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Abstract

One of the challenging problems in the aerospace industry is to design

an automated 3D vision system that can sense the installation compo-

nents in an assembly environment and check certain safety constraints

are duly respected. This thesis describes a concept application to aid

a safety engineer to perform an audit of a production aircraft against

safety driven installation requirements such as segregation, proxim-

ity, orientation and trajectory. The capability is achieved using the

following steps. The initial step is to perform image capture of a

product and measurement of distance between datum points within

the product with/without reference to a planar surface. This provides

the safety engineer a means to perform measurements on a set of cap-

tured images of the equipment they are interested in. The next step is

to reconstruct the digital model of fabricated product by using multi-

ple captured images to reposition parts according to the actual model.

Then, the projection onto the 3D digital reconstruction of the safety

related installation constraints, respecting the original intent of the

constraints that are defined in the digital mock up is done. The dif-

ferences between the 3D reconstruction of the actual product and the

design time digital mockup of the product are identified. Finally, the

differences/non conformances that have a relevance to safety driven

installation requirements with reference to the original safety require-

ment intent are identified. The above steps together give the safety en-

gineer the ability to overlay a digital reconstruction that should be as

true to the fabricated product as possible so that they can see how the

product conforms or doesn’t conform to the safety driven installation

requirements. The work has produced a concept demonstrator that

will be further developed in future work to address accuracy, workflow



and process efficiency. A new depth based segmentation technique

GrabcutD which is an improvement to existing Grabcut, a graph cut

based segmentation method is proposed. Conventional Grabcut relies

only on color information to achieve segmentation. However, in stereo

or multiview analysis, there is additional information that could be

also used to improve segmentation. Clearly, depth based approaches

bear the potential discriminative power of ascertaining whether the

object is nearer of farer. We show the usefulness of the approach when

stereo information is available and evaluate it using standard datasets

against state of the art result.
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Chapter 1

Introduction

In the past few years, there has been a tremendous development and moderniza-

tion in the aircraft industries. However, in practice there is still a human subject

intervention needed to find faults in the aircraft installation engines as a part of

the production audit process. This is accomplished during the verification and

validation phase in order to support the aircraft level modelling and further anal-

ysis. Advanced sensing techniques and image processing tools offer an appealing

prospect of accurate 3D and 4D model generation of complex scenes and objects.

In fact, manufacturing industries are showing compelling interest towards three

dimensional scene synthesis and analysis due to its multifaceted potential applica-

tions ranging from real time recognition, verification, vehicle guidance etc. Using

images taken from different perspectives or at different times, 3D and 4D repre-

sentation of the scene can be built. This thesis investigates to develop a complete

and novel 3D based solution for supporting installation production safety audit

in the industrial environment. The aim is to take accurate 3D measurements

of the fabricated sections of an installation from captured images and compare

those measurements to the required constraints defined within the specification

model of the installation in the DMU (Digital Mockup). The fabricated parts are

assembled and machine parts built according to the pre-defined specifications. A

sample aircraft and assembly environment is shown in Fig. 1.1. As mentioned by

Webel et al. (2007), physical mockups are used to verify feasibility and ease the

planning and they are fabricated based on digital data [86]. The physical mod-
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els often do not longer match with digital data due to either the modifications

made by model maker or fabrication inaccuracy. Furthermore, we address the

problem of discrepancy checking by a new paradigm DMU based 3D vision and

analysis which is concerned with building accurate 3D models with the semantic

metadata of installation engine parts by using the corresponding base CATIA

(Computer Aided Three Dimensional Interactive Application)/CAD(Computer

Aided Design) installations. A new unified system application for the production

audit in an aerospace industry is proposed in this thesis that serves three key

tasks.

• Verification of the distant locations between datum points of installation

with/without reference to planar surface model.

• Identification of the discrepancies between computed 3D world point cloud

model and digital mock-up model of an assembly.

• Verification of the advanced installation constraints such as AIV (Accept-

able Installation Volume) contains, intersect, disjoint test and trajectory

test.

