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Abstract

Colour-kinematics duality provides new insights into the perturbative structure of quan-

tum field theory. In particular, it recasts gravity as a double copy of gauge theory, an

idea which has given rise to a variety of novel connections between these two seemingly

disparate theories. In this thesis, we will explore a number of new examples of the

double copy, which both extend the catalogue of cases in which it is known to apply

and provide insights into theoretical structure of the correspondence. We will begin by

investigating the role of non-local information in the double copy for classical solutions,

leading to a topological condition that can be furnished with a double copy interpreta-

tion. As this condition is naturally expressed in terms of certain Wilson lines, we will

go on to develop a double copy for the general form of these operators as well as the

closely related geometrical concept of holonomy. We then further investigate the non-

perturbative structure of the double copy by restricting to the self-dual sectors of gauge

theory and gravity. Here we generalise the single copy structure of gravitational instan-

tons, and provide new insights into the nature of the kinematic algebra underlying the

double copy. Finally, we investigate the old idea that one-loop amplitudes in self-dual

Yang-Mills and gravity are generated by an anomaly of the classical integrability of

these theories. By writing explicit quantum-corrected actions for the self-dual theories,

we will demonstrate a manifestation of this anomaly and uncover a novel double copy

that holds at the level of the loop-integrated amplitudes.

3



Acknowledgements

I would like to thank my supervisor Chris White, who has influenced my thoughts

about and attitude towards physics in an immeasurable way. I will always be grateful

to Chris for his patience, encouragement, and seemingly endless enthusiasm. He has

been a constant inspiration throughout my PhD and I am certain that it would not

have been nearly as enjoyable without him as a supervisor.

My second supervisor, Ricardo Monteiro, also deserves great thanks. We embarked

on a project that was stuck in the weeds for a long, long time, and without his per-

severance I don’t know if it would ever have seen the light of day. I am immensely

grateful to him for his support and all that he has taught me.

I have been lucky to work with a number of brilliant physicists. I would like to thank

my collaborators Rashid Alawadhi, Luigi Alfonsi, Kymani Armstrong-Williams, David

Berman, and Ricardo Stark-Muchão. It has been a joy to work with you all.

The theory group at QMUL has been a wonderful environment within which to spend

the past three-and-a-half years. I have, at this point, shared an office with many people,

and I must thank them all for putting up with me. Thanks to George, Adrian, Bernie,

David, Manuel, Stefano, Marcel, Shun-Qing, Linfeng, Rajath, Gergely, Enrico, Nadia,

Graham, Josh, Lewis, Kymani, Chinmaya, Tancredi, Mitchell, Alex, Gus, George, Ma-

hesh, and, of course, to Lara the dog, whose calming presence is unparalleled. Thank

you also to Bill Spence and Anton Ilderton for conducting my viva and providing useful

feedback on this thesis. Of these people, I must particularly thank George Barnes and

Adrian Padellaro. We started the PhD together and I could not have asked for better

people to go through this process with. It worries me to think of the amount of time I

have spent distracting you both.

Finally, thank you to my family, my friends, and to Charlotte. Your love and sup-

port has made this possible.

This work was supported by the Science and Technology Facilities Council (STFC)

Consolidated Grant ST/P000754/1 String theory, gauge theory & duality.

4



“Doubles the image, the two overlap, with the right sort of light, the right

lenses, you can separate them in stages, a little further each time, step by

step till in fact it becomes possible to saw somebody in half optically, and

instead of two different pieces of one body, there are now two complete

individuals walking around, who are identical in every way, capisci?”

Against the Day

Thomas Pynchon
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Chapter 1

Introduction

The past thirty years has seen an explosion of progress in the analytic computation of

scattering amplitudes. On the one hand, there is experimental motivation. Precision

computations in non-abelian gauge theories are critical for the success of large-scale

scattering experiments such as the Large Hadron Collider (LHC), while the detection

of gravitational waves by the LIGO and VIRGO collaborations in 2015 [6] has gener-

ated a demand for efficient approaches to perturbative gravity. Alongside the practical

value that is inherent in the development of new tools for scattering amplitude calcu-

lations, there is great theoretical worth. In traditional Lagrangian-based approaches

to scattering processes, the proliferation of Feynman diagrams as one goes to higher

multiplicity and loop-order appears at odds with the relatively simple structure of the

amplitudes themselves. This issue is particularly apparent in perturbative quantum

gravity, for which one finds an infinite number of interaction vertices. By adopting a

more on-shell philosophy, a hidden simplicity is revealed. Using the physical properties

of the S-matrix such as locality, unitarity, and gauge invariance, a generic amplitude

computation can be “bootstrapped” from its simplest constituent parts. Adopting this

approach has given rise to an expansive toolkit of powerful on-shell techniques, such as

BCFW recursion [7] and generalised unitarity [8], with which the computation of high

multiplicity and loop-level amplitudes is vastly simplified.

As the modern amplitudes program has progressed, a number of deeply unexpected

results have emerged. One of the most surprising is colour-kinematics duality, first

discovered by Bern, Carrasco, and Johansson (BCJ) in refs. [9, 10]. Colour-kinematics

duality brings into focus a highly non-trivial structure in gauge theory amplitudes that

is almost completely obscured in traditional Lagrangian-based approaches. In refs. [9,

10], it was shown that in the computation of a non-abelian gauge theory scattering

12
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amplitude, the kinematic numerators that appear in each term can be arranged so as

to obey identical algebraic relations to the colour factors. This is a surprising result.

The colour factors are formed from contractions of structure constants of the gauge

group Lie algebra, such that any identities they obey are inherited from the structure

of the gauge group. The fact that the kinematics satisfy an analogous set of identities

suggests the existence of a kinematic Lie algebra that is dual to the colour algebra, a

structure that is obscured in the traditional approach to gauge theory. Furthermore,

the existence of this duality suggests that sensible objects can be formed by replacing

the colour factors in the gauge theory amplitude with a second set of kinematic factors.

The resulting object, in which there are two copies of the kinematic factors, remarkably

corresponds to a gravitational amplitude. This process, known as the BCJ double copy,

offers a radically different perspective on the structure of gauge theory and gravity,

recasting these two seemingly disparate theories in a strikingly similar language such

that gluon amplitudes can be simply transformed into those of gravitons and related

particles.

The first hints of a double copy-like structure can be traced back to the early days of

string theory. In 1986, Kawaii, Lewellen, and Tye (KLT) observed that in bosonic string

theory, tree-level closed string amplitudes can be expressed as sums over products of two

tree-level open string amplitudes, where on either side of this equality the amplitudes

considered are of the same multiplicity. In the low energy limit, the closed string

amplitudes with massless spin-2 external states reduce to graviton amplitudes, while the

open string amplitudes with spin-1 external states reduce to certain gluon amplitudes.

These so-called KLT relations provide a correspondence between tree-level amplitudes

in gauge theory and gravity at each multiplicity, which follows the rough schematic

form of

gravity = (gauge theory)2. (1.1)

While the KLT relations offer a suggestion of some deeper connection between gauge

theory and gravity, they become increasingly cumbersome as one moves to higher multi-

plicity and do not permit a loop-level generalisation. Colour-kinematics duality and the

BCJ double copy pick up the scent where the KLT relations trail off, providing a field

theory realisation of the squaring relation of eq. (1.1) that is alluringly generalisable.

At tree-level the BCJ double copy has been shown to reproduce the KLT relations [11],

and has been proven to hold to all multiplicities via a variety of approaches [11–15].

However, the great power of the BCJ approach lies in its appearance at loop-level.

While at present there is no general proof of its validity to all loop-orders, a wide vari-

ety of highly non-trivial examples have been demonstrated. We give a partial overview

of these results in section 2.2.4.



14 Chapter 1. Introduction

The discovery of colour-kinematics duality and the bridge it provides between gauge

theory and gravity raises many important questions. Is this merely a mathematical

coincidence allowing us to cheat the computational formidability of gravity, or does it

constitute some deeper connection between these two worlds that so persistently evade

unification? If the answer is the former, the importance of the double copy would be

in no way diminished. As a calculational tool, it has facilitated insights into sectors

of gravity not previously accessible with traditional approaches, leading to a deeper

understanding of the ultraviolet structure of gravity and supergravity theories (see

refs. [5, 16] for extensive reviews). However, since its initial formulation at the level of

gauge and gravity amplitudes, there has been a proliferation of examples of a double

copy-like structure in domains and contexts vastly separated from one another. An

expansive web of theories that are constructible from the principles of the double copy

has emerged [5], and phenomena ranging from asymptotic symmetries [17] to solution-

generating transformations [18, 19] to fluid dynamics [20] have been furnished with a

double copy interpretation.

If the double copy is to be viewed as a statement about the fundamental nature of

gauge and gravitational theories, it is natural to wonder whether its presence persists

in some form at the level of classical physics. Indeed, it can be shown that perturbative

classical solutions in gauge theory and gravity can be related by the double copy, as

first demonstrated in ref. [21]. This is, in some sense, to be expected given the close

relationship between perturbative solutions to equations of motion and tree-level am-

plitudes. The great surprise, however, is that for certain algebraically special solutions,

the double copy can be applied at the level of exact classical solutions. The exact

classical double copy was initially developed in ref. [21], where it was shown to hold

for stationary vacuum spacetimes which permit a Kerr-Schild form. The basic example

of this formalism explicitly links the Schwarzschild solution in pure general relativity

with the Coulomb solution in linearised Yang-Mills theory via the replacement of kine-

matic with colour information, thereby establishing a double copy between the simplest

point-particle configurations in gauge theory and gravity. Since this Kerr-Schild double

copy, a number of generalisations have appeared. By working in the spinorial formal-

ism, the Weyl double copy constitutes an exact equality between the Weyl spinor and

two copies of the Maxwell spinor for all vacuum Type-D spacetimes [22], while further

generalisations can be obtained from twistor space [23–25]. In section 2.3.4 we give a

brief overview of the current status of the classical double copy.

There are many approaches to developing our understanding of colour-kinematics du-

ality and the double copy. An obvious route is to extend the catalogue of examples in

which the double copy can be shown to apply. At the level of amplitudes, this involves

pushing the duality to higher-loop order and extending away from flat spacetime to
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curved backgrounds (see e.g. refs. [26–28]). For exact classical solutions, all current ex-

amples involve algebraically special solutions which linearise their equations of motion.

By finding new examples of double copiable exact solutions, one might hope that a

more general picture will emerge in which fully non-linear or strongly coupled solutions

can be identified under the duality. In parallel to this line of work, it is important to ex-

amine the conceptual foundations of the double copy. A central question in this regard

is the nature of the kinematic algebra. Explicit interpretations of the kinematic algebra

are currently limited to special cases [29–34], the extension of which would be useful

for both perturbative and non-perturbative studies. A more general understanding of

the algebra would allow for efficient constructions of duality satisfying numerators for

scattering amplitudes. Furthermore, at the level of exact classical solutions, the role of

the kinematic algebra is more opaque. Bringing this structure into sharper focus might

make clear when and why an exact double copy is possible.

In this thesis, based on refs. [1–4], we will make progress in these directions by de-

veloping novel manifestations of the double copy at both the classical and quantum

level. Chapters 3, 4, and 5 will primarily focus on the non-perturbative structure of the

correspondence. In chapter 3 we attempt to rectify the fact that all previous examples

of the double copy involve local quantities. We use the known double copy relation

between magnetic monopoles in gauge theory and the Taub-NUT solution in general

relativity to investigate whether it is possible to identify global information on either

side of the correspondence. We find that when phrased in terms of a certain patching

condition, the topological classification of these solutions satisfies the same double copy

structure as the solutions themselves, such that the map takes the form of a local and

global statement. The patching conditions will be written in terms of Wilson line op-

erators, whose general double copy interpretation we develop in chapter 4. In doing so,

the question of how to treat the geometrical concept of holonomy from the perspective

of the double copy will naturally arise. We will find a single copy of the gravitational

holonomy, thus completing a square of four operators that can be related by the double

copy.

The double copy is particularly well understood in the self-dual sectors of gauge theory

and gravity. We use this fact to gain insights into both non-perturbative and perturba-

tive aspects of the duality in chapters 5 and 6 respectively. In chapter 5 we extend the

known double copy structure of gravitational instantons, through which we will gain

insights into the role of the kinematic algebra at the level of exact classical solutions.

In chapter 6, we investigate an old proposal that the one-loop amplitudes in self-dual

Yang-Mills and gravity are generated by the anomaly of the classical integrability of

these theories. By developing a formalism that manifests this idea we will uncover a

novel double copy between loop-integrated one-loop effective vertices. This provides the



16 Chapter 1. Introduction

first example of a loop-level double copy that holds at the level of the loop-integrated

amplitude, rather than the loop-integrand.

To begin however, we provide in the following chapter a brief overview of the basics of

colour-kinematics duality and the double copy, along with a discussion of the current

status of the field.



Chapter 2

Colour-kinematics duality and

the double copy

2.1 Scattering amplitudes in gauge theory and gravity

In this section we will review the basics of scattering in gauge theory and gravity.

To begin, we will briefly discuss the diagrammatic approach to the computation of

amplitudes. This will allow us to identify the mathematical structures of interest in

the BCJ double copy for amplitudes, and to fix notation and conventions that will be

used throughout this work. We use the (−+ ++) metric signature throughout, except

where stated otherwise.

2.1.1 Gauge theory

Pure Yang-Mills theory is an interacting theory of massless spin-1 fields with a local

non-abelian symmetry group. In d-dimensions, it is described by the action

SYM = −1

4

∫
ddx tr(FµνFµν), (2.1)

where Fµν is the field strength, defined in terms of the gauge field Aµ via

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ], (2.2)

and the trace is over the colour degrees of freedom. The gauge field is valued in the Lie

algebra of the gauge group G, such that it may be expanded as Aµ = AaµT
a where T a

17
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are the generators of G. Note that eq. (2.2) implies that the field strength is also Lie

algebra valued, Fµν = F aµνT
a. The generators are traceless and Hermitian, and satisfy

the following relations:

[T a, T b] = ifabcT c, tr(T aT b) = Crδ
ab. (2.3)

Here the first equation defines the algebra with structure constants fabc, while the

second is a normalisation condition with Cr a representation-dependent constant. For

now we will consider the gauge group to be G = SU(N), for which there are N2 − 1

generators.

To compute scattering amplitudes in the textbook action-based approach (see e.g.

ref. [35]), we need to fix a gauge and extract a set Feynman rules from the action

in eq. (2.1). In the Feynman gauge we find the following set of rules [35]:

µ, 1 ν, 2
p

= − iηµνδ
a1a2

p2
(2.4)

µ, 1

ν, 2

ρ, 3 = gfa1a2a3 [ηµν(p1 − p2)ρ + cyclic] (2.5)

µ, 1

ν, 2 ρ, 3

σ, 4

= −ig2
[
fa1a2bf ba3a4(ηµρηνσ − ηµσηνρ)

+fa1a3bf ba2a4(ηµνηρσ − ηµσηνρ)

+fa1a4bf ba2a3(ηµνηρσ − ηµρηνσ)
] (2.6)

Here we have a propagator, three-point vertex, and four-point vertex respectively. With

these rules integrands for each diagrammatic contribution can be constructed, following

which any loop-momenta must be integrated over. The important point, however, is

that in principle it is only this set of three rules that is required to compute Yang-Mills

amplitudes to all multiplicities and at arbitrary loop-level.

A generic Feynman diagram formed from the above rules will always feature a colour

factor, arising from contractions of the gauge group structure constants that appear

in the vertices. By finding a basis that spans the colour degrees of freedom of an

amplitude, we can disentangle the colour and kinematics in a way that will greatly

simplify calculations. To start, let us rewrite the structure constants in terms of the
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gauge group generators by using the relation

fabc = − i

Cr
tr(T a[T b, T c]). (2.7)

A generic string of structure constants will now be a product of traces of generators.

Contractions over adjoint indices can then be performed using the completeness relation

for the SU(N) generators:

(T a)ij(T
a)kl = δilδ

k
j −

1

N
δijδ

k
l . (2.8)

Performing all such contractions will reduce the colour structure of any tree-level am-

plitude to be only in terms of single traces of generators. It is then possible to write

the n-point tree-level amplitudes in pure Yang-Mills as

Atree
n = gn−2

∑
perms σ

tr(T a1T aσ(2) · · ·T aσ(n))An[1, σ(2), ..., σ(n)]. (2.9)

We have therefore found a basis that spans the colour degrees of freedom of the am-

plitude, as desired. At loop-level a similar decomposition is possible but it will also

contain multi-traces (see e.g. ref. [36]). The sum is over the basis of (n− 1)! elements

that takes into account the cyclic property of the traces. The coefficients An of the

colour basis are colour-ordered or partial amplitudes. They are gauge invariant objects

that are dependent only on kinematic information. Furthermore, their computation is

simpler than the full amplitudes as they only receive contributions from fixed cyclic

orderings of external legs.

2.1.2 Perturbative gravity

Consider the d-dimensional Einstein-Hilbert action with zero cosmological constant

SEH =
2

κ2

∫
ddx
√
−g R. (2.10)

Here κ is the gravitational coupling, related to Newton’s constant via κ =
√

32πGN ,

g is the determinant of the metric, and R is the Ricci scalar. This action describes

pure general relativity, and thus yields the Einstein field equations after variation with

respect to the metric.

We wish to study flat-space scattering amplitudes in an analogous manner to the Yang-

Mills approach; that is, by extracting a set of Feynman rules from the Einstein-Hilbert

action. This can be done in the weak-field limit by expanding the metric as a pertur-
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bation around flat spacetime:

gµν = ηµν + κhµν . (2.11)

The fluctuation hµν is referred to as the graviton field. Inserting this expansion into

the action in eq. (2.10) we obtain a theory describing the interaction of perturbative

graviton states at weak coupling. The action can be written schematically as [16]

SEH ∼
∫
ddx

(
h∂2h+ κh2∂h+ κ2h3∂h+ ...

)
. (2.12)

This theory poses a number of problems for the diagrammatic approach to the computa-

tion of scattering amplitudes. Firstly, the expanded action contains an infinite number

of interaction vertices of arbitrary multiplicity, as denoted by the ellipsis in eq. (2.12).

This is due to the expansions of both the inverse metric in the Ricci scalar and the

square root of the metric determinant. Note that this situation is in stark contrast

to the two vertices with a maximum of four external legs that appeared in Yang-Mills

theory. Furthermore, the structure of each individual vertex is exceedingly complex,

even for low numbers of external legs. This can be seen already in the three-point

vertex. Adopting the de Donder gauge, the three-point graviton vertex is [37]

G
(3)
µρ,νλ,στ (p1, p2, p3) ∼ iκSym

[
− 1

2
P3 (p1 · p2ηµρηνληστ )− 1

2
P6 (p1νp1ληµρηστ )

+
1

2
P3 (p1 · p2ηµνηρληστ ) + P6 (p1 · p2ηµρηνσηλτ )

+ 2P3 (p1νp1τηµρηλσ)− P3 (p1λp2µηρνηστ )

+ P3 (p1σp2τηµνηρλ) + P6 (p1σp1τηµνηρλ)

+ 2P6 (p1νp2τηλµηρσ) + 2P3 (p1νp2µηλσητρ)

− 2P3 (p1 · p2ηρνηλσητµ)

]
. (2.13)

Here Sym denotes a symmetrisation in each pair of graviton Lorentz indices (µρ), (νλ),

and (στ), and Pi denotes a summation over distinct permutations of the external mo-

menta, with the subscript i indicating the number of terms generated in each case. The

complexity of this vertex as compared to the three-point Yang-Mills vertex in eq. (2.5)

is clear. Combining this with the fact that the theory contains an infinite number of

additional vertices, each with increasing complexity, makes the computation of grav-

itational scattering amplitudes using Feynman diagrams incredibly challenging, even

at low multiplicity. As the number of external legs increases and loops are considered,

computations based on the diagrammatic expansion become unfeasible.
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2.1.3 Amplitudes without actions

In the modern approach to scattering amplitudes one rarely takes the approach outlined

above. A broad set of techniques have been developed to circumvent the use of Feynman

diagrams or even the need for an action at all for the computation of amplitudes (see

e.g. refs. [16,38] for reviews). The challenges encountered above can be traced back to

the fact that there is a enormous amount of redundancy in the definition of an action.

Actions are written in terms of off-shell fields, often with gauge or diffeomorphism

symmetries, that are indifferent to arbitrary field redefinitions. However, the end-goal

is to compute gauge-invariant on-shell scattering amplitudes, whose form is usually

far simpler than that of the Feynman diagrams that enter their computation. The

philosophy of the modern amplitudes program is to circumvent these redundancies

by constraining the form of amplitudes by the physical properties of the S-matrix

itself. Reformulating amplitude calculations in this way results in a profoundly different

approach to perturbative quantum field theory as a whole, while also revealing the

presence of novel mathematical structures in the amplitudes themselves.

We can immediately see a manifestation of this principle in the three-point graviton

vertex in eq. (2.13). This is a gauge-dependent object written in terms of off-shell

momenta. Let us now remove this gauge dependency by contracting the vertex into

physical on-shell states satisfying

pi µε
µν
i = 0, εµνi = ενµi , ηµνε

µν = 0, (2.14)

where εµνi is the polarisation tensor associated with leg i. Equation (2.13) then reduces

to

G
(3)
µρ,νλ,στ (p1, p2, p3) ∼ −iκ

[
(p1 − p2)σηµν + cyclic

][
(p1 − p2)τηρλ + cyclic

]
. (2.15)

This expression is clearly far more manageable than the off-shell vertex in eq. (2.13).

However, more interestingly, in taking the vertex on-shell we have unearthed a relation

to the three-point gauge theory vertex in eq. (2.5). Ignoring constant factors, the on-

shell graviton vertex looks like the three-point gauge theory vertex but with the colour

structure replaced by a second copy of the kinematic factor. This similarity between

the vertices was completely obscured in the off-shell formulation.
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2.2 Colour-kinematics duality and the BCJ double copy

2.2.1 A first look at colour-kinematics duality

In the previous section we saw that when written on-shell the three-point graviton

vertex is related to the three-point gluon vertex via some replacement of colour infor-

mation with kinematic information. This is the driving idea behind the double copy,

and it is made possible due to a principle known as colour-kinematics duality. Before

discussing these concepts in generality, it will be useful to see them at play in a simple,

but physical, example: the four-point tree-level amplitude.

The four-point tree-level amplitude in Yang-Mills theory can be computed with the

Feynman rules in eqs. (2.4) - (2.6) (see e.g. ref. [35]). The calculation involves four

diagrams: three that are constructed from the cubic vertex and the propagator, giving

rise to the s-, t-, and u-channel contributions in figure 2.1, and one from the on-shell

four-point vertex. The four-point vertex can itself be written in terms of s-, t-, and

u-channel cubic contributions via trivial multiplications of 1 = s/s = t/t = u/u. This

can be seen as follows

1

2 3

4

∼ fa1a2bf ba3a4n(4)
s + fa1a3bf ba2a4n(4)

u + fa1a4bf ba2a3n
(4)
t

= fa1a2bf ba3a4n(4)
s

(s
s

)
+ fa1a3bf ba2a4n(4)

u

(u
u

)
+ fa1a4bf ba2a3n

(4)
t

(
t

t

)

∼
1

2 3

4

+

1

3 2

4

+
1

4 2

3

, (2.16)

where n
(4)
i represents the kinematic coefficient of each colour factor in the vertex.

Adding this to the contributions from the diagrams in figure 2.1, and grouping to-

gether terms with same colour factor yields the amplitude in the form

iA4 = g2
(csns

s
+
ctnt
t

+
cunu
u

)
. (2.17)

Here ci and ni refer to the colour and kinematic factors respectively. The s, t, and

u subscripts refer to the channels shown in figure 2.1, and in the denominators are

Mandelstam variables corresponding to each channel:

s = (p1 + p2)2, t = (p1 + p4)2, u = (p1 + p3)2. (2.18)
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Figure 2.1: The s-, t-, and u-channel contributions respectively.

The three colour factors ci in eq. (2.17) are given by

cs = fa1a2bf ba3a4 , ct = fa1a4bf ba2a3 , cu = fa1a3bf ba2a4 . (2.19)

Note that these colour factors sum to zero as a consequence of the the Jacobi identity

of the gauge group algebra

cs + ct + cu = 0. (2.20)

The three kinematic factors ni contain the kinematic information corresponding to each

channel, apart from that associated with the propagators. They are formed from various

contractions of momenta and polarisation vectors, satisfying the on-shell conditions

p2
i = 0, pi · εi = 0. The ns factor is given by

ns = [(ε1 · ε2) pµ1 + 2 (ε1 · p2) εµ2 − (1↔ 2)] [(ε3 · ε4) p3µ + 2 (ε3 · p4) ε4µ − (3↔ 4)]

+ s [(ε1 · ε3) (ε2 · ε4)− (ε1 · ε4) (ε2 · ε3)] , (2.21)

while the nt and nu factors are obtained via the replacements

nt = ns
∣∣
1→2→3→1

, nu = ns
∣∣
1→3→2→1

. (2.22)

Surprisingly, the sum of the three kinematic factors is zero,

ns + nt + nu = 0, (2.23)

in direct analogy with the colour factors in eq. (2.20). This relation is an example of a

kinematic Jacobi identity. This is an unexpected result. The constraint on the colour

factors in eq. (2.20) is obtained from purely group theoretic arguments originating from

the Lie algebra structure of the gauge group. At face value, there is no reason to expect

the kinematic dependence of the amplitude to satisfy an analogous constraint. One

might think that this is nothing but a peculiarity of this simple example. However, the

presence of this correspondence between the colour and kinematic degrees of freedom in

the four-point tree-level Yang-Mills amplitude is a primitive example of a more general
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statement known as colour-kinematics duality, which we will discuss in more detail in

the next section.

The four-point Yang-Mills amplitude should be a gauge invariant quantity, such that it

is invariant under the transformation εi → εi + pi. To check that this is the case, let us

confirm that eq. (2.17) vanishes under εi → pi. Consider applying this transformation

to leg four in eq. (2.21), such that

ns → s [(ε1 · ε2)(ε3 · p2 − ε3 · p1) + cyclic(1, 2, 3)]

= sαs. (2.24)

The function αs is invariant under cyclic permutations of (1, 2, 3). As the other kine-

matic numerators are obtained via the cyclic replacements in eq. (2.22), the analogous

functions obtained in the transformation of these numerators will all be equal, such

that αs = αt = αu ≡ α. Thus, under the transformation ε4 → p4, the amplitude

reduces to

iA4 → g2 (csαs + ctαt + cuαu)

= (cs + ct + cu)α, (2.25)

This vanishes as a consequence of the Jacobi identity in eq. (2.20), such that the

amplitude is gauge invariant.

The fact that the colour and kinematic factors in the four-point amplitude satisfy iden-

tical algebraic relations, eqs. (2.20) and (2.23), suggests that they are interchangeable.

That is, by replacing a colour factor with a kinematic factor or vice versa should result

in a well-defined object. Consider the following replacements in eq. (2.17):

iA4

∣∣∣ ci→ni
g→κ/2

≡ iM4 =
(κ

2

)2
(
n2
s

s
+
n2
t

t
+
n2
u

u

)
. (2.26)

The new objectM4 is referred to as the double copy of A4, as the replacement ci → ni

has resulted in a doubling of each kinematic numerator. What then doesM4 correspond

to? Remarkably, the answer turns out to be a four-point tree-level scattering amplitude

in a gravitational theory [39]. We will not formally prove this fact here, but instead

discuss why this should intuitively be the case.

Firstly, if eq. (2.26) is to be a gravitational amplitude it should arise from the scattering

of external graviton states. The squaring of the kinematic numerators implies that the

polarisation vectors can be promoted to symmetric polarisation tensors εµν = εµεν .

For null polarisation vectors we obtain a traceless εµν , and thus we find the traceless
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symmetric polarisation tensors associated with graviton external states. Furthermore,

we require that the amplitude obtained via the double copy is gauge invariant. By gauge

invariance in perturbative gravity we mean invariance under linearised diffeomorphisms

of the graviton field. Such a transformation takes the form

hµν → hµν + ∂µξν + ∂νξµ, (2.27)

where the function ξµ parameterises the diffeomorphism. This implies that the ampli-

tude should vanish under the following transformations of the polarisation tensors

εµνi → pµi ε
ν
i + pνi ε

µ
i . (2.28)

Applying this transformation to leg 4 we find

iM4 ∼ (ns + nt + nu)α (2.29)

which vanishes as a consequence of eq. (2.23). Thus, it is the fact that the kinematic

numerators satisfy a kinematic Jacobi identity that enforces the invariance of the ampli-

tude under linearised diffeomorphisms, in exact analogy to the colour factors in gauge

theory.

2.2.2 Colour-kinematics duality

In the previous section we reviewed a simple manifestation of colour-kinematics duality

and discussed how its presence allowed us to obtain the tree-level four-point amplitude

in perturbative gravity by “double copying” the analogous Yang-Mills amplitude. This

is the simplest physical example of a far more general story, which we turn to now.

For our purposes, it will be sufficient to consider pure gauge theory, containing only

massless adjoint-valued fields. Consider then a general L-loop, m-point scattering am-

plitude in d-dimensional pure gauge theory:

A(L)
m = iL−1gm−2+2L

∑
i∈Γ

∫ L∏
l=1

ddkl
(2π)d

1

Si

cini
Di

. (2.30)

Here g is the coupling and the sum is over all distinct cubic graphs Γ. Associated with

each graph is a symmetry factor Si, a set of loop momenta kl, an inverse factor of Di

containing a product of the internal Feynman propagator denominators, a colour factor

ci, and a kinematic factor ni. The integral is over all loop-momenta. As we have seen

in the example in the previous section, the colour and kinematic factors are the main
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players in colour-kinematics duality, so let us discuss them in more detail.

The colour factors ci contain all information pertaining to the non-abelian gauge group

G under which the fields in the theory transform. As we are considering pure gauge

theory, a generic colour factor will be formed from a string of contracted Lie algebra

structure constants fabc. Thus, while each diagram in the sum in eq. (2.30) corresponds

to a unique colour factor, these factors will not in general be independent, and will

satisfy linear relations inherited from the structure constants, such as the Jacobi identity

fabefecd + f bcefead + f caefebd = 0. (2.31)

There will therefore exist triplets of graphs {i, j, k} which satisfy the identity

ci + cj + ck = 0, (2.32)

which we refer to as a colour Jacobi identity.

The kinematic degrees of freedom of the amplitude are contained within the kinematic

numerators ni and the propagator factors Di. A generic kinematic numerator will be a

gauge-dependent function of the kinematic data associated with a given graph, such as

the external momenta, loop momenta, and polarisations. A set of graphs {i, j, k} are

said to obey colour-kinematics duality or BCJ duality if their kinematic numerators

have the same algebraic properties as their colour numerators. That is, for a set of

duality satisfying diagrams {i, j, k} we have

ci + cj + ck = 0 ⇐⇒ ni + nj + nk = 0, (2.33)

ci = −cj ⇐⇒ ni = −nj . (2.34)

In eq. (2.33), the identity satisfied by the kinematic numerators is referred to as a

kinematic Jacobi identity. The second relation, in eq. (2.34), states that when a colour

factor is antisymmetric, for example under the interchange of two legs, the correspond-

ing kinematic factor is similarly antisymmetric. These are the defining relations of

colour-kinematics duality.

The existence of colour-kinematics duality in an amplitude is far from obvious as

kinematic numerators are non-unique and will in general not satisfy the relations

of eqs. (2.33) and (2.34). As stated already, the kinematic numerators are gauge-

dependent objects, however it turns out they enjoy a far greater freedom than this

alone. Note that the amplitude in eq. (2.30) is invariant under the transformations

ni → n′i = ni + ∆i, (2.35)
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where {∆i} are arbitrary functions of kinematic variables subject to the constraint

∑
i∈Γ

∫ L∏
l=1

ddkl
(2π)d

1

Si

∆ici
Di

= 0. (2.36)

This is referred to as a generalised gauge transformation. Thus, even if the numerators

{ni} satisfy the duality relations in eqs. (2.33) and (2.34), there is an enormous amount

of choice in writing the amplitude in terms of {n′i} for which colour-kinematics duality

will no longer be apparent.

Colour-kinematics duality states that for a generic amplitude in pure non-abelian gauge

theory it is always possible to find a representation in which its colour and kinematic

numerators satisfy the same algebraic relations, as in eqs. (2.33) and (2.34). This has

been proven at tree-level to all m [11], however it remains a conjecture at loop-level.

Despite this, a large number of loop-level examples of duality satisfying amplitudes

have been found, a selection of which we review in section 2.2.4.

2.2.3 The BCJ double copy

A remarkable consequence of colour-kinematics duality is that of the BCJ double copy.

Consider a gauge theory amplitude as in eq. (2.30). The double copy construction

states that given a set of kinematic numerators {ñi} which satisfy colour-kinematics

duality, a gravitational scattering amplitude can be obtained from eq. (2.30) via the

simple replacements

ci → ñi, g → κ

2
, (2.37)

These are valid replacements as the numerators {ñi} obey identical algebraic properties

to the colour factors as a result of the duality, and the induced change in dimensionality

is compensated for by the replacement of the coupling. Performing these replacements

in eq. (2.30) yields

M(L)
m = iL−1

(κ
2

)m−2+2L∑
i∈Γ

∫ L∏
l=1

ddkl
(2π)d

1

Si

niñi
Di

. (2.38)

This object describes an m-point, L-loop scattering amplitude in a gravitational the-

ory [9,10], and is referred to as the double copy of the gauge theory amplitude in (2.30).

Furthermore, starting from the gravitational amplitude it is possible to obtain the gauge

theory amplitude by performing the inverse replacements to those in (2.37). This pro-

cess is referred to as taking the single copy.
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There is an important subtlety in making the double copy replacements of eq. (2.37).

Depending on the gauge group under consideration, it may be that certain contractions

of structure constants produce new algebraic relations between colour factors that are

specific to that gauge group. Such contractions can be thought of as analogous to

performing the loop integrals in the kinematic factors. As the double copy is taking

place in the integrand it is important that the colour factors are kept general, such that

colour and kinematics are treated on an equal footing.

In the construction of the gravitational amplitude in eq. (2.38), very little was specified

about the properties of the two sets of kinematic numerators {ni} and {ñi}. All that

was required is that they describe two valid representations of the gauge theory ampli-

tude, and that one set satisfies colour-kinematics duality. This freedom has important

consequences for the structure of the gravitational theories obtained by the double copy.

Firstly, the two sets of kinematic numerators are allowed to describe different external

states. For example, the spectrum of states in the gravitational theory that arises when

both sets of kinematic numerators are taken from 4-dimensional pure Yang-Mills will

be obtained from tensor products of gluon states. In this case we will find the graviton

graviton±2 = gluon±1 ⊗ gluon±1, (2.39)

but also two scalar states from combinations of opposite helicity gluons, corresponding

to a dilaton and an axion for the symmetric and antisymmetric combinations respec-

tively:

dilaton

axion

}
= gluon±1 ⊗ gluon∓1 (2.40)

The double copy of pure Yang-Mills theory with itself is therefore not pure general

relativity, but a gravitational theory containing a graviton, dilaton, and axion. Such a

theory appears naturally in the low-energy limit of bosonic string theory, and is referred

to as N = 0 supergravity or NS-NS gravity.

Furthermore, there is no requirement that the two sets of kinematic numerators in

eq. (2.38) come from amplitudes in the same gauge theory. This freedom allows for a

wide variety of gravitational theories to be obtained by taking different gauge theories

as input into the double copy. This has led to a vast web of double copy constructible

theories, as reviewed in ref. [5].

As a small example of this web of theories, let us consider one example of another theory

that is related to gauge theory and gravity due to colour-kinematics duality, and that

will play a role later in this thesis. For a set of duality satisfying numerators it should be

possible to obtain a sensible gauge invariant object by moving in the opposite direction
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Figure 2.2: Schematic depiction of three theories related by colour-kinematics duality.
This ladder of theories is itself a subset of a far greater web of double copy constructible
theories, as reviewed in ref. [5].

to the double copy and replacing the kinematic numerator with a second colour factor.

To this end, consider making the following replacements in the gauge theory amplitude

in eq. (2.30):

ni → c̃i, g → y, (2.41)

where y is a new coupling parameter. These replacements are often referred to as taking

the zeroth copy, and the resulting object is

T (L)
m = iL−1ym−2+2L

∑
i∈Γ

∫ L∏
l=1

ddkl
(2π)d

1

Si

cic̃i
Di

. (2.42)

This describes a general scattering amplitude in a biadjoint scalar theory, containing

scalar fields Φaa′ which transform in the adjoint representation of two, possibly different,

Lie algebras [21,40,41]. We are thus left with a chain of maps between three seemingly

disparate theories made possible by the presence of colour-kinematics duality and the

double copy construction, as is shown schematically in figure 2.2.

2.2.4 The BCJ double copy today

The BCJ double copy for amplitudes was first developed in refs. [9, 10]. The exis-

tence of numerators satisfying colour-kinematics duality in pure Yang-Mills has since

been proven at tree-level to all multiplicity via a variety of approaches [11–15]. Further-

more, for such numerators a set of relations between n-point colour-ordered amplitudes,

known as BCJ relations, can be derived [9]. These BCJ relations can themselves be

independently derived from both string theory [42–44] and field theory [45]. One can

then reverse the logic and show that the algebraic relations amongst kinematic numer-

ators follow from the existence of the BCJ relations and Kleiss-Kuijf identities [40].

With the existence of duality satisfying numerators at tree-level on firm ground, the
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question is then whether the application of the double copy replacement rules always

yields the desired gravitational amplitude. This has been proven to be the case provided

one starts with a set of local numerators in Yang-Mills theory, via an inductive con-

struction comparing the gravity amplitudes obtained via the double copy and BCFW

recursion [39].

