)

where Ã(1) is the complete one-loop amplitude, given in 5.1.1, and we recall that the

colour factor [a, b] is defined in 5.1.4.

We begin by working out the colour structures that will appear in the result.

Firstly we consider the planar amplitude 5.1.2 and combine it with the part of the

non-planar amplitude 5.1.3 containing I(1, 2,−ℓ1,−ℓ2). Intriguingly, by contracting

this with the tree-level form factor (given in 5.2.3 and 5.2.4) we obtain a vanishing

result: (
N
(
[1, 2, ℓ1, ℓ2] + [1, ℓ2, ℓ1, 2]

)
− 2[1, 2][ℓ1, ℓ2]

)
[ℓ2, ℓ1] = 0 . (5.2.9)
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We now consider the remaining contributions arising from the non-planar one-loop

amplitude 5.1.3. There are two possible colour contractions to consider,

c
(1)
NP := 2 [1, 2][ℓ1, ℓ2][ℓ2, ℓ1] = 2N2[1, 2] , (5.2.10)

and

c
(2)
NP := 2 [ℓ1, 2][1, ℓ2][ℓ2, ℓ1] = 2 [1, 2] . (5.2.11)

Note that 5.2.11 is subleading in the large N limit, and can be discarded in the large-

N limit. Moreover, the corresponding coefficient actually vanishes which implies that

the two-loop form factor does not have non-planar corrections.

..F .
q

.

ϕ4(p2)

.

ϕ̄A(p1)

.

ℓ1

.

ℓ2

Figure 5.2: Tree-level form factor glued to the complete one-loop amplitude.

We now need to determine the coefficient of c
(1)
NP. On the two-particle cut ℓ21 =

ℓ22 = 0 its integrand is given by the appropriate component tree-level amplitude 5.2.6

times a particular box integral 5.1.3:

C(NP)
1 |s−cut :=

1

2

⟨12⟩⟨1ℓ1⟩
⟨2ℓ1⟩

I(−ℓ2, 2,−ℓ1, 1) + ℓ1 ↔ ℓ2 . (5.2.12)

Recall that we have to symmetrise in order to include all particle species in the

sum over intermediate on-shell states. Since I(−ℓ2, 2,−ℓ1, 1) is antisymmetric under
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ℓ1 ↔ ℓ2 the complete cut-integrand can be written as4

C(NP)
1 |s−cut :=

1

2

(
⟨12⟩⟨1ℓ1⟩
⟨2ℓ1⟩

− ⟨12⟩⟨1ℓ2⟩
⟨2ℓ2⟩

)
I(−ℓ2, 2,−ℓ1, 1) (5.2.13)

= −1

2

∫
dDℓ3
iπD/2

q2(Tr (p1p2ℓ1ℓ3)− q2ℓ23)

ℓ23 (ℓ1 − ℓ3)2(p1 − ℓ3)2(ℓ3 − ℓ1 + p2)2
.

Summarising, two-particle cuts indicate that the two-loop form factor is expressed in

terms of a single crossed triangle with a particular numerator, represented in Figure

5.3,

XT(q2) = q2
∫
dDℓ1d

Dℓ3
(iπD/2)2

Tr (p1p2ℓ1ℓ3)− q2ℓ23
ℓ21 ℓ

2
2 ℓ

2
3 (ℓ1 − ℓ3)2(p1 − ℓ3)2(ℓ3 − ℓ1 + p2)2

, (5.2.14)

so that

C(NP)
1 = −1

2
XT(q2) . (5.2.15)

For future convenience we will define

xt :=
q2
[
Tr (p1p2ℓ1ℓ3)− q2ℓ23

]
ℓ21 ℓ

2
2 ℓ

2
3 (ℓ1 − ℓ3)2(p1 − ℓ3)2(ℓ3 − ℓ1 + p2)2

. (5.2.16)

The result of the evaluation of XT(q2) is quoted in (5.2.25) and shows that this

quantity has maximal degree of transcendentality. Before evaluating XT(q2), we use

triple cuts in order to confirm the correctness of the ansatz obtained from two-particle

cuts.

4Similarly as done earlier for the complete one-loop amplitude, we include a factor of 1/2 in the

symmetrisation.
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ℓ6
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ℓ1
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.
q

.
p1 .

p2

Figure 5.3: The crossed triangle integral arising from gluing a tree form factor with

the complete one-loop four-point amplitude. The cross in the middle represents the

momentum q = p1 + p2. We call these integrals “crossed triangles” because they

have the topology of the master integral (A.3.8). Note however that the latter integral

is non-transcendental, while the particular numerator in (5.2.14) makes this integral

transcendental.

Three-vertex cuts

To confirm the uplift of the two-particle cut to the integral (5.2.14), we will study

additional cuts. We begin by considering three-point vertex cuts involving three

adjacent legs meeting at a three-point vertex. These cuts were first examined in

[106], where it was observed that they must vanish since there are no three-particle

amplitudes in ABJM theory. Calling k1, k2 and k3 the momenta meeting at the

vertex, we have

k1 + k2 + k3 = 0 , k21 = k22 = k23 = 0 . (5.2.17)

The conditions (5.2.17) imply that all spinors associated to these momenta are pro-

portional, thus

⟨k1 k2⟩ = ⟨k2 k3⟩ = ⟨k3 k1⟩ = 0 . (5.2.18)

In our case, consider for instance the three-point vertex cut with momenta ℓ2, ℓ4 and

ℓ6 := ℓ2 − ℓ4 (see Figure 5.3 for the labelling of the momenta). Importantly, the form

factor is expected to vanish as the three momenta belonging to a three-point vertex
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become null. By rewriting the numerator of (5.2.14) using only cut momenta, it is

immediately seen that it vanishes, since

Tr
[
p1p2(p1 − ℓ2)(p1 − ℓ6)

]
− q2(p1 − ℓ6)

2 = −Tr
[
p1p2(p1 − ℓ2)ℓ6

]
− q2(p1 − ℓ6)

2

= −Tr(p1p2p1ℓ6) + 4(p1 · p2)(p1 · ℓ6) = 0 , (5.2.19)

where we have used ⟨ℓ2ℓ6⟩ = 0 to set Tr(p1p2ℓ2ℓ6) = 0. It is easy to see that all other

three-vertex cuts of the integral (5.2.14) vanish in a similar fashion because of the

particular form of its numerator.

Important consequences of these specific properties of the numerator of the in-

tegral function (5.2.14) are that the result is transcendental as we will show below

and is free of unphysical infrared divergences related to internal three-point vertices.

These divergences appear in three-dimensional integrals with internal three-vertices

even if the external kinematics is massive (unlike in four dimensions) and it appears

that master integrals with appropriate numerators to cancel these peculiar infrared

divergences are a preferred basis for amplitudes and form factors in ABJM. Related

discussions in the context of ABJM amplitudes have appeared in [106,107]. Note that

for form factors we do not have dual conformal symmetry for the integral functions.

Three-particle cuts

..F .
q

.

ϕA(p2)

.

ϕ̄4(p1)

. = 0

Figure 5.4: The (vanishing) three-particle cut of the two-loop Sudakov form factor.
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The remaining cut we will study is a triple cut, illustrated in Figure 5.4. These cuts

may potentially detect additional integral functions which have no two-particle cuts,

and are thus very important. Moreover, such cuts are sensitive to both planar and

non-planar topologies. In this triple cut, a tree-level amplitude is connected to a

tree-level form factor by three cut propagators. Due to the vanishing of amplitudes

with an odd number of external legs in the ABJM theory, the triple cut in question

vanishes. We will now check that the triple cut of the two-loop crossed triangle XT

of (5.2.14), which we have detected using two-particle cuts, is indeed equal to zero.

To this end, we note that there are two possible ways to triple-cut T, shown in

Figures 5.2.2. The cut loop momenta are called ℓ2, ℓ5 and ℓ3 and satisfy

ℓ2 + ℓ5 + ℓ3 = p1 + p2 , ℓ22 = ℓ25 = ℓ23 = 0 . (5.2.20)

We observe that these two cuts cannot be converted into one another by a simple

relabelling of the cut momenta because of the the presence of non-trivial numerators.

The A-cut of the non-planar integrand is:

XT
∣∣
3-p cut A

= −q2 ⟨1 2⟩
⟨ℓ3 ℓ5⟩⟨ℓ5 2⟩⟨1 ℓ3⟩

. (5.2.21)

After a similar calculation, the B-cut turns out to be identical to the A-cut:

XT
∣∣
3-p cut B

= XT
∣∣
3-p cut A

= −q2 ⟨1 2⟩
⟨ℓ3 ℓ5⟩⟨ℓ5 2⟩⟨1 ℓ3⟩

. (5.2.22)

A quick way to establish the vanishing of the triple cuts consists in symmetrising in

the particle momenta p1 and p2, which is allowed since the Sudakov form factor is a

function of q2. This symmetrisation gives

−q
2⟨1 2⟩
⟨ℓ3 ℓ5⟩

[
1

⟨ℓ5 2⟩⟨1 ℓ3⟩
− 1

⟨ℓ5 1⟩⟨2 ℓ3⟩

]
= − q4

⟨1|ℓ5|2⟩ ⟨1|ℓ3|2⟩
. (5.2.23)

This expression is symmetric in ℓ5 and ℓ3. In evaluating the triple cut one has to

introduce a jabobian proportional to ϵ(ℓ2, ℓ3, ℓ5) [106] which effectively makes this

triple cut vanish upon integration.
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Figure 5.5: The two triple cuts of the crossed triangle, with ℓ2 + ℓ3 + ℓ5 = q. In

the second figure we have relabelled the loop momenta in order to merge the two

contributions.