In spite of the facts that the first and subsequent two tasks are functionally

independent, commonly they are related in terms of assisting the production audit

task. First process involves the verification of manufactured parts to be within

some predefined threshold range using a calibrated stereo camera with human

interaction to select the matching disparity points. The distance between datum

points and with respect to planar surfaces is used for the audit purpose. We

describe the system flow, plus validate the technique via a number of experimental

datasets. Second process involves model matching between the computed 3D

world model and digital mock-up model. Usually, the computer aided geometry

model is built before the actual installation. The discrepancy analysis between

objects and geometric model is demonstrated. The third process involves the

procedure which checks whether the computed 3D point cloud is within AIV or

trajectory. In this thesis, we present a new cost-effective and robust framework for

3D measurement audit, discrepancy checking and installation constraint analysis

2



that uses input from digital camera and semantic metadata knowledge available

from geometry models which can be used for verification tasks.

1.1 Concept Description : Production safety

audit

A systems installation is the result of a design activity that consists of positioning

the physical system components inside the aircraft. In the early design phase,

the systems installation is defined by geometrical 3D models that define approx-

imately the shape, the size and the location of each system. When the design

progresses, the 3D models become more accurate, eventually taking the shape of

the detailed product 3D drawings that are used to manufacture the individual

parts. These latest models look like ideal representations of the system. (they do

not take into account flexibility due to gravity, etc.) At each design phase, the

installation shall fulfil various geometrical requirements. Some of these require-

ments are justified by the expected system or aircraft performance. For instance,

the total length of cables shall be minimized in order to optimize the aircraft

weight. The aim is to annul high danger and minimize the low danger situation

of components placed in an installation environment (please refer Chapter. 5 for

more details). 3D computer aided design tools like CATIA are currently used to

support the definition and verification of the system installation. During design

specification, safety analysis leads to the identification of installation requirements

that need to be respected. One such example is in the case of performing a partic-

ular risk analysis. The analysis identifies conditions where claims of independence

made by systems that employ redundant architectures are challenged as a con-

sequence of the application of some identified particular risk model. It becomes

necessary to redesign or mitigate e.g. by relocating the relevant equipment, or

providing structural protection etc. It is also important that the installation con-

straints that have been identified, in the end, are respected in order to ensure the

claim of independence is ensured. There should be a methodology to confirm that

this is the case that need to be achieved by inspection of the production aircraft

at different stages of fabrication and assembly. It is necessary for quality/safety

3



inspections of the complex installation environments to be carried out. With the

recent advancements of 3D vision techniques, it is now becoming feasible to use

these techniques to support the inspection and measurement of the fabricated

products. These techniques can be used to carry out the measurements, to guide

an inspector in identifying the exact locations related to safety constraints, and

to also highlight where faults or inconsistencies within the installation may ex-

ist as a consequence of some constraint or segregation threshold being exceeded

thereby supporting safety analysis and offering a considerable reduction in the

time to carry out an inspection.

The research is part of MISSA (More Integrated Systems Safety Assessment),

a research project joint funded by the European Commission 7th Framework

Program ACP7-GA-2008-212088 [11]. This project aim to develop methods and

tools to help safety engineers to collect, navigate, and manage information, struc-

ture their arguments, express their ideas, and most importantly find solutions to

problems in an efficient, auditable and exhaustive way.

The objective of the task is to design and implement a production safety audit

capability that:

1. Can identify configuration differences between the DMU and the captured

fabricated product

2. Can identify and take an accurate enough relative measure of the position

of the various objects present in the two images with respect to some datum

and to each other, thereby aiding in the quality and safety inspection

3. Can check whether part of the safety analysis framework that will link the

inspection task and audit results to the reasoning behind the safety related

installation requirements.

Basically the capability fits in the existing safety process in the following way.