At loop-level there is currently no general proof that duality satisfying numerators

always exist in Yang-Mills. Despite this, a vast array of highly non-trivial examples of

the double copy in action at loop-level have been found, a few of which we highlight

here. Perhaps the most general loop-level constructions manifesting colour-kinematics

duality are the one-loop n-point amplitudes in pure Yang-Mills with all-plus and single-

minus external particle helicity configurations [46]. We will return to these amplitudes

in chapter 6. By introducing supersymmetry, we can increase the loop-order. In N = 4

super-Yang-Mills duality satisfying numerators have been constructed up to four loops

at n = 4 [47], up to two loops at n = 5 [48], and at one loop up to n = 7 [49]. Many

other loop-level examples exist as well as extensions to more exotic theories, and we

refer to ref. [5] for a comprehensive review of these developments.

The traditional approach to scattering amplitudes involves writing down a Lagrangian

and extracting Feynman rules. One might wonder then whether it is possible to con-

struct Lagrangians whose Feynman rules automatically yield duality-satisfying numer-

ators. This poses a challenge as Lagrangians are inherently off-shell and so we lose

much of the on-shell simplicity of the modern amplitudes programme. Despite this

much progress has been made. Lagrangians manifesting colour-kinematics duality have

been found up to six-points [39, 50] and to any multiplicity in the next-to-MHV sec-

tor [51]. Cubic-order Lagrangians of this kind were constructed in refs. [52, 53]. A

Lagrangian-level double copy analysis of the BRST formalism has been developed in

refs. [54, 55].

2.3 The double copy for classical solutions

In the preceding section the BCJ double copy for scattering amplitudes was introduced.

This is an intrinsically perturbative construction, that relies on colour-kinematics du-

ality holding for the colour and kinematic factors that appear in the perturbative ex-

pansion of an amplitude. However, given the mounting evidence for the validity of

colour-kinematics duality at loop-level, it is natural to ask whether the double copy

also holds at the classical level. That this should be possible is not immediately obvi-

ous as scattering amplitudes are by definition gauge independent objects while general
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classical solutions are not. The invariance of an amplitude under generalised gauge

invariance plays an important role in finding duality satisfying representations of kine-

matic numerators, and thus identifying when a double copy is possible. Furthermore,

it is unclear what the replacement rules should be in a classical solution as we no longer

have a neat general decomposition into colour numerators, kinematic numerators, and

propagators, as for amplitudes. Despite this, a broad variety of classical solutions, both

perturbative and exact, in gauge theory and gravity have been related under the double

copy philosophy of replacing colour information with kinematic information.

To bridge the gap between the BCJ double copy for amplitudes and the double copy

for exact classical solutions, it will be useful to first review the story in the self-dual

sector, as initiated by ref. [29]. Here a double copy can be set up between perturbative

classical solutions to the equations of motion in self-dual Yang-Mills (SDYM) and self-

dual gravity (SDG). Furthermore, due to the close relationship between perturbative

classical solutions and tree-level amplitudes, this can be shown to be equivalent to the

BCJ double copy for amplitudes. From here we will go on to review the first instance of

an exact classical double copy that was found, the Kerr-Schild double copy of ref. [21].

Following a general discussion we will see a simple example of this formalism in action

in the context of the Schwarzschild solution in general relativity. Finally, we will give

an overview of the work that has been done to extend the exact classical double copy

beyond Kerr-Schild solutions.

2.3.1 The double copy in the self-dual sector

The construction and interpretation of self-dual solutions in gauge theory and gravity

will be discussed in Chapters 5 and 6. Here it is sufficient to state that self-dual gauge

fields and metrics respectively satisfy

Fµν =
i

2
εµνρσF

ρσ, Rµνγδ =
i

2
εµνρσR

ρσ
γδ, (2.43)

where Fµν is the field strength and Rµνγδ is the the Riemann tensor. We work here in

Minkowski spacetime and adopt the light-cone coordinates xµ = {u, v, w, w̄}, where

u = t− z, v = t+ z, w = x+ iy, w̄ = x− iy. (2.44)

By now choosing the light-cone gauge Au = 0 and considering a metric of the form

gµν = ηµν + κhµν , (2.45)



32 Chapter 2. Colour-kinematics duality and the double copy

eqs. (2.43) imply that the non-zero components of Aµ and hµν are fixed in terms of

scalar fields Ψ and φ respectively. Furthermore, eqs. (2.43) yield equations of motion

for these scalars:

�Ψ + ig[∂uΨ, ∂wΨ] = 0, (2.46)

�φ+ κ{∂uφ, ∂wφ} = 0. (2.47)

Here Ψ = ΨaT a is valued in the Lie algebra of the gauge group, and we have introduced

the Poisson bracket

{f, g} = (∂uf)(∂wg)− (∂wf)(∂ug). (2.48)

The first equation of motion is often referred to simply as the self-dual Yang-Mills

equation [56], while the second is the Plebanski equation [57]. Clearly these equations

of motion are highly analogous, with the Lie bracket in SDYM replaced by a Pois-

son bracket in SDG. This relationship is formalised by colour kinematics duality. In

momentum space, eqs. (2.46, 2.47) respectively take the form

Ψa(k) = −g
2

∫
d̄p1d̄p2δ̄(p1 + p2 − k)

X(p1, p2)

k2
fab1b2Ψb1(p1)Ψb2(p2), (2.49)

φ(k) = −κ
2

∫
d̄p1d̄p2δ̄(p1 + p2 − k)

X(p1, p2)2

k2
φ(p1)φ(p2), (2.50)

where

X(pi, pj) = piwpju − piupjw, (2.51)

and we have introduced the following notation for convenience

d̄p ≡ d4p

(2π)4
, δ̄(p) ≡ (2π)4δ4(p). (2.52)

We can now note that the non-linear term in the SDYM equations of motion consists

of a colour structure constant fabc, a propagator k−2, and a factor which we can label

F pk
pipj ≡ δ̄(pi + pj − pk)X(pi, pj). (2.53)

These objects can be identified as the structure constants of an infinite-dimensional

kinematic algebra. They are totally antisymmetric and satisfy the kinematic Jacobi

identity

F q
p1p2 F k

p3q + F q
p2p3 F k

p1q + F q
p3p1 F k

p2q = 0, (2.54)
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where the contraction of indices is performed via an integral:

F k
p1q F q

p2p3 =

∫
d̄qδ̄(p1 + q − k)X(p1, q)δ̄(p2 + p3 − q)X(p2, p3) (2.55)

= δ̄(p1 + p2 + p3 − k)X(p1, p2 + p3)X(p2, p3). (2.56)

Reference [29] identified the kinematic algebra as that of area-preserving diffeomor-

phisms in the (u,w) plane. The structure constants arise from the Poisson bracket

evaluated on plane waves:

{e−ik1·x, e−ik2·x} = −X(k1, k2)e−i(k1+k2)·x. (2.57)

For a diffeomorphism in the (u,w) plane, the Poisson bracket is preserved if and only

if it is area-preserving. The infinitesimal generators of such diffeomorphisms are

Lk = e−ik·x(−kw∂u + ku∂w), (2.58)

and the Lie algebra is then

[Lp1 , Lp2 ] = iX(p1, p2)Lp1+p2 = iF pk
pipj Lpk . (2.59)

This is the algebra that is dual to the colour algebra under colour-kinematics duality.

Perturbative solutions to the momentum-space equations of motion of eqs. (2.49, 2.50)

with appropriate boundary conditions encode the tree-level amplitudes in the self-dual

theories [29]. At each order in this perturbative expansion, one finds colour numerators

built from contractions of the colour structure constants, and kinematic numerators

built from analogous contractions of the kinematic structure constants of eq. (2.53).

Whenever a set of three colour numerators satisfy the colour Jacobi identity, the asso-

ciated kinematic numerators satisfy the kinematic Jacobi identity. Colour-kinematics

duality is therefore manifest in the self-dual sectors.

With colour-kinematics duality manifest, it should be possible to double copy the per-

turbative SDYM solutions to obtain SDG solutions by replacing colour factors with

kinematic factors. This is not quite as straightforward as making the replacement

f → F in the terms of the perturbative expansion, as this would involve squaring delta

functions. To identify the correct replacement, one can compute the n-point “off-shell

amplitude” by functionally differentiating the nth-order term in the perturbative ex-

pansion with respect to the sources. The relevant colour and kinematic numerators can

then be read-off, and the double copy takes the form of the standard BCJ procedure.

In this way, the double copy for perturbative classical solutions in the self-dual sector

is seen to be equivalent to the BCJ double copy for tree-level amplitudes.
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The construction of perturbative classical solutions via the double copy has advanced

a long way since this simple example. In ref. [58], perturbative solutions to equations

of motion in full, non-self-dual Yang-Mills and general relativity were related via the

double copy. Perturbative constructions also allow for the application of the double

copy to dynamical classical problems such as black hole scattering and gravitational

radiation. Following initial studies in refs. [59–61], this has rapidly flourished into a

thriving field given the direct phenomenological applications. We defer to ref. [62] for

a thorough review of these developments. This line of work has led to new methods for

the extraction of classical physics from amplitudes [63–65], as well as the application of

the double copy to worldline quantum field theory [66,67] and scattering on strong-field

backgrounds [68].

2.3.2 The Kerr-Schild Double Copy

The fact that a double copy relation can be identified in perturbative classical solutions

is in some sense unsurprising, given that these solutions encode tree-level amplitudes for

which the BCJ double copy is well understood. Remarkably, however, it is also possible

to interpret certain exact classical solutions in terms of the double copy paradigm. This

was first outlined in ref. [21], the results of which we review here.

A family of exact solutions to Einstein’s field equations are the Kerr-Schild metrics (for

a detailed review see ref. [69]). In Kerr-Schild coordinates, the metric takes the form

gµν = ḡµν + κhµν , (2.60)

where ḡµν is some background spacetime, κ is the gravitational coupling, and the de-

viation hµν from the background metric takes the form

hµν = φkµkν . (2.61)

Here φ is a scalar field and k is a vector defined to be both null and geodesic with

respect to the background metric:

ḡµνk
µkν = 0, kµ∇̄µkν = 0, (2.62)

where ∇̄µ is the covariant derivative associated with the background metric. This

further implies that k is null and geodesic with respect to the full metric. Due to these

properties the inverse metric takes the simple form

gµν = ḡµν − κφkµkν , (2.63)



2.3. The double copy for classical solutions 35

and it is therefore possible to raise and lower indices on k with either the background

or full metric. Note that despite the similarity between eq. (2.60) and the linearised

metric that characterises perturbative gravity in eq. (2.11), Kerr-Schild metrics are

exact solutions to Einstein’s equations. The field hµν thus describes some arbitrarily

strong deviation from the background spacetime ḡµν . Despite this, it is customary to

still refer to hµν as the graviton field.

The crucial feature of the Kerr-Schild form in eq. (2.61) is that the graviton field

decomposes into an outer product of the vector k with itself. Remarkably, this form

gives rise to a Ricci tensor that is linear in the graviton field and thus linearises the

vacuum Einstein equations. Specifically, the components of the Ricci tensor are found

to be

Rµν = R̄µν − κhµρR̄ρν +
κ

2
∇̄ρ
(
∇̄νhµρ + ∇̄µhρν − ∇̄ρhµν

)
, (2.64)

where R̄ is the Ricci tensor corresponding to the background metric. It is important

to note that the specific index placement in eq. (2.64) is required for linear dependence

in hµν .

In ref. [21] the particular case of stationary Kerr-Schild spacetimes with flat back-

grounds, ḡµν = ηµν , were considered. The background covariant derivative thus reduces

to the flat-space derivative, and the full metric is time-independent such that

∂0φ = 0, ∂0kµ = 0. (2.65)

We may furthermore set k0 = 1 without loss of generality by absorbing all dynamics

of the zeroth component into φ. With these conditions, the vacuum Einstein equations

reduce to

R0
0 =

1

2
∂i∂iφ = 0, (2.66)

Ri0 =
1

2
∂j
[
∂j
(
φki
)
− ∂i

(
φkj
)]

= 0, (2.67)

Rij =
1

2
∂l

[
∂i
(
φklkj

)
+ ∂j

(
φklki

)
− ∂l

(
φkikj

)]
= 0, (2.68)

where latin indices denote spacelike components. It is possible to interpret these equa-

tions in terms of the double copy. Consider pure Yang-Mills theory with equations of

motion

∂µF aµν + gfabcAµbF cµν = 0. (2.69)

As an ansatz for the gauge field let us take

Aaµ = φcakµ. (2.70)
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This can be obtained from the Kerr-Schild graviton in eq. (2.61) by replacing one of the

Kerr-Schild vectors kµ with a constant colour vector ca. This yields a solution to the

Yang-Mills equations, eq. (2.69), which linearise to give the abelian Maxwell equations

due to the trivial colour dependence:

∂µF aµν = ca∂µ [∂µ (φkν)− ∂ν (φkµ)] = 0. (2.71)

Writing the components of these equations explicitly, we find

∂µF aµ0 = ∂i∂iφ = 0, (2.72)

∂µF aµi = ∂j [∂j (φki)− ∂i (φkj)] = 0, (2.73)

which precisely correspond to eqs. (2.66) and (2.67) respectively. We have thus taken

an exact solution to Einstein’s equations, replaced kinematic information with colour

information, and obtained an exact solution to the Yang-Mills equations. The analogy

with the BCJ double copy for amplitudes has led this correspondence to be referred

to as the Kerr-Schild double copy, with the gauge field in eq. (2.70) interpreted as the

single copy of the graviton field in eq. (2.61).

To further extend the analogy with the perturbative double copy, we can take the zeroth

copy of the gauge field in eq. (2.70) by replacing the vector kµ with a second colour

vector c̃a
′
, to obtain

Φaa′ = φcac̃a
′
. (2.74)

This is a solution to a biadjoint scalar field theory, with equations of motion [21]

∂2Φaa′ + yfabcf̃a
′b′c′Φbb′Φcc′ = 0, (2.75)

where fabc and f̃a
′b′c′ are the structure constants associated with two potentially dif-

ferent Lie algebras. Inserting the field in eq. (2.74) into eq. (2.75), we find that it

abelianises the equations of motion to produce

∂2Φaa′ = ∂2φ = 0. (2.76)

We may therefore interpret Φaa′ as the zeroth copy of the gauge field in eq. (2.70). Note

that the scalar field φ plays a role analogous to the propagators in the BCJ double copy,

as it is present and unchanged in the biadjoint, gauge, and gravity solutions.

We have found a tower of exact solutions that are related by replacements between

colour and kinematic information

Φaa′ = φcac̃a
′
, Aaµ = φcakµ, hµν = φkµkν (2.77)
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This mimics the situation represented in Figure 2.2. A natural question to ask is how

seriously we should take this story for exact solutions as a double copy. In the BCJ

double copy, the replacements between colour and kinematic numerators were justified

by the fact that they obeyed identical algebraic constraints. That is to say, the double

copy for amplitudes was made possible due to the presence of colour-kinematics duality.

In the Kerr-Schild story it is unclear whether replacements between the colour and

kinematic vectors, ca and kµ, can be similarly motivated. Furthermore, as noted in

Section 2.2.3, taking two pure Yang-Mills theories as input into the BCJ double copy

yields pure general relativity along with a dilaton and 2-form field, a theory known

as N = 0 supergravity. However, this seems to differ in the Kerr-Schild double copy,

for which pure Yang-Mills maps to pure Einstein gravity. This is a consequence of the

Kerr-Schild ansatz eq. (2.61). The 2-form field does not appear due to the symmetric

nature of the ansatz, while the k2 = 0 property sets the trace of the ansatz to zero,

and thus the dilaton is not present [21].

These points suggest that the Kerr-Schild ansatz yields a rather special form of a double

copy for classical solutions. Indeed more general methods have since been found that

can be more closely identified with the double copy for amplitudes, and which reproduce

the Kerr-Schild approach where overlap exists. We will review these developments at

the end of this section, but first it will be useful to see the Kerr-Schild double copy in

action in a simple example.

2.3.3 Example: the Schwarzschild solution

The Schwarzschild black hole is a static, asymptotically flat, spherically symmetric

solution to the vacuum Einstein field equations. The Schwarzschild solution can be

written in Kerr-Schild form, in which the metric takes the form

gµν = ηµν +
4GNM

r
kµkν , (2.78)

where M is the positive, point-like mass of the source, r is the radial coordinate, and

the Kerr-Schild vector k is

kµ =

(
1,
xi

r

)
, r2 =

3∑
i=1

xixi. (2.79)

By comparing eq. (2.78) with eq. (2.60), we find the Kerr-Schild form of the graviton

field to be

hµν =
κ

2
φkµkν , φ =

M

4πr
. (2.80)
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To take the single copy of this solution, we make the replacements

κ

2
→ g, M → caT a, kµkν → kµ, (2.81)

where T a are the generators of the gauge group under consideration. This yields a

non-abelian gauge field

Aaµ =
gca

4πr
kµ, (2.82)

where Aµ = AaµT
a. The replacements in eq. (2.81) make sense from the perspective of

the double copy. In the first, the gravitational coupling is replaced by the gauge theory

coupling, as in eq. (2.37) for the amplitude case. The second takes the gravitational

charge, a mass, and replaces it with a colour charge. Finally, the third strips off one

factor of the vector kµ. As expected, the gauge field in eq. (2.82) linearises the Yang-

Mills equations. It is a solution to the sourced Maxwell equations

∂µF aµν = jaν , (2.83)

with a source

jaµ = −gcauµδ(3)(x), (2.84)

describing a static colour charge located at the origin with 4-velocity uµ = (1,0). This

is an interesting outcome. The Schwarzschild solution describes a point-like source at

the origin. In taking the single copy, only the graviton and gauge fields have been

taken into account, however the procedure has correctly identified the source required

to generate the gauge field.

Ref. [21] continued to give a physical interpretation of the single copy gauge field in

eq. (2.82). As the gauge field linearises the Yang-Mills equations, it is a solution to the

abelian Maxwell equations. A gauge transformation therefore acts on the field as

Aaµ → A′aµ = Aaµ + ∂µΛa(x), (2.85)

for which we may choose

Λa = −gc
a

4π
log

(
r

r0

)
, (2.86)

where r0 is an arbitrary length scale introduced to ensure the logarithm argument is

dimensionless. This transformation gives rise to a second gauge field

A′aµ =
gca

4πr
uµ, (2.87)

where uµ = (1,0). This is the Coulomb potential for a static point colour charge

located at the origin; the most general time-independent spherically symmetric solution
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in linearised gauge theory.

It is important to note that this process was only possible due to the Kerr-Schild

form of the metric, and the resultant linearisation of Einstein’s equations. Unlike BCJ

duality, in which the amplitudes identified on either side of the correspondence are gauge

invariant objects, for the classical double copy to work the solutions must be expressed

within a particular gauge. Indeed, the two gauge equivalent solutions in eqs. (2.82)

and (2.87) give rise to different gravity solutions upon taking the double copy. There

is at present no way to circumvent this issue. Thus, in finding new examples of the

classical doubly copy, it is easier to begin with the gravity solution and single copy to

find the corresponding gauge field.

2.3.4 Beyond Kerr-Schild solutions

The Kerr-Schild double copy reviewed here provided the first example of an exact

double copy. Since this point, many other exact classical solutions have been furnished

with a double copy interpretation. With the Kerr-Schild double copy in hand, it should

in principle be possible to identify the single copy of all vacuum metrics that admit

a Kerr-Schild or multi-Kerr-Schild form. Indeed, in ref. [70], the full family of Kerr-

Taub-NUT metrics in vacuum gravity were single copied. Of particular interest here is

Taub-NUT spacetime which single copies to an electromagnetic dyon. This will play an

important role in chapter 3. The Kerr-Schild double copy has further been generalised

to time-dependent solutions [71], as well as to cases where the Kerr-Schild graviton is a

deviation around a curved, rather than Minkowski, background [72]. The most general

double copy for pure Yang-Mills theory is NS-NS gravity. This fact was incorporated

into the Kerr-Schild double copy in ref. [73], in which it was found that the double copy

of a point charge is the Janis-Newman-Winicour (JNW) metric. In ref. [21], a Kerr-

Schild-like approach to self-dual solutions was given, in which the graviton is written

in terms of certain differential operators (we review this story in section 5.1.3). This

construction led to a single copy of the Eguchi-Hanson metric and a first look at the

role of topology in the double copy [74]. There also exist extensions of the Kerr-Schild

double copy formalism to double field theory and supergravity [75,76], exceptional field

theory [77], spacetimes with non-zero cosmological constants [78], and Kaluza-Klein

theory [79].

Despite the incredible amount of progress that has been made with the Kerr-Schild

double copy formalism, the Kerr-Schild family of metrics are highly special. One might

then ask if an exact double copy can be developed for more general gravitational so-

lutions. In ref. [22], a procedure for taking the single copy of all vacuum type-D and
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certain type-N metrics was developed, a formalism known as the Weyl double copy.

Here “type” refers to the algebraic classification of spacetimes introduced by Petrov

(see e.g. ref. [69] for a review). The Weyl double copy makes use of the spinorial for-

mulation of gauge theory and gravity, and provides a double copy in terms of the Weyl

and Maxwell spinors in these theories. For certain vacuum metrics, the Weyl spinor

Ψαβγδ decomposes as [22]

Ψαβγδ =
Φ(αβΦγδ)

S
, (2.88)

where Φαβ is the Maxwell spinor, satisfying the vacuum Maxwell equations in flat

spacetime, and S is a scalar field which satisfies the flat spacetime wave equation. All

type-D and type-N solutions posses a Weyl spinor which decomposes into the specific

spinorial form of eq. (2.88). It can then be shown that the fields on the right-hand side

correspond to Maxwell spinors for all type-D solutions [22] and for non-twisting type-N

solutions [80]. The Weyl double copy is particularly nice in that it can be shown to

provide an explicit connection between the double copy for amplitudes and the double

copy for exact classical solutions [81,82].

Type-D solutions contain all metrics which admit a Kerr-Schild form, but also addi-

tional solutions which do not, such as the C-metric. The Weyl double copy thus gener-

alises the Kerr-Schild double copy to a larger class of exact spacetimes, and agrees with

its results where there is overlap. The Weyl double copy has also been derived from

twistor space, a formalism known as the twistor double copy [23–25]. This provides a

double copy interpretation of type-III solutions as well as the multipole expansion of

vacuum type-D solutions [83]. Alternative exact double copy constructions exist, such

as the convolutional approach of refs. [84–87]. As in the Kerr-Schild and Weyl double

copies, this approach applies at the linearised level, however it has led to insights into

the double copy structure of non-linear interacting Lagrangians [53–55].
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Topology and the double copy

In its traditional form the double copy is a relation between local quantities in different

theories. In the case of the BCJ double copy, locality is built into scattering ampli-

tudes by definition. Similarly, the classical double copy for exact solutions relates fields

defined at the same spacetime point and is thus a local statement. In extending the

remit of the double copy it is therefore interesting to ask whether it can be generalised

in some form to global information, such as non-trivial topology. This is a particu-

larly compelling question from the perspective of the classical double copy. Topology

sometimes plays an integral role in the construction of exact solutions to equations of

motion, such as in the classification of possible solutions. We can therefore ask whether

it is possible to identify a double copy between exact solutions each of which exhibits

a topological characterisation that matches up on either side of the correspondence.

This question was first addressed in ref. [74]. In this work, the classical double copy

for self-dual solutions was studied, building on the Kerr-Schild-like construction for

such solutions first introduced in ref. [21]. This led to the identification of a single

copy for the Eguchi-Hanson instanton in pure general relativity. At face value, this

set-up appears to be the perfect situation to investigate the role of topology in the

double copy, as instantons are inherently topological constructions. As demonstrated

in ref. [74], the Eguchi-Hanson spacetime is in general a topologically trivial solution.

However, by restricting one of the coordinates on the spacetime, one can induce a

non-trivial topology. The single copy of the Eguchi-Hanson metric was found to be

an abelian-like gauge field, as in all previous cases of the classical double copy. By

definition, such fields are topologically trivial, which is consistent with its gravitational

counterpart. However, it is then natural to ask whether the coordinate restriction

considered for the gravitational solution likewise induces a non-trivial topology for the

41
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single copy field. Ref. [74] found that this was not the case, such that the gauge field

remained topologically trivial after restricting the coordinate. In some sense, this is not

a surprising result. The coordinate restriction in gravity plays the important role of

removing a singularity in the field, which in turn gives rise to the topological character.

There is, however, no analogous singularity in gauge theory, such that the single copy

solution remains topologically trivial even after the coordinate restriction. Thus, in this

case, it appears that there is no way in which a counterpart to the non-trivial topology

of a solution on one side of the double copy can be identified on the other.

In this chapter we return to this question, now in the context of a different class of

topologically non-trivial solutions: magnetic monopoles. Monopoles are exact gauge

theory solutions which arise from the introduction of sources in the magnetic field.

While such fields may at first seem prohibited by classical electromagnetism, we will

review in the following section an argument proposed by Dirac to circumvent this issue.

From the perspective of the double copy, monopoles appear in the single copy of the

Taub-NUT metric. In ref. [70], electromagnetic dyons were identified as the single copy

of the Taub-NUT solution, where the electric and magnetic charges are dual to the

mass and NUT charges in the gravitational solution respectively. Magnetic monopoles

then correspond to the single copy of the zero mass limit of the Taub-NUT metric,

known as the pure NUT solution.

In addition to their topological nature, monopole solutions are interesting from the per-

spective of the double copy due to the insights they provide into the non-linear nature

of the correspondence at the level of exact classical solutions. In almost all examples

of the classical double copy, the gauge theory solution is an abelian-like field, such that

it linearises the full Yang-Mills equations. However, as colour information is removed

when taking the double copy, one might expect that solutions with different gauge

groups should map to the same gravitational solution. This was indeed the situation

found in ref. [88]. Here it was shown that an abelian-like Dirac monopole and the non-

abelian Wu-Yang monopole are related by a singular gauge transformation [89,90].1 By

an abelian-like Dirac monopole, we mean a non-abelian dressing of the Dirac monopole,

whose colour structure linearises the Yang-Mills equations. As the Dirac monopole is

related to the pure-NUT solution via the double copy, one can therefore consider either

a fully non-abelian or an abelian-like gauge field as double copying to the same grav-

itational solution. This situation, however, appears to pose a problem in attempting

to map topological information under the double copy. Topological invariants in gauge

1Note that the Wu-Yang monopole is not the same as the Wu-Yang construction of the Dirac
monopole considered later in this chapter. The former is a fully non-abelian monopole solution, while
the latter is a construction of the abelian Dirac monopole in which the wire-like singularities are
removed.
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theory usually rely on the particular gauge group under consideration, whereas the

story outlined here suggests that this is irrelevant from the perspective of the double

copy.

In this chapter we will use magnetic monopole solutions as a playground to investigate

both the non-linear nature of the exact double copy and the role of topology in the

correspondence. We will begin with a brief review of monopole solutions, Taub-NUT

spacetime, and the double copy between them. Following this we will discuss the

general construction of non-abelian monopole gauge fields, from which we will see that

it is always possible to write the non-abelian field as a dressed abelian-like solution,

such that the double copy may be simply performed. This will lead naturally into a

discussion of the topology of monopole solutions, both abelian and non-abelian, and

the Taub-NUT solution. We will see that by recasting the non-trivial topology of all

of these solutions in terms of a patching condition between fields defined on different

domains, we obtain a topological characterisation which matches up on either side of

the double copy correspondence, regardless of the choice of gauge group. This will

therefore correspond to an exact classical solution whose local and global properties

follow the same double copy construction.

3.1 Monopoles and the double copy

3.1.1 Magnetic monopoles

In this section we introduce the basics of magnetic monopoles. Excellent reviews of

this material can be found in refs. [91,92]. Consider the source free Maxwell equations

in 3+1 dimensions2

∂µF
µν = 0, ∂µF̃

µν = 0, (3.1)

where Fµν are the abelian field strength components

Fµν = ∂µAν − ∂νAµ, (3.2)

and F̃µν are the components of the dual field strength ∗F :

∗F = F̃µνdx
µ ∧ dxν , F̃µν =

1

2
εµνρσF

ρσ. (3.3)

2Note that we use a (+−−−) metric signature in this chapter alone, so as to maintain consistency
with the literature.
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The vacuum Maxwell equations are invariant under Lorentz and conformal transfor-

mations, as well as electromagnetic duality

F → ∗F, ∗F → −F, (3.4)

where the minus arises due to the identity ∗2 = −1. At the level of the vector fields

F0i = Ei and Fij = εijkBk, this duality transformation is

E → B, B → −E, (3.5)

and thus constitutes a symmetry between the electric E and magnetic B fields. The

sourced Maxwell equations modify eqs. (3.1) to include electric charges but no magnetic

analogues

∂µF
µν = jνe , ∂µF̃

µν = 0, (3.6)

thereby breaking the symmetry under electromagnetic duality. It is therefore tempting

to conjecture the existence of poles in the magnetic field, such that the equations

governing classical electromagnetism maintain their full symmetries. At first sight, such

a modification seems problematic. The fact that the magnetic field is divergenceless in

standard classical electromagnetism implies that it can be written globally as the curl

of a vector potential, thereby permitting the standard definition of the abelian field

strength in terms of the gauge field Aµ, as in eq. (3.2). The introduction of magnetic

sources jνm, such that

∂µF̃
µν = jνm, (3.7)

prohibits the introduction of the gauge potential. There is, however, a loophole to this

argument. Provided the magnetic sources are point-like, it is possible to define the

gauge field in regions for which jνm = 0. Generically, the topology of such regions will

be non-trivial, and thus it may not be possible to define a non-singular gauge field

everywhere. However, we can obtain a sensible theory provided a given gauge field is

locally well-defined, and related to those defined elsewhere via a gauge transformation

in the regions where their domains overlap. Dirac proposed the existence of magnetic

sources defined in this way, referred to as magnetic monopoles or simply monopoles.

Specifically abelian monopoles are referred to as Dirac monopoles.



3.1. Monopoles and the double copy 45

The Dirac monopole

Magnetic monopoles are point-like sources of the magnetic field. A monopole located

at the origin in R3 will generate a Coulomb magnetic field

B =
QM
4πr2

êr. (3.8)

Here QM is the magnetic charge and the factor of 4π is included in analogy to the

standard definition of the electric Coulomb field

E =
QE

4πr2
êr. (3.9)

We wish to construct a gauge field which, upon taking the curl, gives rise to the magnetic

field in eq. (3.8). The field strength defined from this gauge field should be continuous

and single-valued. The most straightforward construction of such a gauge field was

given by Wu and Yang in ref. [93], and is referred to as the Wu-Yang construction of

the Dirac monopole. The approach is to define two separate gauge fields on a S2 sphere

centred on the monopole. Writing the magnetic charge of the monopole as QM = 4πg̃

for notational convenience, consider the following two vector potentials

AN
i = − g̃εij3x

j

r(z + r)
, AS

i = − g̃εij3x
j

r(z − r)
. (3.10)

In addition to the point-like singularities at the origin r = 0, both of these solutions

feature line-like singularities. The ANi field is singular everywhere along the negative

z-axis, while ASi is singular along the positive z-axis. These singularities are known

as Dirac strings. Away from the singularities the fields in eq. (3.10) are locally well-

defined and their curl generates the magnetic field in eq. (3.8). ANi and ASi can thus

be taken to define a monopole potential in the the northern and southern hemispheres

of the two-sphere respectively, hence the labels N and S. Figure 3.1 provides a pictorial

representation of this setup.

The location of the Dirac strings seems somewhat arbitrary. Indeed, note that the

difference between the northern and southern fields is a gradient:

ANi −ASi = − g̃εij3x
j

r

(
1

z + r
− 1

z − r

)
= 2g̃∂i

[
arctan

(y
x

)]
= 2g̃∂iφ, (3.11)

where in the final equality we have identified the azimuthal angle on the two-sphere φ =



46 Chapter 3. Topology and the double copy
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S

C

(a) (b)

Figure 3.1: (a) The northern Dirac monopole field AN
i in eq. (3.10). The red line

represents the Dirac string singularity, which is aligned with the negative z-axis and
intersects the sphere at the south pole. (b) The Wu-Yang construction of the Dirac
monopole. Two separate fields are defined, that are non-singular within their respective
domains. On the region of overlap, which we take to be the equator, they are related
by a gauge transformation.

arctan(y/x). This difference therefore corresponds to an abelian gauge transformation,

that is singular on the location of the initial and final strings. In this way, via an

appropriate gauge transformation, the Dirac string of an abelian monopole field can be

oriented to coincide with an arbitrary curve running from the origin out to infinity.

In the following, it will be useful to rewrite the vector potentials of eqs. (3.10) in

spherical polar coordinates and to include them as components of a four-dimensional

gauge field. Consider the case for which there is zero electric potential, such that

A0 = 0. Then only the φ-components of the monopole gauge fields are non-zero:

AN
φ = −g̃ (cos θ − 1) , AS

φ = −g̃ (cos θ + 1) . (3.12)

These fields are related by the abelian gauge transformation

AN
µ = AS

µ +
i

g
S(φ)∂µS

−1(φ), (3.13)

where g is the coupling and S(φ) is an element of the U(1) gauge group,

S(φ) = e2igg̃φ. (3.14)

We thus have two gauge fields that are non-singular everywhere within their own hemi-

spheres. We can take their region of overlap to be the equator, θ = π/2, on which they

are equal up to the gauge transformation of eq. (3.13). When taken together, the two

gauge fields in eq. (3.12) constitute a well-defined monopole solution away from the
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origin. To check that the fields defined act as expected, we can calculate the magnetic

flux over the two-sphere at infinity

ΦB =

∫∫
S2

dΣµνFµν , (3.15)

where dΣµν is the area element on the surface. Separating this into separate contribu-

tions from each hemisphere and applying Stokes’ theorem gives

ΦB =

∮
C
dxµ

(
AN
µ −AS

µ

)
= 4πg̃ = QM. (3.16)

This is the desired result, with QM denoting the magnetic charge within the sphere.

Dirac’s quantisation condition

The presence of magnetic monopoles leads to some surprising conclusions when we

attempt to develop a consistent quantum theory involving magnetic sources. Suppose

that an electrically charged particle traverses a closed curve C in the presence of a

monopole, such that the area enclosed by C feels some non-zero magnetic flux. In the

quantum theory, the electrically charged particle’s wavefunction will pick up a phase

after completing this loop, such that

ψ → UCψ, (3.17)

where UC is the Aharonov-Bohm phase factor

UC = exp

(
ig

∫
C
dx ·A

)
. (3.18)

Let us now suppose that the curve C encloses a Dirac string. As this singularity is a

gauge dependent artifact, it should be unobservable. Thus, in the limit in which the

curve is contracted to infinitesimal loop around the string, the phase factor obtained in

the presence of the monopole should match that obtained when the monopole is absent,

UC
∣∣
g̃=0

= UC
∣∣
g̃ 6=0

(3.19)

Consider the northern hemisphere monopole field in eq. (3.12), for which the singularity

lies along the negative z-axis. An infinitesimal loop around the string thus corresponds

to the limit θ → π. In the case in which there is no monopole, for this infinitesimal loop

we simply have UC |g̃=0 = 1. With the monopole present we can perform the integral
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to find

UC
∣∣
g̃ 6=0

= exp

(
ig

∫
dφAN

φ

)
= exp (−2πigg̃(cos θ − 1)) (3.20)

Equation (3.19), in the θ → π limit, therefore translates to

1 = e4πigg̃, (3.21)

such that

gg̃ =
n

2
, n ∈ Z. (3.22)

This result is known as the Dirac quantisation condition. Note that we could have

similarly found this result by requiring that the U(1) element in eq. (3.14) defining the

gauge transformation be single valued, such that S(0) = S(2π).

In deriving the Dirac quantisation condition we have made no assumptions about the

electric or magnetic charges involved, and thus the quantisation condition must hold

for all g and g̃. This is only possible if

g = αgmin, g̃ = βg̃min; α, β ∈ Z, (3.23)

and

gming̃min =
1

2
. (3.24)

Thus, by requiring that the gauge-dependent monopole singularities are unobservable,

we have stumbled across the quantisation of electric charge. In the modern usage, it

is not thought that the Dirac quantisation condition is responsible for the quantised

electric charge that is observed in nature, as the Standard Model already provides an

explanation for this. Instead it can be said that because electric charge is quantised,

the quantisation condition of eq. (3.22) permits the existence of magnetic monopoles.

More exotic monopoles

In this section we have given a brief outline of the description and physical consequences

of sources in the magnetic field.3 In particular, we have considered the simplest mag-

netic monopoles, those that are abelian and singular at the origin. By relaxing both of

these conditions, a far more diverse catalogue of monopoles can be formulated.

3For a recent discussion of the experimental status of magnetic monopoles, see ref. [94].
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Non-abelian monopoles can be constructed either by embedding the U(1) gauge group

of the Dirac monopole in a larger gauge group, or via a particular singular gauge

transformation. This second approach yields the so-called Wu-Yang monopole, not to

be confused with the Wu-Yang construction of abelian monopoles described earlier. We

will consider the case of non-abelian monopoles in detail in the coming sections.

The construction of finite energy monopoles that are non-singular at the origin is also

possible, and leads to the ’t Hooft Polyakov monopole. ’t Hooft Polyakov monopoles

are non-abelian solutions that necessarily appear when Yang-Mills is coupled to a Higgs

field, which by the spontaneous symmetry breaking mechanism causes the gauge group

to reduce to a smaller subgroup. The existence of these solutions has interesting con-

sequences for the development of grand unified theories [92]. We will not consider ’t

Hooft Polyakov monopoles in this work. At present, no double copy interpretation of

these solutions exists, and whether such a correspondence with a gravitational solution

can be set up remains an open question.

3.1.2 The Taub-NUT metric

The Taub-NUT solution [95, 96] is a stationary, axisymmetric solution to the vacuum

Einstein equations (for a modern review, see ref. [97]). It has the important property

that it is not asymptotically flat, but instead has a non-zero rotational character at

spatial infinity. It is therefore not a particularly physical solution, but nevertheless

it continues to play an important role in modern theoretical physics. The metric is

classified by two parameters: a Schwarzschild-like mass term and the so-called NUT

charge, which generates the rotational component of the field.