Results and comparison to the two-loop amplitudes

Combining the information from the unitarity cuts discussed above, we conclude that

the two-loop Sudakov form factor in ABJM is given by a single non-planar integral,

as

FABJM(q
2) = −2

(
N

k

)2 (
−1

2

)
XT(q2) , (5.2.24)

where XT(q2) is defined in (5.2.14) and we have reintroduced the dependence on

the Chern-Simons level k. The integral XT(q2) can be computed by reduction to

master integrals using integration by parts identities. The details of the reductions are

provided in Appendix A. The expansion of the result in the dimensional regularisation

parameter ϵ can then be found using the expressions for the the master integrals

(A.3.5)–(A.3.8). Plugging these masters into the reduction (A.3.9), we arrive at

XT(q2) =

(
−q2eγE
µ2

)−2ϵ [
π

ϵ2
+

2π log 2

ϵ
− 4π log2 2− 2π3

3
+O(ϵ)

]
, (5.2.25)

where γE is the Euler-Mascheroni constant. One comment is in order here. We have

derived (5.2.25) in a normalisation where the the loop integration measure is written

as dDl/(iπD/2). This should be converted to the standard one dDl/(2π)D. At two
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loops, this implies that (5.2.25) has to be multiplied by a factor of −1/(4π)D. The

result in the standard normalisation is then

FABJM(q
2) = − 1

(4π)3

(
N

k

)2(−q2eγE
4πµ2

)−2ϵ [
π

ϵ2
+

2π log 2

ϵ
− 4π log2 2− 2π3

3
+O(ϵ)

]
,

(5.2.26)

We note that F(q2) can expressed more compactly by introducing a new scale

µ′2 := 8π e−γEµ2 , (5.2.27)

in terms of which we get

FABJM(q
2) =

1

64π2

(
N

k

)2(−q2

µ′2

)−2ϵ [
− 1

ϵ2
+ 6 log2 2 +

2π2

3

]
+O(ϵ) , (5.2.28)

which is our final result.

We now discuss two consistency checks that confirm the correctness of (5.2.28).

Firstly, we recall that the Sudakov form factor captures the infrared divergences of

scattering amplitudes. We now check that (5.2.28) matches the infrared poles of the

four-point amplitude evaluated in [74, 108]. Here we quote its expression as given

in [108]:

A(2)
4 = − 1

16π2
A(0)

4

[
(−s/µ′2)−2ϵ

4ϵ2
+

(−t/µ′2)−2ϵ

4ϵ2
− 1

2
log2

(
−s
−t

)
− 4ζ2 − 3 log2 2

]
,

(5.2.29)

where µ′ is related to µ in the same way as in (5.2.27). Hence, the Sudakov form

factor (5.2.28) is in perfect agreement with the form of the infrared divergences of

(5.2.29). Secondly, we have also checked that the expansion of our result in terms of

master integrals (i.e. the expansion of the two-loop non-planar triangle XT defined in

(5.2.14)) is identical to that obtained from the Feynman diagram based result of [109].

This implies that the cut-based calculation of this presented here and the Feynman

diagram calculation of [109] agree to all orders in ϵ – even if we have been using cuts

in strictly three dimensions.
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5.3 Maximally transcendental integrals in 3d

As discussed in section 5.2.2, the integrand xt that appears in the Sudakov form factor

in ABJM has a particular numerator such that all the cuts which isolate a three-point

vertex vanish. We have observed in this example that this property ensures that the

integral XT has a uniform (and maximal) degree of transcendentality – failure to

obey the triple-cut condition, for instance by altering the form of the numerator,

would result in the appearance of new terms with lower degree of transcendentality.

In this section we present further integrals that vanish in these three-particle cuts and

have maximal degree of transcendentality. These integrals are expected to appear in

the form factor of ABJ theory where cancellations between colour factors such as that

in (5.2.9), do not occur.

We begin by considering the following planar integral function:

LT(q2) =

∫
dDℓ1d

Dℓ3
(iπD/2)2

−q2 [ Tr(p1 ℓ3 p2 ℓ1)− (ℓ1 − p1)
2(ℓ3 − p2)

2]

ℓ21 (p1 + p2 − ℓ1)2 ℓ23 (p1 + p2 − ℓ3)2(ℓ1 − ℓ3)2(ℓ3 − p2)2

=

(
−q2eγE
µ2

)−2ϵ [
− π

4ϵ2
− π log 2

ϵ
+ 2π log2 2− 5π3

8
+O(ϵ)

]
,

(5.3.1)

which is shown in Figure 5.3(a).

It is easy to see that the three vertex cut {ℓ1, ℓ3, ℓ5} vanishes, since on this cut

the numerator can be placed in the form

⟨ℓ1 1⟩⟨ℓ3 2⟩⟨1 2⟩⟨ℓ3 ℓ1⟩ , (5.3.2)

after using a Schouten identity. (5.3.2) vanishes because ⟨ℓ3 ℓ1⟩ = 0 on this cut.

A further property of (5.3.1) emerges when we consider particular triple cuts

involving two adjacent massless legs, which in three dimensions are associated with

soft gluon exchange [106]. With reference to Figure 5.3(a), we cut the three momenta

ℓ3, ℓ6 and ℓ4. The cut conditions ℓ23 = ℓ26 = ℓ24 = 0 together with the masslessness of
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Figure 5.6: The three maximally transcendental integrals considered in (5.3.1), (5.3.6)

and (5.3.7)

p1 and p2 can only be satisfied if ℓ6 becomes soft, that is

ℓ6 → 0 , ℓ4 → p1 , ℓ3 → p2 . (5.3.3)

In this limit, the second term of (5.3.1) vanishes since ℓ3 − p2 = ℓ6 → 0. The first

term becomes

−q2Tr(p1 ℓ3 p2 ℓ1)
8ϵ(ℓ3, p1, p2)

→ −q2 ⟨2|ℓ1|1⟩
4⟨12⟩

, (5.3.4)

where 8ϵ(ℓ3, p1, p2) is the Jacobian.5 After restoring the remaining propagators we

are left with

2ϵ(ℓ1, p1, p2)

ℓ21(ℓ1 − p2)2(q − ℓ1)2
, (5.3.5)

which reproduces the one-loop integrand of the one-loop form factor, given earlier in

(5.2.7).

Other examples of integrals with different topologies that satisfy the three-particle

cut condition are depicted in Figures 5.3(b) and 5.3(c). The definitions of the integrals

5This Jacobian arises from re-writing the δ-functions of the cut momenta, ℓ23 = ℓ24 = 0, in terms

of p1, p2 and ℓ6.
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as well as their values are listed below:

CT(q2) =

∫
dDℓ1d

Dℓ3
(iπD/2)2

Tr(p1, p2, ℓ3, ℓ1)

ℓ21 (p1 + p2 − ℓ1)2 ℓ23 (ℓ1 − ℓ3)2 (ℓ3 − p2)2

=

(
−q2eγE
µ2

)−2ϵ [
− π

4ϵ2
+

7π3

24
+O(ϵ)

]
,

(5.3.6)

FAN(q2) =

∫
dDℓ1d

Dℓ3
(iπD/2)2

Tr(p1, p2, ℓ3, ℓ1)

ℓ21 ℓ
2
3 (p1 + p2 − ℓ1 − ℓ3)2 (ℓ1 − p1)2 (ℓ3 − p2)2

=

(
−q2eγE
µ2

)−2ϵ [
− π

4ϵ2
+

7π3

24
+O(ϵ)

]
.

(5.3.7)

Note that the ϵ expansion of (5.3.6) and (5.3.7) agree up to O(1). It is simple

to show that these integrals satisfy the properties discussed earlier, for example by

setting {ℓ1, ℓ3, ℓ5} on shell in CT and {ℓ1, p1, ℓ5} in FAN and similarly for all other

possible three-vertex cuts.

The reductions of the integrals considered in this section in terms of scalar master

integrals through IBP identities can be found in Appendix A.

149



Chapter 6

Massive Amplitudes on the

Coulomb Branch

In this chapter we present previously unpublished work on loop-level amplitudes on

the Coulomb Branch of N = 4 sYM. We exploit a convenient choice of parametriza-

tion for massive momenta to compute one-loop amplitudes with massive external

states for the first time. We find that both gauge invariance and five-dimensional

momentum conservation lead to a constrained basis of massive box integrals. A basis

may also be derived at two loops, although these integrals remain to be computed.

6.1 One-Loop 4-Point Integrand from Unitarity

In this section we compute the one-loop four point amplitude with two massive exter-

nal particles in transverse polarisation. A natural approach is to consider cuts of the

four-point super-amplitude. First we consider the s-channel cut with both massive

particles on the same side:
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Figure 6.1: The massless s-cut.