Referring to the Fig. 1.2, a system installation is specified by executing various

design iterations at around the interaction point between PSSA (Preliminary

System Safety Assessment), the development of the systems architecture, CCA

(Common Cause Analysis), and the allocation of requirements to hardware. CCA

is a part of the aircraft systems safety analysis as defined by SAE (Society of

4



 

(a) 

 

(b) 

 

 

 

 

Figure 1.1: (a) Sample aircraft [5] and (b) an assembly environment [6]

Automative Engineers) ARP(Aerospace Recommended Practices) 4754 and SAE

ARP 4761.
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SAE 4754 is the aerospace safety standard issued by Aircraft and system

development and safety assessment committee which discusses the certification

aspects of highly-integrated or complex systems installed on aircraft, taking into

account the overall aircraft operating environment and functions. As defined

in [14], the term “highly-integrated” refers to systems that perform or contribute

to multiple aircraft-level functions. The term “complex” refers to systems whose

safety cannot be shown solely by test and whose logic is difficult to comprehend

without the aid of analytical tools. SAE ARP 4761 is the standard which dis-

cusses about guidelines and methods for conducting the safety assessment process

on civil airborne systems and equipment. CCA generates a number of derived

requirements that impose installation constraints that must be respected. During

design time, this simply means ensuring that the geometry model has constraints

such as segregation, proximity, and orientation defined that represent these in-

stallation constraints and that the installation constraints are respected. When

the aircraft is fabricated, it is cross checked against the design model for cor-

rectness using various measurement techniques. The PSSA and CCA part of the

safety process delivers three types of analyses, amongst others that are in that

region of the process that influence the installation of systems equipment and

that are relevant to the MISSA project (More Integrated Systems Safety Assess-

ment) [11]. The first is the functional safety analysis that identifies amongst other

things, the lines of redundancy between system elements that independently pro-

vide a specific safety critical function. From this the safety cut-sets are identified.

Subsequently, various particular risk analyses are carried out that help identify

an installation policy for equipment that need to be kept segregated to protect

the claims of independence from being invalidated by particular risk fragments.

Likewise, the zonal safety analysis inspects the proposed installation to ensure

that other safety rules related to zones and means of installation are respected.

This leads to the sets of requirements that are represented within the DMU as

segregation, proximity, and orientation constraints:

1. Segregation : distance between two reference points measured in a plane

that is projected onto a plane perpendicular to the observation vector from

a point of origin
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2. Proximity : absolute distance between two measurement reference points

3. Orientation : e.g. above, below, beside.

Fig. 1.2 shows the traditional system safety process with the addition of one

block labelled as 3D CV model representation and matching. The explanation

above describes how the production safety audit capability fits into the current

process.

1.1.1 Process outline and research objective

The overall process outline diagram is shown in Figure. 1.3. Usually before

constructing any actual installation, a computer base DMU model of the proto-

type is created. In the early design phase, the systems installation is defined by

geometrical 3D models (DMU).

Accurate 3D 
measurement 

distance between 
parts of the 
installation 

components  with 
respect to reference 

surface,  angular 
analysis planes, 

edges 

Check the real world installation  against  installation constraints  
segregation, proximity, orientation 

Discrepancy checking 
between real world 

installation and Digital 
Mockup (DMU) model  

generated using CATIA 
Knowledge 

Projection of the 
model, Identify 

differences, non 
conformances with 

reference to original 
safety requirement 

intent 

Acceptable 
Installation 

Volume (AIV), 
Trajectory testing 

Figure 1.3: Process overview

The DMU approximately defines the shape, the size and the location of each

of a systems equipment and routings within the aircraft structure. Through the
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evolution of the design process, the 3D models become more accurate, eventually

giving the shape of the detailed product. The DMU is used to manufacture the in-

dividual parts. These models are ideal representations of the systems installation

(It does not show how flexibility due to gravity may affect the installation of wire

bundles, etc.) The DMU is used by safety engineer to carry out the particular

risk analysis that is mentioned in earlier Sect. 1.1. The result is that installation

requirements are encoded within the DMU that need to be respected in order

for the fabricated product to conform to the safety requirements. Quality checks

are carried out at each stage of fabrication to ensure the fabricated product falls

within acceptable tolerances for every measurement and constraint identified by

the safety process. Eventually, people involved in testing verify different parts of

the actual installation model with that of this reference computerized base model

to check for the discrepancy checking. Currently, the safety engineer has to mea-

sure the distance between different objects and checks whether it complies the

safety requirements. The way industrial technique used is to design drawing do-

ing individual part measurements assemblies using laser measurement techniques.