In spherical coordinates, the Taub-NUT metric is

ds2 = f(r) [dt+ 2N cos θdφ]2 − f−1(r)dr2 −
(
r2 +N2

)
dΩ2, (3.25)

where

dΩ2 = dθ2 + sin2 θdφ2 (3.26)

is the metric on the two-sphere at constant radius, and the radial function f(r) is given

by

f(r) =
(r − r+)(r − r−)

r2 +N2
, r± = M ±

√
M2 +N2. (3.27)

M and N are the mass and NUT charge respectively. Note that for N → 0, the

Taub-NUT solution reduces to the Schwarzschild solution. In the following, we will be

interested in the converse limit known as the pure NUT form of the metric, for which
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we take the mass to vanish, M → 0. The pure NUT metric is then given by

ds2 =
r2 − (κN)2

r2 + (κN)2
[dt+ 2κN cos θdφ]2 −

(
r2 + (κN)2

) [ dr2

r2 − (κN)2
+ dΩ2

]
, (3.28)

where the rescaling N → κN has been made for later convenience. Both the Taub-NUT

and pure NUT metric have coordinate singularities at θ = 0 and θ = π, where they

cannot be inverted. These singularities extend along the entire axes defined by θ = 0

and θ = π, which can be taken to be the positive and negative z-axes respectively.

They are known as Misner strings, first discussed in ref. [98], and are clear analogues

of the Dirac strings found in magnetic monopole gauge fields. The similarities between

the Taub-NUT metric and monopole gauge fields continue in the construction of a

metric that is free of these wire-like singularities. This can be done by dividing spatial

slices into two hemispheres, with the northern hemisphere defined by θ ∈ [0, π/2] and

the southern by θ ∈ [π/2, π]. Within each hemisphere we may perform the following

transformations of the time coordinate:

θ ∈ [0, π/2] : t→ tN = t+ 2κNφ, (3.29)

θ ∈ [π/2, π] : t→ tS = t− 2κNφ, (3.30)

where the N and S labels correspond to the northern and southern hemispheres respec-

tively. Performing these transformations in eq. (3.28), we obtain two forms for the pure

NUT metric:

ds2
N,S =

r2 − (κN)2

r2 + (κN)2
[dt+ 2κN (cos θ ∓ 1) dφ]2 −

(
r2 + (κN)2

) [ dr2

r2 − (κN)2
+ dΩ2

]
,

(3.31)

where the northern (southern) label corresponds to the upper (lower) sign in ∓. The

northern metric is singular at θ = π and is therefore non-singular everywhere in the

northern hemisphere. Similarly, the singularity in the southern metric now coincides

with θ = 0 and it is thus non-singular everywhere in the southern hemisphere. Further-

more, in the overlap region, which corresponds to the equator at θ = π/2, the northern

and southern time coordinates are related by

tN = tS + 4κNφ. (3.32)

The coordinate φ is compact with period 2π, such that

tN = tS + 4κN(φ+ 2π)

= tN + nt0, n ∈ Z (3.33)

and similarly for tS. We therefore find that the time coordinates in each hemisphere
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are compact with period

t0 = 8πκN0, (3.34)

where N0 can be interpreted as a minimum unit of NUT charge. The full NUT charge

that appears in the metric is then defined by

N = nN0, n ∈ Z. (3.35)

The construction of Taub-NUT spacetime in terms of two separate fields therefore

enforces the quantisation of NUT charge.

This process of defining a metric for Taub-NUT spacetime that is free of Misner strings

is highly analogous to the process of defining a gauge field for the Dirac monopole that is

free of Dirac strings, as was outlined in the previous section. In both cases we introduce

two distinct forms for the metric/gauge field. These each contain a wire-like singularity

intersecting one of the poles of a spatial two-sphere, but are finite everywhere else.

They can thus be taken to be well-defined on the northern and southern hemispheres

of the two-sphere respectively. On the region of overlap, which we can take to be

the equator, the two forms of the metric/gauge field are related by a transformation.

For the monopole gauge fields this corresponds to an abelian gauge transformation,

while for the Taub-NUT metric it is a coordinate transformation. Furthermore, the

Dirac quantisation condition finds a natural partner in the quantisation of NUT charge

arising due to the periodicity of the time coordinate. Given this discussion, one can

ask: are these similarities merely a coincidence or are they indicative of some deeper

correspondence between these two field configurations? The double copy provides a

possible answer to this question.

3.1.3 The double copy of an abelian monopole

It has long been known that the Taub-NUT solution in general relativity and magnetic

monopole solutions in abelian gauge theory are highly analogous (see e.g. ref. [97] for

a discussion). In fact, the extent of the similarities between the two solutions has led

to the NUT charge being referred to as a gravitational magnetic charge. One source of

this identification arises from the study of the Euclidean Taub-NUT metric. Here, via

the compactification of the Euclidean time coordinate, one finds a magnetically charged

black hole. For this reason, the Euclidean Taub-NUT metric is sometimes known as a

Kaluza-Klein monopole.

Here we will outline a complementary story, in which the Taub-NUT solution is identi-

fied as the double copy of the abelian magnetic monopole. That such a double copy is
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possible is suggested already by the form of the Taub-NUT metric and the known single

copy properties of the Schwarzschild solution. Recall that the N → 0 limit of Taub-

NUT reduces the solution to the Schwarzschild metric. This can be interpreted as the

double copy of a Coulomb electric charge, as was discussed in section 2.3.3, where the

Schwarzschild mass M is dual, in the sense of the double copy, to the electric charge.

As Taub-NUT is equivalent to Schwarzschild but with an additional NUT charge N

turned on, and as N plays the role of a sort of gravitational magnetic charge, it is

natural to assume that the single copy of the Taub-NUT solution should be a dyon, a

point-like source with both electric and magnetic charge. While this identification is

intuitive, it does not tell us how to single copy Taub-NUT in practice. A prescription

for this was given in ref. [70].

Underlying the ability to single copy the Schwarzschild solution was the fact that it can

be written in Kerr-Schild form. When written in so-called Plebanksi coordinates [99],

the Taub-NUT solution exhibits a double Kerr-Schild form [100]. That is, the metric

takes the form

gµν = ḡµν + κhµν , (3.36)

where ḡµν is a background metric and the graviton hµν decomposes into4

hµν = φMkµkν + ψNlµlν . (3.37)

Here φ, ψ are scalars and M , N are the mass and NUT charge respectively. The vectors

kµ and lµ both satisfy the null and geodesic conditions of Kerr-Schild vectors

ḡµνk
µkν = ḡµν l

µlν = 0, kµ∇̄µkν = lµ∇̄µlν = 0, (3.38)

as well as a mutual orthogonality condition

ḡµνk
µlν = 0. (3.39)

This form for the metric is thus a simple extension of the standard Kerr-Schild coor-

dinates. In general a double Kerr-Schild form will not linearise the Einstein equations.

However, for the Taub-NUT metric in Plebanski coordinates the non-linear part of the

Ricci tensor vanishes, and thus linearisation is achieved [100].

It is possible to take the single copy of the Taub-NUT graviton in eq. (3.37). To do so we

work term-by-term in the two terms that make up the double Kerr-Schild form. This

can be thought of as analogous to how the BCJ double copy for amplitudes applies

separately for terms involving distinct propagators. Thus, we make replacements in

4For the explicit form of the Taub-NUT metric in double Kerr-Schild coordinates see ref. [70].
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the first term of eq. (3.37) corresponding to taking the single copy of the Schwarzschild

solution

M → caT a, kµkν → kµ, (3.40)

along with analogous replacements in the second term

N → c̃aT a, lµlν → lµ. (3.41)

The result is the gauge field

Aµ = φcaT akµ + ψc̃aT alµ, (3.42)

which solves the linearised Yang-Mills equations. Ref. [70] went on to interpret this

gauge field as that corresponding to a dyon, a point-like source possessing both electric

and magnetic charge. The electric charge corresponds to the first term in eq. (3.42),

while the magnetic charge corresponds to the second. Thus, as expected, the mass and

NUT charge in gravity are respectively dual to the electric and magnetic charges in

gauge theory under the double copy.

3.1.4 Abelian, abelian-like, and non-abelian single copies

At this point, it will be useful to pause and discuss the sense in which single copy gauge

fields are non-abelian. A general gauge field obtained via the Kerr-Schild double copy

will take the form

Aµ = φcaT akµ. (3.43)

This is a non-abelian gauge field and can be defined for any gauge group. It is therefore

a solution to the non-linear Yang-Mills equations, however it is a highly special solution

in that it linearises these equations of motion. This makes perfect sense from the per-

spective of the Kerr-Schild double copy. The linearisation of the Yang-Mills equations

corresponds simply to the fact that the gauge field has been obtained by single copying

a metric that takes a Kerr-Schild form, and thus linearises the Einstein equations.

Gauge fields obtained via the Kerr-Schild single copy are therefore abelian-like solutions,

satisfying the Maxwell equations. As such, it will be instructive in the following to

rewrite eq. (3.43) as

Aµ = caT aAabel.
µ (3.44)

where Aabel.
µ is a truly abelian gauge field. The important point here is that if Aabel.

µ

has a known Kerr-Schild double copy, any non-abelian solution of this form, in which

the colour structure factorises completely, can also be straightforwardly double copied.
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One simply removes the colour charge, and double copies the gauge field as if it were

abelian. In this way, it appears that at least in some cases both abelian and non-abelian

gauge fields double copy to the same solution in gravity.

This discussion is relevant in the case of the double copy between magnetic monopoles

and Taub-NUT spacetime for the following reason. In the case of the pure NUT solu-

tion, for which M → 0, the single copy corresponds to a magnetic monopole and can

be written in the form

Aµ = c̃aT aAD
µ , (3.45)

where AD
µ corresponds to a Dirac monopole

AD
φ = −g̃ (cos θ − 1) . (3.46)

Here we have chosen the northern hemisphere gauge field in eq. (3.12), however the

southern field works just as well. Note that this takes exactly the form of eq. (3.44) with

the Dirac monopole playing the role of the abelian gauge field. This is unsurprising as

it was obtained via the Kerr-Schild single copy. In ref. [70] it was not explicitly checked

whether eq. (3.45) corresponds to a genuine non-abelian monopole solution. In the

following, however, we will see that this is the case, and therefore singular monopoles

lie within the class of solutions for which the abelian and non-abelian double copies

align.

3.2 The double copy of a non-abelian monopole

In this section we will examine the structure of point-like non-abelian monopoles, that

are singular at the origin. Much of the literature on non-abelian monopoles focuses

on non-singular solutions, which arise in spontaneously broken theories with additional

scalar fields (for reviews see e.g. ref. [92]). It is not yet known how to double copy

such solutions, and so here we focus on the singular case. The key to this analysis will

be the ability to find a gauge in which the non-abelian monopole gauge fields take a

form in which the colour structure completely factorises. The fact that this is possible

is not new information, however its interpretation in terms of the double copy is novel.

Furthermore, it will lead us to an interesting topological perspective on the double

copy, that we will see in the following section.
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3.2.1 The gauge field of a non-abelian monopole

Here we construct the most general gauge field describing a singular magnetic monopole

in non-abelian gauge theory with gauge group G. The procedure follows that found in

ref. [92]. We focus on static solutions with magnetic charge but no electric charge, such

that F0i = 0 and we may pick a gauge in which A0 = 0. Furthermore, let us assume

that we can expand the remaining Cartesian components of the gauge field in inverse

powers of the radial coordinate r, such that

Ai =
ai(θ, φ)

r
+O(r−2). (3.47)

Here Ai = Aai T
a and ai = aai T

a are valued in the Lie algebra of G. This generates a

magnetic field

Bi = −1

2
εijkFjk, (3.48)

where Fij are the spatial components of the Yang-Mills field strength. For a point-like

monopole solution we want a magnetic field with r−2 dependence, corresponding to a

Coulomb-like charge. As the magnetic field is given in terms of the field strength, which

contains partial derivatives of the gauge field and a non-linear term, the highest-order

terms in the gauge field that will contribute go like r−1. Thus we can omit the O(r−2)

terms in eq. (3.47).

To avoid any issues arising from the unavoidable singularity at the origin, we consider

the field only for r > r0, where r0 is the small but non-vanishing radius of a sphere

centred on the monopole. To simplify the analysis, we now begin by choosing a gauge

in which Ar = 0. This can be done by finding a non-abelian gauge transformation such

that

Ar → UArU
−1 + U∂rU

−1 = 0. (3.49)

A solution to this expression is

U−1(r, θ, φ) = P exp

[
i

g

∫ r

r0

dr′Ar(r
′, θ, φ)

]
, (3.50)

where P denotes path ordering [92]. This describes an integration along radial lines,

with the lower bound protecting the integral from the singularity at the origin. A similar

procedure can be implemented for Aθ by integrating along lines of constant r and φ,

resulting in a gauge in which Aθ = 0. This leaves Aφ as the only non-zero component of

the potential, and we may determine its form from the equations of motion. As stated

previously, the monopoles considered here are time-independent with no electric charge,

so the F0i components of the field strength vanish. Furthermore, the assumptions made
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thus far imply that at large distances Aφ is independent of r. The only non-vanishing

component of the field strength is therefore

Fθφ = ∂θAφ. (3.51)

The Yang-Mills equations of motion in spherical coordinates are

∂µ
√
ηFµν − ig[Aµ,

√
ηFµν ] = 0, (3.52)

where η is the absolute value of the determinant of the Minkowski metric. The field

equations give rise to two non-trivial equations of motion:

∂θ
√
ηF θφ = 0, (3.53)

∂φ
√
ηF φθ − ig[Aφ,

√
ηF φθ] = 0. (3.54)

The first equation enforces

∂θ

(
1

sin θ
∂θAφ

)
= 0, (3.55)

which admits a general solution

Aφ = M(φ) +
QM (φ)

4π
cos θ. (3.56)

Here M(φ) and QM (φ) are Lie algebra valued matrices, and the factor of 1/4π has been

included by convention. As in the abelian case, it is not possible for this potential to be

well-defined for all θ and we will once again end up with a Dirac string. Choosing this

to lie along the negative z-axis, we require that Aφ vanishes at θ = 0 to avoid another

singularity at the north pole. This fixes M(φ) to be

M(φ) = −QM (φ)

4π
. (3.57)

Now using eqs. (3.56) and (3.57) in the second equation of motion, eq. (3.54), yields

∂φQM (φ) = 0, (3.58)

and hence QM is a constant matrix. The general solution for the gauge field is therefore

AN
φ =

QM
4π

(cos θ − 1), (3.59)

where the label N denotes that this is non-singular everywhere in the northern hemi-
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sphere. From eq. (3.48), we find that this generates a magnetic field

Bi =
QM
4π

r̂i
r2
. (3.60)

This is precisely the form of eq. (3.8). It differs in the fact that the charge QM is now

a matrix in the Lie algebra of G, rather than a scalar. This will be referred to as the

magnetic charge matrix.

The form of the gauge field in eq. (3.59) has important consequences for the double

copy. We see that it is just a Dirac monopole (eq. (3.12)) dressed with a non-abelian

charge matrix. This is exactly the form of eq. (3.45), which is already known to be

the single copy of Taub-NUT spacetime. We may therefore conclude that it is always

possible to choose a gauge in which the double copy of the non-abelian monopole is

straightforward, regardless of the gauge group within which it is embedded. Thus, for

arbitrary gauge groups, the double copy of a non-abelian monopole is the pure NUT

solution in gravity.

3.2.2 Classifying the monopole solutions

The monopole gauge field in eq. (3.59) is defined with the Dirac string aligned along the

negative z-axis. As in the abelian case the location of this string singularity is arbitrary,

and can be moved to align with any curve via an appropriate gauge transformation.

To define a non-abelian gauge field that is non-singular everywhere away from the

origin, we can follow the process prescribed by the Wu-Yang construction for abelian

monopoles. That is, we introduce a second gauge field for which the Dirac string is

located in the opposite direction, aligning with the positive z-axis,

AS
φ =

QM
4π

(cos θ + 1). (3.61)

This is therefore non-singular everywhere in the southern hemisphere. The northern

and southern fields are related by a non-abelian gauge transformation

AN
µ = S(φ)AS

µS(φ)− i

g
S(φ)∂µS

−1(φ), (3.62)

where

S(φ) = exp

[
igQM

2π
φ

]
. (3.63)

Requiring this to be single valued, such that S(0) = S(2π), leads to

eigQM = I, (3.64)
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where I is the identity element in G. This is the non-abelian generalisation of the Dirac

quantisation condition in eq. (3.22).

Let us now study the form of the magnetic charge matrix QM . Recall that the Cartan

subalgebra of G is the largest subset of mutually commuting generators [101]. Without

loss of generality, we can always write QM as a linear combination of the generators Hi

of the Cartan subalgebra [102], such that

QM = 4π
r∑
i=1

w∗iHi, (3.65)

where r denotes the rank of G, and the coefficients w∗i are known as magnetic weights.

The reason for the star notation will become apparent soon. Let us collect the mag-

netic weights into a magnetic weight vector w∗. In a basis where Cartan subalgebra

generators Hi are simultaneously diagonalisable, the diagonal elements of QM will take

the form 4πw∗ · w. The vector w is a weight vector in the representation in which

the Cartan generators are expressed. Taking this form of the charge matrix in the

generalised quantisation condition, eq. (3.64), reduces it to a condition on the weights

and magnetic weights:

w∗ ·w =
n

2g
, n ∈ Z. (3.66)

The magnetic weights w∗ are the weights of a Lie group G∗ that is dual to G. To

see this, consider the well-known fact that for a given representation the roots α and

weights w must always satisfy [101]

2w ·α
α2

= N, N ∈ Z. (3.67)

Hence, a solution to eq. (3.66) is

w∗ =
∑
i

niα
(i)∗ =

∑
i

ni
α(i)

|α(i)|2
, (3.68)

where ni are integers and α∗ = α/|α|2 are the roots of the dual group G∗. We are thus

left with two separate systems of root lattices. Following the terminology of ref. [92],

we refer to G and G∗ as electric and magnetic gauge groups respectively. The electric

gauge group G has roots α and weights w which correspond to representations of the

fields present in the theory. The magnetic group G∗ has roots α∗ and weights w∗ which

correspond to the possible magnetic charges. If both groups share the same Lie algebra,

then their root vectors will differ only by a rescaling. Furthermore, if G is the universal

covering of the algebra then all possible magnetic weights are specified by eq. (3.68).

In general more solutions will exist. A number of examples of electric gauge groups G
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and their magnetic duals G∗ can be found in ref. [102].

Non-abelian monopole solutions are characterised by the magnetic charge matrix, and

we have now seen that the possible values of this matrix are fixed by the weights of the

magnetic gauge group G∗. Naively, it would appear that there should be an infinite

number of possible magnetic charges, corresponding to arbitrary weight vectors in the

dual root lattice. However, it turns out that these do not all correspond to physically

distinct or stable monopoles. Now that the problem of finding magnetic charge matrices

has be formulated in the language of roots and weights, known results from group theory

can be used to constrain the possible solutions.

Firstly, any magnetic weight w∗ necessarily gives rise to a second weight −w∗. Hence,

one might assume the existence of two separate monopole solutions with charge matrices

QM and −QM . However, the orientation of the generators within the Cartan space

can be transformed such that Hi → −Hi under a global gauge transformation. The

monopoles defined by charge matrices differing by a sign can therefore be identified as

physically equivalent. This identification can be generalised to include other symmetries

of the root and weight system. Consider two weights r and s such that r 6= s. We may

always define a third weight via a Weyl reflection of s with respect to r [103],

wr : s→ wr(s) = s− 2r
s · r
|r|2

. (3.69)

This transformation describes the reflection of s with respect to the hyperplane in the

root space that is perpendicular to r, and gives rise to the root wr(s). Weyl reflections

of magnetic weights transform the magnetic charge matrix in an identical way to gauge

transformations of the Cartan generators. Hence, two magnetic charge matrices defined

by magnetic weights related by Weyl transformations give rise to physically equivalent

monopoles.

Further restrictions arise from the structure of the lattice generated by the magnetic

weights. Weight lattices may be divided into sublattices, where each sublattice contains

weights that differ by an integral sum of roots. For two weights in separate sublattices

this cannot be the case. It can be shown that there is a one-to-one correspondence

between the magnetic weight sublattices and the elements of the first homotopy group of

G [92]. Only monopole solutions with magnetic weights existing in separate sublattices

can be considered to be physically distinct. Furthermore, stability analysis carried out

in refs. [89, 91] found that within each sublattice the only stable solution is that with

the minimum value of trQ2
M . All other solutions corresponding to magnetic weight

vectors within a given sublattice will decay to the solution corresponding to this value.

Thus, all monopoles that exist within the same sublattice as the origin, corresponding



60 Chapter 3. Topology and the double copy

to the zero-charge configuration, are topologically equivalent to the vacuum. After

factoring out these considerations, we find that the number of physically distinct stable

monopoles is equal to the number of elements of the first homotopy group of G, with

one subtracted corresponding to the zero-charge vacuum solution.

It is important to note that this instability of monopoles with non-minimal magnetic

weights within a given sublattice necessitates a careful specification of the gauge groups.

If either the electric or magnetic gauge group is the universal covering group G̃ of the

Lie algebra, then the other will be the adjoint group G̃/K, where K is the centre

of G̃. Thus if we consider Yang-Mills with G = SU(N), the magnetic group will be

G∗ = SU(N)/ZN . However, all weights of SU(N)/ZN lie in the same sublattice as the

weight at the origin of the lattice. All monopole solutions for G = SU(N) are therefore

dynamically unstable and will reduce to the vacuum solution. This, however, is not the

case for G = SU(N)/ZN and G∗ = SU(N), as the N sublattices of the weight lattice

of SU(N) allow for N − 1 stable monopole solutions. This structure is closely related

to the topological properties of monopole solutions, and we turn to this now.

3.3 A topological view of the double copy

3.3.1 The topology of abelian monopoles

In defining a gauge field for an abelian monopole that is non-singular everywhere away

from the origin we required the introduction of two separate fields that are related via

a gauge transformation in the region in which they overlap, which we take to be the

equator. The patching together of two fields on the equator is in fact an inherently

topological construction, as can be made apparent via a fibre bundle interpretation of

the monopole gauge fields.

Yang-Mills theory admits an elegant geometrical formulation in terms of principal fibre

bundles. The gauge field is interpreted as a connection on a manifold that looks locally

like the product space M× G. Here M is the base space, which for Yang-Mills on a

flat background is simply Minkowski spacetime. G is the fibre, which in the case of

principal fibre bundles aligns with the gauge group. While the fibre bundle appears

locally to be the product space M× G, its global structure may differ. Thus, for a

given gauge group, more than one fibre bundle may possess the same local structure.

This description reduces the classification of topologically non-trivial gauge fields to

that of distinct fibre bundles.
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In the case of the Dirac monopole, that is necessarily singular at the origin, the base

space is Minkowski spacetime with the origin removed. The spatial part of this manifold

is thus R3 − {0}, which is homeomorphic to a sphere S2. Note that it is a well known

result that it is not possible to define a vector field on S2 without it being singular at a

point. This itself explains the presence of the Dirac string singularities. As we are here

considering abelian monopoles, the fibre is simply U(1) = S1. Restricting ourselves

to time independent monopoles, our principal bundle is thus locally the product space

S2 × S1.

We now define two charts {LN, LS} that provide an open covering of the base space S2,

LN = {(θ, φ) | θ ∈ [0, π/2], φ ∈ [0, 2π)} (3.70)

LS = {(θ, φ) | θ ∈ [π/2, π], φ ∈ [0, 2π)} (3.71)

These correspond to the northern and southern hemispheres of the base space respec-

tively. The gauge fields of eq. (3.12) provide local connections on their respective

hemispheres. On the equator, where the two fields overlap, they are related by a gauge

transformation. Consider the family of circles C(θ) on the two-sphere at infinity, as

shown in figure 3.2(a). These circles are characterised by the polar angle θ such that

the entire sphere is covered as θ goes from 0 to π. To each loop one may associate a

U(1) group element:

U(θ) = exp

(
ig

∮
C(θ)

dxµAµ

)
. (3.72)

This is an example of a Wilson loop, a fact that we will return to in the following

chapter. The group element U(θ) defines a map from a circle C(θ) on the base space

to the fibre, U : S1 → S1.

Let us consider the behaviour of this group element as θ varies from 0 to π. At θ = 0,

C(0) is an infinitesimally small loop centred on the north pole, and thus corresponds

to the identity element of the gauge group. In the interval θ ∈ [0, π/2], U(θ) then

traces out a smooth curve in the gauge group. However at θ = π/2, corresponding

to the equator, there is a discontinuity where the gauge field instantaneously switches

from its northern form to its southern form. Then for θ ∈ [π/2, π], U(θ) continues in

a smooth fashion until θ = π, where U(π) is again the identity element corresponding

to an infinitesimally small loop now centred on the south pole. Let A correspond to

the point defined by U(π/2) in terms of AN
µ , and B correspond to U(π/2) in terms of

AS
µ. Physically, eq. (3.72) represents the Aharonov-Bohm phase factor picked up by the

wavefunction of an electrically charged particle upon moving around the closed loops

C(θ) [104]. Requiring that this is single valued at all points on the equator corresponds
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(a) (b)

A B

Figure 3.2: (a) A family of curves parameterised by θ. The north and south poles
correspond to θ = 0 and θ = π respectively, such that the entire sphere is covered
as θ varies from 0 to π. (b) The closed loop in the gauge group associated with the
curves in (a) via eq. (3.72). The discontinuity between A and B corresponds to the
gauge field changing from its northern to its southern form at the equator. However,
for correct patching of the gauge fields, A and B must be associated with equivalent
group elements.

to the requirement that the points A and B correspond to equivalent group elements.

Thus, as C(θ) covers the entire sphere for θ ∈ [0, π], U(θ) traces out a closed curve in

the gauge group. This is depicted in figure 3.2(b).

From this discussion we see how the presence of the monopole within the sphere gives

rise to a topological obstruction, with the magnetic charge classified by the possible

ways of joining the points A and B in the gauge group G. This corresponds to the set

of equivalence classes of topologically inequivalent closed loops in G, which is just the

first homotopy group π1(G). In the present case we have

π1(U(1)) = Z. (3.73)

This is the simple result that any closed loop can wrap around a circle an integer

number of times. There are thus an infinite number of different monopole solutions

corresponding to the discretely different U(1) principal bundles. By imposing that the

points A and B must correspond to equivalent group elements, we require

UN

∣∣
θ=π

2
= e2πinUS

∣∣
θ=π

2
, n ∈ Z (3.74)

where UN and US correspond to eq. (3.72) written in terms of the northern and southern

hemisphere gauge fields respectively. As eq. (3.72) is a U(1) element, this is simply the

statement that

eiφ = ei(φ+2πn). (3.75)
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Inserting the gauge fields of eqs. (3.12), eq. (3.74) translates to

ig

∮
C(π

2
)
dxµ

(
AN
µ −AS

µ

)
= 2πin, (3.76)

which, upon performing the integrals, enforces the Dirac quantisation condition of

eq. (3.22). While this construction is more obscure for the case of non-abelian monopoles,

the general philosophy carries over. We turn to this situation next.

3.3.2 The topology of non-abelian monopoles

Let us now generalise the preceding discussion to the topology of non-abelian monopoles.

The initial set-up carries over from the abelian case. We remove the singularity at the

origin such that spatial slices of the spacetime surrounding the monopole are topologi-

cally equivalent to S2. This requires at least two coordinate patches, which we take to

be the northern and southern hemispheres. Once again we consider the set of curves

C(θ) shown in figure 3.2(a), which are now associated with elements of the non-abelian

gauge group G via

U(θ) = P exp

(
ig

∮
C(θ)

dxµAµ

)
, (3.77)

where P denotes path ordering of the gauge fields along the curve, which is required

as we are integrating over a non-abelian gauge field. Equation (3.77) provides a map

from the the curves C(θ) to the gauge group, such that

U : S1 → G. (3.78)

As θ varies from 0 to π this traces out a curve in the gauge group, with θ = 0, π

corresponding to the identity element. At θ = π/2 there is a discontinuity generated

by the gauge field switching from its northern to southern form, where these fields

are given in eqs. (3.59) and (3.61) respectively. Due to the clear similarities with the

abelian case, this situation may also be represented by figure 3.2(b), where A and B

represent the points corresponding to U(π/2) in terms of the northern and southern

field respectively. We require that A and B correspond to equivalent group elements.

Let H be the group of transformations between A and B such that they are identified

as equivalent, then the patching condition for non-abelian fields can be written as

P exp

(
ig

∮
C
dxµAN

µ

)
= UH

[
P exp

(
ig

∮
C
dxµAS

µ

)]
, (3.79)
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where UH is an element of H and C ≡ C(π/2) is the curve coinciding with the equator.

As H is simply the group of transformations between the points A and B such that

they are equivalent group elements, each correct patching in eq. (3.79) corresponds to a

different closed loop within the gauge group, the set of which forms the first homotopy

group π1(G). We refer to eq. (3.79) as the patching condition for non-abelian gauge

fields. The patching condition encodes the non-trivial topology of the non-abelian

monopole. For a gauge group G = G̃/K, when G̃ is the universal coving group, the

relevant homotopy group is

π1(G̃/K) = K. (3.80)

For pure gauge theory we have G = SU(N)/ZN and thus π1(G) = ZN . Here the

monopole corresponding to the identity element is topologically equivalent to the vac-

uum solution, and is thus unstable. We therefore findN−1 stable non-abelian monopole

solutions, consistent with the discussion of the previous section.

Let us consider the simple case of G = SU(2)/Z2 = SO(3). In this case we have

π1(SU(2)/Z2) = Z2, (3.81)

such that there are two distinct monopole configurations. The trivial patching is topo-

logically equivalent to the vacuum solution. We are thus left with a single stable

monopole configuration, corresponding to the patching condition

P exp

(
ig

∮
C
dxµAN

µ

)
= −I

[
P exp

(
ig

∮
C
dxµAS

µ

)]
, (3.82)

where I is the identity element in the gauge group. For the case of an abelian gauge

group, the condition of eq. (3.79) reduces to an abelian patching condition. This can

be easily seen by noting that a general element of H is

UH = e2πin, n ∈ Z, (3.83)

corresponding to the fact that π1(U(1)) = Z. Taking this in eq. (3.79) and noting that

the path ordering is no longer necessary for abelian fields, we reacquire eq. (3.74).

The form of the non-abelian patching condition in eq. (3.79) has interesting conse-

quences for the double copy. In the abelian case, the patching condition is equivalent,

up to a constant factor, to the first Chern number

c1 =
1

4π

∫
Σ
FµνdΣµν , (3.84)

where Σ is the closed surface, in our case S2. This is to be expected as the first
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Chern number classifies the topology of U(1) principal bundles. However, for other

gauge groups, this relation will not necessarily carry over and a different topological

invariant will need to be found. For example, in the case of SU(N) monopoles, the first

Chern number vanishes as the generators are traceless. This creates an issue in trying

to identify global characteristics which match up on either side of the double copy

correspondence. We have seen that monopoles in arbitrary gauge groups double copy

to the same gravity solution, and thus it appears that the double copy is in some sense

blind to the gauge group. On the other hand, this is clearly not the case for topological

invariants which are fully dependent on the gauge group. We see here, however, that it

is not actually necessary to identify a topological invariant, as the patching condition of

eq. (3.79) completely specifies the non-trivial topology of the monopole solutions, and

its form remains constant regardless of the gauge group within which the monopole is

embedded. Furthermore, we will now see that eq. (3.79) has a well-defined gravitational

counterpart.

3.3.3 The topology of Taub-NUT spacetime

To develop a topological description of the Taub-NUT solution that relates to the

preceding discussion in gauge theory, it will be useful to obtain the periodicity condition

in eqs. (3.32) and (3.34) via an alternative approach. This involves considering the time

shift experienced by a test particle upon moving around a closed loop, known as the

time holonomy. This is defined by [105]

|∆t| =
∮
C
dxi

g0i

g00
, (3.85)

where C is a closed loop and i ∈ {1, 2, 3} denotes spatial indices. Recall that in

section 3.1.2 we introduced a northern and southern form for the pure NUT metric in

eq. (3.31), in analogy to the Wu-Yang construction of the Dirac monopole. Taking the

r →∞ limit in these metrics leaves them in the form

gN,Sµν = ηµν + κhN,Sµν , (3.86)

where the only non-zero components of the graviton fields are

hN,S0φ = 2N (cos θ ∓ 1) , hN,Sφφ = 4κN2 (cos θ ∓ 1)2 . (3.87)

Thus, the time holonomy reduces to a form completely in terms of the graviton fields,

|∆tN,S | = κ

∮
C
dxihN,S0i . (3.88)
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Consider evaluating the time holonomy around one of the curves of constant θ shown

in figure 3.2. Due to the φ independence of hN,S0φ this takes the simple form

|∆tN,S(θ)| = κ

∮
C(θ)

dφhN,S0φ dφ = 2πκhN,S0φ . (3.89)

The time shifts form a subgroup of the general group of diffeomorphisms that act in

general relativity. At the equator, where the northern and southern fields overlap, we

require that the time holonomies arising from each field coincide. However, evaluating

the difference on the equator we find that

|∆tS(π/2)| − |∆tN (π/2)| = 8πκN. (3.90)

Thus the periodicity condition given in eqs. (3.32) and (3.34) is required for the appro-

priate patching of the fields around the equator.

There is an similar construction which makes contact with the original argument

given by Dirac for the quantisation of electric charge in the presence of an abelian

monopole [106]. In ref. [107] analogies between linearised gravity and magnetic monopoles

were studied. This was done by considered the phase picked up by the wavefunction of

a non-relativistic test particle of mass m as it traverses a closed loop C in a non-trivial

gravitational background. It was found that if h00 = 0, then in the weak-field limit this

phase is given by

Φ = exp

[
iκm

∮
C
dxih0i

]
. (3.91)

Note that this is simply the exponentiated time holonomy of eq. (3.88)

Φ = eim|∆t|. (3.92)

For this to be well-defined on the equator, where the northern and southern fields over-

lap, the difference in the phases evaluated with each field must be an integer multiple

of 2π, such that

κm

∮
C
dxi
[
hN0i − hS0i

]
= 2πn, n ∈ Z. (3.93)

By substituting the explicit forms for the pure NUT metrics in eq. (3.87), this yields

mκN =
n

4
, (3.94)

implying that the mass of the test particle is quantised. Reference [107] was unsure

about how to interpret this mass. However, the periodicity of the time coordinate

makes this clear. The mass m describes the energy of a static wavefunction in the

presence of the NUT charge. If the time coordinate is compact with period t0, this
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implies that the mass m is quantised according to

∆m =
2π

t0
. (3.95)

Equation (3.94) implies

∆m =
1

4κN0
, (3.96)

so that combining this with eq. (3.95) yields the period of the time coordinates as

required.

The periodic time coordinate gives the Taub-NUT solution the topology of a U(1)-

bundle over S2. On the equator we require that the northern and southern metrics

are correctly patched together. Consider forming the following quantity from the time

holonomies of eq (3.88)

Φ(θ) = exp

(
iκ

∮
C(θ)

dxµh0µ

)
, (3.97)

where C(θ) are again the family of curves covering the two-sphere at infinity in fig-

ure 3.2(a), and we have used the fact that h00 = 0. Due to the periodicity of the time

coordinate, this provides a map from the base spacetime into the fibre, Φ : S1 → S1.

We can now follow the same process as in the monopole case. At θ = 0, C(0) describes

an infinitesimally small loop centred on the north pole, and thus eq. (3.88) corresponds

to the identity element of the group. As θ varies from 0 to π a curve is traced out in

the U(1) group manifold, with C(π) once again corresponding to the identity element.

There is, however, a discontinuity at θ = π/2 where the graviton field switches from

its northern to its southern form. This can once again be represented pictorially by

figure 3.2(b). We therefore must patch the graviton fields at the equator such that

exp

(
iκ

∮
C
dxµhN0µ

)
= UH

[
exp

(
iκ

∮
C
dxµhS0µ

)]
, (3.98)

where UH is an element of the group of transformations between points A and B in

figure 3.2(b), and C ≡ C(π/2). The elements of the group H represent equivalence

classes of closed loops in the group manifold, and are therefore in one-to-one correspon-

dence with the elements of the first homotopy group. As the group here is U(1), an

example of a general element UH can be found in eq. (3.83). Eq. (3.98) is therefore the

patching condition for Taub-NUT spacetime, which classifies the non-trivial topology

of the solution.
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3.3.4 Discussion

Here we have developed a description of the topology of monopoles, both abelian and

non-abelian, and Taub-NUT spacetime in terms of patching conditions. The patching

condition for the Taub-NUT solution in eq. (3.98) is a direct analogue of the patching

condition for the non-abelian monopole in eq. (3.79). As these conditions encode the

non-trivial topology of their respective objects, and these objects are indeed dual under

the double copy, they represent global information that is preserved under the double

copy correspondence. Thus, eqs. (3.79) and (3.98) act as an example of a global rather

than local statement of the double copy. It is not surprising that the Taub-NUT

condition takes an abelian-like form, while the monopole case can be abelian or non-

abelian. This precisely mimics the local statement of the double copy in which the

colour structure, within which the non-abelian nature of the monopole is encapsulated,

is removed upon taking the double copy. Hence, as in the local case, an abelian-like

construction is always obtained in the gravity theory, regardless of the gauge group one

starts with in the gauge theory.

A curious property of the patching conditions of eqs. (3.79, 3.98) is that they are

phrased in terms of certain Wilson line operators. One might then ask whether the

general form of such operators can be interpreted from the perspective of the double

copy. This indeed turns out to be the case, as we will see in the next chapter. However,

in answering this question we will be left with another, associated with the closely

related concept of holonomy.



