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Abstract 

Cryptosporidiosis is a common infectious diarrhoeal disease of mammalian livestock 

and humans worldwide. The etiological organisms responsible are intestinal 

apicomplexans of the genus Cryptosporidium, including C. parvum, that infect intestinal 

epithelial cells. Immunocompromised or malnourished hosts develop severe life-

threatening disease. Immunological elimination of Cryptosporidium requires CD4+ T 

cells and IFN-γ. Nevertheless, studies have shown innate immune responses have a 

significant protective role. Importantly, in T cell-deficient mice, IFN-γ is important for 

control of C. parvum infection. In innate immunity natural killer (NK) cells are major 

producers of IFN-γ and are activated by cytokines including type I IFNs but the roles of 

these components in immunity to Cryptosporidium infection have not been investigated. 

Therefore, the purpose of this project was to study the involvement of type I IFNs and 

NK cells in immunity to C. parvum employing in vitro and in vivo (murine) infection 

models.  

Enterocytes were shown capable of the production of type I IFNs in response to C. 

parvum infection. These cytokines directly inhibited parasite development in epithelial 

cells. Also, in neonatal SCID mice the level of infection increased after treatment with 

anti-type I IFN neutralising serum.  A higher level of infection was observed in Rag2-/-γc-

/- mice deficient in T, B and NK cells in comparison to Rag2-/- mice with a normal NK 

cell population and early mortality during chronic infection of adult animals was 

associated with the absence of NK cells. Using cultures of SCID mouse splenocytes, 

NK cells were the main source of IFN-γ in response to C. parvum antigen stimulation. 

However, IFN-γ was also found to have a protective role in Rag2-/-γc-/- mice, implying 

cells other than lymphocytes produce this cytokine. 

In conclusion, this is the first study to indicate important protective roles for type I IFNs 

and NK cells in innate immunity against C. parvum. 
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SECTION I: REVIEW OF CRYPTOSPORIDIUM 

AND CRYPTOSPORIDIOSIS 

1.1.1 Introduction 

Cryptosporidium is a protozoan parasite that was first discovered by Tyzzer in 1907 in 

the gastric glands of mice (Tyzzer, 1907) but it was not until 1976 that the parasite was 

described as a pathogen in humans and by the end of the 20th century it became 

accepted as a significant zoonotic pathogen. It has been considered a great public 

health problem after a large human waterborne outbreak in Milwaukee in 1993 when 

over 400,000 residents were affected (Mackenzie et al, 1995). 

 The importance of Cryptosporidium is increasingly being recognized and it was 

identified as a neglected pathogen in the World Health Organization’s Neglected 

Diseases Initiative 2004. 

Cryptosporidiosis is self-limiting in immunocompetent patients but severe and life 

threatening in immunocompromised individuals. In developing countries, 

cryptosporidiosis remains a serious risk as a frequent cause of malnutrition and death 

in young children. Treatment options are limited and, therefore, prevention and control 

measures are important for the protection of vulnerable groups. 
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1.1.2 Taxonomy 

The genus Cryptosporidium belongs to the Superkingdom Eukaryota, Phylum 

Apicomplexa, Class Sporozoasida, Subclass Coccidiasina, Order Eucoccidiida, 

Suborder Eimeriina, Family Cryptosporiidae (Plutzer and Panagiotis, 2009).  

However, some studies have suggested that the genus Cryptosporidium belongs to an 

early emerging lineage of the Apicomplexa that is closer to Gregarinia than to the 

Coccidia, based on a number of characteristics, including the oocyst auto-infectivity, the 

nature of the association with the host cells and the parasite insensitivity to anticoccidial 

drugs (Barta and Thompson 2006, Hijjawi et al 2004).  Table (1.1) summarise the 

differences between Cryptosporidium and Coccidia. Further studies are required to 

confirm the taxonomy of the parasite. 

Table 1. Differences between Cryptosporidium and the 

Coccidia (Barta and Thompson, 2006) 

 

Property 

 

Cryptosporidium 

 

Coccidia 

Location within the cells 
Intracellular but  

extracytoplasmic 
Intracellular 

Attachment or feeder 

organelle 
Present Not present 

 

Morpho-functional types 

of oocysts 

 

Two types: Thick and 

thin-shelled 

 

Thick shelled 
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Size of oocysts Small (5-7.4×4.5-5.6µm) 
Larger  

(9-38×7-39 µm) 

Sporocyst, micropyle 

and polar granules in 

oocysts 

Lacking Present 

Extracellular 

development 

Yes (This is highly 

controversial) 
No 

Syzygy-like pairing of 

extracellular gametes 

Yes (This is highly 

controversial) 
No 

Apicoplast Absent/Lost Present 

Complexity of 

biosynthetic pathways 

Simplified; reliant on 

salvaging from host  
More complex 

Sensitivity to 

anticoccidial drugs 
Insensitive Sensitive 

Host specificity Low for some species High 

Pathogenesis  Not understood Mainly understood 
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Twenty species of Cryptosporidium are now accepted based mainly on genotypes, 

phenotypes and host varieties. These are shown in Table 2 (Plutzer and Karanis, 2009) 

and at least eight (C .hominis, C. parvum, C. meleagridis, C. felis, C. canis, C. suis, C. 

muris have  andC. andersoni) have been detected in humans. 

 

Table 2.Cryptosporidium species 

(Fayer 2008; Plutzer and Panagiotis 2009) 

Species Author Main Host 

C. andersoni Lindsay et al. (2000) Bos taurus (domestic cattle) 

C. baileyi Current et al. (1986) Gallus gallus (chicken) 

C. bovis Fayer et al. (2005) Bos taurus (domestic cattle) 

C. canis Fayer et al. (2001) Canis familiaris 

(domestic dog) 

C. fayeri Ryan et al. (2008) Macropus rufus  

(red kangaroo) 

C. felis Iseki (1979) Felis catis (domestic cat) 
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C. fragile Jirku et al. (2008) Duttaphrynus melanostictus 

(black-spined toads) 

C. galli Pavlasek (1999)  Gallus gallus (chicken) 

C. hominis Morgan-Ryan et al. 

 (2002)  

Homo sapiens (human) 

C. 

macropodum 

Power and Ryan 

(2008) 

Macropus giganteus  

(grey kangaroo) 

C. meleagridis  Slavin (1955) Meleagris gallopavo (turkey) 

C. molnari   Alvarez-Pellitero and  

Sitja-Bobadilla 

(2002) 

Sparus aurata  

(gilthead sea bream) 

C.muris Tyzzer (1910) Mus musculus (house mouse) 

C. parvum Tyzzer (1912) 

 

Nime et al. (1976) 

Mus musculus (house mouse) 

Homo sapiens (human) 

C. ryanae Fayer et al.(2008) Bos taurus (domestic cattle)  
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C. scophthalmi  

 

Alvarez-Pellitero et 

al (2004) 

 

 

Scophthalmi maximus (turbot) 

 

C. serpentis  Levine (1980) 

Brownstein et 

al.(1977) 

Elaphe guttata (corn snake) 

Elaphe subocularis (rat snake) 

Sanzinia madagascarensus 

(Madagascar boa) 

C.suis Ryan et al. (2004) Sus scrofa (domestic pig) 

C. varanii Koudela and Modry 

(1998) 

Varanus prasinus  

(Emerald monitor) 

C. wrairi Vetterling et al. 

(1971)  

Cavia porcellus (guinea pig) 
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1.1.3 Epidemiology 

Cryptosporidium has been reported to infect people in 106 countries both in 

immunocompetent and immunocompromised individuals and in developed and 

developing countries (Fayer, 2008). Many outbreaks of infectious diarrhoeal disease 

have been reported to be caused by this genus (Casemore et al.,1997) 

In the UK Cryptosporidium is the commonest protozoal cause of gastroenteritis, with 

3000-6000 annually confirmed laboratory cases. C. parvum and C. hominis 

represent most of laboratory confirmed cases (Davies and Chalmers, 2009). 

Cryptosporidiosis inEngland and Wales are seasonal with peaks both in spring and 

autumn and while C. parvum is more common in spring, C. hominis is more 

prevalent in late summer and autumn. The risk factors for infection are not clearly 

identified (Davies and Chalmers, 2009). 

In the United States, during 1995-2007 the total number of reported cases of 

cryptosporidiosis increased from 2972 to 11,657 with a dramatic increase 

(4/100,000 population) from 2005 that has continued through 2007; 41.5% of 

reported cases were outbreak related (Yoder and Beach, 2009). Again the reason 

for this change is unclear. 

1.1.4 Epidemiological and transmission 

characteristics 

The Cryptosporidium parasite is distinguished with special and remarkable features 

that are critical to the spread and epidemiology of the disease and Table 3 

summarises these characteristics (From Dillingham et al., 2002) 
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Table 3. Epidemiological and transmission 

characteristics of Cryptosporidium(Dillingham et 

al., 2002) 

Characteristic Epidemiological significance 

1. Chlorine, iodine and related acid 

resistance.  

 

Readily spread in chlorinated water or 

swimming pools and acidic foods  

2. Relatively small size as it is one-

third the size of Giardia or amoebic 

cysts. 

Difficult to filter; hazard to the water 

treatment industry 

3. Low infectious dose (infection 

can happen with as low as 10-30 

oocysts in healthy individuals). 

Easily acquired with high infection rates 

(e.g. Milwaukee drinking water supply, day 

care centres, hospitals, households) 

 

4. Fully infectious when shed 

 

Easily spread person-person (e.g. 

households, hospitals, day-care centres) 

 

 

Under favourable conditions including (high humidity, temperatures <20°C) the 

oocysts can survive in the environment for about 6 months but after that infectivity 

rapidly decreases (Fayer et al., 1998). Neither moderate freezing nor heating to 

50°C completely inactivates oocysts (Olson et al., 1999). 
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1.1.5 Means of transmission 

a. Drinking water 

The largest outbreaks of cryptosporidiosis are associated with contamination 

of (fully chlorinated) drinking water by sewage effluent or manure. Private 

water supplies located in farms or rural areas were the cause of six 

outbreaks in England and Wales (Said et al., 2003)  

b. Recreational water 

Many outbreaks have been linked to swimming in lakes and swimming 

pools, and often related to faecal accidents, defective filtration and sewage 

contamination of pool water as well as the parasite’s high resistance to 

chlorination (Fayer et al. 2000).  

c. Person-to-Person 

Transmission is common within families, also in nurseries, day care settings, 

hospitals and schools (Teresa et al., 2006). Sexual transmission has been 

also suggested (Pederson et al., 1996) and a study in homosexual men in 

Australia identified sexual behaviour as a risk factor for cryptosporidiosis 

(Hellard et al., 2003). 

d. Zoonotic (animal to person)  

This has been confirmed by many studies involving pets, farm animals and 

by accidental infection of veterinary workers (Current et al., 1983). In 

addition there have been links between bovine genotype 2 cryptosporidiosis 

in human exposure to cattle in farms. Human infection with cat, dog and 

turkey genotypes also implicated zoonotic transmission (Newman et al., 

1994). 
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e. Food 

Food-borne infection is less common but can be caused by contaminated 

fruit or vegetables or food washed in contaminated water (Millard et al., 

1995) Unpasteurised milk may be another means of parasite transmission 

(Gelletlie et al., 1997). 

1.1.6 Life cycle 

Cryptosporidium is monoxenous and the parasite is transmitted from host to host via 

the faecal-oral route (Fig 1). Infected hosts shed mature oocysts with faeces to 

contaminate the environment, water or food. The oocysts are tiny spore-like bodies 

consisting of four comma- shaped sporozoites surrounded by a tough wall that can 

maintain their infectivity under cool moist conditions for months. After the oocysts 

are ingested by other suitable hosts excystation occurs as a result of triggers 

provided by conditions in the intestine to release motile sporozoites that can invade 

the epithelial cells of the gastrointestinal tract. The sporozoites and subsequent 

developmental stages are located at the luminal surface of epithelial cells, 

establishing an intracellular but extracytoplasmic position within a parasitophorous 

vacuole (PV). An attachment or feeder organelle develops at the interface of the 

apical pole of the sporozoite and the host cell cytoplasm and the sporozoites rapidly 

differentiate into spherical trophozoites. An asexual form of multiplication then 

occurs, forming two types of meronts.  Type I contains 6-8 nuclei, and when it 

becomes mature merozoites are released and in new host cells develop either into 

a type I meront again, or into a type II meront which contains 4 merozoites when 

mature. 

The merozoites from type II meronts also invade new host cells but initiate sexual 

development, differentiating into either male (microgametocyte) or female 

(macrogamont) stages. At maturation, the microgametocytes contain sperm-like 

microgametes which fertilize the macrogamonts when they find an infected cell. The 
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fertilized macrogamont, or zygote, then develops into an oocyst which undergoes 

meiosis within the host cell. 

When sporogony (meiotic sporozoite formation) is complete each oocyst contains 

four potentially infective sporozoites. Some oocysts with thick walls are shed via the 

faeces, while others which have a thin wall release sporozoites within the host and 

these may repeat the developmental cycle ie autoinfection (O’Donoghue, 1995).  

Like the typical coccidians, Cryptosporidium by being intracellular is protected 

during development from elements of the host immune response and the 

environment of the gut, while receiving energy and nutrition from the host cells. 

Also, like other coccidians, it lies within a PV bounded by a parasitophorous 

vacuolar membrane (PVM), which in other coccidians, is the route through which 

nutrients enter the parasite. In Cryptosporidium, thePVM may play a protective role 

and may be selectively permeable to certain molecules from the gut lumen. The 

unique feeder organelle at the interface with the cell cytoplasm is often stated to be 

the site for nutrient uptake from the host cell, although there is no strong evidence 

for this (Fayer, 2008). 
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Figure 1 Life cycle of Cryptosporidium and infection of host cells 

Chen et al, New England Journal of Medicine (2002). 

After the oocysts are ingested, they release sporozoites, which then invade 

epithelial cells in the gastrointestinal tract. After entry into the epithelial cells, 

the sporozoites mature into trophozoites, which then reproduce in two 

cycles. In the asexual cycle the organism undergoes asexual reproduction 

(schizony), producing merozoites (type I), which are emitted into the lumen 

of the intestine and infect other gastrointestinal epithelial cells. In the sexual 

cycle, some of the merozoites (type II) attach to epithelial cells, mature into 

gametocytes, which are fertilized in the intestinal tract, and then form into 

oocysts. The oocysts then release sporozoites that can either reinfect the 

intestinal epithelium and start a new life cycle or be shed in feces, capable of 

infecting others. 
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Panels A through to E show a C. parvum sporozoite attaching to and 

involving a host epithelial cell in vitro. Panel A: sporozoite attaching the 

apical membrane surface of the cell. Panels B and C: sporozoite invading a 

host cell and the protrusion of the epithelial cell membrane around it at its 

attachment site. D and E: an organism enveloped by the host cell membrane 

and the formation of vacuole. In panel E, the zoite has made contact with the 

microvillous border of the epithelial cell, with its anterior end inserted in the 

host cell membrane (arrowed). A dense band is formed where the parasite 

meets the cell. Panel F shows an intestinal biopsy specimen from a patient 

with intestinal cryptosporidiosis.  
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1.1.7 Human cryptosporidiosis 

1.1.7.1 Pathogenesis 

The main site of infection is the small intestine, although infection may be present 

throughout the gastrointestinal tract and in immunodeficient hosts may spread to 

extra-intestinal sites. Clayto et al. found that in HIV patients proximal intestine 

involvement was associated with severe diarrhoea compared to intermittent 

diarrhoea or asymptomatic infection in the case of colonic infection with no small 

intestine involvement (Clayto et al., 1994). 

Invasion of the host cells is restricted to the luminal border of the enterocytes and 

leads to displacement of the microvilli border and loss of the surface epithelium, 

causing changes in the villous architecture and lymphocyte infiltration in the lamina 

propria (Farthing, 2000). 

Osmotic, inflammatory and secretory aspects of diarrhoea have all been 

investigated and many factors were found to contribute to the pathogenesis 

(Farthing, 2000). The secretory-like diarrhoea seen in cryptosporidiosis is 

suggestive of enterotoxin(s) activity as a specific mechanism. This was indicated by 

electrolyte analysis of stools from infected children (Guarino et al., 1997), but not in 

case controlled perfusion studies (Kelly et al., 1996). Despite indirect evidence for 

toxin-like activity invitro, no parasite toxin has yet been isolated (Gaurino et al., 

1994, 1995). 

Osmotic dysregulation which is believed to be the primary cause of diarrhoea 

characterised by enterocyte malfunction has been explained in an experimental 

infection model by the decreased absorption of glucose-coupled Na+ caused by 

villous blunting and increased Cl- secretion due to crypt hyperplasia (Argenzio et al., 

1990). A possible mechanism of pathogenesis is that the infection with 

Cryptosporidium damages the enterocytes and eventually leads to their death that 

then would trigger epithelial cell hyperplasia. Apoptosis of uninfected cells of 
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intestinal cell lines by the parasite was confirmed by in vitro study(Griffiths et al., 

1994), but this has not been observed in infected piglets (Foster et al., 2012). 

Changes to the microvillous border also lead to the loss of membrane-bound 

digestive enzymes, reduction in the absorptive surface and uptake of fluids, 

electrolytes and nutrients (Giffiths et al., 1994).  

Increased inflammation in the lamina propria could partly explain the secretory 

diarrhoea by the production of cytokines and neuropeptides (Laurent et al.,1997; 

McDonald et al.,2000). TNF-α or other cytokines may stimulate fibroblasts and other 

cells to secrete prostaglandins (e.g. PGE2) and these products will then enhance 

secretion and impair absorption (Griffiths, 1998). Faecal leukocytes are always 

absent although in studies of malnourished children, cytokines and lactoferrin were 

found in stool and infection has been associated with persistent systemic 

inflammatory response. (Kirkpatrick et al., 2006). 

 

1.1.7.2 Clinical presentation 

Cryptosporidium can cause a spectrum of disease from asymptomatic to mild to 

severe, following an incubation period of 3-14 days that depends on both host (age, 

presence of maternal antibody, previous exposure or the infectious dose) and 

parasite (origin and age of oocysts, species and genotype) (Tzipori and Ward, 

2002). 

1.1.7.2.1 Asymptomatic infection 

Hunter et al. (2004) compared symptomatic and asymptomatic infections in 13 

studies in Denmark, Finland, Norway and Sweden. The prevalence of infection in 

asymptomatic people was 0.99% compared to 2.91% in patients with symptoms. In 

developing countries with poor sanitation, asymptomatic carriage can be higher, as 

shown in a study in Bolivia in which 31.6% of people carried 
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Cryptosporidium(Esteban et al., 1999). Asymptomatic may be free of symptoms but, 

especially in endemic areas, asymptomatic infection might be associated with other 

sequelae such as failure to thrive in children. 

1.1.7.2.2 Symptomatic infection 

Cryptosporidiosis presents as a gastroenteritis and the differential diagnosis usually 

involves other causes of infectious gastroenteritis such as Giardia, Cyclospora, 

Isospora (or Cycloisospora), norovirus, rotavirus, Campylobacter, Salmonella, 

Shigella and enterohaemorrhagic Escherichia coli such as E.coli O157. Symptoms 

start with sudden onset of watery voluminous diarrhea with 3-6 stools per day (but 

sometimes many more) that can be offensive in smell and may contain mucous 

(Casemore, 2000). Pus, blood and faecal leucocytes are not typically present, 

however Hunter et al. (2004) have reported 11% of cases had bloody diarrhoea,  

but this is probably due to co-infections which were not identified in that study. Other 

symptoms that accompany diarrhoea are: abdominal cramps (in 96% of patients), 

nausea or vomiting (65%), mild fever (59%), anorexia, malaise and fatigue and 

weight loss (Hunter et al., 2004). In some cases bloating and gas production can be 

reported (Chalmers and Davies, 2009). 

In developing countries cryptosporidiosis is associated with significant morbidity and 

infant mortality (Molbak et al., 1993) and with malnutrition in children (Sarabia-Arce 

et al., 1990). However it is difficult to establish whether the malnutrition was the 

causative factor in cryptosporidiosis or vice versa (Chalmers and Davies, 2009). 

1.1.7.3 Long term effects 

Little is known about the long term effect of cryptosporidiosis.  A case control study 

has shown that infection with C. hominis (but not C. parvum) was associated with 

joint pain, eye pain, headache and fatigue two months post-infection (Hunter et al., 

2004). Seronegative reactive arthritis has been reported in adults and children (Hay 

et al 1999; Shepherds et al., 1989). One report of Reiter’s syndrome (arthritis, 
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conjunctivitis and urethritis) has been reported (Corn and Sherry, 1995). A study 

has also suggested that cryptosporidiosis infection may cause relapse of 

inflammatory bowel disease (Manthey et al., 1997). 

1.1.7.4 Cryptosporidiosis in immunocompromised patients 

While cryptosporidiosis in healthy, well nourished, immunocompetent patients is 

usually self-limiting, immunocompromised individuals can suffer prolonged severe, 

chronic and life threatening symptoms. Patients who are at most risk are those with 

T cell immune deficiency, including patients with haematological malignancies 

(mainly children), HIV patients with low CD4 cell counts (particularly less than 50), 

patients with primary T cell deficiencies such as SCID and CD40 ligand deficiency 

(hyper IgM syndrome) (Hunter and Nicholas, 2002). Cryptosporidiosis for those 

groups of patients may in addition to the typical presentation present atypical and 

extra-intestinal disease. The infection can affect the entire gastrointestinal tract 

including the pancreas and gall bladder. Complications of pancreato-biliary infection 

can be pancreatitis, sclerosing cholangitis and, rarely, subsequent biliary cirrhosis 

(Rosario de Souza et al., 2004; Davies and Chalmers, 2009). 

Infection of the biliary tree acts as a reservoir from which intestinal cryptosporidiosis 

may relapse and it has been suggested that the billiary tree may not be reached by 

non-absorbable anti-parasitic agents which give the organisms their resistance to 

the anti-parasitic agents (Baishanbo et al., 2006) 

Tracheo-bronchial involvement and sinusitis have also been described (Dunand et 

al., 1997). In advanced HIV, cryptosporidiosis is associated with pneumatosis 

cystoides intestinalis in which cysts containing gas that occur in the wall of the gut 

can rupture and cause pneumoretroperitoneum and pneumomediastinum (Hunter et 

al., 2002). 
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Cryptosporidiosis in bone marrow and solid organ transplant patients has also been 

studied. Hunter and Nicholas (2002) have reviewed the severe disease seen in 

bone marrow transplant patients and found that the severity of cryptosporidiosis 

depended on the underlying disease for which the transplant was performed. In 

solid organ recipients and cancer patients (other than with haematological 

malignancies), cryptosporidiosis was not the problem it is with haematological 

malignancies (Hunter and Nicholas, 2002). 

1.1.7.5 Diagnosis 

Different specimens can be examined for Cryptosporidium including stool, intestinal 

and gastric biopsies, bile, sputum or bronchioalveolar lavage and antral washout. 

1.1.7.5.1 Stool examination 

Detection of oocysts in stool sample remains the easiest way to diagnose the 

infection. However a negative result in microbiological examination of a single stool 

sample cannot exclude cryptosporidiosis since oocysts may fall below detectable 

numbers even during symptomatic infection (Jokipii and Jokipii, 1986). Therefore it 

was suggested that collection of samples at different times is the best way for 

diagnosis (Weber et al., 1991) and the triple faeces test approach (based on 3 

consecutive daily samples) significantly increased detection rates (Van Gool et al., 

2003). 

The usual and easiest method for detection of oocysts in the stool is by acid-fast or 

fluorescent (auramine-phenol) staining and microscopy. This can often detect the 

organism in high numbers. 

Direct and indirect immunofluorescence microscopy for oocysts and ELISA for 

oocyst wall antigen are also used. Anti-cryptosporidial antibodies can be used in 

immunomagnetic separation followed by immunofluorescent microscopy to detect 
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as few as two oocysts per gram stool and may be reliable in managing severely 

affected patients regardless of faecal consistency (Robinson et al., 2008). In 

experimental studies flow cytometry has been used to quantify oocysts after 

isolation from stool samples (Moss and Arrowood, 2001). 

1.1.7.5.2 Histological examination 

Small bowel or gastric biopsies are occasionally used in diagnosis especially in 

patients with persistent diarrhoea or in patients with profound T cell immune 

deficiency when the stool sample is negative. The histopathology examination will 

show variation in parasite burden and degree of injury from area to area and 

between patients. In some infections villous atrophy and crypt hyperplasia with 

mixed inflammatory cell infiltration of lamina propria can be seen under light 

microscopy (Lumadue et al., 1998). 

1.1.7.5.3 Polymerase chain reaction (PCR) 

This is a very sensitive technique that is useful for testing stool when a low number 

of oocysts is suspected (McLauchlin et al., 2003) and it is the only method that gives 

information about the different species and genotypes. PCR can be applied to stool, 

tissues and other specimen types such as bile taken during endoscopic 

examination. PCR amplification has targeted the genes encoding the major wall 

protein of the oocyst, the small unit of rRNA, β-tubulin, TRAP-C1, TRAP-C2, ITS1, 

dihydrofolate reductase and non-coding satellite DNA sequences. Further 

treatments (eg using DNA restriction enzymes) can be employed to detect different 

Cryptosporidium species (Higgins et al., 2001). 

1.1.7.5.4 Radiological examination 

Radiological tests including abdominal ultrasound scan (US) and computerised 

tomography (CT) scan have been used in patients with extra-intestinal 
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cryptosporidiosis. US examination of a patient with biliary disease has shown a 

generalised dilatation of the bile duct and gall bladder (Chen et al., 2002). If the US 

examination is normal and there is a high suspicion of biliary involvement, 

endoscopic retrograde cholangiopancreatography (ERCP) should be considered 

(Chen et al., 2002). 

1.1.7.6Management 

Non-specific supportive treatment, including oral or intravenous rehydration, 

electrolyte and nutritional supplementation are currently the most essential 

treatments to manage the disease. 

1.1.7.6.1 Drug therapy 

Drug treatment of cryptosporidiosis falls commonly into three groups: antimicrobial 

therapy, immunotherapy and symptomatic anti-diarrhoeal treatment. Drugs from 

more than one group have been used in combination. 

 

1.1.7.6.1.1 Antimicrobial therapy 

Cryptosporidium is known for its resistance to antimicrobial therapy; the reason for 

this is not understood but could be related to the unique epicellular localization of 

the parasite in the host cell. 

 Nitazoxanide and paromomycin are the only drugs which when examined in 

controlled clinical trials showed some efficacy in the resolution of the infection 

(Rossignol et al., 2009). Nitazoxanide, the most efficacious compound, is approved 

by the United States Food and Drug Administration for use in immunocomeptent 

patients older than 1 year and is available by regular prescription. In the UK, 

nitazoxanide is not licensed but is available on a named patient basis. Amadi et al. 

showed that in a placebo controlled trial of Zambian HIV positive and negative 

children infected with Cryptosporidium, treatment with 100mg nitazoxanide twice 

daily for three days resulted in significant improvement in diarrhoea and parasite 
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clearance among many HIV negative patients. In the HIV positive group no benefit 

was found after the primary course of treatment but after a second course of 

therapy 77% of patients showed some response (Amadi et al., 2002). A double-

blind placebo controlled study in Mexican HIV positive patients reported that 

treatment with higher doses of nitazoxanide was significantly effective for parasite 

clearance in comparison to the placebo group. Parasite shedding and diarrhoea 

resolved in patients with a CD4 cell count higher than 50 but not in those with lower 

CD4 cell counts (Rossignol et al., 1998). 

Paromomycin was one of the first drugs tested for treating cryptosporidial diarrhoea. 

Its effect was investigated in several small and mostly uncontrolled studies, and it 

usually had modest activity against Cryptosporidium (Griffiths et al.,1998). 

Other drugs proposed for cryptosporidiosis such as sinfungin and metronidazole 

were only tested in laboratory neonatal rats but there is no evidence of effectiveness 

in treating human disease (Rossignol, 2010). Some drugs including spiramycin, 

clarithromycin, octerotide acetate, atovaquone, letrazuril and lasalocid were tested 

in a limited number of patients with AIDS-related cryptosporidiosis and failed to 

show antidiarrhoeal or antiparasitic activity (Zardi et al., 2005). Limited clinical trials 

studied the effect of azithromycin and roxithromycin in the treatment of diarrhoea in 

AIDS. Short or prolonged term of treatment with azithromycin did not affect oocyst 

shedding (Kadappu et al., 2002).  An open-label trial studied the effect of 

roxithromycin in 26 AIDS patients.  About 68% of treated patients were cured and 

6% were considered improved while one patient failed to improve. However, due to 

the lack of a control group and due to the variable-cyclical nature of the disease 

these findings were considered unreliable (Uip et al., 1998).  

1.1.7.6.1.2 Antiretroviral therapy 

Highly active antiretroviral therapy (HAART) is the best choice of treatment for 

patients with HIV-related disease. It controls viremia and increases CD4 cell 
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numbers. In vitro, protease inhibitors used in HAART (e.g. nelfinavir, indinavir, 

ritonavir) reduced C. parvum host cell invasion and parasite development and this 

inhibition was enhanced when used in combination with paromomycin (Hommer et 

al., 2003; Schmidt et al., 2001). These drugs restore CD4 cells and lead to increase 

in the expression of interferon-ү, IL-15, IL-4 even in those with modest degrees of 

immunoreconstitution. 

HAART has also been attributed to recovery of cryptosporidiosis in non-HIV 

immunocompromised patients such as in primary immunodeficiency, organ 

transplantation, cancer and malnutrition for which this therapy is not indicated (Abdo 

et al., 2003).  

1.1.7.6.2 Passive immunotherapy 

Results from studies using orally administered bovine colostrum containing 

antibodies against Cryptosporidium are contradictory and no controlled clinical data 

are published (Rossignol, 2009). Some patients responded well to colostrum from 

cows immunised with C. parvum oocyst antigen plus adjuvant but others showed no 

benefit. A similar type of study investigating the effect of neutralizing monoclonal 

antibodies as therapy against persistent C. parvum infection in adult IFN-ү-/- SCID 

mice showed a significant reduction of infection level in treated mice without 

eradicating the parasites. (Riggs et al., 2002). 

 

1.1.7.6.3 Probiotics 

Probiotics have been used successfully in the treatment of acute diarrhoea caused 

by different pathogens. Few studies have investigated the effect of probiotics on 

Cryptosporidium infection. Pickerd and Tuthill (2004) reported a single case of a 

beneficial effect of Lactobacillus osporGptG in the treatment of prolonged 

cryptosporidiosis in a patient with coeliac disease. A clinical trial in Peru, however, 
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found no beneficial effect of milk formula containing Lactobacillus GG in infants with 

acute diarrhoea with different causes including C .parvum (Salazar-Lindo et al., 

2004).  

Other results from studies with immunocompromised animals were contradictory.  A 

beneficial effect of probiotics on Cryptosporidium infection has been shown, but the 

mechanism(s) for this effect was not established (Alak et al., 1997, 1999).Guitard et 

al. (2006) did not find a significant effect for a L. casei containing mixture milk 

formula in eradicating the parasite in suckling rats (Guitard et al., 2006). 

1.1.7.7 Prevention and control 

Since treatment modalities for cryptosporidiosisare limited, prevention and risk 

reduction are important in the control of the disease. Cryptosporidiosisis highly 

infectious in person-person transmission and therefore meticulous personal hygiene 

is required. Summarised guidelines for person-person hygiene (Anon, 2004) include 

frequent hand washing particularly when caring for a person with diarrhoea, proper 

disposal of excreta and washing of soiled materials such as clothing and bedding. 

People with cryptosporidiosisshould not attend their work place, school or other 

institutions for 48h after the last diarrhoeal episode, particularly food handlers and 

staff of healthcare facilities (Anon, 2004). Exclusion from using swimming pools for 

2 weeks after diarrhoea has stopped is preferred.  General precautions against the 

infection include hand washing prior to eating or preparing food and after contact 

with animals and washing of fruits and vegetables prior to consumption. Suitable 

hand washing facilities should be provided at open farms where transmission is 

common. 

As contaminated water remains the main source of human infection, special 

attention should be paid to boiling water or careful filtration and as the parasites are 

chloride resistant, disinfection techniques using ultraviolet light or ozone at water 

treatment contents might be helpful (Ramirez et al., 2004). Immunocompromised 
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patients are also advised to boil all drinking water to reduce the risk of infection 

(Chief Medical Officer update, 1999). 

Means that reduce transmission between animals and between animals and 

humans should also be encouraged. People who are at high risk of infection should 

avoid contact with animals with diarrhoea or at least animals should be examined 

before allowing contact with humans (Juranek, 1995). 

In the UK, cryptosporidiosis is notifiable only where it is believed infection is food or 

water-borne, while in the US, it is a nationally notifiable disease (Davies and 

Chalmers, 2009).
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SECTION II: HOST IMMUNE RESPONSES TO 

CRYPTOSPORIDIUM 

1.2.1 Introduction 

Although many studies have examined immunity to Cryptosporidium, particularly C. 

parvum, the detailed protective immune responses against this parasite are yet to be 

understood. 

A variety of innate immunity components and responses may partially control the early 

parasite infection and produce signals for T cell activation such as IFN-γ from NK cells, 

certain chemokines, defensins and pro-inflammatory cytokines. Studies support an 

important TH1 pathway in the ultimate control and elimination of infection. However, an 

additional involvement of IL-4 in protection could also indicate a TH2 response 

involvement.  

Mice and other animals generally develop “natural resistance” to C. parvum infection 

before weaning (Sherwood et al., 1982). To circumvent this natural resistance, neonatal 

and immunocompromised mice are often used and have been found to be suitable 

models to study immunity to C. parvum (Tzipori 1988). Studies have also involved the 

gastric parasite C. muris which does grow readily in adult mice but this parasite is non-

pathogenic. Human and bovine studies to investigate immunological studies (mostly 

against C. parvum) are limited, but most of the results have been in agreement with 

those obtained with murine models (McDonald, 2007). 
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1.2.2 Innate Immunity 

Innate immunity provides the first line of host defence against pathogens and may limit 

development of infection via different antimicrobial killing mechanisms until the more 

potent adaptive immune response takes effect. Components of the innate immune 

system include the inflammatory cells such as NK cells, neutrophils, macrophages and 

eosinophils as well as the non-immune cells including intestinal epithelial cells 

(enterocytes). Products released by innate immune cells including chemokines, 

cytokines, complement factors and antimicrobial peptides are important directly or 

indirectly in microbicidal mechanisms (Delves and Roitt, 2000). 

1.2.2.1 The role of intestinal flora 

Some studies have suggested a protective role of the normal intestinal flora against 

cryptosporidial infection. The onset of refractoriness of healthy immunocompetent mice 

to C. parvum infection coincides with the established colonization of the gut by resident 

bacteria. Harp et al. found that germ-free mice were more susceptible to infection than 

conventional mice (Harp et al.,1988). This could be due tothe physical presence of a 

flora in the intestine resulting in competition for receptor sites, production of 

anticryptosporidial agents, and stimulation of gut motility could all be involved in 

blocking colonization by the parasite (Harp et al.,1988). Additionally the antigenic 

stimulation provided by the gut flora could perhaps be responsible for the activation of 

components of the immune system mediating resistance to C. parvum(Harp et 

al.,1988). Few studies have investigated the effect of probiotics on Cryptosporidium 

infection. Pickerd and Tuthill (2004) reported a single case of a beneficial effect of 

Lactobacillus osporGptG in the treatment of prolonged cryptosporidiosis in a patient 

with coeliac disease. A clinical trial in Peru, however, found no beneficial effect of milk 
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formula containing Lactobacillus GG in infants with acute diarrhoea with different 

causes including C. parvum (Salazar-Lindo et al., 2004). 

1.2.2.2 Epithelial cells 

Epithelial cells are the only known cells that can be infected by Cryptosporidiumin vivo 

and infection by pathogenic species predominantly occurs in the intestinal epithelial cell 

(enterocytes) (Sears and Guerrant, 1994). Enterocytes produce inflammatory molecules 

including chemokines, express toll-like receptors (TLRs) which act as sensors of 

infection and stimulate immune mechanisms for microbial killing (Zhou et al., 2012). 

The initial interaction between C. parvum and intestinal epithelial cells activates NF-B, 

an important transcription factor for different inflammatory signalling pathways. The initial 

stimulus for NF-kB activation is unclear but parasite products might interact with TLR 

molecules.  

Originally, it was shown that C. parvum infection of enterocytes would induce apoptosis 

of infected cells as an attempt to limit spread of infection (Chen et al.,1998). In infected 

cell monolayers, uninfected cells also underwent apoptosis due in part to secretion of 

FasL by infected cells (Chen et al., 1999) However, later work indicated that the 

parasite is able to oppose this effect by the activation of NF-kB that induces a number 

of apoptosis inhibitors (Chen et al., 2001). 

In a recent study with C. parvum infection of piglets, Foster et al observed that there 

was extensive shedding of infected cells associated with apoptosis from the piglet 

epithelium but this occurred mostly at the villous tips, where epithelial cells are normally 

shed.  A key step in initiating apoptosis, the cleavage of caspase-3, did occur but the 

enzyme function was prevented by the binding of an apoptotic inhibitor XIAP and 

proteasome activity. At the villus tips, NF-êB activation was less pronounced in cells 

being shed into the gut lumenand most of these cells were apoptotic. This indicated 



29 

 

that suppression of apoptosis except at the villus tips allows elimination of infected cells 

in a controlled manner that minimised damage to the intestinal epithelial barrier (Foster 

et al., 2012).  

Infection of epithelial cell lines with C. parvum activated the expression of 

proinflammatory NF-kB-dependant chemokines including IL-8, GRO-α, RANTES, MCP-1 

and MIP-2α (Laurent et al., 1997; Lacroix-Lamandé et al., 2002). The exact role of these 

chemokines in immunity is not known, but they are important initiators of the 

inflammatory response. Lacroix-Lamandé et al, have also shown that a lack of the 

chemokine receptor CCR5 had an impact in the early stage of C. parvum infection in 

neonatal mice as mice lacking CCR5 had a higher parasite burden early during the 

course of infection but this receptor was dispensable for subsequent parasite elimination 

(Lacroix-Lamandé et al., 2008). 

Importantly, C. parvum-infected intestinal epithelial cell lines were also found to produce 

a variety of dendritic cell-attracting molecules (CCL2, CCL3, CCL4, CCL5, CCL7 and 

CCL20) which enhance migration of these cells to the infection site (Auray et al., 2007). 

C. parvum infection of epithelial cells also induced prostaglandins which may have 

different effects such as modulation of T cell responses, decreasing inflammation and 

increasing production of mucin by goblet cells that would protect the epithelium 

(Laurent et al., 1998).  

The role of NO in the innate immunity to C. parvum was also described. Piglets infected 

by C. parvum were shown to have increased NF-êB-dependent intestinal expression of 

iNOS leading to NO production (Gookin et al., 2006). The iNOS expression was mainly 

happened in the epithelium and treatment with an iNOS inhibitor increased parasite 

reproduction suggesting that the iNOS stimulation is protective. This activity is at least 

partly an innate immune responses as it is initiated soon after infection (Gookin et al., 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lacroix-Lamand%C3%A9%20S%22%5BAuthor%5D
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2006). In a recent study Zhou et al. showed that, a significant increase in NO 

production was detected in epithelial cell lines following  C. parvum infection, this was 

regulated by iNOS as confirmed by a significant increase of iNOS protein and mRNA 

expression in those cells (Zhou et al., 2012). 

1.2.2.2.1 Toll-Like Receptors 

Toll-like receptors (TLRs) are a family of pattern recognition receptors which recognise 

distinct molecular patterns associated with microbial pathogens (Takeda et al., 2003). 

These receptors constitute the first line of defence against many pathogens and play a 

crucial role in the function of the innate immune system by activating NF-kB and other 

signalling pathways to produce inflammatory cytokines and chemokines. Ten human 

and twelve murine TLRs have been identified, TLR1 to TLR10 in humans, and TLR1 to 

TLR9, TLR11, TLR12 and TLR13 in mice. For example, TLR2 is essential for the 

recognition of a variety of pathogen associated molecular patterns (PAMPs) from 

Gram-positive bacteria, including bacterial lipoproteins, lipomannans and lipoteichoic 

acids. TLR4 is activated by lipopolysaccharide. TLR9 is required for response to 

unmethylated CpG DNA. (Takeda and Akira, 2005). Signal transduction by members of 

this family except TLR3 is initiated by an adaptor molecule, MyD88 (Akira and Takeda, 

2004). Intestinal epithelial cells are capable of expressing most TLRs (Gewirtz, 2003) 

where TLRs play dual roles in protecting the mucosal surface by helping to maintain 

homeostasis and promoting inflammation following mucosal injury(Santaolalla and 

Abreu, 2012). 

Evidence for the role of TLRs in C. parvum infection has been reported. MyD88 has 

been shown to be activated during C. parvum infection (Chen et al., 2001). In another 

study, Chen et al. have shown that infection of a bile duct epithelial cell line with C. 

http://www.invivogen.com/tlr2-ligands
http://www.invivogen.com/tlr4-ligands
http://www.invivogen.com/tlr9-ligands
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parvum induces the recruitment of TLR2 and TLR4 and not other TLRs to the parasite 

attachment site on the cell membrane and this resulted in activation of IRAK and 

phosphorylationof the MAPK p-38. Moreover, it was found that transfection of the cells 

with dominant-negative TLR2, TLR4 or MyD88 mutants or treatment of cells with 

interference RNA to deplete TLR2 or TLR4 inhibited NF-kB activation by the parasite.  