It is able to provide only single point measurement distance unlike in 3D actual

representation of the real world.

The above has disadvantages such as that it takes a lot of time to set up, a lot

of equipment is needed to collect and process the measurements, the technology

is affected by the material that is being measured and by the finish that the

material has, e.g.

1. A shiny, reflective surface will reflect light based measurement technique.

2. A black surface will absorb the rays of a light based measurement technique.

To complicate matters, frequently it is necessary to make measurements within

areas where the assembly or the DMU is not complete, or where the nature of the

material used in the product means that accurate measurements are not possible

but rather the part needs to be shown to lie within an acceptable installation

envelope, e.g. wire harness attachment points are precisely installed to within

a tight tolerance though the actual wire harnesses are installed compared to a

much more approximate tolerance not to forget to mention that a wire harness
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does not have a regular shape that can have a clear defined datum to work from.

Furthermore, manufacturing industries currently rely on 3D scanning techniques.

There is a need to provide a means to facilitate the process of auditing the

fabricated product against the DMU features or constraints that have been cre-

ated to address safety related installation requirements. The new PSA (Product

Safety Audit) tool should be robust to all the variables that affect the accuracy

of the installation and that facilitates the process of auditing by linking each spe-

cific audit point to the original requirement that has raised the constraint that

is being checked, both for traceability purposes and also as a means to ensure

that the measurement taken makes sense. This same tool can be used to guide

an installer to ensure that their work conforms to the design specification, and

to motivate them by giving them a clear understanding of the intent behind the

requirement that they are trying to conform to. A maintainer or supportability

engineer can also benefit from this tool when it is necessary to inspect damaged

equipment to ensure that they have identified all aspects of the design that any

damage has invalidated.

Using images taken from different perspectives or at different times, 3D and

4D representation of the scene can be built. This in turn can lead to important

applications in a wide range of validation tasks. The exemplar or prior knowledge

about the structure of industry part component models could be potentially uti-

lized. A goal of this research is to automate the production audit process using

computer vision techniques in 3D space.

The research questions formulated from the process outlined in Fig. 1.3 are

summarized.

1. How to design a system that performs discrepancy checking between 3D

vision model of the actual installation to the original digital mock-up, with

a focus on the safety driven installation constraints, such as segregation,

proximity and orientation (various means of measurements)

2. How to use the geometry model knowledge for 3D point cloud processing,

safety engineer input (query) for production audit ?

3. How to provide various means of measurements : between datum points

10



with reference to planar reference?

4. How to perform projection onto the 3D digital reconstruction of the safety

related installation constraints, respecting the original intent of the con-

straints that are defined in the digital mock-up.

5. How to identify the differences/non conformances that have a relevance to

safety driven installation requirements with reference to the original safety

requirement intent.

1.2 Contributions and publications

1.2.1 Contributions

The key research idea is the new concept of using semantic DMU knowledge

intelligence for discrepancy checking, supporting model based 3D vision analysis

for production audit relevance to aircraft SAE safety standard. To be more

specific, hypothesis mentioned in Sect. 1.2.1.1 are novel and discussed in the thesis

with supporting substantial arguments. An use case scenario is defined which

comprises both actual and faulty assembly setup. For example, a component in

faulty assembly setup is shifted by 1 cm and the framework need to identify this

discrepancy automatically. The semantic information such as component label,

size, width, height, color, orientation (rotation, translation) are used for 3D point

cloud processing. The concept has been illustrated for solving the discrepancy

checking problem in 3D space using DMU (Digital Mockup) knowledge for a

sample use case assembly setup (please refer Chapter 4 for more details).