Chapter 4

Wilson lines, holonomy, and the

double copy

In the previous chapter we developed an example of the classical double copy in which

both the global and local structure of certain solutions was identified under the cor-

respondence. This topological perspective represents one possible route into the non-

perturbative structure of the double copy. In this chapter we will take an alternative

albeit closely related path, centred on the geometrical concept of holonomy.

Loosely speaking, holonomy describes the transformation of certain mathematical ob-

jects after parallel transport in a non-trivial background. The set of all such transfor-

mations forms a group structure, known as the holonomy group. In both gauge theory

and gravity, the geometrical origins of the holonomy are closely analogous. Both pure

Yang-Mills and pure Einstein gravity can be formulated in the language of fibre bundles,

where the fibres correspond to the gauge group and tangent space respectively. In both

cases, parallel transport in the base space induces transport in the fibre. Holonomy in

gauge theory and gravity can thus be traced back to a common geometrical origin, and

one might therefore hope that there exists some explicit double copy between them.

Indeed this is a tantalising prospect, given that the geometrical foundations of the exact

classical double copy remain obscure. We will see in the following that this turns out

not to be the case, and that this fact is closely related to a double copy interpretation

for Wilson lines in gauge theory and gravity.

Mathematically, holonomy is quantified by the integration of a connection over a closed

curve in either gauge theory or gravity. In the case of gauge theory, such an operator

is a specific case of what is more generally referred to as a Wilson line, for which the

integration contour can be arbitrary. In gravity the situation is not so clear cut, as

69
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historically two operators have been taken as the definition of a gravitational Wilson

line. The first relies on the geometrical origins outlined in the previous paragraph. By

relaxing the integration contour of the holonomy in a gravitational theory, such that

one has the integral of e.g. the Christoffel connection over an arbitrary curve, one

obtains an operator that appears to be the sensible gravitational analogue of a Wilson

line in gauge theory. Indeed, such an operator was considered in e.g. refs. [108–113].

However, in refs. [109,110,112], the perturbative behaviour of this operator was found

to be in stark contrast to its gauge theory counterpart. The second operator labelled as

the gravitational Wilson line involves an integration of the metric itself, as considered

in e.g. refs. [112, 114–117]. This operator can be interpreted as the phase picked up

by the wavefunction of a test particle as it traverses the integration contour, and is

in this sense a physical analogue of the gauge theory Wilson line which arises in the

description of the Aharanov-Bohm effect. Furthermore, it plays an analogous role to

the gauge theory Wilson line in the study of amplitudes [116, 118, 119], where it gives

rise to results that can be independently obtained via colour-kinematics duality and

the double copy [1, 120–122]. From this discussion it appears that the operator that

is considered to be analogous to the gauge theory Wilson line is dependent on the

perspective one takes. From a geometrical perspective it is the integration over the

connection, which gives rise to the gravitational holonomy, whereas from a physical

perspective it is the integration over the metric.

Here we will develop a notion of the double copy for all of the operators mentioned

above, thereby furnishing this fairly confusing cast of characters with some form of

organisational structure. In doing so we will be forced to introduce yet another operator,

although this will in turn allow us to investigate some interesting non-perturbative

aspects of the double copy. We will begin by reviewing some basic facts about Wilson

lines and holonomy in gauge theory and gravity, which we hope will help clarify the

distinctions between the many operators mentioned here. We will then go on to develop

a notion of the double copy for Wilson line operators themselves. We will justify this

by the relation to both the infrared structure of gauge theory and gravity and the

topological discussion of the previous chapter. This will furthermore put the results of

the previous chapter on firmer ground. As a result of this discussion, the gravitational

holonomy will be left without a double copy partner. This will be corrected in the

following section, in which we will identify the single copy of the gravitational holonomy

and justify its form via relations to amplitudes and exact classical solutions. Finally,

we will study the explicit form of the gravitational holonomy and its single copy, along

with their resultant groups, for a number of solutions that are known to be related by

the double copy.
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4.1 Wilson lines, Wilson loops, and holonomy

4.1.1 Riemannian holonomy

Consider an m-dimensional (pseudo-)Riemannian manifold M , and the set of all closed

loops at a point p on M . Given a connection on the manifold, we may parallel transport

a vector defined in the tangent space at p, X ∈ TpM , around one of the loops. The

resulting vector, X ′ ∈ TpM , will not in general be equal to the original vector. Thus,

the loop and the connection define a linear transformation at the point p, the set of

which form the holonomy group at p, H(p).

To study the elements of the holonomy group we can introduce the parallel propagator.

If X ∈ TpM is parallel transported along a curve γ : λ→ xµ(λ), then the components of

X at any given point on the curve can be related to those at p via a matrix Φµ
ν(x, x0),

where x0 is the coordinate at p:

Xµ(x) = Φµ
ν(x, x0)Xν(x0). (4.1)

The transformation matrix, referred to as the parallel propagator, is found by solving

the parallel transport equation,

d

dλ
Xµ +

dxν

dλ
ΓµνσX

σ = 0, (4.2)

which yields

Φµ
ν(x, x0) = P exp

[
−
∫ x

x0

dxσΓµσν

]
, (4.3)

where P denotes path ordering and Γµσν is the Christoffel symbol. The path ordering

indicates that in expanding the exponential the Christoffel symbols are to be ordered

in terms of increasing values of the parameter along the curve. It is important to note

that this operator is path dependent.

To see how the parallel propagator transforms under a coordinate transformation x→
y(x), we write eq. (4.1) in terms of the new coordinate y,

Xµ(y) = Φµ
ν(y, y0)Xν(y0). (4.4)

We then transform back to x using the transformation law for the vector components:

Xµ(y) = Xσ(x)

[
∂yµ

∂xσ

]
x

= Φσ
γ(x, x0)Xγ(x0)

[
∂yµ

∂xσ

]
x

, (4.5)
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such that eq. (4.4) becomes

Φσ
γ(x, x0)Xγ(x0)

[
∂yµ

∂xσ

]
x

= Φµ
ν(y, y0)Xρ(x0)

[
∂yν

∂xρ

]
x0

. (4.6)

Here [α]x denotes α evaluated at x. Now by multiplying through by
[
∂xλ/∂yµ

]
x

we

obtain

Φλ
ρ(x, x0) = Φµ

ν(y, y0)

[
∂yν

∂xρ

]
x0

[
∂xλ

∂yµ

]
x

. (4.7)

Finally, this can be inverted to find the transformation law for the parallel propagator:

Φµ
ν(x, x0)→ Φµ

ν(y, y0) =

[
∂yµ

∂xρ

]
x

Φρ
σ(x, x0)

[
∂xσ

∂yν

]
x0

. (4.8)

A special case of the parallel propagator of eq. (4.3) is obtained when we consider

parallel transport around a closed curve C. We then obtain the operator

ΦΓ(C) = P exp

[
−
∮
C
dxµΓµ

]
, (4.9)

Note that we have written this in matrix form, with the Christoffel symbol considered

as the matrix [Γµ]ρσ. This operator is referred to as the Riemannian holonomy or

gravitational holonomy operator. The set of all such operators forms the Riemannian

holonomy group H(p). Holonomy can be defined in more general contexts than Rie-

mannian manifolds, however these will be our only concern here and thus H(p) will

often be referred to simply as the holonomy group. Furthermore, by only considering

loops that are homotopic to the identity we obtain a subgroup of H(p) referred to as the

restricted holonomy group H0(p). Naturally, if the fundamental group of the manifold

is trivial, π1(M) = 0, then the holonomy group is equal to the restricted subgroup,

H(p) = H0(p).

So far we have referred to the holonomy group at a given point p on M . Consider now

two points p, q ∈M that are connected by a curve γ, where we are now assuming that

M is a connected manifold. The curve defines a map between the tangent spaces at

the two points, τγ : TpM → TqM , such that

H(p) = τγH(q)τ−1
γ . (4.10)

The holonomy groups at arbitrary points p and q are therefore isomorphic, allowing us

to talk more generally of the holonomy group of the manifold as a whole. We denote

this as H(M). As a given manifold has a corresponding holonomy group, it is natural

to ask whether manifolds can be classified according to their holonomy groups. This

leads to Berger’s classification [123].
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The maximal holonomy group is GL(m,R). In general, H(M) will be a subgroup of

GL(m,R) and is trivial if and only if the Riemann tensor vanishes. If the connection

is a metric connection and the manifold is orientable we find the following restrictions:

H(M) ⊂ SO(m), Riemannian manifold, (4.11)

H(M) ⊂ SO(m− 1, 1), Lorentzian manifold. (4.12)

This makes sense intuitively; the metric connection preserves the length of a vector

and thus the elements of the holonomy group must be orthogonal, and the orientability

of the manifold ensures that their determinant is equal to one. Further reductions

occur in other special cases [124], the details of which have been of much study in the

mathematical literature. For a more detailed discussion of holonomy, see e.g. refs. [125,

126].

4.1.2 The spin connection holonomy

In eq. (4.2) we have defined the parallel transport equation in terms of the Christoffel

connection. It will be useful for us in the following to outline an alternative description

of the holonomy in terms of the spin connection. In general the coordinate bases of

the tangent and cotangent spaces at a given point are not orthonormal. Let us instead

introduce a set of orthonormal basis vectors {ea} at each point in spacetime, constructed

from a linear combination of basis vectors of a non-orthonormal basis:

ea = e µ
a eµ. (4.13)

The new basis {ea} is referred to as the vielbein or tetrad basis, where the components

e µ
a ∈ GL(m,R) are known as vielbeins. The inverse eaµ is defined such that

eaµe
ν
a = δνµ, eaµe

µ
b = δab . (4.14)

The vielbein basis vectors are orthonormal with respect to a general curved metric g,

such that

g(ea, eb) = gµνe
µ
a e

ν
b = ηab. (4.15)

where η is the Minkowski metric. The spacetime metric components can be written in

terms of the flat metric via

gµν = g(eµ, eν) = g(eaµea, e
b
νeb) = eaµe

b
νg(ea, eb) = eaµe

b
νηab, (4.16)
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where eq. (4.15) has been used in the final equality. Due to this expression it is often

said that the vielbein is the square root of the metric. More importantly, it tells us

that the metric is completely fixed by the vielbein. As vectors are basis independent,

we may write a general vector V as

V = V µeµ = V aea = V ae µ
a eµ, (4.17)

from which we see that

V µ = V ae µ
a , V a = eaµV

µ. (4.18)

Furthermore an orthonormal dual basis {ea} can be defined by

ea = eaµdx
µ, (4.19)

such that a general curved metric takes the form

g = gµνdx
µ ⊗ dxν = ηabe

a ⊗ eb. (4.20)

Armed with an orthonormal basis, one can calculate the spin connection using Cartan’s

first structure equation. In the torsion free case, this is

ωab ∧ eb = −dea. (4.21)

Inverting Cartan’s structure equation then yields the spin connection in terms of the

vielbein

(ωµ)ab =
1

2
eaν
(
∂µe

b
ν − ∂νebµ

)
− 1

2
ebν
(
∂µe

a
ν − ∂νeaµ

)
− 1

2
eaρebσecµ (∂ρecσ − ∂σecρ) .

(4.22)

The spin connection is both computationally and conceptually useful. Many calcula-

tions are greatly simplified through its employment, and for this reason it will be used

frequently in the following sections.

Let us now formulate the holonomy in terms of the spin connection. The argument is

essentially the same as that in terms of the Christoffel connection. We begin with the

parallel transport equation for a vector in the vielbein basis

d

dt
V a + (ωµ)ab

dxµ

dt
V b = 0. (4.23)

In direct analogy to eq. (4.3), we solve this to obtain the transformation matrix

[Φω(γ)]ab = P exp

[
−
∫
γ
dxµ(ωµ)ab

]
. (4.24)
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Considering a curve that connects two points p and q, this matrix acts such that

V a
q = [Φω(γ)]abV

b
p . (4.25)

Now taking the integration curve to be a closed loop C, we obtain the holonomy of the

spin connection

Φω(C) = P exp

[
−
∮
C
dxµωµ

]
, (4.26)

where we have written this in matrix notation. The spin connection holonomy is closely

related to the Riemannian holonomy operator of eq. (4.9). Converting the vectors in

eq. (4.1) to the vielbein basis, we find that

[Φω(p, q)]ab = eaµ(p) [ΦΓ(p, q)]µν e
ν
b (q), (4.27)

which for a close curve translates to

[Φω(C)]ab = eaµ [ΦΓ(C)]µν e
ν
b , (4.28)

where the two vielbeins on the right-hand side are evaluated at the same point. This

expression has a simple physical interpretation. The Riemannian holonomy operator

encodes how the components of a vector change after parallel transport around a closed

loop. The spin connection does the same, but in an orthonormal basis. The two

holonomy operators are therefore related by a similarity transformation, as in eq. (4.28),

such that the holonomy groups defined by each operator are isomorphic. Thus, in

discussing the holonomy of a manifold, one is free to use either the Riemannian or spin

connection holonomies. Due to this freedom, we will often use the term gravitational

holonomy to refer to either of these two operators.

For our later purposes, it will be useful to further rewrite the spin connection holonomy.

The spin connection is valued in the Lie algebra of the Lorentz group, such that we

may expand it in terms of Lorentz generators Mab via

(ωµ)cd =
i

2
(ωµ)ab(M

ab)cd. (4.29)

Here the normalisation arises due to the components of the generators in the spin-1

representation:

(M cd)cd = i(ηacδbd − ηbcδad). (4.30)

Using the explicit form of eq. (4.29), the spin connection holonomy of eq. (4.26) is

Φω(C) = P exp

[
−
∮
C
dxµ(ωµ)abM

ab

]
. (4.31)
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The purpose of writing the spin connection holonomy in this way will soon become

clear. However, it is also nice to note in passing that this form allows for the extension

of the notion of holonomy to spinors.

4.1.3 Holonomy in gauge theory

In gauge theory, the introduction of holonomy is broadly analogous to that in Rieman-

nian geometry. The vectors we wish to transform are now fields Ψa identified with sec-

tions of the G-bundle, transforming in a particular representation of G, while the gauge

field provides the connection. We consider a curve in the base space γ : [0, 1] → M ,

which passes through a point p0 ∈ M , with coordinates x0. The field at p0 will be

related to that at a later point p ∈M , with coordinates x, via a rotation in the gauge

space, that is induced through parallel transport along the horizontal lift of γ. That is

to say, the values of the field Ψa at the two points along γ are related via

Ψa(x) = Φa
b(x, x0)Ψb(x0), (4.32)

where the matrix Φa
b ∈ G is obtained by solving the parallel transport equation in

principle bundle, yielding

Φa
b(x, x0) = P exp

[
−g
∫ x

x0

dxµAµ

]a
b

. (4.33)

Here the gauge field Aµ = AaµT
a is valued in the Lie algebra of G, where T a are the

generators in an appropriate representation. Note that this operator is path-dependent,

despite the fact that the notation does not immediately suggest this. Clearly this

operator is the gauge theory analogue of the parallel propagator, and is referred to as

a Wilson line.

If we now take the curve γ to be a loop, such that γ(0) = γ(1) = p0 ∈ M , the Wilson

line of eq. (4.33) becomes

ΦA(γ) = P exp

[
−g
∮
γ
dxµAµ

]
. (4.34)

This operator is known as the holonomy in gauge theory. The set of all such trans-

formations yields a subgroup of G known as the holonomy group. Note the similarity

with eq. (4.9), the Riemannian holonomy operator. Both of these operators involve

a path-ordered exponential involving an integral of the connection, as defined in the

respective contexts. However, in the Riemannian case the operator defines a rotation in

spacetime, while the gauge theory holonomy defines a rotation within the colour space
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associated with the gauge group.

The Wilson line operator of eq. (4.33) transforms covariantly under gauge transforma-

tions:

Φ(x, x0)→ U(x)Φ(x, x0)U †(x0), (4.35)

where U ∈ G. Note that this is analogous to the transformation of the Riemannian

parallel propagator in eq. (4.8), but with the diffeomorphisms replaced with gauge

transformations. It is important to emphasise the potentially confusing terminology

involved here. While eq. (4.33) is a Wilson line, upon identifying the endpoints of the

curve we obtain the holonomy operator, eq. (4.34), not a Wilson loop. A Wilson loop is

obtained by taking the trace of the holonomy operator, which yields a gauge invariant

quantity as a consequence of eq. (4.35).

It is clear from both the geometrical origins and the transformation properties that the

parallel propagators in gauge and gravity theories, eqs. (4.33) and (4.3) respectively,

are analogous to one another. For this reason the Riemannian parallel propagator

is often referred to as a gravitational Wilson line. This however creates a puzzle, as

there is another definition of the gravitational Wilson line that appears regularly in the

literature. We turn to this now.

4.1.4 Gravitational Wilson lines

In abelian gauge theory, the Wilson line operator of eq. (4.33) has a useful physical

interpretation. It represents the phase picked up by the wavefunction of a charged

particle as it moves along a curve. A similar interpretation can be given to the non-

abelian Wilson line, once the trace is taken to give a gauge-invariant object. Let us

now consider what the analogous gravitational operator is. Here the phase can only

depend on the Lorentz invariant path length of the curve, along with the mass of the

test particle which is the analogue of the charge in gauge theory. We then define the

gravitational Wilson line to be

Φg(γ) = exp

[
−im

∫
γ
dτ
√
−gµν ẋµẋν

]
. (4.36)

Here γ is an arbitrary curve that is parameterised by xµ(τ), and ẋµ represents differ-

entiation with respect to the parameter τ . This operator has two unpleasant charac-

teristics: the square root is cumbersome and the operator appears not to be defined

for massless particles. Both of these issues can be circumvented by noticing that the

exponent is simply the covariant definition of the length of a worldline parameterised by
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τ . This quantity is just the action for a relativistic point particle, with the integration

parameter representing the proper time. It is a well known fact that this action can be

rewritten in the form [127]

S(0)
pp =

1

2

∫
dτ

[
1

e(τ)
gµν ẋ

µẋν − e(τ)m2

]
. (4.37)

The reason for the superscript will become apparent later in the chapter. The auxiliary

field e(τ) acts as an einbein on the worldline. It is completely fixed by its equation of

motion
δS

δe
= − 1

2e2
gµν ẋ

µẋν − m2

2
= 0. (4.38)

Solving for e and substituting the result into the action reproduces eq. (4.36) when

exponentiated. However, taking m = 0 in eq. (4.37) now yields a perfectly well-defined

action. The einbein e(τ) plays the role of a one-dimensional metric on the worldline,

and thus transforms appropriately under reparameterisations. We are therefore allowed

to choose a value for e(τ), as this corresponds to fixing a gauge. Taking m = 0 and

e(τ) = 1 in eq. (4.37), and exponentiating the result gives

Φg(γ) = exp

[
i

2

∫
γ
dτgµν ẋ

µẋν
]
. (4.39)

This is the analogue of the phase factor in eq. (4.36) for the case of massless particles.

Let us now consider this operator in perturbation theory, in which we introduce the

graviton field hµν via

gµν = ηµν + κhµν . (4.40)

To first order in κ, eq. (4.39) is then

Φg(γ) = exp

[
iκ

2

∫
γ
ds hµν ẋ

µẋν
]
, (4.41)

where we have omitted an overall multiplicative constant that will vanish in appropri-

ately normalised vacuum expectation values of the operator.

We will primarily refer to eq. (4.41) as the gravitational Wilson line. This might seem

unjustified, given that the operator of eq. (4.3), which we have called the parallel

propagator, so closely mimics the geometrical content of Wilson lines in gauge theory.

However, in a number of papers, eq. (4.41) has been identified as the gravitational

Wilson line due to the analogous role in gravity that it plays to the gauge theory Wilson

line in the description of certain physical phenomena (see e.g. refs. [112,114–116,128]).

We will now briefly describe an example of one such correspondence.
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The IR structure of gauge theory and gravity

Consider a general gauge theory amplitude featuring particle exchange between two of

the external legs. In the soft limit, where the exchanged particle’s momentum is taken

to zero, the amplitude will be divergent. These IR divergences have a universal form

which factors from the full amplitude, such that, schematically

An = S · Hn. (4.42)

Here An is an n-point amplitude, S is known as the soft function and contains the IR

divergences, and Hn is the IR-finite hard part of the interaction. The form of the soft

function is known to be exponential and thus the soft corrections to the hard interaction

are summed to all orders in perturbation theory (see e.g. ref. [129] for a review). We

consider here the case in which the soft emission is virtual, however factorisation also

occurs for real soft radiation.

For our purposes, the most interesting aspect of this story is the fact that soft functions

in gauge theory can be expressed as vacuum expectation values (VEVs) of Wilson line

operators, such as that in eq. (4.33), with each external leg contributing a Wilson line.

Within each Wilson line, we now have an integral of the soft gauge field, where the

integration contour is the physical trajectory of the hard particle from which the soft

particle was emitted. Such a trajectory can be parameterised by a parameter s such

that

xµ(s) = spµ, (4.43)

where pµ is the hard momenta. For the ith external leg, the gauge theory Wilson line

of eq. (4.33) then reduces to

Φi(a, b) = P exp

[
−gpµi

∫ b

a
dsAµ

]
, (4.44)

and the soft factor is [130]

S ∼ 〈0|
∏
i

Φi(0,∞)|0〉. (4.45)

This has a nice physical interpretation. The emission of a particle from an external leg

would usually result in a recoil. However, as the emitted particle is soft, with vanishing

momentum, no recoil occurs, and thus it is only possible for the external leg to change

by a phase. This phase is exactly what the gauge theory Wilson line represents.

This construction, in which the IR structure of gauge theory factorises, can also be

extended to perturbative gravity, as first shown in [131]. However, the situation in
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gravity is, somewhat surprisingly, far simpler than that in gauge theory. While the soft

factor once again takes an exponential form, it has been shown that this exponential

contains only the one-loop IR divergence [115]. Thus, the IR divergences in gravity at

all orders in perturbation theory originate from the one-loop corrections. Furthermore,

ref. [115] argued that the gravitational soft function could be expressed in an analogous

form to that in gauge theory, eq. (4.45), as a VEV of appropriately defined operators.

These operators take form

Φi(a, b) = exp

[
iκ

2

∫ b

a
ds hµν(sp)pµi p

ν
i

]
, (4.46)

where once again s parameterises the contour and hµν describes the perturbation around

a flat background metric as in eq. (4.40). Due to the comparable role of these operators

to the Wilson lines in gauge theory, eq. (4.46) has been referred to as a gravitational

Wilson line. Further motivation for this identification comes from the double copy.

4.2 A double copy for Wilson lines

4.2.1 Double copy replacements

The similarities between the gauge theory and gravitational Wilson lines in the descrip-

tion of certain physical phenomena suggests that there may be some deeper underlying

relation between them. In particular, one might hope that a double copy relation could

be set up to provide a more explicit map between the two operators. In ref. [1], it was

argued that this is indeed the case.

Let us start with the gauge theory Wilson line of eq. (4.33), written in the form

ΦA(γ) = P exp

[
ig

∫
γ
dsAaµT̃

aẋµ
]
. (4.47)

Here we have temporarily adopted Hermitian generators for the gauge group, such that

T̃ a = iT a. Consider now making the replacements

g → κ

2
, T̃ a → ẋµ, Aaµ → hµν . (4.48)

The first is the standard replacement of couplings that occurs in all examples of the

double copy. The second is a replacement of colour information with kinematic infor-

mation, where the latter corresponds to the tangent vector to the Wilson line contour.

The final replacement is simply that of the fields themselves. The result of these re-
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placements is the operator

Φg(γ) = exp

[
iκ

2

∫
γ
ds hµν ẋ

µẋν
]
, (4.49)

which is precisely the gravitational Wilson line, identified in eq. (4.41). One might worry

given that this procedure is only valid for a particular choice of einbein in eq. (4.37).

However, it is known that in both the BCJ double copy for amplitudes and the classical

double copy for exact solutions, the duality is only manifest in certain gauge choices

or coordinate systems. As previously mentioned, a choice of einbein corresponds to a

gauge choice, and thus the fact that the double copy is manifest for a particular choice

is consistent with previous examples of the correspondence.

4.2.2 Relation to scattering amplitudes

Further evidence of this relationship comes from an analysis of the soft factors produced

by the two Wilson line operators. As previously mentioned, extracting the soft factor

involves taking a VEV of Wilson line operators, with one assigned to each external

leg. In practice, this involves including the Wilson line operator in the path integral,

such that it appears as an additional contribution to the action. For example, in gauge

theory the generating functional from which the soft contributions are generated is [132]

Zs =

∫
DAµeiS[Aµ]

n∏
i=1

Pe−ig
∫
dxµi Aµ(xi), (4.50)

Here Aµ is the soft gauge field, S[Aµ] is the corresponding action, and the product

is over the n external legs. Thus, the Wilson line insertions appear in the generating

functional as source terms, from which vertices will be generated. To obtain the vertex

Feynman rules, we write the Wilson line as in eq. (4.44), and Fourier transform the

gauge field,

Aµ(x) =

∫
ddk

(2π)d
Aµ(k)eik·x =

∫
ddk

(2π)d
Aµ(k)eisk·p, (4.51)

where in the second equality we have inserted the parameterisation of eq. (4.43) for xµ.

The exponent in a given Wilson line is then

−g
∫
dxµAµ(x) = −gpµ

∫ ∞
0

dsAµ(x)

= −gpµ
∫ ∞

0
ds

∫
ddk

(2π)d
Aµ(k)eisk·p

=

∫
ddk

(2π)d
Aaµ(k)

[
gT̃ a

pµ

k · p

]
, (4.52)
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where the integral over s can be formally computed through implementation of the

Feynman iε prescription [130]. The bracketed factor in the final line is the eikonal

Feynman rule, which contributes to the appropriate soft factor in gauge theory [132].

It describes the coupling of the soft gauge field to the worldline of the hard particle

with momentum pµ. This analysis can also be performed for the gravitational Wilson

line in eq. (4.46), whose exponent yields

iκ

2

∫
dshµν(x)pµpν =

∫
ddk

(2π)d
hµν(k)

[
κ

2

pµpν

k · p

]
(4.53)

The bracketed factor is the eikonal Feynman rule for soft graviton emission [120]. A

detailed analysis of the IR-divergent structure of gauge theory and perturbative gravity

from the perspective of the double copy was performed in ref. [120]. Here it was

concluded that soft factors in each theory are related by the BCJ double copy for

amplitudes, thereby providing evidence for its validity at all loop-orders. However,

to reach this result ref. [120] carried out a detailed Feynman-diagrammatic analysis.

Here we see that it follows straightforwardly from the fact that gauge and gravitational

Wilson lines themselves exhibit a double copy structure.

4.2.3 Relation to topological patching conditions

The double copy for Wilson lines described here also makes contact with the topological

discussion of the previous chapter. Consider the gravitational Wilson line of eq. (4.41),

with an integration curve C corresponding to the equator of the two-sphere at infinity.

Furthermore, we take s = mt with t the conventional time coordinate. Expanding out

the components of the graviton, we then have

Φg(C) = exp

[
iκm

2

∮
C
dt
(
h00 + 2h0iẋ

i + hij ẋ
iẋj
)]
, (4.54)

where ẋµ now denotes differentiation with respect to t, so that ẋ0 = 1. For asymptotic

form of the pure NUT solution of eq. (3.87), we have h00 = 0. Thus, by considering

this solution in the non-relativistic limit, eq. (4.54) reduces to

Φg(C) = exp

[
iκm

∮
C
dxih0i

]
, (4.55)

which coincides precisely with eq. (3.91). In the previous chapter, this quantity was

used in the construction of a patching condition which classified the non-trivial topology

of the pure NUT solution. An analogous patching condition could be set up in gauge

theory, also in terms of Wilson lines, to classify the topology of magnetic monopoles,
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the known single copy of Taub-NUT. Thus, it is not just the case that a topological

condition can be given on each side of the double copy correspondence such that it

matches the double copy structure of the solutions it classifies, but that this condition

is stated in terms of Wilson lines, which themselves exhibit a well-defined double copy.

4.2.4 What is the single copy of the gravitational holonomy?

The discussions of this section and the last raise an interesting question. In section 4.1

we introduced the concept of holonomy, which quantifies the transformation of fields

after parallel transport around a closed loop. In both gauge theory and gravity, the

holonomy operator is given by an exponentiated integral of a connection. In gauge

theory the connection is the gauge field, while in gravity it is either the Christoffel or

spin connection. The gauge theory holonomy is therefore a special case of a Wilson

line, in which the end points of the curve are taken to be the same point. However,

in this section we have argued that the gauge theory Wilson line is the single copy

of a quantity, the gravitational Wilson line, which does not relate to the gravitational

holonomy. Thus, we can conclude that while the gauge and gravitational holonomies

are clearly geometric analogues of one another, they cannot be related by the double

copy, as the gauge holonomy is already the single copy of a different object. Thus we

are left with a question: what is the single copy of the gravitational holonomy?

4.3 The single copy of the gravitational holonomy

The gravitational Wilson line discussed in the previous section contains the action for a

spinless point-particle. In order to identify the single copy of the holonomy in gravity,

we will need to map this operator to a physical situation whose single copy is already

known. As we will see, this turns out to be the dynamics of spinning particles, and so

it will be useful to now review the generalisation of point particle actions to include

spin.

4.3.1 Relativistic spinning particles

In eq. (4.37) we saw the action for a spinless point particle coupled to gravity. We now

want to generalise this to an object with intrinsic angular momentum (for a review see

ref. [133]). This could be an extended object such as a black hole, or a point like particle

with spin. To begin, we define a vielbein on the worldline, eAµ(τ). The capital latin
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indices, {A,B,C, ...}, are those of a body-fixed frame; a frame fixed to the particle as it

moves along the worldline such that it spins in tandem with the particle. This vielbein

therefore relates the body-fixed frame to a general coordinate frame. It is furthermore

related to a general orthonormal frame via a Lorentz transformation:

eAµ = ΛAae
a
µ. (4.56)

The body-fixed vielbein can be used to define an angular velocity tensor

Ωµν = eAµ
DeAν
Dτ

, (4.57)

where D/Dτ is the covariant derivative with respect to the worldline parameter, defined

as
DeAν
Dτ

≡ ẋαDαe
A
ν = ẋα

(
∂αe

A
ν − Γλανe

A
λ

)
. (4.58)

The angular velocity tensor is antisymmetric. To see this, note that the product rule

can be used to rewrite eq. (4.57) as

Ωµν =
D

Dτ
(eAµe

A
ν)− eAν

DeAµ
Ds

=
D

Dτ
(eAµe

A
ν)− Ωνµ. (4.59)

However, by definition e µ
A eAν = gµν and thus for a metric connection the first term

vanishes to give

Ωµν = −Ωνµ. (4.60)

The full action for the spinning object is now given by

Spp = S(0)
pp + S(1)

pp , (4.61)

where S
(0)
pp is the spinless point particle action of eq. (4.37), and the correction due to

the spin is given by

S(1)
pp = −1

2

∫
dτ ΩµνS

µν . (4.62)

Here Sµν is the spin tensor, defined as the dynamical variable conjugate to the angular

momentum. In writing eq. (4.62) we have not included an additional gauge fixing term

that is usually present to eliminate residual degrees of freedom in the spin tensor. For

our arguments this term will not play a role.
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4.3.2 Holonomy from a spinning particle

We will now argue that the dynamics of spinning particle acts as a physical manifes-

tation of the gravitational holonomy operator of eq. (4.31). To this end, we note that

in general a given vielbein eaµ will not align with the body-fixed vielbein eAµ. Recall,

however, that there will be a Lorentz transformation that will relate the two, as in

eq. (4.56). Let us then rewrite the angular velocity tensor in eq. (4.57) as

Ωµν = SµνΛ a
A e µ

a

DΛAbe ν
b

Dτ
. (4.63)

Expanding out the covariant derivative and using the known relation between the

Christoffel and spin connections,

Γσµν = e σ
a (ωµ)abe

b
ν + e σ

a ∂µe
a
ν , (4.64)

the angular velocity tensor reduces to

Ωµν = eaµe
b
ν

(
ΛAaΛ̇

A
b − (ωρ)abẋ

ρ
)
. (4.65)

The contraction of the angular velocity and spin tensors that appears in the spin cor-

rection to the point particle action in eq. (4.62) can then be written as

ΩµνS
µν = Sab

(
ΛAaΛ̇

A
b − (ωρ)abẋ

ρ
)
. (4.66)

The two terms in this expression have simple physical interpretations. The action of

eq. (4.62) describes the dynamics of the spin of the object, or in other words how the

body-fixed vielbein changes as we proceed along the worldline. The action therefore

governs how a vector fixed to the moving object transforms with the motion of the

object. There are two contributions to this change: the rotation of the object and

the fact that the body fixed vielbein is changing due to the underlying spacetime.

These two contributions correspond precisely to the first and second terms of eq. (4.66)

respectively. This can be seen by noticing that the first term contains the flat-space

definition of the angular velocity tensor

Ωflat
ab = ΛAa

dΛAb
dτ

, (4.67)

and thus would be present even in a trivial background spacetime. The second term in

eq. (4.66) then governs the transformation of a vector fixed to the object due to motion

in a non-trivial background.

Recall that the spinless point-particle action can be exponentiated to give a gravita-
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tional Wilson line operator, representing the phase picked up by a particle as it traverses

a contour. That is, the gravitational Wilson line is given by

Φg = eiS
(0)
pp , (4.68)

where S
(0)
pp is given in eq. (4.37), and one discards terms associated with flat space,

which amount to multiplicative factors that vanish for appropriately normalised VEVs

of Wilson line operators. Following the discussion of the previous section, we can

now form an object corresponding to the phase experienced by a spinning particle by

considering

Φspin
g = eiSpp , (4.69)

where Spp is now the spinning point-particle action of eq. (4.61). The spin tensor Sab

is valued in the algebra of the Lorentz group, such that we may write

Sab(τ) = Qabcd(τ)M cd (4.70)

where the {Mab} are the Lorentz generators. The quantity Qabcd(τ) dictates the relative

“strength” of each generator as the object traverses a given contour. We are interested

in the most general possible case, as we wish to examine how a general vector is modified

after transport around a general loop. Thus, we choose a spin tensor such that

Qabcd =
1

2

(
δac δ

b
d − δbcδad

)
, (4.71)

which physically amounts to a democratic assignment of unit spin along all axes. In

the case of a quantum particle in state |ψ〉, the spin tensor is given by a normalised

expectation value

Sab =
〈ψ|QabcdM cd|ψ〉
〈ψ|ψ〉

, (4.72)

however one may still make the choice of eq. (4.71). In practical terms, this amounts

the replacement,

Sab →Mab, (4.73)

in the definition of our spin-corrected Wilson line in eq. (4.69). The result is then

Φspin
g (γ) = P exp

[
iκ

2

∫
γ
ds
(
hµν ẋ

µẋν − ẋµ(ωµ)abM
ab
)]
, (4.74)

where the path ordering is necessary due to the matrix-valued Lorentz generators in

the second term. Note also that there is an implicit identity matrix in the first term.

This object describes the phase experienced by a particle if it has spin, with the second

term in the exponential dictating how the spin-dependent degrees-of-freedom couple to
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a non-trivial gravitational field.

The second term in the exponential of eq. (4.74) is precisely the gravitational holonomy

operator of eq. (4.31), prior to taking the integration curve to be a closed loop. Here

we see that the natural geometrical counterpart to the gauge theory Wilson line, the

exponentiated integral of the spin connection, appears as a spin-dependent correction

to the gravitational Wilson line that is identified via the double copy. It is interesting

to note that a similar observation was made as early as the 1960s [134], prior to the

introduction of Wilson lines.

4.3.3 The single copy of the holonomy

We have now seen that the Wilson line constructed from the spinning point-particle

action contains the gravitational holonomy operator. From this observation we can

already see how to identify a single copy of this operator. We simply consider the

known action of a spinning particle coupled to a gauge field, and from this construct

a generalised Wilson line containing a spin-correction to the phase. The action for a

spinning point-particle coupled to a gauge field is (see e.g. ref. [135])

Sgauge =

∫
dτ

[
1

2e(τ)
ηµν ẋ

µẋν − e(τ)m2

2
+

1

2
Ωflat
µν S

µν

+ gca(τ)

(
ẋµAaµ −

e(τ)

2
F aµνS

µν

)]
. (4.75)

Here the first two terms make up the flat space spinless point-particle action. The

third term acts as the spin correction to this, and thus corresponds to the first term

in eq. (4.66). The remaining terms represent the coupling of the particle to a gauge

field, where ca(τ) is a colour vector obtained at a given point along the worldline by

the expectation value of the colour generator T̃ a. The first of these terms corresponds

to the standard gauge theory Wilson line, once the colour vector is replaced with the

generator itself. The final term contains a contraction of the field strength F aµν with

the spin tensor. It therefore represents a spin-dependent correction to the vacuum

dynamics of a spinning particle, that arises due to the presence of a non-trivial gauge

field background. This term is thus the gauge theory analogue of the spin connection

term in eq. (4.66).

To clarify these statements, we can furnish the spin-dependent correction with a nice

physical interpretation. We focus here on the case of abelian gauge theory for simplicity.
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We can identify the electric and magnetic fields respectively as

F0i = Ei, Fij = εijkBk, (4.76)

such that the contraction of the field strength and spin tensor in the final term of

eq. (4.75) is

FµS
µν = 2F0iS

0i + FijS
ij

= −2(Eidi +Biµi). (4.77)

Here we have defined the electric dipole moment d and the magnetic dipole moment

µ, such that

di = −S0i, µi = −1

2
εijkS

jk. (4.78)

Equation (4.77) therefore represents the coupling of the test particle to the gauge field

when both the electric and magnetic dipole moments are turned on in general.

The fact that the spinning point-particle actions in gauge theory and gravity can be

related via the double copy has been addressed in great detail in refs. [59, 135–137].