This study also showed that deficiency of MyD88 increased susceptiblyto C. parvum 

infection (Chen et al., 2005). Another study suggested that the MyD88 pathway plays a 

role in immunity to C. parvum as the infection level observed in juvenile MyD88-/- mice 

was significantly higher than the level in wild-type mice (Rogers et al.,2006). In 

agreement with the significance of TLR4 for countering infection in vitro, compared with 

control animals TLR4-/- mice took longer to clear infection from the intestine and bile 

ducts and had an altered and enhanced hepatic inflammatory response (O’Hara et al., 

2011). 

A cellular micro-RNA, let-7i that down-regulates TLR4 expression, had expression in 

biliary epithelial cells infected by C. parvum so that TLR4 expression was increased 

and so contributed to the epithelial resistance against C. parvum infection (Chen et al., 

2007). Supporting the role of TLR4, Zhou et al. demonstrated that a significant increase 

in NO production was detected in TLR4-responsive epithelial cell lines following C. 

parvum infection, whereas no NO was detected in Caco-2 cells which do not express 

TLR4 (Suzuki et al., 2003). They also observed a significant increase of iNOS protein in 

biliary epithelial cells of infected mice compared to no increase in the TLR4 deficient 

mice (Zhou et al., 2012). The mechanism of the increase expression of iNOS was 

dependent on the suppression of KH-type splicing regulatory protein (KSRP) through 

the up-regulation of a NF-κB responsive microRNA (miR27b) gene (Zhou et al., 2012). 

Interestingly, this iNOS expression is completely independent of IFN-γ, the classical 

inducer required for expression of this enzyme in macrophages. 
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In an in vitro study of infection of human biliary cells by O’Hara et al. it was 

demonstrated that an immunodeficiency virus type 1 (HIV-1) derived peptide (Tat) 

inhibited the ability of the these epithelial cells to express TLR4 upon infection with C. 

parvum and more parasites were found in Tat-treated cells than in control cells 48 h 

after infection. It was therefore suggested that these findings may partly explain the 

increased susceptibility of HIV-infected individuals to biliary cryptosporidiosis (O’Hara et 

al., 2009). It is not known whether these latter findings with biliary epithelial cells apply 

to enterocytes.  

With regard to TLR9, Barrier et al. found that treatment of neonatal mice with a 

synthetic oligodeoxynucleotide CpG that is a ligand for TLR9 stimulated strong 

resistance against parasite reproduction (Barrier et al., 2006). However, in similar 

experiments with adult malnourished mice which are susceptible to infection CpG 

treatment reduced the parasite load only by a modest degree (Costa et al., 2012).The 

reason for differences between degrees of resistance to infection in these two studies 

could be due to the nature of infection models employed or it is possible TLR9 

stimulation is more readily achieved in the neonatal mouse. 

Malnutrition in human infants is often associated with poor control of cryptosporidial 

infection (Gendrelet al., 2003). A recent in vivo study by Costa et al. studied the effect 

of malnourishment on infection with C. parvum in mice. It was found that adult 

malnourished C57BL/6 mice developed a higher level of infection as well as a 

significant reduction in the villous height–crypt depth ratio in the ileum in comparison to 

well-nourished infected mice. This was associated with a significant depression of 

expression of TLR2 and TLR4 mRNA in the ileum. Furthermore, malnutrition and 

infection resulted in reduced ileal TNF-α and IFN-γ levels compared with infected 

controls. However, no difference was observed in TLR9 expression between infected 
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(nourished or malnourished) and uninfected mice. These observations concluded that 

in the weaned animal, malnutrition intensifies cryptosporidial infection that may be 

explained by depressed TLR2 and TLR4 expression leading to lower expression levels 

of Th1 cytokines (Costa et al., 2011). The measurement of TLR expression was by 

qPCR using whole tissue, however, so the cells affected were not known. Neverthess, 

these observations supports the role of TLR/NF-κB mediated innate immune responses 

by epithelial cells might be critical for the host defense to C. parvum. 

1.2.2.2.2 Antimicrobial peptides 

The enterocyte immunological activity also extends to antimicrobial peptide 

production, such as defensins. Increased enteric β-defensin expression was first 

shown in calves infected with C. parvum (Tarver et al., 1998). Zaalouk et al. 

demonstrated that in vitroC. parvum infection of murine and human enterocyte cell 

lines downregulated the constitutive development of β-defensin-1 while an 

upregulation of human β-defensin-2 was observed. Human β-defensin-1 and -2 killed 

many sporozoites as measured by flow cytometry and caused reduced  development 

after addition to an enterocyte cell line. In vivo, murine intestinal β-defensin-1 

expression was also eliminated after infection with the parasite. (Zaalouk et al., 2004). 

Epithelial cell line constitutive expression of IL-18 which has been reported to be 

increased with C. parvum infection in vitro (McDonald et al., 2006) and the exogenous 

treatment of enterocytes with this cytokine reduced parasite development. This was 

found to be associated with increased expression of antimicrobial peptides LL-37 and 

β-defensin-2 (McDonald et al., 2006). 
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1.2.2.2.3 Complement 

Enterocytes are able to produce some complement components (Moon et al., 1997). 

So, another possible mechanism of C. parvum inactivation in the gut wall is the binding 

of the parasite sporozoites or merozoites to complement. Activation of the complement 

cascade classically can be initiated by two mechanisms which lead to enzyme cleavage 

of C4 and C2 to form C3 convertase. This may be dependent on the presence of C1 or 

the mannose binding lectin (MBL) which is a calcium-dependent protein that plays a 

role in the innate immune response by binding to carbohydrates on the surface of a 

range of pathogens (viruses, bacteria, fungi, protozoa) where it can activate the 

complement system or act directly as an opsonin (Koch et al, 2001). HIV patients with 

homozygous mutations in the MBL gene were more susceptible to C. parvum infection 

and serum deficiency of MBL in young children correlated with an increased incidence 

of cryptosporidiosis (Kelly et al., 2000; Kirkpatrick et al., 2006). Both MBL and C4 were 

found to adhere to the parasite sporozoites indicating that MBL may directly block 

parasite attachment to the epithelial cells or activate the complement complex (Kelly et 

al., 2000). A study by Petry et al. demonstrated that C. parvum can activate both the 

classical and lectin pathways, leading to the deposition of C3b on the parasite (Petry et 

al., 2008). Furthermore, human MBL bound to sporozoites as well as intact oocysts and 

empty oocysts wall. However, a comparison of the level of infection in complement 

factor-depleted (C1qA-/-), MBL -depleted (MBL-A/C-/-) and IL-12-/- mice, showed that 

only IL-12-/- mice developed severe infection. Additionally, some parasite development 

was detected in MBL- A/C-/- but not in C1qA-/- or wild type mice.  Taken overall, the 

results of studies suggest that complement may play a role in immunity to C. parvum 

only when the immune system is substantially weakened. 
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1.2.2.3 Role of immune cells in innate immunity to C. parvum 

Innate immune cells including NK cells, macrophages and neutrophils can play 

important roles in immunity to infection. They produce cytokines which might either 

directly affect the parasite reproduction or stimulate other cells to control infection and 

can directly kill microbial pathogens by cytolysis of infected cells or direct antimicrobial 

killing mechanisms. 

1.2.2.3.1 Neutrophils and Macrophages 
 

A study of C. parvum infection of piglets failed to show any effect on the parasite 

reproduction in animals treated with antibody to deplete neutrophils in comparison to 

the control animals (Zadrozny et al., 2006). However more recent work by Takeuchi et 

al. has demonstrated an important role for neutrophils and macrophages in acute C. 

parvum infection. In this study a comparison of C. parvum infection was made in SCID 

beige (SCIDbg) (lack T, B, NK cell cytotoxicity and to a degree neutrophil exocytosis), 

and SCIDbgMN mice (SCIDbg mice depleted of functional macrophages and 

neutrophils). SCIDbgMN mice were created from SCIDbg mice after whole body X 

irradiation followed by treatment with carrageenan and anti-Ly6G monoclonal antibody 

(Takeuchi et al., 2008). In infected SCIDbg mice oocyst excretion was first detected on 

day 18 and increased gradually but all mice survived infection. In contrast, in 

SCIDbgMN mice oocyst shedding began within 3 days of infection and reached a 

peaked at day 4 and mice died within 16 days. However, the resistance of SCIDbgMN 

mice to C. parvum infection was completely regained to the level shown by SCIDbg 

mice after inoculation of these mice with peritoneal macrophages from C. parvum-

infected SCIDbg mice (CP-macrophages) identified as conventionally activated M1 

macrophages or resident macrophages plus CP-neutrophils (neutrophils from infected 
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SCIDbg mice). Results from the same study also indicated that CP-neutrophils were a 

source of IFN-γ that is required for the activation of resident macrophages to M1 

macrophages. Therefore, M1 macrophages may act as the final effector cells in host 

resistance against acute C. parvum infection (Takeuchi et al., 2008). The protective role 

of macrophages in chronic C. parvum infection of Rag2-/-γc-/- mice (lack T, B and NK 

cells) was also demonestrated. These mice surprisingly have a low level of chronic 

infection for several weeks before the infection intensifies leading to death. Depletion of 

macrophages while the infection level was low resulted in a sharp increase in the level 

of oocyst production and death within days in comparison to the untreated infected 

mice. Normally in Rag2-/-γc-/- mice intestinal levels of IFN-γ increased as infection 

eventually worsened but no rise in IFN-γ mRNA was detected in macrophage-depleted 

mice  (Choudhry et al., 2012). Together, these findings indicate an important role for 

macrophages in the protective innate immune response to C. parvum, at least in the 

absence of lymphocytes, and imply macrophages are a key source of IFN-γ. It is not 

known, however, whether immunity would be so dependent on macrophages in the 

presence of lymphocytes.   

1.2.2.3.2 Natural Killer Cells 

Natural killer (NK) cells are an important cellular component of the innate immune 

response against intracellular infection and also tumour cells (Lodoen and Lanier, 

2006). They can be cytotoxic and may also produce inflammatory cytokines such as 

IFN-ү and TNF-α. The role of NK cells in innate immunity will be discussed in detail in 

Chapter 4 of this thesis. 
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1.2.2.3.3 Dendritic Cells 

The protective role of dendritic cells against cryptosporidium has not been well 

investigated. Auray et al,indicted that dendritic cell-attracting chemokines are produced 

by epithelial cells in response to C. parvum (Auray et al., 2007). Furthermore, a recent 

study by Bedi and Mead has shown that C. parvum antigens induced DC activation as 

indicated by upregulation of the maturation marker CD209. It also induced the 

production of cytokines including IL-12, IL-2, IL-1 and IL-6. In the same investigation 

soluble sporozoite antigen or live sporozoites activated dendritic cells derived from 

human peripheral blood cells to produce IL-12 (Bedi and Mead, 2012). 

1.2.2.4 The role of IFN-γ and other cytokines in innate immune 

responses to C. parvum 

1.2.2.4.1The role of IFN-γ 

Studies with adult SCID mice have shown that these mice develop chronic infection 

which is normally for some weeks mild in nature but becomes progressive and then 

fatal (McDonald et al.,1992).  IFN-γ has been identified as a key cytokine in protective 

innate and adaptive immune responses to C. parvum infection. Numerous studies have 

addressed the role of this cytokine in innate immunity.  A study with SCID mice with a 

targeted IFN-γ gene mutation indicated a protective role for this cytokine as the IFN-γ-

deficient mice developed a more intense infection than control SCID mice (Hayward et 

al., 2000). Similarly, treatment of athymic nude mice, SCID mice, or mice depleted of 

CD4+ T cells with a neutralizing antibody to IFN-γ increased the infection level and 

shortened the period before morbidity would occur (Ungar et al., 1991; McDonald and 

Bancroft, 1994). Hence, IFN- undoubtedly plays a major role in the early control of 

infection and innate immunity. 
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In an in vitro study by Pollok et al. (2001) it was shown that treatment of cultured 

enterocyte cell lines with exogenous IFN- decreased C. parvum reproduction. Two 

mechanisms of inhibition of parasite development were identified: a reduction of cell 

invasion by sporozoites and, more importantly, depletion of cellular Fe2+ that would be 

important for intracellular parasite growth (Pollok et al., 2001). Brandacher et al. have 

reported that IFN-γ induces enterocytes to express indoleamine 2,3 dioxygenase (IDO) 

that catabolises tryptophan required for microbial growth (Brandacher et al., 2006).This, 

however was not the anti-parasitic mechanism of IFN-γ in C. parvum and interestingly it 

was recently found in this laboratory that C. parvum infection inhibited IDO expression 

(Choudhry et al., 2009). Infection depleted expression of STAT1, the key transcription 

factor in the IFN- signalling pathway, which may underline the importance for this 

cytokine in the activation of enterocytes as part of immunity to infection. 

The inhibitory effect of IFN-ү on parasite reproduction in vitro was found to be inhibited 

by the anti-inflammatory cytokine TGF-β, but not IL-10. Significantly, IL-4 that 

classically inhibits IFN- functions was found to work synergistically with IFN-ү and 

increased parasite killing activity when used together with low concentrations of IFN- 

(Lean et al., 2003). The mechanism underlying this synergistic activity was not 

established but was not related to expression or phosphorylation of STAT1.   

1.2.2.4.2 The role of other cytokines 

Other cytokines have also been shown to play roles in innate immunity to C. parvum. 

IL-12: This is an important cytokine in innate immunity as it activates NK cells to 

produce IFN-γ (Lieberman and Hunter, 2002). The treatment of neonatal BALB/c mice 

with an antibody for IL-12 exacerbated C. parvum infection while exogenous IL-12 

treatment prior to oocyst inoculation prevented the development of infection. This 
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protective effect was completely blocked by anti IFN-γ antibody (Urban et al., 1996). 

Furthermore, intestinal epithelial cell invasion and/or early intracellular development of 

C. parvum was inhibited by treatment of mice with IL-12 24 h before oocyst inoculation 

(Urban et al., 1996)  

TNF-α: TNF-αis another important innate immune component produced by 

macrophages and lymphocytes and can stimulate NK cells to produce IFN-γ (Hunter et 

al., 1994). High levels of TNF-α were expressed in Cryptosporidium infected intestinal 

tissue samples of both mice and humans (Lacroix et al., 2001; Robinson et al., 2001; 

Ehigiator et al., 2005). In a study by Lacroix et al. 2001, the failure of C57BL/6 IFN-γ-/- 

mice to control infection was associated with poor intestinal expression of TNF-α in 

comparison to the infected wild-type mice. The same study also showed that the 

treatment of these mice with TNF- reduced parasite development (Lacroix et al. 

2001). In an in vitro study, TNF- inhibited parasite development in cultured human and 

mouse enterocyte cell lines (Pollok et al., 2001; Lean et al., 2006) and it was shown 

that the mechanism of this inhibitory action was by reducing the parasite invasion of the 

enterocytes (Lean et al., 2006). However, in the same study by Lean et al. it was found 

that TNF-α was not required for the control of C. parvum infection in neonatal mice as 

no differences in the level of infection were detected between TNF-α-/- mice and wild 

type mice (Lean et al., 2006). This supported earlier work by two groups which 

indicated that TNF-α activity was not necessary for the control of infection as the 

treatment of SCID mice with anti-TNF-α neutralizing antibodies did not cause an 

increase in C. parvum reproduction (McDonald et al., 1992; Chen et al., 1993). 

Together, these findings suggest that TNF-α may not play a major role in resistance to 

cryptosporidiosis or has a role that is replaceable. 
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IL-1: IL-1 has also been found to be up-regulated during infection of neonatal mice and 

this was independent of TNF-α expression (Lean et al., 2006). The cytokine also 

inhibited parasite reproduction in epithelial cells (Pollok et al., 2001). Both TNF-α and 

IL-1 are stimulators of prostaglandins and it was previously demonstrated that C. 

parvum infection directlystimulated human epithelial cell line HCT-8 to produce 

prostaglandin H synthase 2 (PGHS2), prostaglandins PGE2 and PGF2a (Laurent et 

al.,1998). The possible functions of these prostaglandins may include: regulation of 

epithelial Cl- levels along with fluid secretion (Argenzioet al., 1993) and increased 

mucin expression which may protect cells from infection (Hill et al., 1991). PGE2 has 

also been shown to down-regulate inflammatory cytokine production by macrophages 

(Knudsenet al., 1986).  

IL-15: IL-15 is a product of macrophages, dendritic cells and epithelial cells and is an 

important activator of NK cells and T cells to produce IFN-γ as well as increasing NK 

cell cytotoxicity. It also plays an important role in NK cell development and homeostasis 

of NK cells (Kim et al., 2008). In C. parvum infection of immunocompetent volunteers 

those with symptomatic infection failed to express IFN-γ in the intestine, but IL-15 was 

usually detected (Robinson et al., 2001), indicating that IFN-γ-independent protective 

pathways may be possible. Another study with IL-12 deficient C57BL/6 mice, however, 

showed that despite heavy infection with the parasite the mice were able to recover and 

expressed both IFN-γ and IL-15 during early infection (Ehigiator et al., 2005). 

IL18: IL-18 is a proinflammatory cytokine that like IL-15 is produced by epithelial cells, 

macrophages and dendritic cells (Iannello et al., 2009). It acts with other cytokines such 

as IL-12 or IL-15 to stimulate IFN-γ production (Okamura et al., 1998). In an in vitro 

study, infection of human enterocytes cell lines enhanced IL-18 mRNA expression and 

exogenous IL-18 treatment of these cell lines reduced parasite reproduction in these 
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cell lines (mentioned above), suggesting a possible protective role for this cytokine 

against C. parvum infection(McDonald et al., 2006). The role of IL-18 in innate immunity 

to this parasite was recently confirmed by a study in this laboratory by Choudhry et al. 

C. parvum-infected adult immunocompromised alymphocytic Rag2-/-γc-/- mice 

expressed high levels of intestinal IL-18 mRNA and caspase-1 (which is important for 

production of mature IL-18 protein from pro-IL-18) (Lannello et al., 2009). In addition, 

the treatment of these mice with anti-IL-18-neutralizing antibodies impaired resistance 

to infection and this was associated with a decreased level of intestinal IFN-γ 

expression (Choudhry et al., 2012). The same study demonstrated that the murine 

intestinal epithelial cell line CMT-93 produced IL-18 following C. parvum infection and a 

combination of IFN-γ and infection of these cells resulted in an even higher level of IL-

18 expression, while IFN-γ on its own had no effect on IL-18 production.Furthermore, 

IL-18 together with IL-12, but not any of several other proinflammatory cytokines, 

stimulated cultured peritoneal macrophages to produce IFN-γ. IL-18 therefore plays a 

protective innate immunological role against C. parvum infection and one possible 

mechanism is by promoting IFN-γ production by macrophages (Choudhry et al., 2012). 

IL-4: IL-4 is an important cytokine in driving the Th2 responses and studies of the role 

of this cytokine in the immunity to cryptosporidiosis are contradictory. However, 

McDonald et al. have shown that IL-4 mRNA became detectable in intestinal samples 

of neonatal BALB/c mice at 24h after infection with C. parvum. Furthermore, increased 

oocyst shedding was observed in neonatal mice treated with anti-IL-4 neutralizing 

antibodies in comparison to the control mice and this protective role of IL-4 was IFN-γ-

dependant (McDonald et al., 2004). In vitro, IL-4 was also found to act synergistically 

with IFN-γ to induce antimicrobial killing of the parasite by enterocytes (Lean et al., 

2003). 
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Both IL-13 and IL-4 employ the same receptor (IL-4Rα) and have overlapping functions 

(Wynn, 2003). A study by McDonald et al, showed that neonatal BALB/c IL-4Rα-/- 

developed more intense infection that wild-type mice (McDonald et al., 2004), but unlike 

IL-4, IL-13 did not increase IFN-γ inhibitory function against C. parvum in cultured 

enterocyte (Lean et al., 2003).  

IL-6: Elevated levels of and IL-6 were detected in neonatal IFN-γ knockout (C57BL/6-

GKO) mice after C. parvum infection (Lacroix et al., 2001) that failed to control infection 

and the cytokine was shown to reduce development of this parasite in vitro (V. 

McDonald, unpublished data). However, increased IL-6 expression in the intestine was 

associated with the inability of IFN-γ-/- mice to control infection (Lacroix et al., 2001) and 

also with hepatic necrosis in TLR-4-/- mice (O’ Hara et al., 2011). 

Type I IFNs:The central role of type I IFNs as inducers of antiviral host responses is 

well established and a part from strong antiviral activities, type I IFNs were found to 

play roles in immunity to non-viral microbial organisms including protozoa (Bodgan et 

al., 2004). The role of type I IFN in immunity to Cryptosporidium has been unknown and 

this will be discussed in detail in Chapter 3 of this thesis. 
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1.2.2.5 Immunity to C. parvum infection in neonatal mice 

As stated previously, only very mild infections of C. parvum are obtained in 

immunocompetentadult animals, including mice (Sherwood et al., 1982).  

Immunological activity is obviously one important factor in resistance as adult mice 

lacking T cells or T cells and B cells develop chronic infections that are often eventually 

fatal (McDonlad et al., 1992).  Adaptive immune mechanisms against C. parvum have 

often been investigated using adult mice of immunocompromised mouse strains (see 

later). As an alternative, C. muris has previously been employed for immunological 

studies (particularly by this group) but important arguments made against the use of 

this parasite are that it infects only the gastric glands and appears to be non-pathogenic 

(McDonald et al., 1992). 

In view of the difficulty of establishing C. parvum infection in adult mice, researchers 

have frequently turned to the neonatal infection model. Neonatal mice of most 

commonly used immunocompetent mouse strains, like newborn cattle or sheep, are 

highly susceptible to infection, but usually recover (Harp et al., 1990). Surprisingly, few 

studies have examined the role of adaptive immunity against C. parvum infection of 

neonatal hosts. In one of the first mechanistic immunological studies of 

Cryptosporidium, Heine et al. (1984) observed that BALB/c neonatal wild type and 

athymic nude mice both initially recovered from C. parvum infection, but recovery was 

slower in the T cell-deficient mice and these animals rapidly had a relapse and died. 

This suggested, therefore, that T cells were important not just for elimination of the 

parasite but for the initial recovery during the early acute infection observed in 

neonates. Later studies, however, indirectly called into question a protective role for T 

cells during the acute phase of infection. One study failed to find C. parvum activated T 

cells in the spleen throughout the acute infection (Harp et al., 1996). Another 
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investigation showed that β7-/- mice lacking the integrin α4β7 required for homing of 

mucosally activated T and B cells to the gut were not impaired in controlling the acute 

infection (Mancassola et al., 2004).  

Results from a recent study in this laboratory from Korbel et al. (2011) indicated further 

that T cells were not vital for the control of C. parvum infection in the neonatal mouse. 

Contrary to the findings of Heine et al. (1984) with their BALB/c nude mice described 

above, no difference in the pattern of acute infection was found between C57BL/6 wild 

type and Rag2-/- mice lacking T and B cells.  For several weeks following recovery no 

oocysts could be detected in either mouse strain but treatment at that point with the 

immunosuppressive drug dexamethasone resulted in patent infection developing in the 

Rag2-/- mice but not wild type animals. Treatment of wild type neonatal C57BL/6 

micewith anti-CD4 neutralizing monoclonal antibodies virtually eliminated CD4+ T cells 

in the mesenteric lymph nodes and gut but, importantly, the mice did not have 

increased susceptibility to C. parvum infection. Also, the percentages of CD4+ T cells 

and CD8+ T cells in the lamina propria at the peak of the acute infection and during 

recovery did not increase. These findings strongly suggested that although adaptive 

immunity is required to eliminate C. parvum it is not important for control of the initial 

acute phase of infection of neonatal mice. So, CD4+ T cells may be essential for control 

of infection in adult mice (see later) but are not involved in overcoming parasite 

reproduction in the neonatal mice.  It remains to be determined whether the key role for 

innate immunity in mice described by Korbel et al. also applies to larger hosts such as 

human infants and newborn cattle. Also, the findings pose a question about the value of 

vaccination for the neonatal host. 
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1.2.3 Adaptive immune responses 

1.2.3.1 Cell-Mediated Immunity 

Normally, innate immune responses limit microbial replication early during infections 

but clearance requires a T cell-mediated immune response. The emergence of 

cryptosporidiosis as a common opportunistic infection in immunocompromised hosts, 

especially HIV patients, suggests that a cell-mediated mechanism is essential in the 

immunity against Cryptosporidium. 

T lymphocytes are responsible for antigen-specific cell mediated immune responses. 

They consist of cytotoxic T cells and T helper (TH) cells.  Cytotoxic T cells usually 

express the CD8+ molecule and recognise antigens in conjunction with MHC Class I 

molecules. T helper cells express the CD4+ molecule and recognise antigen presented 

to them by antigen presenting cells which express MHC Class II molecules. Depending 

on the nature of the antigens that the immune system faces, CD4+ T cells may trigger a 

cell-mediated immune response (TH1) or antibody-mediated response (TH2) (Mosmann 

and Coffman,1989). 

These responses are differentiated depending on the cytokine spectrum produced by T 

cells and by antigen presenting cells. Thus TH1 is recognised by the production of IFN-

ү, IL-12 and TNF-α. A TH2 response is associated with IL-4, 5,9,10 and 13 secretion. 

Intracellular pathogens induce TH1 responses, while extracellular pathogens 

promoteTH2 responses. TH1 and TH2responses can cross-regulate each other, and the 

outcome of an infection can depend upon the timing and magnitude of each response 

(Mosmann and Coffman, 1989). TH17 cells are induced by IL-23 and they produce IL-17, 

IL-6 and TNF-α (Bettelli et al., 2006). This response is commonly recognised in 

inflammation associated with autoimmune conditions (Weaver et al., 2012). 
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1.2.3.1.1 The Role of T Cells 

Infection with C. parvum causes a significant increase in the size of the T cell 

population in different mucosal compartments including Peyer’s Patches, lamina 

propria and intraepithelial lymphocytes (McDonald, 2007). This is associated with an 

increase in expression of proinflammatory cytokines by T cells (White et al., 2000). 

Infection also leads to villous atrophy and crypt hyperplasia (Alcantara Warren and 

Guerrant, 2007) that are characteristic of T cell induced intestinal pathology 

(MacDonald and Spencer, 1992). 

Studies of murine infection models with Cryptosporidium confirm the importance of T 

cells in the immunity to this parasite. The first study that indicated the T cell role was 

made by Heine et al,who observed that neonatal nude mice developed a chronic and 

sometimes fatal C. parvum infection, while age-matched wild type mice had an acute 

self-limiting infection (Heine et al., 1984). A similar observation was found in infection of 

adult nude and SCID mice with C .parvum (Ungar et al., 1990; Mead et al., 1991), 

although the adult mice initially showed strong resistance. The chronic infection in 

those animals was eliminated by injection of the mice with histocompatible T cells 

(Mead et al., 1991).   

The role of T cells receptor types, TCRαβ and TCRγδ in resistance to C. parvum was 

investigated using transgenic mice lacking one of the TCR types (TCRα-/- and TCRδ-/-

mice) (Waters and Harp, 1996). Whereas both neonatal and adult wild-type mice were 

able to control the infection, TCRα-/- mice of both age groups suffered chronic infection 

In the case of TCRδ-/-mice, adult animals were as resistant to the infection as wild-type 

mice, but had delayed recovery when mice were infected as neonates (Eichelberger et 

al., 2000). These observations therefore suggest that TCRαβ is essential for the control 

of infection, while TCRγδ, although not essential, takes a protective role in neonatal 
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infection. This may be in contradiction with work from this laboratory showing that 

neonatal Rag2-/- mice were no more susceptible to infection than wild type mice (Korbel 

et al., 2011).   

1.2.3.1.1.1 Role of CD4+ and CD8+ T cells 

The correlation between CD4+ cell count and chronicity and severity of C. parvum 

infection in HIV patients was described by Blanshard et al. HIV infects mainly CD4 T 

cells and causes a large depletion of these cells leading eventually to AIDS. The lower 

the CD4+ cell number the more severe and prolonged was cryptosporidiosis and 

mortality due to the parasite infection became more likely (Blanshard et al., 1992). 

Restoration of CD4+ T cells following antiretroviral therapy in HIV patients confers 

resistance to cryptosporidial infection (Farthing et al., 2000). These observations 

support an important role for CD4 T cells in immunity C. parvum. 

Murine studies also supported the importance of CD4+ cells in the control of infection. 

While wild type mice were able to clear C. parvum infection after 8 weeks, MHC class II 

deficient mice that lack CD4+ cells remained infected by that time (Aguirre et al.,1994). 

Similarly immunocompetent mice suffered an exacerbation of infection following the 

administration of anti-CD4 antibodies (Ungar et al., 1991).  In studies with C. muris 

infection of adult SCID mice, immunity could be adoptively transferred to these animals 

with lymphocytes from spleens or mesenteric lymph nodes of immunocomeptent mice 

recovered from infection. This protective effect was lost when the donor cells from the 

immunocomeptent mice were depleted of CD4+ cells (McDonald et al. 1994). In line 

with this, a recent work by Tessema et al. indicated that adoptive transfer of CD4+ T 

cells and intraepithelial lymphocytes from IFN-γ-/- and IL-12p40-/- C57BL/6 mice infected 

with C. parvum to naive mice conferred protection against infection in the recipients 

(Tessema et al., 2009b). 
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While CD4+ T cells have been shown to be required for the host to control 

Cryptosporidium infection, the protective role for CD8+ T cells has not been shown to be 

as important.  Similar levels of infection were observed in mice that possessed or 

lacked CD8+ T cells due to MHC class I deficiency (Aguirre et al., 1994). Also, depletion 

of CD8+ T cells from immunocompetent mice did not affect parasite reproduction. 

However, in the same study, there was a higher number of oocysts shed from mice 

depleted of both CD4+ and CD8+ T cells than from mice depleted of CD4+ T cells only 

(Ungar et al., 1990).  In an investigation with C. muris, a role for CD8+ T cells was 

observed astreatment with anti-CD8 antibodies enhanced parasite reproduction in 

mice, but was less effective than the treatment with anti-CD4 antibodies (McDonald et 

al., 1994). Furthermore, Abrahamsen et al. suggested that CD8+ cells could have an 

important role in resistance to C. parvum since histologically there was a significant 

increase in the number of these cells in the intestine of newly infected as well as 

reinfected bovine calves (Abrahamsen et al.,1997). In human studies, Pantenburg et 

al., showed that antigen expanded sensitized CD8+ T cells significantly reduced the 

quantity of C. parvum in human intestinal cell cultures in an HLA class I- dependent 

manner (Pantenburg et al., 2010). Those effects were most likely mediated by the 

release of cytotoxic granules (Pantenburg et al., 2010). Also, cryptosporidiosis infection 

was more common in humans with particular HLA-class I alleles (Kirkpatrick et al., 

2008).There have been no reports showing the presence of antigen-specific cytotoxic T 

cells in vivo in human. 

Thus, an apparent discrepancy in the role of CD8+T cells in different Cryptosporidium 

infection models and it is possible, therefore, that CD8+ T cells may be more relevant 

for host resistance in human than in mice. Further studies of human mucosal CD8+ T 

cells from patients are essential to establish the significance of these cells. 
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1.2.3.1.1.2 TH1 and TH2 responses 

1.2.3.1.1.2.1 TH1 response 

Numerous studies have identified IFN-ү to be a major cytokine in the adaptive immune 

response to Cryptosporidium. A study by Ungar et al, described the important 

relationship between CD4+ T cells and IFN-ү in C. parvum infection as mice which were 

treated with two neutralizing antibodies, one to IFN-ү and one to CD4+ cells, developed 

an increase in level of infection in comparison to mice treated with either antibody alone 

(Ungar et al.,1991).  

Treatment of immunocompetent mice with anti-IFN-ү neutralizing antibodies resulted in 

a significant increase in both C. parvum and C. muris reproduction but repeated 

antibody doses did not prevent eventual control of infection (Ungar et al., 1991 and 

McDonald et al., 1992). Thus IFN-γ may be only required during the early part of 

infection. Furthermore, the reproduction of C. parvum in IFN-ү gene knockout mice was 

significantly greater than in the wild type mice, although the degree of increased 

susceptibility to infection of the knockout animals varied with the background strain: 

BALB/c mice survived but C57/BL mice died (Theodos et al, 1997; Mead and You, 

1998). Also, high levels of IFN-ү expression were detected in intestines of infected 

mice, measured by RT-PCR or ELISA (Urban et al., 1996; Kapel et al., 1996). 

Studies in humans also identified the role of IFN-ү in adaptive immunity as well as in 

treatment for cryptosporidiosis. Recovery of 15 patients from cryptosporidiosis was 

associated with IFN-ү release by peripheral blood mononuclear cells (PBMC) cultured 

with the parasite antigen. In a case report a two year old child with no 

immunodeficiency developed severe cryptosporidiosis and there was no IFN-ү from 

antigen stimulated PBMC (Gomez Morales et al., 1996).This cytokine was also used 

with success in the treatment of one child with chronic cryptosporidiosis (Gooi, 1994) 
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Although murine studies failed to show a protective effect for exogenous IFN-ү 

(McDonald and Bancroft, 1994; Kuhls et al., 1994) in immunocompromised rats the 

treatment with the cytokine decreased the level of infection (Rehg, 1996). These 

findings supported the important role of IFN-ү in the early control of infection, but other 

mechanisms are also required in the absence of this cytokine.  

The ability of TNF-α, another important TH1 cytokine, to control the infection was 

examined in mice that lacked this cytokine. The key findings with neonatal TNF-α-/- 

mice were that although TNF- is expressed during infection and could directly inhibit 

parasite development in enterocytes in vitro, this cytokine was unnecessary for normal 

elimination of the parasite (Lean et al., 2006). 

In the TH1 response IL-12 produced by dendritic cells and macrophages stimulates T 

cells to produce IFN-γ. A number of studies have shown the importance of IL-12 in the 

adaptive immune response to Cryptosporidium. The earliest evidence was provided by 

Urban et al. Treatment of immunocompetent neonatal BALB/c mice with IL-12 before 

inoculation with oocysts prevented or greatly reduced the severity of infection and 

resulted in increased IFN-γ expression in the intestine. On the other hand, the severity 

of C. parvum infection was exacerbated by treatment with anti-IL-12 antibodies and the 

protective effect of IL-12 was completely blocked by anti-IFN-γ antibodies (Urban et 

al.1996). IL-12 mRNA expression was also found to relate to the early control of 

infection of neonatal BALB/c mice (McDonald et al., 2004). IL-12 deficient C57BL/6 

mice were more susceptible to infection than wild-type mice. However, these mice were 

found to be able to produce IFN-ү in response to infection and could control infection, 

indicating the role of other cytokines for the induction of IFN-ү (Ehigiator et al., 2007; 

Tessema et al., 2009a). 

The study by Ehigiator et al. also compared the infection in IL-12p40-/- mice (lack both 

IL-12 and IL-23) and IL-12p35-/- (lack IL-12) and suggested that IL-23 has no additional 
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role in C. parvum control as IL-12p40-/- were no more susceptible to infection than p35 

knockout mice (Ehigiator et al., 2007). As IL-23 is associated with TH17, this result 

suggests TH17 may not be involved in immunity to C. parvum. 

Unlike the infection in neonatal BALB/c and C57BL/6 mice, adult BALB/c mice showed 

minor dependence on IL-12 as IL-12p40-/- mice developed mild infection similar to the 

wild type mice (Campbell et al., 2002). 

IL-18, similar to IL-12 promotes TH1 responses (Cai et al., 2000), it acts synergistically 

with IL-12 or other cytokines and is an important inducer of IFN-γ production by NK cell 

and T cells. Studies also suggest the involvement of IL-18 in the enhancement of TH2 

responses (Nakanishiet al., 2001) . Studies have strongly supported the involvement of 

this cytokine during C. parvum infection.  IL-18 is upregulated in vivo in response to 

infection (Ehigiator et al., 2005; Tessema et al., 2009a). Ehigiator et al. also observed 

that treatment of IL-12p40-/- knockout mice with exogenous IL-18 increased their 

resistance to infection, in addition IL-18-/- adult mice were more susceptible to infection 

(Ehigiator et al., 2007). Furthermore, the treatment of IFN-γ knockout mice or IL-12-

deficient mice with anti-IL-18 antibodies increased parasite excretion. This suggests 

that the protective role of IL-18 is not totally dependent on IFN-γ expression (Tessema 

et al., 2009a).  The same study also indicated that in IFN--/- and IL-12-/- mice there was 

an increase in IL-4 and IL-13 expression in spleens of infected mice when treated with 

anti-IL18 antibody (Tessema et al.,2009a), supporting the role of IL-18 in polarization of 

TH1 response against the parasite. 

In summary, evidence strongly supports the role of TH1 cytokines in the immunity 

against C. parvum and IFN-γ is a key player during the adaptive response. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Nakanishi%20K%5BAuthor%5D&cauthor=true&cauthor_uid=11312119
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1.2.3.1.1.2.2 TH2 response 

While the TH1 pathway is vital in the immune response to C. parvum, particularly 

through the production of IFN-ү and IL-12, the effect of these cytokines was reported to 

decrease in the later stage of infection (McDonald, 2000). In fact, it has been suggested 

that a TH2 response becomes involved in control of the later stage of the infection 

(Tessema et al., 2009). However, the role of the TH2 response in C. parvum infection is 

not that clear (Mcdonald, 2011). 

Enriquez and Sterling studied the importance of a TH2 response in infection and 

showed that treatment of adult mice with a combination of anti-IL-4 and anti-IL-5 

antibodies increased the level of infection in comparison to the control animals. When 

given separately, anti-IL-5 had a more prominent effect than anti-IL-4, suggesting a 

more pronounced effect for IL-5 (Enriquez and Sterling, 1993). Another study also 

showed that IL-5 was expressed during infection of BALB/c IFN-γ-/- mice that recover 

from infection (Smith et al., 2000). The evidence for a possible protective role of IL-4 is 

contradictory. In a study employing adult mice of C57BL/6 background, no increase in 

vulnerability to infection was observed in adult C57BL/6 IL-4-/- mice in comparison to 

control animals (Campbell et al., 2002) and in agreement with this, treatment of adult 

C57BL/6 IFN-γ-/- mice with anti-IL-4 antibodies did not result in a significant difference 

in the level of infection when compared to control animals (Petry et al., 2010). Other 

studies, however, indicated a significant role for IL-4. Aguirre et al.,demonstrated that in 

adult C57BL/6 mice resolution of infection was associated with increased numbers of 

IL-4 producing CD4+T cells in the gut-associated lymphoid tissue and furthermore 

treatment with anti-IL-4 antibody caused a prolongation of patent infection (Aguirre et 

al., 1998). In agreement with this, neonatal BALB/c mice treated with anti-IL-4 antibody 

and BALB/c IL-4-/- mice had higher susceptibility to infection than the control mice 
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(McDonald et al., 2004). A recent study by Tessema et al. showed that in IFN-γ-/- mice 

significant expression of IL-4, IL-10 and IL-13 was detected in the intestine and spleen 

and the levels mirrored the pattern of oocyst shedding. Those cytokines were also 

measured in the intestine of IL-12-/- mice, but the expression did not match the infection 

level, but continued to rise when oocyst shedding was decreasing. All cytokines fell to 

basal levels at the resolution of infection. Both IL-4 and IL-13 were significantly 

increased in both knockout mouse strains after treatment with anti-IL-18 antibody that 

worsened infection. No change in IL-5 expression was observed (Tessema et al., 

2009). It was therefore suggested that in the absence of TH1 cytokines, the immune 

response shifts to a TH2 type response that is much less efficient but eventually 

establishes control. It is possible, therefore, that normally balanced TH1 and TH2 

responses are involved in the resolution of infection (Tessema et al., 2009).  

In summary, there is strong evidence for a major role for TH1 cytokines, particularly 

IFN-γ in the control of Cryptosporidium infection. However, TH2 cytokines may also 

contribute to effective control of infection especially in the latter stage of the infection. 

At present the involvement of TH17 in C. parvum infection is unclear and needs to be 

investigated.
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1.2.4 Humoral Immune Responses 

1.2.4.1 B cells and antibody responses 

In C. parvum infection, antibodies of all major classes are produced and high titres were 

measured in the mucosa and circulation of different hosts, including humans, cattle and 

sheep (Ungar et al., 1986; Peeters et al., 1992; Hill et al., 1990). IgM, IgG and IgA titres 

measured by ELISA generally increase during infection and decline after recovery (Ungar 

et al., 1986). In a study with adult human volunteers, however, secretory IgA was detected 

in fecal samples during infection but neither IgG nor IgM was found (Dann et al., 2000). In 

developing countries IgG titres in serum of children may continue to elevate with time, 

probably because of continuous exposure to the parasite (Priest et al.,2006) but it was 

reported that IgA and IgM levels declined in cases with persistent diarrhoea (Khan et al., 

2004). A recent study with IFN-γ-/- mice or animals with IL-12 deficiency demonstrated that 

infected animals mounted prolonged parasite-specific serum IgG and IgA responses 

(Jakobi and Petry, 2008). Moreover, challenge infection led to a booster effect in 

immunoglobulin response despite the apparent absence of oocyst shedding (Jakobi and 

Petry, 2008). 