A|s−cut =

∫
d4ℓ d8η ALAR. (6.1.1)

We can split the R-symmetry indices to write the fermionic delta function factor

in the integrand as:

δ12,L × δ12,R =

[
δ
(4)
L (. . .+ |ℓ1⟩ηℓ1a + |ℓ2⟩ηℓ2a) +

m⟨1⊥2⊥⟩
⟨1⊥q⟩⟨q2⊥⟩

δ
(2)
L (⟨qi⊥⟩ηia)

]
×
[
1− [1⊥q][q2⊥]

m[1⊥2⊥]
δ(2)(µiηia)

]
× δ

(4)
R (|ℓ1⟩ηℓ1a + |ℓ2⟩ηℓ2a + . . .) (6.1.2)

for R = 1, 2 and similarly for R = 3, 4. Note that since the massive legs are all

external the δ(2) terms are independent of loop momenta; therefore, we can pull the

δ
(4)
R associated with the massless amplitude on the right hand side of the cut through

the other delta functions thus factoring out the tree amplitude. We then find:

A|s−cut = A(0)s⊥12
tr(ℓ1ℓ2p3p4)

(ℓ1 · p4)(ℓ2 · p3)((ℓ1 − p2)2 +m2)
(6.1.3)

where s⊥ij = 2(p⊥i · p⊥j ). This reduces by standard methods to

A|s−cut = A(0)s⊥12(t+m2)
1

(ℓ1 · p4)((ℓ1 − p2)2 +m2)
(6.1.4)

corresponding to the cut of a 2-mass hard box integral with one massive internal leg.

In the t-channel there are two different assignments of massive legs which must be

considered separately.
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Figure 6.2: The integral arising from the s-cut. The thick lines represent massive

propagators.

Now that there are massive legs in the cut, we must reconsider the terms involving

combinations of lower-order δs; however, since each δ(2) contributes only one loop

power of η, it is easy to see that these do not contribute. Thus, for the first diagram

with adjacent momenta we reproduce the result of the massless s − cut and extract

the integral I2;1. We shall leave the second cut for now, and consider the problematic

case of two internal massive lines.

Here, we must finally consider all η components of the superamplitude. Since

the k−functions are not the simple ratios of the two mass case, we cannot simply

extract a factor of the tree amplitude; more problematically, we must consider all

combinations of fermionic delta functions appearing in the cut. As both k− functions

and the arguments of the δ(2) depend on the reference momentum q, these give rise to

a large slew of terms containing lightcone propagators arising from such cross terms

which resist simplification. The simplest of these comes from the term proportional

to

δ
(4)
R (|ℓ1⟩ηℓ1 + |ℓ2⟩ηℓ2 + . . .)K̄Lδ

(2)
L (⟨qi⊥⟩ηia)

[qℓ1][qℓ2
[ℓ1ℓ2]

δ
(2)
R (µiηia) (6.1.5)

= m2 ⟨qℓ2⟩
[ℓ1ℓ2]

(
⟨ℓ1ℓ2⟩
⟨qℓ2⟩

+
⟨ℓ11⟩
⟨q1⟩

+
⟨ℓ12⟩
⟨q2⟩

)
.

All this is very messy, and how to interpret these lightcone integrals is not clear.

Fortunately, we do not have to, as described in the next section.
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Figure 6.3: The two cuts in the t-channel, with differing configurations of internal

masses.

Figure 6.4: The cut in the s-channel with massive cut propagators.

6.1.1 Three-Vertex Cuts and the Basis of Integrals

Unitarity on the level of superamplitudes runs into problems with lightcone integrals,

but it does give us some clues as to what integral functions can contribute. Are

the integrals glimpsed in the massless s−cut and t−cut all that can appear? The

answer, it turns out, is, yes. Recall the transverse momentum conservation condition∑
imi = 0. This implies that there are always an even number of massive particles in

any amplitude. Therefore, we can write down the full set of massive box functions and
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by taking cuts around the corners exclude any with an odd number of masses at any

vertex. For the 4-point amplitude, this leaves us with the following three topologies:

Figure 6.5: The three integrals contributing to the 4-point 2-mass amplitude.

6.1.2 Coefficients

Since we have identified a basis of box integrals, we can simply extract the coeffi-

cients from quadruple cuts. Since the three-point amplitudes are merely those of the

massless theory with appropriately perped momenta;

A
(0)
3 (W−

1 ,W
−
2 , g

+
3 ) =

⟨1⊥2⊥⟩3

⟨2⊥3⟩⟨31⊥⟩
. (6.1.6)

we can immediately write down the answer:

cn = (p⊥1 · p⊥2 )(p⊥2 · p3)A(0)
4 (6.1.7)

which is the same for all configurations of internal masses. Hence:

A
(1)
4 (W−

1 ,W
−
2 , g

+
3 , g

+
4 ) = (s⊥ −m2)(t⊥ −m2)A

(0)
4 (I2;3(s, t) + I2;1(s, t)) (6.1.8)

A
(1)
4 (W−

1 , g
+
2 ,W

−
3 , g

+
4 ) = (s⊥ −m2)(t⊥ −m2)A

(0)
4 (I2;2(s, t) + I2;2(t, s)) (6.1.9)

Note the different integrals which appear for the split helicity and non-split helicity

case, and that these integrals come with different divergences in the 1/ϵ expansion.
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6.2 Higher Point Amplitudes

Applying the same criteria, we find no new integrals beyond six points. The full set

of one loop integrals is given below:

Figure 6.6: The Basis of one-loop massive integrals on the Coulomb Branch. Bold

lines indicate massive legs.

The values of all these integrals can be can be found in A.

To find the coefficients, it is now most advantageous to go to a particular q−frame.

Setting q → p3 we can write the Coulomb Branch tree-level W -gluon amplitude in

the form of the Parke-Taylor amplitude with appropriately perped momenta, eg.

A(W−
1 , W̄

−
2 , g

+
3 , g

+
4 ) =

⟨1⊥2⊥⟩3

⟨2⊥3⟩⟨34⟩⟨41⊥⟩
(6.2.1)

while the four-point UHV amplitude takes the intriguing form

AUHV
4 =

m4(s−m2)

(t−m2)2(u−m2)
. (6.2.2)

It should be noted that this choice of frame is not compatible with the linear orthogo-

nality condition required for the factorised form of the Superamplitude; one can have

either a simple superspace structure or simple component amplitudes.
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With this form of the tree amplitude, it is easy to see that the contributions from

cuts containing only MHV and MHV vertices, as at four points, are identical to those

in the conformal case with appropriately perped momenta. The cuts containing UHV

amplitudes require more care, as these at first sight appear to contribute lightcone

integrals. We illustrate their vanishing for the five-point case

c15;UHV =
s15 −m2

[(ℓ1 − p5)2 −m2][(ℓ1 − p1)2 −m2]2
(⟨ℓ12⟩[ℓ33]⟨ℓ3ℓ4⟩)3

⟨2ℓ2⟩⟨ℓ1ℓ2⟩[3ℓ2][ℓ2ℓ3]⟨ℓ3⟩⟨4ℓ4⟩
. (6.2.3)

Note the three lightcone propagators which appear as a factor. However, exploit-

ing the kinematics we can write:

cUHV ∝ Atree⟨ℓ4|p4|ℓ3] = 0 (6.2.4)

and similarly for the contribution with a UHV corner. Therefore we see that the

full one-loop amplitude has no lightcone contributions and is given purely in terms

of the Feynman integrals, with q-dependence captured by the coefficients alone.

6.3 The Two-Loop Integrand

We may also use the vertex condition to deduce which integrals may appear at two

loops and higher. For instance, for the four-point amplitude with adjacent massive

legs, we find the following integrals:
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Figure 6.7: The integrals appearing at four points, at two loops.

Unfortunately, their values are not known beyond an expansion for small masses.

It would be very interesting to see if the BDS ansatz and it’s violation holds on the

Coulomb branch.
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Appendix A

A Menagerie of Integral Functions

In this appendix, we state the values of various integral functions which appear in

this thesis, and review the computation of the integrals described in 5.3.

A.1 Massless Scalar Box Functions

The zero-mass box in 4 + ϵ dimensions is given by

F 0m(s, t) =
1

ϵ2

[(
s

µ2

−ϵ

+

(
t

µ2

−ϵ
]
+ log2

(s
t

)
+ π2. (A.1.1)

The two-mass easy box function is given

F 2me(s, t, P 2, Q2) =

∫
ddℓ

(2π)d
1

ℓ2(ℓ− P )2(ℓ− P − q)2(ℓ+ p)2
(A.1.2)

=
1

ϵ2

[(
−s
µ2

)−ϵ

+

(
−t
µ2

)−ϵ

−
(
P 2

µ2

)−ϵ

−
(
Q2

µ2

)−ϵ
]

+ Li2(1− aP 2) + Li2(1− aQ2)− Li2(1− as)− Li2(1− at)

where the invariants s = (p+ P )2 and t = (P + q)2 and a is the combination

a =
P 2 +Q2 − s− t

P 2Q2 − st
. (A.1.3)
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The expression to all orders in ϵ is

F 2me(s, t, P 2, Q2) =
1

ϵ2

[(
−s
µ2

)−ϵ

+

(
−t
µ2

)−ϵ

−
(
P 2

µ2

)−ϵ

−
(
Q2

µ2

)−ϵ

+

(
a

1− aP 2

)ϵ

2F1

(
ϵ, ϵ; 1 + ϵ;

1

1− aP 2

)
+

(
a

1− aQ2

)ϵ

2F1

(
ϵ, ϵ; 1 + ϵ;

1

1− aQ2

)
−
(

a

1− s

)ϵ

2F1

(
ϵ, ϵ; 1 + ϵ;