These works carried out a perturbative analysis of the radiation emitted by spinning

classical sources described by the action of eq. (4.75), and double copied the results

order-by-order in perturbation theory. The double copy was found to correspond to the

radiation emitted by a particle interacting with a graviton, dilaton, and axion. This is

to be expected, as the double copy of pure Yang-Mills is N = 0 supergravity, rather

than pure general relativity. One might then ask about the absence of these fields in

our discussion of holonomy. Here we wish to identify the operator that is the single

copy of the gravitational holonomy, a quantity defined in pure general relativity. As the

single copy of pure Einstein gravity or N = 0 supergravity is always pure Yang-Mills

theory, we can unambiguously identify the single copy of the graviton spin coupling as

the final term in eq. (4.75).

Following this discussion, we find the generalised Wilson line in gauge theory to be

Φspin(γ) = P exp

[
ig

∫
γ
ds

(
Aaµẋ

µ − 1

2
F aµνM

µν

)
T̃ a
]
, (4.79)

where we have fixed the einbein to be e = 1. The first term in the exponential cor-

responds to the standard gauge theory Wilson line, while the second represents the

correction to this due to spin. Evaluating the spin correction over a closed curve C
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yields an operator that we identify as the single copy of the gravitational holonomy:

ΦF (C) = P exp

[
− ig

2

∮
C
ds T̃ aF aµνM

µν

]
. (4.80)

Here we have motivated the identification of this operator as the single copy of the

gravitational holonomy by noting its relation to spinning point particle actions and

their double copy structure. We will now provide further evidence of this identification

by studying the role of the operator in the context of the soft behaviour of amplitudes

and exact Kerr-Schild solutions.

4.3.4 Relation to amplitudes

The identification of eq (4.80) as the single copy of the gravitational holonomy operator

provides a nice link to the well known next-to-soft theorems for the emission of low

energy radiation [138, 139]. Let us first consider the gravity case, where the relevant

operator is the Riemannian parallel propagator of eq. (4.3) (recall that this becomes

the holonomy when the integration contour is a closed loop). We now write this in

terms of the metric by using the explicit form of the Christoffel symbols,

Γµρσ =
1

2
gµα (∂ρgασ + ∂σgαρ − ∂αgρσ) , (4.81)

and consider perturbations around the flat metric as in eq. (4.40). The result is the

operator

[ΦΓ(γ)]µσ = P exp

[
−κ

2

∫
γ
dxρ

(
∂ρh

µ
σ + ∂σh

µ
ρ − ∂µhρσ + . . .

)]
, (4.82)

where the ellipsis denotes higher orders in κ. For the integration contour we choose

a straight line out to infinity, originating at the origin. This is appropriate for a fast-

moving particle leaving a given scattering process, and allows us to parameterise x

via

xµ = spµ, 0 ≤ s ≤ ∞. (4.83)

The first term in eq. (4.82) is a total derivative. It will integrate to give a gauge-

dependent artifact associated with the endpoints of the integration contour, and will

vanish when computing gauge invariant amplitudes.1 By ignoring this term and intro-

1This assumption may not hold in the computation of certain observables, in which momentum
derivatives act on the parallel propagator.
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ducing Fourier components for the graviton field via

hµν(x) =

∫
ddk

(2π)d
h̃µν(k)e−ik·x, (4.84)

the remaining terms take the form

− κ

2

∫ ∞
0

dspρ
(
∂σh

µ
ρ − ∂µhρσ

)
=
iκ

2
pρ
∫

ddk

(2π)d

∫ ∞
0

ds
(
kσh̃

µ
ρ − kµh̃ρσ

)
e−isk·p. (4.85)

Performing the s integral then yields

ln(Φg) ∼
∫

ddk

(2π)d
h̃βρ(k)

[
κ

2

pρkα(Mαβ)µσ
p · k

]
, (4.86)

where we have introduced the spin-1 Lorentz generators of eq. (4.30). The factor in the

square brackets can be recognised as the appropriate contribution to the next-to-soft

theorem for graviton emission [138]. Here it arises as a correction to the soft factor

generated by the gravitational Wilson line of eq. (4.41), representing the spin-dependent

coupling to the hard particle worldline. This can be seen as it is suppressed by a single

power of the momentum of the emitted radiation. If we perform a similar analysis in

gauge theory, using the single copy operator of eq. (4.80), we find

ln(ΦF ) ∼
∫

ddk

(2π)d
Ãaµ(k)

[
gT̃ a

kνM
µν

p · k

]
. (4.87)

The bracketed factor is now in agreement with the appropriate next-to-soft theorem

in gauge theory [139]. The known double copy properties of the next-to-soft factors

therefore provides further evidence for the identification of eq. (4.80) as the single copy

of the gravitational holonomy operator [119,140,141].

4.3.5 Insights from Kerr-Schild solutions

Let us now specialise to the case of Kerr-Schild solutions, for which the exact dou-

ble copy properties are well known [21]. Recall that Kerr-Schild solutions in general

relativity take the exact form

gµν = ηµν + κhµν , (4.88)

where the graviton field hµν decomposes such that

hµν = φkµkν . (4.89)
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The Kerr-Schild vectors kµ satisfy the null and geodesic conditions given in eq. (2.62),

and we have taken the background metric in eq. (4.88) to be Minkowski spacetime.

The single copy of the graviton field is then a gauge field which takes the form

Aaµ = φcakµ, (4.90)

and satisfies the Yang-Mills equations, which linearise on this solution.

We will now study the form of the gravitational holonomy for Kerr-Schild metrics. In

an orthonormal basis, one has

gµν = ηabe
a
µe
b
ν , (4.91)

which in turn implies the following form for the Kerr-Schild vielbein:

eaµ = ē aµ +
1

2
φkakµ, e µ

a = ē µ
a −

1

2
φkak

µ. (4.92)

Here ē aµ is the vielbein associated with the background metric in eq. (4.88), which for

our purposes is the Minkowski metric ηµν . We now want to derive the form of the spin

connection in Kerr-Schild coordinates. This is done explicitly in Appendix A, where

the result is found to be

(ωµ)ab = ∂beaµ − ∂aebµ. (4.93)

Unlike the general expression of eq. (4.22), this has the pleasing property of being linear

in the vielbein. Substituting the results of eq. (4.92), with indices lowered appropriately,

into eq. (4.93) yields

(ωµ)ab =
1

2
[∂b(φkµka)− ∂a(φkµkb)] (4.94)

=
1

2
[e σ
b ∂σ(φkµka)− e σ

a ∂σ(φkµkb)] . (4.95)

Note that due to the null property of the Kerr-Schild vectors, kµkµ = 0, conversion

between coordinate and orthonormal bases is done simply with the background vielbein:

ka = e µ
a kµ = ē µ

a kµ −
1

2
φkak

µkµ = ē µ
a kµ. (4.96)

Thus, the spin connection in eq. (4.95) can be written as

(ωµ)ab =
1

2
[ē ν
a e

σ
b − ē ν

b e
σ
a ] ∂σ(φkµkν). (4.97)

If we now write the remaining vielbeins explicitly, a great deal of simplification occurs.
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To see this, consider the first term in the above expression:

ē ν
a e

σ
b ∂σ(φkµkν) = ē ν

a

[
ē σ
b −

1

2
φkbk

σ

]
∂σ(φkµkν) (4.98)

= ē ν
a ē

σ
b ∂σ(φkµkν)− 1

2
φkakbkµk

σ∂σφ. (4.99)

In the second equality, we have expanded ∂σ(φkµkν) using the product rule, from which

two of the three resulting terms vanish due to the geodesic condition kσ∂σkµ = 0.

Performing the same procedure for the second term in eq. (4.97), we find that the

terms which contain only a derivative of the scalar field φ cancel, such that eq. (4.97)

is simply

(ωµ)ab =
1

2
[ē ν
a ē

σ
b − ē ν

b ē
σ
a ] ∂σ(φkµkν). (4.100)

Finally, if we expand the spin connection in terms of Lorentz generators, we obtain

i

2
(ωµ)cdM

cd = − i
2
∂σ(φkµkν)Mνσ, (4.101)

where we have identified the spin-1 Lorentz generators as

(Mνσ)ab = i [ē ν
a ē

σ
b − ē ν

b ē
σ
a ] . (4.102)

Thus, we are left with a simple expression in which the exponent appearing in the Kerr-

Schild gravitational holonomy operator is written directly in terms of the graviton:∮
dxµ(ωµ)abM

ab = −
∮
dxµ∂σ(hµν)Mνσ. (4.103)

We now single copy this expression by making the replacements

ẋµ → T̃ a, kµ → ca, (4.104)

in line with the Kerr-Schild single copy. The result is then∮
dxµ(ωµ)abM

ab → −T̃ a
∮
ds ∂σ(φkνc

a)Mνσ = −T̃ a
∮
ds ∂σ(Aaν)Mνσ (4.105)

=
1

2
T̃ a
∮
dsF aνσM

νσ. (4.106)

This agrees with the conclusion reached above, that the single copy of the gravitational

holonomy is the operator of eq. (4.80).
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Gauge Theory Gravity

P exp

[
−g
∮
C
ds ẋµAµ

]
exp

[
iκ

2

∮
C
ds ẋµẋνhµν

]

P exp

[
g

2

∮
C
dsFµνM

µν

]
P exp

[
− iκ

2

∮
C
ds ẋµ(ωµ)abM

ab

]
Table 4.1: Wilson line and holonomy operators in gauge and gravity theories, and their
single / double copies.

4.3.6 A square of four operators

To summarise the results of this section and the last, we can construct a square of four

operators that are related via the double copy, as shown in table 4.1. The holonomy in

gauge theory and gravity appears in the top-left and bottom-right respectively, while

the gravitational Wilson line is in the top-right. In section 4.2, we introduced a double

copy relating the operators in the top row of the table, namely Wilson lines in gauge

theory and gravity. Previous works have noted the analogous physical roles played by

these operators, and here we have shown that this can be interpreted as an instance

of the double copy. Furthermore, in this section we have introduced a new operator,

that in the bottom-left of the table, and interpreted it as the single copy of the gravi-

tational holonomy. This operator has not previously been related to the gravitational

holonomy, due to the fact that it does not arise from an analogous geometric definition.

In fact, its role is entirely different to the holonomy in gauge theory. The standard

holonomy describes how vectors in the internal colour space are transformed as a result

of parallel transport. In contrast, the single copy of the gravitational holonomy acts as

a transformation on both colour and spacetime vectors, thereby linking the gauge field

with vectors in the tangent space of the base manifold.

Now that we have identified eq. (4.80) as the single copy of the gravitational holonomy,

it is natural to ask if this operator has any use. We explore this question in the next

section.
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4.4 The single copy holonomy operator

Beyond its physical role in the description of how vectors are transformed after parallel

transport, the gravitational holonomy is also used in the classification of solutions

in general relativity and arbitrary manifolds more generally. The maximal holonomy

group is GL(m), where m is the dimension of the manifold. For a metric connection

on an orientable manifold, this group reduces to SO(m) for a Riemannian manifold

or SO(m − 1, 1) for a Lorentzian manifold. Further reductions occur as we consider

manifolds with other special properties. The classification of manifolds based on how

the holonomy reduces has been widely studied, leading, in the most well-known case,

to Berger’s classification [123]. It is thus natural to ask whether the operator we have

identified as the single copy of the gravitational holonomy has a similar purpose. In

the following, for ease of reference, we will refer to eq. (4.80) as the SCH operator,

short for “single copy holonomy operator”. Furthermore, we will refer to the group

of transformations generated by this operator as the SCH group. We now want to

ask whether the SCH group reduces in certain cases, or more interestingly, whether

the same reduction occurs for the SCH and holonomy groups when they correspond

to solutions related by the double copy. We will investigate this by considering three

well-known instances of exact double copies.

4.4.1 The Schwarzschild solution

We begin by considering the Schwarzschild solution in general relativity. This is sourced

by a point mass M at the origin, and has a known Kerr-Schild form. Working in

spherical coordinates (t, r, θ, ϕ), the scalar field and Kerr-Schild vector take the form2

φ(r) =
M

4πr
, kµ = (1, 1, 0, 0). (4.107)

These enter the definition of the full metric as in eq. (4.88). In section 4.3.5 we derived a

form for the spin connection in Kerr-Schild coordinates, which we once again make use

of here. In particular, eq. (4.103) gives the Kerr-Schild form for the factor appearing in

the exponential of the gravitational holonomy. We now choose a selection of integration

contours C and see what elements of the holonomy group we find. Let us first choose

a circular orbit in the equatorial plane, with t fixed. We can parameterise this with

C : xµ = (0, 0, 0, ϕ), ϕ ∈ [0, 2π). (4.108)

2Beware the use of both ϕ and φ in this section. φ is the scalar field appearing in the Kerr-Schild
form of the metric, while ϕ is the azimuthal angle in spherical coordinates.
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t

r

C1

C2

C3

Figure 4.1: A loop formed from three segments in the (r, t) plane. The segments C2

and C3 are null lines.

Using the relation in eq. (4.103), we compute the integral appearing in the holonomy

to be ∮
C
dϕ∂σ(hϕν)Mνσ = 0, (4.109)

where we have used the fact that, according to eq. (4.107), the Kerr-Schild graviton

has no non-zero hϕν components. The element of the holonomy group associated with

this curve is therefore the identity element. We can generate new constant time curves

by tilting C with respect to the equatorial plane. However, spherical symmetry implies

that these loops will also correspond to a trivial holonomy.

We can, however, generate a non-trivial holonomy for the Schwarzschild solution, via a

careful choice of curve. Consider the loop depicted in figure 4.1. This consists of three

segments in the (r, t) plane. The first segment C1 is parallel to the time axis, and can

be parameterised via

C1 : xµ = (t, r0, 0, 0), 0 ≤ t ≤ T. (4.110)

This segment is at a fixed radius r = r0 and has total length T . We have also fixed the

remaining coordinates such that θ = ϕ = 0. Let us now again make use of eq. (4.103),

with which we find ∫
C1

dxµ∂σ(hµν)Mνσ =

∫ T

0
dt∂r(h00)M0r

= −MT

4πr2
0

M0r. (4.111)
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Turning to the other line segments in figure 4.1, we have the following parameterisations

C2 : xµ = (t, r0 + T − t, 0, 0), T ≥ t ≥ T/2, (4.112)

C3 : xµ = (t, r0 + t, 0, 0) ,
T

2
≥ t ≥ 0. (4.113)

Performing the integrals, one finds

∫
C2

dxµ∂σ(hµν)Mνσ =

∫ T/2

T
dt∂r(h00)M0r

∣∣∣∣∣
r=r0+T−t

+

∫ r0+T/2

r0

dr∂r(hr0)M0r;

(4.114)∫
C3

dxµ∂σ(hµν)Mνσ =

∫ 0

T/2
dt∂r(h00)M0r

∣∣∣∣∣
r=r0+t

+

∫ r0

r0+T/2
dr∂r(hr0)M0r. (4.115)

In summing these terms, the radial integrals cancel, such that after using eq. (4.107)

we have ∫
C2∪C3

dxµ∂σ(hµν)Mνσ =
M

2π

T

r0(T + 2r0)
M0r. (4.116)

Finally, we can combine this with the C1 contribution from eq. (4.111) to give the full

contribution from the entire loop:∮
dxµ∂σ(hµν)Mνσ = αM0r, α = −M

4π

T 2

r2
0(T + 2r0)

. (4.117)

This corresponds to an infinitesimal boost in the (r, t) plane with hyperbolic angle α.

To see this, recall that we can define the infinitesimal generators for boots Ki and

rotations Ji in terms of the {Mij} via

Ki = M0i, Ji =
1

2
εijkM

jk, (4.118)

In terms of Ki and Ji, the Lorentz algebra

[Mµν ,Mρσ] = i (ησµMρν + ηνσMµρ − ηρµMσν − ηνρMµσ) (4.119)

can be written as

[Ji, Jj ] = iεijkJk, [Ji,Kj ] = iεijkKk, [Ki,Kj ] = −iεijkJk. (4.120)

Clearly, eq. (4.117) contains the boost generator Kr. By considering loops with fixed

r0 but varying φ and ϕ, we can generate the full set of boosts associated with ar-

bitrary directions. Furthermore, note that boosts do not form a closed algebra, and

thus by exponentiating the boost generators we will produce generic transformations
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corresponding to arbitrary combinations of boosts and rotations. Thus, we conclude

that the holonomy group of Schwarzschild spacetime is SO(d− 1, 1). Note that this is

in agreement with the conclusion reached by ref. [142]. Our explicit results differ as

we have considered a different orientation for the loop, and made use of Kerr-Schild

coordinates. However, our conclusions are qualitatively equivalent.

Let us now turn to gauge theory. The single copy of the Schwarzschild solution is well

known to be an abelian-like point charge in Yang-Mills theory [21]. For this solution,

the only non-zero component of the field strength is

F0r =
QE

4πr2
, (4.121)

where QE is the electric charge. Consider now the exponent of the SCH operator, which

we can take to be abelian due to the nature of the gauge theory solution

ln(ΦF ) = − ig
2

∮
C
dsFµνM

µν . (4.122)

Clearly, in plugging eq. (4.121) into this expression we find an infinitesimal boost in

the r, t plane. Thus, by the same arguments given in the gravity case, the SCH group

for the point charge is SO(d − 1, 1). In this case, we have therefore found that two

solutions related via the classical double copy are classified by the same holonomy and

SCH groups. It is reasonable to wonder whether this should always be the case. By

considering a slightly more complex example, we will now see that it is not.

4.4.2 The Taub-NUT solution

The Taub-NUT solution in general relativity is non-asymptotically flat metric char-

acterised by a Schwarzschild like mass M and a NUT charge N . The properties of

Taub-NUT spacetime were discussed in the previous chapter, in section 3.1.2. For our

purposes here, it will be useful to write the metric in the form

ds2 = −A(r) [dt+B(θ)dφ]2 +A−1(r)dr2 + C(r)
[
dθ2 +D(θ)dφ2

]
, (4.123)

where for convenience we have defined

A(r) =
(r − r+)(r − r−)

r2 +N2
, B(θ) = 2N cos θ, C(r) = r2 +N2, D(θ) = sin2 θ,

(4.124)

and

r± = M ±
√
M2 +N2. (4.125)
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As reviewed in the previous chapter, the single copy of the Taub-NUT solution is an

electromagnetic dyon, where the mass maps to electric charge and the NUT charge

maps to magnetic charge. Here we wish to examine the relationship between the SCH

group in gauge theory and the holonomy group in gravity. In the N → 0 limit, the

Taub-NUT metric reduces to the Schwarzschild solution. As we have already examined

this case in the previous section, we instead consider here the M → 0 limit, corre-

sponding to the pure NUT solution. For simplicity, we will consider the abelian case.

However, as detailed in the previous chapter, the generalisation to the non-abelian case

is straightforward.

For an abelian magnetic monopole, the non-zero components of the field strength are

Fθφ =
QM
4πr2

, (4.126)

where QM is the magnetic charge. Thus, the exponent of the SCH operator is simply

ln(ΦF ) = − ig
2

∮
C
ds
QM
4πr2

M θφ, (4.127)

such that only the generator for rotations in the (θ, φ) plane are turned on. This integral

is non-zero in general. Consider, for example, a constant time curve in the equatorial

plane at fixed radius r = r0. All factors in eq. (4.127) can then be taken outside of

the integral, such that upon performing the integration we simply obtain the length of

the curve. Now varying θ and φ we will generate all possible rotations, but not boosts.

Returning to eq. (4.120) we see that the rotation algebra closes upon itself, such that

exponentiation of eq. (4.127) yields only rotations. Thus, we conclude that the SCH

group of the magnetic monopole solution in gauge theory is SO(3), and is therefore

reduced compared to the electric case for which we obtained SO(3, 1).

Let us now consider how this compares to the holonomy group of the Taub-NUT solu-

tion in gravity. Recall that a vielbein basis is chosen such that

g = gµνdx
µ ⊗ dxν = ηabdx

a ⊗ dxb. (4.128)

Thus, a natural basis for the Taub-NUT metric in eq. (4.123) is

e0 = A
1
2 (dt+Bdφ), e1 = A−

1
2dr, e2 = C

1
2dθ, e3 = (CD)

1
2dφ. (4.129)

It will also be useful to have the inverse of these expressions:

dt = A−
1
2 e0 −B(CD)−

1
2 e3, dr = A

1
2 e1, dθ = C−

1
2 e2, dφ = (CD)−

1
2 e3. (4.130)
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The spin connection can be obtained from the torsion-free form of Cartan’s structure

equations,

ωab ∧ eb = −dea, (4.131)

along with the metric compatibility condition

ωab = −ωba. (4.132)

Thus, we first calculate the exterior derivatives of the basis in eq. (4.129), and use

eq. (4.130) to write the results in terms of the vielbein basis:

de0 = (∂rA
1
2 )e1 ∧ e0 + (∂θB)C−1

(
A

D

) 1
2

e2 ∧ e3, (4.133)

de1 = 0, (4.134)

de2 = (∂rC
1
2 )

(
A

C

) 1
2

e1 ∧ e2, (4.135)

de3 = (∂rC
1
2 )

(
A

C

) 1
2

e1 ∧ e3 + (∂θD
1
2 )

(
1

CD

) 1
2

e2 ∧ e3. (4.136)

These expressions can now be used in the Cartan structure equations of eq. (4.131)

which, along with the metric compatibility condition in eq. (4.132), yields the following

non-zero components of the spin connection:

ω0
1 = ω1

0 = (∂rA
1
2 )A

1
2 (dt+Bdφ), (4.137)

ω0
2 = ω2

0 =
1

2
(∂θB)

(
A

C

) 1
2

dφ, (4.138)

ω0
3 = ω3

0 = −1

2
(∂θB)

(
A

CD

) 1
2

dθ, (4.139)

ω1
2 = −ω2

1 = −(∂rC
1
2 )A

1
2dθ, (4.140)

ω1
3 = −ω3

1 = −(∂rC
1
2 )(AD)

1
2dφ (4.141)

ω2
3 = −ω3

2 = −1

2
(∂θB)

A

CD
1
2

(dt+Bdφ)− (∂θD
1
2 )dφ. (4.142)
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Now by substituting eqs. (4.124) and performing the derivatives we find for Taub-NUT:

ω0
1 = ω1

0 =
M(r2 −N2) + 2N2r

(r2 +N2)2
[dt+ 2N cos θdφ] , (4.143)

ω0
2 = ω2

0 = − N sin θ

r2 +N2

√
(r − r+)(r − r−)dφ, (4.144)

ω0
3 = ω3

0 =
N

r2 +N2

√
(r − r+)(r − r−)dθ, (4.145)

ω1
2 = −ω2

1 = − r

r2 +N2

√
(r − r+)(r − r−)dθ, (4.146)

ω1
3 = −ω3

1 = − r sin θ

r2 +N2

√
(r − r+)(r − r−)dφ, (4.147)

ω2
3 = −ω3

2 =
N(r − r+)(r − r−)

(r2 +N2)2
dt+

[
2N2(r − r+)(r − r−)

(r2 +N2)2
− 1

]
cos θdφ. (4.148)

As a consistency check, we can take the N → 0 limit in these expressions, which

yields the expected spin connection for the Schwarzschild solution. For the single copy

solution of a magnetic monopole above, we considered a loop at constant time and

radius in the equatorial plane θ = π/2. The integral in the holonomy operator is then

simply ∮
dxµ(ωµ)abM

ab = 2

∮
dφ[(ωφ)02M

02 + (ωφ)13M
13]

= 4π[(ωφ)02M
02 + (ωφ)13M

13]. (4.149)

This yields a boost in the 0-2 plane and a rotation in the 1-3 plane, with coefficients

(ωφ)02 and (ωφ)13 respectively, where

(ωφ)02 =
N

r2 +N2

√
(r − r+)(r − r−), (4.150)

(ωφ)13 = − r

r2 +N2

√
(r − r+)(r − r−). (4.151)

The boost and rotation planes are thus mutually orthogonal. Such a transformation is

conventionally known as a Lorentz four-screw. Our results here are in agreement with

ref. [143], although we have adopted a different choice of vielbein.

The spin connection components of eqs. (4.150), (4.151) correspond to the full Taub-

NUT solution. We wish to consider the pure NUT case, in which M → 0, as this corre-

sponds to the double copy of a magnetic charge. Taking this limit in eqs. (4.150), (4.151)
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yields

(ωφ)02 =
N

r2 +N2

√
r2 −N2, (4.152)

(ωφ)13 = − r

r2 +N2

√
r2 −N2, (4.153)

such that the integral of eq. (4.149) reduces to∮
dxµ(ωµ)abM

ab =
4π
√
r2 −N2

r2 +N2

[
NM02 − rM13

]
. (4.154)

Thus, the boost generator survives even in the case of a pure NUT charge. As explained

in the previous section, the presence of the boost generator will potentially give rise to a

SO(3, 1) holonomy group, unless the effects of the boost can be removed via a similarity

transformation on the group elements. However, by considering other loops, boosts in

different Cartesian directions are generated. To demonstrate this, note that the pure

NUT metric has a Kerr-Schild form, and we can therefore make use of eq. (4.101) to

express the integrand of the holonomy operator in terms of a Kerr-Schild graviton. The

integral in eq. (4.154) is therefore equivalent to

−
∮
dxµ∂σ(hµν)Mνσ = −

∮
dxµ∂σ(φkµkν)Mνσ. (4.155)

Furthermore, for the pure NUT metric in Kerr-Schild form, we have that k0 = 1, such

that

−
∮
dxµ∂σ(φkµkν)Mνσ = −

∮
dxµ∂σ(φkµ)M0σ

= −
∮
dxµ [∂σ(φkµ)− ∂µ(φkσ)]M0σ, (4.156)

where in the second equality we have introduced a total derivative term that integrates

to zero around a closed loop. We may now recognise the factor in square brackets as

the abelian field strength associated with a gauge field that is the single copy of the

Kerr-Schild graviton. Equation (4.156) can therefore be further rewritten as

−
∮
dxµ∂σ(φkµkν)Mνσ = −

∮
dxµFσµM

νσ

= −
∮
dxjεijkBkKi

= −
∮

(dx×B) ·K. (4.157)

The physical content of this expression is made clear by considering a loop of fixed t and

r, that is tilted relative to the equatorial plane. Such a loop is depicted in figure 4.2.
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B

k

O

Figure 4.2: A closed spatial loop of fixed t and r, that is tilted with respect to the
equatorial plane. O marks the origin. A monopole field B generates a boost in the
direction k.

The monopole B field is parallel to the radial direction, while dx is tangent to the

integration contour. This generates a boost in the k ∝ dx × B direction. From the

figure, it is clear that this is in the increasing θ direction. Therefore, boosts in the

(t, θ) plane are generated for all such constant time loops, from which we can conclude

that boosts in all Cartesian directions will be turned on in general. This gives rise to a

SO(3, 1) holonomy group for the pure NUT solution, which does not match the SO(3)

SCH group found for its single copy.

Naively, we might have hoped that these groups align with one another when the two

solutions are related by the double copy. That this is not the case is a consequence

of the physical properties of these two solutions. In ref. [143], the holonomy of Taub-

NUT spacetime was studied using similar constant t loops. It was shown here that the

generators M0i arise due to the extrinsic curvature of space-like hypersurfaces within

the spacetime. As spacelike hypersurfaces in the Taub-NUT solution have non-zero

extrinsic curvature, both the “magnetic” M ij and the “electric” M0i generators are

turned on in general. This is not the case for the magnetic monopole solution, which

exists in gauge theory defined over Minkowski spacetime.

4.4.3 Self-dual solutions

We have now given two examples which probe the behaviour of the holonomy and SCH

operators. In the case of the Schwarzschild / point charge system, both the holonomy

and SCH groups remained in their maximal form of SO(3, 1). For the pure NUT /

monopole system, the SCH group reduced while the holonomy group did not. In this

section we demonstrate another possibility: that the SCH and holonomy groups reduce

to mutually isomorphic subgroups of SO(3, 1). To illustrate this, we consider the case

of self-dual solutions in gauge theory and gravity.
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We begin with gravity. The Riemann tensor can be decomposed into its self-dual R+

and anti-self dual R− components via

R±µνρλ = (P±)αβµνRαβρλ, (4.158)

where we have defined the projectors

(P±)αβµν =
1

2

(
δαµ δ

β
ν − δαν δβµ ±

√
gεαβµν

)
, (4.159)

and g denotes the determinant of the metric. Note that in this section we work in

Euclidean signature. We can use Stokes’ theorem to rewrite the gravitational holonomy

operator as

Φω = P exp

(
− i

2

∫∫
Σ
dΣµν RcdµνM

cd

)
= P exp

(
− i

2

∫∫
Σ
dΣµν (R+

ρλµν +R−ρλµν)Mρλ

)
, (4.160)

where dΣµν is the area element of the area Σ bounded by the curve C. For a self-

dual solution, the second term in this expression is zero by definition, such that the

holonomy reduces to

Φω = P exp

(
− i

2

∫∫
Σ
dΣµν (P+)αβρλRαβµνM

ρλ

)
= P exp

(
− i

2

∫∫
Σ
dΣµν Rαβµν(M+)αβ

)
. (4.161)

Here we have defined two linearly independent sets of Lorentz generators, corresponding

to the self-dual and anti-self-dual parts, via

(M±)αβ = (P±)αβρλM
ρλ. (4.162)

This amounts to the Lie algebra isomorphism so(4) ' su(2) ⊕ su(2), where (M±)αβ

are each generators of one of the su(2) subalgebras. Thus, for self-dual solutions the

holonomy group can immediately be seen to reduce to SU(2), and likewise for anti-self-

dual solutions.

Self-dual gauge theory is the single copy of self-dual gravity [29]. The self-dual and

anti-self-dual parts of the Yang-Mills field strength can be defined in an analogous

manner to the Riemann tensor in eq. (4.158), via

F±µν = (P±)µν
αβ
Fαβ, (4.163)
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where the projectors are defined as in eq. (4.159), but with the general metric replaced

with that of Euclidean flat space.3 Self-dual solutions are those for which F−µν = 0,

such that the SCH operator is

exp

[
ig

∮
C
dsF+

µνM
µν

]
= exp

[
ig

∮
C
ds(P+)µν

αβ
FαβM

µν

]
= exp

[
ig

∮
C
dsFαβ(M+)αβ

]
. (4.164)

Once again, only half of the Lorentz generators are turned on, so that the SCH group

reduces to SU(2), as in gravity. The self-dual sector therefore provides an example

where the SCH and holonomy groups both reduce to isomorphic subgroups.

4.4.4 Discussion

The identification of an operator corresponding to the single copy of the gravitational

holonomy extends the catalogue of objects that are known to double copy, while also

clarifying the question of what is to be considered as a gravitational Wilson line. How-

ever, from a practical perspective, this leaves a question: is the SCH operator useful for

anything? In this section we have studied the nature of the holonomy and SCH groups

for a collection of well-known exact double copies. We found three different outcomes.

In two cases the holonomy and SCH group matched, taking their maximal form or

mutually reducing, while in the case of the Taub-NUT metric and magnetic monopole

solutions, we found that the SCH group reduces while the holonomy group does not.

One might have hoped that the SCH operator could play a role in the identification

of exact solutions for which a double copy is possible. However, the results of this

section suggest that this may not be a fruitful line of thinking. Despite this fact, the

SCH operator may still provide useful insights into the geometry of the double copy

for exact solutions. As an operator it is valued in both spacetime and colour space,

such that acts as a rotation of vectors both in the internal colour space and the tangent

space of the spacetime manifold. In contrast to this, the gravitational holonomy acts

as a rotation of vectors in the tangent space only. This is to be expected given that the

information about the gauge group is removed when taking the double copy. However,

a more formal study of what these replacements mean at the level of the fibre bundle

geometry would be interesting, given that a geometrical understanding of the exact

double copy (if any exists) is currently lacking.

3While the metric in eq. (4.159) now corresponds to flat Euclidean space, the
√
g is still necessary

as curvilinear coordinates may be employed.



Chapter 5

Non-perturbative insights from

the self-dual sector

So far in this thesis, we have focused on the relationship between gauge theory and

gravity that is revealed by the double copy. Broadly speaking, whether working at

the level of scattering amplitudes or exact classical solutions, one moves from gauge

theory to gravity by replacing colour with kinematic information. However, one can

also move in the opposite direction. Starting with gauge theory and replacing kinematic

with colour information yields biadjoint scalar theory, as depicted in figure 2.2. In all

previous examples of the classical double copy, linearised solutions of this theory play

a crucial role, appearing as the scalar functions that persist in the gauge and gravity

solutions. However, for a fully non-perturbative understanding of the double copy, one

would hope that it is be possible to identify non-linear solutions in all three theories.

As the equations of motion for biadjoint scalar theory are simple in comparison to

its double copy relatives, a possible approach to this question is to search directly for

non-linear solutions to these equations. By assembling a catalogue of exact solutions

in biadjoint scalar field theory, it may then be possible to identify counterparts in

gauge and gravity theories, thereby shedding light on a non-linear exact double copy

procedure.

This is a line of work initiated in ref. [144]. Here a set of exact biadjoint scalar solutions

were found, the simplest of which corresponded to a spherically symmetric monopole-

like object that is singular at the origin. Ref. [144] posited that this could by related

to the non-abelian Wu-Yang monopole in gauge theory, however this was shown to not

be the case in ref. [88] due to the fact that this gauge theory solution is related via a

singular gauge transformation to a non-abelian dressing of the Dirac monopole, whose

105



106 Chapter 5. Non-perturbative insights from the self-dual sector

associated biadjoint field is already known. More exotic non-linear biadjoint solutions

were found in refs. [145, 146], however the corresponding solutions in gauge theory or

gravity, if they exist, are yet to be identified.

In this chapter we continue this line of work by searching for non-linear solutions to

biadjoint scalar field theory in Euclidean spacetime. This is motivated by the fact

that Euclidean solutions in gauge theory and gravity correspond to instantons. One

might hope that if non-linear exact solutions exist in Euclidean biadjoint theory, it

may be possible to relate them to known instanton solutions via the double copy. That

this should be possible is further motivated by the fact that instantons correspond to

(anti-)self-dual field configurations. The double copy is well understood in the self-

dual sector, as reviewed in section 2.3.1, where perturbative classical solutions to self-

dual Yang-Mills (SDYM) can be shown to double copy to those in self-dual gravity

(SDG) [29].

We will begin by briefly reviewing some basic facts about instanton solutions in gauge

theory and gravity, as well as the Kerr-Schild-like exact double copy between them.

Following this, we will begin our search for non-linear solutions to Euclidean biadjoint

scalar theory by looking for power-like spherically symmetric solutions, by analogy

with the Lorentzian signature solutions of refs. [144, 145]. Here we find a general d-

dimensional solution, however this has the curious property that it vanishes for d = 4.

This turns out to be due to the fact that the power-like solutions already solve the

linearised biadjoint field equations for d = 4. Furthermore, these linear solutions can

be identified with a known double copy: they correspond to the zeroth copy of the

Eguchi-Hanson instanton. In making this observation, we will be able to extend the

double copy structure of these solutions, providing both a more general abelian-like

single copy and a non-abelian embedding of this field. This non-abelian single copy

maps to the same solution in gravity, mimicking the structure found for magnetic

monopoles in chapter 3. Furthermore, our results will make contact with the two-

dimensional non-perturbative double copy proposed in ref. [147]. From this, we will be

able to interpret the sense in which the kinematic algebra is manifest in the context of

certain exact four-dimensional solutions in SDYM and SDG.
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5.1 Instantons in gauge theory and gravity

5.1.1 Exact solutions in self-dual gauge theory

We begin with an introduction to exact solutions to the self-dual Yang-Mills equations

on Euclidean spacetime with finite action, which are known as instantons. There is

a vast literature studying the properties and uses of gauge theory instantons (see e.g.

refs. [92, 148, 149] for both classic and modern reviews). Here we give only a brief

introduction to classical Euclidean gauge theory that will lay out the basic concepts

necessary for later sections.

We work in four-dimensional Euclidean spacetime, where the metric is simply δµν . As is

common in the instanton literature, when in Euclidean spacetime we let Greek indices

take the values µ, ν, ... = 1, 2, 3, 4, such that a general vector is

xµ = (x, y, z, τ), (5.1)

where τ is the Euclidean time coordinate, x4 = ix0 ≡ τ . As we are in Euclidean

signature there is now no distinction between upper and lower indices.

Consider pure SU(N) Yang-Mills theory with the action

S = −1

4

∫
d4x tr(FµνFµν). (5.2)

Variation of the action yields the Euclidean Yang-Mills field equations

DµFµν = 0, (5.3)

where Dµ is the gauge covariant derivative. Instantons are exact finite action solutions

to these equations of motion. The stipulation of a finite action fixes the asymptotic

behaviour of the gauge field solutions to eq. (5.3). As the integrand of the action in

eq. (5.2) goes like F 2, we require that the field strength must decrease at infinity faster

than x−2. For this to be the case, the gauge field must be asymptotically pure gauge,

such that as x→∞
Aµ → iU∂µU

−1. (5.4)

where U ∈ SU(N). Finite action solutions are therefore asymptotically classified by

elements of the gauge group, which act as maps from the spacetime boundary to the

gauge group

U : S3 → SU(N). (5.5)
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Such maps are classified by the third homotopy group π3, which for SU(N) is

π3(SU(N)) = Z. (5.6)

An integer k ∈ Z thus classifies the solutions, and is given by the integral

k =
1

16π2

∫
d4x tr(FµνF̃µν), (5.7)

where F̃ is the dual field strength

F̃ =
1

2
εµνρσFρσ. (5.8)

The integer k goes by many names: the winding number, instanton number, topological

charge, or Pontryagin class.