The protective role of antibodies in C. parvum infection is still questionable. Patients with 

congenital hypogammaglobuilinemia were unable to clear C. parvum infection (Lasser et 

al.,1979), implying that antibodies are required for immunity. This was supported by a 

study with AIDS patients with a strong serological response to a 27-kDa parasite antigen 

associated with a reduced risk of cryptosporidial dairrhoea (Frost et al., 2005). In contrast, 

other studies of severe Cryptosporidium infection in AIDS patients with low CD+ T cell 

counts showed high titres of IgA and IgG in their serum as well as salivary IgA (Cozon et 

al., 1994; Kaushik et al., 2009).  
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Mice were partially protected against C. parvum infection after injection with gall bladder 

secretory IgA (sIgA) from rats recovered from infection (Albert et al., 1994). Similarly, 

monoclonal sIgA that recognised C. parvum surface antigen p23 prepared from Peyer’s patch 

B cells from infected mice was able to provide a degree of protection to neonatal mice after 

passive transfer (Enriquez and Riggs, 1998). This suggest that sIgA plays a part in immunity to 

this parasite in mice but other investigations with B cell-deficient neonatal mice or when B cells 

were depleted by treatment with anti-μ chain antibodies indicated a limited role as those mice 

recovered from infection as well as controls (Chen et al., 2003; Taghi-Kilani et al., 1990). 

 Thus, although antibodies may contribute to protective immunity against Cryptosporidium, 

evidence indicates that antibodies alone do not clear infection and other mechanisms are 

needed for infection control.  

1.2.4.2 Passive transfer of anti- C. parvum antibodies 

Different studies have investigated the protection against Cryptosporidium with antibodies 

obtained by various methods of immunization and the results were inconsistent. Variable 

results were obtained from the immunisation with hyperimmune colostrums (HBC) which was 

prepared after injection of crude C. parvum oocyst antigen into the mammary glands of 

preparturient cattle (Tzipori et al.,1986;  Fayer et al., 1989a). Oral administration of HBC to 

humans with severe disease was, in some instances, shown to decrease the parasite burden 

and symptoms (Tzipori et al.,1986; Ungar et al., 1990). However, in another study of healthy 

volunteers, no significant prophylactic effect for HBC was observed (Okhuysen et al., 1998). 

Treatment of calves with HBC decreased the duration of diarrhea and oocyst excretion (Fayer 

et al., 1989a). In murine infection, a lower level of infection was observed in HBC-treated 

neonatal mice in comparison to the control animals (Fayer et al., 1989b). Antibodies isolated 

from HBC attached sporozoites when incubated together and reduced their infectivity when 

transferred to neonatal mice (Fayer et al., 1989b).  
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Colostrum from a cow immunised with CP 15/60 based DNA vaccine transferred to drug-

immunosuppressed mice induced partial protection against C. parvum infection (Jenkins et al., 

1999). Also, in this regard, good protection against C. parvum was achieved in calves 

receiving colostrum from cows vaccinated subcutaneously with recombinant p23 antigen that 

is present in both sporozoites and merozoites, plus adjuvant (Perryman et al., 1999).  

C. parvum immunized chickens produced eggs containing high titres of anti-C. parvum 

antibodies that reduced binding of sporozoites to enterocytes in vitro and when transferred 

orally to SCID mice supplied partial protection against infection (Cava and Sterling,1991; 

Kobayashi et al.,2004).  

Evidence of protection with monoclonal antibodies (mAb) was also described. Incubation of 

sporozoites with certain mAb that recognise surface antigens reduced their infectivity for 

neonatal mice in a time-dependent manner (Perryman et al., 1990). mAbs to individual 

antigens given orally to neonatal mice before infection did not provide any immunity, but when 

mAbs to different antigens were used in combination on three consecutive days from the time 

of infection the infection level was decreased (Arrowood et al., 1989).  Similarly, protection 

against C. parvum infection was achieved by treatment of neonatal mice with a mixture 

containing three mAbs to surface antigens but individual mAbs were not protective (Schaefer 

et al., 2000). In contrast, Riggs et al demonstrated that treatment of adult SCID mice with a 

single mAb (3E2) reduced parasite reproduction by binding with a sporozoite surface antigen: 

(circumsporozoite-like glycoprotein (CSL)). However, when used in combination with other 

antibodies there was no increase in efficacy (Riggs et al., 2002). 
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1.2.4.3 Vaccination against Cryptosporidium infection. 

Cryptosporidiosis is a major health risk in developing countries and, as there is no reliable 

chemotherapeutic agent it would therefore be ideal to develop a vaccine against the disease. 

However, little direct work has been undertaken in that field and this is probably due to 

numerous scientific obstacles that need be overcome before vaccines could be available. 

Attenuated Cryptosporidium using γ-irradiation of oocysts was shown to reduce parasite 

reproduction after oral administration and induced partial resistance against subsequent 

challenges with viable oocysts (Jenkins et al., 2004).  

As reviewed by Boulter-Bitzer et al., many immunogenic antigens of the C. parvum invasive 

stages  involved in attachment or penetration of host cells have been identified (Boulter-Bitzer 

et al., 2007) and immunisation of mice with antigen DNA has produced high levels of antibody, 

IFN-γ producing T-cells and some protection against infection (Ehigiator et al., 2007; Zheng et 

al., 2011). Therefore, some antigens might be useful for vaccines, however, it is not known if 

the parasite antigens that have been recognised are the same ones that provide protective 

immunity (McDonald, 2011). 

Mucosal administration of non-living vaccines often fails to induce an effective immune 

response; this could be due to oral tolerance that prevents inflammatory response against 

harmless antigens, inadequate stimulation of pathogen-recognition receptors and/or failure to 

enter the M cell pathway for immune recognition (Pasetti et al., 2011). The use of parenteral 

immunisation to stimulate mucosal protection also usually fails, most probably due to the lack 

of expression of intestinal homing molecules by activated T cells (Pasetti et al., 2011).  

In regard to vaccination of newborn livestock, due to the development of natural resistance to 

infection, protection is only required for a relatively short period early in life and the immature 
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immune system of neonates may not respond well to vaccination (McDonald, 2007). Moreover, 

as described by Korbel et al., in newborn mice,adaptive immunity appears to have a significant 

role in controlling the infection than innate immunity (Korbel et al., 2011). Therefore, it might be 

more useful to target older livestock with vaccination in order to reduce the general level of 

oocyst contamination in the local environment (McDonald, 2011).  

In humans, vaccination might have real relevance in areas of developing countries with poor 

hygiene and hence a high prevalence of infection and it might be important to immunise 

against more than one species of Cryptosporidium (McDonald, 2007). 

In summary, further studies and approaches to establish effective and cost benefit vaccines 

against infection are required. 
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1.3 GENERAL HYPOTHESIS AND AIMS 

It is clear from many studies that adaptive immunity is essential for the elimination of 

cryptosporidial infection. It is also evident that although innate immunity alone cannot 

clear infection it can play an important part in the control of parasite reproduction. 

Significantly, studies from this lab suggest that recovery during acute C. parvum 

infection in neonatal mice is due to innate immunity. The components of innate 

immunity that are involved in protection against C. parvum are not well characterised, 

however. 

Both type I IFN and NK cells are known to be important in innate immunity against 

many viruses and certain bacteria, but their roles in resistance to infection by 

Cryptosporidium have not been clear. 

MAIN HYPOTHESIS: 

Type I IFN and NK cells are vital elements of the protective innate immune response 

against C. parvum. 

AIMS 

1. Use in vitro culture systems to investigate the potential role of type I IFN and NK 

cells in immunity. 

2. Employ murine infection models to confirm that type I IFN and NK cells are 

important factors in the innate immune response that inhibits parasite 

reproduction. 



60 

 

 

 

 

CHAPTER TWO 

GENERAL MATERIALS AND METHODS 

 

 

 

 

 

 

 

 

 



61 

 

2.1 Materials 

A variety of plastic consumables were used for tissue culture and other techniques. 

Centrifuge tubes, tissue culture flasks, multi-well tissue culture plates (6, 24 and 96 

wells), petri-dishes, pipettes, plastic pastettes and ELISA plates were obtained from 

VWR International. Frosted glass microscope slides and slide coverslips were also 

obtained from VWR International. 

2.2 Parasite preparation 

C. parvum oocysts of the IDAHO isolate were obtained from Bunch Grass Farm, 

Deary, Idaho, USA and stored at 4°C in PBS. Oocysts were re-suspended in a 10% 

commercial bleach solution (0.55% sodium hypochlorite) for surface sterilization. 

The parasites were then washed in PBS (pH 7.2) 3 times by centrifugation at 

3,000xg for 6min in a microfuge. The oocysts were then re-suspended in PBS and 

counted microscopically using a haemocytometer (McDonald et al., 1992). 

2.3 Cell Culture  

The human adenocarcinoma cell line Caco-2, the murine rectal adenocarcinoma 

cell line CMT-93 and the L929 murine fibroblast cell line were used. Cell monolayers 

were maintained in Dulbecco Modified Eagle Medium (DMEM) with 10% fetal 

bovine serum, 100µgm/ml streptomycin, 100U/ml penicillin, 4 mM L- glutamine and 

1% non essential amino acids (complete medium, all from Invitrogen Life 

Technologies). Cells were grown in large or small plastic flasks at 37°C in an 

incubator with 5% CO2 and 95% air. Cell suspensions were obtained for passage or 

experiments by treatment with 0.25% trypsin (Sigma–Aldrich). Cells were washed in 

complete DMEM by centrifugation at 500xg, resuspended in complete medium and 

then added to flasks or multi-well plates (Pollok et al., 2001). 
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In some experiments Caco-2 or CMT-93 cells were seeded on sterile 13mm 

diameter glass cover slips placed on the bottom of 24-well plates to allow for later 

removal and attachment to glass slides for microscopic examination of monolayers 

at high magnification.  

2.4 C. parvum infection of cells 

When monolayers were around 80% confluent, the medium was discarded and cells 

were infected by addition of 2×105 C. parvum oocysts in 250µl complete medium for 

24-well plates or 1ml of medium for 6-well plates.  After 120-180 min incubation at 

37°C which is the time needed for sporozoite excystation and cell invasion, cell 

monolayers were washed twice with fresh medium to remove oocyst debris plus any 

unattached parasites and cells were further cultured for 24 h in normal volumes of 

fresh medium (Lean et al., 2006). 

In some experiments, CMT-93 monolayers were infected with purified sporozoites. 

2.5 Mice 

Neonatal and adult BALB/c, BALB/c SCID mice, C57BL/6 Rag-2-/- and C57BL/6 

Rag-2-/- γc-/- mice were bred and maintained in filtered cages under specific 

pathogen-free conditions. All procedures performed were agreed with a local ethical 

committee and licensed by the United Kingdom Home Office. 

2.6 Animals’ infection 

Mice were infected by oral gavage either as neonates (usually 7days of age) 

normally using 1×104 oocysts or, as weaned animals (4-8 weeks of age) using 

1×104-1×106 oocysts depending on the nature of experiment (McDonald and 

Bancroft, 1994). 
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2.7 Measurement of infection 

2.7.1 In vitro quantification of infection 

This staining method was described by Bary and Garnham (1962). After 24h of 

infection, cell monolayers on coverslips were washed with PBS pH7.2, fixed with 

methanol and stained with 10% Giemsa in PBS for 2 h at room temperature. The 

coverslips were then washed in deionised water and glued to glass slides with 

Depex (BDH). Four monolayers were used per treatment. The parasite numbers 

(usually trophozoites/developing meronts) were then counted microscopically in 20 

random fields under X1000 magnification with oil immersion. 

2.7.2 Measurement of oocyst production in faecal material 

The level of infection in mice was usually assessed by microscopic counting of 

oocysts in faeces. Stools or colonic contents were collected on different days 

postinfection and smeared evenly onto microscope slides. The smears fixed with 

methanol and acid-fast stained by the Zeihl Neelsen method. Slides were immersed 

in carbolfuchsin (BDH) for 30 min, de-stained with 1.5% vol:vol acid-alcohol (conc. 

HCl and methanol), counterstained with 0.5% w/vol  malachite in distilled water and 

washed with tap water. The numbers of parasites were then counted 

microscopically in 50 random fields at X1000 magnification using oil immersion 

(Baxby et al., 1984). (Fig 2 shows slides with acid-fast stained faecal smears). With 

this method oocysts have a pink colour that is easily detected on a blue-green 

background (see later). 
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Figure 2. Stool samples smears stained by the Zeihl Neelsen method 

 

2.7.3 Measurement of C. parvum infection in intestinal 

sections from neonatal SCID mice 

Early stages of infection in mice were measured semi-quantitatively by counting 

parasites developing in intestinal villi. One day after treatment with anti-Type I IFN 

antiserum, seven day-old mice were infected by inoculation with a much larger than 

normal number of oocysts (1X105) so that parasites can be seen early during 

infection. At 48h postinfection the ileum was removed and placed in formal saline 

solution. The tissue was embedded in paraffin and 5μm longitudinal sections 

prepared and stained with haematoxylin and eosin. Ten villi were selected at 

random and given an infection score of 0-10 (0, no parasites; 1, up to 10% of cells 

infected; etc. up to 10 for all cells infected). A total score (highest possible being 

100) was obtained for each mouse and the mean calculated for the group.   

2.8 RNA extraction 

Total RNA from intestinal tissue samples, the epithelial cell line CMT-93 or bone 

marrow derived dendritic cells was isolated using a monophasic solution of phenol 

and guanidine thiocyanate (TRIZOL, Invitrogen) according to the manufacturer’s 

instructions, followed by chloroform extraction and iso-propanol precipitation. Total 
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RNA was quantified by spectrophotometry and 3µg RNA was reverse transcribed to 

cDNA at 42°C with 1.5µg oligo(dT) primer (Promega), 1mM deoxynucleoside 

triphosphate, and Moloney murine leukaemia virus reverse transcriptase in a 

volume of 20µl, following the manufacturer’s guidelines. cDNA were either kept at -

20°C or used for real time qPCR. 

2.9 Real-time quantitative PCR 

Reaction mixtures were set up to a final volume of 20µl using a total of 100ng 

cDNA, 20 pmol of each primer and 10µl FastStart SYBER Green master mix 

(Roche). Amplification was performed using a Rotor-Gene 3000 instrument (Corbett 

Research) three times with independent cDNA samples and in triplicate for each 

cDNA and primer pair (The technique used followed the manufacture instructions). 

The PCR protocol consisted of an initial hold step of 95°C for 10 min followed by 45 

cycles of amplification under the following conditions: denaturation at 95°C for 15 

sec, annealing at 60°C for 30sec and elongation at 72°C for 60sec.  

The comparative threshold method was used for relative quantification (ΔΔCT 

method). The amount of target gene was normalised to the housekeeping gene β-

actin, and relative to the calibrator. Amplification efficiencies E for the housekeeping 

gene and all target gene reactions were determined (E-actin = 0.932; EIFN-= 0.902; 

EIFN- = 0.965; EIFN- = 0.919) by preparing a dilution series with cDNA template 

amounts between 0.01ng and 100ng, plotting the CT values obtained against the 

logarithm of the template amounts to construct a standard curve, and calculating 

amplification efficiencies using the formula E = 10(-1/S) – 1, where S is the slope of 

the standard curve. 
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2.10 Enzyme-linked immunosorbent assay (ELISA) 

ELISA technique was used to measure the release of IFN-α, IFN-ү or IL-12 in 

supernatants of cultured cells. The procedures were performed following the 

manufacture guidelines for each cytokine. All ELISA kits were supplied by R&D 

system. 

The level of IFN-ү or IL-12 production in supernatants of cultured splenocytes was 

measured by ELISA kits from R & D Systems and employing the protocols and 

reagents provided by the manufacturers.  Precise details of concentrations of some 

reagents are not known. A 96-well ELISA plate was coated with 100µl of diluted 

capture antibody overnight at room temperature.  The wells were then aspirated and 

washed twice with the washing buffer. The plate was dried by tapping it face down 

vigorously on a dry paper towel several times until no wet spots appeared on the 

towel. Following this there was an incubation for 1h with 300µl in each well of the 

specific blocking buffer. After washing and drying the wells, 100µl of samples or 

standards in reagent diluent were added and incubated for 2h. After washing, each 

well was coated with 100 µl of detection antibody and left for 2h. The wells were 

then emptied, washed and filled with 100µl of the working dilution of Streptavidin-

HRP (horseradish peroxidase) and left in the dark for 20min. The plate was then 

washed and coated with 100µl of the substrate solution 

H2O2/tetramethylbenzidinefor 20min in the dark. The reaction was then stopped by 

adding 50µl of stop solution, 1N H2SO4. Using a microplate reader the optical 

density was measured at 450 and 570nm.  

2.11 Antiviral bioassay 

To quantify Type I IFN release in culture supernatants obtained from epithelial cells 

or dendritic cells, an established bioassay was used (Daffis et al., 2007). 2×104 

L929 murine fibroblast cells in complete medium were seeded in a 96-well plate and 
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cultured overnight at 37°C. The monolayers were then exposed to supernatants 

from treated and untreated cells (eg infected or uninfected epithelial cells) or to 

standard dilutions of recombinant mouse IFN-α4 (R & D Systems) for 24h. The 

supernatants were then discarded and the L929 cells were exposed for 1h to 

encephalomyocarditis virus particles (ECMV in medium containing only 2% FCS, 

multiplicity of infection 0.5). Some control cells remained uninfected. The virus-

containing medium was then removed and the cells were re-cultured in complete 

fresh medium for 16h. At the end of the incubation period the cells were fixed with 

4% paraformadyhyde in PBS and stained with 0.25% crystal violet. Absorbance was 

then read at 580nm and the anti-viral activity of supernatants was measured in 

comparison to the recombinant IFN-α standards. 

2.12 Preparation of splenocyte cultures 

As described by McDonald et al. (1994), spleens from adult SCID, Rag 2-/- or Rag 2-

/-үc-/- knockout mice were collected under sterile conditions and placed in ice cold 

RPMI-1640 (Invitrogen International Technologies) with 10% fetal bovine serum, 

100µgm/ml streptomycin, 100U/ml penicillin, 4 mM L-glutamine, 1% nonessential 

amino acids and 5μM mercaptoethanol. The spleens were then disrupted in a sterile 

petri-dish containing complete medium using a 10ml syringe plunger and passed 

through 40µm sterile filters to get rid of any fatty or connective tissues. To lyse RBC, 

the cell suspension was then incubated for 10 min at room temperature with lysing 

buffer (0.83% w/vol ammonium chloride solution). The cells were then washed and 

resuspended in fresh RPMI.  A total of 4×105 cells in 200 µl medium was seeded 

into each well in a 96 well plate and cultured for 24-48h with or without C. parvum 

oocyst antigen. 
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2.13 Flow cytometry studies (FACS) 

5×105- 1×106 cells from spleens or bone marrow derived dendritic cells were 

washed twice in FACS buffer (PBS, 0.1% w/vol sodium azide solution (Sigma-

Aldrich) and 1% fetal bovine serum) for 10 min at 500xg. The cells were 

resuspended in FACS buffer and fluorochrome-conjugated antibodies to cell surface 

markers were added. Each antibody dilution was determined by antibody titration. 

After incubation at 4°C for 30 min in the dark, the cells were washed in FACS buffer, 

fixed for 15 min at room temperature in fixationbuffer (PBS, 2% paraformaldehyde), 

washed and resuspended in FACS buffer (Cooper and Caligiari, 2003). The cells 

were then either analysed immediately or kept in the dark at 4°C for later analysis. 

FACS antibodies: Antibodies used in flow cytometric analyses were: Rat anti-mouse 

CD49b (clone DX5) conjugated to fluorescein isothiocyanate (FITC; from BD 

Pharmingen) and mouse anti-mouse NK1.1 (clone PK136) conjugated to 

allophycocyanin (APC; from eBioscience). Isotype-matched control antibodies were: 

Rat IgM-FITC and mouse IgG2a-APC (both from BD Pharmingen). Flow cytometric 

analyses were performed using a Becton Dickinson LSRII instrument and 

FACSDiva software. 

2.14 Statistical analysis 

Mean values ± standard error were calculated and statistical significance 

determined using Student’s t test or ANOVA one way test. 
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3.1 GENERAL INTRODUCTION 

3.1.1 Interferons 

Interferons (IFNs) are a family of structurally related cytokines with a general property 

of antiviral function. They are only found in vertebrates (Isaacs and Lindenmann, 1957). 

They exhibit a variety of biological functions represented by three major activities: 

antiviral activity, antitumor activity and immunomodulatory effects (Takaoka and Yanai, 

2006). Interferons were the first cytokines to show efficacy in the treatment of viral 

infections and malignancies and the protocols have been used as models for the 

clinical development of other cytokines (Parmar and Paltanias, 2003). 

3.1.2 Classification 

Interferons are comprised of biochemically and functionally different proteins. There are 

three recognized classes of IFNs: type I, type II and type III according to their amino 

acid sequences. 

Initially, IFNs were classified into classical or type I IFN and immune or type II IFN. This 

classification was based on their resistance or sensitivity to acid (pH2) and heat (56oC) 

and their induction by viruses or immunostimulants (Ho and Armstrong, 1975). Type I 

IFNs were then subdivided depending on the virally infected target cell into leukocyte 

IFN and fibroblast IFN. The classification of leukocyte, fibroblast and immune IFN is no 

longer valid as leukocytes can produce all types of IFN. The classification of IFNs is 

now based on their amino acid sequence, chromosomal location and receptor 

specificity (Pestka et al., 2004). 
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3.1.2.1 Type I IFNs 

The type I IFNs consist of IFN α, β, ω, ɛ (Roberts et al., 1998; Langer et al., 2004; 

Pestka et al., 2004) and -κ (LaFleur et al., 2001). In addition, IFN-δ (Lefevre et al., 

1998), -τ (Roberts et al., 1999) and –ζ (Oritani et al., 2000) are included in this group, 

although they are only detected in pigs/cattle, ruminants and mice, respectively.  All the 

members of type I IFNs family transmit signals through a receptor complex composed 

of two subunits, IFNAR-1 and IFNAR-2 although there are some differences in both 

quality and efficiency in signalling among them (Takaoka and Yanai, 2006). 

The human type I IFN family includes thirteen IFN-α genes (α1, α2 etc.), one IFN-β and 

two IFN-ω genes, all located on the short arm of chromosome 9 (Hardy et al., 

2004).The mouse type I IFN locus is on chromosome 4 and contains 14 IFN-α genes, a 

single IFN-β, ω and ɛ and a not yet defined number of IFN- ζ genes (Robert et al., 

1998; Hardy et al., 2004). 

3.1.2.2 Type II IFN 

Type II IFN consists of a single IFN-γ gene that is located on chromosome 12 in 

humans and on chromosome 10 in mice (Bach et al., 1997, Pestka, 1997). It signals 

through a receptor composed of IFNGR-1 and IFNGR-2 subunits (Bach, et al., 1997). 

IFN-γ plays a major role in the host’s innate and T cell dependent responses to 

intracellular microorganisms. In response to mitogenic or antigenic stimuli, IFN-γ is 

produced by activated cells of the immune system, mainly T cells or NK cells (Bach et 

al., 1997; Ikeda et al., 2002). Some cytokines induce IFN-γ production such as IL-18, 

IL-12 and type I IFNs and they either function alone or synergistically (Dinarello, 1999).  

 

http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2006.00716.x/full#b37
http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2006.00716.x/full#b38
http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2006.00716.x/full#b6
http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2006.00716.x/full#b39
http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2006.00716.x/full#b40
http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2006.00716.x/full#b40
http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2006.00716.x/full#b41
http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2006.00716.x/full#b42
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3.1.2.3 Type III IFNs  

These consist of three IFN-λ molecules called IFN-λ1, IFN-λ2 and IFN-λ3, also called 

IL-29, IL-28A and IL-28B, respectively (Kotenko et al., 2003; Sheppard et al., 2003).  

IFN-λ genes are located on chromosome 19. Type III IFN is induced upon viral infection 

and binds to a distinct membrane receptor complex of a specific chain IFNLR1 and a 

second chain IFNRL2/IL10R2 shared with IL-10, IL-22 and IL-26 (Kotenko et al., 2003; 

Sheppard et al., 2003). 

3.1.3 Main IFN signalling pathways 

3.1.3.1 IFN Receptors 

Both type I and type II receptors are transmembrane glycoproteins whose extracellular 

domains act as IFN binding sites while the cytoplasmic domains associate with 

members of the JAK protein tyrosine kinases family (Jak PTKs) and initiate signal 

transmission (Prejean and Colamonici, 2000). 

The IFNα’s, -β and -ω’s have a common receptor consisting of two subunits, IFNAR-1 

and IFNAR-2. Both IFNAR-1 and IFNAR-2 map to chromosome 21 in the human, and 

chromosome 16 in the mouse. There is a single form of the IFNAR-1 subunit. However, 

alternative processing of the IFNAR-2 gene transcript produces long (2c), short (2b), 

and soluble (2a) forms of the encoded subunit (Mogensen et al.1999). IFNAR-1 

associates with Tyk2 tyrosine kinase, whereas IFNAR-2 associates with Jak1 kinase 

(Platanias and Fish, 1999). 

IFN-γ binds to a receptor distinct from that used by IFN-α/β. Two kinds of subunits also 

constitute the IFN-γ receptor complex. The IFN-γ ligand-binding IFNGR-1 subunit and 

the accessory IFNGR-2 subunit map to chromosomes 6 and 21 in the human and 
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chromosomes 10 and 16 in the mouse, respectively (Bach et al., 1997). IFNGR-1 and 

IFNGR-2 are associated with the Jak1 and Jak2 kinase, respectively (Bach et al., 

1997). 

3.1.3.2 IFN signalling pathways 

3.1.3.2.1 Jak-Stat pathway 

Classically, binding of type I IFNs to their receptors results in the activation of the Jak 

PTK (Tyk2 and Jak 1) that then phosphorylate their downstream substrates Stat1 and 

Stat 2 that are members of the family of signal transducers and activators of 

transcription (Stats). The tyrosine phosphorylation of Stats leads to the formation of two 

transcriptional activator complexes, IFN-α activated factor (AAF) also called IFN-γ 

activated factor (GAF) and IFN-stimulated gene factor 3(ISGF3). AAF/GAF is a 

homodimer of Stat1, while ISGF3 is a heterotrimeric complex of Stat1, Stat2 and IRF-

9/p48/ ISGF3γ, another transcription factor member (Bluyssen et al.,1996). These 

complexes translocate to the nucleus and bind to specific DNA sequences namely IFN-

γ activated site (GAS) and the IFN-stimulate regulatory element (ISRE) This leads to 

the activation of a large number of target genes (IFN-stimulated genes) to stimulate 

biological responses (Fig 3). 

In addition to the classical Stat1 and Stat2 signalling, Stat3, Stat4 and Stat5 have been 

also found to be components of the type I IFNs signalling machinery (Fish et al. 1999) 

3.1.3.2.2 Other signalling pathways of type I IFNs 

Several studies indicate that type I IFNs can activate other signal cascades apart from 

the Jak-Stat pathway. Such pathways include cascades involving the CBL proto-

oncogen, the CrkL adapter and the related CrkII protein (Ahmed et al., 1997). This 

pathway is thought to mediate induction of the growth suppressive effects of IFNs. 
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Another important pathway is the insulin receptor substrate (IRS) signalling pathway. 

This is known to play a role in insulin and growth factor signalling. It has also been 

reported that the mitogen-activated protein (MAP) kinases, extracellular–signal–

regulated kinase 2(ERK2) and p38 are activated by IFN-α/β (David et al.,1995; Goh et 

al., 1999). 

3.1.3.2.3 IFN-γ signaling 
 

Unlike Type I IFNs, IFN-γ signalling occurs predominantly through the Stat1 pathway. 

Upon binding, the IFN-γ subunits dimerise leading to the activation of associated Jak1 

and Jak 2 kinases. These then phosphorylate Stat1 which then forms a homodimer, 

translocates to the nucleus and activates transcription by binding to the GAS 

sequences (Platanias and Fish 1999; Darnell et al., 1994). As mentioned previously, 

Type I IFN also signals using this pathway. 
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Figure 3. Principal type I and type II IFN signalling pathways 

Platanias, Nature Reviews Immunology (2005). 

All type I interferons (IFNs) bind a common receptor at the surface of the cells, 

which is known as the type I IFN receptor. The only type II IFN, IFN-γ, binds a 

distinct cell-surface receptor, which is known as the type II IFN receptor. 

Activation of the JAKs that are associated with the type I IFN receptor results in 

tyrosine phosphorylation of STAT2  and STAT1; this leads to the formation of 

STAT1–STAT2–IRF9 (IFN-regulatory factor 9) complexes, which are known as 

ISGF3 (IFN-stimulated gene (ISG) factor 3) complexes. These complexes 

translocate to the nucleus and bind IFN-stimulated response elements (ISREs) 

in DNA to initiate gene transcription. Both type I and type II IFNs also induce the 

formation of STAT1–STAT1 homodimers that translocate to the nucleus and 

bind GAS elements that are present in the promoter of certain ISGs, thereby 

initiating the transcription of these genes. The consensus GAS element and 

ISRE sequences are shown. N, any nucleotide.
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3.1.4 Type I IFN production and induction 

3.1.4.1 Type I IFN production 

Although many cell types can express IFN-α or IFN-β in response to an appropriate 

viral,   mitogenic or microbial stimulus, some cells are capable of producing larger 

amounts of IFN- α/β required for NK cell–mediated killing of virus-infected cells. These 

cells are called ‘natural interferon producing cells’ (NIPCs). They were first identified in 

human blood (Trinchieri et al., 1978; Ronnblom et al., 1983), and more recently in the 

mouse (Asselin-Paturel et al., 2001). They were identified as rare cells in human 

peripheral blood, exhibiting plasmacytoid morphology and lacking haematopoeitic 

markers (Fitzgerald-Bocarsly, 1993). The type I IFNs produced by these cells act 

systematically to induce an antiviral state and/ or stimulate other cells to express IFN-

α/β (Sato et al., 2003). Natural IFN-producing cells are now referred to as plasmacytoid 

dendritic cells (pDCs) because of their round morphology, eccentric nucleus, and 

abundant endoplasmic reticulum (Colonna et al., 2004). pDCs preferentially express 

Toll-like receptor (TLR)7 and TLR9 (see later), allowing them to respond to single-

stranded RNA and DNA viruses, respectively, by triggering signal transduction through 

the adaptor protein MyD88 (Colonna et al., 2004). These receptors are efficient in 

inducing type I IFN only in pDCs because these cells constitutively express IRF7 and 

IRF8, and the MyD88–IRF7 complex undergoes a spatiotemporal regulation upon TLR 

ligation such that it is retained in the endosomal compartment, where it induces type I 

IFN production (Colonna et al., 2004). 
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3.1.4.2 Induction of type I IFNs 

 
Induction of type I IFN is governed by IFN regulatory factors IRF3, IRF7 and IRF5. The 

classical pathway of IFN induction was originally described in fibroblasts. Virus 

stimulation leads to thephosphorylation of IRF-3, its translocation to the nucleus and 

subsequent up-regulation of asubset of early type I IFN genes. These IFNs are 

translated, then secreted, and signal through the IFNAR and the JAK/STAT pathway to 

up-regulate IRF-7 expression which is needed for the transcription of the full range of 

the IFN-α genes and also for maximal expression (Honda et al.,2005) 

The pDC induction of IFN is dependent on MyD88 and IRF-7 but not IRF-3. IRF-7 

undergoes virus-induced phosphorylation, translocates  to the nucleus and stimulates 

the production of multiple IFN-α subtypes after binding to IRF-binding elements (IRF-

Es) I and III and PRD-like elements (PRD-LES) (Honda et al., 2005) 

In addition to viruses, polyriboinosinic:polyribocytidylic acid(poly (I:C)), certain cytokines 

(including IL-10), mitogens, tumor cells and a number of microbes and microbial 

products have been found to induce type I IFN production both in vivo and in vitro 

(Bogdan et al., 2004). 

3.1.4.3 Toll-like receptor-dependent and independent induction 

of type I IFNs 

TLRs are a family of pathogen recognition receptors that play an important role in 

innate immunity against a range of microorganisms. Each TLR has its own signalling 

pathway and induces specific responses against different microorganisms. In humans, 

TLR3, 4, 7, 8 and 9 were all found to induce type I IFNs (Noppert et al., 2007). 

Both TLR3 and TLR4 are able to induce IFN-β by activation of IRF-3 (Doyle et al., 

2002). Both TLR3 and TLR4 use the TRIF pathway via IRF-3 for type I IFN 
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induction,however there are some differences between the two receptors (Hoebe et al., 

2003). TLR4 employs an additional adapter molecule, TRAM which is believed to act as 

a bridging adapter between TLR4 and TRIF (Rowe et al., 2006). TLR4 also signals 

through MyD88 and this pathway utilises the p65 subunit of NF-κB to mediate activation 

of the interferon stimulated response element of IFN-β (Smith et al., 2005). The 

induction of type I IFNs by TLR7 and TLR9 depends on MyD88 (Hemmi et al., 2003). 

Both receptors are intracellular in dendritic cells and are strongly expressed in pDCs 

(Lee et al., 2003). 

In the absence of components of the TLR pathway, other TLR independent pathways 

were shown to regulate IFN production and antiviral responses (Noppert et al., 2007). 

The cytoplasmic serine/ threonine kinase, PKR, has been shown to recognise and bind 

viral dsRNA, and to be involved in the type I IFN response to some viruses (Diebold et 

al., 2004). This role however, was found to be virus or cell specific (Lopez et al., 2004). 

Retinoic acid inducible gen-I (RIG-I) was also found to stimulate production of type I 

IFN in response to dsRNA viral infection (Yoneyama et al., 2004). Recently, Watanabe 

et al. (2011) showed that Helicobacter pylori  causes activation of the nucleotide-

binding oligomerization domain(NOD1) signalling pathway, and this induces activation 

of the type I IFN signalling pathway leading to the generation of Th1 responses 

(Watanabe et al., 2011). 
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3.1.5 Functions of type I interferons 

3.1.5.1 IFN antiviral mechanisms 

Interferons are involved in numerous immune interactions during viral infections and 

contribute to both induction and regulation of innate and adaptive antiviral immune 

mechanisms. The essential antiviral role of IFNs was confirmed by the massive 

increase in susceptibility to virus infection of mice lacking both IFN-α/β and IFN-γ 

receptors (Knipe et al.,2001). All Type I IFNs exhibit strong antiviral activity in target 

cells due to the induction of antiviral effector proteins such as double-stranded RNA 

dependent protein kinase (PKR), 2’, 5’ oligoadenylate, and the large GTPase Mx that 

promote mRNA degradation, inhibit mRNA translation, induce host cell apoptosis, 

and/ or inhibit viral RNA polymerase activity (Sen and Ransohoff, 1993; Haller et 

al., 2002).  

3.1.5.2 Other immunological functions of type I IFNs 

Apart from their antiviral activity type I IFNs have immune functions during the course 

of non-viral infection (Belardelli, 1995; Bellardelli and Gresser, 1996) such as their 

role in immunity against parasitic protozoans including Leishmania major 

(Diefenbach et al., 1998) and Plasmodium falciparum (Rönnblom et al.,1983). 

IFN-α/β can work synergistically with other cytokines in many aspects of the immune 

response. IFN-α/β is also important for the development of a normal splenic 

architecture, and can affect the function as well as the maturation and differentiation 

of various dendritic cell types (Fitzgerald-Bocarsly and Feng, 2007). Type I IFN 

mediates the cross-priming of CD8 T cells and enhances or inhibits Th1 responses 

depending on the situation (Bogdan et al., 2000; Fitzgerald-Bocarsly and Feng, 
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2007), and also stimulates the proliferation of activated or memory T cells (Farrar and 

Murphy, 2000) 

When induced together with IL-6, IFN-α/β shows many activities: they activate the 

differentiation of B cells into plasma cells (Jego et al., 2003), induce cytokine 

production by NK cells (Nguyen et al., 2002), activate or inactivate macrophages 

(Jiang and Dhib-Jalbul, 1998) or sensitize macrophages to apoptosis. IFN-α/β also 

induce the production of other cytokines such as IL-15 with low sensitivity. Fig 4 

summarises some of the stimulatory and inhibitory effects of type I IFNs.  

 

Figure 4. Summary of the stimulatory and inhibitory effects of type I IFNs 

Bodgan et al., Immunological Reviews (2004).   

Type I IFNs participitate in different immune functions, these include: their effect on 

the different functions and development of DCs, stimulation of NK cells, activaition 

and proliferation of T cells, activation or inhibition of macrophages and enhance B 

cell differentiation into plasma cells. 



81 

 

3.1.5.3 The role of spontaneously released type I IFNs 

Although IFN-α/β are released in large quantities upon viral infection, evidence 

indicates that in the absence of viral or other type I IFN inducers, there is continuous 

expression of IFN-α/β at very low levels (Bocci, 1985). This minor expression was 

previously suggested to be important in early antiviral anti-tumor activities and in 

regulating cell growth (Bocci, 1985; Gresser et al., 1995). More recent studies have 

shown that the weak signalling by the constantly produced IFN-α/β is important for 

obtaining rapid optimal expression of IFN-γ and IL-6 (Takaoka et al., 2000).  

3.1.6 The role of type I IFNs in non-viral infection 

Besides the important antiviral activity for type I IFNs, studies have shown that IFN-

α/β also has other functions which are relevant to the pathogenesis or the control of 

other microbial infections.  

 

3.1.6.1The role of IFN-α/β in diseases caused by protozoan 

infections 

3.1.6.1.1 Leishmaniasis 

Leishmania spp. infect mainly macrophages and depending on species leishmaniasis 

can be a cutaneous or a visceral disease that is fatal if untreated. Murine 

leishmaniasis was one of the first nonviral infectious diseases in which the 

mechanisms of action of both endogenous and highly purified exogenous type I IFN 

were described in detail. In 1970, Herman and Baron observed that in mice infected 

with L. donovani, treatment with poly (I:C) prior to infection caused a significant 

decrease in the parasite numbers in the liver and also caused a huge rise in IFN-α/β 

release in the serum (Herman and Baron,1970).  As it is well established that type 2 
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nitric oxide synthase (iNOS) is required for the TH1-dependent healing of infections 

with intracellular microbes (Bodgan et al., 2000), the role of iNOS (NOS2) in 

cutaneous L. major infection was studied. iNOS was detectable at the infection site 

and draining lymph nodes of infected C57BL/6  mice within 24 h of infection. The 

expression of iNOS was dependent on IFN-α/β and not on IFN-γ (Diefenbach et al., 

1998). In vitro, significant release of NO was detected when macrophages were 

stimulated with L. major promastigotes together with IFN-α/β (Diefenbach et al., 

1998). Prolonged treatment of highly susceptible BALB/c mice with low (but not high) 

doses of recombinant IFN-β was found to be protective against cutaneous and 

visceral L. major (Mattner et al., 2004). The same study also explained the 

mechanisms of action of IFN-β in the protective immunity against this parasite, which 

can be summarized as: 1) enhancing NK cell cytotoxicity; 2) up-regulating IFN-γ and 

suppression of IL-4; 3) increasing tyrosine phosphorylation of Stat1 and Stat4 

(involved in IL-12 signalling); 4) increasing expression of iNOS and 5) restoring 

sensitivity to IL-12 in the late course of the disease. The treatment decreased the 

tissue parasite burden and delayed but did not prevent the onset of cutaneous and 

visceral disease (Mattner et al., 2004). The dose-dependent effect indicates the 

nature of type I IFN-dependent immune responses can depend on the concentration.  

The role of endogenous type I IFN in a South American cutaneous leishmaniasis was 

recently studied. IFNAR-/- mice were found to develop smaller lesions when infected 

with L. amazonesis in comparison to the wild type mice, indicating a role for type I 

IFN signalling in promoting leishmaniasis. This was found to correlate with sustained 

recruitment of neutrophils in IFNAR-/- mice at the early stage of infection confirming a 

role of neutrophils in innate immunity to this parasite (Xin et al., 2010). 

 



83 

 

3.1.6.1.2 Trypanosomiasis 

The intracellular trypanosome Trypanosoma cruzi is the causative pathogen of 

Chagas disease which in its chronic form results in severe inflammation and organ 

damage. Control of infection depends largely upon the production of interferon IFN-γ. 

In infected mice a transient peak of IFN-α was observed at 24h and the daily 

intraperitoneal treatment of mice with IFN-α/β led to a significant decrease in the 

number of parasites in the blood (Kierszenbaum and Sonnenfeld, 1982). However, 

endogenous type I IFN was not required for the control of infection as shown in a 

study with IFNAR-/- mice as neither the susceptibility to infection nor the production of 

IFN-γ differed between the knockout or wild type mice (Une et al., 2003).  

Extracellular trypanosomes of the Trypanosoma brucei group cause African sleeping 

sickness that affects both humans and livestock. Microarray analysis demonstrated 

that macrophages exposed to the parasite variant surface glycoprotein antigen in 

vivo or in vitro expressed type I IFN-dependent genes within 72 h (Lopez et al., 

2008). Infected IFNAR-/- mice showed delayed initial control of parasitaemia 

compared with controls and died sooner. However, UBp43-/- mice that are hyper-

responsive to type I IFN were also more susceptible to infection than wild type mice 

and produced less IFN-γ that is linked to immunity to T. brucei. These findings 

suggested that type I IFN is involved in the early control of infection, but later may 

down-regulate IFN-γ expression leading to loss of host resistance (Lopez et al., 

2008).  