1

1− as

)
−
(

a

1− at

)ϵ

2F1

(
ϵ, ϵ; 1 + ϵ;

1

1− at

)]
(A.1.4)

A.2 Scalar Triangles

The two-loop ladder triangle is given by

LT(q2, ϵ) =

∫
ddℓ1d

dℓ3
(2π)d

1

ℓ21ℓ
2
3(ℓ1 − q)2(ℓ1 − ℓ3)2(ℓ3 − p1)2(ℓ3 − q)2

=(−q2)−2ϵeγϵ
1

ϵ

[
1

2ϵ
G(2, 2) +G3(2 + ϵ, 1, 1)

− 2G(2, 1)

(
1

ϵ
G3(2, 1, 1 + ϵ) +G3(1, 1, 1)

)
on

=(−q2)−2ϵ
[
1

ϵ4
+

5π2

24ϵ2
+

29

6ϵ
ζ3 +

3

32
π4 +O(ϵ)

]
(A.2.1)

where the epsilon expansion has been taken around d = 4 and

G(x, y) =
Γ(x+ y + ϵ− 2)Γ(2− ϵ− x)Γ(2− ϵ− y)

Γ(x)Γ(y)Γ(4− x− y − 2ϵ)

G3(x, y, z) =
Γ(2− x− z − ϵ)Γ(2− y − z − ϵ)Γ(−2 + x+ y + z + ϵ)

Γ(x)Γ(y)Γ(4− x− y − z − 2ϵ)
. (A.2.2)

The crossed triangle is given

CT (q2, ϵ) = (−q2)−2ϵ

[
1

ϵ4
− π2

ϵ2
− 83

3ϵ
ζ3 −

59

120
π4 +O(ϵ)

]
(A.2.3)
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A.3 Transcendental Integrals In Three Dimensions

In order to compute the integrals found in 5.3, we reduce to master integrals using

IBP relations as automated by the package FIRE [110]. To do this, we must write

them full in terms of propagators. Defining these as follows

P1 P2 P3 P4 P5 P6 P7

ℓ21 (ℓ1 − p1 − p2)
2 ℓ23 (ℓ1 + ℓ3 − p1)

2 (ℓ1 − ℓ3)
2 (ℓ3 − p2)

2 (ℓ1 − p1)
2

the crossed triangle can be written as

XT(q2) =
q2

2

(
1−2−6+ + 1−3−6+ − 1− − 1−6+7− + 2−4−6+

− 2−5−6+ − 2−6+7− − 4−6+7−

+ 5−6+7− + 5−6+7− + 6+7−7−

− q23−6+ − q24−6+7−

)
GNP (1, 1, 1, 1, 1, 0, 0) (A.3.1)

where GNP (1, 1, 1, 1, 1, 0, 0) is the scalar integral with the crossed triangle topology.

Replacing P4 with (l3 − p1 − p2)
2 the ladder triangle takes the form

LT(q2) =
q2

2

(
− 1−3−6+ + 1− − 2−4−6− + 2−

+ 3−6+7− + q21−6+ + 2−6+ + q23−6+

+ q24−6+ − q26+7− − q2 − q46+

)
GP (1, 1, 1, 1, 1, 0, 0). (A.3.2)

The integral CT can be expressed using the same propagators as the ladder as

CT(q2) =

(
1

2
1−2−6+ − 1

2
1−4− +

q2

2
1−4−6+ − q2

2
2−4−4−6+ +

1

2
2−4−

+
q2

2
2−4−6+ − 1

2
3−4−6+7− +

q2

2
2−3−6+ +

1

2
4−4−6+7− − q2

2
4−4−6+

− q2

2
4−5−6+ − q2

2
4− − q2

2
4−6+7− − q2

2
4−6+

)
GP (1, 1, 1, 1, 1, 0, 0) (A.3.3)
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To write FAN we use a different set of propagators

P1 P2 P3 P4 P5 P6 P7

(ℓ1 − p1)
2 ℓ21 ℓ23 (ℓ3 − p2)

2 (ℓ1 + ℓ3 − p1 − p2)
2 (ℓ3 + ℓ1)

2 (ℓ1 + p2)
2

so that

FAN(q2) =
1

2

(
1−2− − 1−3− + 1−4− − 1−7− − 2−5−

+ 2−6− − 2−7− + 3−7− − q23− − 4−7−

+ 7− − 6−7− + q26− + 7−7− − q27−

)
GFAN(1, 1, 1, 1, 1, 0, 0) (A.3.4)

The master integrals that appear at two loops, in particular in the reduction of our

result (5.2.24), are given in D = 3− 2ϵ dimensions by the following expressions:

SUNSET(q2) = . = −
(
−q2

µ2

)−2ϵ Γ
(
1
2
− ϵ
)3

Γ (2ϵ)

Γ
(
3
2
− 3ϵ

) (A.3.5)

TRI(q2) = . = −(−q2)−1

(
−q2

µ2

)−2ϵ Γ
(
1
2
− ϵ
)2

Γ (−2ϵ) Γ
(
3
2
+ ϵ
)
Γ (2 + 2ϵ)

ϵ(1 + 2ϵ)2Γ
(
1
2
− 3ϵ

)
(A.3.6)

GLASS(q2) = . = (−q2)−1

(
−q2

µ2

)−2ϵ Γ
(
1
2
− ϵ
)4

Γ
(
1
2
+ ϵ
)2

Γ (1− 2ϵ)2
(A.3.7)

TrianX(q2) = . = (−q2)−3

(
−q2

µ2

)−2ϵ

e−2γEϵ

[
4π

ϵ2
+
π(3 + 8 log 2)

ϵ

− 2π

3

(
81 + 4π2 + 6 log 2 (4 log 2− 9)

)
+
π

6

(
−π2(7 + 40 log 2)

+ 8
(
69 + 6 log 2 + 2 log2 2(8 log 2− 27)− 113ζ3

))
ϵ+O(ϵ)

]
,

(A.3.8)

where we use the conventions of [111] for the integration measure. The first three of

these integrals are planar and their expressions in all orders in ϵ can be easily obtained

by first computing their Mellin-Barnes representations most conveniently using the
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MB and barnesroutines packages by David Kosower. The expansion around ϵ = 0 of

the TRI and GLASS topologies has uniform degree of transcendentality, while this

is not the case for the SUNSET and TrianX topologies. The reductions to master

integrals are then given by:

XT(q2)=
7(D − 3)(3D − 10)(3D − 8)

2(D − 4)2(2D − 7)
SUNSET(q2) (A.3.9)

+ (−q2)5(D − 3)(3D − 10)

2(D − 4)(2D − 7)
TRI(q2) + (−q2)3 D − 4

4(2D − 7)
TrianX(q2) .

LT(q2) =
8− 3D

D − 3
SUNSET(q2) + q2

(
GLASS(q2)−TRI(q2)

)
,(A.3.10)

CT(q2) = FAN(q2) =

(
1

4ϵ
− 3

2

)
SUNSET(q2) . (A.3.11)

A.4 Massive Boxes in Four Dimensions

The fully massive box integral was computed by t’Hooft and Veltman in [112], and was

given in a compact form in [113]. The results presented here for divergent integrals

are taken from appropriate limits of those presented in [113]. The denominator in

Feynman parametrization depends on the Cayley matrix

Yij = m2
i +m2

j + p2ij (A.4.1)

and the final results often depend on the roots rij,l of the equation

m2
i + Yijx+m2

jx
2 = 0 (A.4.2)

which may be written

rij,1 = (mi/mj)xij, rij,2 = (mj/mi)x
−1
ij (A.4.3)
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where

xij =

√
1− 4m2/p2ij − 1√
1− 4m2/p2ij + 1

. (A.4.4)

and we have also used the notation x12 = xs, x23 = xt. We also use the notation 1

Li2(x1, . . . , xn) = Li2

(
1−

n∏
i=1

xi

)
. (A.4.5)

The fully massive box is most concisely given by the formula

I(pi,mi) =
1√
detY

2∑
k,l=1

[
(−1)k+1Li2

(
zk,

r23,l
r20,l

)
− Li2 (−zk, r03,l)

−Li2
(
−zkr13,l,

r21,l
r20,l

)
+ Li2 (−zkr13,l, r01,l)

]
(A.4.6)

where the zk are defined in the following way

detYij = b2 − 4ac zk =
1

2a

(
−b±

√
detY

)
(A.4.7)

where k = 1 corresponds to + and k = 2 to −. Finite integrals may be derived by

taking appropriate limits of this expression.