We have seen that instanton solutions are characterised by an integer value k. How

do we actually find such solutions? We could search for them by attempting to solve

eq. (5.3). This is a second-order equation however, and things will be greatly expedited

by reformulating eq. (5.3) as a first-order equation. To do this, we note that due to the

property

tr(F 2) = tr(F̃ 2), (5.9)

we can rewrite the Euclidean action of eq. (5.2) as

S =
1

8

∫
d4x tr(F 2 + F̃ 2)

=
1

8

∫
d4x

[
tr(Fµν ∓ F̃µν)2 ± 2tr(FµνF̃µν)

]
= ±4π2k +

1

8

∫
d4x tr(Fµν ∓ F̃µν)2, (5.10)

where in the final equality we have identified the instanton number k from eq. (5.7).

By noting that the second term in the final line of this expression is a total square, we

can place a lower bound on the action, such that

S ≥ 4π2|k|. (5.11)

From eq. (5.10) we see that this bound is saturated when

Fµν ∓ F̃µν = 0. (5.12)

Thus, for a given topological sector defined by k, the action is minimised by solving
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the following expressions

Fµν = F̃µν , k > 0 (5.13)

−Fµν = F̃µν , k < 0. (5.14)

Conventionally, the k > 0 solutions are referred to as instantons while k < 0 solutions

are referred to as anti-instantons. Eqs. (5.13) and (5.14) are known as the self-duality

and anti-self duality conditions respectively. Solutions to these expressions necessarily

solve the Euclidean Yang-Mills equations of eq. (5.3).

5.1.2 Exact solutions in self-dual gravity

The definition of instanton solutions in gravitational theories is less rigorous than that in

gauge theory. A gravitational instanton is always a solution to the Euclidean Einstein

equations, however the additional properties vary from case to case. For example,

solutions with either finite or non-finite action, self-dual or non-self-dual curvature, and

asymptotically locally Euclidean (ALE) or non-ALE behaviour are all often referred

to as gravitational instantons. For our purposes, in analogy to Yang-Mills instantons,

we consider gravitational instantons to be four-dimensional Riemannian metrics which

satisfy the Euclidean Einstein equations and the (anti-)self-duality conditions

Rµνρσ = ±R̃µνρσ, (5.15)

where Rµνρσ are the components of the Riemann curvature tensor. The dual curvature

tensor is defined as

R̃µνρσ =
1

2
εµνγδRγδρσ. (5.16)

One might wonder about the origin of this definition, seeing as the operation of the

Hodge dual maps a two-form to another two-form. Indeed, eq. (5.15) arises from

imposing the (anti-)self-duality conditions on the curvature two-form

Rab = ±R̃ab, (5.17)

which furthermore corresponds to an (anti-)self-dual spin connection. The (anti-)self-

duality of the curvature along with the Bianchi identity implies that the corresponding

metrics are solutions to the vacuum Einstein equations.

In further analogy to Yang-Mills instantons, gravitational instanton solutions fall into

distinct topological sectors. These are classified by two topological invariants, the
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Pontryagin number and the Euler characteristic, given respectively by [150]

p =
1

32π2

∫
d4x
√
g εµναβRµνρσRρσαβ, (5.18)

χ =
1

128π2

∫
d4x
√
g εµναβερσγδRµνρσRαβγδ. (5.19)

A variety of gravitational instanton solutions are known (see the seminal works of

refs. [150–154], and ref. [97] for a modern review).

5.1.3 The double copy for exact self-dual solutions

In ref. [21] a Kerr-Schild-like approach to double-copying exact self-dual solutions was

proposed. In this approach, the Kerr-Schild graviton is formulated in terms of a differ-

ential operator k̂µ, such that the full metric takes the form

gµν = ηµν + κk̂µk̂νφ. (5.20)

In the standard Kerr-Schild double copy, the graviton decomposes into a local prod-

uct in position space, whereas here the use of differential operators corresponds to a

local product in momentum space.1 The operator k̂µ is taken to satisfy the following

properties

k̂2 = 0, ∂ · k̂ = 0, [k̂µ, k̂ν ] = 0. (5.21)

We now go to the light-cone coordinates

u = t− z, v = t+ z, w = x+ iy, w̄ = x− iy. (5.22)

Note that for this section we are working in Minkowski spacetime, as opposed to Eu-

clidean, so as to match the literature. One can show that for a metric satisfying the

self-duality condition of eq. (5.15), the differential operator takes the form

k̂u = 0, k̂v =
1

4
∂w, k̂w = 0, k̂w̄ =

1

4
∂u, (5.23)

where the numerical coefficients are chosen. Furthermore, the Einstein equations reduce

to

∂2φ− κ

2
(k̂µk̂νφ)(∂µ∂νφ) = 0, (5.24)

which, for the operator in eq. (5.23) reduces to the Plebanski equation for SDG of

eq. (2.47).

1See refs. [82,155] for recent discussions about when and why the classical double copy takes a local
position-space form.
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One can single copy the self-dual graviton in eq. (5.20) by following an analogous

approach to the Kerr-Schild single copy. That is, we consider a gauge field

Aaµ = k̂µφ
a, (5.25)

where the scalar is valued in the Lie algebra. Substituting this ansatz into the Yang-

Mills equations yields

k̂ν∂
2φa + 2gfabc(k̂µφb)(k̂ν∂µφ

c) = 0, (5.26)

which is equivalent to the SDYM equations of eq. (2.46) for the operator in eq. (5.23).

We therefore see that exact solutions to self-dual gauge theory and gravity can be double

copied in a Kerr-Schild-like manner. This aligns with the results of ref. [29], which we

reviewed in section 2.3.1, in which perturbative solutions to the classical equations of

motion in the self-dual sectors where shown exhibit manifest colour-kinematics duality.

5.2 Exact solutions in Euclidean biadjoint scalar theory

Biadjoint scalar field theory was introduced in section 2.3.2. It is described by a cu-

bic Lagrangian, which gives rise to the Lorentzian signature equations of motion in

eq. (2.75). The biadjoint scalar theory is an unphysical theory, with energies that are

unbounded from below such that exact solutions are dynamically unstable. However,

as we have previously discussed, the theory is intimately tied to the double copy in

that it is obtained from Yang-Mills through the replacement of kinematic with colour

information. That is, it corresponds to the zeroth copy of Yang-Mills theory. When

considering exact classical solutions, the biadjoint scalar theory still arises as the ze-

roth copy of well-behaved, physical solutions in gauge theory. Thus, in probing the

non-perturbative structure of the double copy, it is useful to catalogue exact solutions

in biadjoint scalar field theory, regardless of their non-physical properties. This line of

work was initiated in ref. [144] and further developed in refs. [3, 88, 145, 146]. In all of

these works, biadjoint scalar theory was considered in Lorentzian signature. Here we

look for Euclidean solutions.

We begin by transforming the Lorentzian biadjoint scalar theory equations of motion

in eq. (2.75) to Euclidean signature. This is done via the Wick rotation t→ iτ , which

amounts to

∂2 → ∆, (5.27)

where ∆ is the Laplacian operator. For now, we work in d-dimensions. The Euclidean
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equations of motion are then

∆Φaa′ + yfabcf̃a
′b′c′Φbb′Φcc′ = 0. (5.28)

We search for exact solutions to this equation following the approach suggested in

ref. [144]. Solutions to biadjoint scalar theory are valued in two, possibly distinct

gauge groups, G and G̃, each with their own sets of structure constants. Let us first

assume that these groups coincide, such that

fabc = f̃abc. (5.29)

The structure constants satisfy the identity

fabcfa
′bc = TAδ

aa′ , (5.30)

where TA is a constant dependent on the common gauge group G and the normalisation

of the generators. Here, we will restrict to spherically symmetric solutions, via the

ansatz

Φaa′ =
δaa
′

yTA
f(r), r2 = xµx

µ. (5.31)

Substituting this into the equations of motion in eq. (5.28) yields

1

rd−1

d

dr

(
rd−1df(r)

dr

)
+ f2(r) = 0, (5.32)

where the d-dimensional Laplacian in spherical coordinates has been used:

∆f =
1

rd−1

∂

∂r

(
rd−1∂f

∂r

)
+

1

r2
∆Sd−1f. (5.33)

The second term contains the Laplace-Beltrami operator ∆Sd−1 , which depends on

angular coordinates only. As we are considering spherically symmetric solutions this

term does not contribute in eq. (5.32).

Let us now restrict to power-like solutions, via the radial function

f(r) = Arα, (5.34)

where A and α are constants. Substituting this into eq. (5.32) yields

Aα(d+ α− 2)rα−2 +A2r2α = 0. (5.35)
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Requiring that this holds for all r > 0 enforces

α = −2 ⇒ A[A− 2(d− 4)] = 0, (5.36)

which yields two solutions

A = 0, A = 2(d− 4). (5.37)

Thus, with eqs. (5.31) and (5.34), we have two solutions to the Euclidean equations of

motion. The first, corresponding to A = 0, is the trivial vacuum solution Φaa′ = 0.

The second is a non-trivial power-like solution

Φaa′ =
2δaa

′

yTA

d− 4

r2
. (5.38)

Note that this is a d-dimensional solution, and thus the radial dependence of r−2

is common to all spacetime dimensions. This fact can be confirmed by dimensional

analysis. As d varies for solutions with an inverse power of the coupling, the dimension

of the fields and coupling vary so as to fix the radial power. This is in contrast to the

linearised field equations, whose solutions must depend on a radial power that varies

as the dimension changes, so as to maintain the correct dimensions for the field.

Let us perform a brief consistency check of the solution in eq. (5.38) by comparing it to

the results of ref. [144]. In this paper static monopole-like solutions to biadjoint scalar

field theory in Lorentzian signature were found in four-dimensions. As these solutions

are static, the Lorentzian equation of motion in eq. (2.75) for d = 4 reduces to the

Euclidean equation in eq. (5.28) for d = 3. Taking d = 3 in eq. (5.38) yields

Φaa′
∣∣
d=3

= − 2δaa
′

yTAr2
. (5.39)

This is precisely eq. (11) in ref. [144].

A peculiar feature of our solution in eq. (5.38) is the presence of (d− 4) in the numer-

ator. We are most interested in d = 4 corresponding to four-dimensional Euclidean

spacetime, but this factor tells us that there are no such non-trivial power-like solu-

tions to eq. (5.28). To investigate this further, let us take influence from the Lorentzian

signature work of ref. [145], and generalise our spherically symmetric ansatz. In this

paper, the following ansatz for the radial function was considered

f(r) =
K(r)− 1

r2
, (5.40)

where K(r) is finite for all r. This ansatz partially screens the divergence at the origin,

and aligns with the trivial solution forK(r)→ 1. Note that finite energy static solutions
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in biadjoint scalar theory are prohibited by Derrick’s theorem [156]. Taking this form

for f(r) in eq. (5.33) yields

r2K ′′(r) + (d− 5)rK ′ +K2 − 2(d− 3)K + 2d− 7 = 0, (5.41)

where the prime denotes differentiation with respect to r. Let us now introduce a

variable ξ, such that

r = e−ξ, −∞ < ξ <∞, (5.42)

which reduces eq. (5.41) to

∂2K

∂ξ2
− (d− 6)

∂K

∂ξ
+ (K − 1)(K − 2d+ 7) = 0. (5.43)

This is a non-linear second-order differential equation. In general it is not analytically

solvable. Ref. [145] showed that via a further transformation it can be recognised as

an Abel equation of the second kind, although not one that has an analytic solution in

terms of known functions. We can, however, gain valuable information from eq. (5.43)

by visualising its solutions via a method similar to that used in ref. [157] in the construc-

tion of exact solutions to pure Yang-Mills. The approach is to reformulate eq. (5.43)

as two coupled first-order differential equations. We introduce a new parameter ψ via

ψ =
∂K

∂ξ
. (5.44)

Equation (5.43) then corresponds to the coupled equations(
∂K

∂ξ
,
∂ψ

∂ξ

)
=
(
ψ, (d− 6)ψ − (K − 1)(K − 2d+ 7)

)
. (5.45)

This defines a vector field in the (K,ψ) plane, whose integral curves correspond to

solutions of eq. (5.43). In figure 5.1, we show plots of these curves for d = 2, 3, 4, 5. For

general d, the vector field of eq. (5.45) vanishes at two fixed points:

(K,ψ) = (1, 0), (5.46)

(K,ψ) = (2d− 7, 0). (5.47)

These correspond to the trivial solution and the non-trivial power-like solution in

eq. (5.38). From the plots it can be seen that as d increases the non-trivial solu-

tion moves to right along the ψ = 0 axis in the (K,ψ) plane. However, for d = 4 the

two fixed points coincide, so that there is only the trivial solution.

Solutions K that are finite for all r correspond to integral curves that are bounded in
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the (K,ψ) plane, i.e. those that interpolate between the fixed points. For d 6= 4 there

is always a single bounded curve, connecting the points (1, 0) and (2d − 7, 0). This

broadens the implications of the absence of two fixed points for d = 4: not only are

there no non-trivial spherically symmetric power-like solutions, but there are also no

non-trivial extended solutions of the form in eq. (5.40).

5.3 Revisiting the single copy of the Eguchi-Hanson in-

stanton

We have seen in the previous section that there are no non-trivial power-like or spheri-

cally symmetric solutions to four-dimensional Euclidean biadjoint scalar theory. There

turns out to be a very simple reason why this is the case. Recall that in eq. (5.38), we

saw that spherically symmetric power-like solutions to the full non-linear equations of

motion always have a radial dependence that goes like ∼ r−2, regardless of the space-

time dimension. However, for d = 4, r−2 is a harmonic function. Thus, by definition,

the Laplacian of solutions with this radial dependence vanish for r 6= 0. To make this

explicit, recall the form of the Laplacian in spherical coordinates in eq. (5.33). This

implies that in d dimensions

∆r−n = n(n+ 2− d)r−n−2, (5.48)

which vanishes for r > 0, n = 2, and d = 4. Fields Φaa′ with r−2 dependence in four

dimensions therefore solve the linearised biadjoint equations

∆Φaa′ = 0. (5.49)

Thus, there are no non-trivial power-like solutions to the full non-linear equations of

motion in four dimensions. While this argument circumvents the need for the analysis

in the previous section, we believe that it was still worthwhile. There are non-trivial

power-like solutions in other numbers of dimensions, which deserve further study. Fur-

thermore, the fact that bounded extended solutions in d = 4 are also absent would have

been missed by this simple argument.

Solutions to the linearised biadjoint equations of motion can be promoted to solutions to

the full non-linear equations by dressing them with constant colour vectors {ca, c̃a′} [21].

Indeed this is exactly the form of the solutions obtained via the Kerr-Schild double copy.
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Figure 5.1: Plots of the vector field of eq. (5.45) in the (K,ψ) plane for d = 2, 3, 4, 5
respectively. Integral curves correspond to solutions of the differential equation in
eq. (5.43). The red dots correspond to the fixed point solutions (K,ψ) = (1, 0) and
(K,ψ) = (2d− 7, 0).
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For a general harmonic solution, we therefore have

Φaa′ =
αcac̃a

′

r2
, (5.50)

where α is an arbitrary constant. As expected, in the substitution of this ansatz into

the equations of motion in eq. (2.75), the non-linear term vanishes and we are left with

a solution to the linearised equations. Due to the precedence of this form of solutions

in the classical double copy, it is natural to ask whether there are gauge and gravity

solutions for which eq. (5.50) constitutes the zeroth copy. In fact, the solution is already

known: it is related to the Eguchi-Hanson instanton, a known gravitational instanton

in general relativity. The Eguchi-Hanson metric takes a particularly nice form in the

following coordinate system [22,74]

u =
τ − iz√

2
, v =

τ + iz√
2
, X =

ix− y√
2
, Y =

ix+ y√
2
. (5.51)

The metric then takes a Kerr-Schild form in which the graviton can be written as [22]

hµν = φkµkν , φ =
λ

(uv −XY )
, kµ =

1

(uv −XY )
(v, 0, 0,−X). (5.52)

The Kerr-Schild vector kµ satisfies the usual null and geodesic conditions. The single

and zeroth copies are then straightforwardly obtained following the standard proce-

dure [21], giving rise to the following gauge and biadjoint scalar fields

Aaµ = caφkµ, Φaa′ = cac̃a
′
φ. (5.53)

where ca and c̃a
′

are constant colour vectors. As is standard for exact classical double

copies, these solutions linearise their respective equations of motion. Translating the

scalar field in eq. (5.52) into Euclidean Cartesian coordinates, we find

φ =
2λ

r2
. (5.54)

Thus, the zeroth copy of the Eguchi-Hanson metric in eq. (5.53) is equal to the power-

like solution in eq. (5.50) with α = 2λ.

For our purposes, it will be useful to reformulate this result in an alternative way. First,

let us rewrite the single copy gauge field in eq. (5.53) in terms of an abelian gauge field

Aµ:

Aaµ = caAµ, Aµ =
λ

(uv −XY )2
(v, 0, 0,−X) . (5.55)
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We may then identify a differential operator k̂µ, such that

Aµ = k̂µφ, k̂µ = −(∂u, 0, 0, ∂Y ), (5.56)

where the single copy is written in terms of the operators action on the scalar field φ.

Furthermore, the Eguchi-Hanson graviton can be written in terms of the same operator

via

hµν = k̂µk̂νφ. (5.57)

This construction appears to mirror the Kerr-Schild-like approach to the double copy

for exact self-dual solutions reviewed in section 5.1.3, in which differential operators

play a role analogous to the Kerr-Schild vectors. Indeed, such a formulation is possible

given that the Eguchi-Hanson metric is an example of a self-dual solution [74]. Recall,

however, that the differential operator used in this construction was required to satisfy

the properties in eq. (5.21). The operator used here indeed meets the first criterion,

such that k̂2 = 0. However, the second is not satisfied, and we find that

∂ · k̂ = −1

2
∆. (5.58)

It is therefore unclear whether the gauge and graviton fields of eqs. (5.55), (5.56),

and (5.57) constitute a special case of the self-dual double copy proposed in ref. [21].

To clarify this apparent mismatch, it will be useful to transform the differential operator

of eq. (5.56) into Cartesian coordinates, where it takes the form

k̂µ = −1

2
(∂x + i∂y, ∂y − i∂x, ∂z − i∂τ , ∂τ + i∂z) . (5.59)

We now notice that this can be written in the compact form

k̂µ = −1

2

(
δµν + iη̄3

µν

)
∂ν , (5.60)

where η̄3
µν is an example of a ’t Hooft symbol {η̄aµν}, given explicitly by

η̄aµν = εaµν4 − δaµδν4 + δaνδµ4 (5.61)

’t Hooft symbols are common in the study of gauge theory instantons and will play

an important role in the following sections. We will therefore review their properties

in more detail in the next section. For now, it is enough to know that they form

a representation of an SU(2) subalgebra of SO(4), the Lorentz group in Euclidean

signature. Thus, in eq. (5.60), the ’t Hooft symbol enacts a particular “rotation” on

the derivative operator ∂µ. Let us then consider a particular rotation on k̂µ itself, to
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obtain a second operator k̂′µ:

k̂′µ = −η̄2
µν k̂ν

=
1

2

(
η̄2
µν − iη̄1

µν

)
∂ν , (5.62)

which in the coordinates of eq. (5.51) is given by

k̂′µ = (0, ∂Y , ∂u, 0). (5.63)

With this new operator, it is straightforward to confirm that

k̂′2 = 0, ∂ · k̂′ = 0, (5.64)

such that the conditions in eq. (5.21) are satisfied. Furthermore, k̂′µ is simply a coordi-

nate transformation of k̂µ to a frame whose coordinates are

x′µ = −η̄2
µνxν =⇒ (x′, y′, z′, τ ′) = (z, τ,−x,−y). (5.65)

We then have

(r′)2 = x′µ x
′
µ = xµ xµ = r2, (5.66)

such that the Eguchi-Hanson graviton and its single copy in the primed coordinate

system take the form

A′µ = cak̂′µφ(r′), h′µν = k̂′µk̂
′
νφ(r′). (5.67)

This is now a special case of the exact self-dual double copy reviewed in section 5.1.3.

From the discussion in this section, we tied the absence of non-linear power-like solutions

in Euclidean biadjoint scalar theory to the double copy, by noting that simple power-

like solutions already correspond to a known zeroth copy, that of the Eguchi-Hanson

instanton, for which the biadjoint theory equations of motion linearise. As the Eguchi-

Hanson metric is a self-dual solution, its single and zeroth copies are naturally described

in terms of differential operators satisfying eqs. (5.21), such that it corresponds to

a special case of the exact self-dual double copy construction proposed in ref. [21].

Particularly compelling for our present purposes is the appearance of ’t Hooft symbols

in the differential operators from which the fields related by the double copy are built.

We will find that their presence allows for the construction of a general ansatz for

double copying certain self-dual solutions, as well as a straightforward generalisation to

non-abelian single copies. However, due to the importance of the ’t Hooft symbols in

this story, we will now briefly review their properties and provide some useful identities.
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5.4 ’t Hooft symbols

The ’t Hooft symbols, first introduced in ref. [158], appear frequently in the study

of instanton solutions in gauge theory. In Euclidean spacetime, the Lorentz group is

SO(4). This is a six-dimensional group, with three rotations {Ji} in the (xi, xj) plane,

and three rotations {Ki} in the (xi, x4) plane (recall that x4 = τ is our Euclidean time

coordinate). Note that the latter are the analogue of boosts in Lorentzian signature.

We can form linear combinations of these two sets of rotations

Mi =
1

2
(Ji +Ki), Ni =

1

2
(Ji −Ki), (5.68)

which furnish two independent SU(2) subalgebras, such that

[Mi,Mj ] = −εijkMk, [Ni, Nj ] = −εijkNk, [Mi, Nj ] = 0. (5.69)

The ’t Hooft symbols form a representation of the generators {Mi, Ni} acting on four-

dimensional vectors. The are given explicitly by

ηaµν = εaµν4 + δaµδν4 − δaνδµ4, (5.70)

η̄aµν = εaµν4 − δaµδν4 + δaνδµ4, (5.71)

and satisfy

[ηa, ηb] = −2εabcηc, [η̄a, η̄b] = −2εabcη̄c, [ηa, η̄b] = 0, (5.72)

where the indices a, b, c, ... ∈ {1, 2, 3} and we have here used matrix notation. Thus,

we can identify

Mi =
1

2
η̄iµν , Ni =

1

2
ηiµν . (5.73)

Note that ηaµν and η̄aµν are antisymmetric

ηaµν = −ηaνµ, η̄aµν = −η̄aνµ (5.74)

and self-dual and anti-self-dual respectively:

ηaµν =
1

2
εµνρση

a
ρσ, η̄aµν = −1

2
εµνρση̄

a
ρσ. (5.75)
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Furthermore, from eqs. (5.70) and (5.71), we find their explicit matrix form to be

η1
µν =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 , η2
µν =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 , η3
µν =


0 1 0 0

−1 0 1 0

0 0 0 1

0 0 −1 0

 ;

η̄1
µν =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 , η̄2
µν =


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

 , η̄3
µν =


0 1 0 0

−1 0 1 0

0 0 0 −1

0 0 1 0

 .

(5.76)

The ’t Hooft symbols satisfy a number of useful properties. In particular, the following

identities will be used frequently in the following sections:

η̄aµν η̄
a
ρσ = δµρ δνσ − δµσ δνρ − εµνρσ;

η̄aµρ η̄
b
µσ = δab δρσ + εabcη̄cρσ;

εabc η̄bµν η̄
c
ρσ = δµρη̄

a
νσ + δνση̄

a
µρ − δµση̄aνρ − δνρη̄aµσ

η̄aµν η̄
b
µν = 4δab. (5.77)

Further identities may be found in e.g. appendix B of ref. [159].

5.5 A general ansatz for double-copying self-dual solu-

tions

In pure Yang-Mills there are many instanton solutions, the full classification of which

is given by the ADHM construction [160]. For our purposes, we will consider a large

family of SU(2) instantons that are constructed according to the so-called ’t Hooft

ansatz [158]. This involves dressing a vector field Vµ with the ’t Hooft symbols, such

that

Aaµ = −η̄aµνVν , Aaµ = −ηaµνVν , (5.78)

are self-dual and anti-self-dual fields respectively. When the ’t Hooft symbols appeared

previously in the definition of the differential operator in eq. (5.60), they were acting as

a representation of a particular spacetime rotation, with the upper index labelling the

infinitesimal rotation in question. Here, however, we can interpret the upper indices as

adjoint indices associated with the SU(2) gauge group. This is possible due to the fact
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that ηaµν and η̄aµν each furnish a representation of SU(2), as outlined in the previous

section. For ease of reference, we will consider only the self-dual case. Substituting the

self-dual field in eq. (5.78) into the Yang-Mills equations yields the following constraints

on the field Vµ:

∂µVµ + VµVµ = 0, (5.79)

fµν − f̃µν = 0, (5.80)

where we have defined

fµν = ∂µVν − ∂νVµ. (5.81)

We can recognise the quantity fµν as being analogous to an abelian-like field strength.

However, it is not immediately possible to identify Vµ as an abelian gauge field, given

that there is no guarantee in general that fµν satisfies the Maxwell equation,

∂µfµν = 0. (5.82)

In the standard approach, eq. (5.79) is satisfied by taking Vµ to be the gradient of the

logarithm of a harmonic scalar:

Vµ = ∂µ log V, ∆V = 0. (5.83)

However, following our discussion of the Eguchi-Hanson instanton, we can propose an

alternative ansatz. Consider constructing a vector field according to the prescription:

Aµ = k̂µφ, k̂µ =
(
Aδµν +Bi η̄

i
µν

)
∂ν , i ∈ {1, 2, 3}, (5.84)

where the scalar A and vector B are possibly complex. This generalises the definitions

of k̂µ and k̂′µ given previously, such that eqs. (5.60) and (5.62) are special cases of

eq. (5.84). In terms of this ansatz, the quantity fµν is

fµν = Bi
(
η̄iνρ∂µ − η̄iµρ∂ν

)
∂ρφ, (5.85)

from which we find

f̃µν = fµν +Biη̄
i
µν∆φ. (5.86)

Thus, for Aµ constructed as in eq. (5.84), the constraint in eq. (5.80) is satisfied when

φ is a harmonic function

∆φ = 0 ⇐⇒ fµν = f̃µν . (5.87)
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The requirement that φ is harmonic also means that eq. (5.84) solves the Maxwell

equation

∂µfµν = Biη̄
i
νρ∂ρ(∆φ) = 0, (5.88)

where we have made use of the antisymmetry of the ’t Hooft symbols. We can therefore

consider the vector field of eq. (5.84) as an abelian gauge field. Furthermore, we can

attempt to double copy this field according to eq. (5.57). For the resulting graviton

field to be a solution to self-dual gravity, the differential operator k̂µ must satisfy the

constraints of eq. (5.21). The first constraint enforces

k̂2 = (A2 +B2)∆ = 0 =⇒ A2 = −B2, (5.89)

where B2 = BiB
i, while from the second we find

∂ · k̂ = A∆ = 0. (5.90)

Thus, for the abelian self-dual gauge field of eq. (5.84) to double copy to a valid self-dual

gravity solution we fix the coefficients in the general ansatz to be

A = 0, B2 = 0. (5.91)

The components {Bi} are therefore required to be complex. Note that these conditions

are satisfied for the single copy of Eguchi-Hanson, which was given in terms of the

differential operator in eq. (5.62), as would be expected. Interestingly, eq. (5.91) implies

that eq. (5.79), the other constraint that arises from the ’t Hooft ansatz, is automatically

satisfied. That is,

∂µAµ +AµAµ = A∆φ+ (A2 +B2)(∂µφ)(∂µφ) = 0. (5.92)

Thus, the ansatz of eq. (5.84) when paired with the constraints of eq. (5.91) is of exactly

the form required to construct a non-abelian SU(2) instanton via the ’t Hooft ansatz,

such that

Aaµ = −η̄aµν k̂νφ (5.93)

is a solution to the full non-linear Yang-Mills equations. A potentially suggestive way

to write this is as

Aaµ = −k̂aµφ, k̂aµ ≡ η̄aµν k̂ν , (5.94)

where we have introduced a “non-abelian” differential operator k̂aµ. It is then interesting

to note that

k̂aµk̂
a
ν = δµν k̂

2 − k̂µk̂ν , (5.95)
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where we have used eq. (5.77), such that

k̂aµk̂
a
ν = −k̂µk̂ν ⇐⇒ k̂2 = 0. (5.96)

The k̂2 = 0 condition is precisely that required for the fields constructed out of k̂µ

to single / double copy. Furthermore, we can recognise the left-hand expression in

eq. (5.96) as the operator which forms the graviton field that is the double copy of the

abelian field that sits in the ’t Hooft ansatz of eq. (5.93). Thus, we can in some sense

double copy the non-abelian field by tracing over the colour indices of the ’t Hooft

symbols to construct a graviton field

hµν = −k̂aµk̂aνφ. (5.97)

This is precisely the same gravity solution that would be obtained by double copying

the abelian field of eq. (5.84). We emphasise that this is not the standard notion of

the double copy. Here, instead of a replacement of colour information with kinematic

information, the colour is being removed by tracing over the adjoint index. Neverthe-

less, an abelian and non-abelian gauge field double copying to the same gravity solution

has precedence in the literature. Indeed, this was the situation discussed in chapter 3,

in which abelian magnetic monopoles and their non-abelian embeddings were seen to

correspond to the same gravitational solution. Also in the context of monopoles, it has

previously been shown that abelian-like monopoles can be related to fully non-abelian

Wu-Yang monopoles via a singular gauge transformation, thereby prompting the iden-

tification of both of these solutions as the single copy of the pure NUT solution in

gravity [88]. One might then ask whether there is a gauge transformation relating the

two forms of instantons considered here? This is an interesting question to which there

is currently not an answer.

We have given here a general ansatz for single-copying a class of gravitational instan-

tons, that allows us to construct both abelian and non-abelian single copies. It is

then natural to ask how general this class of instanton solutions is. As discussed in

section 5.1.1, instanton solutions are classified by topological invariants. In a given

topological sector, a set of parameters known as collective coordinates or moduli define

the space of possible instanton solutions. Some of these parameters will be redundant

under e.g. gauge transformations. After factoring out such redundancies the configura-

tion space of instanton solutions is referred to as the moduli space (see e.g. ref. [149] for

an extensive review). The metric on the moduli space will not be completely smooth.

It will be singular at points corresponding to instantons with zero size or where the

centres of multiple instantons coincide. We can then ask: what portion of the moduli

space of gauge theory instantons is covered by the ansatz of eq. (5.93)? The answer
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appears to be rather limited. In calculating the instanton number of eq. (5.7) for this

ansatz, we find that

tr(FµνF̃µν) ∝ λB2

r8
, (5.98)

which vanishes as is it proportional to B2 = 0. The non-abelian single copy of the

Eguchi-Hanson solution is therefore topologically trivial. Similar conclusions were

reached for the abelian single copy in ref. [74], albeit for a different form of the field.2

Furthermore, the single copy is a singular solution whose singularity appears non-

removable via a gauge transformation, and it should therefore not be considered as

part of the moduli space of gauge theory instantons. For more general scalars φ, sim-

ilar conclusions will be reached. The instanton number will not depend on the basis

chosen for the rotations generators {η̄iµν} entering the differential operators k̂µ. It will

therefore be invariant under rotations of the vector Bi, which implies that it can only

depend on B2, which is trivial. Generalisations of φ may still give rise to potentially

interesting solutions in gravity. For example, we can consider a scalar describing N

point-like disturbances at positions {ai}:

φ =

N∑
i=1

ci
(x− ai)2

. (5.99)

Note that each ai here is a four-vector, with i labelling the vector (i.e. not the compo-

nents). Double copying a gauge theory solution generated from this scalar would appear

to give a multi-centre generalisation of the Eguchi-Hanson solution. The Eguchi-Hanson

solution is itself a special case of a more general class of metrics. It is equivalent to the

two-centre case of the multi-centre Gibbons-Hawking metrics [161]. Thus, a graviton

solution constructed from eq. (5.99) may correspond to a metric of Gibbons-Hawking

type. However, we were not able to find an explicit coordinate transformation that

realises this.

A further limitation of the class of instanton solutions considered here is that they are

generated from a single scalar field φ. A more general form is that of eq. (5.25), in

which the scalar φa is itself adjoint valued. It is not clear, at the level of exact classical

solutions, how to turn the single scalar field φ into the multiple functions {φa} when

taking the single copy. However, a prescription for something similar has been proposed

in certain two-dimensional theories [147]. Investigating the results of this work in light

of the discussion of this section will yield a number of useful insights.

2See ref. [22] for a discussion of the relation between these two forms of the single copy gauge field.



126 Chapter 5. Non-perturbative insights from the self-dual sector

5.6 Insights into the kinematic algebra

5.6.1 The two-dimensional non-perturbative double copy

In ref. [147] the non-perturbative structure of the double copy in two spacetime dimen-

sions was studied. The starting point for this work is the familiar biadjoint scalar field

theory. In the conventions of ref. [147], for arbitrary gauge groups and in Lorentzian

signature, the equations of motion are

∂2φaa
′ − 1

2
fabcf̃a

′b′c′φbb
′
φcc
′

= 0. (5.100)

Ref. [147] proposed the following double copy rules

V a → V, (5.101)

fabcV bW c → (∂µV )(∂̃µW ), (5.102)

where V a and W a are two general adjoint-valued fields. Any indices not involved in

the replacements carry over unchanged. Also introduced here is the dual derivative

operator

∂̃µ = εµν∂ν . (5.103)

where εµν is the two-dimensional Levi-Civita symbol. Applying these replacement rules

to the primed indices in eq. (5.100) yields

∂2φa − 1

2
fabc∂µφ

a∂̃µφb = 0, (5.104)

These are the equations of motion of Zakharov-Mikhailov (ZM) theory [162]. This is

a two-dimensional theory whose equations of motion also encode the dynamics of self-

dual Yang-Mills theory. Applying the double copy replacement rules a second time,

now to eq. (5.104), yields

∂2φ− 1

2
(∂µ∂νφ)(∂̃µ∂̃νφ) = 0. (5.105)

These are the equations of motion of special Galileon (SG) theory [163–165].

The replacement rules of eqs. (5.101), (5.102) make good sense from the perspective

of the double copy. The first maps an adjoint-valued field to a corresponding singlet

field, while the second corresponds to the replacement of the structure constants of a

colour algebra with those of a kinematic algebra. That eq. (5.102) corresponds to a

replacement of structure constants can be most clearly seen in momentum space, where
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it is also possible to extract the explicit form of the kinematic structure constants. By

Fourier transforming the right-hand side of eq. (5.102) we find∫
d2xeip1·x∂µV ∂̃

µW =

∫
d2x

∫
d2p2

(2π)2

∫
d2p3

(2π)2
ei(p1−p2−p3)·x[−εµνp2µp3ν ]Ṽ (p2)W̃ (p3)

=

∫
d2p2

(2π)2

∫
d2p3

(2π)2
[−εµνp2µp3νδ

2(p2 + p3 − p1)]Ṽ (p2)W̃ (p3),

(5.106)

where the momentum-space form of the fields are denoted by tildes. We can then

identify the kinematic structure constants as

fp2p3
p1 = X(p2, p3)δ2(p2 + p3 − p1), X(p2, p3) = −εµνp2µp3ν . (5.107)

The replacement rules of eqs. (5.101), (5.102) therefore replace adjoint-valued fields with

scalars, which are combined according to these kinematic structure constants. The

kinematic algebra is that of area-preserving diffeomorphisms of the two-dimensional

spacetime. To see this, consider the vector field

V = −(∂̃µV )∂µ, (5.108)

where we use the bold-face V to distinguish the vector from the scalar V that sits within

its components. An infinitesimal diffeomorphism fµ∂µ is area-preserving, or volume-

preserving in higher dimensions, if ∂µf
µ = 0. Clearly this is the case for eq. (5.108), as

eq. (5.103) implies

∂µ∂̃
µV = 0. (5.109)

Equation (5.108) therefore corresponds to an area preserving diffeomorphism. The com-

mutator of two diffeomorphisms yields another diffeomorphism, such that the algebra

is closed:

[V ,W ] = Z, Z = −∂̃µ
(
∂νV ∂̃

νW
)
∂µ. (5.110)

To recognise the kinematic structure constants of eq. (5.107), we can take generators

corresponding to individual momentum modes:

Vpi = −∂̃µ(Vpi)∂µ, Vpi = eipi·x, (5.111)

such that

[Vp2 ,Vp3 ] = X(p2, p3)Vp2+p3 = fp2p3
p1Vp1 . (5.112)

While it is clear that the replacement rules of eqs. (5.101, 5.102) provide a map between

the three theories with equations of motion in eqs. (5.100, 5.104, 5.105), one might still

ask why such replacements should be made. In ref. [163] the following motivation was
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given. It is a known fact that in the large N limit, the group U(N) is isomorphic to

the group of diffeomorphisms of a torus [166], such that

lim
N→∞

U(N) ∼ DiffS1×S1 . (5.113)

This can be made precise by noting that for odd N there exists a basis for the U(N)

generators in which they are labelled by a 2-vector whose components are integer mod-

ulo N [163, 166]. Then, in the large N limit, the U(N) structure constants coincide

exactly with those of the algebra of area-preserving diffeomorphisms on the torus. Re-

turning to the three theories of eqs. (5.100, 5.104, 5.105), we note that there are two

algebras present in each. Either both are the colour or kinematic algebras, or there

is one of each algebra. However, as these algebras coincide for N → ∞, the three

theories become isomorphic in this limit. Reference [163] used this fact to argue that

the colour-kinematic replacements should then also be made for finite N , and proposed

a map between non-perturbative solutions to the three theories that is accurate up to

sub-leading corrections in N .