A software package has been developed based on the proposed novel framework

that constitute different modules such as calibration, stereo measurement, 3D

model computation using domain knowledge, and 3D model fitting.

1.2.1.1 Hypothesis statements

• H1: User input from the safety engineer based on FPSS Focused point

SLR (Single Lens Reflex) stereo can be used for accurate 3D measurements
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(point, planar, angular) at mm level while ensuring reliability of the mea-

surements using the backprojection criterion (more details refer Chapter

3)

• H2: Use semantic knowledge of the model (intelligence from DMU model)

as key information for discrepancy checking (DMU model generation, point

cloud segmentation such as color, connected component analysis, pose esti-

mation using datum and object etc.) (more details refer Chapter 4)

• H3: AIV, trajectory, contains, intersect and disjoint test can be performed

on the point cloud model to check whether installation satisfies constraints

(more details refer Chapter 5)

• H4: Using extra depth information in existing graph cut mechanism, seg-

mentation can be improved.(more details refer Annexure I)

1.2.2 Publications

1.2.2.0.1 Patent Karthikeyan Vaiapury, Anil Aksay, Xinyu Lin, Ebroul Izquierdo,

Queen Mary and Westfield University of London; Chris Papadopoulos, Airbus

UK Ltd.07379, A Vision Based Audit Method and Tool that Compares a Sys-

tems Installation on a Production Aircraft to the Original Digital Mock-Up, with

a Focus on Safety Driven Installation Constraints, such as Segregation, Proximity

and Orientation Installation Optimization (to be submitted)

1.2.2.0.2 Book Chapter E. Izquierdo and K. Vaiapury, Applications of Video

Segmentation, in Video Segmentation and Its Applications, K. N. Ngan and H.

Li, Eds. New York, pp. 145-157, NY:Springer New York, 2011. (published)

1.2.2.0.3 Journal

1. K.Vaiapury, A.Aksay, X.Lin, E.Izquierdo and C.Papadapoulous, A vision

based audit method and tool that compares a systems installation on a pro-

duction aircraft to the original digital mock-up, SAE International Journal

of Aerospace, 4(2), pp. 880-892, 2011, doi:10.4271/2011-01-2565.(published)
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2. K.Vaiapury, A.Aksay, X.Lin and E.Izquierdo, Model based 3D Vision and

analysis for Production Audit purposes, Infocommunication Journal, Sci-

entific Association for Infocommunications (HTE), Vol.3, No.2, pp. 1-8,

September 2011, ISSN 2061-2079 (published)

3. K.Vaiapury, A.Aksay, X.Lin, E.Izquierdo and C.Papadapoulous, A new cost

effective 3D measurement audit and model comparison system for verifica-

tion tasks, Special Issue on 3D Imaging and Video, Multidimensional Sys-

tems and Signal Processing, Springer Netherlands, pp.1-47, issn.0923-6082,

DOI: 10.1007/s11045-012-0200-9, 2012 (published)

4. K.Vaiapury, E.Izquierdo and C.Papadapoulous, Linking installation con-

straints and checking in production audit (to be submitted)

1.2.2.0.4 Conference, Exhibition/Demo, Technical Document

1. K.Vaiapury, A.Aksay, X.Lin, E.Izquierdo and Chris Papadopoulos, A vision

based audit method and tool that compares a systems installation on a

production aircraft to the original digital mock-up, SAE AeroTech Congress

and Exhibition, Toulouse, France, October 18-21, 2011 (published)

2. K.Vaiapury, A.Aksay, and E.Izquierdo, GrabcutD: improved grabcut using

depth information, In Proceedings of the 2010 ACM workshop on Surreal

media and virtual cloning (SMVC ’10), ACM, New York, NY, USA, 57-62.