The divergent integrals appearing in the four-point Coulomb Branch amplitudes

are given by:

I2;1(s, t) =
1

s(t−m2)

[
2

ϵ2
+

1

ϵ

[
log

(
m2

s

)
+ 2log

(
m2

t−m2

)]

+ 2log

(
m2

s

)
log

(
m2

t−m2

)
− 5π2

6

]
, (A.4.8)

I2;2(s, t) =
1

(s−m2)(t−m2)

[
[
1

ϵ2
+

1

ϵ

[
log

(
m2

s−m2

)
+ log

(
m2

t−m2

)]

+ 2log

(
m2

s−m2

)
log

(
m2

t−m2

)]
, (A.4.9)

1A natural analytic continuation can be made for complex masses.
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I2;3(s, t) =
1

m2(t−m2)

xs
1− x2s

[
2log(xs)

[
−1

ϵ
− log

(
m2

t−m2

)
+ log(1− x2s)

]

+ Li2(x
2
s) + 2Li2(1− x2)−

π2

6

]
, (A.4.10)

I4m(s, t) =
1

m2s

xt
1− x2t

log(xt)

[
1

ϵ
+ log

(
m2

s

)]
. (A.4.11)

The full n − point amplitudes with two massive legs also includes the divergent

integrals:

I3;1 =
1

s(t−m2)− (Q2 −m2)(P 2 −m2)

[ [
1

ϵ
+ 2log

(
m2

m2 − P 2

)]
(log

(
m2 − P 2

s

)
− log

(
m2 − t

Q2

)
)

+ 2Li2

(
s−Q2

Q2

)
− Li2

(
P 2 − t

m2 − t

)
− 2Li2

(
m2 − P 2

s
,

Q2

m2 − t

)]
(A.4.12)

I2;2 =
1

(m2 − s)(m2 − t)− (m2 − P 2)(m2 −Q2)

[
1

ϵ
log

(
(m2 − P 2)(m2 −Q2)

(m2 − s)(m2 − t)
)

+ 2Li2

(
1− m2 − P 2

m2 − s

)
− 2Li2

(
1− m2 − P 2

m2 − t

)
+ 2Li2

(
1− m2 −Q2

m2 − t

)
− 2Li2

(
1− m2 −Q2

m2 − s

)
+ 2Li2

(
1− (m2 −Q2)(m2 − P 2)

(m2 − s)(m2 − t)

)
+ 2log

(
m2 − s

µ2

)
log

(
m2 − t

µ2

)
− log2

(
m2 − P 2

µ2

)
− log2

(
m2 −Q2

µ2

)
+ log

(
m2 − P 2

m2 − t

)
log

(
m2

µ2

)
+ log

(
m2 −Q2

µ2 − s

)
log

(
m2

µ2

)]
(A.4.13)
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Appendix B

Material Ancillary to Chapters 4

and 5

B.1 Vanishing of form factors at large z

B.1.1 Bosonic form factors

In this appendix we consider a generic non-MHV bosonic form factor of the operator

Tr(ϕ2) and prove that, for a [k, l⟩ shift

ˆ̃λk := λ̃k + zλ̃l , λ̂l := λl − zλk , (B.1.1)

F (z) vanishes as z → ∞ if

(hk, hl) is equal to : (0,+), (+,+), (−,+), (0, 0), (−, 0), (−,−) . (B.1.2)

The proof is based on the MHV diagram expansion of form factors, and follows closely

that for amplitudes presented in [5].

To begin with, it is immediate to see that an MHV form factor (4.1.3) with a

[k, l⟩ shift vanishes as z → ∞, with the only exception of the case (hk, hl) = (+, 0).
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Consider now a generic non-MHV form factor. Each MHV diagram contributing to its

expansion is a product of MHV vertices, times propagators 1/L2. These propagators

will either be independent of z, or vanish when z → ∞. As in [5], the spinors

λL = L|ξ̃] associated to internal legs can also be made z-independent by choosing the

reference spinor ξ̃ to be equal to ξ̃ = λ̃l. Thus, dangerous z-dependent terms can only

arise from terms affected by the shifts in the external legs k and l.

For the cases where (hk, hl) is (±,+) or (0,+), only the denominators acquire

z-dependence, and hence F (z) vanishes at large z. By using anti-MHV diagrams

we arrive at the same result for the case where (hk, hl) is equal to either (−,−) or

(−, 0). The case (hk, hl) = (0, 0) needs special attention. The case when k and l

belong to the same MHV vertex has already been considered, and leads to a falloff

of the diagram as z → ∞. When k and l belong to different vertices, there will be

at least one propagator depending on z, which will provide a factor of 1/z at large

z. The vertex involving leg l behaves asymptotically as z2/z2 regardless of whether

it is an MHV form factor or a conventional MHV vertex, while all other vertices are

independent of z. We conclude that each MHV diagram falls off as 1/z at large z.

We mention here that the argument described above can also been applied to

scattering amplitudes. Shifting two scalars makes the amplitude vanish as z → ∞

provided that the scalars take the same SU(4) indices.

B.1.2 Supersymmetric form factors

As we have shown in the previous appendix, the bosonic form factor vanishes at infin-

ity for an [i, j⟩ shift if i and j are both scalars. Here we want to use supersymmetry

to relate the large-z behaviour of generic supersymmetric form factors to that of form

factors with legs i and j being both scalars. This will then prove the validity of

the supersymmetric BCFW recursion relation for all supersymmetric form factors in
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fashion similar to [95].

For supersymmetric non-chiral form factor F (λ, λ̃, η+, η̃
−), the [i, j⟩ shift is

ˆ̃λi(z) := λ̃i + zλ̃j , λ̂j := λj − zλi ,

η̂i,+ := ηi,+ + zηj,+ , ˆ̃η−j = η̃−j − zη̃−i . (B.1.3)

As in [95], we choose a particular transformation where

Q̄ζ̃ = ζ̃α̇+Q̄
α̇+ , Qξ = ξ−αQ

α
− , (B.1.4)

where

ζ̃ =
1

[i j]

(
− λ̃iηj + λ̃jηi

)
, ξ =

1

⟨i j⟩

(
− λiη̃j + λj η̃i

)
. (B.1.5)

One can check that their action on the fermionic coordinates ηk,+, η̃
−
k is

eQ̄ζ̃ηk,+ := η′k,+ = ηk,+ − ηi,+
[kj]

[ij]
+ ηj,+

[ki]

[ij]
, (B.1.6)

eQξ η̃−k := η̃′−k = η̃−k − η̃−i
⟨kj⟩
⟨ij⟩

+ η̃−j
⟨ki⟩
⟨ij⟩

, (B.1.7)

and in particular eQ̄ζ̃ηi,+ = eQ̄ζ̃ηj,+ = eQξ η̃−i = eQξ η̃−j = 0. Since the form factor is

invariant under Q̄+ and Q− transformations, i.e. eQ̄ζ̃F = eQξF = F (see (4.2.41)),

we conclude that

F(λ1, λ̃1, η1,+, η̃
−
1 ; · · · ;λi,

ˆ̃λi, η̂i,+, η̃
−
i ; · · · ; λ̂j, λ̃j, ηj,+, ˆ̃η−j ; · · · ;λn, λ̃n, ηn,+, η̃−n )

= F(λ1, λ̃1, η
′
1,+, η̃

′−
1 ; · · · ;λi, ˆ̃λi, 0, 0; · · · ; λ̂j, λ̃j, 0, 0; · · · ;λn, λ̃n, η′n,+, η̃′−n ) .(B.1.8)

Thus, we can always choose a supersymmetry transformation which sets i and j to

be scalars. It is important to notice that under the [i, j⟩ shift, the transformed η′+

and η̃′− variables are independent of z. The large-z behaviour of F(z) is therefore

the same as that of the bosonic form factor with i and j being scalars. This case was

considered in the previous appendix, and shown to fall off as 1/z at large z. Hence the

statement is also true for the shifted supersymmetric form factor F(z). The proof
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illustrated above concerned the large-z behaviour of the full non-chiral super form

factor, but a very similar one applies to the form factor in chiral superspace, since

the latter is related to the former by a half-Fourier transform in superspace.

B.2 Dual MHV rules

The momentum superspace is defined as

xi − xi+1 = pi = λiλ̃i , θi − θi+1 = λiηi , (B.2.1)

with the conventions

xij = xi − xj , θij = θi − θj . (B.2.2)

We define the spinor |ℓij⟩ as

|ℓij⟩ ≡ |xij|ξ] , (B.2.3)

where |ξ] is an arbitrary reference spinor.

The Feynman rules for dual MHV diagram are given as in Figure B.1. Originally

this is used to calculate scattering amplitudes, here we use the same rules to calculate

tree and one-loop super form factors.

The general dual MHV diagrams for NMHV tree and MHV one-loop are shown

in figure B.2.

The dual diagram for NMHV tree case gives the

⟨i−1 i⟩
⟨i−1 ℓij⟩⟨ℓij i⟩

⟨j−1 j⟩
⟨j−1 ℓij⟩⟨ℓij j⟩

1

x2ij

∫
d4ηij δ

0|8(ℓijηij + θij) , (B.2.4)

which can be easily translated in terms of the superconformally invariant R-function

R∗;ij = [∗, i−1, i, j−1, j], which is

[i, j, k, l,m] ≡ δ(4)(⟨i j k l⟩χm + cyclic terms)

⟨i j k l⟩⟨j k l m⟩⟨k l m i⟩⟨l m i j⟩⟨m i j k⟩
. (B.2.5)
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1

x2

ij

∫
d4ηij δ0|8(ℓijηij + Θij)

g2
YM

∫
d4xId

8ΘI

〈i−1 i〉
〈i−1 ℓij1〉〈ℓij1ℓij2〉〈ℓij2ℓij3〉···〈ℓijr−1

ℓijr〉〈ℓijr i〉

1
〈ℓIi1

ℓIi2
〉〈ℓIi2

ℓIi3
〉···〈ℓIir−1

ℓIir〉〈ℓIirℓIi1
〉

i j

i1

i2 i3

i
r

I

i

i − 1

i + 1

j1

j2

j
r

(a)

(b)

(c)

Figure B.1: Feynman rules for dual MHV diagrams. (a) Propagator. (b) Internal

vertices. (c) External vertices.