3.1.6.1.3Toxoplasmosis 

Toxoplasmosis is caused by Toxoplasma gondii and is clinically silent in 

immunocompetent individuals but severe in immunocompromised hosts in which 

neurological symptoms are common. Infection during pregnancy is an important 
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cause of abortion in sheep and cattle. During progressive toxoplasmosis of mice, 

elevated levels of IFN-α/β in the serum correlated with reduced IFN-γ production by 

splenocytes (Diez et al., 1989). Intravenous treatment of mice with 10,000 units of 

recombinant murine IFN-β protected mice challenged with 100 tachyzoites of T. 

gondii but not mice challenged with 1000 or 10,000 tachyzoites. The protective effect 

of IFN- β was dependent on IFN- γ production (Orellana et al., 1991). 

In vitro results with murine macrophages revealed that neither rate of infection nor 

replication of T. gondii within macrophages was altered by recombinant murine IFN-

β. Similarly, when human macrophages were used, no differences in the rates of 

infection or replication of T.gondii in IFN-β treated and control monolayers were 

detected (Orellana et al., 1991). However the combination of IFN- β and 

lipopolysaccharide (LPS) was effective in inhibiting the growth of T. gondii in 

monocyte-derived macrophages and this was due to the induction of indoleamine 

2,3-dioxygenase (IDO) that catabolises cellular tryptophan required for growth of 

microbial pathogens (Schmitz et al.,1989). 

 

3.1.6.1.4 Malaria 

Malaria is caused by different species of Plasmodium that infect and destroy red 

blood cells causing fever, anaemia and (with P. falciparum) sometimes death in 

susceptible adults and young children. Both the innate and adaptive arms of the 

immune system are involved in immunity to Plasmodium. Different studies 

investigated the involvement of type I IFNs in the immunity to variable species of the 

parasite. P. falciparum has been shown to stimulate human peripheral blood 

mononuclear cells (PBMC), NK cells and dendritic cells to produce IFN-α (Ronnblom 

et al., 1983; Ojo-Amaize et al., 1981 and Pichyangkul et al., 2004). IFN-α was also 
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detected in the sera of mice infected with P. berghei or P. vinckei (Huang et al., 1968; 

Clark et al., 1981). Treatment of mice with recombinant IFN-α decreased P. yoelii 

parasitaemia in peripheral blood by inhibiting the production of reticulocytes that this 

parasite specifically infects (Vigario et al., 2001). This treatment did not affect the 

pre-erythrocytic stage of infection in the liver.  

There is contradiction regarding the role of IFN-α in protective immune responses to 

malaria. Voisine et al., showed that neither pDCs nor IFN-α/β were essential for 

parasite clearance as mice depleted of pDCs or IFN-α/β receptor knock-out mice 

could control P. chabaudi infection (Voisine et al., 2010). In contrast, experimental 

evidence suggested that IFN-α treatment of infected mice had a therapeutic role 

against the development of cerebral malaria. Treatment with human IFN-α (which 

mice respond to) prevented death by cerebral malaria in P. berghei infected C57BL/6 

mice and inhibited the development of the blood-stage of infections at least in part by 

increasing IFN-γ levels in the blood (Vigario et al.,. 2007). 

Recently, two studies highlighted the possible role of type I IFNs in immunity to P. 

falciparum. Using microarray analysis, the expression profiling of PBMCs derived 

from patients with P. falciparum malaria detected elevated expression of interferon-

inducible genes (ISGs). The study furthermore showed that PBMCs stimulated with 

schizont-infected RBCs induce IFN-α at the protein level and IFN-β mRNA (Sharma 

et al., 2011). In addition it was found that parasites upregulated expression of IFN-

α/β-dependent genes (Grangeiro de Carvalho et al., 2011).  
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3.1.6.2 The role of IFN-α/β in bacterial infections 

3.1.6.2.1 Intracellular pathogens 

3.1.6.2.1.1Chlamydia   

Different studies have indicated an in vitro inhibitory effect of type IFNs on infection 

with different species of Chlamydia, the earliest going back to 1963 (Suetlenfuss and 

Pollard, 1963; Hanna et al., 1966). Chlamydia was also capable of causing different 

host cells to produce type I IFNs (Rodel et al., 1998). Rothfuchs et al. showed that 

type I IFNs are beneficial to in vitro cultured mouse bone marrow derived 

macrophages in resisting C. pneumonia infection through enhancing IFN-γ and NO 

production (Rothfuchs et al., 2001). However, in an in vivo study, type I IFNs were 

shown, instead of being protective, to promote C. muridarum infection. IFNAR-/- mice 

suffered less body weight loss, lower organism burden, and milder pathological 

changes in the lung than WT mice following respiratory tract C. muridarum infection. 

There was greater infiltration of macrophages to the lung and less apoptosis of the 

infiltrating macrophages in IFNAR-/-mice than WT mice (Qiu et al., 2008). 

3.1.6.2.1.2 Listeria 

Although a previous study highlighted a protective role for IFN-β in the immunity of 

mice against Listeria monocytogenes (Fujiki and Tanaka, 1988), further studies 

indicated that type I IFN signalling actually enhanced the infection with L. 

monocytogenes.  IFNAR-/- mice developed a much lower titre of infection in their liver 

and spleen when compared to wild type mice (Auerbuch et al., 2004). After a non-

fatal dose of Listeria was given, treatment with poly (I:C) induced mortality in wild 

type mice but not in IFNAR-/- mice (O’Connell et al.,. 2004). Until recently the 
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mechanisms underlying these effects were not completely understood but it is 

thought that they may be related to the pro-apoptotic effects of Listeria-induced type I 

IFN (Carrero et al., 2004). Rayamajhi et al. have recently described the possible 

mechanism of type I IFN action. Cultured macrophages infected with L. 

monocytogenes responded poorly to IFN-γ treatment due to the down-regulation of 

IFNGR. The low expression of IFNGR was shown to be associated with the 

production of IFN-α/β by infected cells (Rayamajhi et al., 2010). 

3.1.6.2.1.3 Mycobacterium 

Infection with Mycobacterium tuberculosis stimulated human macrophages and 

dendritic cells to produce type I IFN, and this was required for the expression of the 

chemokine CXCL10, a known activator of NK cells and T cells (Lande et al., 2003). 

The ability of M. tuberculosis strains to induce type I IFN production has been found 

to correlate with bacterial virulence (Manca et al., 2001). In comparison to the WT 

animals, the M. tuberculosis–infected IFNAR-/-mice had a lower rate of mortality and 

survived the infection for longer (Manca et al., 2005); however, in the first 2–3 

months after infection, their bacterial load was similar in the lungs and slightly lower 

in the spleen (Cooper et al., 2000; Manca et al., 2005; Stanley et al., 2007). 

In addition, type I IFN produced after intranasal application of poly (I:C) stabilized by 

encapsulation in poly-l-lysine and carboxymethylcellulose exacerbated tuberculosis 

in wild type mice but not IFNAR-/-. The mechanism of this was found to involve 

recruiting a population of CCR2-expressing macrophages that is highly tolerant of M. 

tuberculosis proliferation (Antonelli et al., 2010). 

 

 



88 

 

3.1.6.2.1.4 Invasive enteric bacteria 

Studies also indicated a protective role for type I IFNs in immunity against enteric 

bacteria including Shigella and Salmonella. Peripheral blood cells were able to 

produce IFN-α after stimulation with Shigella flexneri or Salmonella (enterica) 

typhimurium (Klimpel et al., 1988). In an in vitro study, pretreatment of cell 

monolayers with natural and recombinant IFNs reduced the number of Shigella-

infected cells (Niesle et al., 1986). Treatment of neonatal mice with mouse fibroblast 

interferon significantly decreased mortality due to S. typhimurium in a dose 

dependent manner (Bukholm et al., 1984). Both MyD88 and IFN-α/β were shown to 

be important for dendritic cell activation of T cells mediated by S. typhimurium (Tam 

et al., 2008). 

3.1.6.2.2 Extracellular pathogens 

Type I IFN signalling was found to be fundamental to host defense against infection 

with extracellular bacteria including group B streptococci (GBS), Streptococcus 

pneumoniae and encapsulated Escherichia coli. This was confirmed by a marked 

reduction of survival in IFNAR-/- mice while wild type survived the infection (Mancuso 

et al., 2007). In the case of GBS infection, wild type mice survived whereas there 

were mortalities among IFNAR-/- and IFN-β-/- mice. There were fewer deaths in the 

group of IFN-γR-/- mice than in IFNAR-/- mice and additive mortality was observed in 

animals lacking both receptors (Mancuso et al., 2007). Additionally, in the absence of 

IFN-α/β signalling, a significant reduction in macrophage production of IFN-γ, NO and 

TNF-α was observed after stimulation with GBS (Mancuso et al., 2007). 
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3.1.6.3 Infection with helminthes 

Few studies are reported in the literature concerning the role of type I IFNs in 

immunity to helminthic infection.  Shistosoma mansoni eggs (but not the larval stage) 

were found to activate myeloid dendritic cells for the expression of different 

proinflammatory cytokines including IFN-β and various IFN-inducible genes. This 

was completely dependent on IFN-α/β receptor signalling (Trottein et al., 2004). Also, 

IFN-α2 treatment of mice infected with Echinococcus multilocularis resulted in 75% 

protection against intrahepatic lesions and about 50% against infection (Godot et al., 

2003).   

3.1.6.4 Fungal infections 

A good example of a model used to study the role of type I IFNs in fungal infection 

involved the pathogenic yeast Cryptococcus neoformans. IFNAR-/- mice showed 

higher fungal burden, increased eosinophilic lung infiltrates and significant production 

of Th2 cytokines such as IL-13, IL-4 and IL-5, when compared to wild type mice 

(Biondo et al., 2008). It was also shown that C. neoformans induced IFN-β gene 

expression in macrophages and dendritic cells. However, a previous study with 

Candida albicans indicated an opposing role for type I IFNs in immunity against 

fungal infection. Treatment of SCID mice with poly (I:C) significantly enhanced 

susceptibility to systemic candidiasis.  This was partially reversed by administering to 

(I:C)-treated mice either anti-IFN-γ or anti-IFN-α/β (Jensen et al.,1992). In the case of 

Aspergillus fumigates (a mold), treatment of wild type or athymic Swiss mice with 

IFN-α/β or poly (I:C) significantly decreased mortality (Maheshwari et al.,1988). 
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3.1.7 IFN-γ in viral and microbial infections 

 Like type I IFNs, IFN-γ has antiviral activity and plays a role in the long-term 

protection against many viral infections. Among these viruses are hepatitis B, herpes 

simplex, lymphocytic choriomeningitis and mouse pox virus (Muller et al., 1994; 

Cantin et al., 1999 and Steed et al., 2006). 

IFN-γ plays a crucial role in host immunity against different intracellular pathogens 

including Mycobacterium tuberculosis (Flynn et al., 1995), Salmonella typhimurium 

(Masteroni et al., 1999), Listeria monocytogenes (Fehr et al., 1997), and Toxoplasma 

gondii (Ceravolo et al., 1999; Suzuki et al., 2011). The role of IFN-γ in both innate 

and adaptive immunity to C. parvum is explained in depth in Chapter One of this 

thesis.
 

3.1.8 Clinical applications of IFNs 

The range of biological functions exhibited by IFN- α and IFN-β make these cytokines 

promising agents in the development of treatments for various diseases. 

The first approval to use human IFN-α2 for therapy was made by the U.S.A Food and 

Drug Administration in 1986 for the treatment of hairy cell leukemia. Recombinant 

IFN-α was found to be effective in the treatment of other malignancies including 

chronic myeloid leukemia (CML), B and T cell lymphomas, melanomas and Kaposi’s 

sarcoma (Parmer and Platanias, 2003). Some data also showed that IFN-α gave 

some benefit when used in drug combination regimens or as an adjuvant in a subset 

of patients with multiple myeloma (Osterborg et al.,1993). Type I IFNs have direct 

effects on tumor cells but also act on immune cells that play a part in antitumor 

response (Ferrantini et al., 2007). The fact that IFN-α can induce the differentiation 

and the activation of dendritic cells may be relevant for the use of IFN-α in the 
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development of cancer vaccines (Ferrantini et al., 2007). IFN-α is also approved for 

the treatment of hepatitis B and C (D’Souza and Foster, 2004b; D’Souza and Foster 

2004a) and for the treatment of genital warts. In addition, human primary 

immunodeficiencies of type I IFNs have been described. This is thought to be due to 

defects in either type I production or signalling (Casrouge et al., 2006). Affected 

patients were found to be highly susceptible to viral infections and they were shown 

to be good candidates for treatment with type IFNs (Casrouge et al., 2006). IFN-β is 

approved for the treatment of relapsing-remitting multiple sclerosis, (Tourbah and 

Lyon-Caen, 2007). 

IFN-γ is used as a prophylactic agent in patients with chronic granulomatous disease 

and in patients with defective IFN-γ production. Some data are available about the 

use of IFN-γ in the treatment of malignant osteropetrosis (Madyastha, 2000). 

Although many studies indicate that IFN-γ has a considerable effect in the treatment 

of non-viral infections such as parasitic diseases (Murray, 2005), its clinical 

application has not been attempted (Chelbi-Alix and Wietzerbin, 2007). 
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3.1.9 Hypothesis and aims 

Findings on the part played by IFN-α/β in immunity to nonviral intracellular microbial 

pathogens, including protozoa, is contradictory ie type I IFNs play a significant role in 

protective immunity in some cases but may inhibit immunity in other cases. The part 

played by type I IFN in immunity to intestinal apicomplexans such as 

Cryptosporidium has been unknown.  

In this chapter it is hypothesised that type I IFNs play an important role in the innate 

immunity to C. parvum. 

Therefore the aims were: 

1. To study the effect of type IFNs (IFN-α and IFN-β) on the development of C. 

parvum infection of enterocytes. 

2. To investigate the effect of type IFNs on C. parvum infection of 

immunocompetent and immunocompromised mice. 

3. To examine possible mechanisms of action of type I IFNs both in vitro and in 

vivo.
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3.2 MATERIALS AND METHODS 

3.2.1 Reagents 

Human IFN-α2 was supplied by Roche, murine recombinant IFN-α4 and IFN-β were 

supplied by Serotec. Ferrous sulphate (FeSO4), tryptophan and guanidino-N-

methylated L-arginine (NG-MMA) were obtained from Sigma-Aldrich and were used to 

study the possible mechanisms of IFN-α antimicrobial activity. Polyinosinic-

polycytidylic acid or poly (I:C) and Salmonella typhimurium lipopolysaccharide were 

supplied by Sigma-Aldrich. Anti-mouse CD11b, CD11c and MHC class II 

fluorochrome-conjugated antibodies for flow cytometry were obtained from BD 

Pharmingen. 

3.2.2 Type I IFN neutralizing antibody 

Anti-IFN-α/β serum was a gift from Dr Michael Tovey (Institute Andre Lwoff, Villegiuit, 

France) and was produced in sheep hyperimmunized with highly purified IFN-α/β 

(Gresser et al., 1976). The neutralizing titre expressed as Tenfold Reduction Units 

was 3.2×105 U/ml and each mouse received 100μl. Control mice received normal 

sheep serum diluted to the same extent. 

3.2.3 Tissue culture and infection 

As described in Chapter 2, Caco-2 and CMT-93 were grown in 6 or 24-well plates 

with or without coverslips. The cells were then infected with C.parvum by addition of 

oocysts. In experiments studying the effect of IFN-α or -β on parasite development, 

the cell monolayers were incubated with the cytokine 24h prior to infection alone or 

together with other reagents to study the possible mechanisms of IFN activity. 
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3.2.4 Antiviral assay 

Supernatants from infected CMT-93 cells were collected and added to murine 

fibroblast L929 monolayers cultured in a 96 wells. As described in General Materials 

and Methods, murine L929 fibroblasts were cultured in a 96 well plate for 24 h then 

were either co-cultured for another 24 h with supernatants collected from previously 

infected CMT-93 cells or with standards of recombinant murine IFN-α (most of the 

cytokine produced would be IFN-α). Subsequently the cells were infected with 

encephalomyocarditis virus (ECMV) and viral plaque formation was examined after 

16h incubation at 37C°. At the end of the incubation period the cells were fixed with 

4% paraformaldehyde in PBS and stained with 0.25% solution crystal violet to show 

the extent of plaque formation. Absorbance was then red at 580nm and the anti-viral 

activity (inversely related to viral damage of cell monolayer) of supernatants was 

measured in comparison to that of the recombinant IFN-α standards.  

3.2.5 ELISA for IFN-α 

Supernatants from infected CMT-93 cells were collected 24 h post-infection and the 

amount of IFN-α was measured by ELISA using a mouse IFN-α ELISA kit (PBL 

Biomedical Laboratories). The assay was carried out as instructed by the 

manufacturer. The ELISA plate had wells pre-coated with anti-mouse IFN-α capture 

antibody (host of antibody not divulged). Following a period of 1 h incubation of 100 

µl standards or supernatants samples at room temperature, the wells were washed 

using cold washing solution (supplied with kit) and tapped dry, then were incubated 

for 24 h with 100 µl of detection antibody solution (biotinylated and supplied with kit). 

After that the contents of the plate were emptied and the plate was washed and 

dried. The wells were then incubated for 1h with 100 µl horseradish peroxidase 

(HRP) conjugated avidin solution (supplied), washed and further incubated in the 
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dark for 15 minutes with 100 µl of tetramethylbenzidine (TMB) substrate solution. The 

reaction was then stopped by supplied stop buffer and the amount of production of 

IFN-α was determined after measuring optical densities using a microplate 

spectrophotometer at 450nm.  

3.2.6 Generation of dendritic cells 

This technique was performed in collaboration with Dr Daniel Korbel and the protocol 

used followed the one demonstrated by Maroof (2001). Femurs and tibias of adult 

SCID mice were flushed with PBS to obtain the bone marrow. Erythrocytes were 

lysed using 0.83% ammonium chloride and the single cell suspensions of bone 

marrow in complete RPMI1640 medium were incubated in plastic Petri dishes 

overnight at 37°C. Non-adherent cells were removed and fresh complete medium 

with 20ng/ml granulocyte macrophage-colony stimulating factor (GM-CSF) and 

100U/ml IL-4 was added. On day 3 the medium was changed and dendritic cells 

were collected on day 7. The purity of the cells was confirmed by microscopy and 

flow cytometry using anti-mouse CD11b (to detect any macrophage contamination), 

CD11c and MHC class II antibodies. 

3.2.7 RNA extraction and real-time quantitative PCR 

RNA extraction and reverse transcription to cDNA from CMT-93 cells, bone marrow-

derived cells and small intestine tissue samples was performed as described in 

Chapter 2.  Amplification and relative quantification of mRNA expression levels were 

performed using the Delta-Delta-Ct (ΔΔCt) method. The primer sequences were as 

follows: murine β-actin forward 5_-CCT TCC TTC TTG GGT ATG GAA T-3_ and 

reverse 5_-GCACTGTGTTGGCATA GAGGT-3_ (106 base-pairs [bp]); murine IFN-ү 

forward 5_- GCC AAG TTT GAG GTC AAC AAC-3_ and reverse 5_-ATC AGC AGC 
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GAC TCC TTT TC-3_ (121 bp); murine IFN-α forward 5_-CTG CTG GCT GTG AGG 

ACA TA-3_ and reverse 5_-GGC TCT CCA GAC TTC TGC TCT-3_ (105 bp); and 

murine IFN-β forward 5_-GCA CTG GGT GGA ATG AGA CT-3_and reverse 5_-AGT 

GGA GAG CAG TTG AGG ACA-3_ (135 bp). The IFN-α sequences are a full match 

for IFN-α4, IFN-α6, and IFN- α7 and a single base mismatch for IFN-α1, IFN-α2, IFN-

α5, and IFN-α11. 

3.2.8 Animal infection and parasite counting 

As described in Chapter 2 (Materials and Methods) BALB/C or SCID mice were 

infected using 1 x104 oocysts C. parvum and the level of infection was assessed 

microscopically by counting the parasite numbers in acid-fast stained stool smears. 

Other experiments investigated the early stages of infection of neonatal mice. Seven-

day old mice were infected with 1x105 oocysts and the animals were sacrificed 48h 

post-infection. As it was an early stage of infection when few oocysts are likely to 

have yet formed infection was measured histologically. The ileum was removed and 

placed in formal saline fixing solution. The tissue was embedded in paraffin and 5μm 

longitudinal sections prepared and stained with haematoxylin and eosin and the 

infection score was determined semi-quantitatively by counting parasites in intestinal 

villi. Ten villi were selected at random and given an infection score of 0-10 (0, no 

parasites; 1, up to 10% of cells infected; etc. up to 10, all cells infected). A total score 

(highest possible being 100) was obtained for each mouse and the mean score 

calculated for the group. 
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3.3 RESULTS 

3.3.1 In vitro studies 

3.3.1.1 Infection of intestinal cell lines with C. parvum 

As described in Chapter 2 (Materials and Methods) human Caco-2 or murine CMT-

93 cells were grown on glass cover slips in a 24-well plate before infection with 

C.parvum oocysts. After the period of 24h of infection, cell monolayers were washed 

with PBS, fixed and stained with Giemsa stain and the infection level was measured 

microscopically by counting parasites in 20 random fields under X1000 magnification 

with oil-immersion. Fig 5 shows C. parvum infection of CMT-93 cells. 

 

Figure 5.C. parvum infection of CMT-93 cells. 
 

CMT-93 cells were infected for 24 h, fixed and stained with Giemsa stain. 

Parasite numbers were counted microscopically. N=nucleus, 

C=cytoplasm, mature meront arrowed. 
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3.3.1.2 The effect of IFN-α on parasite development in C. 

parvum-infected Caco-2 cells 

To determine if IFN-α has an inhibitory role on infection with C. parvum, human 

Caco-2 cells were incubated with different concentrations of human IFN-α2 (1, 10 or 

100 IU/ml) 24 h prior to infection. The level of infection was measured by counting 

the parasites microscopically 24 h postinfection. There was a significant decrease in 

the number of parasites in the cells which were treated with the cytokine and this 

effect was dose dependent (Fig 6; p< 0.0012). 

0 1 10 100
0

20

40

60

80

100

120
*p<0.0012

*

Recombinant human IFN-2 (U/ml)

M
e
a
n

 n
u

m
b

e
r 

o
f

in
tr

a
c
e
llu

la
r 

p
a
ra

s
it

e
s

 

Figure 6.The effect of varying concentrations of IFN-α2 on development 

of C. parvum in Caco-2 cells. 

 

Since an inhibitory effect of IFN-α was found with the lowest concentration of 1 U/ml, 

the effect of even lower concentrations (0.01 and 0.1 U) of the cytokine was 

measured. A dose of 0.1 U/ml was effective in inhibiting infection (p<0.004), but a 

dose of 0.01 U/ml had no effect (Fig 7. p<0.551). 
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Figure 7.The effect of lower concentrations of IFN-α2 on C. parvum 

infection of Caco-2 cells. 

 

3.3.1.3 The effect of murine IFN-α4 on parasite development in 

infected in CMT-93 cells 

To study whether the anti-parasitic activity of IFN-α is general and not specific for 

human cell lines, the effect of murine IFN-α4 on infection of murine CMT-93 cells was 

examined. As in the previous experiments, the cells were treated with different 

concentrations of murine IFN-α4 and the subsequent level of infection was 

measured. 

It was found that the cytokine had a significant inhibitory effect on parasite 

development in CMT-93 cells (p<0.0001). However there was no significant increase 

in the inhibitory activity with cytokine concentrations higher than 1U/ml (Fig 8; 

p<0.06).  
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Figure 8.The effect of IFN-α4 on parasite development in CMT-93 cells. 
 

 

3.3.1.4 Effect of IFN-α2 on the very early parasite development 

Previous in vitro studies have shown that C. parvum sporozoites need 2-3 h to 

invade the epithelial cells. The possible effect of IFN-α2 on the very early stage of C. 

parvum development was examined. Caco-2 cell monolayers were treated with 10 or 

100U/ml of the cytokine for 24 h, then were infected for 3 h only. The cells were then 

washed, fixed, stained and the level of infection was measured. 

Interestingly, it was found that as early as 3h post infection IFN-α pre-treatment had 

caused a significant reduction in numbers of intracellular parasites (p<0.003). This 

may mean that IFN-α inhibits C. parvum infection at least partially by preventing the 

parasite invading the cell. Results are summarised in Fig 9. 
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Figure 9. The effect of IFN-α2 pre-treatment on C. parvum development 

in Caco-2 cells 3h after addition of oocysts to cells. 

 

3.3.1.5 The effect of IFN-α on different temporal and 

developmental stages of C. parvum during infection 

To investigate  which developmental stages of parasite growth the inhibition of 

development by IFN-α may occur, the level of infection of cells was examined at 3h 

(normally mostly trophozoites), 8h (increasing numbers of developing meronts) and 

24h (normally developing and mature  meronts) postinfection in cytokine pre-treated 

or control cells. 

The cells were initially treated with 100 U/ml of IFN-α2 for 24 h prior to infection then 

the subsequent infection was measured at three different times. As summarised in 

Fig 10, similar to the results of the previous experiment, at 3h postinfection the level 

of infection was significantly reduced (about 50%) in the cells treated with the 

cytokine in comparison with control cells. However at later times the relative number 

of parasites did not decrease further.   
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Figure 10. The effect of IFN-α 2 on intracellular C. parvum development 

in Caco- 2 cells, 3, 8, 24h post infection. About 50% inhibition of parasite 

development was observed 3h postinfection, but no further increase in the 

level of inhibition was observed later. 

 

Development of some first generation of meronts of C. parvumin vitro is well under 

way at 8h postinfection. As summarised in Table 4, the percentages of small, 

growing and maturing intracellular parasites in the IFN-α 2-treated and the control 

samples were also assessed at this stage of infection in this experiment. IFN-α did 

not appear to have any effect on the rate of maturation of the parasites up to 8h. This 

observation suggests that parasites once established intracellularly in IFN-α-treated 

cells develop normally. 
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  Treatment    

CON IFN-α CON IFN-α CON IFN-α 

Development 
stage  

 
Trophozoites (single 

nucleus) 
 

Immature meronts 
(relatively small with 2 

nuclei) 

Large meronts 
(large with 4-8 

nuclei) 

Percentage 
of parasite 
population 

34.3±5.6% 38± 3.4% 58± 2% 58.6± 3% 
8± 
5.3% 

3.3± 
1% 

 

Table 4. The effect of IFN-α2 on the maturation of C. parvum in Caco-2 

cells examined at 8h postinfection. 

 

3.3.1.6 Other possible mechanism(s) of action of IFN-α 

The previous experiment suggested that IFN-α inhibits the parasite invasion of cells. 

Certain other antimicrobial mechanisms have been associated with type I and type II 

IFN activity against different intracellular microbial pathogens. The following 

experiments studied other antimicrobial mechanisms that may partially explain the 

inhibitory function of IFN-α on C. parvum development. 

3.3.1.6.1 The effect of iron (Fe2+) on the inhibitory action of 

IFN-α2 of C. parvum development 

It is well known that Fe2+ is an important component required for the development of 

many microorganisms including Cryptosporidium and in this laboratory depletion of 

intracellular Fe2+ was found to be one of the IFN-γ-mediated antimicrobial activities 

against C.parvum (Pollok et al., 2001). It was therefore necessary to check if IFN-α 

also inhibits parasite development by depleting cellular Fe2+. 



104 

 

To study this possible mechanism, Caco-2 cells were cultured with 10 or 100 U/ml of 

IFN-α, then infected with or without 200µM FeSO4. The concentration of FeSO4 used 

in this experiment was found to prevent the killing activity of IFN-γ on C. parvum 

(Pollok et al., 2001). The cells were infected with C. parvum in the absence or 

presence of FeSO4 for 24h. 

Fig 11 shows that FeSO4 alone had no effect on the infection when compared to 

infected controls (p<0.354). In addition, FeSO4 did not affect the inhibitory action of 

IFN-α2 when compared to the cells which were treated with the cytokine and had no 

FeSO4 added (p<0.1904).  
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Figure 11.The effect of FeSO4 on the inhibitory action of IFN-α2 in C. parvum 

development. Caco-2 were incubated with IFN-α2 and then infected in the presence 

or absence of 200 µM FeSO4 and level of infection was measured 24h later. FeSO4 

had no significant effect on the inhibitory action of IFN-α2 (p<0.1904). 
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3.3.1.6.2 The effect of tryptophan on the action of IFN-α2 on C. 

parvum development 

L-tryptophan is an essential amino acid that is required by many microbial pathogens 

for their growth. Cellular depletion of L-tryptophan may help the host to resist the 

development of different pathogens (King and Thomas, 2007).  Indoleamine 2,3 

dioxygenase (IDO) is an enzyme that depletes L-tryptophan from the tissue 

microenvironment by oxidative degradation in the kynurenine  pathway. The IDO 

gene is only induced in response to certain inflammatory stimuli, notably IFN-γ, and 

to a lesser degree by IFN-α, IFN-β and also lipopolysaccharide (LPS). Therefore the 

effect of a high concentration of exogenous tryptophan on the action of IFN-α was 

investigated. 

As in the previous experiment Caco-2 cells were initially treated with IFN-α with or 

without 250 µg/ml of tryptophan, then infected for 24 h in the presence or absence of 

tryptophan prior to measuring the infection level. In this laboratory, a similar 

concentration of tryptophan was found to prevent IFN-γ-induced killing of 

Encephalitozoon intestinalis in CMT-93 cells. (Choudhry et al., 2009). Fig 12 shows 

that exogenous tryptophan had no effect on C. parvum development when used on 

its own (p<0.712); also, it had no effect on IFN-α-mediated inhibition of C. parvum 

growth (p<0.45). 
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Figure 12.The effect of exogenous tryptophan on the anti-microbial activity of 

IFN-α2. Caco-2 cells were incubated with different concentrations of IFN-α with or 

without tryptophan and the level of C. parvum infection assessed microscopically. 

Treatment with tryptophan had no significant effect on IFN-α mediated growth 

inhibition (p<0.45). 

 

 

3.3.1.6.3 The effect of an inducible nitric oxidesynthase (iNOS) 

inhibitor on IFN-α action 

The NOS inhibitor NG-MMA, acts by blocking access of arginine to the enzyme and 

so preventing nitric oxide production. Hence to investigate whether NG-MMA had any 

effect on the action of IFN-α against infection, Caco-2 cells were pre-treated with the 

cytokine, infected in the presence or absence of 500µM N G-MMA and the infection 

was examined as described previously. The dose of N G-MMA used in this study was 

found previously to block IFN-γ activity against Toxoplasma gondii in rodent 

enterocytes (Dimier et al., 1998). No significant difference in the inhibitory action of 
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IFN-α2 was observed when used in combination with the NOS inhibitor (p<1) and no 

significant effect on infection was found with NG-MMA (Fig 13; p<0.783). 
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Figure 13.The effect of iNOS inhibitor NG-MMA on IFN-α2 on inhibition of C. 

parvum development in Caco-2 cells. Caco-2 cells were incubated with IFN-α2 

and treated with or without 500µM N G-MMA during infection and the numbers of 

parasites assessed microscopically 24h postinfection. N G-MMA had no significant 

effect on the inhibitory action of IFN-α2 (p<1). 

 

3.3.1.7 The effect of IFN-β on C. parvum infection of CMT-93 

cells. 

It was of interest to investigate the effect of another type of type I IFN, IFN-β, on C. 

parvum development in enterocytes. As in the experiments with IFN-α, CMT-93 cells 

were treated with different concentrations of IFN-β (1000, 100,10 or 1 U/ml) 24 h 

prior to infection and the level of infection was measured after 24 h. As summarised 

in Fig 14, similar to what was found with IFN-α, there was a significant reduction 

(about 60%) in the level of infection in the cells treated with 1U/ml of IFN-β in 

comparison to the untreated cells (p <0.0025) but no further inhibitory activity was 

observed with higher concentrations.  
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Figure 14.The effect of varying concentrations of IFN-β on C. parvum 

development in CMT-93 cells. 

 

3.3.1.8 The effect of TLR3 agonist poly (I:C) on C. parvum 

infection in vitro 

The TLR3 agonist polyriboinosinic:polyribocytidylic acid (poly (I:C)) is a synthetic 

dsRNA described to be a potent inducer of type I IFN (Field et al.,1967). Studies by 

others indicated treatment of epithelial cells with poly (I:C) enhanced the antiviral 

activity of the cells (Schaefer et al., 2005). So to investigate if the epithelial cells are 

capable of producing type I IFN that inhibits infection with C. parvum, enterocytes 

were pre-treated with poly (I:C) before infection. 

CMT-93 cells were grown on cover slips as in previous experiments, and then 

cultured for 24 h with different concentrations of poly (I:C) (0.025, 0.25, 2.5 or 25 

µg/ml). Then, the cell monolayers were infected with C. parvum for 24h. The level of 

infection was measured by counting the parasites microscopically. As shown in Fig 



109 

 

15, the results indicated that the level of infection was significantly reduced by 

treatment with poly (I:C) and this effect was dose dependent (p<0.0002). 

 

Figure 15. The effect of different concentrations of poly (I:C) on C. 

parvum development in CMT-93 cells. 

 

3.3.1.9 Antiviral assay to investigate the production of type I 

IFN by infected enterocytes 

The previous result showed that poly (I:C)-stimulated enterocytes can inhibit infection 

by C. parvum, potentially by producing type I IFN. It was necessary to prove that type 

I IFN was produced, however. As in the previous experiment CMT-93 cells were 

stimulated with poly (I:C) prior to infection with C. parvum. Culture supernatants from 

infected and control samples were collected 24 h later and used to test for the 

production of type I IFN. 

The amount of released type I IFN was measured indirectly using a bioassay of 

antiviral activity, recruiting the murine fibroblast cell line L929 infected with EMCV. 
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Interestingly, it was shown that supernatants derived from infected CMT-93 alone 

had a significant antiviral activity which was not the case in the supernatants from 

uninfected cells (Fig 16; p< 0.026). 

Poly (I:C) on its own stimulated CMT-93 cells to produce type I IFN. When there was 

both infection and poly (I:C) treatment, the level of type I IFN produced was greater 

than either treatment alone with 2.5 and 25 µg/ml poly (I:C). These results indicate 

that enterocytes are capable of the release of type IFN after infection with C. parvum 

or treatment with poly (I:C). 

 

Figure 16. The production of type I IFN in supernatant of cultured CMT-93 cells 

measured using an antiviral assay. Supernatant from infected CMT-93 cells with or 

without poly (I:C) treatment showed a significant antiviral activity (p<0.026). Also, 

supernatants from cells cultured with poly (I:C) on its own had significant antiviral 

activity (p<0.05). Samples from uninfected cells had the least antiviral activity. 
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3.3.1.10 Measurement of IFN-α in supernatants of infected 

CMT-93 cells 

The previous result indicated that supernatants from infected enterocytes can inhibit 

virus reproduction after being infected with C. parvum. This is possibly in part due to 

the production of type I IFN, but it was important to confirm the production of this 

cytokine. CMT-93 cells were infected for 24 h after adding one of two doses of C. 

parvum oocysts (2×105 and 1×106), then culture supernatants were collected and the 

level of IFN-α was measured by ELISA for IFN-α. Figure 17 shows that significant 

amounts of IFN-α were measured from supernatants of infected cells in comparison 

to the supernatants from the uninfected cells (p<0.01). These results indicate that C. 

parvum infection induces cultured enterocytes to produce IFN-α. 

 

Figure 17.IFN-α expression in supernatants from C. parvum-infected 

CMT-93 cells measured by ELISA. Cells were infected with 2x105 or 1x106 

oocysts and supernatants collected after 24h. 
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3.3.1.11 Type I IFN mRNA expression in infected enterocytes 

To further confirm the production of type I IFN by infected cells, measurements were 

made of IFN-α and IFN-β mRNA by qPCR. 

CMT-93 cells in 6 well plates were infected with 1x106 oocysts.  After 4 and 8h of 

infection, RNA from CMT-93 cells was extracted and the levels of IFN-α/β mRNA 

expression by the infected and uninfected cells were measured by qPCR. Both 

cytokines were expressed in infected enterocytes. IFN-β was strongly expressed as 

early as 4 h and continued to be present at 8 h post infection (Fig 18; p<0.0004) , 

while IFN-α was first detected at 8h of infection (Fig 18 ; p<0.02). 

These results confirm that C. parvum infected enterocytes produce type I IFN and 

this happens early during the course of infection. 

 

Figure 18. IFN α/β mRNA expression in infected CMT-93 cells 4 and 8h 

postinfection determined by qPCR. Significant expression of IFN-β was detected 

at 4h (p<0.0004) and persisted at 8h. IFN-α was first measured at 8h post infection 

(p<0.02). 
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3.3.1.12 The effect of treatment of CMT-93 cells with 

supernatants from infected CMT-93 cells on the subsequent 

infection with C. parvum 

A study was made to determine whether supernatants from infected CMT-93 cells 

could inhibit C. parvum infection in vitro. CMT-93 cells were grown on glass 

coverslips as described previously. The cell monolayers were then incubated for 24 h 

with supernatant obtained from C. parvum-infected CMT cells taken 24 h 

postinfection or with supernatant from uninfected cells. Then, the cells were infected 

and the level of parasite development was evaluated 24 h postinfection. 

There was a significant reduction in the level of infection in cells which were pre-

treated with supernatants of infected cells, while supernatants from uninfected cells 

had no effect on infection (Fig 19; p< 0.03). These results indicate that C. parvum-

infected CMT-93 cells secrete products that decrease C. parvum development 

invitro. 
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Figure 19.Effect of supernatants from infected and uninfected CMT-93 

cells on subsequent C. parvum development in other CMT-93 cells. 

Only supernatants from infected cells inhibited parasite development (*p 

<0.03). 
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3.3.1.13 The ability of dendritic cells to express type I IFN 

Dendritic cells are important in antigen presentation to T cells as well as in primary 

inflammation responses. In this experiment the ability of dendritic cells to produce 

type I IFN after being stimulated by live C.parvum oocysts was studied. Bone marrow 

derived dendritic cells from SCID mice were co-cultured at 37Co with 5×105 

liveoocysts (sporozoites excyst at 37Co after about 45 min) or Salmonella 

typhimurium lipopolysaccharide (LPS) as a positive control for 4h and the expression 

of type I IFN in these cells was analysed by qPCR. Fig 20 A and B show that there 

was strong expression of both IFN-α and IFN-β mRNA by dendritic cells after 4 hours 

of exposure to the parasite oocysts or to LPS (p<0.01; p<0.001). Similar results were 

obtained with live sporozoites purified from oocysts and oocyst shell debris by 

passing through a 5 μm diameter pore filter, and also live sporozoites in the presence 

of polymyxin B, a potent inhibitor of endotoxin-induced activation (Choudry et al., 

2009). Purified oocyst surface sterilised with domestic bleach were found not to be 

contaminated with LPS (data obtained by V. McDonald and D. Korbel). Hence, 

sporozoites themselves are strong inducers of IFN-α/β. 
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Figure 20 A and B. IFN-α and IFN-β mRNA expression in dendritic cells 

after 4h stimulation with LPS or C. parvum oocysts. Significant 

expression of IFN-α (p<0.01) and IFN-β (p<0.001) mRNA was measured 

following exposure to C. parvum oocysts.
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3.3.2 In vivo infection studies 

The above in vitro results indicated a possible protective role for type I IFN against C. 

parvum infection. Hence it was necessary to further investigate the role for Type I IFN 

in immunity to C. parvum in mice. 

3.3.2.1 C. parvum infection of neonatal BALB/C mice 

An initial experiment was designed to study the pattern of infection in neonatal BALB/c 

mice (adult wild-type mice are resistant to infection) and to indicate the day(s) of 

maximal infection. 

Seven-day old baby mice were infected with C. parvum by oral gavage. Groups of mice 

were sacrificed at different days postinfection and the infection was measured by 

counting oocysts microscopically in colonic faecal smears stained by the Ziehl-Neelsen 

acid fast method (Fig 21). 

Fig 22 shows that there were no parasites detected until 4 days postinfection. The 

largest numbers of oocysts were produced on days 5-7 and there was a downward 

trend in numbers excreted after day 5. By day 10 only a few oocysts were seen. 
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Figure 22. Pattern of oocysts production by neonatal BALB/C mice 

infected with C. parvum. High levels of infection were observed 5-7 days 

postinfection. At day 10 only a few oocysts were seen.

Figure 21. Acid fast-stained colonic stool smears indicating C. 

parvum oocysts (arrowed). 
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3.3.2.2 C. parvum infection of neonatal SCID mice 

As in the previous experiment with BALB/c mice infection was followed daily in neonatal 

SCID mice (that lack B and T cells) by counting the number of parasites in colonic stool 

smears. Figure 23 indicates that all mice were significantly infected by day 4 of infection 

and continued to shed parasites in the following days until day 7. The infection level 

dropped significantly at day 8 postinfection. 
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Figure 23. Pattern of C. parvum infection in neonatal SCID mice 

Significant levels of infection were observed between day 4 and 7 postinfection 

with a rapid drop of oocyst shedding occurring by day 8 postinfection. 