5.6.2 Exact self-dual solutions and the kinematic algebra

The two-dimensional construction outlined in the previous section is highly reminiscent

of the situation in self-dual Yang-Mills and self-dual gravity. Here the kinematic algebra

can similarly be identified as an algebra of area-preserving diffeomorphisms, now in a

certain two-dimensional plane [29]. The similarity of these two constructions can be

further illuminated by rewriting the SDYM equation of motion of eq. (5.26) as

∂2φa − 1

2
fabc(k̂µφ

b)(∂µφ
c) = 0, (5.114)

and the SDG equation of motion of eq. (5.24) as

∂2φ− 1

2
(k̂µk̂νφ)(∂µ∂νφ) = 0. (5.115)

These expressions differ from those previously stated in that we have set the cou-

pling constants to one and normalised the operators k̂µ such that the numerical con-

stants are the same in both theories. Interestingly, by comparing these expressions

for four-dimensional SDYM and SDG to those of two-dimensional ZM and SG the-

ory in eqs. (5.104, 5.105) respectively, we can notice that they take precisely the same

form, but with the dual derivative operator ∂̃µ replaced with the differential operator

k̂µ. Indeed, we can associate k̂µ with area-preserving diffeomorphisms in an analogous

manner to ∂̃µ in two dimensions. That is, working now in four-dimensional Euclidean
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spacetime, we can define a general area-preserving diffeomorphism by

V = −(k̂µφ)∂µ. (5.116)

This is area-preserving due to the fact that, as in eq. (5.21), we have imposed

∂ · k̂ = 0. (5.117)

The cases of self-dual (SD) and anti-self-dual (ASD) Yang-Mills and gravity then arise

from our general ansatz

k̂µ

∣∣∣
SD

=
1

2
Biη̄

i
µν∂

ν , k̂µ

∣∣∣
ASD

=
1

2
Biη

i
µν∂

ν . (5.118)

The vector Bi picks out the two-dimensional plane in which the area-preserving dif-

feomorphisms of eq. (5.116) act. In particular, focusing on the self-dual case, we can

decompose the combinations of ’t Hooft symbols appearing in the differential operator

of eq. (5.118) as

Biη̄
i
µν = b

(1)
[µ b

(2)
ν] , (5.119)

where the anti-symmetrisation over indices is defined via

a[µbν] = aµbν − aνbµ. (5.120)

Using the explicit form for the ’t Hooft symbols in eq. (5.76), we find the vectors {b(i)µ }
to be

b(1)
µ = (B1, B2, B3, 0) , b(2)

µ =

(
0,
B3

B1
,
−B2

B1
,−1

)
, (5.121)

where we have used that B2 = 0 and assumed that B1 6= 0. The vector of eq. (5.116)

can then be written as

V = −1

2

(
b(1)[µb(2)ν]∂νφ

)
∂µ, (5.122)

which generates diffeomorphisms in the plane defined by the bivector b
(1)
[µ b

(2)
ν] . For

example, consider the differential operator of eq. (5.62). Clearly, this corresponds to

B1 = −i, B2 = 1, B3 = 0. (5.123)

which yields

b(1)
µ = (−i, 1, 0, 0), b(2)

µ = (0, 0,−i,−1). (5.124)

These vectors are written here in Euclidean Cartesian coordinates. Translating to the

light-cone coordinate system of eq. (5.51), we find diffeomorphisms in the (u, Y ) plane
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Figure 5.2: Foliation of four-dimensional Euclidean space by a family of parallel α-
or β-planes, whose orientation is given by Bi. The abelian field Aµ generates area-
preserving diffeomorphisms in each plane, represented here by integral curves of the
vector field.

as expected. It is interesting to note that the general vectors {b(i)µ } in eq. (5.121) satisfy

b(i) · b(j) = 0, ∀i ∈ {1, 2}. (5.125)

This makes the plane defined by the bivector b
(1)
[µ b

(2)
ν] an example of a null plane. Null

planes defined by self-dual and anti-self-dual bivectors are known as α- and β-planes

respectively, and they appear frequently in the study of instanton solutions (see e.g.

ref. [167]).

We have therefore found that self-dual Yang-Mills and gravity provide a four dimen-

sional analogue of the two-dimensional non-perturbative double copy of ref. [147]. In

analogy to eqs. (5.101, 5.102), we could consider the replacement rules

φa → φ, (5.126)

fabcφb1φ
c
2 → ∂µφ1 k̂

µφ2. (5.127)

In our case, the area-preserving diffeomorphisms take place in α- or β-planes. To

visualise this, we may foliate four-dimensional Euclidean space with a family of parallel

α- or β-planes, whose orientation is fixed by the vector Bi. The abelian single copy

field Aµ then generates area-preserving diffeomorphisms in each plane. This set-up

is pictorially represented in figure 5.2. The identification of the kinematic algebra

in SDYM and SDG as a certain area-preserving diffeomorphism algebra is by now a

well-known fact, originally established in ref. [29]. The novel observation here is the

geometric construction of these area-preserving diffeomorphisms such that they can be

identified as lying in null planes with orientation controlled by the vector Bi.
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Figure 5.3: A vector field can be interpreted as defining a diffeomorphism which consists
of simultaneous translations along the integral curves of the field. For the special case
of an area-preserving diffeomorphism, the areas of the dotted shape on the left and
right will be equal.

The discussion of this chapter is also useful for elucidating the role of the kinematic

algebra at the level of exact classical solutions. For scattering amplitudes and pertur-

bative classical solutions, the situation is clear. In the computation of an amplitude, by

grouping terms based on their colour structure, one can identify factors corresponding

to the two algebras present in the theory. These factors will correspond to contractions

of the structure constants within each algebra. Amplitudes in each theory can then

be obtained from those in another via appropriate replacements of these factors, which

is permitted due to colour-kinematics duality. For perturbative classical solutions an

identical situation arises by considering perturbative solutions to the momentum space

equations of motion. For exact classical solutions, however, the replacement of algebras

is less clear. This conceptual problem is especially pronounced given the intrinsically

non-linear nature of the BCJ double copy for amplitudes. The structure constants arise

in the computation of amplitudes due to the non-linear interaction terms in a given

theory. In contrast, the classical solutions considered here linearise their equations of

motion. With these points in mind, consider a graviton field of the form in eq. (5.57),

for which the abelian-like single copy is

Aaµ = caAµ, Aµ = k̂µφ. (5.128)

We may regard a vector field Aµ as generating an infinitesimal diffeomorphism

Aµ∂µ. (5.129)

This has the physical interpretation of generating a simultaneous translation along the

integral curves of the field, as represented in figure 5.3. Vector fields that correspond
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to the single copy solutions of eq. (5.128) then generate diffeomorphisms of the form

(k̂µφ)∂µ. (5.130)

which, due to the nature of the operator k̂µ, correspond to area-preserving diffeomor-

phisms. Furthermore, as we have seen, these transformations can be identified as taking

place in a set of null planes associated with k̂µ. Thus, even for linearised solutions, there

is a well-defined sense in which their properties are dictated by the kinematic algebra.

In this way, we can move between the different theories related by the double copy by

directly replacing the generators of one algebra with those of another. For self-dual

solutions with abelian-like single copies, we find the following fields in the biadjoint,

gauge, and gravity theories:

Φ = (caT a)⊗ (c̃a
′
T̃ a
′
)φ, Aµ∂µ = (caT a)(k̂µφ)∂µ, hµν∂µ∂ν = (k̂µk̂νφ)∂µ∂ν . (5.131)

In moving between the fields from left to right, we can see directly the replacement

of colour generators with kinematic generators of the area-preserving diffeomorphism

algebra. This construction is only applicable to solutions that linearise their field

equations. Interestingly, a similar restriction was found in the two-dimensional non-

perturbative double copy of ref. [147], as the SG theory is ultimately related to a free

theory.

5.6.3 Discussion

Equation (5.131) is simply the statement that fields in the biadjoint scalar, Yang-Mills,

and gravity theories are valued in two Lie algebras. Each algebra will be either a colour

or kinematic algebra, depending on which theory we are in. Unfortunately, such a

construction does not straightforwardly extend to the non-abelian field of eq. (5.93),

obtained via the ’t Hooft ansatz. In constructing a gravitational field via eq. (5.97),

it is unclear in what sense, if any, this corresponds to a replacement of algebras. We

found that these gauge fields are topologically trivial and thus should not properly

be considered as part of the moduli space of gauge theory instantons. The question

then remains of what portion of the moduli spaces of gauge and gravity instantons are

related via the double copy. In ref. [147], it was noted that all SG solutions can be used

to construct solutions in ZM theory, while the opposite is not true. Thus, it may well be

the case that all SDG solutions single copy to solutions in SDYM, whereas certain gauge

theory instantons do not have a double copy partner.3 A full classification of which

instantons can be mapped under the double copy would be interesting. However, this

3Similar sentiments were expressed in ref. [168], independently of the double copy.
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would almost certainly require an understanding of the exact double copy for solutions

which do not linearise their equations of motion, and this remains an open problem.



Chapter 6

Perturbative insights from the

self-dual sector

In the previous chapter we met self-dual Yang-Mills (SDYM) and self-dual gravity

(SDG), and investigated non-perturbative solutions in these theories from the perspec-

tive of the double copy. Here we will turn our attention to the perturbative structure

of these self-dual theories. SDYM and SDG are perhaps the simplest four-dimensional

theories with non-trivial S-matrices. The diagrammatics of these theories mean that it

is only possible to construct tree-level and one-loop amplitudes for certain fixed-helicity

external states, such that SDYM and SDG are one-loop exact. Furthermore, the tree-

level amplitudes are trivial, while at one-loop the amplitudes are rational functions

of the external kinematics [169, 170]. Thus, the only non-trivial contribution to the

S-matrices is at one-loop.

SDYM and SDG are classically integrable theories, a property that has been argued to

underlie the simplicity of their S-matrices. Tree-level amplitudes are closely related to

perturbative solutions to the classical equations of motion. Via an inductive construc-

tion of such solutions it is possible to show that the vanishing of the tree-level ampli-

tudes in these theories is due to the integrability of their equations of motion [171,172].

However, it has also been suggested that this integrability is in some sense underlying

the structure of the one-loop amplitudes. In ref. [171], W. Bardeen proposed that the

one-loop amplitudes arise due to the anomaly of the symmetries associated with the

classical integrability of the self-dual sectors.

A number of works have investigated Bardeen’s idea [173–177], but it was not until

recently in refs. [178–180] that a concrete realisation was developed. These works con-

sidered the uplift of the self-dual theories to twistor space. This is known to be possible
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for the classical theories, but is obstructed at the quantum level due to the presence of

an anomaly. The authors demonstrated that via the inclusion of an additional “axion”

field, the amplitudes in the self-dual theories are completely trivialised, such that the

full theories are integrable.

Here we will investigate this question from the more pedestrian setting of SDYM and

SDG in the light-cone gauge. The light-cone formalism is highly convenient from the

perspective of scattering amplitudes; while manifest Lorentz symmetry is lost, the

action is free of ghosts and contains only the propagating degrees of freedom. That

is, the theory reduces to one of interacting positive and negative helicity states. This

is particularly appealing in the self-dual sectors, where we are left with only a simple

cubic vertex in each theory. From the perspective of the double copy, the light-cone

formulation of SDYM and SDG provides a rare example of colour-kinematics duality

that is manifest already in the off-shell vertices [29,46].

We will begin by briefly reviewing the perturbative structure of SDYM and SDG in the

light-cone gauge. Furthermore, to pave the way for a discussion of the quantum fate of

integrability in SDYM and SDG, we will review the classical integrability of the self-

dual sectors. Following this, we will introduce a quantum-corrected formalism for the

self-dual theories in the light-cone gauge. By quantum-corrected we mean that quan-

tum effects are included explicitly in the vertices via the addition of an infinite tower of

one-loop effective vertices. Crucially, these effective vertices will be loop-integrated, in

contrast to previous works that have considered effective actions for SDYM and SDG

working at the level of the loop integrands [181–183]. By considering the quantum-

corrected equations of motion generated by these quantum-corrected actions, we will

be able to demonstrate a manifestation of Bardeen’s anomaly in the spacetime formu-

lation. To construct the explicit form of these vertices, we will take inspiration from

the twistorial work of refs. [178–180] mentioned above. Initially, this approach will only

work for certain restricted gauge groups due to the fact that the anomaly cancellation

on twistor space occurs only for these groups. By writing the vertices in the light-cone

gauge we will be able to find an SU(N) extension, which reproduces part of the one-

loop amplitudes. We will then demonstrate that this subset of the one-loop SU(N)

SDYM vertices double copies to the full set of one-loop SDG vertices. This double

copy will follow a tree-like prescription, providing the first example of a loop-level dou-

ble copy that holds at the level of the loop integrated amplitude, as opposed to the

loop-integrand.
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6.1 SDYM and SDG in the light-cone gauge

6.1.1 Light-cone gauge actions

We work in the light-cone coordinates xµ = {u, v, w, w̄}, in which the Minkowski metric

is

ds2 = 2(−dudv + dwdw̄), (6.1)

and the wave operator takes the form

� = 2(−∂u∂v + ∂w∂w̄). (6.2)

There are a number of standard forms of the SDYM action.1 For our later purposes it

will be most useful to start with the form [184]

SSDYM(B,A) =

∫
tr(B ∧ FASD). (6.3)

Here FASD is the anti-self-dual part of the field strength, and is valued in the Lie

algebra. The B field is a Lie algebra valued anti-self-dual two form. It acts as a

Lagrange multiplier in the action such that its equations of motion enforce the self-

duality of F by setting

FASD = 0. (6.4)

We work here in Minkowski spacetime, in which the duality conditions are

F = ±iF̃ , (6.5)

with the positive and negative corresponding to a self-dual and anti-self-dual field

strength respectively. In contrast to Euclidean spacetime, a gauge field satisfying the

duality conditions in Minkowski spacetime is necessarily complex.

The light-cone gauge is adopted by imposing

Au = 0. (6.6)

We now follow a standard procedure to reduce the SDYM action to that of an inter-

acting scalar theory [184]. As B is anti-self-dual, it has three independent components.

Integrating out two of them sets

Aw = 0, ∂uAv = ∂wAw̄. (6.7)

1See refs. [184,185] for a discussion of various actions for SDYM.
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The second equation acts as an integrability condition implying

Av =
1

2
∂wΨ, Aw̄ =

1

2
∂uΨ, (6.8)

where Ψ is a Lie algebra valued scalar field, and the numerical coefficient is chosen for

convenience. By setting the final component of B to be a second Lie algebra valued

scalar Ψ̄, we are left with the action [184]

SSDYM(Ψ, Ψ̄) =

∫
d4x tr

[
Ψ̄
(
�Ψ + i[∂uΨ, ∂wΨ]

)]
. (6.9)

The result is an interacting theory of two scalar fields Ψ and Ψ̄, which can be interpreted

as the positive and negative helicity degrees of freedom of the gauge field respectively.

Note that variation with respect to Ψ̄ yields the standard SDYM equations of eq. (2.46).

In SDG we have an analogous story, albeit one with more involved intermediate steps.

The steps analogous to eqs. (6.6) - (6.8) yield the self-dual gravity metric [29]

ds2 = 2(−dudv + dwdw̄) + ∂2
wφdv

2 + ∂2
uφdw̄

2 + 2∂u∂wφdvdw̄, (6.10)

and an action [186]

SSDG(φ, φ̄) =

∫
d4x φ̄

(
�φ+ {∂uφ, ∂wφ}

)
, (6.11)

where the Poisson bracket is defined as

{f, g} = ∂uf ∂wg − ∂wf ∂ug. (6.12)

In analogy to SDYM, we may interpret φ and φ̄ as positive and negative helicity degrees

of freedom respectively. Variation of this action with respect to φ̄ yields the Plebanski

equations of self-dual gravity, given in eq. (2.47).
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6.1.2 Scattering in SDYM and SDG

When talking about scattering amplitudes, we will follow a convention in which all

particles in a vertex or diagram are incoming. The momentum space Feynman rules

arising from the actions of eqs. (6.9, 6.11) are very simple: one only has a propagator

and three-point vertex in both SDYM and SDG. The Feynman rules are:

• Propagator (+−):

SDYM:
1

k2
δa1a2 (6.13)

SDG:
1

k2
(6.14)

• Cubic vertex (+ +−):

SDYM: V(0)
3 (i+, j+, k−) = X(ki, kj)f

aiajak (6.15)

SDG: V(0)
3 (i+, j+, k−) = X(ki, kj)

2 (6.16)

• Polarisation factors for external on-shell pi:

SDYM: e
(±)
i = 〈ηi〉∓2 (6.17)

SDG: e
(±)
i = 〈ηi〉∓4 (6.18)

Here we have introduced a null reference vector η = |η〉[η| which defines the light-

cone such that η · A = 0 [46]. This makes the freedom in the choice of light-cone

direction manifest and any η dependence will cancel in the computation of an amplitude.

The X(i, j) objects are the kinematic structure constants that we met previously in

eq. (2.51). For the computation of scattering amplitudes, it will be useful to write these

objects in the spinor-helicity formalism.2 This can be done via [46]

X(ki, kj) = 〈η|ij|η〉. (6.19)

As described in section 2.3.1, colour-kinematics duality and the double copy are particu-

larly well understood in the self-dual sector. The three-point SDYM vertex of eq. (6.15)

is a product of a colour structure constant faiajak and a kinematic structure constant

X(ki, kj), while the three-point SDG vertex is a product of two kinematic structure con-

stants. Colour-kinematics duality is therefore already manifest in the off-shell vertices

of SDYM and SDG.
2We adopt the spinor conventions of ref. [46].
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With the Feynman rules in eqs. (6.13) - (6.18) it is only possible to draw the following

two sets of diagrams in both SDYM and SDG:

• Tree-level one-minus (−+ · · ·+):

n-point diagrams with one negative helicity leg and n− 1 positive helicity legs.

• One-loop all-plus (+ + · · ·+):

n-point diagrams with n positive helicity legs.

No other diagrams are possible. SDYM and SDG are therefore one-loop exact, with

no amplitudes at higher-loop order than one. Furthermore, the one-minus tree-level

amplitudes in SDYM and SDG vanish to all n [172],

A(0)
n (1−2+ · · ·n+) = 0, (6.20)

M(0)
n (1−2+ · · ·n+) = 0, (6.21)

where A andM denote the amplitudes in SDYM and SDG respectively. The S-matrix

in each theory is thus given only by the one-loop amplitudes. Furthermore, these

one-loop amplitudes take a very simple form. They are rational functions of external

kinematic data at all n. For example, the general arbitrary multiplicity form for the

colour-ordered all-plus one-loop amplitudes in SDYM is [169,187]

A(1)
n (1+2+ · · ·n+) =

∑
1≤i1<i2<i3≤n

〈i1i2〉[i2i3]〈i3i4〉[i4i1]

〈12〉〈23〉 · · · 〈n1〉
, (6.22)

where we have omitted a constant multiplicative factor. A closed form expression for

the one-loop amplitudes in SDG to all multiplicity also exists [170].

The possible diagrams in SDYM and SDG listed above are precisely those that can be

drawn in full Yang-Mills and general relativity, such that the self-dual sectors furnish

well-defined helicity sectors of the full theories. The tree-level one-minus and one-loop

all-plus amplitudes in the full theories can then be computed by restricting to the

self-dual sector [172, 184]. This can be made explicit by writing the actions for full

Yang-Mills or general relativity in terms of interacting scalars describing positive and

negative helicity degrees of freedom (see e.g. ref. [185]). The actions for the self-dual

sectors then correspond to the truncation of the full actions to a single (+ +−) vertex

followed by a field redefinition. It is only this vertex that enters the computation of

tree-level one-minus and one-loop all-plus amplitudes in the full theories.
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6.1.3 Classical integrability in the self-dual sector

An important feature of the self-dual sectors of Yang-Mills and gravity is that they are

classically integrable. We will here briefly review this fact for SDYM (see e.g. ref. [188]

for a more extensive treatment). The story for SDG is analogous, and can be found in

e.g. ref. [189].

The starting point when discussing integrability are the equations of motion. For

SDYM, from the action in eq. (6.9), these are

0 = �Ψ + i[∂uΨ, ∂wΨ], (6.23)

0 = � Ψ̄ + i[∂uΨ̄, ∂wΨ] + i[∂uΨ, ∂wΨ̄]. (6.24)

The first equation is simply the self-duality condition, arising from F = iF̃ , and is en-

forced in the action via a Lagrange multiplier. A crucial feature of the second equation

is that it corresponds to a linearised deformation of the first. That is, by considering

a deformation of a solution to the first equation Ψ→ Ψ + εΨ̄ for some small ε, we find

that Ψ̄ solves the second equation. The solutions Ψ̄ of the second equation therefore

correspond to infinitesimal symmetries of the first.

To reveal the integrability of the classical equations of motion, consider the following

two differential equations in terms of the Lie algebra valued function Λ:

LΛ = 0, MΛ = 0, (6.25)

with the differential operators

L = ∂u − λ
(
∂w̄ +

i

2
∂uΨ

)
, M = ∂w − λ

(
∂v +

i

2
∂wΨ

)
, (6.26)

where λ ∈ CP 1 is known as the spectral parameter. The self-duality condition of

eq. (6.23) then arises as the compatibility condition of this overdetermined system of

equations, such that

[L,M ] = 0 ⇐⇒ �Ψ + i[∂uΨ, ∂wΨ] = 0. (6.27)

The pair of differential operators {L,M} in eq. (6.26) is then an example of a Lax

pair. While there is no definitive method for determining whether a given system is

integrable, the existence of a Lax pair is common to many integrable systems, and

can thus be taken as an indication of the integrability of a theory. Consider now the
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expression

[∂v + i
2∂wΨ, LΛ]− [∂w̄ + i

2∂uΨ,MΛ] = �Λ + i[∂uΛ, ∂wΨ] + i[∂uΨ, ∂wΛ]. (6.28)

On the right hand side we have eq. (6.24), the second equation of motion, and thus we

find that Λ is a solution to this equation when it solves the differential equations in

eq. (6.25). From this fact we can construct an infinite tower of solutions to the second

equation of motion. Consider an expansion of Λ in terms of the spectral parameter

Λ =
∞∑
r=0

λrΛr. (6.29)

The overdetermined system of differential equations in eq. (6.25) is then

LΛ =

∞∑
r=0

λr
(
∂uΛr − ∂w̄Λr−1 − i

2 [∂uΨ,Λr−1]
)

= 0, (6.30)

MΛ =
∞∑
r=0

λr
(
∂wΛr − ∂vΛr−1 − i

2 [∂wΨ,Λr−1]
)

= 0, (6.31)

with the condition that Λ−1 = 0. The spectral parameter is arbitrary, such that these

expressions must hold for all λ. Thus, we are left with a pair of recursion relations:

∂uΛr+1 = ∂w̄Λr +
i

2
[∂uΨ,Λr], ∂wΛr+1 = ∂vΛr +

i

2
[∂wΨ,Λr]. (6.32)

One can then recursively construct a tower of solutions {Λr} from an initial seed solution

Λ0 to eq. (6.24). The recursion relations are compatible at level r+ 1 if Λr is a solution

to eq. (6.24):

∂w(∂uΛr+1)− ∂u(∂wΛr+1) =
i

2

(
�Λr + i[∂uΛr, ∂wΨ] + i[∂uΨ, ∂wΛr]

)
= 0. (6.33)

It then follows that Λr+1 is a solution to eq. (6.24) as Ψ solves eq. (6.23):

�Λr+1 + i[∂uΛr+1, ∂wΨ] + i[∂uΨ, ∂wΛr+1] =
i

2
[�Ψ + i[∂uΨ, ∂wΨ],Λr] = 0. (6.34)

Hence, given a solution to the second equation of motion in eq. (6.24) we can formally

construct an infinite tower of additional solutions {Λr}, each of which corresponds to

a linearised deformation Ψ→ Ψ + εΛr of the first equation of motion in eq. (6.23).

Importantly for our purposes, this tower of infinitesimal symmetries naturally gives rise

to an infinite tower of conserved currents. Note that the second equation of motion in
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eq. (6.24) can be expressed as the conservation of a current

J =

(
∂w̄Ψ̄ +

i

2
[∂uΨ, Ψ̄]

)
∂w −

(
∂vΨ̄ +

i

2
[∂wΨ, Ψ̄]

)
∂u, (6.35)

such that

∂µJ
µ = � Ψ̄ + i[∂uΨ̄, ∂wΨ] + i[∂uΨ, ∂wΨ̄] = 0. (6.36)

Let us consider this current in terms of a linearised deformation of the eq. (6.23),

Ψ → Ψ + εΛ, and expand Λ in terms of the spectral parameter as in eq. (6.29). The

result is simply

J =

∞∑
r=0

λr
[(
∂w̄Λr +

i

2
[∂uΨ,Λr]

)
∂w −

(
∂vΛr +

i

2
[∂wΨ,Λr]

)
∂u

]
. (6.37)

The current can then itself be considered as a λ-expansion, such that

J =
∞∑
r=0

λrJr, (6.38)

where

Jr =

(
∂w̄Λr +

i

2
[∂uΨ,Λr]

)
∂w −

(
∂vΛr +

i

2
[∂wΨ,Λr]

)
∂u. (6.39)

With the recursion relation of eq. (6.32), we can recognise this as

Jr = (∂uΛr+1)∂w − (∂wΛr+1)∂u

= {Λr+1, ·}. (6.40)

The hierarchy of solutions to eq. (6.24) thus gives rise to an infinite tower of conserved

currents

∂µJ
µ
r = 0, ∀r. (6.41)

In practice, the tower of currents is simply obtained from eq. (6.35) via the replacement

Jr = J(Ψ̄→ Λr) , r = 0, 1, 2, · · · . (6.42)

The integrability of classical SDYM and SDG forces the tree-level amplitudes in these

theories to vanish. The proof follows from the inductive construction of perturbative

solutions to eq. (6.23) [171, 172]. Intuitively, the vanishing of these amplitudes fol-

lows from the fact that no amplitude can be defined that obeys the infinite tower of

symmetries.
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6.2 A quantum-corrected formalism

6.2.1 General quantum-corrected actions

To compute quantum effects from the SDYM and SDG actions of eqs. (6.9, 6.11) re-

spectively, one follows the usual prescription of constructing diagrams with loops from

the Feynman rules. As we have seen, SDYM and SDG are one-loop exact and so only

one-loop diagrams will arise. One can then consider a quantum-corrected action by in-

troducing an infinite set of new vertices associated with the one-loop polygon diagrams.

These one-loop effective vertices will simply be off-shell diagrams with legs attached

directly to the loop. With an action in this form, quantum computations proceed in

a classical-like manner. That is, an n-point one-loop amplitude will be computed by

considering the n-point effective vertex along with lower point effective vertices with

the three-point “tree-level” vertex glued into the external legs, with all external legs

taken on-shell. Furthermore, as the Feynman rules for the self-dual theories permit

only all-plus diagrams at one-loop, we know that the one-loop effective vertices will

have only positive-helicity external legs. We may therefore write the general structure

of the quantum-corrected SDYM action as

Sq.c.SDYM(Ψ, Ψ̄) =

∫
d4x

(
tr Ψ̄

(
�Ψ + i[∂uΨ, ∂wΨ]

)
+ V1-loop[Ψ]

)
. (6.43)

This is simply the standard SDYM action of eq. (6.9), with a new term V1-loop, which

is suppressed by a factor of ~, corresponding to the one-loop vertices. As the one-loop

vertices have only positive-helicity external legs, V1-loop depends only on Ψ and not Ψ̄.

It can be expanded as

V1-loop[Ψ] =
∞∑
m=2

V
(m)

1-loop[Ψ], V
(m)

1-loop[Ψ] ∼ Ψm. (6.44)

Here, V
(2)

1-loop[Ψ] comes from an off-shell bubble diagram, V
(3)

1-loop[Ψ] from an off-shell

triangle diagram, V
(4)

1-loop[Ψ] from an off-shell box diagram, and so on. By computing

“tree-level” diagrams with these one-loop vertices, we will obtain the one-loop ampli-

tudes of the theory. The situation is entirely analogous in SDG. We simply consider

the standard SDG action of eq. (6.11), and add on a new term corresponding to the

SDG one-loop effective vertices.

In any off-shell formulation of a theory, field redefinitions can lead to dramatically

different actions, all of which give rise to the same amplitudes. The off-shell one-loop

vertices in V1-loop are therefore non-unique. As the one-loop amplitudes in SDYM and
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SDG are rational functions of external kinematics, one might expect that there are

some choices of V1-loop in which the vertices themselves are rational (albeit non-local)

functions in momentum space. We now suggest three routes to V1-loop:

• Momentum-space vertices from direct loop integration:

This is perhaps the most naive approach. Here we obtain the one-loop vertices

by constructing loop level diagrams from the momentum-space light-cone gauge

Feynman rules of eqs. (6.13) - (6.18) and explicitly performing the off-shell loop

integrations in a given regularisation scheme. This brute-force approach is de-

scribed for the first few orders in Appendix B. To summarise, we find that the

two-point one-loop vertex is vanishing, V
(2)

1-loop = 0, with the first non-trivial vertex

arising at three-points. This three-point one-loop vertex is naively quite fearsome

and does not appear to be rational, as it involves dilogarithms. Upon closer in-

spection a rational vertex can be obtained, but in moving to higher points the

computations become increasingly impracticable. This approach therefore does

appear to yield rational vertices, but is not feasible in practice.

• Single region-momenta vertex from a special regularisation of the one-loop bubble:

This idea has been explored in the context of SDYM in refs. [176, 177, 190]. By

considering a specific regularisation for the off-shell bubble diagram, one can

obtain an effective vertex from which the one-loop amplitudes arise by gluing tree-

level diagrams into the external legs. This gives a simple and manifestly rational

approach to the amplitude computations. However, it is crucially dependent on a

region-momenta representation, which does not directly translate into a spacetime

approach. We will not pursue this approach, however it would be interesting to

explore how it connects to our construction.

• Momentum-space vertices arising from anomaly cancellation in twistor space:

In refs. [178–180] classical SDYM and SDG were studied on twistor space. Via the

introduction of a new field, it was possible to cancel an anomaly preventing the

twistorial construction of these theories at the quantum-level, thereby restoring

integrability to the full, not just the classical, theories. This renders the ampli-

tudes in these modified forms of SDYM and SDG trivial. We shall take inspiration

from these works to find a set of momentum-space vertices by integrating out the

new field. More details will be given in the next section, but for now we can note

two attractive properties of the vertices arising from this approach:

(i) V
(m)

1-loop are rational functions of external kinematic data.

(ii) V
(m)

1-loop are only non-trivial for m ≥ 4, matching the fact that the one-loop

amplitudes are non-trivial only for n ≥ 4.
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In the following we will focus on the third approach to the one-loop effective vertices.

We will see the explicit vertices that arise from this approach in the next section.

However, with the general form of the quantum-corrected action for SDYM, we can

already investigate the fate of the classical integrability at the quantum level.

6.2.2 Anomalous integrability

In section 6.1.3 we reviewed the classical integrability of the self-dual theories. This

was intimately tied to the classical equations of motion. At face value, this fact makes

it difficult to see how one could investigate the role, if any, of this integrability in the

quantum theory. However, given that our quantum-corrected action in eq. (6.43) recasts

quantum computations in a classical-like manner, with this action we can attempt to

proceed as we did in the classical theory.

We will again focus on SDYM, since the SDG case is analogous. From the quantum-

corrected action in eq. (6.43), we can compute the quantum-corrected equations of

motion:

0 = �Ψ + i[∂uΨ, ∂wΨ], (6.45)

0 = � Ψ̄ + i[∂uΨ̄, ∂wΨ] + i[∂uΨ, ∂wΨ̄] +
δV1-loop[Ψ]

δΨ
. (6.46)

The first equation is unchanged in the quantum theory, such that it coincides with the

classical equation in eq. (6.23). This is due to the fact that it is enforced by a Lagrange

multiplier Ψ̄ which does not feature in the new one-loop vertices. This first equation is

still integrable; it arises as the compatibility condition of an overdetermined system of

differential equations. However, in the quantum theory, the second equation of motion

no longer coincides with a linearised deformation of the first, such that the classical

integrability of the theory is broken at the quantum level.

Given that the vanishing of the tree-level amplitudes in the self-dual theories is a

consequence of the classical integrability, it is natural to ask whether the one-loop

amplitudes can be viewed as arising from the anomaly of this integrability, as first

proposed in ref. [171]. In practice, we want to know what happens to the infinite tower

of currents Jr associated to the classical integrability. If these currents are defined only

in terms of eq. (6.45) and its linearisation, then they will continue to be conserved in

the quantum theory. That is, Jr defined in terms of {Λr}, the linearised symmetries

of eq. (6.45), are still conserved. However, the current J in terms of the field Ψ, given

in eq. (6.35), is no longer conserved due to the presence of the one-loop vertices in
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eq. (6.46):

∂µJ
µ =

1

2
(� Ψ̄ + i[∂uΨ̄, ∂wΨ] + i[∂uΨ, ∂wΨ̄]) = −1

2

δV1-loop[Ψ]

δΨ
. (6.47)

To this end, by analogy with the classical case, let us attempt to set up a quantum-

corrected current, whose conservation is enforced by the second quantum-corrected

equation of motion in eq. (6.46). Let us assume that the quantum-corrected action

can be written in a form in which it depends on Ψ only through its derivatives, and

in particular its u and w derivatives. Indeed, this is already the case for the classical

action. Then, by variational integration-by-parts, we can write

δV1-loop[Ψ]

δΨ
= ∂uC

u[Ψ] + ∂wC
w[Ψ], (6.48)

where Cu and Cw are minus the coefficients of the variations of ∂uΨ and ∂wΨ respec-

tively. While this splitting is not unique due to the presence of ∂u∂wΨ terms, it is

nevertheless possible. We can then write down a quantum-corrected current

Jq.c. =

(
∂w̄Ψ̄ +

i

2
[∂uΨ, Ψ̄] +

1

2
Cw
)
∂w −

(
∂vΨ̄ +

i

2
[∂wΨ, Ψ̄]− 1

2
Cu
)
∂u. (6.49)

By construction, this current is conserved as a consequence of the second equation of

motion of eq. (6.46), such that

∂µJq.c.
µ = � Ψ̄ + i[∂uΨ̄, ∂wΨ] + i[∂uΨ, ∂wΨ̄] +

δV1-loop[Ψ]

δΨ
= 0. (6.50)

This is directly analogous to eq. (6.36) in the classical theory. Furthermore, in analogy

with eq. (6.42), let us define

Jq.c.
r = Jq.c.(Ψ̄→ Λr) , r = 0, 1, 2, · · · , (6.51)

where Λr are the linearised symmetries of the first equation, which takes the same

form in the classical and quantum theories. These quantum-corrected currents feature

a universal anomaly for all r:

∂µJq.c.
µ =

1

2

δV1-loop[Ψ]

δΨ
, ∀r. (6.52)

This anomaly can be thought of as generating the one-loop amplitudes. The one-loop

vertices are associated with

δm

(δΨ)m
V1-loop

∣∣∣∣∣
Ψ=0

= 2
δm−1

(δΨ)m−1
∂µJq.c.

µ

∣∣∣∣∣
Ψ=0

, (6.53)
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and amplitudes are obtained by dressing these vertices with trees.

To summarise, we have made the breaking of the classical integrability at the quantum

level manifest by defining a quantum-corrected current whose conservation is enforced

by the quantum-corrected equation of motion in eq. (6.46). By considering this quan-

tum current in terms of the linearised symmetries of the first equation of motion, we

find that its conservation is blocked by the presence of the one-loop vertices. The

anomaly of the classical integrability can therefore by thought of as generating the one-

loop amplitudes in SDYM. We now turn to the explicit form of the one-loop vertices

in SDYM and SDG.

6.3 Quantum-corrected actions for SDYM and SDG

To construct the explicit one-loop effective vertices in SDYM and SDG, we will take

influence from the work of ref. [178–180]. In these works, the integrability of the self-

dual theories was posited to be inherited from the ability to uplift them to local theories

on twistor space. It is known that this is possible for classical SDYM and SDG, but

the construction is plagued by an anomaly at the quantum level. These works then

went on to modify the twistorial forms of SDYM and SDG so as to cancel the anomaly.

This was done via the introduction of an “axion” which couples to F ∧F and R∧R in

SDYM and SDG respectively. Tree-level exchanges involving the axion then cancel the

loop diagrams involving only gauge bosons, realising a Green-Schwartz-like anomaly

cancellation [191]. This renders the S-matrices of the axion-deformed SDYM and SDG

theories completely trivial, and thus integrable.

We will build off of these works by considering the spacetime theories which correspond

to the axion-deformed theories on twistor space. We will use these actions to obtain a

quantum-corrected action for SDYM by:

1. Integrating out the axion to obtain non-local effective vertices.

2. Flipping the sign of the effective vertices.

The sign flip in the second step follows from the fact that the amplitudes in the theories

containing the axion are trivial, due to the cancellation:

(Loop diagrams of gauge bosons) + (Effective diagrams for axion exchange) = 0.

(6.54)

However, we want the effective vertices included explicitly in the action in the form of
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eq. (6.43). Thus, eq. (6.54) implies that we should consider

(Loop diagrams of gauge bosons) = −(Effective diagrams for axion exchange). (6.55)

Let us now see how this works in practice. We will first consider SDYM, from which

we will obtain SDG via a novel double copy.

6.3.1 Self-dual Yang-Mills

In refs. [178,179] the following action is given

Sρ−SDYM(B,A, ρ) =

∫
tr
(
B ∧ FASD + d4x

1

2
(�ρ)2 + ã ρ F ∧ F

)
. (6.56)

The first term is simply the action for SDYM, given in eq. (6.3). The following two

terms describe the introduction of the axion ρ into the theory.3 The second term is the

kinetic term for ρ, which takes a peculiar quartic form. The third term describes the

interactions, with ã a coupling constant. The cancellation between gauge field loops

and tree-level axion exchanges occurs only for special restricted gauge groups. These

are SU(2), SU(3), SO(8), or one of the exceptional groups [178,179]. For each of these

choices, the coupling ã is tuned to ensure the cancellation.