(a)

xi xj

Zj−1

Zi−1

Zi

Zj

(b)

xi xj

xI

Zj−1

Zj
ZA

ZB

Zi−1

Zi

Figure B.2: Dual MHV diagrams for (a) NMHV tree, (b) MHV one-loop, and their

diagrammatic correspondence between dual spacetime picture and momentum twistor

picture.

The reference momentum twistor is chosen as Z∗ = (0, ξ, 0).

Similarly, the MHV diagram for one-loop MHV case gives

g2YM

∫
d4xId

8θI
1

⟨ℓiIℓIj⟩⟨ℓIjℓiI⟩
⟨i−1 i⟩

⟨i−1 ℓiI⟩⟨ℓiI i⟩
⟨j−1 j⟩

⟨j−1 ℓIj⟩⟨ℓIj j⟩
1

x2iI

∫
d4ηiI δ

0|8(ℓiIηiI + θiI)
1

x2Ij

∫
d4ηIj δ

0|8(ℓIjηIj + θIj) , (B.2.6)

which is equivalent to the expression in terms of momentum twistor variables [101]

g2YM

∫
d3|4ZA ∧ d3|4ZB [∗, i−1, i, A,B′][∗, j−1, j, A,B′′] , (B.2.7)
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where

B′ = (A,B) ∩ (∗, j−1, j) , B′′ = (A,B) ∩ (∗, i−1, i) . (B.2.8)

B.3 Properties of the box integral in ABJM

..

ℓ3

. ℓ2.

ℓ4

.ℓ1.

1

.

2

.

3

.

4

Figure B.3: Four-point one-loop box.

The box integral function (3.3.19) was constructed and used in [74], and has several

interesting properties that have been exploited in the present work. This section

presents and proves (some of) these properties.

B.3.1 Rotation by 90◦

The first property we wish to discuss is what could be called a π/2 rotation symmetry.

Focusing on the numerator of the box integrand,

N = sTr(ℓ1p1p4) + ℓ21Tr(p1p2p4), (B.3.1)
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we can eliminate ℓ1 in favour of ℓ3 and arrange to have only the external legs p2, p3, p1

appear in the numerator. Using momentum conservation, we can re-write N as

N = (−t− u) Tr ((ℓ3 + 1)p1(−p1 − p2 − p3)) + (ℓ3 + p1) Tr (p1p2(−p1 − p2 − p3))

(B.3.2)

= −
[
tTr(ℓ3p2p1) + ℓ23 Tr(p2p3p4)

]
+R ,

where

R = sTr(ℓ3p3p1)− uTr(ℓ3p2p1)− 2(ℓ3 · p1)Tr(p2p3p1) . (B.3.3)

In three dimensions the loop momentum ℓ3 can be expressed as a function of the

external momenta p1, p2, p3 as

ℓ3 = αp1 + βp2 + γp3 , (B.3.4)

where α, β, γ are arbitrary coefficients. When this identity is used in the expression

for R, we find that R is identically zero in three dimensions. Hence

sTr(ℓ1p1p4) + ℓ21 Tr(p1p2p4) = −t
(
Tr(ℓ3p2p1) + ℓ23Tr(p2p3p4)

)
. (B.3.5)

It is also interesting to write down explicitly the s- and t-cut of the one-loop box.

Starting from the expression of the box integral

I(1, 2, 3, 4) :=

∫
dDℓ

iπD/2

N

ℓ2(ℓ− p1)2(ℓ− p1 − p2)2(ℓ+ p4)2
, (B.3.6)

with N given in (B.3.1), we first consider the s-cut of this function. This gives

I(1, 2, 3, 4)|s-cut =
sTr(ℓ1p1p4)

ℓ23 ℓ
2
4

, (B.3.7)

which upon using ℓ3 = ℓ1 − p1 and ℓ4 = −(ℓ1 + p4) becomes

I(1, 2, 3, 4)|s-cut =
s⟨41⟩

⟨4ℓ1⟩⟨ℓ11⟩
. (B.3.8)
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Similarly the t-channel expression of the full integrand is

I(1, 2, 3, 4) =
tTr(ℓ3p2p1) + ℓ23Tr(p2p3p1)

ℓ21 ℓ
2
2 ℓ

2
3 ℓ

2
4

. (B.3.9)

The t-cut of I(1, 2, 3, 4) is immediately written using the three-dimensional identity

(B.3.5),

I(1, 2, 3, 4)|t-cut = −tTr(ℓ3p2p1)
ℓ21 ℓ

2
2

(B.3.10)

=
t⟨12⟩

⟨1ℓ3⟩⟨ℓ32⟩
.

Finally, if we re-introduce the tree-level amplitude prefactorA(0)(1̄, 2, 3̄, 4) = 1/(⟨12⟩⟨23⟩),

we can write down the two cuts of the one-loop amplitude,

A(0)(1̄, 2, 3̄, 4)× I(1, 2, 3, 4)|s-cut = − ⟨34⟩
⟨4ℓ1⟩⟨ℓ11⟩

, (B.3.11)

A(0)(1̄, 2, 3̄, 4)× I(1, 2, 3, 4)|t-cut =
⟨23⟩

⟨1ℓ3⟩⟨ℓ32⟩
. (B.3.12)

B.3.2 An identity for the s-channel cuts of I(1, 2, 3, 4) and

I(1, 2, 4, 3)

Here we discuss an intriguing property of the three-dimensional cuts of I(1, 2, 3, 4).

We consider the s-channel cut of this function and symmetrise it in the cut loop

momenta ℓ1 and ℓ2, where ℓ1 + ℓ2 = p1 + p2. The result we wish to show is that

the symmmetrised three-dimensional cuts of I(1, 2, 3, 4) and I(1, 2, 4, 3) are in fact

identical:

I(1, 2, 3, 4)|s-cut + ℓ1 ↔ ℓ2 = I(1, 2, 4, 3)|s-cut + ℓ1 ↔ ℓ2 . (B.3.13)
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In order to do so, we use (B.3.8) to write

I(1, 2, 3, 4)|s-cut + ℓ1 ↔ ℓ2 = s⟨41⟩
(

1

⟨4|ℓ1|1⟩
+

1

⟨4|ℓ2|1⟩

)
(B.3.14)

= s⟨41⟩
(

⟨4|ℓ1 + ℓ2|1⟩
⟨4|ℓ1|1⟩⟨4|ℓ2|1⟩

)
=

s ⟨41⟩⟨4|2|1⟩
⟨4|ℓ1|1⟩⟨4|ℓ2|1⟩

,

where in the last step momentum conservation was used. Again using (B.3.8) this

time for the s-cut of I(1, 2, 4, 3) one can write,

I(1, 2, 4, 3)|s-cut =
s⟨31⟩

⟨3ℓ1⟩⟨ℓ11⟩
, (B.3.15)

and hence

I(1, 2, 4, 3)|s-cut + ℓ1 ↔ ℓ2 = s⟨31⟩
(

⟨3|ℓ1 + ℓ2|1⟩
⟨3|ℓ1|1⟩⟨3|ℓ2|1⟩

)
(B.3.16)

=
⟨31⟩⟨3|2|1⟩

⟨3|ℓ1|1⟩⟨3|ℓ2|1⟩
.

Next we compare (B.3.14) to (B.3.16):

I(1, 2, 3, 4)|s-cut
I(1, 2, 4, 3)|s-cut

=
⟨41⟩⟨4|2|1⟩
⟨31⟩⟨3|2|1⟩

⟨3|ℓ1|1⟩⟨3|ℓ2|1⟩
⟨4|ℓ1|1⟩⟨4|ℓ2|1⟩

(B.3.17)

=
⟨1|4|2⟩
⟨1|3|2⟩

⟨ℓ1|3|ℓ2⟩
⟨ℓ1|4|ℓ2⟩

= 1 ,

thus proving (B.3.13).

173



Bibliography

[1] R. Eden, P. Landshoff, D. Olive, and J. Polkinghorne. The Analytic S-matrix.

[2] Zvi Bern, Lance J. Dixon, David C. Dunbar, and David A. Kosower. One loop

n point gauge theory amplitudes, unitarity and collinear limits. Nucl.Phys.,

B425:217–260, 1994.

[3] Edward Witten. Perturbative gauge theory as a string theory in twistor space.

Commun.Math.Phys., 252:189–258, 2004.

[4] Freddy Cachazo, Peter Svrcek, and Edward Witten. MHV vertices and tree

amplitudes in gauge theory. JHEP, 0409:006, 2004.

[5] Ruth Britto, Freddy Cachazo, Bo Feng, and Edward Witten. Direct proof of

tree-level recursion relation in Yang-Mills theory. Phys.Rev.Lett., 94:181602,

2005.

[6] C.F. Berger, Z. Bern, L.J. Dixon, F. Febres Cordero, D. Forde, et al. An

Automated Implementation of On-Shell Methods for One-Loop Amplitudes.

Phys.Rev., D78:036003, 2008.

[7] Z. Bern, J.J.M. Carrasco, and Henrik Johansson. New Relations for Gauge-

Theory Amplitudes. Phys.Rev., D78:085011, 2008.

174



[8] J.M. Drummond, J. Henn, G.P. Korchemsky, and E. Sokatchev. Dual super-

conformal symmetry of scattering amplitudes in N=4 super-Yang-Mills theory.