119 

 

3.3.2.3 The role of type I IFN in immunity to C. parvum in 

neonatal immunocompetent BALB/c mice 

Seven day old BALB/c mice were treated with 100 µl anti-mouse type I IFN neutralizing 

serum or control serum and infected with C. parvum oocysts. At day 6 postinfection 

which is during the peak period of infection, the animals were sacrificed and the 

number of oocysts in colonic contents smears was counted microscopically. It was 

found that the level of infection in anti-type I IFN antibody-treated mice was significantly 

higher than in the control group (Fig 24; p=0.001).These results are the first to signify a 

role for type I IFN in immunity to C. parvum invivo. 

 

 

 

 

 

 

 

Figure 24.Effect of anti-type I IFN antibody on C. parvum infection in 

neonatal BALB/C mice. Levels of C. parvum infection were measured in 

colonic stool smears of control mice and anti-type I antibody-treated mice 6 

days postinfection. Higher numbers of oocysts were observed in samples 

collected from the anti-type I IFN serum-treated mice in comparison to the 

mice treated with control serum (p=0.001). 
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3.3.2.4 The role of type I IFN in immunity to C. parvum in 

neonatal immunocompromised SCID mice 

The previous results indicated a protective role for type I IFN in immunity to C.parvum 

in immunocompetent neonatal mice. A similar study was performed to determine if type 

I IFN was also important for control of infection in immunocompromised SCID mice. 

Seven-day old SCID mice were injected with 100 µl of anti-type I IFN serum or control 

serum and infected with C. parvum. The infection level was measured at day 6 

postinfection when colonic stool samples were collected and parasite oocysts were 

counted in acid-fast stained smears. 

Similar to the results seen with BALB/c mice, the number of oocysts in stool samples 

from SCID mice treated with anti-type I IFN was higher than in samples obtained from 

control mice (Fig 25; p<.0.001). These results confirm the role of type I IFN in innate 

immunity to C. parvum infection. 
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Figure 25.Role of type I IFN in the control of C. parvum infection in 

neonatal SCID mice. Neonatal SCID mice were treated with anti-type I IFN 

serum or control serum and the level of infection was assessed at day 6 

postinfection. Results show a significant rise in parasite shedding in stool 

samples obtained from anti-type I IFN- treated mice in comparison to the mice 

treated with the control serum (p<.0.001). 
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3.3.2.5 The role of type I IFN in immunity to C. parvum in 

neonatal SCID mice early during infection 

Previous results showed that type I IFN had a protective effect against infection when 

studied 6 days post-infection and in vitro infected cells produced type I IFN after 4-8 h 

of infection. It was important to know, therefore, if type I IFN-dependent immunity can 

be shown early in infection of baby mice. 

After treatment with anti-type I IFN serum, 7 day-old mice were infected by inoculation 

with a larger than normal number of oocysts (1X105) and the mice were sacrificed 48h 

post-infection. Early stages of infection in mice were measured semi-quantitatively by 

counting parasites developing in intestinal villi, as oocysts were unlikely to be produced 

by 48h postinfection. At 48 h there was a significant increase in the number of infected 

cells in sections from anti-type I IFN antibody treated mice when compared to the 

control mice (Fig 26; p<0.01). These results indicate therefore that type I IFN is a key 

element of the early innate immune response to C. parvum infection. 
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Figure 26.The role of anti-type I IFN in the early infection of neonatal SCID 

mice. Neonatal mice were treated with anti-type-I IFN serum or control serum, 

infected with a high number of oocysts and the level of infection in the intestine 

was measured 48h postinfection by microscopic examination of 

haematoxylin/eosin-stained sections of ileum.  A significant increase (p<0.01) in 

the level of infection was observed in intestinal samples obtained from anti-type 

I IFN serum-treated mice in comparison to the mice treated with the control 

serum.
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3.3.2.6 The expression of type I IFN in the intestine of SCID mice 

during early infection with C. parvum 

It was evident from previous results that type I IFN is an important element in early 

innate immunity to C. parvum in neonatal mice. It was then necessary to confirm the 

expression of type I IFN in the intestine of infected mice. SCID mice were infected with 

C. parvum oocysts for 24 h or 48 h. The animals were then sacrificed and the 

expression of type I IFN mRNA in the ileum was measured by qPCR in samples. 

As shown in Fig 27, both cytokines were found in ileal tissue as early as 24 h 

postinfection in  comparison to tissues from uninfected mice (p<0.04) ,(p<0.0002) and 

while the expression of IFN-α mRNA in infected mice was still observed after 48h 

(p<0.037), IFN-β was not detected at that time.  

 

Figure 27 A and B. Expression of IFN-α and IFN-β mRNA in ileal tissue 24 h and 

48 h postinfection determined by qPCR. IFN-α was detected at 24h and 48h 

postinfection (*p<0.04; **p<0.037), while IFN- β was detected at 24 h after infection 

(*p<0.0002). 
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3.3.2.7 The expression of IFN-ү in intestinal samples of infected 

SCID mice with or without treatment with anti- IFN type I serum 

IFN-ү is a key cytokine in innate immunity to C. parvum in SCID mice as shown 

previously by this group (McDonald et al., 2000). To investigate whether the immunity 

acquired by type I IFN is related to the production of IFN-ү, the intestinal expression of 

IFN-ү mRNA was measured by qPCR 48 h postinfection from neonatal mice pre-

treated with anti-IFN-α/β or control serum. IFN-ү mRNA was not detected in uninfected 

mice but was significantly expressed in infected mice (p<0.027). There was stronger 

expression of IFN-ү mRNA in anti-type I IFN serum-treated mice in comparison to 

infected controls. However this was not quite significant (Fig 28; p=0.0511).These 

results indicate that in vivo the type I IFN inhibitory function may not be dependent on 

the production of IFN-γ. 
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Figure 28.The effect of the treatment with anti-type I IFN antibody on the 

expression of IFN-γ mRNA, in ileal tissue. Neonatal SCID mice were treated 

with anti-type I IFN or control serum and IFN-γ expression determined by 

qPCR 48 h postinfection. No significant difference in the level of IFN-γ 

expression was detected between the two groups (p=0.0511). 

 

3.3.2.8 The effect of TLR3 agonist (poly (I: C)) on C. parvum 

infection of SCID mice 

The previous in vivo results have demonstrated that enterocytes are capable of 

producing type I IFN after infection with C. parvum and they also indicated a role of 

type I IFN in limiting the infection in vivo as shown in experiments with treatment of 

mice with anti-type IFN I antibody. Also in vitro studies showed a role of the TLR3 

agonist (poly (I: C)) in limitation of C. parvum development possibly in part via the 

production of type I IFNs. 
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In this study, the immunomodulatory effect of poly (I: C) on the infection with C. parvum 

in vivo was studied. Seven–day old SCID mice were infected with C. parvum oocysts 

as described previously and were treated intraperitoneally with three doses of 100 µg of 

Poly (I: C) at days -1, 0, and +1 of infection or with PBS as control. The dose of poly 

(I:C) used in this experiment was similar to the dose used to study the effect of poly 

(I:C) on infection of SCID mice with Candida albicans (Jensen et al., 1992). 

Five days postinfection mice were sacrificed and the level of infection was measured 

microscopically in acid fast stained smears of colonic samples. A significant reduction 

of infection was observed in the poly (I: C) treated mice in comparison to the control 

mice (Fig 29; p= 0.01).  

These results indicate that the exogenous treatment of SCID mice with the IFN inducer 

poly (I: C) decreases C. parvum reproduction. 
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Figure 29. The effect of Poly (I:C) treatment on C. parvum infection of 

SCID mice. Neonatal SCID mice were infected with C. parvum and were 

treated i.p. with 300 µg of poly (I:C) or control.  A significant reduction in the 

number of parasites (p=0.01) was detected in the poly (I:C) treated mice in 

comparison to the control group when measured at day 5 post infection. 

 

The previous results indicated that the exogenous treatment of SCID mice with type 

I IFN inducer poly (I: C) decreases C.parvum development.  So it was essential to 

investigate the effect of treatment of neonatal mice with exogenous IFNs on the 

infection. 

Mice were infected at 7 days of age and treated subcutaneously with 1x104 U of 

IFN-α 4 in PBS or PBS on days -1, 0, and +1. Mice were sacrificed on day 5 

postinfection and colonic stool smears examined microscopically as in previous 

experiments. No difference in the level of infection was observed between the IFN-

treated mice and the control (results are not shown). 
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3.4 DISCUSSION 

Type I IFNs are a multi-gene family of cytokines with strong antiviral activity acting 

alone or with other cytokines to clear infections (Takaoka and Yani, 2006). They 

also represent potent modulators of different immune responses (Chelbi-Alix and 

Wietzerbin, 2007). Apart from the antiviral effects, type I IFNs were found to play 

roles in immunity to non-viral microbial organisms including bacterial, protozoal, and 

fungal infections (Bogens et al., 2004). The effects were either inhibitory or 

pathogen aggravating, depending on the pathogen and the mechanism(s) of control 

(Bodgen et al., 2004). 

In Cryptosporidium infection, different cytokines have been found to play roles in the 

innate immune response and IFN-γ is a key cytokine.  The role of type I IFNs in 

immunity to Cryptosporidium has not previously been studied. In the present study 

the role of type I IFNs in resistance to C. parvum infection was investigated. 

Using an in vitro model of infection recruiting the human enterocyte cell line Caco-2 

and murine CMT-93 cells the effect of type I IFNs on C. parvum infection was 

studied. 

Treatment of Caco-2 cells with IFN-α inhibited parasite development in a dose-

dependent manner and a concentration of 0.1 U/ml IFN-α was sufficient to inhibit 

parasite reproduction. Similar inhibitory effects on C. parvum development in HT-29 

cells were previously detected with IFN-γ and TNF-α (Pollok et al., 2001). In Caco-2 

cell infection, a dose of 1 U/ml of IFN-γ was found to inhibit parasite development by 

about 60% and the inhibitory effect increased with higher doses of the cytokine. The 

effect of lower concentrations of the cytokine was not tested (Pollok et al., 2001). 

Interestingly, with rotavirus infection, pre-treatment of Caco-2 and HT-29 cells with 

IFN-γ but not IFN-α induced resistance to the virus (Bass, 1997). 
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In this study, both IFN-α and IFN-β were found to inhibit C. parvum development in 

cultured CMT-93 cells suggesting that the anti-parasitic activity of type IFNs may be 

general and not specific to one host type. 

Different antimicrobial killing mechanisms have been associated with type I and 

type II IFN activity against intracellular microbial pathogens. Therefore it was 

important to determine possible anti-parasitic mechanisms of type I IFN in 

resistance to C. parvum. 

Previous in vitro studies indicated that Cryptosporidium needs about 2-3 h to 

invade the epithelial cells. Both IFN-α and IFN-γ were found to inhibit Shigella 

invasion of epithelial cells, although IFN-γ was found to be more potent (Niesel et 

al., 1986) Therefore, it was important to investigate the effect of IFN-α on the early 

stage of infection by C. parvum.  A significant reduction (about 50%) of parasite 

numbers was observed in IFN-α-treated Caco-2 cells 3 h postinfection. Hence 

prevention of host cell invasion may be an important mechanism of action of type I 

IFNs against C. parvum. A similar (but not major) mechanism of action was 

previously proposed for the action of IFN-γ against C. parvum infection of cultured 

enterocytes (Pollok et al., 2001). In Shigella flexneri infection, IFN-α inhibited a Src-

dependent signaling cascade triggered by Shigella that leads to the reorganization 

of the host cell cytoskeleton and bacterial entry into the cell (Dumenil et al.,1998). 

Another in vitro study with C. parvum infection had shown that inhibition of 

cytoskeletal rearrangement in host cell cells with a drug may prevent invasion of 

the host cell by the parasite (Forney et al., 1999). However, in the current project 

the effect of type I IFNs on key proteins known to be involved in cytoskeletal 

organisation was not investigated and it would be important to undertake further 

studies in that area in future. 

The results obtained with IFN-γ indicated that the cytokine had a greater inhibitory 

effect on parasite development than on invasion (Pollok et al., 2001). However, in 
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this study IFN-α did not appear to have any additional inhibitory effects after 3 h 

postinfection. This was shown by comparing the relative level of infection at 3, 8 and 

24 h postinfection in cytokine-treated versus control cells.  In addition, at 8 h after 

infection counts were made of parasite developmental stages present in cytokine 

and control cells and the results indicated that IFN-α did not appear to affect the 

rate of maturation of intracellular parasites. 

Pollok et al. also found that IFN-γ inhibited C. parvum development by the 

deprivation of cellular Fe2+, which is an important component for microbial pathogen 

growth (Pollok et al., 2001). In the present study this mechanism did not appear to 

be involved since the supplementation of the cell monolayer with increased Fe+2 (by 

addition of Fe2SO4 as described by Pollok et al.) did not reduce the inhibitory effect 

of IFN-α. 

Depletion of cellular L-tryptophan by IFN-γ has been shown previously to help the 

host cell to resist the development of different pathogens. Indoleamine 2,3 

dioxygenase (IDO) enzyme can catabolise tryptophan required for microbial growth 

and the expression of IDO gene is induced only in response to inflammatory stimuli 

such as type I and II IFNs (King and Thomas, 2007).  It was previously shown that 

IFN-γ inhibited T. gondii development in fibroblasts by tryptophan starvation which 

could be reversed by addition of exogenous tryptophan (Ceravol et al., 1999). In this 

laboratory tryptophan was also found to prevent IFN-γ-induced killing of the 

intestinal microsporidian Encephalitozoon intestinalis in CMT-93 cells and it was 

also shown that the killing was dependent on IDO expression and activity (Choudhry 

et al., 2009).  However, this treatment did not affect either the anti-parasitic effect of 

IFN-γ against C. parvum infection (Pollok et al., 2001) or of IFN-α activity in Caco-2 

cells in the present study. Although it is important to mention that the medium used 

in the current study is full DMEM which contains both tryptophan and iron. Therefore 

this leaves the possibility that each of these could play a role if they were present in 

limiting conditions. Particularly for the experiment investigating the effect of 
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tryptophan as the concentration of tryptophan u added in an attempt to rescue the 

effects of IFN was much lower than the one present in standard DMEM. A 

tryptophan free medium or higher concentration of tryptophan could overcome this 

problem and should be considered in future work. 

During C. parvum as well as other protozoal infections, epithelial cells produce nitric 

oxide via the upregulation of iNOS in the presence of IFN-γ and other 

proinflammatory cytokines (Kolios et al., 1998), but NOS inhibition by NG-NMA was 

not found to affect the action of IFN-γ against C. parvum infection of the 

enterocytes, indicating IFN-did not kill the parasite via NO production (Pollok et al., 

2001). In a previous study by Dienfenbach et al. with Leishmania major it was found 

that NO was produced significantly when macrophages were simultaneously 

exposed to L. major promastigotes plus IFN-α/β in vitro. It was also observed in 

mice infected with L. major that the early production of iNOS was dependent on 

IFN-α/β. These results indicated that these cytokines together with the parasites 

provided signals for the induction of iNOS in vivo (Dienfenbach et al., 1998). 

Another study by Mattner et al. confirmed a protective role for IFN-β against 

cutaneous and visceral L. major. This was associated with up-regulating IFN-γ, 

increasing tyrosine phosphorylation of Stat1 and Stat4 and increasing expression of 

iNOS (Mattner et al., 2004). In bacterial infections, type I IFNs also played a 

protective role via the production of IFN-γ and NO.  In Chlamydia pneumonia, type I 

IFNs enhanced the production of IFN-γ and NO in cultured macrophages that 

helped in resisting infection (Rothfuchs et al. 2001). In a study of the infection with 

group B streptococci (GBS), type I IFN signalling was found to be essential in 

immunity against infection as IFN-α/βR-/- mice were more susceptible to infection 

than the wild type mice. Also it was observed in the same study that the production 

of IFN-γ, NO and TNF-α measured by ELISA was significantly reduced in 
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supernatants obtained from macrophages obtained from IFN-α/βR-/- after 

stimulation with GBS for 24 h. (Mancuso et al., 2007). 

It was important therefore in the current study to elucidate the role of NOS as the 

mechanism of action of type I IFNs. No effect was detected with the NOS inhibitor 

NG-NMA on the inhibitory action of IFN-α. This indicates that NOS had no role in 

parasite killing mediated by IFN-α. However, arginine may play a protective role 

against cryptosporidial infection by the alternative activation of macrophages in 

which arginase activity is induced by IL-4 (Castro et al., 2012) and a study from this 

laboratory has demonstrated that IL-4 is important in innate immunity against C. 

parvum (McDonald et al., 2004). Indeed it has been shown that arginine is an 

essential amino acid for development of C. parvum (Castro et al., 2012). Also, a 

recent study from our groupobserved that macrophages had a key role in innate 

immunity as their depletion in mice strongly exacerbated infection (Choudhry et al., 

2012). 

After establishing that type I IFN plays a protective role against C. parvum infection 

through inhibiting parasite invasion of the epithelial cells, it was of interest to 

investigate if the epithelial cells were capable of producing type I IFN in response to 

C. parvum infection. The TLR3 agonist poly (I:C) is a synthetic dsRNA known to be 

a potent inducer of type I IFN (Field et al.,1967). Studies by others indicated 

treatment of epithelial cells with poly (I:C) enhanced the antiviral activity of the cells 

(Schaefer et al., 2005). Also, in vivo studies indicated a protective role for poly (I:C) 

against infections with other microbial pathogens (Herman and Baron, 1970). 

It was shown in the current study that treatment of CMT-93 cells with poly (I:C) 

induced protection against C. parvum infection and this was associated with the 

induction of type I IFN. There was a significant reduction in parasite numbers in poly 

(I:C)-treated cells. To examine the effect of poly (I:C) or C. parvum infection on 

enterocyte expression of type I IFN, the production of type I IFN was measured 

indirectly by employing a bioassay of antiviral activity. Poly (I:C) or C. parvum 



134 

 

alonestimulated CMT-93 cells to produce type I IFN and in the presence of both 

infection and poly (I:C) treatment, even higher levels of type I IFN were detected. 

These results indicate that enterocytes are capable of producing type I IFN after 

infection with C. parvum or treatment with poly (I:C).  

Further experiments were conducted in this project to study the capability of 

epithelial cells to express type I IFN in response to C. parvum infection. IFN-β 

mRNA was expressed by CMT-93 cells within 4 h of being infected as measured by 

qPCR and both IFN-α and IFN-β were detected at 8 h. The early expression of IFN-

β correlates with the overall picture obtained by previous studies indicating that 

upon infection, high constitutive levels of IRF-3 and low levels of IRF-7 lead 

preferentially to IFN-β transcription; this is then followed by a secondary phase 

mediated by IFN-β that creates a high level of IRF-7 expression that favours 

transcription of most IFN-α genes (Ford and Thanos, 2010). A significant amount of 

IFN-α was detected in supernatants derived from C. parvum infected CMT-93 cells 

after 24 h of infection when measured by ELISA, confirming the expression of this 

cytokine as a result of C. parvum infection. 

In further experiments in the present study, a significant inhibition of parasite 

development was observed in CMT-93 cells pre-treated with culture supernatants 

originating from C. parvum-infected CMT-93 cells taken 24 h postinfection while 

supernatants from uninfected monolayers had no effect on C. parvum development. 

This suggests that infected enterocytes secrete products (including type I IFN) that 

help to limit C. parvum infection.  

The above results indicate that cultured enterocytes express type I IFNs in response 

to C. parvum infection and that enterocytes secrete products that help inhibit the 

infection, including type I IFNs. It was not established, however, that type IFNs in 

supernatant from infected enterocytes played a major role in inhibiting C. parvum 

infection. This could have been examined by adding anti-type I IFNs neutralising 
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antibody to supernatants from the infected cells when added to fresh infected cells 

and determining whether the supernatant was still capable of inhibiting C. parvum 

development. Unfortunately there was insufficient time to carry out this experiment. 

It is possible that production of antimicrobial peptides (see below) or other cytokines 

by infected cells may in addition to type I IFNs help to protect the epithelium. 

The mechanism(s) by which type I IFN expression is induced in infected enterocytes 

is not known, TLRs are well known inducers of type I IFNs expression (Noppert et 

al., 2007) and a protective role for TLRs in immunity to C. parvum infection has 

been previously described (Costa et al.,2011). Chen et al. observed that C. parvum 

infection of cultured cholangiocytes (bile duct epithelial cells which become infected 

in immunocompromised hosts) induced the recruitment of TLR2 and TLR4 at the 

site of parasite attachment/invasion and those receptors were involved in initiating 

the inflammatory responses and β-defensin-2 production of infected cells (Chen et 

al., 2005). Most TLRs initiate signalling by recruiting MyD88 and MyD88 deficient 

mice were more susceptible to C. parvum infection than wild type mice (Rogers et 

al., 2005). Also, treatment of neonatal mice with the TLR9 ligand (unmethylated 

CpG oligonucleotide) stimulated strong resistance to C. parvum infection (Barrier et 

al., 2006). Therefore, it is possible that TLRs are involved in inducing type I IFN 

expression as a result of C. parvum infection. 

The role of dendritic cells in establishing early innate immune and adaptive 

responses to various infections is well documented (Moretta et al., 2002). Dendritic 

cells are also known as an important source of type I IFNs (Colonna et al., 2004). 

Significant IFN-β and IFN-α mRNA expression by dendritic cells was observed after 

4 h of exposure to excysting C. parvum sporozoites. Similar results were obtained 

with live sporozoites purified by passage through a filter with 5μm diameter pores. 

An ultrastructural study of Cryptosporidium infection of guinea pigs showed parasite 

invasive stages engulfed by mononuclear cells adjacent to the epithelium of Peyer’s 
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patches (Marcial and Madara, 1986) where a large population of dendritic cells 

becomes located following infection (Iwasaki and Kelsall, 2001). An in vitro study by 

Auray et al. indicated that C. parvum infected epithelial cells grown on an insert 

membrane secreted chemokines that attracted dendritic cells in the well below into 

the membrane (Auray et al., 2007). Taken together these observations suggest that 

dendritic cells have an important role in association with type I IFNs in immunity 

early during infection with C. parvum. 

A previous study with Schistosoma mansoni infection, showed that the helminth 

eggs stimulated dendritic cells for the expression of IFN-β and various IFN-inducible 

genes and this was dependent on IFNα/β receptor signaling (Trottein et al., 2004). 

In Salmonella typhimurium infectionboth MyD88 and IFN-α/β were found to be 

important for dendritic cell activation of T cells (Tam et al., 2008). In a recent study 

of the role of type I IFNs in immunity to P. falciparum it was shown that PBMCs 

stimulated with schizont-infected RBCs induced IFN-α at the protein level and IFN-β 

mRNA, but the cellar source of IFN was not established (Sharma et al., 2011). 

The above results indicated that C. parvum inducedenterocytes and dendritic cells 

to produce type I IFNs. In addition IFN-α/β inhibited parasite development in 

enterocytes. Hence it was essential to investigate the possible role of type I IFNs in 

immunity to C. parvum in vivo. This was studied using neonatal BALB/c wild type 

and immunocompromised SCID mice. 

Many studies conducted previously investigated the role of type I IFNs in immunity 

to different microbial pathogens. IFNAR-/- knockout mice have been a valuable tool 

used by different investigators to investigate the role of type I IFNs in immunity. For 

example, in cutaneous leishmaniasis, IFNAR1-/- mice developed smaller lesions 

when infected with the South American parasite Leishmania amazonensis in 

comparison to wild type mice, indicating a role for type I IFN in promoting disease 

(Xin et al., 2010). In contrast, in infection with group B streptococci, wild type mice 
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survived infection whereas mortality was observed in IFNAR1-/- and IFN-β -/- mice. 

This confirmed that type I IFN signaling was important in resistance against this 

infection (Mancuso et al., 2007). 

In this laboratory the 129SV/Ev wild type and IFNAR1-/- neonatal mice were 

originally used to study the role of type I IFNs in C. parvum infection. Both wild type 

and mutant mice had very low levels of infection, however, suggesting that 129SV 

mice were naturally resistant to infection with C. parvum (for unknown reasons) (V. 

McDonald, unpublished data). Hence the 129S strain is not suitable for studying C. 

parvum infection. 

The use of anti-IFN-α/β antibodies to study the role of type I IFNs in virus infections 

was first described in 1976. Gresser et al. found that treatment of mice with anti-

IFN-α/β antibodies developed in sheep enhanced infection with 

encephalomyocarditis (EMC) virus (Gresser et al., 1976). Sheep anti-mouse IFN-

α/β antibodies in serum produced and titrated by our collaborator Dr M.G. Tovey 

(Institut Andre Lwoff) commonly used by many groups, were used in the present 

study to investigate the role of type I IFNs in immunity to C. parvum in mice. An 

important finding was that the treatment of neonatal BALB/c and SCID mice with 

anti-IFN-α/β antibodies prior to infection caused a significant increase in oocyst 

shedding around the peak of infection in comparison to the mice that received 

control antibodies. These results indicate a protective role for type I IFNs, at least in 

innate immunity, against C. parvum in vivo. 

It was also found that at 48 h postinfection, pretreatment of SCID mice with anti-

IFN-α/β resulted in increased parasite numbers in intestinal villi compared with the 

controls. This confirms that type I IFNs mediate inhibition of parasite development 

early during infection.  

In view of these findings, it was important to measure the expression of type I IFN in 

the intestine of infected mice. At 24 h and 48 h of infection ileal samples from SCID 

mice were tested for the expression of IFN-α and IFN-β mRNA by qPCR. Both IFN-



138 

 

α and IFN-β expression was detected at 24 h postinfection, but only IFN-α response 

was maintained at 48 h. 

The termination of IFN-β expression after 24 h postinfection is not unexpected and 

can be explained at the transcription level. Transcription of IFN-β requires the 

formation of a large multi-protein complex named the enhanceosome that includes 

NF-κB, IRF-3/7 and ATF-2/c-Jun (Hiscott, 2007). At the peak of transcription, an 

architectural protein of the complex HMGA1 that stabilises the enhanceosome and 

facilitates DNA binding is acetylated by another component, the transcriptional co-

activator CBP that is associated with the RNA polymerase II complex bound to the 

enhanceosome. Increasing acetylation destabilises the enhanceosome leading to 

IFN-β transcription being turned off (Ford and Thanos, 2010).  

In mice infected with Trypanosoma cruzi, a transient peak of IFN-α was detected at 

24 h of infection (Kierszenbaum and Sonnenfeld, 1982). However, no difference in 

susceptibility to infection or the production of IFN-γ was observed between IFNAR-/- 

mice and wild type mice. 

IFN-γ is a key cytokine in the control of C. parvum infection and it is known that type 

I IFNs can activate NK cells to produce IFN-γ in response to different microbial 

pathogens (Korbel et al., 2004). In infection with Toxoplasma gondii treatment with 

recombinant IFN-β enhanced protection against infection and this was dependent 

on IFN-γ production (Orellana et al., 1991).  

It was relevant, therefore, to study if the protective function of type I IFNs in C. 

parvum development was related to IFN-γ expression. Treatment of neonatal SCID 

mice with anti-type I IFN-α/β caused an exacerbation of infection but this was not 

associated with reduced intestinal IFN-γ expression when measured at day 2 

postinfection. In fact, there was higher IFN-γ expression in the anti-IFN-α/β-treated 

mice, although this was not statistically significant. It is possible that the higher 

expression could relate to higher level of infection in anti-IFN-α/β-treated mice. 
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Other possible mechanisms for the protective action of type I IFNs action have been 

discussed in this chapter but have not been investigated during the present study. 

It was shown in this study that poly (I:C) treatment of cultured enterocytes 

stimulated the cells to produce type I IFNs and this effect was increased when the 

cells were infected with C. parvum. In previous in vivo studies of other microbial 

pathogens it was found that poly (I:C) treatment enhanced protection against 

infection. For example, treatment of mice with poly (I:C) prior to infection with 

Leishmania donovani caused a significant decrease in parasite reproduction along 

with a remarkable rise in IFN-α/β levels in the serum (Herman and Baron, 1970). 

Therefore, it was of interest to investigate the effect of exogenous poly (I:C) on C. 

parvum infectionof  SCID mice.  A significant decrease of parasite numbers was 

observed in colonic stool samples obtained from poly (I:C)-treated mice in 

comparison to the control group after 5 days of infection. This indicated that 

treatment with poly (I:C) enhanced immunity against Cryptosporidium infection, 

however the effect on type I IFN production of poly (I:C) stimulation was not 

measured in this in vivo infection model.  

Confirming these findings, a recent study by Lamande et al. at The National institute 

for Agronomical Research, Tours, France, has indicated that a single dose of poly 

(I:C) induced protection against C. parvum infection in wild type neonatal mice (Dr 

Sonia Lamande, personal communication and data presented at the Mucosal 

Immunology Conference, Paris, July 2011).  

On the other hand, poly (I:C) treatment caused an exacerbation of infection in wild 

type mice but not IFNAR-/- mice infected with L. monocytogenes or with M. 

tuberculosis (O’Connell et al., 2004; Antonelli et al., 2010). Also, treatment of SCID 

mice with poly (I:C) increased susceptibility to systemic candidiasis (Jenesen et al., 

1992). Although the dose and method of injection used in the current study was 

similar to that described by Jenesen et al. anopposite effect for poly (I:C) against the 
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different pathogens was observed. This might be explained by poly (I:C) activating 

an immune response that is appropriate for killing certain microbes, but not others. 

The effect against other protozoan infections of in vivo treatment with exogenous 

type I IFNs has been reported. In the case of L. major, it was found thattreatment of 

highly susceptible BALB/c mice with a low (but not high) dose of IFN-β was 

protective against infection (Mattner et al., 2004). Also, treatment with IFN-α 

prevented death caused by cerebral P. berghei malaria in C57BL/6 mice and 

reduced the development of the blood stage of infections (Vigario et al., 2007). 

However, although a protective role for type I IFNs in immunity to C. parvum has 

been demonstrated in the present study, treatment of SCID mice with exogenous 

IFN-α did not cause any inhibition of infection. This negative result may have been 

obtained because of the route of administration of the cytokine or the dose of IFN-α 

used. Further in vivo studies are needed to explain this result. 

In summary, the results presented in this chapter are the first to demonstrate a 

protective role for type I IFNs against Cryptosporidium infection. IFN-α/β 

wereexpressed by infected enterocytes in vitro and the cytokines directly inhibited 

parasite development. This suggested the possibility of the rapid establishment of 

an autocrine protective innate immune response. It was also shown with in vivo 

infections in neonatal SCID mice that IFN-α/β had a protective role that was evident 

early during infection and appeared to be independent of IFN-γ. Type I IFNs may 

therefore play a major part in the protective innate immune response that is 

important for controlling the reproduction of C. parvum. 
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4.1 GENERAL INTRODUCTION 

4.1.1 NK cells 

Natural Killer (NK) cells are key cellular mediators of innate immunity against 

intracellular pathogens and tumours (Crewenka and Lanier, 2001). They are a major 

source of IFN-γ (Lanier, 2008), a cytokine that plays an important part in immunity 

against C. parvum in mice (McDonald, 2000). In addition, NK cells appear to play an 

important part in the establishment of a TH1 response against numerous infections, in 

part by their ability to produce IFN-γ (Zucchini, 2008). Until now the role of NK cells in 

immunity to cryptosporidia has been unclear. It was, therefore, of great interest to 

investigate closely the function of these cells in development of host resistance to C. 

parvum.    

4.1.2 Biology of NK cells 

NK cells are lymphocytes classically defined by the absence of the CD3 T cell marker 

and the presence of CD56 in human cells. The expression of other surface molecules 

such as leukocyte marker 7 (Leu-7 or CD57), IL- 2 receptor β chain (IL-2Rβ or CD122), 

FcγRII (CD16) and killer cell lectin-like receptor B1 (KLRB1 or CD161) has also been 

used as markers (Zucchini, 2008). In mice, NK cells are commonly recognised by the 

expression of integrin subunit α2 (DX5 or CD49b), asialo-ganglioside M1 (ASGM1) and 

natural killer receptor P1C (NKR-P1C or NK 1.1) (Korbel et al., 2004). Antibodies to 

these latter markers are commonly used for NK cell depletion in mice. Both in humans 

and mice, many of those molecules are however expressed on other cells (Korbel et 

al., 2004). Recently, the NKp46 molecule has been identified as the most specific NK 

cell marker in mammals (Walzer et al., 2007).  
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Human subsets of NK cells can be distinguished by the surface density expression of 

the CD56 antigen (i.e., in flow cytometry, CD56bright and CD56dim) (Papamichail, et al., 

2004). Resting CD56dim cells (comprising about 90% of total NK cells) are the most 

cytotoxic subset (Robertson and Ritz, 1990). The CD56bright NK cell subset 

(representing about 10% of NK cells) is linked to the high level of production of IFN-γ, 

TNF-α, TNF-β, GM-CSF and IL-10 upon activation while the CD56dim cells produce only 

small amounts of these cytokines (Robertson and Ritz, 1990). In addition, CD56bright 

cells express high levels of the C-type lectin-like CD94/NKG2 family with only small 

levels of killer-cell immunoglobulin-like receptors (KIR). CD56dim NK cells express both 

KIR and C-type lectin receptors at high density (Farag et al., 2002). 

The natural killer T (NKT) cells represent a lymphocyte subpopulation that expresses 

both CD56 and CD3-T cell receptor (TCR) complex (Bendelac et al., 1997). NKT cells 

are highly restricted in antigen recognition capacity through the TCR and lipids appear 

to be what is mainly recognised. They share functions and receptors with NK cells. NKT 

cells possess an activation or memory phenotype by the expression of CD44, CD69 

and CD122. They are present in most tissues where T cells are found (Papanichail et 

al., 2004). NKT cells are capable of producing large amounts of TH1 or TH2 cytokines 

(Zlotnik et al., 1992) and can also mediate lysis of classical NK cell targets (Koyasu et 

al., 1992).  

4.1.3 Development of NK cells 

In vivo, NK cells have a limited life span, and in homeostasis the population must be 

continually replenished to maintain biological significance (Yokoyama et al., 2004). NK 

cell development primarily occurs within the bone marrow. In humans, CD34+ 

hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) including a 
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small percentage of NK cell precursors (pre-NK) are normally enriched within the bone 

marrow (Srour et al., 1991). Many factors are involved in the differentiation of NK cells, 

including cytokines, membrane factors, transcription factors and the microenvironment 

of the bone marrow. Defining the stages of differentiation of NK cells depends on the 

surface markers of NK cells (Yoon et al., 2007). 

IL-15 bound to dendritic cells (DCs) via IL-15Rα is considered an essential factor during 

NK cell development (Ferluzzo and et al., 2009). It stimulates NK cell proliferation 

(Budgaian et al., 2006; Casron et al., 1994) and survival (Huntington et al., 2007) and 

primes NK cell responses (Lucas et al., 2007). Despite this it was observed that IL-15 

was not required for the transition from HSCs to precursor NK cells (Vosshenrich et al., 

2005). In humans, IL-2 promotes the development of certain receptors on developing 

NK cells (Ferlazzo et al. 2004). In mice, IL-2 may not be necessary for the development 

of NK cells as normal populations of NK cells are found in IL-2 deficient mice (Liu et al., 

2000). 

4.1.4 NK-like cells 

In addition to NK cells, further innate lymphocyte subsets have also been described 

recently. These cells are components of lymphoid tissue inducer (LTi) cells. During 

embryonic development, LTi cells are crucial for lymphorganogenesis (Sun et al., 

2000). Lymphocytes phenotypically resembling LTi cells can also be identified after 

birth but their role is not well defined. LTi-like cells within the intestinal lamina propria of 

adult mice serve as inducer cells of tertiary lymphoid organs such as cryptopatches and 

intestinal lymphoid follicles (Bouskra et al., 2008). 

Recent studies have highlighted the presence of a population of IL-22-producing 

lymphocytes in the gut. They are identified by their co-expression of the retinoic acid 
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receptor-related orphan receptor-γt (RORãt) and the activating natural killer receptors 

(NKRs) (i.e. NKp46+RORãt+ cells).  

Unlike conventional NK cells, which depend on IL-15 for their development, the 

differentiation of NKp46+RORãt+ cells is dependent on RORγ (Sanos et al., 2009; Luci 

et al., 2009). 

Although these cells share characteristics of both NK and LTi cells and express various 

stimulatory NK cell receptors such as NKp46 and NKG2D, they differ from conventional 

NK cells in that they have only intermediate expression of NK1.1 and they lack the 

cytotoxic and IFN-γ production functions that typical NK cells are characterized by 

(Ferlazzo and Munz, 2004; Cella et al., 2009).  Instead, the NKp46+RORãt+ cells are 

recognized for their ability to selectively produce IL-22 and therefore these cells are 

sometimes referred to as NK-22. Stimulation with IL-23 further boosts the production of 

IL-22, (Cella et al., 2009). Importantly, IL-22 in the gut and other mucosal surfaces 

protects epithelial barrier function and activates antimicrobial defence of epithelial cells 

against invading pathogens (Ouyang and Valder2008). 

Another important innate lymphocyte subset in the gut is a population of RORãt−NKR-

LTi cells which is the dominating subset of NKR-LTi cells in the colon. They express 

NKp46 but lack RORγt. Colonic RORãt−NKR-LTi cells resemble conventional NK cells 

but they differ in their cytokine profile. They retain IL-23 receptor expression and 

interestingly, these cells but not RORãt+ NKR-LTi, LTi or conventional NK cells produce 

IFN-ã in response to IL-23 (Vonarbourget al., 2010). 
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4.1.5 Activating and inhibitory receptors of NK cells 

NK cells express a range of activating and inhibitory receptors. These receptors provide 

signals the balance of which decides whether NK cells become activated or remain 

inactivated. This helps regulate NK cell functions, ensuring protection against infected 

or malignant cells, yet preventing NK cell-driven autoimmune reactions. 

4.1.5.1 NK cell signalling pathways 

NK cell receptors use opposing signalling pathways to stimulate or inhibit activation. 

The inhibitory receptors signal via the intracellular immunoreceptor tyrosine-based 

inhibitory motifs (ITIMs), located in the cytoplasmic tail of these receptors. ITIM-

mediated signals result in both dephosphorylation and phosphosphorylation of 

intracellular components. The inhibitory receptors commonly recruit tyrosine 

phosphotases (SHP-1 or SHP-2) that help to interfere with the adhesion of NK cells to 

their target cells and suppress NK cell responses by dephosphorylating the protein 

substrates of the tyrosine kinases linked to activating NK receptors (Ravetch and 

Lanier, 2000). The activating receptors signal either through the immuno-receptor 

tyrosine based activating motifs (ITAMs) or through alternative signalling mechanisms 

using adaptor molecules DAP-10 or DAP-12. The ITAMs are non-covalently associated 

molecules and not in the receptors’ cytoplasmic tail. After phosphorylation of a tyrosine 

residue in the tail, kinases are recruited leading to degranulation and transcription of 

cytokine and chemokine genes (Tomasello et al., 2000).  

4.1.5.2 Ly49 family receptors 

The C-type lectin-like Ly49 receptors represent a large family of receptors in mice. The 

majority are inhibitory receptors which signal through an ITIM, while activating Ly49 
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receptors use the DAP-12 molecule for signalling (Smith et al., 1998). Ly49 receptors 

recognise mainly MHC class I molecules or related proteins. 

4.1.5.3 KIR family receptors 

In humans and primates, the killer immunoglobulin-like receptors (KIRs) replace the 

Ly49 family of mice. Members of this family can be inhibitory or activating and signal 

through the ITIM and DAP-12 ITAM pathways, respectively, and they both recognise 

MHC class I molecules (Pegram et al., 2011). KIRs specifically bind HLA-A-B and –C 

molecules and recognise polymorphisms in these class I molecules. KIR receptors are 

also thought to play a role in the induction of NK cell tolerance for self tissue, although 

the mechanism involved is still unclear (Pegram et al., 2011).  

4.1.5.4 CD94b-NKG2 heterodimer receptors 

The CD94-NKG2A/C/E receptors belonging to the C-type lectin family are present in 

both humans and mice. These receptors react with the non–classical MHC molecules 

expressed on the surface of target cells and are described as being important in the 

prevention of inappropriate NK cell activation (Borrego et al., 1998). 

4.1.5.5 NKG2D receptor 

Almost all NK cells express the NKG2D receptor that recognises cell surface stress 

molecules (Jamieson et al., 2002). In the mouse, NKG2D signals by recruiting DAP-10 

or DAP-12 molecules (Wu et al.,. 1999), while in humans NKG2D is associated with the 

DAP-10 signal pathway cytotoxicity and cytokine responses (Wu et al.,. 1999; Billadeau 

et al., 2003). Evidence indicates that NKG2D is important in the NK cell-mediated 

control of some cancers, as it plays a role in the induction of cytotoxic, TH1 and TH2 

responses (Diefenbach et al., 2001; Westwood et al., 2004). The ligands of the NKG2D 

receptor include MHC class I-related proteins whose expression is regulated by both 
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DNA damage and heat shock response pathways, both of which are often activated in 

tumours (Jolly and Morimoto, 2000). In human NK cells ligands for NKG2D include the 

stress related proteins MIC-A and MIC-B and ULBP1, ULBP2, ULBP3 and ULBP4 

(Pegram et al., 2011). Expression of MIC-A and MIC-B has been shown to be induced 

upon malignant transformation as a result of DNA damage (Jinushi et al., 2003). 