Let us first restrict to one of these special groups, and follow the process outlined in

the two steps at the start of this section. We integrate out the axion and flip the sign

of the resulting effective vertex, which yields

S′q.c.SDYM(B,A) =

∫
tr(B ∧ FASD) + d4x

ã2

2

( 1

�
tr(εµνρλFµνFρλ)

)2
. (6.57)

The prime on the action denotes that we are considering one of the restricted gauge

groups. The B field appears exactly as it did in the standard action for SDYM in

eq. (6.3). Thus, we can follow the same steps outlined in eqs. (6.6) - (6.8), by going to

the light-cone gauge and integrating out two components of B. The result is

S′q.c.SDYM(Ψ, Ψ̄) =

∫
d4x tr

(
Ψ̄
(
�Ψ + i[∂uΨ, ∂wΨ])

)
+ a

( 1

�
tr(Ψ

↔
P 2 Ψ)

)2
, (6.58)

where the coupling a is ã2 up to a numerical factor, and is proportional to ~. We have

here introduced the differential operator

↔
P =

←
∂ u
→
∂w −

←
∂w
→
∂ u, (6.59)

3We note in passing that anomaly cancellation due to similar dimension-zero scalars has recently
appeared in a very different context, related to the Weyl anomaly [192].
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which corresponds to the kinematic structure constant of eq. (2.51) in momentum space.

Note that this action is of precisely the form anticipated in eq. (6.43). The first part is

the SDYM action of eq. (6.9), while the second part corresponds to V1-loop and depends

only on Ψ and not Ψ̄ as expected. There is, however, only a single one-loop vertex

corresponding to m = 4. This is where the restriction of the gauge group acts. Beyond

four-points there are identities among colour traces for the restricted gauge groups,

which simplify the amplitudes significantly [179]. Nevertheless, it will be instructive to

consider the Feynman rules derived from this action. Setting our normalisation to be

a = 1, we have4

• Propagator (+−):
1

k2
δa1a2 (6.60)

• ~0-vertex (+ +−):

V(0)
3 (i+, j+, k−) = X(i, j)faiajak (6.61)

• ~1-vertex (+ + ++):

V(1)
4 (i+, j+, k+, l+) = X(i, j)2 1

s2
ij

X(k, l)2 δaiajδakal (6.62)

• Polarisation factors for external on-shell pi:

e
(±)
i = 〈ηi〉∓2 (6.63)

Here we have made use of the shorthand notation

X(ki, kj) = X(i, j), sij···n = (ki + kj + · · · kn)2. (6.64)

The Feynman rules are identical to those of SDYM, but with an additional one-loop

four-point vertex in eq. (6.62). A general one-loop diagram contains a single one-loop

vertex and an arbitrary number of tree-level vertices. The one-loop vertex immediately

yields the correct colour-ordered one-loop all-plus amplitude:

( 4∏
i=1

〈ηi〉−2
)
X(1, 2)2 1

s2
12

X(3, 4)2 =
[12]2[34]2

s2
12

=
[12][34]

〈12〉〈34〉
. (6.65)

This is the s-channel contribution. There is also a t-channel contribution, however this

coincides with the former as the on-shell expression is permutation invariant in the

external particles.

4Note that we use V notation for the vertex Feynman rules so as to distinguish them from the
position space V1-loop in eq. (6.44), which contain the fields Ψ in their definition.
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While this gives the colour-ordered amplitude, one might worry about the peculiar

colour structure in eq. (6.62). Once again, this is where the restriction of the gauge

group acts, and in ref. [179] it was explicitly confirmed that this vertex yields the full

colour-dressed four-point amplitude. Proceeding to higher multiplicity, the effect of this

restriction becomes more pronounced. Working with the colour-ordered vertex alone

no longer yields gauge invariant quantities, let alone the desired amplitudes. This

is precisely because colour structures that are independent for SU(N) are no longer

independent for the special restricted gauge groups. Thus, while the colour-dressed

amplitudes will of course be gauge invariant, the naive colour-ordered amplitudes will

not be.

To extend the above Feynman rules to SU(N) we will need to introduce additional

vertices. To this end, it will be useful to revisit the general form for the colour-ordered

one-loop all-plus amplitudes in SDYM, written in eq. (6.22). When first constructed

in ref. [169], this was observed to split such that

A(1)
n (1+2+ · · ·n+) =

E(123 · · ·n) +O(123 · · ·n)

〈12〉〈23〉 · · · 〈n1〉
, (6.66)

where we have omitted an overall normalisation constant and the E- and O-parts are

given by

E(123 · · ·n) =
∑

1≤i1<i2<i3<i4≤n
〈i1i2〉[i2i3]〈i3i4〉[i4i1] + [i1i2]〈i2i3〉[i3i4]〈i4i1〉 (6.67)

O(123 · · ·n) =
∑

1≤i1<i2<i3<i4≤n
〈i1i2〉[i2i3]〈i3i4〉[i4i1]− [i1i2]〈i2i3〉[i3i4]〈i4i1〉 (6.68)

In the O-part we can recognise the presence of the four-dimensional Levi-Civita symbol

ε(i, j, k, l) = 4iεµνρσk
µ
i k

ν
j k

ρ
kk

σ
l

= [ij]〈jk〉[kl]〈li〉 − 〈ij〉[jk]〈kl〉[li], (6.69)

such that

O(123 · · ·n) = −
∑

1≤i1<i2<i3<i4≤n
ε(i1, i2, i3, i4). (6.70)

There are two classes of vertices needed to extend the one-loop vertices to SU(N): those

that extend the four-point vertex of eq. (6.62) and those containing the Levi-Civita

symbol. In the on-shell limit, the first class will yield the E-part of the amplitude,

while the second class will give the O-part. Notice that the O-part vanishes at four-

points, and thus was not required in eq. (6.65).
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In the following we will consider the colour-dressed amplitudes

A(1)
n =

∑
σ∈Sn−1

caσ(1)aσ(2)aσ(3)··· aσ(n) A(1)
n

(
σ(1)σ(2)σ(3) · · ·σ(n)

)
, (6.71)

where the sum is over all non-cyclic permutations. Here we have introduced the notation

ca1a2a3··· an = f b1a1b2f b2a2b3f b3a3b4 · · · f bnanb1 (6.72)

for the cyclic n-gon colour factors. It will also be useful to introduce symmetrisation

and antisymmetrisation over the indices respectively as

c(a1a2)a3··· an = ca1a2a3··· an + ca2a1a3··· an (6.73)

c[a1a2]a3··· an = ca1a2a3··· an − ca2a1a3··· an . (6.74)

When nested (anti)symmetrisations appear, they are evaluated sequentially from the

outer-most moving inwards, such that e.g.

c[(a1a2)a3]a4··· an = c(a1a2)a3a4··· an − ca3(a1a2)a4··· an . (6.75)

By trial-and-error, we were able to find the following set of m-point one-loop SU(N)

vertices, which reproduce the E-part of the amplitude:

• ~1-vertices (+ + · · ·+):

V(1)
m (1+, 2+, ... ,m+) =

m−2∑
i=2

X(k1, k2)2

(
i−1∏
j=2

X(k1,...,j , kj+1)

s1···j

)
1

s2
1···i

(
m−2∏
l=i+1

X(k1,...,l−1 , kl)

s1···l

)
X(km−1, km)2

· c[[···[(a1a2)a3]··· ]ai][ai+1[···[am−2(am−1am)]··· ]]. (6.76)

Here we have defined the notation

ki,j,...,n = ki + kj + · · ·+ kn. (6.77)

Importantly, the symmetry/antisymmetry of the colour factors under interchange of

indices is mimicked by the kinematic numerators. The full set of Feynman rules to

compute the E-part of the amplitude to n-points is then the rules in eqs. (6.60 - 6.63),

but with the four-point one-loop vertex in eq. (6.62) replaced by this set of general

m-point one-loop vertices. We have checked that these vertices give the E-part of the

one-loop amplitudes numerically up to seven-points.
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At first glance, eq. (6.76) is not a particularly appealing expression. To make the

structure of these vertices clear, let us write the first few orders in m explicitly:

V(1)
4 =

X(1, 2)2X(3, 4)2

s2
12

c(a1a2)(a3a4), (6.78)

V(1)
5 =

X(1, 2)2X(3, 4 + 5)X(4, 5)2

s2
12s45

c(a1a2)[a3(a4a5)]

+
X(1, 2)2X(1 + 2, 3)X(4, 5)2

s12s2
45

c[(a1a2)a3](a4a5), (6.79)

V(1)
6 =

X(1, 2)2X(3, 4 + 5 + 6)X(4, 5 + 6)X(5, 6)2

s2
12s123s56

c(a1a2)[a3[a4(a5a6)]]

+
X(1, 2)2X(1 + 2, 3)X(4, 5 + 6)X(5, 6)2

s12s2
123s56

c[(a1a2)a3][a4(a5a6)]

+
X(1, 2)2X(1 + 2, 3)X(1 + 2 + 3, 4)X(5, 6)2

s12s123s2
56

c[[(a1a2)a3]a4](a5a6). (6.80)

Here we have used momentum conservation in the kinematic factors to make the shared

symmetries with the colour factors clear. To further simplify matters, we can introduce

some diagrammatic notation for these vertices:

V(1)
4 =

1

2

4

3
, (6.81)

V(1)
5 =

1

2
3

5

4
+

1

2
3

5

4
, (6.82)

V(1)
6 =

1

2
3 4

6

5
+

1

2
3 4

6

5
+

1

2
3 4

6

5
. (6.83)

Here the one-loop vertices are given a representation as a dressed line. A standard ver-

tex indicates an X, while a bold vertex indicates an X2. Furthermore, a standard prop-

agator indicates an s, while a cross on the propagator indicates an s2. The colour factors

of each diagram are then simply read off so as to reflect the symmetry/antisymmetry

of the factors of X and X2. From these diagrams the general structure of the one-loop

effective vertices in eq. (6.76) is clear. For each increasing m, we attach a new external

leg to the internal line, and consider a contribution from every possible position of the
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squared propagator. It is important to emphasise that while these diagrams look like

trees they are truly representing one-loop vertices.

With this diagrammatic notation in hand it is easy to represent the structure of the

one-loop vertices at any m. Furthermore, it extends to diagrams formed from the

combination of a one-loop vertex and the tree-level vertex of eq. (6.61). For all m > 4,

the E-part of the amplitude will receive contributions from the m-point vertex as well

as all lower-point one-loop vertices dressed with trees. For example, a contribution of

the four-point vertex at five-points is

V(1)
4 (1+, 2+, 3+, (4 + 5)+) · V(0)

3 (4+, 5+,−(4 + 5)−)

= X(1, 2)2 1

s2
12

X(3, 4 + 5)2 c(a1a2)(a3b) · X(4, 5)

s45
f ba4a5

=
X(1, 2)2X(3, 4 + 5)2X(4, 5)

s2
12s45

c(a1a2)(a3[a4a5])

=

1

2
3

5

4
. (6.84)

This contribution is formed from gluing the three-point tree-level vertex into the four-

point one-loop vertex, where we have used a dot in the first and second lines to clearly

demarcate the contribution from each vertex. After combining the colour factors, the

result can be succinctly written diagrammatically, following precisely the same rules as

for the one-loop vertices themselves. A more involved example is the full E-part of the

six-point amplitude, which is given by

A(1)
6 SDYM

∣∣∣
E−part

=


1

2
3 4

6

5

+
1

2


1

2
3 4

6

5



+


1

2
3 4

6

5

+


1

2
3 4

6

5

+
1

2


1

2 3 4

6

5


+


1

2
3 4

6

5

+
1

2


1

2
3 4

6

5

+
1

4


1

2 3 4

6

5


+ permutations{123456} . (6.85)
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Here the first, second, and third lines contain the contributions from the one-loop

vertices of multiplicity six, five, and four respectively. The numerical coefficients are

symmetry factors compensating for overcounting, which allows us to write the full result

in a more compact form.

In eq. (6.76) we have given the Feynman rules for a set of m-point one-loop effective

vertices. The natural question then is how these vertices are encoded within the action

of eq. (6.43). This is done via the inclusion of

V1-loop[Ψ]
∣∣∣
E−part

=

(
(Ψ
↔
P 2 Ψ)

1

~�− ~ad
Ψ
↔
P

)bc(
1

~�− ~ad
Ψ
↔
P

(Ψ
↔
P 2 Ψ)

)cb
, (6.86)

where adXY = [X,Y ] and we have the geometric series(
1

~�− ~ad
Ψ
↔
P

(Ψa1
↔
P 2 Ψa2)T a1T a2

)bc
=

1

~�
f b(a1|efe|a2)c (Ψa1

↔
P 2 Ψa2)

+ (f ba3dfd(a1|efe|a2)c − f b(a1|efe|a2)dfda3c)
1

~�
(Ψa3

↔
P

1

~�
(Ψa1

↔
P 2 Ψa2))

+O
(
ffff

1

�
(ΨP

1

�
(ΨP

1

�
(ΨP 2Ψ)))

)
. (6.87)

In the final term we have indicated schematically the next term in the series. Let’s

examine the second line. The colour structure will contribute towards a factor of

c···[a3(a1a2)], while the
↔
P operators will contribute towards a kinematic numerator

[· · ·X(k3, k1 + k2)X(k1, k2)2]. This is as expected from eq. (6.76). Furthermore, the

squared Mandelstam variable arises from the �−2 that is generated from the ~�−1 and

~�−1 in the left and right brackets of eq. (6.86).

Our one-loop effective vertices reproduce the E-part of the amplitude. We were unable

to obtain the O-part. No such vertex exists at four-points, while at five-points a valid

vertex can be obtained by taking the O-part of the amplitude off-shell:

X(k1, k2)

s12

X(k2, k3)

s23

X(k3, k4)

s34

X(k4, k5)

s45

X(k5, k1)

s51
ε(1, 2, 3, 4) ca1a2a3a4a5 . (6.88)

Here the cyclic product of 〈ij〉−1 factors is continued off-shell into a cyclic product

of X(i, j)/sij factors. When the polarisation factors are included, the |η〉 dependence

introduced by X is eliminated. We were, however, unable to find a general form for

these vertices. Thus, a closed form for the complete quantum-corrected SU(N) SDYM

action still remains an open problem. Despite this, it turns out that it is only the

E-part that is required to obtain SDG via the double copy.
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6.3.2 Self-dual gravity

In ref. [180] the gravitational counterpart of the twistorial construction of refs. [178,

179] was developed. Here we will follow a different route, and obtain the quantum-

corrected action for SDG via the double copy. Recall, that the self-dual sector provides

a rare off-shell example of colour-kinematics duality, as first demonstrated in ref. [29].

Furthermore, this has been shown to extend to loop-level in the self-dual theories,

applying to the loop-integrands of the one-loop amplitudes [46]. This is the standard

story for loop-level examples of the double copy; the duality acts at the level of the

loop-integrand. There is at present no indication that colour-kinematics duality extends

to the final expression for the amplitude, after loop integration. This is the surprise

we find here. We will see that a tree-like double copy prescription applies to the

loop-integrated one-loop effective vertices, thereby allowing us to simply obtain the

corresponding vertices in SDG.

The quantum-corrected action for SDG takes a directly analogous form to that in

SDYM, given in eq. (6.43). We take the SDG action in light-cone gauge and add on an

infinite set of one-loop effective vertices:

Sq.c.SDG(φ, φ̄) =

∫
d4x

(
φ̄
(
�φ+ {∂uφ, ∂wφ}

)
+ V1-loop[φ]

)
. (6.89)

The Feynman rules arising from this action will be those of SDG, listed in eqs. (6.13)

- (6.18), along with a set of ~1 vertices from V1-loop[φ]. To obtain the one-loop vertices,

we follow a tree-like double copy prescription. We take the one-loop SDYM vertices of

eq. (6.76), replace the colour numerators with a second copy of the kinematic numera-

tors, and leave the denominators untouched. The result is:

• ~1-vertices (+ + · · ·+):

V(1)
m (1+, 2+, ... ,m+) =

m−2∑
i=2

X(k1, k2)4

(
i−1∏
j=2

X(k1,...,j , kj+1)2

s1···j

)
1

s2
1···i

(
m−2∏
l=i+1

X(k1,...,l−1 , kl)
2

s1···l

)
X(km−1, km)4.

(6.90)

We have verified numerically that the amplitudes computed from the effective vertices

written here reproduce the one-loop all-plus SDG amplitudes up to six-points. The

n-point expression for these amplitudes can be found in ref. [170]. Furthermore, these
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vertices can be simply encoded within the action of eq. (6.89) via the inclusion of

V1-loop[φ] =
( 1

�φ
(φ
↔
P 4 φ)

)2
=

(
1

�− (φ
↔
P 2 ·)

(φ
↔
P 4 φ)

)2

, (6.91)

where �φ is the wave operator evaluated on the background of eq. (6.10). Perhaps

surprisingly, this term is far simpler than its SDYM counterpart in eq. (6.86), which

itself only gave rise to the E-part of the amplitude.

As a consistency check of the discussion in this section, we note that the quantum-

corrected SDG action of eqs. (6.89, 6.91) can be written in the covariant form

Sq.c.SDG = SSDG + b

∫
d4x
√
|g|

(
1

�g

(
ερλσω√
|g|

RµνρλR
ν
µσω

))2

. (6.92)

Here b is a normalisation constant of the one-loop amplitudes, and �g is the wave

operator on a curved background with metric gµν . This action arises from the anomaly-

free theory introduced in ref. [180],

Sρ−SDG = SSDG +

∫ (
d4x
√
|g| 1

2
(�g ρ)2 + b̃ ρRµν ∧Rνµ

)
, (6.93)

where b = 1
2 b̃

2, after one integrates out the axion ρ and flips the sign of the resulting

interaction term, as prescribed at the start of this section. Therefore, the result of

ref. [180] already encodes the quantum-corrected action of SDG. We have arrived at

the same answer by extending the SDYM vertices to SU(N) and performing a double

copy.

6.3.3 Discussion

In this section we have found a set of fully-integrated one-loop effective vertices in

SDYM which double copy to give effective vertices in SDG. The SDYM vertices are

not the full set of vertices in the theory, but rather reproduce the E-part of the one-

loop SDYM amplitudes in eq. (6.66). This misses the O-part, and an understanding of

this class of vertices is needed to define the full quantum-corrected action of SDYM.

Furthermore, it is unclear why only the E-part of the amplitude is necessary to obtain

the SDG vertices via the double copy. Interestingly, in the paper where the n-point

one-loop SDG amplitudes were first constructed, ref. [170], it was noticed that when

written in a particular way there is a similarity between the E-part of the SDYM

amplitude and the full SDG amplitude. Here we have shown that this relationship
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takes the form of a unique loop-level double copy, that applies at the level of the loop-

integrated amplitudes. Investigating the absence of the O-part of the amplitude in

this correspondence may shed light on a broader understanding of double copies of this

form.

At a more practical level, it would be interesting to examine how the anomaly affects

the full theories. One could imagine replacing the first term in the action of eq. (6.57)

with the full Yang-Mills action. Going to the light-cone gauge and integrating out

auxiliary components of the gauge field would then give the Yang-Mills action in the

Chalmers-Siegel form [185] with a set of additional one-loop vertices. These effective

vertices would now feature additional helicity configurations, as opposed to just the all-

plus vertex found in SDYM. These would certainly give rational contributions and thus

it would be interesting to check whether they give the rational parts of their respective

amplitudes. Turning to gravity, it has been observed that the two-loop divergence in

pure general relativity is connected to the one-loop like-helicity amplitudes [193]. One

could then ask what happens if we explicitly cancel the anomaly via the inclusion of

our effective vertices in the Einstein-Hilbert action? Testing whether this eliminates

the divergence would be a daunting task, but an interesting one nonetheless.



Chapter 7

Conclusions

Colour-kinematics duality and the double copy provide a surprising link between differ-

ent field theories. When viewed through these lenses, gauge theory and gravity appear

to be far more closely related than traditional approaches suggest. This is a startling

fact given their physical differences, but offers a tantalising glimpse of a more general

framework within which to view these theories. In this work we have studied a num-

ber of novel manifestations of the double copy, both extending the known catalogue

of examples in which it is known to apply and providing insights into the underlying

structure of the correspondence.

A global view of the double copy

In chapter 3 we extended the double copy between magnetic monopole solutions in

gauge theory and the Taub-NUT solution in general relativity. These solutions have

previously been related via a local double copy, in which the gauge field at a given

spacetime point is identified as the single copy of the graviton field at the same point [70,

88]. Here we generalised this local structure to arbitrary gauge groups by showing that

non-abelian monopole gauge fields can always be written in a form that consists of a

dressed abelian-like Dirac monopole. The double copy of both abelian and non-abelian

monopole fields then corresponds to the pure NUT solution in gravity, as was found

for SU(2) gauge theory in ref. [88].

Next we promoted this local story to a global one, by identifying a topological char-

acterisation that can be matched up on either side of the double copy in analogy to

the local structure of these solutions. Finding such a correspondence at first seems

problematic, as the non-trivial topology of solutions is typically characterised by topo-

logical invariants, which crucially depend on the gauge group. As the double copy for

158
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magnetic monopoles seems indifferent to the specifics of the gauge group, it is then

unclear what the relevant topological quantity is. Here we showed that the relevant

topological quantity is a patching condition between gauge or graviton fields defined in

different domains. The introduction of more than one field in each theory is necessary

to define a non-singular field configuration everywhere away from the origin. However,

to do this in a consistent manner, one necessarily induces a non-trivial topology which

can be neatly encapsulated in the patching conditions of eqs. (3.79, 3.98). The form of

the patching condition in gauge theory is independent of the gauge group, and it takes

a precisely analogous form in gravity. Monopoles and the Taub-NUT metric therefore

constitute an example of exact solutions for which local and global structure can be

related via the double copy.

Wilson lines and holonomy

In chapter 4 we developed an understanding of the double copy structure of Wilson lines

and holonomy. We began by identifying the double copy of the gauge theory Wilson

line to be the gravitational operator of eq. (4.41). This operator has been labelled as a

gravitational Wilson line before in e.g. refs. [112,114–117] due to the analogous physical

role that it plays to the gauge theory Wilson line. Here we show that this analogy takes

the form of a double copy. This proposal, however, raised a difficult question. When

the gauge theory Wilson line is integrated over a closed loop, it corresponds to the

holonomy, however its double copy is not the gravitational holonomy operator. What

then is the single copy of the gravitational holonomy?

To answer this question we discussed how the gravitational holonomy arises naturally

in the point particle action for a spinning compact object, where it describes the inter-

action of a spinning test particle with a non-trivial gravitational background. As the

single copy of such actions has been previously identified from a perturbative analysis

of the radiation emitted from the spinning source, we were able to identify the single

copy of the gravitational holonomy to be eq. (4.80). This operator, which we dubbed

the SCH operator, arises as a spin-dependent correction to the standard gauge theory

Wilson line. To further justify this double copy, we discussed the role the operator plays

in the IR structure of gauge and gravity amplitudes, and studied the form it takes for

the algebraically special Kerr-Schild solutions.

The SCH operator forms the SCH group. To conclude this chapter we studied the

form of the holonomy and SCH groups for a collection of well-known solutions that are

double copies of one another. Here we found three distinct cases. For the Schwarzschild

solution, both groups retain their maximal form, while for self-dual solutions they

reduce to mutually isomorphic subgroups. For the case of magnetic monopoles and the
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pure NUT solution, the SCH group was found to reduce while the holonomy group did

not. While this mismatch appears unexpected, we explained how it can be traced back

to the inherent physical differences between these two solutions.

Non-perturbative aspects of the self-dual double copy

In chapter 5 we investigated the non-perturbative structure of the double copy by

restricting to the self-dual sectors of pure Yang-Mills and general relativity. We began

by searching for exact power-like spherically symmetric solutions to the equations of

motion in Euclidean biadjoint scalar theory, in the hope that such solutions may relate

to known instantons in gauge theory and gravity. We found that while a general d-

dimensional solution exists, it vanishes in four-dimensions. This was due to the fact that

the power-like form that we found is a harmonic function in d = 4, such that it solves

the linearised biadjoint field equations. Furthermore, this linearised solution can be

identified as the zeroth copy of the Eguchi-Hanson solution, a well known gravitational

instanton in general relativity.

An exact Kerr-Schild-like double copy exists for self dual solutions, as reviewed in

section 5.1.3. Here the graviton is written in terms of a pair of differential operators,

such that it decomposes into a local product in momentum space. We interpreted

the differential operators which appear in the Eguchi-Hanson solution as a specific

example of a more general ansatz, involving the ’t Hooft symbols which are common

in the study of instantons. Abelian gauge fields constructed in terms of our ansatz are

of precisely the form that is required to form non-abelian instanton solutions via the ’t

Hooft ansatz. This fact meant that we could immediately identify a truly non-abelian

instanton solution with a given abelian-like single copy of a self-dual gravity solution.

This is highly reminiscent of the situation for magnetic monopoles [1, 88].

Our general ansatz for the differential operators appearing in the exact self-dual double

copy also provided useful insights into the nature of the kinematic algebra. It allowed

for a four-dimensional generalisation of the two-dimensional non-perturbative double

copy proposed in ref. [147]. Furthermore, we discussed a geometric interpretation of

the ansatz, in which it controls the null planes in which the kinematic area-preserving

diffeomorphism algebra acts. From this observation we were able to demonstrate how

to interpret the replacement of colour with kinematic algebras at the level of exact

classical solutions.

An old anomaly and a new double copy in quantum SDYM and SDG

Finally, in chapter 6 we investigated an old idea from W. Bardeen [171], that the

one-loop amplitudes in self-dual Yang-Mills and self-dual gravity are generated by the
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anomaly of the classical integrability of these theories. To this end, we developed ex-

plicit quantum-corrected actions for SDYM and SDG. These actions take the form of

the standard light-cone gauge action for each theory with an infinite number of one-

loop effective vertices added on. With this general form we were able to demonstrate

a manifestation of Bardeen’s idea, by defining a quantum-corrected current whose con-

servation corresponded to the equation of motion that is modified in the quantum

theory. Considering this quantum current in terms of the symmetries associated with

the classical integrability, we saw that the conservation of the current was blocked by

the presence of the one-loop effective vertices.

To construct the explicit loop-integrated form for the one-loop vertices we took inspira-

tion from recent work in twistor space [178–180]. Here modified actions for SDYM and

SDG were presented whose amplitudes are trivial due to a cancellation between tree-

level “axion” diagrams and loop-level gauge boson diagrams. To obtain our vertices we

integrated out the axion field and flipped the sign of the resulting effective vertex. The

one-loop amplitudes could then be computed by proceeding in a tree-like manner, with

diagrams formed from the gluing together of one-loop and tree-level vertices. We then

extended the vertices obtained in this way to full SU(N) SDYM, and showed that this

set of vertices double copies to SDG. This was an unexpected result. In all previous

incarnations of the double copy at loop-level, it holds at the level of the loop-integrand.

Here we find that it holds at the level of the loop-integrated effective vertices of the

quantum-corrected actions.

Concluding remarks

In this thesis we have probed the double copy from a variety of different perspectives.

We hope that these results provide a step, however small, along the road to a full

understanding of this fascinating correspondence. Many questions remain unanswered.

Can the correspondence be promoted to a general statement at loop-level? What is the

true nature of the kinematic algebra? How generally can we manifest this structure

at the classical level? It is unclear when, how, or even if answers to these questions

will appear. However, as the archive of known double copies continues to expand and

new insights into the theoretical structure of the correspondence are unearthed, one

can hope that glimpses of a more general framework might gradually emerge.



Appendix A

Derivation of the Kerr-Schild

spin connection

In this appendix, we provide a derivation of the spin connection in Kerr-Schild coordi-

nates. The spin connection satisfies Cartan’s first structure equation in the absence of

torsion,

dea + ωac ∧ ec = 0. (A.1)

In tensorial language this takes the form

∂µe
a
ν − ∂νeaµ + (ωµ)aν − (ων)aµ = 0, (A.2)

where we have contracted the vielbein with the spin connection. Multiplying through

by a factor of e µ
b e

ν
a then yields

(∂be
a
ν)e ν

a − (∂be
a
µ)e µ

b + (ωb)
a
c − (ωc)

a
b = 0. (A.3)

Next, we can substitute the explicit forms of the Kerr-Schild vielbein given in eq. (4.92),

and use the null condition from eq. (2.62), to obtain

∂be
a
c − ∂ceab + (ωb)

a
c − (ωc)

a
b −

1

4
φ2kakµ [kc∂bkµ − kb∂ckµ] = 0. (A.4)

Upon lowering the index a, we can cyclically permute the indices (a, b, c) and consider

the combination (a, b, c)− (b, c, a)− (c, a, b) = 0, to find

(ωµ)bc = (ωa)bce
a
µ = (∂ceab − ∂beac) eaµ +

1

4
φ2kµk

ν (kc∂bkν − kb∂ckν) , (A.5)
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where we have also multiplied the entire equation by eaµ. Finally, we again make use of

eqs. (4.92) and (2.62) for the vielbein in the first term, after which cancellations occur

and we are left with

(ωµ)ab = ∂beaµ − ∂aebµ. (A.6)

This expression agrees with the similar result found in ref. [194]. Note also that an

alternative route to this expression is to substitute the explicit forms for the Kerr-

Schild vielbein of eq. (4.92) into eq. (4.22).



Appendix B

One-loop vertices from off-shell

loop integration

In this appendix we briefly illustrate the brute-force approach to computing the one-

loop effective m-point vertices in SDYM and SDG. For each m, this involves computing

the one-loop diagram withm off-shell external legs directly attached to the loop by using

the light-cone gauge Feynman rules in eqs. (6.13) - (6.18) and explicitly performing the

loop integration in a given regularisation scheme. Here, we discuss this procedure for

the m = 2, 3, 4 colour-ordered vertices in dimensional regularisation, using the “X”

Mathematica package [195] to perform the loop integrals.

B.1 m = 2

At two points in SDYM, the relevant diagram is the bubble, given by

V(1)
2 = µ2ε

∫
dDl

(2π)D
X(l, k)X(l + k,−k)

l2(k + l2)
= −µ2ε

∫
dDl

(2π)D
X(l, k)2

l2(k + l2)
. (B.1)

Here k and l are the external and loop momenta respectively, and µ is the regularisation

scale. The loop momenta is (4 − 2ε)-dimensional. We now employ some standard

techniques. Firstly, we introduce the Feynman parametrisation,

1

l2(k + l2)
=

∫ 1

0
dx

1

[l2 + x((k + 1)− l2)]2
=

∫ 1

0
dx

1

[(l + xk)2 −∆]2
, (B.2)
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where ∆ = −xk2(1−x). Then, we perform the shift l→ l̃ = l+xk, such that eq. (B.1)

becomes

V(1)
2 = −µ2ε

∫ 1

0
dx

∫
dD l̃

(2π)D
X(l̃, k)2

(l̃2 −∆)2
(B.3)

= −〈η|σµk|η〉〈η|σνk|η〉µ2ε

∫ 1

0
dx

∫
dD l̃

(2π)D
l̃µ l̃ν

(l̃2 −∆)2
. (B.4)

The denominator is symmetric in l̃, and thus we can make the replacement [35]

l̃µ l̃ν →
1

D
l̃2ηµν . (B.5)

The metric contracts with the indices in the prefactor, and by applying the identity

σµαα̇σµββ̇ = 2εαβεα̇β̇, we find that

〈η|σµk|η〉〈η|σµk|η〉 ∝ X(k, k) = 0. (B.6)

We therefore see that V(1)
2 = 0, even off-shell. There is a subtle issue of regularisation

(see e.g. [176, 177]), but our choice here is consistent with the following higher-point

computations.

A similar calculation can be carried out in SDG, where the integrand is constructed

following the double copy prescription discussed in [46]. We find, similarly, that V(1)
2 = 0

off-shell.

B.2 m = 3

At three points in SDYM, the relevant diagram is the triangle, given by

V(1)
3 = µ2ε

∫
dDl

(2π)D
X(l, 1)X(l, 2)X(l + 2, 3)

l2(l − k1)2(l + k2)2
, (B.7)

Due to the linearity of X(k, k′) in its arguments this reduces to a sum of rank-3 and

rank-2 tensor integrals. These integrals can be evaluated with Passarino-Veltman re-

ductions using the “X” Mathematica package, with the result

V(1)
3 =

i

16π2
X(2, 3)3

[
3∑
i=1

ai ln

(
−4πµ2

k2
i

)
+ bSc0(k2

1, k
2
2, k

2
3) +R

]
, (B.8)
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where the coefficients are

a1 = − k
2
1

3λ

[
(k2

2 + k2
3)(k2

2 + k2
3 − k2

1)3 + 4k2
2k

2
3(k4

2 + k4
3 − k4

1)

+18k2
1k

2
2k

2
3(k2

2 + k2
3 − k2

1)− 24k3
2k

4
3

]
, (B.9)

a2 = a1|k1↔k2 , (B.10)

a3 = a1|k1↔k3 , (B.11)

b =
2k2

1k
2
2k

2
3

λ3

[
k4

1(k2
2 + k2

3 − k2
1) + k4

2(k2
3 + k2

1 − k2
2) + k4

3(k2
1 + k2

2 − k2
3) + 4k2

1k
2
2k

2
3

]
.

(B.12)

Here, λ = λ(k2
1, k

2
2, k

2
3) is the Källén function

λ = 2(k4
1 + k4

2 + k4
3)− (k2

1 + k2
2 + k2

3)2. (B.13)

Finally, we have the rational part

R =
1

6λ2

[
k4

1(k2
2 + k2

3 − k2
1) + k4

2(k2
3 + k2

1 − k2
2) + k4

3(k2
1 + k2

2 − k2
3) + 14k2

1k
2
2k

2
3

]
,

(B.14)

and the scalar function

Sc0(k2
1, k

2
2, k

2
3) =

1√
λ

∑
cyc(1,2,3)

[
Li2

(
k2

1 + k2
2 − k2

3 +
√
λ

k2
1 + k2

2 − k2
3 −
√
λ

)

−Li2

(
k2

1 + k2
2 − k2

3 −
√
λ

k2
1 + k2

2 − k2
3 +
√
λ

)]
, (B.15)

where Li2 is a dilogarithm and the sum is over cyclic permutations.

In the limit where two legs are taken on-shell, only the rational part survives and we

are left with

V(1)
3

∣∣
k22 ,k

2
3→0

=
i

96π2

X(2, 3)3

k2
1

. (B.16)

When the final leg is taken on-shell this vanishes due to 3-point massless kinematics.

This is as expected, since the 3-point all-plus amplitude vanishes.

The expression in eq. (B.8) for the 3-point one-loop vertex is not particularly appealing.

However, it turns out that when computing the contribution of this 3-point vertex at 4-

points, only the rational part is required. Despite this, the one-loop 3-point amplitude

itself vanishes, and it is therefore inconvenient to use a formalism in which the 3-point

vertex is non-zero. This is one of the reasons that the formalism based on anomaly

cancellation on twistor space is more desirable, as here the first effective vertex appears

at 4-points.
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The same computation can be done in SDG, where we square the numerator in eq. (B.7).

This yields rank-four, -five, and -six tensor integrals, which can be evaluated in Math-

ematica. The result takes a similar form to the SDYM case in eq. (B.8), but with

more complicated coefficients and an overall factor of X(2, 3)6. Taking two of the legs

on-shell, only the rational part survives, and we obtain

SDG : V(1)
3

∣∣
k22 ,k

2
3→0
∝ X(2, 3)6

k2
1

, (B.17)

up to a numerical factor. This vanishes when the final leg goes on-shell, as expected.

B.3 m = 4

At four points, the computation is significantly more involved. The relevant diagram is

the off-shell box. Once the loop integral is evaluated, the result has a similar structure

as at three points, containing a rational part, logarithms, and dilogarithms, albeit with

a far greater number of these terms.

We will not write the resulting vertex here, but to illustrate a point we consider instead

the “off-shell amplitude” (without external polarisation factors). This is given by the

sum of the 4-point one-loop vertex and the four diagrams with the one-loop 3-point

vertex attached to the tree-level 3-point vertex. Taking all external legs except the

first on-shell, only the rational parts of the loop vertices contribute, and after some

massaging we obtain the following expression

I
(1)
4

∣∣
k22 ,k

2
3 ,k

2
4→0
∝ X(1, 2)X(3, 4)3

s2
34

+
X(2, 3)3X(4, 1)

s2
23

+
X(2, 3)X(3, 4)

s23s34
[X(1, 2)X(2, 3) +X(3, 4)X(4, 1) +X(1, 2)X(4, 1)] .

(B.18)

When the final leg is taken on-shell, this collapses to

I
(1)
4

∣∣
k21 ,k

2
2 ,k

2
3 ,k

2
4→0
∝ X(1, 2)X(2, 3)X(3, 4)X(4, 1)

s12s23
, (B.19)

which leads directly to the correct 4-point amplitude. The fact that only the rational

parts contribute in these limits means that at this multiplicity we may take the rational

parts to be the vertices. It is possible that this extends to all multiplicity and that this

procedure therefore leads to rational vertices at all orders. However, we have highlighted

the disadvantages of this formalism in this appendix, and these deficiencies are only
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exacerbated in SDG.

It is interesting to note that eqs. (B.16) and (B.18), corresponding to the off-shell am-

plitudes with all but one legs on-shell, constitute the one-loop Berends-Giele currents

in this approach. Berends-Giele currents are recursively constructed perturbative so-

lutions to equations of motion [196]. The one-loop currents above then correspond to

perturbative solutions for Ψ̄ in the quantum-corrected theory. These solutions are gen-

erated by considering the Ψ fields in the equations of motion as on-shell sources, such

that Ψ̄ is generated by positive-helicity sources only. In such an approach, one takes

the “measured” field Ψ̄ to be outgoing, while the sources are incoming. Thus, when

we take all legs to be incoming the one-loop currents correspond to all-plus diagrams.

Unfortunately, we were unable to find a closed form solution to the quantum-corrected

equation of motion in eq. (6.46). We hoped that this would have similar features to the

known perturbative solution to the other equation of motion in eq. (6.45) (see [171,172]),

whose form is unchanged in the quantum theory. Despite this, we note that the one-loop

currents, even in this brute-force approach, are rational functions up to 4-points.
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