Nucl.Phys., B828:317–374, 2010.

[9] Luis F. Alday and Juan Martin Maldacena. Gluon scattering amplitudes at

strong coupling. JHEP, 0706:064, 2007.

[10] Andreas Brandhuber, Paul Heslop, and Gabriele Travaglini. MHV amplitudes

in N=4 super Yang-Mills and Wilson loops. Nucl.Phys., B794:231–243, 2008.

[11] Burkhard Eden, Paul Heslop, Gregory P. Korchemsky, and Emery Sokatchev.

The super-correlator/super-amplitude duality: Part I. Nucl.Phys., B869:329–

377, 2013.

[12] Nima Arkani-Hamed and Jaroslav Trnka. The Amplituhedron. 2013.

[13] Nima Arkani-Hamed, Jacob L. Bourjaily, Freddy Cachazo, Alexander B. Gon-

charov, Alexander Postnikov, et al. Scattering Amplitudes and the Positive

Grassmannian. 2012.

[14] Vittorio Del Duca, Claude Duhr, and Vladimir A. Smirnov. An Analytic Result

for the Two-Loop Hexagon Wilson Loop in N = 4 SYM. JHEP, 1003:099, 2010.

[15] Oluf Tang Engelund and Radu Roiban. Correlation functions of local composite

operators from generalized unitarity. JHEP, 1303:172, 2013.

[16] Andreas Brandhuber, Omer Gurdogan, Robert Mooney, Gabriele Travaglini,

and Gang Yang. Harmony of Super Form Factors. JHEP, 1110:046, 2011.

[17] Andreas Brandhuber, mer Grdoan, Dimitrios Korres, Robert Mooney, and

Gabriele Travaglini. Two-loop Sudakov Form Factor in ABJM. JHEP, 1311:022,

2013.

175



[18] Lance J. Dixon. Calculating scattering amplitudes efficiently. 1996.

[19] Stephen J. Parke and T.R. Taylor. An Amplitude for n Gluon Scattering.

Phys.Rev.Lett., 56:2459, 1986.

[20] Frits A. Berends and W.T. Giele. Recursive Calculations for Processes with n

Gluons. Nucl.Phys., B306:759, 1988.

[21] Ruth Britto, Freddy Cachazo, and Bo Feng. New recursion relations for tree

amplitudes of gluons. Nucl.Phys., B715:499–522, 2005.

[22] Kasper Risager. A Direct proof of the CSW rules. JHEP, 0512:003, 2005.

[23] R.E. Cutkosky. Singularities and discontinuities of Feynman amplitudes.

J.Math.Phys., 1:429–433, 1960.

[24] Ruth Britto, Freddy Cachazo, and Bo Feng. Generalized unitarity and one-loop

amplitudes in N=4 super-Yang-Mills. Nucl.Phys., B725:275–305, 2005.

[25] V.A. Smirnov. Feynman integral calculus. 2006.

[26] Johannes M. Henn, Alexander V. Smirnov, and Vladimir A. Smirnov. An-

alytic results for planar three-loop four-point integrals from a Knizhnik-

Zamolodchikov equation. JHEP, 1307:128, 2013.

[27] Nima Arkani-Hamed, Jacob L. Bourjaily, Freddy Cachazo, and Jaroslav Trnka.

Local Integrals for Planar Scattering Amplitudes. JHEP, 1206:125, 2012.

[28] G. Passarino and M.J.G. Veltman. One Loop Corrections for e+ e- Annihilation

Into mu+ mu- in the Weinberg Model. Nucl.Phys., B160:151, 1979.

[29] J. Gluza, K. Kajda, and T. Riemann. AMBRE: A Mathematica package for

the construction of Mellin-Barnes representations for Feynman integrals. Com-

put.Phys.Commun., 177:879–893, 2007.

176



[30] Charalampos Anastasiou and Alejandro Daleo. Numerical evaluation of loop

integrals. JHEP, 0610:031, 2006.

[31] J.B. Tausk. Nonplanar massless two loop Feynman diagrams with four on-shell

legs. Phys.Lett., B469:225–234, 1999.

[32] Steven Weinberg. Infrared photons and gravitons. Phys.Rev., 140:B516–B524,

1965.

[33] George F. Sterman and Maria E. Tejeda-Yeomans. Multiloop amplitudes and

resummation. Phys.Lett., B552:48–56, 2003.

[34] Zvi Bern, Lance J. Dixon, and Vladimir A. Smirnov. Iteration of planar am-

plitudes in maximally supersymmetric Yang-Mills theory at three loops and

beyond. Phys.Rev., D72:085001, 2005.

[35] Alfred H. Mueller. On the Asymptotic Behavior of the Sudakov Form-factor.

Phys.Rev., D20:2037, 1979.

[36] John C. Collins. Algorithm to Compute Corrections to the Sudakov Form-

factor. Phys.Rev., D22:1478, 1980.

[37] Ashoke Sen. Asymptotic Behavior of the Sudakov Form-Factor in QCD.

Phys.Rev., D24:3281, 1981.

[38] Alexander M. Polyakov. Gauge Fields as Rings of Glue. Nucl.Phys., B164:171–

188, 1980.

[39] Jean-Loup Gervais and A. Neveu. The Slope of the Leading Regge Trajectory

in Quantum Chromodynamics. Nucl.Phys., B163:189, 1980.

[40] V.S. Dotsenko and S.N. Vergeles. Renormalizability of Phase Factors in the

Nonabelian Gauge Theory. Nucl.Phys., B169:527, 1980.

177



[41] G.P. Korchemsky and A.V. Radyushkin. Renormalization of the Wilson Loops

Beyond the Leading Order. Nucl.Phys., B283:342–364, 1987.

[42] A.I. Vainshtein, Valentin I. Zakharov, and Mikhail A. Shifman. Higgs Particles.

Sov.Phys.Usp., 23:429–449, 1980.

[43] Luis F. Alday, Johannes M. Henn, Jan Plefka, and Theodor Schuster. Scattering

into the fifth dimension of N=4 super Yang-Mills. JHEP, 1001:077, 2010.

[44] Johannes M. Henn. Dual conformal symmetry at loop level: massive regular-

ization. J.Phys., A44:454011, 2011.

[45] Johannes M. Henn. Scattering amplitudes on the Coulomb branch of N=4 super

Yang-Mills. Nucl.Phys.Proc.Suppl., 205-206:193–198, 2010.

[46] G. Mack and Abdus Salam. Finite component field representations of the con-

formal group. Annals Phys., 53:174–202, 1969.

[47] Sidney R. Coleman and Roman Jackiw. Why dilatation generators do not

generate dilatations? Annals Phys., 67:552–598, 1971.

[48] V.M. Braun, G.P. Korchemsky, and Dieter Mueller. The Uses of conformal

symmetry in QCD. Prog.Part.Nucl.Phys., 51:311–398, 2003.

[49] Lars Brink, John H. Schwarz, and Joel Scherk. Supersymmetric Yang-Mills

Theories. Nucl.Phys., B121:77, 1977.

[50] Marcus T. Grisaru, M. Rocek, and W. Siegel. ZERO VALUE FOR THE

THREE LOOP BETA FUNCTION IN N=4 SUPERSYMMETRIC YANG-

MILLS THEORY. 1988.

[51] William E. Caswell and Daniela Zanon. Zero Three Loop Beta Function in the

N = 4 Supersymmetric Yang-Mills Theory. Nucl.Phys., B182:125, 1981.

178



[52] L.V. Avdeev and O.V. Tarasov. The Three Loop Beta Function in the N = 1,

N = 2, N = 4 Supersymmetric Yang-Mills Theories. Phys.Lett., B112:356–358,

1982.

[53] Stanley Mandelstam. Light Cone Superspace and the Ultraviolet Finiteness of

the N=4 Model. Nucl.Phys., B213:149–168, 1983.

[54] Paul S. Howe, K.S. Stelle, and P.K. Townsend. The Relaxed Hypermultiplet:

An Unconstrained N=2 Superfield Theory. Nucl.Phys., B214:519, 1983.

[55] Lars Brink, Olof Lindgren, and Bengt E.W. Nilsson. The Ultraviolet Finiteness

of the N=4 Yang-Mills Theory. Phys.Lett., B123:323, 1983.

[56] Paul S. Howe, K.S. Stelle, and Peter C. West. A Class of Finite Four-

Dimensional Supersymmetric Field Theories. Phys.Lett., B124:55, 1983.

[57] V.P. Nair. A Current Algebra for Some Gauge Theory Amplitudes. Phys.Lett.,

B214:215, 1988.

[58] Nathaniel Craig, Henriette Elvang, Michael Kiermaier, and Tracy Slatyer. Mas-

sive amplitudes on the Coulomb branch of N=4 SYM. JHEP, 1112:097, 2011.

[59] Stefan Dittmaier. Weyl-van der Waerden formalism for helicity amplitudes of

massive particles. Phys.Rev., D59:016007, 1998.

[60] Andreas Brandhuber, Gabriele Travaglini, and Gang Yang. Analytic two-loop

form factors in N=4 SYM. JHEP, 1205:082, 2012.

[61] Andreas Brandhuber, Bill Spence, Gabriele Travaglini, and Gang Yang. Form

Factors in N=4 Super Yang-Mills and Periodic Wilson Loops. JHEP, 1101:134,

2011.