Although NKG2D has an important role in the immune response to tumours, several 

tumours have developed strategies to avoid this effect. For example, tumours have 

been reported to secrete NKG2D ligands, such as MIC-A (Groh et al., 2002). Another 

mechanism of evasion by tumour cells is the secretion of TGF-β1 that down-regulates 

NKG2D on NK cells (Castriconi et al., 2003). 

4.1.5.6 Natural cytotoxicity receptors 

The natural cytotoxicity receptors (NCRs) are a group of activating receptors that 

belong to the Ig-superfamily (McQueen and Parham, 2002). Resting and activated 

human NK cells express NCRs NKp46, NKp80, NKp30, while NCR NKp44 is only up-

regulated upon stimulation of NK cells with IL-2 (Fuchs et al., 2005). The NCRs have 

been found to be one of the main mechanisms by which NK cells kill tumours since 

deletion of single NCRs reduces the ability of NK cells to lyse tumour cells in vivo 

(Sivori et al., 1999; Halfteck et al., 2009). NKp30 has also been shown to be involved in 

NK cell-DC interactions, producing NK cell-mediated apoptosis of DCs (Moretta et al., 

2002). 

4.1.6 Functions of natural killer cells 

NK cells represent a major innate cellular component in the defence against stressed 

cells, microbe-infected or malignant cells. Their direct effector functions can be 
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subdivided into cytotoxic and cytokine production, mainly IFN-γ and TNF-α, as well as 

the secretion of numerous chemokines. NK cells also exert immunoregulatory functions 

including the modulation of DCs numbers and T cell responses. More recently NK cells 

were shown to take a memory-like function. 

4.1.6.1 Direct cytotoxic effect 

NK cells play a major role in the control of the replication of a variety of microbial 

pathogens, particularly viruses. This antimicrobial effect can occur through cytotoxic 

activity leading to the death of target cells through apoptosis via signalling pathways 

which depend on the receptors that are recruited on NK cells (Smyth et al., 2005). 

Different killing mechanisms are employed by NK cells, including perforin/granzyme 

granule-mediated exocytosis, (Loh et al., 2005). Signalling through the TNF-related 

apoptosis-including ligand (TRAIL) was also demonstrated, as in the case of 

encephalomyocarditis virus (Sato et al., 2001), and through the Fas-L/Fas interaction 

as proposed for red blood cells infected by Plasmodium falciparum (Mavoungou et al., 

2003). NK cells are capable of inducing Fas expression on tumour cells in vivo via IFN-

γ secretion then killing them in a Fas-L dependent manner (Bradley et al., 1998; 

Screpanti et al., 2001).  

4.1.6.2 Cytokine secretion 

NK cells can also make cytokines to help them achieve their immune effector functions 

including antimicrobial, anti-tumour and immunoregulatory functions. The main cytokine 

produced by NK cells is IFN-γ (Biron et al., 1999). The first model system that 

described this protective activity in detail was demonstrated in studies with SCID mice 

infected with Listeria monocytogenes (Bancroft et al., 1989). NK cell-derived IFN-γ 

helps enforce antimicrobial defences of cells in infected tissues and takes on increased 



150 

 

importance in the absence of cytotoxicity function (Presti et al., 2001; Willberg et al., 

2007). This IFN-γ also contributes to the NK cell mediated anti-tumour activity such as 

by restricting tumour angiogenesis and stimulating further adaptive responses (Smyth 

et al., 2005). TNF-α can also be released by NK cells, however other cell types can 

readily make this factor early during infections (Bancroft et al., 1989). Recently, results 

from both in vitro and in vivo studies demonstrated that NK cells are capable of the 

production of immunoregulatory cytokines including IL-10 (Bodas et al., 2006; Grant et 

al., 2008 Maroof et al., 2008).  

4.1.6.3 Chemokines production by NK cells 

NK cells are also capable of expression of chemokines that have pro-inflammatory 

functions. In vitro studies showed that human peripheral NK cells cultured in the 

absence of stimuli can produce CCL4, CCL5 and CCL22 (Robertson, 2002). NK cells 

expressed CCL3 mRNA (Oliva et al., 1998), but produced only small a amount of CCL3 

protein (Fehniger et al., 1998). Saito et al. also observed that CD56brightCD16- NK cells 

which were isolated from human uterine deciduae expressed CXCL8 mRNA and 

secreted CXCL8 protein (Saito et al., 1994). Greater amounts of these chemokines 

were detected after in vitro activation of NK cells. CXCL1, CCL1 and CCL3 were also 

produced (Robertson, 2002). Supernatants from activated NK cells stimulated the in 

vitro migration of CD4+ T cells, CD8+ T cells and neutrophils due to the production of 

chemokines (Somersalo et al., 1994).  IL-2 stimulated NK cells induced the chemotaxis 

of other NK cells (Nieto et al., 1998). 

4.1.6.4 Immunoregulatory functions 

NK cells exert a variety of immunoregulatory effects that can contribute to promoting 

health over disease. Thus, activated NK cells can induce DC maturation (Gerosa et al., 
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2002) and promote priming and expansion of CD8+ T cells (Adam et al., 2005). In 

addition, in vitro studiesindicate NK cells can also kill autologous immature myeloid 

DCs (myeloid DCs) via NKp30, NKp46 and DNAM-1 mediated recognition (Spaggiari et 

al. 2001) NK cell-mediated cell lysis was avoided by the up-regulation of MHC class I 

molecules, mainly HLA-E, ahead of DC maturation. Hence, NK cell’ expression of an 

inhibitory receptor for HLA-E recognition is particularly important in modulating 

immature DC numbers (Della Chiesa et al., 2003). In addition to myeloid DCs, activated 

macrophages were susceptible to NK cell-dependent cytotoxicity via NKG2D 

(Nedvetzki et al., 2007). This cytotoxic activity reduces the population of antigen 

presenting cells for T cell activation and so limits the immune responses (Lunemann et 

al., 2009). 

NK cells are also important for promoting TH1 polarization of CD4+ T cells through the 

production of IFN-γ that initiates and implements TH1 differentiation. This was detected 

in allogeneic immune responses during which NK cells produced high levels of IFN-γ 

that were adequate to mediate T cell polarization either by acting directly on naïve T 

cells or by enhancing DC maturation (Morandi et al., 2006). Through the expression of 

OX40 ligand and CD86 upon ligation of the activating FcRIII (CD16), NK cells can 

induce IFN-γ production and proliferation of autologous T cells (Zingoni et al., 2004). 

Other studies have demonstrated that NK cells are also capable of inhibiting T cell 

responses. In vitro studies showed that following T cell activation, T cells up-regulate 

NKG2D ligands and therefore became a target for NK cell-mediated cell lysis (Cerboni 

et al., 2007; Roy et al., 2008). Thus NK cells participate in a range of immunoregulatory 

functions through their effects on dendritic and T cells. 
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4.1.6.5 Memory-like function of NK cells 

Immunological memory has two primary features: 1) antigen specificity and 2) 

expanded response following subsequent antigen exposure (Cooper et al., 2009). Both 

T and B cells are known to express clonally unlimited numbers of antigen receptors that 

can recognize foreign antigens. After antigen stimulation and clonal expansion of T and 

B cells, a specific population of memory lymphocytes helps to protect the host from 

subsequent encounters with the same antigen (Murphy et al., 2007). It was previously 

believed that innate immune cells lacked a memory component that was reactivated 

after repeated antigenic stimulation. However, recent studies have suggested that NK 

cells have memory-like properties (O’Leary et al., 2006; Sun et al., 2009). Different 

groups described, using murine models of contact hypersensitivity in response to a 

hapten, NK cell participation in a memory function previously attributed only to T and B 

cells. Contact hypersensitivity responses were observed in SCID and Rag-2-deficient 

mice which lack both T and B cells. However, in mice that lacked NK cells as well as T 

and B cells, contact hypersensitivity responses were absent. Furthermore, the adoptive 

transfer of NK cells from hapten-sensitized mice into naïve mice resulted in a delayed-

type hypersensitivity reaction when recipients were challenged with the original hapten, 

but not when a different hapten was applied (O’Leary et al., 2006). Hapten-experienced 

NK cells persisted for more than a month which is relatively longer than the normal 

turnover of NK cells which is 7-17 days (Koka et al., 2003). The receptors responsible 

for hapten recognition by NK cells are not known (Held et al., 2011). In murine 

cytomegalovirus (MCMV) infection, Ly49+ NK cells showed changes compatible with 

memory, including longevity, improved cytolytic and cytokine production function as 

well as strong recall expansion (Sun et al., 2009). In addition to antigen-driven memory, 

in vitro stimulation of NK cells with IL-12 and IL-18 followed by adoptive transfer into 
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naïve mice increased the NK cell lifespan and the ability to produce cytokines. It was 

also shown that these NK cells proliferated in vivo and their daughter cells also had a 

similar memory-like phenotype despite never having been activated (Cooper et al., 

2009). Collectively, these studies provide evidence that NK cells can have 

characteristics of memory, although underlying mechanisms are elusive. 

4.1.7 Conditions of NK cell activation 

NK cell activation in response to various infections (viral, bacterial, protozoal), seems to 

be under the control of different chemokines and cytokines secreted by macrophages 

and DCs as well as the direct interaction between these cells and NK cells (Zucchini et 

al., 2008). These pro-inflammatory molecules differentially promote the expression of 

activation markers on NK cells that contribute to IFN-γ production and/or trigger NK 

cell-mediated cytotoxicity (Chiesa et al., 2006; Dorner et al., 2004). 

4.1.7.1 NK cell activation by DCs 

There has been a wealth of studies that have looked at NK cell-DC interaction resulting 

in cellular activation, maturation and even death (Cooper et al., 2004) and in order for 

NK cell-DC interaction to occur in vivo, and to achieve optimal co-stimulatory effect, 

these cells must be recruited in close contact (Piccioli et al., 2002). Sites of 

inflammation and lymph nodes were described as the main locations for such cross-talk 

(Cooper et al., 2004). NK cells can be efficiently activated by DCs to obtain antitumor 

responses in mice (Fernandez et al., 1999), to stimulate IFN-γ production, proliferation 

and cytotoxicty (Moretta, 2002; Ferlazzo and Mȕnz, 2009). 

DCs can directly activate NK cells by the secretion of different cytokines such as IL-12, 

IL-1, IL-18, IL-15 and type I IFNs (Ferlazzo and Mȕnz, 2009). In the lymph nodes, DCs 

can also indirectly activate NK cells by enhancing the expansion of T cells which 
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secrete IL-2, that in turn stimulate NK cells (Fehniger et al., 2003). Both DCs and T 

cells can activate NK cells by the up-regulation of ligands for stimulatory and co-

stimulatory molecules expressed on NK cells (Cooper et al., 2004). 

4.1.7.2 The effect of cytokines 

Different cytokines affect the expansion and modulate the effector functions of mature 

NK cells. IL-12 has been shown to play a central role in NK cell stimulation and the 

production of IFN-γ which in turn activates antimicrobial responses against Listeria 

monocytogenes (Tripp et al., 1993), Toxoplasma gondii, Trypanosoma cruzi (Gazzinelli 

et al., 1993; Cardillo et al., 1996) and Entamoeba histolytica (Seydel et al., 2000). 

Lieberman and Hunter demonstrated that IL-12 signalling pathways stimulate NK cells 

primarily through activation of the STAT4 pathway (Liberman and Hunter, 2002). 

Although IL-12 alone can stimulate IFN-γ production by NK cells, the related pro-

inflammatory cytokines, IL-1 and IL-18, can both enhance this action in vitro (Hunter et 

al., 1995; Micallef et al., 1996) and in infection with Cryptococcus neoformans IL-18 

stimulated NK cells to produce IFN-γ independently of IL-12 (Kawakami et al., 2000). 

In addition to the IL-12/STAT4 pathway for activation of NK cell responses, other 

cytokines and pathways have been shown to act as potent inducers of NK cell 

activation and IFN-γ secretion. Both IL-2 and IL-15 that share two of three receptor 

chains, are important for NK cell development and signalling through STAT3/STAT5 

pathways they stimulate production of high levels of IFN-γ independently of IL-12, and 

can act synergistically with IL-12, IL-1, IL-18 or TNF-α (Lieberman and Hunter, 2002). 

Although it is well known that type I IFNs primarily signal via a JAK/STAT pathway 

activating STAT1 and STAT2, evidence indicates that those cytokines can also 

enhance NK cell production of IFN-γ via the phosphorylation of the STAT4 pathway 

(Hunter et al., 1997; Lieberman and Hunter, 2002). 
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Type I IFNs have also been shown to enhance NK cell cytotoxicty as seen in infection 

with   MCMV (Nguyen et al. 2002). NK cell activation by type I IFNs could either be via 

the direct effect of the cytokine on NK cells as in the case of vaccinia infection 

(Martinez et al., 2008) or it can be due to the activation of DCs and/or macrophages for 

IL-15 production that promotes NK cell proliferation (Lucas et al., 2007). A recent study 

has shown that supernatants of Salmonella-infected macrophages induce IFN-γ 

production in human CD56+ NK cells and this induction of IFN-γ was critically 

dependent on IL-23 and IL-1β (van de Wetering et al., 2009), indicating that IL-23 is 

another cytokine that stimulates NK cell activity. 

 IL-21 which is closely related to IL-2 and IL-15 can enhance NK cell cytotoxic activity 

and IFN-γ production (Parrish-Novak et al., 2000). However, IL-21 does not stimulate 

NK cell proliferation and can act as an antagonist of IL-15-induced proliferation of those 

cells, thus limiting their duration of survival (Kasaian et al., 2002). This could explain the 

rapid fall in NK cell activity following their initial peak of activity noticed in the course of 

many parasitic infections (Lieberman and Hunter, 2002). Other cytokines, but mainly 

TGF-β, contribute to the inhibition of NK cell responses (Bellone et al., 1995). IL-10 has 

also been shown to have an inhibitory action on NK cell function (Gazzinelli et al., 

1992). This however is rather more complex as stimulatory effects have also been 

recognised with this cytokine Thus, IL-10 can inhibit the antimicrobial effects of IFN-γ 

(Gazzinelli et al., 1992) as well as the production of other cytokines associated with NK 

cell development and IFN-γ release (Moore et al., 2001). On the other hand, other 

studies indicate that IL-10 has stimulatory effects on NK cell proliferation and 

cytotoxicty when acting alone (Schwarz et al., 1994) or in combination with other 

cytokines such as IL-18 (Cai et al., 1999). 
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4.1.7.3 The effect of chemokines 

Different chemokines have been shown to stimulate the migration of NK cells as shown 

by in vitro chemotaxis assays (Robertson et al., 2002). Studies indicated that resting 

human NK cells migrate in response to known ligands for CXCR3 (CXCL9, CXCL10 

and CXCL11) and CXCR4 (CXCL12) (Campbell et al., 2001; Campbell et al., 1998; Kim 

et al., 1999; Romagnani et al., 1996). Furthermore, it was also demonstrated that 

resting NK cells also migrate in response to CC chemokines, including CCL2, CCL3, 

CCL4, CCL5, CCL7 and CCL8 (Inngjerdingen et al., 2001; Taub et al., 1995; Allavena 

et al., 1994; Drake et al., 2001). Studies have also shown that chemokines may 

increase NK cell lysis of target cells by promoting the cytotoxic granule release by NK 

cells (Taub et al., 1995; Yoeneda et al., 2000). Soluble and membrane-bound CX3CL1 

was also found to induce IFN-γ production by NK cells and affect NK cell ability to kill 

tumor cells both in vitro and in vivo (Guo et al., 2003; Yoneda et al., 2003). 

4.1.8 Location and organ-specific features of NK cells 

The distribution of NK cells from the bone marrow through the blood to the target 

organs is not static because these cells can re-circulate between different organs 

(Hoglund and Brodin, 2010). NK cells can react to a wide range of chemokines 

produced by cells that are specific to certain organs and thus recruit to different sites of 

inflammation (Gregoire et al., 2007). The influence of organ-specific chemokines on NK 

cell trafficking suggests that organ-intrinsic elements may be required for NK cell 

homing during physiological and pathological conditions. Those elements may include 

the unique cellular components of each organ, the soluble components and the 

anatomical constituents (Shi et al., 2011).  



157 

 

4.1.8.1 Gut NK cells 

Many studies that investigated NK cells in the mucosal tissues were difficult to analyse 

due to the fact that it was difficult to distinguish bona fide NK cells from NKT cells and 

other populations of innate lymphoid cells that are common in the gut lymphoid tissue 

(Shi et al., 2011). In the intestine, NK cells are found predominantly within the lamina 

propria and are rarely in lymphoid aggregates, although they can be found in 

parafollicular regions such as in caecal lymphoid patches, Peyer’s patches and 

mesenteric lymph nodes (Reynders et al., 2011). 

4.1.9 NK cells in antiviral defence 

Although it is now accepted that NK cells may provide a first line defense against 

different microbial pathogens, their close involvement in immunity against infection was 

first clearly established for many viral infections. In viral infections NK cells protective 

activity can be by either cell–mediated cytotoxicity or by IFN-γ production or both. In 

particular, the role of NK cell in immunity to herpes virus in both humans and mice is 

well understood. 

4.1.9.1 NK cell in immunity to cytomegaloviruses 

In MCMV infection NK cell based immunity involves both IFN-γ and direct lysis of 

infected cells (Lodoen and Lanier, 2006). NK cell mechanisms for the control of MCMV 

infection are variable in different mice strains, however (Vivier et al., 2008). In C57/BL6 

mice, NK cells can recognise MCMV virus through the interaction between a virus-

encoded cell surface molecule, m157, and the NK cell receptor Ly49H (Smith et al., 

2002). Ligation of Ly49H by m157 during MCMV infection leads to the production of 

different cytokines and chemokines including IFN-γ, MIP-1α, MIP-β, RANTES and 

ATAC (Dorner et al., 2004). In MCMV-resistant Ly49H- mouse strains, other NK cell 
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receptor-ligands participate in the recognition of infected cells by NK cells (Vivier et al., 

2008).  

Studies also highlighted the interaction between NK cells and DCs (Andrews et al., 

2003). DCs express Toll-like receptors and secrete cytokines in response to microbes. 

In MCMV-infected C57BL/6 mice, the recruitment of NK cells to the sites of infection 

requires the production by local cells of IFN-α which then induces macrophages to 

express different chemokines that attract NK cells (Hokness et al., 2005). Type I IFNs 

also induce DCs to produce IL-15 which is an important factor for NK cell-mediated 

control of MCMV. Studies with knockout mice that lack TLR9 and MyD88 pathway have 

shown that these mice produced reduced amounts of type I IFNs, IL-12 and IFN-γ in 

their sera in response to MCMV infection (Krug et al., 2005). NK cells from these mice 

produced less IFN-γ, had impaired proliferation and exhibited reduced cytotoxic activity 

in comparison to NK cells from infected wild type mice (Krug et al., 2005). Infection of 

DCs with MCMV also induced the DCs to secrete IL-12 and IL-18 that stimulated IFN-γ 

production by NK cells (Andrews et al., 2003). Figure 30 summarises the interaction 

between DCs and NK cells in response to MCMV virus. 
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Figure 30.  Interaction between DCs and NK cells during MCMV infection 

Lanier LL, Nature Reviews (2008). 

Infection with MCMV triggers the production of type I IFNs by pDC through TLR9 and 

the production of cytokines such as IL-12 by DCs via TLR3, as well as type IFN-

induced production of IL-15 by DCs. IL-15 is presented to NK cells by the IL-15 

receptor (IL-15Rα) on the surface of DCs, leading to NK cell activation. IL-12 together 

with IL-15 and potentially other pro-inflammatory cytokines, induces the secretion of 

IFN-γ by NK cells. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Lanier%20LL%5BAuthor%5D&cauthor=true&cauthor_uid=18340344
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4.1.9.2 NK cells in HIV infection 

The pathogenesis of human immunodeficiency virus infection (HIV) and acquired 

immunodeficiency syndrome (AIDS) is considered multifactorial in that no specific 

immune alteration has been identified that can fully explain the excess of 

dysregulations described so far (Boasso et al. 2008). Both the innate and acquired 

arms of immune responses are involved in the control of the infection. The role of NK 

cells in innate immunity has been characterised and was extensively reviewed by Alter 

and Altfeld, 2009. HIV infection is associated with significant changes in NK cell subset 

distribution in the peripheral circulation (Alter et al., 2005). A dramatic reduction of CD3-

CD56+ cells proportion was reported in several studies (Lucia et al., 1997), this is 

partially related to the emergence of the CD3-CD56-CD16+ population, a subset of NK 

cells which is rare in healthy individuals (Alter et al., 2005) and lack NK cell effector 

function (Mavilio et al., 2006) This may explain the loss of NK cell function observed 

over the course of HIV-1 infection (Alter and Altfed, 2008). 

Several studies have described the impact of specific HLA class I alleles on HIV-1 

disease progression (Carrington and O'Brien,2003). The collected data indicates that 

HLA-B alleles in conjunction with KIR3DL1 are responsible for the greatest level of 

control over HIV-1 viral replication (Kiepiela et al., 2004; Martin et al., 2002; Martin et 

al., 2007).  

HIV-1 virus has developed an elegant way to evade NK cell antiviral mechanisms. This 

is achieved by the expression of HIV-1 Nef protein which strongly downregulates HLA-

A, partially downregulates HLA-B and spares HLA-C. HLA-B and HLA-C serve as the 

primary ligands for inhibitory NK cells receptors (Le Gall et al., 1998; Cohen et al., 

1999). Nef proteins also decrease the expression of the ligands for NKG2D receptor 

(Cerboni et al., 2007).  
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4.1.10 NK cells in immunity to bacterial pathogens 

4.1.10.1 The role of NK cells in infection with Listeria 

Many studies indicate that NK cells play a protective role during the early phases of L. 

monocytogenes infection by producing IFN-γ for the activation of macrophage effector 

functions. Initial observations came from studies with SCID mice. For a few days SCID 

mice controlled the Listeria infection as efficiently as normal animals but later failed to 

obtain sterile immunity.  Neutralization of IFN-γ with specific antibodies in SCID mice 

led to increased bacterial multiplication and it was suggested that NK cell production of 

IFN-γ is a major protective factor in the early phase of Listeria infection (Bancroft et al., 

1987; Bancroft et al., 1991). Another study using Rag 2-/-γc-/- confirmed the importance 

of NK cells in the resistance to listeriosis as these mice succumbed to Listeria infection 

with the same pathophysiology as IFN-γR-deficient mice unlike Rag 2-/- mice that 

survived (Andersson et al., 1998). Others showed that IFN-γ production 24h 

postinfection in C57Bl/6 mice was abrogated in vitro and in vivo by depletion of 

NK1.1+cells with anti-NK1.1 mAbs, indicating that NK1.1+cells are major IFN-γ 

producers at day 1 (Teixeira and Kaufmann,1994). The in vitro production of IFN-γ by 

SCID splenocytes was shown to be IL-12 dependant and TNF-α was required as aco-

stimulating factor (Tripp et al., 1993). 

4.1.10.2 The role of NK cells in infection with Mycobacterium 

tuberculosis and M. avium 

NK cells purified from mouse spleen cells were shown to lyse M. avium-infected 

monocytes, but not uninfected monocytes (Katz et al., 1990). IL-2-activated mouse NK 

cells were found highly bactericidal against intracellular M. avium (Bermudez et al., 

1991). Human NK cells have been shown to produce IFN-γ in cultures of mycobacterial 
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stimulated peripheral blood mononuclear cells (Gerosa et al., 2002) and to mediate 

killing of M. tuberculosis-infected monocytes (Vankayalapati et al., 2002). 

Depletion of NK cells in wild type mice using anti-asialo GM1 antibody or anti-NK1.1 

antibody in wild-type mice resulted in a significant increase in the growth of M. avium 

colonies in the spleen, suggesting a protective role for NK cells (Harshan and 

Gangadharam, 1991). However, other similar in vivo studies failed to show increased 

susceptibility to M. avium infection in immuncompetent mice (Sanders et al., 1996; 

Florido et al., 2003). Similarly, NK cell depletion in wild type mice had no effect on the 

M. tuberculosis bacterial load or on pathology (Junqueira-Kipnis et al., 2003). In 

contrast to these studies, investigations with immunocompromised mice indicated 

strongly an important protective role for NK cells in the host response to mycobacteria. 

Thus, in M. avium infection, SCID mice formed protective hepatic granulomas and this 

response was dependent on IFN-γ and TNF-α expression by NK cells (Smith et al., 

1997). Moreover, TCRαβ-/- mice were found to survive longer than IFN-γ-/- mice after 

infection with M. tuberculosis (Mogues et al., 2001).These findings suggested a T cell-

independent source of IFN-γ and highlighted the involvement of NK cells in innate 

immunity to mycobacteria. In an extensive investigation of the role of NK cells in 

immunity to M. tuberculosis  in Rag2-/-  mice (Feng et al., 2006) the main findings of this 

study were: 1) NK cells were the main source of IFN-γ and these mice were more 

resistant to infection than IFN-γ-/- mice or anti IFN-γ-treated Rag2-/- mice. 2) NK cell-

deficient Rag2-/-γc-/- mice were more susceptible to infection than Rag 2 -/- mice with the 

time to death in the former group being similar to that for IFN-γ-/- mice. 3) In vitro 

stimulation of Rag2-/-γc-/- splenocytes with M. tuberculosis failed to induce the 

production of IFN-γ. 4) NK cell-mediated innate resistance depended on IL-12 and not 

IL-23. Furthermore, IFN-γ neutralization in Rag 2 -/- mice resulted in a loss of pulmonary 

expression of NOS2, a known critical mediator during macrophage activation. IFN-γ 
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production also regulated pulmonary inflammation during early infection. These findings 

indicate that NK cells are important in innate immunity to Mycrobacterium infection, 

particularly in immunocompromised hosts.  

4.1.10.3. The role of NK cells in infection with invasive enteric 

bacteria 

Shigellosis is an invasive disease of the human intestinal tract that represents a major 

cause of bacillary dysentery worldwide and of several species of Shigella,S. flexneri is 

one of the most important. Unfortunately adult mice are resistant to infection with S. 

flexneri by the gastric route, but an in vivo model of intranasal infection of mice with S. 

flexneri resulted in an inflammatory response similar to that during human intestinal 

infection in humans (Voino-Yasenetsky, 1962). IFN-γ was shown to be important in the 

control of infection as a higher rate of infection was detected in IFN-γ-/- mice than in wild 

type mice (Way et al., 1998). A role for  NK cells in immunity was suggested by the 

findings that greater levels of infection were obtained in SCIDbeige mice (with defective 

NK cell cytotoxicity, but also reduced neutrophil exocytosis) than in SCID mice, and 

also in wild type mice depleted of NK cells using anti-asialo-GM1 compared with 

untreated controls (Way et al., 1998). Le-Barillec et al. demonstrated that both wild type 

and Rag2-/- mice controlled and survived the infection while NK cell deficient Rag2-/-γc-/- 

all died by 9 days postinfection and this was associated with relatively low expression 

of proinflammatory cytokines. However, when Rag2-/-γc-/- mice were reconstituted with 

TCRαβ+ T cells from wild type mice they were as resistant to infection as wild type 

mice, but the same cells from IFN-γ-/- mice failed to enhance protection against S. 

flexneri (Le-Barillec et al., 2005). These results demonstrate an important role for NK 

cells in innate immunity to S. flexneri by acting as a key source of IFN-γ in the early 

stage of infection. 
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Studies with Salmonella infection have also supported a beneficial role for NK cells in 

the innate immunity to this enteric pathogen. Strong resistance of hypersusceptible 

C3H/HeJ miceagainst virulent challenge with Salmonella typhimurium following 

immunisation with the avirulent SL3235 strain (Killar and Eisenstein, 1985) was 

associated with elevated numbers of NK cells in the spleens and peritoneal cavities of 

immunised mice (Schafer and Eisenstein, 1992). Furthermore, depletion of NK cells 

with anti-asialo GM-1 antibody increased mortality in mice challenged with the virulent 

strain (Schafer and Eisenstein, 1992). An important protective role for IL-15 against 

infection with avirulent Salmonella choleraesuis in wild-type mice was indicated by the 

high level of IL-15 produced during infection coincident with elevated number of NK 

cells. Also, treatment of mice with anti-IL-15 neutralising antibody prevented the 

increase in NK cell numbers and also reduced the level of IFN-ã in serum and led to a 

failure to clear bacteria (Hirose et al., 1999). Early peroral infection with Salmonella 

enterica serovar typhimurium, resulted in significant up-regulation of IFN-ã and IFN-ã-

associated chemokines (CCL10, CCL5, CXCL-9 and CXCL-11) as well a significant 

increase in NK cells in the gut. Furthermore, antibody-mediated depletion of NK cells in 

wild type mice or using T, B and NK cell-deficient mouse starin, resulted in significant 

reduction of IFN-ã expression in the intestine. In addition, in vitro stimulation of 

splenocytes with Salmonella resulted in significant IFN-ã production by NK cells. These 

observations support NK cells as a major cellular source of IFN-ã early during 

(Harrington et al., 2007). Finally, supernatants of Salmonella infected human 

macrophages induced IFN-γ production in CD56+ cells that was critically dependent on 

IL-23 and IL-1β (van de Wetering et al., 2009). 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Eisenstein%20TK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Eisenstein%20TK%22%5BAuthor%5D
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4.1.11 NK cells in immunity to protozoan pathogens 

Besides their major role in immunity to viral and bacterial infections, there is evidence 

that NK cells represent a major element in the innate immune response to a variety of 

protozoal infections.  

4.1.11.1 The role of NK cells in infection with Leishmania 

There is evidence for a protective role for NK cells in early resistance to Leishmania 

major infection since a higher number of parasites at the lesion site was found in NK 

cell-depleted mice (Laskay et al., 1993). Also, NK cells were identified as the main 

source of IFN-γ required for CD4+ T cell differentiation and in controlling early 

resistance to L.major (Scharton and Scott, 1993). L. amazonensis infection could not 

be completely controlled in the absence of NK cells (Laurenti et al., 1999). Depletion of 

NK cells in SCID mice abolished their ability to control infection, suggesting a T cell-

independent mechanism for the control of the infection (Laskay et al., 1995). In a study 

of infection with L. tropica of beige mice with lymphocyte (including NK cell) cytotoxicity 

defect, the ability to control the infection was only slightly compromised suggesting that 

cytotoxicity was not an essential mechanism for resistance (Kirkpatrick and Farrell, 

1983). In vitro studies, however, indicated that NK cells exhibited cytotoxicity activity in 

response to mucosal leishmaniasis, but that this activity was involved in tissue 

pathology rather than in protection (Brodskyn et al., 1997). IL-2-activated NK cells (A-

NK) display high cytotoxicity in vitro and can kill both NK cell-sensitive and -resistant 

targets (Trinchieri et al., 1984). A study by Aranha et al. demonstrated that A-NK cells 

play a major role in the control of infection of macrophages via direct lysis of the host 

cell and/or parasites. This was supported by the reduction in the number of viable 
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parasites, increased parasite degeneration and cellular lysis occurring in the cultures of 

infected macrophages exposed to different numbers of A-NK cells (Aranha et al. 2005). 

In humans, spontaneous healing from leishmaniasis due to L. aethiopica appeared to 

be related to the ability of NK cells to proliferate and produce cytokines (Massho et al., 

1998). Studies indicated that the activation of NK cells in leishmaniasis is a 

cytokine/chemokine-mediated rather than NK receptor-mediated. Both IL-12 and IL-18 

were described to be important in NK cell activation in response to L. major infection 

(Scharton-Kersten et al., 1995; Wei et al., 1999). In visceral leishmaniasis, a 7-day 

treatment of BALB/c mice with IL-12 led to a 70% reduction of the liver parasite load 

compared with untreated control mice, whereas in IL-12–treated but NK cell–depleted 

mice the decrease of the parasite numbers was only 30% (Murray and Hariprashad, 

1995). A deficiency in NK cell-activating chemokines resulted in suboptimal NK cell 

activity in response to L. major and the local treatment of BALB/c mice with 

recombinant chemokines shortly after infection resulted in an enhanced NK cell activity 

in the draining lymph node (Vester et al., 1999). Recently, Haeberlein et 

al.demonstrated that IL-15 activity during L. infantum infection of mice was not required 

for IL-12-dependent stimulation of NK cell IFN-γ production and cytotoxicity. IL-18 also 

helped to trigger NK cell effector functions, but comparing the NK cell response in WT, 

IL-12-/- and IL-18-/- mice it was apparent that IL-18 was not essential for immunity. IL-18 

was shown, however, to enhance the response of NK cells to IL-12 in vivo and ex vivo. 

Finally, in the absence of IL-18, IL-12 was capable of stimulating NK cell activity against 

Leishmania (Haeberlein et al., 2010). 

NK cell–DC interaction in response to Leishmania has also been described. IL-12 

production by DCs in the first 24h of infection was required to trigger NK cell activation 

(Berberich et al., 2003; Sher et al., 2003). In an in vivo study, myeloid DCs were found 
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essential for obtaining NK cell cytotoxicity and IFN-γ release in vivo through the 

production of IL-12 and this was dependent on the upregulation of TLR9 on DCs 

(Schleicher et al., 2007).Furthermore, Sanabria et al.found that the addition of resting 

NK cells significantly enhanced the activation of DCs preinfected with L. amazonensis 

promastigotes and that these activated DCs, in turn, stimulated NK cell activation 

mostly via cell contact-dependent mechanisms (Sanabria et al., 2008). 

 Direct stimulation of NK cells in leishmaniasis has also been described. Live 

promastigotes of L. donovani and L. aethiopica activated purified NK cells to secrete 

IFN-γ in the absence of  antigen presenting cells (Nylen et al., 2003) and direct 

activation of TLR-2 on NK cells by L. major lipophosphoglycan (LPG) up-regulated 

TLR2 and increased expression of IFN-γ and TNF-α (Becker et al., 2003).  

4.1.11.2 The role of NK cells in infection with Trypanosoma 

cruzi 

A number of studies have described a protective role for NKcells in the innate immunity 

against Trypanosoma cruzi, the agent of Chagas disease. Depletion of NK cells in 

infected BALB/c and C57BL/6 mice led to higher level of parasites, increased mortality 

and a delay of IFN-γ production by T cells (Rottenberg et al., 1988; Une et al., 2000). 

The control of parasitaemia in early infection was associated with the production of IFN-

γ by IL-12 stimulated NK cells (Rottenberg et al., 1988; Cardillo et al., 1996, Gazzinelli 

et al., 1993). Cytotoxic NK cells (or T cells) were found not to be essential for the 

control of T. cruzi in studies with mice having the beige mutation (Hatcher et al., 1981). 

In agreement with this observation Une et al. demonstrated that in experiments with 

IFN-α/β-deficient mice that NK cell cytotoxicity was not crucial for the control of infection 

(Une et al., 2003). In contrast, mice deficient in either perforin/granzyme or Fas/ FasL 

cytolytic pathways suffered from early death and these pathways were important for 
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parasite killing in tissues, implying a possible important role for cytotoxic NK cell in 

immunity (Muller et al., 2003). 

In humans, the importance of NK cells in resistance to Chagas disease has been 

illustrated in numerous studies and was recently reviewed by Sathler-Avelar et al., 

2009. Thus in the early acute human Chagas disease no changes in NK cells were 

observed (Sathler-Avelar et al., 2003), but in the late acute phase of disease there was 

a selective increase in a specific lineage of NK cells (CD16+CD56-) (Sathler-Avelar et 

al., 2009). Furthermore, it was demonstrated that the expansion of CD16+CD56- pre-NK 

cells as well as a higher level of pro-inflammatory monocytes before the activation of T 

cell-mediated immunity is the main feature of the early indeterminate stage of Chagas 

disease. The expansion of pre-NK cells might suggest an important mechanism for 

macrophage activation via the production of IFN-γ (Vitelli-Avelar et al., 2006). An in 

vitro cytokine analysis demonstrated that there was a shift in cytokine profile in NK cells 

upon stimulation with T. cruzi antigens leading to elevated levels of cells producing IFN-

γ, TNF-α, but also IL-4. This may suggest that NK cells could provide protection against 

tissue damage caused by severe inflammation (Sathler-Avelar et al., 2006). However 

the ex vivo cytokine profiles of circulating NK cells and monocytes during early 

indeterminate Chagas disease were similar to those observed in healthy uninfected 

children (Sathler-Avelar et al., 2006). In the late chronic phase of the disease Vitelli-

Avelar et al. observed that in all chronic Chagas disease patients there was an 

increased frequency of circulating NK cells and the percentage of CD3-CD16+CD56+ 

and CD3-CD16+CD56dim NK cells was high in indeterminate patients. This suggested to 

the authors a possible protective role for these NK cells populations in controlling 

morbidity (Vitelli-Avelar et al., 2005).  
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4.1.11.3 The role of NK cells in infection with Toxoplasma 

gondii 

Early studies by Hauser et al. indicated that NK cells had enhanced cytotoxic activity 

against T. gondii in in vitro infected macrophages (Hauser et al., 1982; Hauser and 

Tsai, 1986). Similar to the findings with Leishmania, NK cell cytotoxicity may have been 

of minor importance as no effect on survival was seen in studies with beige mice 

(Hughes et al., 1988). The severe outcome of disease after NK cell depletion in T. 

gondii-infected mice suggested an important a protective function of NK cells other than 

cytotoxicity (Hunter et al., 1995). 

Both indirect and direct modes of activation of NK cells have been described. In an in 

vitro study NK cell activation was absolutely dependant on IL-12-producing 

macrophages (Gazzinelli et al., 1993). Other reports also described a role for DCs in 

the recognition of T. gondii and the stimulation of NK cells (Sher et al., 2003).  

The effect of different cytokines on NK cell activity against T. gondii antigen in vitro has 

also been described. IL-12, IL-15 and TNF-α were involved in IFN-γ production by 

cultured splenocytes obtained from SCID mice, while IL-10 inhibited IFN-γ release 

(Hunter et al., 1994). Further in vivo study revealed that intraperitoneal T. gondii 

infection of wild-type C57BL/6 mice and IL-15-/- mice produced similar serum levels of 

IFN-γ 7 days following infection and suggesting that IL-15 is not required for in vivo 

activation and expansion of NK cells (Lieberman et al., 2004).  

A study by Goldszmid et al. confirmed the importance of NK cells in immunity to T. 

gondii and showed that NK cell activity could promote the induction of an early 

protective CD8+ T cell response in an IFN-γ-dependent matter (Goldszmid et al., 2007). 

Although NK cells are known for the production of proinflammatory cytokines, mainly 

IFN-γ, they are also capable of releasing IL-10 (Deniz et al., 2008). In the case of 



170 

 

systemic toxoplasmosis, NK cells were the first and the most frequent IL-10-expressing 

cell population induced in non-lymphoid tissues. NK cell release of IL-10 acts to inhibit 

the pathogen-stimulated production of IL-12 by DCs and therefore appeared to 

participate in the immunosuppressive mechanisms of the infection (Perona Wright et 

al., 2009) 

4.1.11.4 The role of NK cells in infection with Neospora caninum 

Neospora caninum is a relatively recently described intracellular apicomplexan parasite 

that is closely related to T. gondii (Dubey et al., 2002) andis a major cause of abortion 

and congenital infection in cattle worldwide (Dubey et al., 1996). Whereas oocysts shed 

in cat faeces is a major source of infection for T. gondii, oocysts from dog faeces infect 

cattle. It has been claimed that nonhuman primates have been experimentally infected 

leading to a disease that had notable similarities to toxoplasmosis in humans (Barr et 

al., 1994). Cell-mediated immunity and IFN-γ are major components of immunity 

against this pathogen (Innes et al., 2002, Innes et al., 1995, Baszler et al., 1999). 

Boysen et al. demonstrated an important role for NK cells in the immunity against this 

parasite. In vitro stimulation of NK cells with tachyzoites directly triggered the 

production of IFN-γ independently of IL-12 but expression could be enhanced by the 

addition of the cytokine. A similar response was detected in cocultures of NK cells and 

N. caninum infected fibroblasts. It was also shown that in culture, NK cells had 

increased cytotoxicity towards infected fibroblasts in comparison to uninfected 

fibroblasts, mainly by a perforin-mediated mechanism. Furthermore, this was the first 

study to describe the infection of NK cells with this intracellular parasite (Boysen et al., 

2005). 
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4.1.11.5 The role of NK cells in infection with Plasmodium 

Studies with experimental mouse models and with human P. falciparum indicate a 

significant role for NK cells in the early control of infection and in establishment of the 

adaptive immune response (Roetynck et al., 2006). 

In studies with non-lethal P. yoelii and P. chabaudi,it was demonstrated that infection 

with parasitised red blood cells (pRBC) was associated with an early burst of IFN-γ 

activity 24 h after challenge. This response appeared to be partially dependent on NK 

cells, since immunocompetent mice depleted of NK cells by anti-asialo GM-1 (ASGM-1) 

antibody showed a reduced IFN-γ response 24h postinfection and failed to control the 

infection (Mohan et al., 1997, De Souza et al., 1997). Similar results were obtained in 

NK cell-depleted SCID mice using ASGM-1 antibody (Choudhury et al., 2000) and 

these mice died much earlier than the control group (Choudhury et al., 2000). 

Infection of Rag2-/- and Rag2-/-γc-/- mice initiated with P. yoelii sporozoites confirmed a 

significant role for NK cells in resistance against malaria as the Rag2-/-mice were more 

resistant.  The same study demonstrated that NK cells were cytotoxic to YAC-1 tumour 

cells and pre-erythrocytic infectedliver cells stages in vitro but not to the erythrocytic 

stages. These findings suggested a protective role for NK cells in the pre-blood stage of 

infection with P. yoelii (Roland et al., 2006). 

In contrast to the earlier studies, Couper et al. found no clear role for either T cells, NK 

cells or IFN-γ in controlling the early P. yoelii infection. However, depletion of 

monocytes/macrophages exacerbated parasite growth and anaemia during both lethal 

and nonlethal acute P. yoelii infections, indicating that there is an IFN-γ-, NK cell- and T 

cell-independent pathway for induction of effector macrophages during acute malaria 

infection (Couper et al.,2007). 
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Studies with P. falciparum have suggested a protective the role for NK cells in human 

malaria.  NK cell from the blood of patients were shown to be responsible for an IFN-γ 

response in vitro (Artavains-Tsakonas and Riley, 2002). This activation was mainly 

dependant on IL-12 and to a lesser extent on IL-18 (Artavains-Tsakonas and Riley, 

2002). A study by Orago and Facer also found that purified NK cells from healthy and 

P. falciparum-infected individuals directly lyse parasitistised erythrocytes in vitro (Orago 

and Facer, 1991). In an experimental study with  immunised individuals, elevated levels 

of IFN-γ and soluble granzyme A were found at the time of parasite release from the 

liver into the circulation, suggesting the possible role for inflammatory cytokines and 

cytotoxicity in the initial defence against blood stage of infection (Hermsen et al., 2003). 

Based on these findings, Korbel et al., have suggested that the activation of human NK 

cells by blood stages of infection depended on at least two signals: cytokine release by 

accessory cells such as macrophages and DCs and by direct recognition of infected 

cells by NK cell receptors (Korbel et al., 2004).  

Thus NK cells seem to play a significant role in the early innate immune responses 

against different specious of Plasmodium via the production of IFN-γ and via the direct 

killing of target cells, although contradictory observations have also been made.  
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4.1.12 Clinical applications of NK cells and their role in 

some human non-infectious diseases and pregnancy 

4.1.12.1 NK cells in cancers 

Different in vitro studies from human and other mammalian species, as well as in vivo 

studies in mice and rats have provided evidence for involvement of NK cells in 

immunity against tumours (Trinchieri et al., 1989). In vivo murine studies using 

antibodies to deplete NK cells have supported an anti-tumour activity of NK cells. 

However, since the antibodies used in many studies were not just selective for NK 

cells, caution is therefore required in interpreting results obtained from these studies 

(Vivier et al., 2008). Nevertheless, other studies support a role for NK cells in the 

control of tumour development in mice. Mouse NK cells were involved in the rejection of 

transplanted tumours and the presence or absence of NK cell receptor ligands on the 

cell surface of tumour cells made them more susceptible to NK cell-mediated lysis 

(Stewart and Vivier, 2007). In other experimental studies, activation of NK cells induced 

subsequent development of T cell responses to tumour cells (Diefenbach et al., 2001). 

Moreover, blocking of NK cell Ly49 inhibitory receptors in mice increased NK cell 

activity against tumour cells (Koh et al., 2001). NK cells are also mediators of the anti-

tumour effects of several cytokines such as IL-2, IL-12, IL-18 and IL-21 (Stewart and 

Vivier, 2007). 

Clinical and experimental studies confirm an important role for NK cells in human 

cancers and their therapy. In an 11-year follow up epidemiological survey, it was shown 

that the extent of NK cell activity in peripheral blood is associated with cancer risk in 

adults. Thus low NK cell activity is associated with increased cancer risk (Imai et al., 

2000). Studies with intratumoral NK cells have faced difficulties because of the low 
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number of these NK cells and the difficulties in isolating them. However more recent 

studies have disclosed the phenotypic status and function of NK cells in tumour site 

and in peripheral blood (Levy et al., 2011). The presence of NK cells in the tumour site 

indicated a good prognostic factor against different carcinomas (Coca et al., 1997, 

Ishigami et al., 2000 and Villegas et al., 2002). All the evidence supporting the role of 

NK cells in tumour control encouraged the application of NK cell-based 

immunotherpautic strategies. These approaches could be generally summarised into 

two main categories (Levy et al., 2011) 1) allogeneic or autologous transfer of NK cells 

(Ruggeri et al., 2007), 2) infusion of tumour-specific monoclonal antibodies that trigger 

antibody-dependent cytotoxicity by NK cell cytotoxicity and IFN-γ secretion (Terunuma 

et al., 2008). Both approaches can be improved with co-administration of cytokines that 

enhance NK cell expansion and function. Thus NK cells play an important role in 

immunity against tumours and provide a potential tool for cancer therapy. 

4.1.12.2 NK cells in human autoimmunity 

Autoimmune diseases commence in steps, including release of self-antigens from the 

target organ, a priming step in secondary lymphoid organs and immune cells homing to 

the target organ/tissue and subsequent tissue damage and NK cells can act at all these 

stages (Flodstron-Tullberg et al., 2009). Autoimmune diseases with the involvement of 

NK cells include: multiple sclerosis (MS), rheumatoid arthritis (RA), systemic lupus 

arthritis, and type I diabetes mellitus or in conditions associated with autoimmune 

diseases such as macrophage activation syndrome (MAS). 

In MAS, NK cell function was found to be absent or depressed with significant decrease 

of NK cell cytotoxicity, and this resulted in increased T cell and sustained macrophages 

activation and the production of large quantities of proinflammatory cytokines (Ravelli, 
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2002). NK cells can also accumulate in certain inflammatory lesions and in the 

presence of the appropriate cytokine environment can engage with monocytes to 

amplify the inflammatory response. Rheumatoid arthritis (RA) represents a good model 

of this chronic inflammatory process (Dableth et al., 2004). Patients with MS were 

found to have fewer blood NK cells compared with healthy individuals and NK cells 

isolated from those patients were found to be impaired in effector function (Vranes et 

al., 1989). Supporting a protective role for NK cells, MS patients who were in remission 

stage had high frequencies of CD95+ (Fas) cells in their blood. These cells are 

distinguished by the production of TH2 cytokines and can actively suppress the 

pathogenic T cells that can enhance inflammatory responses in the CNS (Takahashi et 

al., 2001). Both reduction in numbers and functions of NK cells were described in 

studies with patients with type I diabetes (Flodstron-Tullberg et al., 2009). Moreover, 

some individuals with naturally occurring mutations in genes that cause defects in NK 

cells typically suffer chronic infections in childhood and autoimmune manifestations 

later in life (Monis-Teisserence et al., 1999). 

4.1.12.3 NK cells in pregnancy 

Enrichment of natural killer cells is observed in the pregnant endometrial tissue in many 

species. These cells represent a distinct subset of NK cells that are able to secrete pro-

angiogenic factors such as vascular endothelial growth factor and placental growth 

factor (Hanna et al., 2006). They play a role in the remodelling of the arterial system 

that support maternal endometrial tissue at sites of implantation and help further 

placental development (Hanna et al., 2006). 
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4.1.13 The role of NK cells in infection with 

Cryptosporidium species. 

The exact role of NK cells in innate immunity to C. parvum is unclear but some studies 

imply these cells may be involved. Human peripheral blood NK cells treated with IL-15 

were shown to have cytolytic activity against human intestinal epithelial cell lines 

infected with C. parvum and intestinal expression of this cytokine has been detected in 

humans (Dann et al., 2005). The same study also proposed that the activation receptor 

NKG2D was involved in cytotoxicity since its ligand, MICA, had increased expression in 

an infected human epithelial cell line and also in the intestinal epithelium of infected 

patients. Also, mice with the beige mutation that have NK cells but are deficient in NK 

cell cytotoxicity (Bannai et al., 2000) developed heavier C. parvum infection than mice 

with normal NK cell functions (Enriquez and Sterling, 1991). 

In vitro studies have also examined the activity of NK cells in the presence of 

sporozoite antigen. SCID mouse splenocytes (lacking T and B cells) produced IFN-ү 

after stimulation with purified live C. muris sporozoites. The production of IFN-γ 

decreased when NK cells were depleted in the presence of anti-asialo GM1 antibodies 

and complement in an antibody concentration dependent fashion. Similarly, IFN-γ 

levels were reduced by treatment with anti-IL-12 and anti-TNF-α neutralizing 

antibodies, while anti-IL-10 on the other hand increased IFN-ү release (McDonald et al., 

2000).  

 The above observations support a role for NK cells in the innate immune response to 

C. parvum but the results of early murine studies could not provide evidence for an in 

vivo protective role for these cells. Treatment of adult SCID mice with anti-asialo GM1 

antibodies that depletes NK cells failed to show any effect on the course of infection 

(Ungar et al., 1991; McDonald and Bancroft, 1994).  Further work in this area is 
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required, therefore, and this project aims to investigate further the role of NK cells in 

immunity to C. parvum. 

4.1.14 Hypothesis and aims 

As discussed above, NK cells are important in immunity to other intracellular parasitic 

protozoa. However, although some studies provide indirect evidence for a protective 

role for NK cells in innate immunity to C. parvum, clear unequivocal evidence for 

involvement of these cells is still lacking. In this Chapter the hypothesis is that NK cells 

play a central role in the protective innate immune response to C. parvum, in part by 

producing IFN-γ 

The aims are therefore: 

1. To study in vitro C. parvum- mediated activation of IFN-γ by NK cells and 

regulation of this activity. 

2. To investigate splenic NK cell activity in severely infected adult SCID mice. 

3. To clarify the protective role of NK cells in vivo using gene knockout strains of 

immunocompromised mice, including one that lacks NK cells. 
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4.2 MATERIALS AND METHODS 

4.2.1 Antibodies 

Antibodies to murine IL-12, IL-15, IL-1 and TNF-α were obtained from R&D Systems. 

The concentrations of antibodies employed were based on results of preliminary 

experiments with a wide range of concentrations. Titrated sheep anti-IFN-α/β serum 

was a gift from Dr Michael Tovey (Institute Andre Lwoff, Villegiuit, France). The H22 

hamster anti-mouse IFN-γ IgG monoclonal antibody (R&D Systems) in PBS was 

employed to neutralise IFN-γ. The antibody (100μg in 100μl PBS) or PBS alone 

(control) was administered ip before oocyst inoculation. 

4.2.2 RNA extraction, semi-quantitative and real-time 

quantitative PCR. 

Extraction of RNA from intestinal tissue samples from Rag2-/- and Rag2-/-үc-/- mice and 

reverse transcription to cDNA were performed as described in Chapter 2. 

For real-time quantitative PCR, amplification was achieved with 20pmol of each 

oligonucleotide primer. The primer sequences were as follows: murine β-actin forward 

CCT TCC TTC TTG GGT ATG GAA T and reverse GCA CTG TGT TGG CAT AGA 

GGT (106 bp); murine IFN-γ forward GCC AAG TTT GAG GTC AAC AAC and reverse 

ATC AGC AGC GAC TCC TTT TC (121bp). Reaction mixtures were setup to a final 

volume of 20µl using a total of 100ng cDNA, 20pmol of each primerand 10µl FastStart 

SYBR Green master mix. 
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4.2.3 Purification of NK cells by magnetic activated cell 

sorting 

NK cells were purified by magnetic separation using magnetic microbeads conjugated 

with an antibody specific for NK cells. A SCID splenocyte suspension was prepared as 

described previously. The cells were centrifuged and resuspended to 1×107 in 90µl of 

buffer (PBS with 0.5% BSA and 2mM EDTA). The cells were incubated for 20 minutes 

with 10µl of CD49b (DX5) magnetised microbeads (Miltenyi Biotec) at 4°C, then 

washed in 1-2ml of buffer, and re-suspended in 1ml of buffer. A miniature magnetic 

activation cell sorting (MACS) column (Miltenyi Biotec) was initially stabilized at the 

MACS separator, then rinsed with 3ml buffer. The cell suspension was then passed 

through the column. Unlabeled cells passing through were collected and remaining 

unlabelled cells obtained after the column was washed 3 times with 3mls of buffer. To 

collect CD49b-labelled cells, the column was detached from the separator, filled with 

5ml of buffer and immediately flushed out with the supplied plunger. 
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4.3 RESULTS 

4.3.1 In Vitro splenic NK cell production of IFN-γ 

induced by C. parvum antigen 

 

4.3.1.1 Stimulation of IFN-ү production by SCID splenocytes 

cultured with C. parvum oocysts 

The first study was designed to investigate if C. parvum oocysts would stimulate SCID 

mouse splenocytes to produce IFN-ү. The cells were seeded in different numbers 

(1×105, 2×105 or 4×105) into 96-well plates and were either co-cultured with 2×105 

oocysts or had no parasite stimulation. Supernatants were collected after 48h 

incubation at 37oC and production of IFN-ү was measured by ELISA. As shown in Fig 

31, low levels of IFN-ү were detected in supernatants from unstimulated cells or from 

cell numbers up to 2X105, but a significant amount of cytokine was produced in cultures 

with 4×105 cells (p<0.0032). This result suggests that 4X105 cells is sufficient for 

stimulation of IFN-γ production by C. parvum antigen. This number of cells was used in 

subsequent experiments.  
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Figure 31.ELISA measurement of IFN-γ production by SCID splenocytes 

following stimulation with C. parvum oocysts. A significant level of IFN-γ 

was detected with 4x105 cells (*p <0.0032). 

 

4.3.1.2 The effect of different numbers of C. parvum oocysts on 

the release of IFN-ү from splenocytes. 

To establish an optimal number of oocysts that would stimulate SCID mouse 

splenocytes to produce IFN-ү, 4×105 cells in a 96 well plate were stimulated with 

different numbers of oocysts. The level of the cytokine in the supernatants was then 

measured. As shown in Fig 32, all oocyst numbers stimulated significant IFN-γ 

expression (with a significance of p<0.04 observed with the highest number of oocysts) 

and the highest amount occurring with 1-2×105oocysts (2x105 oocysts: p<0.0057). 

2X105 oocysts was therefore used in all the followingexperiments that involved C. 

parvum stimulation of cultured splenocytes. In cultures with 2X105 oocysts, IFN-γ 
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expressions was significantly greater than in cells stimulated with 1x106 oocysts (p 

=0.03). 
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Figure 32.The effect of different numbers of C. parvum oocysts on IFN-γ 

production in cultured SCID splenocytes as measured by ELISA. All 

numbers of oocysts were able to stimulate the cells to produce IFN-γ. The 

highest cytokine expression was observed with 2X105 oocysts (*p<0.0057). 
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4.3.1.3 Comparison of the effect of C. parvum oocysts and 

sporozoites on splenocyte stimulation 

To determine if sporozoites were important in stimulating IFN-ү, a comparison was 

made of the ability of purified sporozoites and oocysts to induce cytokine production. In 

addition, whether live sporozoites provided better stimulation than killed parasites was 

investigated.  Sporozoites were excysted from oocysts by incubation with the bile salt 

sodium deoxycholate in a concentration of 0.1% wt/volume for 90 minutes at 37°C. 

Excysted sporozoites were purified from oocysts and oocyst shell debris by passing 

through a 5 μm diameter pore filter. Microscopic observation confirmed that sporozoites 

were completely free of oocysts and empty oocyst shells. The sporozoites were then 

washed with culture media, resuspended and counted microscopically by using a 

haemocytometer. To obtain killed parasites, sporozoites were frozen at -80OC for 3 

hours. 

SCID mouse splenocytes were cultured as before and stimulated with either 2x105 

oocysts or 8x105 live or freeze-thawed sporozoites as an equivalent (4 sporozoites in 

an oocyst).  Similar high amounts of IFN-ү were detected in from the different C. 

parvum preparations but not from control samples (Fig 33). These results therefore 

indicated that the sporozoite and not the oocyst shell is the predominant stimulant for 

IFN-γ production by cultured splenocytes and that the sporozoites need not be alive to 

provide a strong antigenic stimulus. 
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Figure 33. IFN-γ levels as measured by ELISA in cultured splenocytes 

stimulated with either C. parvum oocysts, live or dead sporozoites. 

Splenocytes were stimulated with live oocysts or the equivalent number of 

live/ dead sporozoites and supernatants were tested for IFN-γ release. No 

differences in IFN-γ levels were detected from the different antigen 

stimulated samples (p<0.13, p=0.11). 

 

4.3.1.4 The effect of treatment with different cytokines on IFN-ү 

production by SCID mouse splenocytes 

Many cytokines activate NK cells to produce IFN-ү including IL-15, IL-12, IL-18, IL-1, 

TNF-α, IL-10 and type IFNs (Lieberman and Hunter2002; Zucchini et al., 2008). 

Therefore, the following experiments studied the role of various proinflammatory 

cytokines in stimulating NK cells. This was done by employing in the cell-oocyst culture 

system neutralising antibodies for individual cytokines. 

4.3.1.4.1 The effect of anti-IL-12 

Studies with other models of infections have indicated that IL-12, a major product of 

DCs, is a central cytokine in NK cell activation to produce IFN-ү in response to infection 
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(Lieberman and Hunter2002). It has also been established that IL-12 is a major 

stimulus for IFN-γ production in neonatal SCID mice infected with C. parvum (Urban et 

al., 1996). Therefore it was necessary to investigate the role of this cytokine on NK cell 

activation by C. parvumin vitro.  SCID mouse splenocytes were stimulated with C. 

parvum oocysts and cultured with or without different concentrations of anti-IL-12 

neutralising antibody. Fig 34 demonstrates a significant inhibition of IFN-ү secretion in 

antibody treated cultures in comparison to untreated cells and this effect was dose-

dependent (p<0.007). 
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Figure 34.The effect of anti- IL-12 antibody on IFN-γ production by SCID 

splenocytes as measured by ELISA.Cultured splenocytes were cultured with oocysts 

alone or with different concentrations of anti–IL-12 antibody and their ability to release 

IFN-γ was tested by ELISA. 
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4.3.1.4.2. The effect of anti-TNF α, anti- IL-15 and anti-IL-1 

Some other cytokines known to be involved in NK cell activation were examined. 

Spleen cells were stimulated with C. parvum antigen and incubated with three different 

concentrations of neutralising antibodies to TNF-α, IL-15 or IL-1. Positive controls were 

cultured with the oocysts only. At 48h postinfection IFN-γ production in the 

supernatants was measured by ELISA. Confirming previous results a significant level of 

IFN-γ was measured from supernatants of antigen stimulated cells. This effect was 

significantly reduced with all antibody-treated cells and was slightly dose-dependent. 

The strongest inhibitory effect was observed in cells treated with anti-TNF-α (p=0.0007) 

while the weakest effect was with anti-IL-1 (p=0.02). Fig. 35 illustrates these results. 
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4.3.1.4.3 The effect of anti-type I IFN on IFN-γ production  

Previous studies with other infection models indicated that type I IFNs produced by 

DCs can stimulate NK cells directly or indirectly (Zucchini et al., 2008). Also, as 

indicated in Chapter 3 of this thesis, type I IFNs play a protective role in innate 

immunity to C. parvum. Hence, it was important to study the effect of type I IFN on 

splenocyte stimulation by C. parvum oocysts. This was done using a sheep anti-mouse 

type I IFN serum that has been used extensively by many groups. There was a 
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Figure 35 .The effect of treatment with different cytokine neutralising antibodies 

on IFN-γ production by SCID mouse splenocytes.Cultured splenocytes were 

stimulated with an antigen in the presence or absence of different concentrations of 

antibodies to either TNF-α, IL-15 or IL-1 and IFN-γ was measured by ELISA. 

Treatment with antibodies significantly reduced IFN-γ expression particularly in cells 

treated with anti-TNF-α (p=0.0007). 
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significant decline of IFN-γ expression in supernatants from antibody-treated cells in 

comparison to the control samples and this was dose dependant (Fig. 36; p<0.00052).  
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Figure 36The effect of treatment with anti-type I IFN on IFN-γ production by SCID 

splenocytes measured by ELISA. Treatment with anti-type I IFN decreased IFN-γ 

production in a dose-dependent matter (*p<0.00052). 

 

The results of the previous three experiments indicate that IL-1, IL-12, IL-15, TNF-α and 

type I IFN stimulate IFN-γ production in SCID mouse splenocytes after stimulation with 

C. parvum. 
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4.3.1.5 The effect of anti-type I IFNs on IL-12 production by SCID 

splenocytes 

As well as IL-12, DCs are a major source of type I IFNs that stimulate DCs further and 

also activate NK cells (Zucchini et al., 2008). An examination was made therefore of the 

effect of type I activity on IL-12 expression during stimulation of SCID mice splenocytes 

with oocysts. Cultured splenocytes were stimulated with oocysts in the presence or 

absence of anti-type I IFN serum (diluted 1/50 from the 3.2X105 U/ml of original 

material). The supernatants were collected after 24 h and IL-12 level was measured by 

ELISA. 

Fig 37 demonstrates there was significant expression of IL-12 in response to C. parvum 

stimulation (p<0.03) and this was decreased by treatment with anti-type I IFN antibody 

(p<0.0001). These results suggest that type I IFN directly or indirectly enhances 

production of IL-12 by splenocytes in response to C. parvum.  
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Figure 37.ELISA measurement of IL-12 production by SCID mouse 

splenocytes in the presence of C. parvum antigen alone or with anti-type 1 

IFN antibody. IL-12 production by splenocytes was inhibited by the treatment 

with anti-type 1 IFN antibody (*p<0.0001) 
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4.3.1.6 NK cells in SCID mice splenocytes as a source of IFN-γ 

The previous results indicated that in response to C. parvum stimulation, culture 

splenocytes produced significant amount of IFN-γ through the activity of different 

cytokines and as NK cells represent a major cellular source of IFN-γ, it became 

paramount to establish if these cells are the source of this cytokine in C. parvum 

stimulated SCID splenocytes. 

4.3.1.6.1 Isolation of NK cell enriched and depleted cell 

populations from SCID splenocytes 

NK cells were isolated from SCID mouse spleen cell suspension using CD49b (DX5) 

coated microbeads as described in Materials and Methods. Cell suspensions from 

positively and negatively selected cells as well as unfractionated splenocytes were re-

suspended in FACS buffer then cultured with anti CD49b antibody and analysed by 

FACS. 

As shown in Fig 38, 5% of the total unsorted cells stained for CD49b, while 80% of the 

NK cell enriched population were CD49b+ and only 1% of the NK cell depleted 

population were CD49b+.  
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Figure 38. FACS analysis of SCID splenocytes before and after positive isolation 

of NK cells 

 

4.3.1.6.2 IFN-ү production by NK cell enriched and NK cell 

depleted SCID mouse splenocytes stimulated with C. parvum 

oocysts 

The NK cell enriched and depleted populations plus original cell population were 

seeded in a 96-well plate and stimulated with oocysts. As shown in Fig 39, no IFN-γ 

was detected in supernatants of negatively selected cells depleted of NK cells whereas 

IFN-γ was detected in cultures with unfractionated and NK cell enriched populations 

stimulated with antigen (*p<0.012). A significantly higher amount of cytokine was 

obtained with the NK cell enriched population, however (**p<0.013). 
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Figure 39. ELISA measurement of IFN-γ production by NK cell enriched or 

depleted splenocyte populations after stimulation with C. parvum antigen. NK 

cells were purified by MACS and IFN-γ production by this population was compared 

with that of the NK cell depleted and or original populations. 

 

4.3.1.6.3 The effect of C. parvum stimulation on type I IFN 

production by macrophages and dendritic cells 

As it was already shown treatment of splenocytes with antibody to type I IFN decreases 

their ability to produce IL-12, it was interesting to see if splenocytes culture depleted of 

NK cells that are assumed to contain macrophages and DCs can produce type I IFN in 

response to stimulation with C. parvum. 

Splenocytes depleted of NK cells by MACS using CD49b (DX5) MicroBeads. were 

stimulated with C. parvum oocysts or cultured with medium only for the negative 

control. After incubation period of 24h supernatants were collected to test the release of 
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IFN–α using a bioassay of anti viral activity employing the murine fibroblastic cell line 

L929 infected with EMCV (method discussed earlier in Chapter 3). As illustrated in Fig 

40, supernatants from oocysts stimulated cells, showed a significant increase (p<0.01) 

of antiviral activity in comparison to the unstimulated cells indicating the production of 

type I IFN by cells depleted of NK cells.  
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Figure 40.Antiviral assay to measure type I IFNs production by cultured 

splenocytes lacking NK cells.Splenocytes were depleted of NK cells by 

MACS, stimulated with C. parvum and type IFN I production measured in the 

supernatants using a bioassay with standards of IFN-α4. 
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4.3.2 Splenic NK cell activity in chronic infection of 

SCID mice 

Previous work in this lab studied chronic infection of adult BALB/c SCID mice with C. 

parvum. Results indicated that infection of adult SCID mice increased only gradually 

and became fulminant and caused death by about 3 months after infection (McDonald 

and Bancroft, 1994). Interestingly, when mice were infected as neonates there was an 

early acute phase of infection at the peak of which the animals produced many oocysts. 

After recovery, a similar pattern of infection to that described in adults was obtained 

(Fig 41). 
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Figure 41. Pattern of chronic C. parvum infection in SCID mice infected as 

neonates. An early acute phase was followed by low level of infection for 

several weeks, then the final fulminant phase occurs with most mice dying. 
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The long term survival of SCID mice is dependent on IFN-γ (McDonald and Bancroft, 

1994). Therefore experiments were designed to examine NK cell activity in chronically 

infected mice that were shedding large numbers of oocysts and showing morbidity. 

4.3.2.1 Chronic C. parvum infection of adult SCID mice 

Six weeks old SCID mice were infected with 1×106 oocysts by oral gavage. Stool 

samples were collected weekly and the level of infection was assessed by counting 

parasites microscopically. The level of infection initially was very low but after about 

100 days postinfection mice were starting to show signs of morbidity and would 

eventually die. Signs of illness included: piloerection, weight loss, soft stool and 

jaundice seen in ears (and sometimes paws).  

At this stage the number of parasites in stool samples were usually found to be 

relatively high (>70 oocysts/50 high powered fields). Some animals that looked 

jaundiced, however, shed few oocysts but histopathological examination of hepatic 

tissue samples confirmed a hepatic involvement as a high number of oocysts was 

detected in the bile ducts (Fig 42).  
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Figure 42 Hepatic duct C. parvum infection of a SCID mouse. 

Chronically infected SCID mouse looked jaundiced and hematoxylin/eosin 

stained liver sample confirmed hepatic bile duct infection (arrows). 
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4.3.2.2 IFN-ү production by splenocytes of severely infected 

mice 

Pooled splenocytes from severely infected mice or mildly infected mice (<10 oocysts/50 

fields) or from healthy uninfected control mice of the same age were cultured in 96-well 

plates with or without stimulation with C. parvum oocysts. Culture supernatants were 

collected after 48 h and the production of IFN-ү was measured by ELISA. 

Fig 43 shows that after stimulation with the parasite antigen there was no increase in 

IFN-ү in supernatants of highly infected mice in comparison to a significant increase in 

cytokine level in supernatants obtained from splenocytes of uninfected animals 

(*p<0.007). Interestingly, a higher concentration of IFN-γ was measured in 

supernatants from cells of mildly infected mice compared with uninfected mice 

(**p<0.0006).  
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Figure 43. ELISA comparing IFN-γ levels in C. parvum stimulated splenocytes 

at different stages of the infection of SCID mice. When mice showed signs of 

severe disease, splenocytes were obtained and cytokine production was compared 

to that of cells from mildly infected or uninfected mice. 
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4.3.2.3 IFN-γ production by splenocytes of mice with known 

hepatic infection 

Splenocytes from SCID mice with hepatic involvement but were shedding few oocysts 

were also tested for their ability to be stimulated for IFN-ү production by oocysts. As in 

the previous section there was no increase in antigen-stimulated IFN-ү production from 

cells of the hepatically infected mice. However, significant levels of the cytokine were 

measured in supernatants from antigen stimulated cells obtained from uninfecetd mice 

(p<0.0004) (Fig 44). 
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Figure 44. Measurement of IFN-γ levels in cultured splenocytes of mice 

with C. parvum infection of the hepatic system. Antigen did not increase 

IFN-γ production by cells from mice with hepatic infection.  
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4.3.2.4 Analysis of the NK cell population in splenocytes of 

chronically infected mice 

The previous results indicated that cultured splenocytes in SCID mice with chronic 

infection at the fulminant stage lose their ability to produce IFN-ү production in 

response to antigen stimulation. In the present in vitro study NK cells were shown to be 

a major cellular source of this cytokine. Hence it is it is possible that during severe 

infection there was a loss of NK cells or a defect in the ability of NK cells to produce 

IFN-ү. Therefore it was essential to analyse the content of NK cells in SCID mouse 

splenocytes at the late stage of infection. 

Splenocytes from infected mice showing morbidity and shedding many oocysts and 

from uninfected control mice were incubated with FITC-conjugated anti-CD49b as 

described in the Materials and Methods and prepared for FACS analysis. 

Interestingly, in comparison to splenocytes from uninfected animals that had 11.4% 

CD49b+ cells, no cells of this type were found in splenocytes of heavily infected mice 

(Fig 45). This suggested an absence of NK cells in spleens of strongly infected mice 

which may explain the failure of production of IFN-γ in the spleens of ill mice. 

Alternatively, infection causes loss of CD49b expression accompanied by loss of ability 

to express IFN-γ.  
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Figure 45.FACS analysis of NK cell population in splenocytes of uninfected and 

severely infected SCID mice. 
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4.3.3 In vivo studies to investigate the role of NK cells 

in immunity to C. parvum 

As discussed earlier in this thesis, previous in vivo investigations suggested indirectly 

that NK cells could play a protective role in innate immunity to Cryptosporidium 

(McDonald et al., 2000; Ungar et al., 1991), but there has been no direct evidence that 

they are an essential component.In this section therole of NK cells and IFN-γ in the 

innate responses to C. parvum infection is further studied. This was achieved using 

adult and neonatal mice of the C57BL/6 Rag2-/- strain that lack T and B cells but have 

normal NK cells and C57BL/6 Rag2-/-γc-/- that, in addition, lack NK cells due to the 

absence of the common γc chain component of IL-15R (as well as some other cytokine 

receptors, such as IL-2 and IL-7) and so have no IL-15 function that is essential for NK 

cell development in mice (Di Santo, 2006). Indeed, these mice have no lymphocytes so 

their immune response is highly dependent on myeloid cells. 

4.3.3.1 C. parvum infection of adult Rag2-/- and Rag2-/-γc-/- mice 

Weaned (age 4-5 weeks) Rag2-/- and Rag2-/-үc-/- mice were infected with 1×106 C. 

parvum oocysts. The infection was measured by counting parasites in acid-fast stained 

stool smears. Initially, the level of infection was followed daily and then it was checked 

every week. During the first week of infection, oocyst production was observed in both 

mouse strains and at the peak this was significantly higher in Rag2-/-үc-/- (*p<0.003). (In 

older mice this initial acute phase of infection was sometimes absent). 

Following the initial acute infection, both mouse strains had a period of remission 

followed by relapse with a gradual increase in the numbers of oocysts being shed. In 

the case of the Rag2-/-үc-/- mice, the remission period was shorter and, importantly, by 

day 60 the infection became more progressive and the numbers of oocysts shed were 
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significantly higher than in Rag2-/- mice (**p<0.02). Also, from day 91 onward, Rag2-/-үc-

/- mice started to show signs of morbidity.  

On the other hand, the Rag2-/- micehad a longer period of remission and when the 

infection redeveloped in this strain, the numbers of oocysts shed remained significantly 

lower when compared to the Rag2-/-үc-/- mice. By day 140 post infection, all 6 Rag2-/-үc-/-

mice were dead while all Rag2-/- mice still looked healthy. Results are summarised in 

Fig 46 and 47. These observations suggest NK cells are important in innate immunity 

against C. parvum in adult mice.  

 

Figure 46.Trend of C. parvum infection in adult Rag2-/- and Rag2-/- γc.mice 

Adult Rag2-/- and Rag2-/-γc-/- animals were infected by C. parvum oocysts and 

microscopic measurement was made of oocyst shedding in acid-fast stained fecal 

smears from mice at different times of infection. As compared to Rag2-/-mice; 

Rag2-/-γc-/-  mice showed significantly higher oocyst production in both the acute 

and the chronic phase of infection(*p<0.003; and **p<0.02 respectively). 
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Figure 47.Comparison of survival of adult Rag2-/- and Rag2-/-үc-/-mice 

following infection with C. parvum. From about 90 day postinfection and 

onward the Rag2-/-үc-/- mice showed mortalities and by day 140 all mice of this 

group were dead. All the Rag2-/- were still alive at that time. 

 

4.3.3.2 Histological examination of infected colon of Rag2-/-үc-/- 

mice 
To confirm that infection was causing morbidity, colonic tissue samples were obtained 

from Rag2-/-үc-/-mice at different times postinfection and examined histologically 

(method described in Chapter 2). When the animals looked healthy and few oocysts 

(around 5 per 50 fields) were detected in faecal smears, no parasites were observed in 

the crypts and there were no signs of pathology in the colonic sections (Fig 48). 

However, when the mice showed signs of morbidity accompanied by high numbers of 

parasites shed in stool, many crypts were infected with large numbers of parasites. 

Degeneration of the epithelial cells as an outcome of severe infection was also 

observed.  
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Figure 48. Sections of hematoxylin/eosin stained colon of infected adult Rag2-/- 

γc-/- mice taken during the middle (excreting few oocysts) and late stages of 

infection (severe infection). With a low degree of oocyst shedding no parasites could 

be observed in the crypts and there was no sign of pathology. A high degree of oocyst 

shedding accompanied by morbidity was associated with many crypts infected with 

large numbers of parasites and focal degeneration of epithelium. Microscopic study 

was performed at X400 magnification. 

 

 Low degree of infection    High degree of infection 
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4.3.3.3 Measurement of IFN-γ production by splenocytes of Rag 

2-/- -and Rag2-/-γc-/- mice after C. parvum antigen stimulation 

The earlier in vitro studies with SCID mice in this Chapter showed that IFN-ү was 

produced largely by NK cells in splenocytes after stimulation with C. parvum oocysts. 

Hence it was of interest to study the production of this cytokine in splenocytes of Rag2-/-

γc
-/- mice.  

Cultured splenocytes from Rag 2-/- mice and Rag2-/-γc
-/- were stimulated with C. parvum 

oocysts for 48h or left unstimulated before measuring IFN-ү by ELISA. IFN-γ was not 

detected in supernatants from cells of Rag2-/-γc
-/-, but a significant amount of cytokine 

was found in supernatants from cells from Rag 2-/- mice when compared to control 

samples (p<0.006) (Fig 49). These results agree with the earlier finding that SCID 

splenocytes were unable to produce IFN-γ after depletion of NK cells. 
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Figure 49.ELISA for IFN-γ production from cultured splenocytes from Rag 

2-/- mice and Rag2-/-γc-/- after stimulation with C. parvum antigen.A 

significant amount of IFN-γ was found in supernatants from cells of Rag2-/- mice 

but not cells of Rag2-/-γc
-/ mice (p <0.006) 
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4.3.3.4 C. parvum infection of neonatal Rag2-/- and Rag2γc-/- 

mice 

In infection of adult Rag2-/- and Rag2γc-/- mice, apart from during the early acute phase 

it took a long period for the infection patterns to become significantly patent and to 

show consistent differences between the strains. As wild type neonatal animals are 

highly susceptible to infection with C. parvum (Harp et al., 1990) it was of interest to 

examine and compare infections in neonatal Rag2-/- and Rag2-/- γc-/- mice. 

4.3.3.4.1 Infection of 7 day old neonatal mice 

7 day old Rag2-/-and Rag2-/-үc-/-mice were infected with 5×104C. parvum oocysts and 

the level of infection was followed daily by counting parasites in stool smears. At day 4 

postinfection both mouse strains had developed a patent infection. There was a 

significantly higher level of parasite shedding in the Rag2-/-үc-/- mice on subsequent 

days up to day 9 (p<0.05). Interestingly, all mice from both groups survived the infection 

and, importantly, both mouse groups were able to control the infection strongly by day 

11 and only a few parasites could be found by day 13 in stool samples obtained from 

Rag2-/-үc-/- mice. Fig 50 summarises these results. As Rag2-/-үc-/- mice took longer to 

recover, this result demonstrated that, as with adult mice, NK cells are important for 

recovery of neonatal T cell-deficient mice. 
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Figure 50.C. parvum infection in neonatal Rag2-/- and Rag2-/- γc-/- mice. 

At days 7 of age Rag2-/- and Rag2-/-γc-/- animals were infected by oral gavage 

with 5X104 C. parvum and ocysts were counted in faecal samples on days 

shown. 

 

4.3.3.4.2 Infection of 4 day old neonatal mice 

It may seem surprising that neonatal Rag2-/-γc-/- mice could survive infection, although 

they subsequently have the course of infection shown for adults (V.McDonald, 

unpublished data). As the mice were infected at 7 days of age it was considered 

possible that infecting mice at an earlier age, when the immune system would have 

been more immature might have produced more severe outcomes and show greater 

differences between Rag2-/- mice and Rag2-/-үc-/- mice. Hence, patterns of infection 

were studied in mice infected at 4 days of age.  

As shown in Fig 51, and similar to the previous experiment with older mice, for several 

days there was a higher level of oocyst production in Rag2-/-үc-/-mice when compared to 

the Rag2-/- mice, confirming a protective role for NK cells in immunity to this parasite 
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(p<0.04). Also, as before, both groups of mice were able to control the infection after an 

initial rapid rise in parasite reproduction. Cells other than NK cells, therefore, can 

contribute substantially to innate immunity when there is a lack of NK cells.   
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Figure 51.C. parvum infection in Rag2-/- and Rag2-/- үc-/-mice infected at 4 

days of age.4 days old baby mice were infected with C. parvum oocysts and 

infection was measured by counting oocysts in stool smears on days shown. 
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4.3.3.5 The role of IFN-γ in recovery of neonatal mice from 

infection in the absence of NK cells. 

4.3.3.5.1 IFN-γ expression in the intestine of neonatal Rag2-/- 

and Rag2-/- үc-/-mice following C. parvum infection 

The previous results indicated that in the absence of NK cells in Rag2-/- үc-/-mice, there 

is an NK cell-independent mechanism to control the infection. Since IFN-ү is a key 

cytokine in controlling C. parvum infection in wild type mice and SCID mice, it was of 

great importance to measure this cytokine in the intestine of infected Rag2-/- and Rag2-/- 

үc-/-mice. Neonatal Rag2-/- and Rag2-/- үc-/-mice were sacrificed 7 days postinfection, 

during the recovery period, and ileal tissue samples were collected and used to 

measure the expression of IFN-ү by Q-PCR. Samples from uninfected animals of the 

same age were used as the calibrator. 

There was only weak expression of IFN-ү mRNA in the uninfected mice (Fig 52) and, 

surprisingly, there was a significant level of mRNA expression in infected tissues from 

both mouse strains (p≤0.01). Indeed, the expression of IFN-ү in the Rag2-/- үc-/-mice 

was stronger than in Rag2-/- mice, although this was not quite statistically significant 

(p=0.051). This result suggests that in the innate immune response against C. parvum 

infection there can be a major cellular source of IFN-γ other than NK cells. 
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Figure 52.Intestinal IFN-γ expression in neonatal Rag2-/- and Rag2-/- γc-/- mice 

during acute C. parvum infection.Animals were infected by oral gavage at day 7 of 

age and intestinal tissue samples from the small intestine were collected 7 days post-

infection. The amount of intestinal IFN-γ mRNA was quantified by real-time 

quantitative PCR. Infected tissues from both mouse strains expressed significant 

levels (p≤0.01) of IFN-γ compared to low levels detected in uninfected mice. 

Increased, but however insignificant level of IFN-γ was measured in Rag2-/- γc-/- 

(p=0.051). 
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4.3.3.5.2 The effect of IFN-γ neutralisation on infection of Rag 2-

/- and Rag2-/-γc-/- mice 

In view of the previous result further experiments were carried out to determine if IFN-ү 

is essential for the control of infection, particularly in Rag 2-/-үc-/- mice that lack NK cells. 

A study was performed comparing the effect of anti-IFN-ү neutralising antibody (H22 

IgG mAb from hamster) on C. parvum infection in Rag 2-/- and Rag2-/- үc-/- mice. 

Seven-days old mice from each strain were injected ip with either 100µg of anti IFN-ү 

antibody or PBS as a control since a non-reactive hamster IgG was previously shown 

to have no effect on parasite development (McDonald et al., 1992; McDonald and 

Bancroft, 1994). Immediately afterwards all mice were infected with C. parvum and 

oocyst production was measured. 