179



[62] David J. Gross and Paul F. Mende. The High-Energy Behavior of String Scat-

tering Amplitudes. Phys.Lett., B197:129, 1987.

[63] Juan Maldacena and Alexander Zhiboedov. Form factors at strong coupling via

a Y-system. JHEP, 1011:104, 2010.

[64] J.M. Drummond, J. Henn, G.P. Korchemsky, and E. Sokatchev. The hexagon

Wilson loop and the BDS ansatz for the six-gluon amplitude. Phys.Lett.,

B662:456–460, 2008.

[65] Ofer Aharony, Oren Bergman, Daniel Louis Jafferis, and Juan Maldacena. N=6

superconformal Chern-Simons-matter theories, M2-branes and their gravity du-

als. JHEP, 0810:091, 2008.

[66] Sean A. Hartnoll, Christopher P. Herzog, and Gary T. Horowitz. Building a

Holographic Superconductor. Phys.Rev.Lett., 101:031601, 2008.

[67] Arthur E. Lipstein. Integrability of N = 6 Chern-Simons Theory. 2011.

[68] J.A. Minahan and K. Zarembo. The Bethe ansatz for superconformal Chern-

Simons. JHEP, 0809:040, 2008.

[69] Dongmin Gang, Yu-tin Huang, Eunkyung Koh, Sangmin Lee, and Arthur E.

Lipstein. Tree-level Recursion Relation and Dual Superconformal Symmetry of

the ABJM Theory. JHEP, 1103:116, 2011.

[70] Konstantin Wiegandt. Equivalence of Wilson Loops in N = 6 super Chern-

Simons matter theory and N = 4 SYM Theory. Phys.Rev., D84:126015, 2011.

[71] Ilya Bakhmatov. On AdS4xCP
3T−duality.Nucl.Phys., B847 : 38−−53, 2011.

[72] Andreas Brandhuber, Gabriele Travaglini, and Congkao Wen. All one-loop

amplitudes in N=6 superconformal Chern-Simons theory. JHEP, 1210:145,

2012.

180



[73] Yu-tin Huang and Arthur E. Lipstein. Amplitudes of 3D and 6D Maximal

Superconformal Theories in Supertwistor Space. JHEP, 1010:007, 2010.

[74] Wei-Ming Chen and Yu-tin Huang. Dualities for Loop Amplitudes of N=6

Chern-Simons Matter Theory. JHEP, 1111:057, 2011.

[75] Till Bargheer, Florian Loebbert, and Carlo Meneghelli. Symmetries of Tree-

level Scattering Amplitudes in N=6 Superconformal Chern-Simons Theory.

Phys.Rev., D82:045016, 2010.

[76] Seiji Terashima. On M5-branes in N=6 Membrane Action. JHEP, 0808:080,

2008.

[77] Andreas Brandhuber, Bill J. Spence, and Gabriele Travaglini. One-loop gauge

theory amplitudes in N=4 super Yang-Mills from MHV vertices. Nucl.Phys.,

B706:150–180, 2005.

[78] Ruth Britto, Bo Feng, Radu Roiban, Marcus Spradlin, and Anastasia Volovich.

All split helicity tree-level gluon amplitudes. Phys.Rev., D71:105017, 2005.

[79] A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky, and E. Sokatchev. Un-

constrained N=2 Matter, Yang-Mills and Supergravity Theories in Harmonic

Superspace. Class.Quant.Grav., 1:469–498, 1984.

[80] A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky, and E.S. Sokatchev. Harmonic

superspace. 2001.

[81] Burkhard Eden, Paul Heslop, Gregory P. Korchemsky, and Emery Sokatchev.

The super-correlator/super-amplitude duality: Part II. Nucl.Phys., B869:378–

416, 2013.

[82] Marcus T. Grisaru, H.N. Pendleton, and P. van Nieuwenhuizen. Supergravity

and the S Matrix. Phys.Rev., D15:996, 1977.

181



[83] Marcus T. Grisaru and H.N. Pendleton. Some Properties of Scattering Ampli-

tudes in Supersymmetric Theories. Nucl.Phys., B124:81, 1977.

[84] Michelangelo L. Mangano and Stephen J. Parke. Multiparton amplitudes in

gauge theories. Phys.Rept., 200:301–367, 1991.

[85] Henriette Elvang, Daniel Z. Freedman, and Michael Kiermaier. SUSY Ward

identities, Superamplitudes, and Counterterms. J.Phys., A44:454009, 2011.

[86] Kenneth A. Intriligator. Bonus symmetries of N=4 superYang-Mills correlation

functions via AdS duality. Nucl.Phys., B551:575–600, 1999.

[87] B. Eden, Paul S. Howe, C. Schubert, E. Sokatchev, and Peter C. West. Extremal

correlators in four-dimensional SCFT. Phys.Lett., B472:323–331, 2000.

[88] B. Eden, C. Schubert, and E. Sokatchev. Three loop four point correlator in

N=4 SYM. Phys.Lett., B482:309–314, 2000.

[89] Lance J. Dixon, E.W. Nigel Glover, and Valentin V. Khoze. MHV rules for

Higgs plus multi-gluon amplitudes. JHEP, 0412:015, 2004.

[90] Yu-tin Huang. Non-Chiral S-Matrix of N=4 Super Yang-Mills. 2011.

[91] Zvi Bern, Lance J. Dixon, David C. Dunbar, and David A. Kosower. Fusing

gauge theory tree amplitudes into loop amplitudes. Nucl.Phys., B435:59–101,

1995.

[92] Zvi Bern, Lance J. Dixon, and David A. Kosower. Two-loop g —gt; gg splitting

amplitudes in QCD. JHEP, 0408:012, 2004.

[93] Henriette Elvang, Daniel Z. Freedman, and Michael Kiermaier. Proof of the

MHV vertex expansion for all tree amplitudes in N=4 SYM theory. JHEP,

0906:068, 2009.

182



[94] Andreas Brandhuber, Paul Heslop, and Gabriele Travaglini. A Note on dual

superconformal symmetry of the N=4 super Yang-Mills S-matrix. Phys.Rev.,

D78:125005, 2008.

[95] Nima Arkani-Hamed, Freddy Cachazo, and Jared Kaplan. What is the Simplest

Quantum Field Theory? JHEP, 1009:016, 2010.

[96] L.J. Mason and David Skinner. The Complete Planar S-matrix of N=4 SYM

as a Wilson Loop in Twistor Space. JHEP, 1012:018, 2010.

[97] Mathew Bullimore, L.J. Mason, and David Skinner. MHV Diagrams in Mo-

mentum Twistor Space. JHEP, 1012:032, 2010.

[98] Andreas Brandhuber, Bill Spence, Gabriele Travaglini, and Gang Yang. A Note

on Dual MHV Diagrams in N=4 SYM. JHEP, 1012:087, 2010.

[99] J.M. Drummond, G.P. Korchemsky, and E. Sokatchev. Conformal properties

of four-gluon planar amplitudes and Wilson loops. Nucl.Phys., B795:385–408,

2008.

[100] Luis F. Alday and Juan Maldacena. Comments on gluon scattering amplitudes

via AdS/CFT. JHEP, 0711:068, 2007.

[101] Andrew Hodges. Eliminating spurious poles from gauge-theoretic amplitudes.

JHEP, 1305:135, 2013.

[102] Andreas Brandhuber, Bill Spence, and Gabriele Travaglini. From trees to loops

and back. JHEP, 0601:142, 2006.

[103] Nima Arkani-Hamed, Jacob L. Bourjaily, Freddy Cachazo, Simon Caron-Huot,

and Jaroslav Trnka. The All-Loop Integrand For Scattering Amplitudes in

Planar N=4 SYM. JHEP, 1101:041, 2011.

183



[104] Bo Feng, Yin Jia, and Rijun Huang. Relations of loop partial amplitudes in

gauge theory by Unitarity cut method. Nucl.Phys., B854:243–275, 2012.

[105] Dongsu Bak and Soo-Jong Rey. Integrable Spin Chain in Superconformal

Chern-Simons Theory. JHEP, 0810:053, 2008.

[106] S. Caron-Huot and Yu-tin Huang. The two-loop six-point amplitude in ABJM

theory. JHEP, 1303:075, 2013.

[107] Marco S. Bianchi, Matias Leoni, Andrea Mauri, Silvia Penati, and Alberto

Santambrogio. Scattering in ABJ theories. JHEP, 1112:073, 2011.

[108] Marco S. Bianchi, Matias Leoni, Andrea Mauri, Silvia Penati, and Alberto

Santambrogio. Scattering Amplitudes/Wilson Loop Duality In ABJM Theory.

JHEP, 1201:056, 2012.

[109] Donovan Young. Form Factors of Chiral Primary Operators at Two Loops in

ABJ(M). JHEP, 1306:049, 2013.

[110] A.V. Smirnov. Algorithm FIRE – Feynman Integral REduction. JHEP,

0810:107, 2008.

[111] M. Czakon. Automatized analytic continuation of Mellin-Barnes integrals.

Comput.Phys.Commun., 175:559–571, 2006.

[112] Gerard ’t Hooft and M.J.G. Veltman. Scalar One Loop Integrals. Nucl.Phys.,

B153:365–401, 1979.

[113] A. Denner and S. Dittmaier. Scalar one-loop 4-point integrals. Nucl.Phys.,

B844:199–242, 2011.

184