Figure 53 illustrates that, confirming previous observations, oocyst shedding in the 

control Rag2-/- үc-/- mice was greater than in Rag 2-/- mice controls, this time between 

days 4 and 8 postinfection. Treatment with anti-IFN-γ antibody resulted in an 

exacerbation of infection in both knockout mouse strains when compared to their 

controls (p<0.05). These observations indicate that IFN-γ played an important role in 

the ability of both Rag2-/- and Rag2-/-γc-/- mice to control C. parvum infection. At the 

apparent peak of infection (day 6), the parasite count from antibody-treated Rag2-/-үc-/- 

mice was significantly higher than from antibody-treated Rag2-/- mice (p<0.03). The 

infection level seen in the Rag2-/- үc-/- antibody-treated mice was the highest detected in 

all the in vivo experiments of these studies.  
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Figure 53.Effect of IFN-γ neutralisation on the course of C. parvum infection 

in neonatal Rag2-/- and Rag2-/- γc-/- mice. Seven day old mice were treated 

(ip) with antibody to IFN-γ or PBS as control prior to infection. The level of 

infection was followed by measuring oocyst shedding in the stool. Infection in 

both knockout mouse strains was intensified in the presence of anti-IFN-γ 

antibodies compared with controls (p<0.05). The parasite count at the peak of 

infection was significantly higher in antibody-treated Rag2-/-үc-/- mice than in 

antibody-treated Rag2-/- mice (p<0.03). 
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4.4 DISCUSSION 

NK cells are an important lymphocytic component of innate immunity. They are 

classically involved in the early defence against many viral infections and are also 

recognised for their anti-tumour role. They exhibit strong cytototxic activity and produce 

high levels of pro-inflammatory cytokines. Their role in immunity to different major 

protozoal diseases including toxoplasmoasis, trypanosomiasis, leishmaniasis and 

malaria is well recognised, particularly through the production of IFN-γ. Although NK 

cells can be activated in the presence of cryptosporidial antigen in vitro (although this 

had only been shown for C. muris; McDonald et al., 2000) and despite suggestions 

from in vivo studies that these cells may be involved in innate immunity the exact 

protective role of these cells in vivo has not been clearly described. 

With regard to NK cell cytotoxicity, human peripheral blood NK cells treated with IL-15 

were shown to be cytotoxic against C. parvum-infected human epithelial cell lines and 

expression of this cytokine was detected in intestinal tissue samples of infected patients 

(Dann et al., 2005). This is the only study to demonstrate NK cell cytotoxicity against 

cells infected by Cryptosporidium.  Mice with the beige mutation that have NK cells 

deficient in cytotoxicity (Bannai, M et al., 2000) developed heavier C. parvum infection 

than mice wild type mice, suggesting a protective role for cytotoxic NK cells (Enriquez 

and Sterling, 1991). However, the beige mutation has a similar effect on CD8+ T cells 

although these cells have no major role in immunity (McDonald et al., 2000). 

 The work described in this chapter can be divided into three sections based on the 

focus of the studies and involves NK functions both in vitro and in vivo. 

The first section investigated IFN-γ production by cultured splenocytes stimulated by 

live C. parvum oocysts and the role of NK cells in expression of this cytokine. The 
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spleen cells came from uninfected SCID mice that lack T and B cells but have normal 

NK cells. In a cell culture assay employing 96-well plates, IFN-γ was produced but a 

minimum of 4X105 splenocytes were required to produce a significant amount in the 

presence of 2X105 oocysts. This result agrees with previous findings with C. muris in 

which it was shown that live sporozoites stimulated SCID mouse splenocytes to 

produce IFN-γ (McDonald et al., 2000). A previous study showed that C. parvum oocyst 

antigen induced IFN-γ production by splenocytes from SCID mice but the cells 

expressing IFN-γ were not characterised (Chen et al., 1993). The cell numbers required 

to obtain substantial production of IFN-γ in the presence of C. muris was similar to that 

in the current study. Using 4X105 splenocytes as the standard number in subsequent 

experiments the effect of varying oocyst numbers was examined. The highest level of 

cytokine production was obtained with 2x105 oocysts and, interestingly, lower levels of 

IFN-γ were detected in supernatants from cells which were stimulated with higher 

number of oocysts. This observation might be explained by a higher degree of antigen 

stimulation inducing greater amounts of inhibitory factors including IL-10 or TGF-β that 

are known to reduce NK cell activity in infections (Hunter et al., 1995; Lieberman and 

Hunter., 2002). Another possibility is that strong antigen stimulation induced NK cell 

apoptosis as has been shown with filarial antigen (Babu et al., 2007). However, neither 

expression of inhibitory cytokines nor NK cell apoptosis was examined in this study. 

Under the culture conditions employed at 37oC most oocysts would release sporozoites 

within 1-2h but a question that had to be examined was the possibility that the oocyst 

shell was the prime stimulus for IFN-γ production. Live oocysts and an equivalent 

number of purified sporozoites (X4 as there are 4 sporozoites/oocyst) stimulated a 

similar level of IFN-γ production by splenocytes indicating that the sporozoites were the 

major stimulus for IFN-γ rather than the oocyst shell. Killing of sporozoites by freeze-

thawing did not affect induction of IFN-γ, showing that viability does not affect 
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stimulation of cytokine production. These findings reflect observations with Neosopora 

caninum that heat-killed and live tachyzoites induced similar amounts of IFN-γ (Boysen 

et al., 2006). A study with Leishmania, however, demonstrated that NK cells were only 

capable of producing IFN-γ after stimulation with live Leishmania promastigotes (Nylen 

et al., 2003). One potential limitation regarding the splenocyte stimulation in the current 

work was possible. The experiments did not use a dead oocyst control. It is possible 

that the oocyst wall may have antigenic determinants that can stimulate splenocytes. 

Activation of NK cell functions in response to infections is under the influence of 

different factors including cytokines and chemokines as well as direct cellular 

interaction with other cells, particularly DCs (Zucchini et al., 2009; Cooper et al., 2004). 

Different techniques have been employed to characterise in vitro the NK cell 

involvement in immunity to various microbial pathogens. Purification and depletion of 

the cells are valuable approaches and commonly used methods are the positive 

selection with magnetic microbeads conjugated with antibodies to NK surface markers 

or the use of antibodies to deplete NK cells such as the anti-asialo GM1 or anti-NK 1.1 

antibodies (Souza-Fonesca-Guimaraes et al., 2012). 

In this study, NK cells were purified by positive selection with anti-CD49b microbeads 

and these cells were shown to be the likely major source of IFN-γ in response to C. 

parvum. On the other hand, negatively sorted cells depleted of NK cells failed to 

produce this cytokine in response to antigenic stimulation. These findings agree with 

previous results with C. muris; treatment of SCID mouse splenocytes with anti-asialo 

GM1 plus complement decreased production of IFN-γ in a dose-dependent manner 

(McDonald et al., 2000). Positively selected NK cells were also shown to produce IFN-γ 

in response to N. caninum (Boysen et al., 2006). 

Positive selection of NK cells achieved a population that was only 80% CD49b+ cells as 

demonstrated by FACS analysis, while nearly 100% of the negatively sorted population 
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were CD49b-. Thus, there was the possibility that contaminating cells in the enriched 

NK cell population contributed to production of IFN-γ. In a previous study with 

Leishmania, complete purification of NK cells from human PBMC was achieved using 

magnetic negative selection and the cultured cells were directly stimulated to produce 

IFN-γ by parasite antigen. However, the exact mechanism of direct NK cell activation 

was not established in that study (Nylen et al., 2003). 

Cytokines such as IL-12, IL-15, IL-2, IL-1, IL-23, TNF-α and type I IFNs may stimulate 

NK cell activation in different infection models. (Lieberman and Hunter, 2002; Zucchini 

et al., 2008). A study was made of the effect of neutralising antibodies to different 

cytokines on IFN-γ production by splenocytes. Treatment of cultured splenocytes with 

anti-IL-12 antibody decreased IFN-γ production induced by C. parvum oocysts in a 

dose-dependent manner. Stimulation of splenocytes with C. parvum oocysts also 

induced IL-12 production as measured directly by ELISA. These findings are in 

agreement with the report that IL-12 is important for intestinal IFN-γ expression in 

neonatal SCID mice infected by C. parvum (Urban et al., 1996). IL-12 is a key factor of 

NK cell stimulation in response to other intracellular parasites, including Toxoplasma 

gondii (Hunter et al., 1994). Many studies with Leishmania spp. also support the 

importance of IL-12 in NK cell activation (Schleicher et al., 2007), but a report by Nylen 

et al. demonstrated that IFN-γ production by cultured purified NK cells was independent 

on IL-12 (Nylen et al., 2003).  

Treatment with antibodies to TNF-α, IL-15 and IL-1, all examined in the same 

experiment, decreased IFN-γ production in a dose dependent matter. The most 

effective antibody was anti-TNF-α. A similar inhibitory effect with anti-TNF-α on IFN-γ 

release by NK cells was also detected in the in vitro study with C. muris (McDonald et 

al., 2000). However, a study with neonatal TNF-α-/- mice in this laboratory suggested 

this cytokine was not necessary for the control of C. parvum infection (Lean et al., 
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2006). Hence caution is required in extrapolating from in vitro data to the in vivo 

situation. In infection with Listeria monocytogenes TNF-α was found to act 

synergistically with IL-12 in its action to stimulate IFN-γ production by NK cells and was 

important for innate immunity in vivo (Tripp et al., 1993). 

Only moderate inhibition was obtained with anti IL-15, which can be important for NK 

cell activation during other infections (Chin et al., 2009). A similar effect was obtained 

with anti-IL-1 that acts with other cytokines, including IL-12, to enhance NK cell activity 

(Hunter et al., 1995). The role of IL-15 and IL-1 in the protective immune response to C. 

parvum in vivo is not known. Possible synergistic activity of these cytokines was not 

examined in the current study. It should be noted that the effectiveness of the 

neutralising antibodies could be a factor in the differences observed in these studies 

and the concentrations employed were based on preliminary studies with each 

antibody. 

NK cells may be directly activated by type I IFNs produced by plasmacytoid DCs (a 

major source of these cytokines) during infection with viruses such as vaccinia 

(Martinez et al., 2008) or can be indirectly activated by type I IFNs inducing DC and/or 

macrophage production of IL-15 that enhances NK cell priming after in vivo stimulation 

with LPS for E. coli or lymphocytic choriomeningitis virus (LCMV) (Lucas et al., 2007). 

In the present study, using a bioassay to measure antiviral activity, significant levels of 

type I IFNs were detected in supernatants from NK cell-depleted splenocytes after 

stimulation with C. parvum indicating that in response to parasite stimulation ancillary 

cells are able to produce type I IFNs.These results strongly agree with the earlier 

findings from in vitro studies that bone marrow-derived DCs stimulated with oocysts 

showed significant expression of IFN-α IFN-β mRNA (Chapter 3). Type I IFN was 

shown to regulate IFN-γ expression by NK cells since reduced levels of IFN-γ were 
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obtained in cultured SCID mouse splenocytes treated with anti-type I IFN serum. Hence 

type I IFNs may directly activate NK cells and/or cause an increase in IL-12 expression 

(as in the in vitro experiments anti-type I IFN antibodies inhibited IL-12 production by 

splenocytes cultured with antigen). 

The second section of this chapter investigated NK cell activity during the late phase of 

chronic infection of SCID mice. An early study by McDonald et al. indicated that chronic 

infection in adult SCID mice increased intensity only gradually over a period of weeks 

until ultimately mice showed morbidity and died after a few months of infection 

(McDonald et al., 1992). Similar patterns of infection were also observed in SCID mice 

with the beige mutation and with adult nude mice (Mead et al., 1991; Ungar et al., 

1990). An investigation was made of the activity of splenic NK cells in chronically 

infected mice showing signs of illness and in most cases a high number of oocysts (>70 

oocysts/50 fields) were being shed in faeces. 

While large amounts of IFN-γ were produced by splenocytes of uninfected mice, no 

IFN-γ was obtained from cells of age-matched severely infected mice. Interestingly, 

splenocytes from apparently healthy mildly infected mice (<10 oocysts/ 50 fields) 

produced more IFN-γ than cells from uninfected mice.  This may have occurred as a 

result of modest systemic inflammation increasing numbers and/or activation status of 

NK cells as well as macrophages and DCs at this stage of infection. No study of 

possible mechanisms was made, however.   

Cryptosporidium infection in immunocompromised patients can affect the entire 

intestine and spread to extraintestinal sites such as the pancreas, hepatic bile ducts 

and gall bladder. (Rosario de Souza et al., 2004; Davies and Chalmers, 2009). 

Hepatobiliary infection and disease has been described in immunocompromised mice 

including SCID mice and SCID mice with the beige mutation causing death in those 
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animals often as a result of hepatic dysfunction (Mead et al., 1991). In the current 

study, a similar presentation of infection was observed in many of the chronically 

infected mice.  Some mice with low-modest oocyst shedding in the stool, however, 

were clearly unwell and jaundiced and the histopathological examination of the liver 

tissue confirmed parasites in the bile duct epithelium.  As with ill mice that shed many 

oocysts in faeces, splenocytes of the mice with hepatobiliary disease but low level of 

oocyst shedding also failed to produce IFN-γ in response to C. parvum stimulation.  

It was important to investigate further the possible cause/s for the defect of IFN-γ 

production observed in splenocytes of mice in the late stage of infection. As NK cells 

were identified as the main source of IFN-γ in stimulated splenocytes it was therefore 

critical to examine the NK cell population in the spleen and the intestine of the severely 

infected mice. Interestingly, no NK cells were identified in splenocytes of severely ill 

mice when examined by flow cytometry. This presumably explains the absence of IFN-

γ production, therefore, in the spleen of these mice.  

The possible reason/s for the absence of CD49+ cells in the present study could be: 1) 

The increasing level of infection caused systemic exhaustion of the NK cell population 

as a result of prolonged activation of macrophages producing excessive amounts of IL-

12 that causes global NK cell depletion as seen in macrophage activation syndrome 

(Ravelli et al., 2002). Kinetic analysis of these cytokines in relation to IFN-γ and 

numbers of splenic NK cells could provide evidence of what is happening. 2) NK cells 

and/or other cells such as DCs cells migrate from the spleens to the intestine as the 

infection intensifies.  3) As may occur during some viral infections (Zou et al., 2005, 

Voigt et al., 2007), there is down-regulation of NK cell receptors (perhaps including 

CD49b) induced by persistent infection or parasite mediators providing a strategy for 
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the parasite to avoid host immune responses. 4) Induced NK cell apoptosis may occur 

late during infection.  

Further to these findings it was essential to examine the NK cell population in the 

intestine of infected mice and their ability to produce IFN-γ. A technique previously 

described for isolation of intraepithelial NK cells from mice infected with Trichinella 

spiralis was employed (McDermott, et al., 2005), but all attempts to isolate NK cells 

from the intestines of healthy or ill mice failed. Therefore, it was not possible in this 

study to examine the NK cells or their function in the intestine of the infected mice. 

Results of other studies in this lab to measure IFN-γ mRNA expression in the intestine 

of the severely infected Rag2-/- mice were inconclusive: the cytokine was detected at 

relatively high levels in some mice but was not detected in others (D.S. Korbel and V. 

McDonald, unpublished data). 

NK cell populations in the spleens of the moderately infected mice was not investigated 

in the existing study. 

The third section of this Chapter returned to examining the role of NK cells in innate 

immunity in vivo. Previous studies with T cell-deficient mice have only implied that NK 

cells are important in immunity against C. parvum (McDonald et al., 2000). Significantly, 

NK cell depletion using anti-asialo GM1 antibodies in BALB/c SCID mice failed to show 

any effect on the course of infection of C. parvum (McDonald and Bancroft, 1994; 

Ungar et al., 1991). Although this technique is well recognised for NK cell depletion, it 

has been suggested that these antibodies might not have reached the gut in sufficient 

quantity to be effective, despite the successful depletion seen with other studies 

involving intestinal NK cells (Yoshihara et al., 2006). It is possible that an NK cell 

subpopulation that does not express asialo GM1 is involved in immunity. Also, NK cell 

depletion using this technique should be interpreted cautiously as these antibodies 
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were shown to affect other innate immune cells including basophils (Nishikado et al., 

2011). 

Comparative studies with Rag2-/- and Rag2-/-γc-/- mice were previously shown to be 

valuable for studying NK cells in immunity to other infections. In Shigella infection adult 

Rag2-/-γc-/- mice died after a few days while Rag2-/- mice survived (Le-Barillecet al., 

2005). Furthermore, a study withP. yoelii indicated that Rag2-/-γc-/- micewere 

significantly more sensitive to infection with P. yoelii sporozoites than Rag2-/- mice 

(Roland et al., 2006). In the current study, therefore, the pattern of infection and 

immune responses were studied in adult as well as neonatal Rag2-/- and Rag2-/-γc-/- 

mice. 

Infection of weaned Rag2-/- and Rag2-/-γc-/- mice followed a progressive chronic pattern 

similar to that described with adult SCID mice. The fulminant stage of infection 

developed sooner in Rag2-/-γc-/- mice than in Rag2-/- mice, however, and when the 

former mice showed signs of morbidity they developed histopathological changes in the 

intestine. All Rag2-/-γc-/- mice died whereas at the end of the monitoring period all Rag2-

/- mice were still alive and appeared healthy. These results indicate that NK cells are 

important in the innate immune response against C. parvum. However, the ability of 

Rag2-/-γc-/- mice to resist the infection for numerous weeks suggests that there are NK 

cell-independent mechanisms in innate responses to this parasite. Supporting these 

results, Flow cytometry analysis of the spleen cells of uninfected Rag2-/- mice contained 

a substantial number of CD49b+ NK1.1+ cells, indicative the presence of NK cells 

whereas no NK cells were detected in the spleens of Rag2-/-γc-/- mice (Korbel and 

McDonald, unpublished data).   

Neonatal animals including mice, sheep, cattle and deer are highly susceptible to C. 

parvum infection while immunocompetent adult animals (but not humans for unknown 

reasons) have very low levels of infection (Fayerand Ungal, 1986). It was of interest, 
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therefore, to examine the course of C. parvum infection in newborn Rag2-/- mice and 

Rag2-/-γc-/- mice to determine whether wide differences between strains in susceptibility 

to infection might be evident. When mice were infected at the age of 7 days, both 

mouse strains developed heavy levels of infection, but Rag2-/-γc-/- mice were found to 

produce significantly higher numbers of oocysts for several days. Importantly, despite 

the high levels of infection observed, both groups were able to overcome this early 

phase of infection and established strong control and there was a low rate of mortality 

in both strains. When mice were infected at 4 days of age, similar results were 

obtained, including a low rate of mortality. The ability of these mice to recover may 

partially be due to the onset of age-related “natural” resistance to this infection seen in 

different mammalian species, the basis of which is unclear (Sherwood et al., 1982). 

However, as in SCID mice infected as neonates, relapse of infection and death 

occurred several weeks later and was observed sooner with Rag2-/-γc-/- mice (V. 

McDonald, unpublished data). 

The increased susceptibility to infection observed in the young Rag2-/-γc-/- mice 

compared to the Rag2-/- mice suggests that NK cells play an important protective role 

against C. parvum in neonates as well as adults. In agreement with this, recent work in 

this laboratory also showed that treatment of neonatal wild type C57BL/6 mice with 

anti-NK1.1 antibodies increased their susceptibility to infection as confirmed by higher 

levels of infection in comparison to the control mice (Korbel et al., 2011). Moreover, the 

same study observed that during the early acute phase of infection over about 12 days, 

Rag2-/- mice were not more susceptible to infection in comparison to the wild type mice. 

This study not only supported a role for NK cells in the protective immune response of 

neonatal wild type mice, but also caste doubt about the role of T cells in neonatal 

immunity against C. parvum (Korbel et al., 2011). 
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As it is well established that IFN-γ is a key cytokine in innate immunity to this parasite, 

the role of this cytokine in control of infection in Rag2-/- and Rag2-/- γc-/-mice was 

investigated. Interestingly, it was shown that infection of both neonatal Rag2-/- and 

Rag2-/-γc-/- mice stimulated IFN-γ expression in the intestine. Also treatment of both 

Rag2-/- and Rag2-/-γc-/- mice with anti-IFN-γ neutralizing antibodies exacerbated 

infection. These findings indicated that this cytokine played an important part in the 

ability of both mouse strains to control the infection. Similar findings were observed in a 

recent study in this laboratory of C. parvum infection of adult Rag2-/-γc-/- mice. Repeated 

administration of anti-IFN-γ neutralizing antibodies to those animals abolished their 

resistance during early infection with this parasite (Choudhry et al., 2012)  

This indicated that in the in vivo infectionthere can be a major cellular source of IFN-γ in 

the absence of NK cells. This contradicts the in vitro findings described in this Chapter 

that showed splenocytes from SCID mice depleted of NK cells or from the Rag2-/-γc-/- 

mice were incapable of IFN-γ production in response to stimulation with parasite 

antigen. However, it is possible that in the intestinal physiological environment 

interaction between different immune cells and factors from infected epithelial cells may 

induce IFN-γ production. A recent report  by others from this laboratory showed that the 

infected (but not uninfected) mouse intestinal epithelial cell line CMT-93 treated with 

IFN-γ produced large amounts of IL-18 (Choudhry et al., 2012).  

That same study also showed that in vitro the presence of both IL-18 and IL-12 induced 

large amounts of IFN-γ production by Rag2-/-γc-/- splenocytes or purified peritoneal 

macrophages, but neither cytokine alone could do so. It was also shown that C. parvum 

infection in adult Rag2-/-γc-/- mice increased rapidly following macrophage depletion and 

this correlated with no increased IFN-γ expression in the intestine. Also, IFN-γ 

production in the Rag2-/-γc-/- mice was dependent on IL-18 as anti-IL-18 neutralising 

antibody treatment exacerbated infection and inhibited the IFN-γ response (Choudhry 
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et al., 2012). Whether this IL-18-dependent immunity involving macrophages is 

important when NK cells are present is not known. In support of these findings, 

Takeuchi et al. demonstrated that the transference of peritoneal macrophages from C. 

parvum-infected mice to X-irradiated SCID beige mice depleted of macrophages 

allowed the recipients to survive C. parvum infection whereas macrophages from 

uninfected animals were not protective. Additional in vitro work suggested that IFN-γ 

released by neutrophils may have played a role in macrophage activation (Takeuchi et 

al., 2008). However, in our laboratory neonatal mice with antibody-mediated 

neutropenia did not have increased susceptibility to infection (D.S. Korbel and V. 

McDonald, unpublished data).   

Previous studies with bacterial pathogens such as Salmonella have indicated that IFN-γ 

production by macrophages and neutrophils was important in the early innate immune 

response to infection (Kirbry et al., 2002). In pulmonary Chlamydia infection of mice 

macrophages were also capable of expressing IFN-γ that was required for the innate 

immune defence of immunocompromised mice, although in contrast to the current 

study, there was no difference in the susceptibility to infection of Rag2-/- and Rag2-/-γc-/- 

mice (Rothfuchs et al., 2004). Dendritic cells could also play a role in this respect as it 

has been shown previously that these cells were a potent source of IFN-γ when 

activated by IL-12 and IL-18 (Lugo-Villarino, et al., 2003). 

 Even with a high level of IFN-γ expressed in the intestine of Rag2-/-γc-/- mice, these 

animals eventually developed fulminant infection and died. The reasons for this are 

unclear but it could possibly be related to increased production of IL-10 as infection 

progresses (Choudhry et al., 2012). Chronic inflammation might eventually alter the 

intestinal bacterial composition that may influence the nature of the inflammatory 

response. It is also possible that during chronic infection the parasite develops 

increased virulence, but this has not been investigated. 
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In conclusion, it was shown that C. parvum induced IFN-γ production by NK cells in 

vitro and this was regulated by different pro-inflammatory cytokines including IL-12, IL-

15, IL-1, TNF-α and type I IFNs. The results from mouse experiments also indicate that 

NK cells are important in the innate immune responses to C. parvum infection of 

immunocompromised mice. IFN-γ plays a central part in innate immunity in mice and 

NK cells are normally a major source of this cytokine, but in the absence of NK cells 

other cells, probably macrophages, can produce this cytokine as suggested by studies 

by other colleagues in this laboratory. During the late stage of chronic infection of 

immunocompromised mice a defect in the splenic NK cell population was described 

that if occurred in the intestine and liver could explain the death of the animals due to 

C. parvum.   
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FINAL DISCUSSION AND FUTURE WORK
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Evidence from studies of protective host immune responses to Cryptosporidium 

indicates a major role for cellular immune responses in elimination of infection 

(McDonald, 2000). In this regard, CD4+T cells play a dominant role in completing 

resistance to C. parvum. In addition to CD4+Tcells, TH1 cytokines, particularly IFN-γ, 

play a key role in the control of infection (Ungar et al., 1991; Aguirre et al.,1994). 

Murine and in vitro studies with C. parvum also strongly support a significant role for 

innate immune responses in the control of infection (McDonald et al., 2013). 

Parasite invasion of enterocytes activates TLR/NF-KB signalling, resulting in the 

production of cytokines, chemokines, prostaglandin E2, antimicrobial peptides and 

nitric oxide, all of which may help in inhibiting parasite reproduction (Zhou et al., 

2102; McDonald, 2011; McDonald et al., 2013). Myeloid cells including 

macrophages, dendritic cells, and neutrophils also have involvement in the innate 

responses to this parasite (McDonald, 2007; McDonald et al., 2013). In the current 

study the roles of NK cells, a major source of IFN-γ, and type I IFN in the innate 

immune response to C. parvum are explored. 

Type I IFNs are a multigene family of cytokines with pleiotropic effects (Isaacs and 

Lindenmann, 1957). Their central role as inducers of antiviral host responses is well 

established (Takaoka and Yanai, 2006), and most nucleated cell types infected by 

virus are believed to be capable of expressing type I IFN (Koyama, 2008). They act 

alone and with other cytokines to clear infection (Koyama, 2008). These cytokines 

also have various effects on immune cells (for example, stimulation of antigen 

presentation and activation of T cells and NK cells) (Fitzgerald-Bocarsly and Feng, 

2007). Apart from their strong antiviral activity, type I IFNs have been found to play 

roles in the immunity against some bacterial, protozoal and fungal infections, but not 

others (Bodgan et al, 2004). 

The role of type I IFN in immunity to parasitic protozoa is less well described, 

although it is clear that they play an important role in reducing the severity of 
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infection due to some species, such as Leishmaniamajor (Mattner et al., 2004). The 

role of type I IFNs in immunity to the many enterocytic apicomplexan parasites, 

such as Cryptosporidium species, has not previously been investigated. This is the 

first study to investigate the role of type I IFN in immunity to Cryptosporidium and to 

show that type I IFNs inhibit C. parvum development both in vitro and in vivo. 

Treatment of intestinal epithelial cell lines with IFN-α/β decreased parasite 

reproduction and this anti-parasitic effect was obtained with both human and murine 

lines and was therefore not specific to one host type. 

Different antimicrobial killing mechanisms have been associated with type I and type 

II IFN activity against intracellular microbial pathogens. Inhibition of cell invasion is a 

known mechanism of type I and type II IFN antimicrobial activity (Niesel et al., 

1986). In the current study, IFN-α prevented host cell invasion by C. parvum as 

indicated by significant reduction of parasite numbers observed in IFN-α-treated 

cells 3 h postinfection. However, the exact mechanism of how type I IFN inhibited 

parasite invasion was not identified in this study. In a study with Shigella flexneri 

infection, IFN-α inhibited a Src-dependent signaling cascade triggered by Shigella 

that leads to the reorganization of the host cell cytoskeleton and bacterial entry into 

the cell (Dumenil et al.,1998). In C. parvum infection, Forney et al,had shown that 

inhibition of cytoskeletal rearrangement in host cell cells with a drug may prevent 

invasion of the host cell by the parasite (Forney et al., 1999). However, in the 

present project the effect of type I IFNs on proteins known to be engaged in 

cytoskeletal organisation was not examined and it would be essential to undertake 

further studies in that area in future. 

Other recognised antimicrobial mechanisms that were previously associated with 

type I or type II IFN such as deprivation of cellular Fe2+ or of L-tryptophan or NO 

production were also studied and were found not relevant for type I IFN activity 
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against C. parvum. Furthermore, unlike a previous finding with IFN-γ (Pollok et al., 

2000), IFN-α did not appear to affect the rate of maturation of intracellular parasites. 

Employing different techniques it was shown that enterocytes as well as dendritic 

cells (major type I IFNs producing cells) are capable of expressing type I IFNs in 

response to C. parvum. Also the treatment of enterocytes with the TLR3 agonist 

poly (I:C) or infection with C. parvum stimulated the production of type I IFNs. 

Furthermore, infected CMT-93 cells also secreted products that further inhibited 

parasite development; those products might include IFN-α/β. The nature of the 

products was not identified in the current study and it is therefore important that in 

future the possible involvement of IFN-α/β be examined. It is known that type I IFN 

is produced via TLR(s) (Doyle et al., 2002; Hemmi et al., 2003) and as indicated by 

a few studies TLR4 in epithelial cells is activated by C. parvum (O’Hara et al., 2011, 

Zhou et al., 2012) it is possible therefore that type I IFN is I induced via TLR4 in 

response to C. parvum. Hence it is important to carry out further work to explore the 

role of TLRS for induction of type I IFN expression in enterocytes. 

The results from the current study along with another recent observation (Bedi and 

Mead, 2012) suggest that DCs are capable of cytokine production (including type I 

IFNs and IL-12) in response to C. parvum stimulation. Further work on the role(s) of 

DCs in the immunity to this parasite is required. 

Following the findings of type I IFN activity in vitro it was important to proceed by 

studying the in vivo role of type I IFNs in innate immunity to C. parvum. The IFNAR-/- 

knockout mice have been previously successfully used by different groups studying 

the role of type I IFNs in other infection models. However, for unknown reasons, in 

this laboratory the commercially available 129SV/Ev wild type and IFNAR1-/- 

neonatal mice were both found naturally resistant to infection with the parasite (V. 

McDonald and G. Foster, unpublished results). To overcome this problem, anti-IFN-

α/β neutralising antibodies were employed in the present project to study the role of 

type I IFNs in immunity to C. parvum. A significant finding was that treatment with 
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anti-IFN-α/β enhanced the infection in both immuncompromised and 

immunocomeptent neonatal mice, indicating a crucial role for type IFNs in protection 

against C. parvum in vivo. Furthermore, it was shown that type I IFNs inhibited 

parasite development at an early stage of the infection and both IFN-α and IFN-β 

had increased expression in the intestine of infected animals within 24-48h of 

infection. Expression of these cytokines in the later stages of infection was not 

examined in the current study and it may be useful to address that in the future.  

Different mechanism(s) of action are described for type I IFNs in other models of 

infection including the stimulation of IFN-γ production (Orellana et al., 1991) which is 

an essential cytokine in immunity to C. parvum. However, it appeared that the 

protective effect observed with type I IFN was independent on IFN-γ production as 

treatment with anti-type I IFN did not prevent an increase in IFN-γ expression. Other 

possible mechanism(s) were not investigated. Moreover, any nucleated cell can 

produce type I IFN in response to infection, but the cell types producing type I IFNs 

in mice were not identified and it is therefore essential to conduct further studies in 

the future to investigate this point.  

Although exogenous treatment with type I IFN has previously enhanced protection 

against other microbial infections, in the current study the treatment of SCID mice 

with exogenous IFN-α did not cause any alteration in the level of infection. Different 

technical reasons could explain this negative finding such as quantity of cytokine 

employed and number of times of administration and further studies will be required 

on this topic. 

NK cells are key cellular components of innate immunity involved in resistance to 

intracellular microbial pathogens. Some early studies suggested there was 

involvement of NK cells in immunity to C. parvum, but the exact role of these cells 

has not been identified. Using different strains of immunocompromised mice, the 

role of NK cells in the acute infection of neonates and chronic infection of adults as 

well as their in vitro activity was studied in the present project.  
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It was confirmed by flow cytometry that splenocytes from healthy uninfected adult 

SCID mice contained normal numbers of NK cells and in response to stimulation 

with C.parvum antigen, SCID mouse splenocytes were capable of IFN-γ production. 

NK cells were identified as the major cellular source of this cytokine after the 

positive magnetic isolation of these cells. Similar findings were observed with 

studies with splenocytes from Rag2-/- mice that produced IFN-γ but cells from Rag2-/-

γc-/- mice that lack NK cells did not. Supporting these findings, previous studies with 

the gastric parasite C. muris also showed that live sporozoites stimulated SCID 

mouse splenocytes to produce IFN-γ and this was inhibited by treatment with 

antibody plus complement to deplete of NK cells in a dose dependent matter 

(McDonald et al., 2000). In the current study, the optimal level of IFN-γ production 

was observed in cells stimulated with 2x105 oocysts, but lower amounts of cytokine 

were produced from cells stimulated with higher numbers of oocysts. This may 

suggest the presence of inhibitory mechanism(s) that switched off NK cell activity, 

but this was not investigated further. Further work should be done to determine if 

this is an important issue that may also affect cytokine production in vivo. 

Cytokines such as IL-12, IL-15, IL-2, IL-1, IL-23, TNF-α and type I IFNs stimulate 

NK cell activity (Zucchini et al., 2008). In the current study, in vitro IFN-γ production 

by NK cells was controlled by different cytokines including (IL-12, IL-15, IL-1, TNF-α 

and type I IFNs) as confirmed by reduced levels of IFN-γ from splenocytes treated 

with neutralizing antibodies to these cytokines. IL-1 and IL-15 appeared to be only 

modest inducers of IFN-γ production, however, under the culture conditions 

employed. Further studies are required to establish how important these cytokines 

might be for immunity in vivo. TNF-α appeared to be important for inducing IFN-γ in 

culture, but was shown to be nonessential for immunity in experiments with TNF-α-/- 

mice done previously in this laboratory, so caution is required in interpretation of the 

results of these in vitro studies of the regulation of IFN-γ production by NK cells.. 
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Cryptosporidiosis is a chronic life threatening disease in immunocompromised 

patients and those patients are at higher risk of developing extraintestinal infection 

(Davis and Chalmers, 2009). A similar picture of infection was previously observed 

in in vivo studies of chronic cryptosporidiosis of immunocompromised mice. The 

infection increased gradually over weeks and the eventual severe infections were 

associated with clinical deterioration followed by death. Some animals developed 

hepatobilliary infection that led to hepatic impairment and eventually death 

(McDonald et al., 1992; Ungar et al, 1990; Mead et al., 1991).  

In the present study the activity of NK cells in the chronically infected SCID mice 

showing signs of morbidity and often shedding high numbers of oocysts or with 

hepatic involvement was assessed. Results indicated that in severely ill animals, 

splenocytes were incapable of IFN-γ production and this was associated with 

absence of the CD49b+ NK cell population in the spleen. It was planned to study the 

NK cell population from the intestine of severely ill mice, but attempts at isolating 

these cells were not successful in the current project. Further studies are required to 

explain the (apparent) lack of splenic NK cells observed in ill animals and a method 

is required to detect NK cell in the gut, perhaps by immunohistology. Attempts have 

been made to identify NK cells or IFN-γ-producing cells in the gut histologically in 

this laboratory but without success (V. McDonald, unpublished work). 

One of the possible mechanisms proposed for NK cell depletion is a generalised 

exhaustion of NK cells caused by activation of macrophages and the release of 

large amounts of IL-12, a picture similar to what is seen in “macrophage activation 

syndrome”, that often affects young patients. Analysis of other cytokines, particularly 

IL-12 in relation to IFN-γ production and the number of NK cells could explain this. 

Other possible mechanisms for NK cell inactivation or depletion including 

downregulation of the CD49b marker, NK cell induced apoptosis and migration of 

NK cells to the site of infections, should all be considered as areas of work.  



234 

 

Splenocytes of animals with mild infection during the early weeks of infection 

produced higher levels of IFN-γ in comparison to uninfected mice. This could be due 

to a systemic inflammatory process with possible increases in numbers of NK cells 

and ancillary cells. The NK cell population in the spleens of the moderately infected 

mice was not investigated in the existing study. Therefore, it would be important to 

examine this in future and to determine if the inactivation/depletion of NK cells in the 

spleen is a gradual or a sudden event. Also, the functions of NK cells, macrophages 

and DCs should be compared at different stages of infection of SCID mice. Ideally, 

similar studies should be done with intestinal immune cells. 

Better understanding of the loss of NK cell fuction associated with severe C. parvum 

infection could help explain some of the immunological causes of chronic diseases 

in humans and may offer the basis for designing therapeutic options for some 

microbial and autoimmune conditions. 

Previous reports with immunocompromised T cell deficient mice have only indirectly 

suggested that NK cells are important in immunity to C. parvum (McDonald et al., 

2000). The main evidence was that IFN-γ was essential for the control of infection in 

SCID mice (McDonald and Bancroft, 1994).  Studies of the effect of NK cell 

depletion on infection in SCID mice by administration of anti-asialoGM1 antibodies 

failed to show a protective role for these cells. Therefore, using a different approach, 

Rag2-/- mice that have functional NK cells and Rag2-/-γc-/- mice that lack these cells 

were employed in the current project. Adult Rag2-/-γc-/- mice, like Rag2-/- mice, 

showed resistance to infection for several weeks. However, fulminating infection, 

intestinal pathology as well as mortality occurred sooner in Rag2-/-γc-/- mice. The 

infection pattern was similar to the one observed previously with adult SCID mice. 

With neonatal animals, Rag2-/-γc-/- mice were, remarkably, able to control infection 

but developed higher levels of oocyst reproduction than Rag2-/- mice. A low rate of 

mortality observed in neonatal mice of both strains. 
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The increased susceptibility to infection observed in Rag2-/-γc-/- mice compared to 

the Rag2-/- mice suggests that NK cells play an important protective role against C. 

parvum in neonates as well as adults. Supporting this, a recent study in this 

laboratory indicated that treatment of neonatal wild type C57BL/6 mice with anti-

NK1.1 antibodies increased their susceptibility to infection (Korbel et al., 2011).  

Unlike the in vitro findings of this study that confirmed NK cells as a major source of 

IFN-γ in the immunocompromised animal, in the in vivo model significant levels of 

the cytokine were detected in the intestine of animals lacking NK cells as well as 

animals with NK cells, suggesting NK cell independent sources of this cytokine. In 

agreement with this finding, other researchers have recently described the ability of 

macrophages to produce IFN-γ in response to C. parvum infection in the absence of 

NK cells (Choudhry et al., 2012; Takeuchi et al., 2008). 

Furthermore treatment of neonatal animals with anti-IFN-ã neutralizing antibodies 

exacerbated infection in both Rag2-/- and Rag2-/-γc-/-.. Similarly, recently in this 

laboratory it was shown that   repeated administration of anti-IFN-ã neutralizing 

antibodies to adult Rag2-/-γc-/-overcame their early resistance to infection with this 

parasite. The same study demonstrated IFN-γ-mediated immunity was dependent 

on IL-18 (Choudhry et al., 2012). Together, these findings confirm the importance of 

this cytokine in the control of the infection in both mouse strains.  

Despite the high level of IFN-ã expressed in the intestine of Rag2-/-ãc-/- mice, these 

animals eventually developed severe infection and died. The reasons for this are 

unclear but it could possibly be related to increased production of IL-10 as infection 

progresses (Choudhry et al., 2012). Therefore, further investigations in this area are 

suggested. 

Regarding the cytolytic activity of NK cells, evidence suggests that NK cell 

cytotoxicity might have a role in immunity to C. parvum infection. One study has 

shown that human peripheral blood NK cells activated by IL-15 had cytolytic activity 
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against enterocyte cell lines infected with C. parvum and, in addition, infected 

epithelial cells expressed MICA, a ligand for the NK  cell activating receptor NKG2D 

(Dann et al, 2005). Also, extraintestinal cryptosporidial infection was observed to be 

less common in SCID mice than in similar mice that also carried the beige mutation 

that causes different deficiencies, including in NK cell cytotoxicity (Mead et 

al.,1991). In the current study the cytolytic activity of NK cells was not examined and 

further work is required in this aspect. 

In conclusion, results from this project provide new evidence for the importance of 

the innate immune response against C. parvum. It indicates that: 1) NK cells in 

immunocompromised mice are important to sustain the innate control of C. parvum 

infection. It was confirmed that IFN-γ plays a key part in maintaining innate immunity 

but a cell type(s) other than NK cells that produces the cytokine is also notably 

involved. It is therefore necessary to characterise the cell types expressing IFN-γ in 

T cell-deficient and alymphocytic mouse strains.During the late stage of chronic 

infection of immunocompromised mice a defect in the splenic NK cell population 

was described that if also present in the intestine could explain the death of the 

animals due to C. parvum.   

2) In this, the first investigation of the role of type I IFNs in immunity to 

Cryptosporidium species, it was established that C. parvum infection induced rapid 

intestinal expression of IFN-α/ β and that these cytokines were involved in the 

protective innate immune response. Both enterocytes and dendritic cells were 

shown to produce these cytokines in vitro, and importantly, IFN-α/β directly inhibited 

parasite development in enterocytes and the principle mechanism of cytokine action 

appeared to be to prevent parasite invasion of enterocytes. 

Different clinical applications have been previously described for type I IFNs 

particularly in the treatment of viruses (D’Souza and Foster, 2004b, D’Souza and 

Foster 2004a; Casrouge et al., 2006). The findings in the present study could offer 
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the basis for future therapeutic approaches to control infection by different microbial 

agents including Cryptosporidium. 

Findings from this project may contribute to an understanding that will possibly in 

the future lead to the management of the chronic cryptosporidiosis in 

immunocompromised patients. They will potentially have relevance to some other 

medical conditions, particularly autoimmune diseases. 

Further human studies in the immune response to this parasite particularly in innate 

immunity are required including the role of TLR-mediated pathways in human 

intestinal epithelial cells. Also the role of NK cells, dendritic cells and macrophages 

in innate responses to Cryptosporidium could be examined. Investigation of the role 

of chemokines and cytokines in innate and adaptive responses in humans would 

also be valuable and could be facilitated by the use of newer technologies that 

require only small volumes to quantify several cytokines in the same sample. 

Findings from future studies may offer the basis for therapeutic options particularly 

for patients who suffer with immunodeficiency. 
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