(published)

3. K.Vaiapury and E.Izquierdo, A OFDP Framework in Model based Recon-

struction, The 12th International Asia-Pacific Web Conference,(APWEB),

Busan, Korea, pp.424-429, 6-8 April 2010, doi: 10.1109/APWeb.2010.79

(published)

4. A. Aksay, V. Kitanovski, K. Vaiapury, E. Onasoglou, J. D. Perez-Moneo

Agapito, P. Daras, E. Izquierdo, Robust 3D Tracking in Tennis Videos,

Summer School ENGAGE-Immersive and Engaging Interaction with VH

on Internet, Switzerland, September 13-15, 2010
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5. K.Vaiapury, A.Aksay, X.Lin and E.Izquierdo, Measurement and Discrep-

ancy Checking in 3D Space, Digital Shoreditch Festival, 5-7 May 2011,

Queen Mary University of London, London. (http://digitalshoreditch.com/)

(presented)

6. Marco Bozzano, Alessandro Ferranti, Karthikeyan Vaiapury, Anil Aksay,

Xinyu Lin, Ebroul Izquierdo, Antonella Cavallo, Chris Papadopoulos, De-

velopment Description Report for Installation Optimisation Issue B and

Development Description Report For Production Audit, MISSA Project D

3.81 Technical Document, 2011

1.3 Thesis outline

This thesis is organized into five chapters. In Chapter 1, a brief introduction

to the production audit process and existing limitations in an industrial envi-

ronment is described and discussed. This research work describes the 3D vision

assisted production safety audit process that takes measurements of the fabri-

cated sections of an installation from captured images and uses model knowledge

to compare the measurements to the required constraints defined within the spec-

ification model of the installation in the Digital Mock-Up.

The literature survey made on 3D model based vision techniques related to the

production audit is provided in Chapter 2. The survey is presented in two key

fields related to this research such as user guided measurement and testing, dis-

crepancy checking of installations. In order to acquaint with the background

knowledge, multiview sensing and calibration is discussed.

A proposed framework for 3D PAMT (Production audit measurement tool) that

uses input from a digital camera for the verification tasks is discussed in Chap-

ter 3. A 3D based measurement system with capabilities that aims to assist the

safety personnel and verify whether the following segregation constraints are duly

respected is presented a) distance between datum points of interest, b) distance

between points with respect to planar surface. The advantage of optimally using

the combination of both point and automatic disparity coupled with planar sur-

face detection is demonstrated.
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In Chapter 4, a new cost-effective and robust framework for 3D PACT (Pro-

duction audit compare tool) that uses input from a digital camera and semantic

metadata knowledge available from geometry models which can be used for veri-

fication tasks is presented. The discrepancy checking and analysis of CV model

with DMU is carried out to conform whether the installation requirements are

met. Furthermore, 3D feature extraction and classification has also been stud-

ied to complement the verification tasks. Ideally, the framework act as proof of

concept for safety analysis and verification and has been tested with a controlled

environment dataset for model matching. 3D object structures with respect to

other objects position in the scene can be extracted. In future, experiments would

be conducted in real industry setup.

The problem of advanced safety installation constraints and its relation to pro-

duction audit is addressed in Chapter 5. The objective is to link the installation

optimisation constraints file to the ACAT (Advanced constraint analysis tool)

and to perform an automated check that the installation constraints were re-

spected. The conclusions and the directions of future work are given in Chapter

6. Further, the research contributions that have been discussed in the thesis are

briefly summarized.

In Annexure I, the description of user manuals for the proposed production audit

software such as 3D PAMT, 3D PACT is provided. Further, an additional soft-

ware for constraint viewing has been described.

3DHT (3D Hough Transform) for planar surface detection is described in An-

nexure II. Finally, in Annexure III, a new depth based segmentation technique

GrabcutD which is an improvement to existing Grabcut, a graph cut based seg-

mentation method is proposed. The goal is to extract pixel accurate object

silhouettes from the multiple views of an object that can then be used to gener-

ate 3D convex hulls for the objects. Conventional Grabcut relies only on colour

information to achieve segmentation. However, in stereo or multiview analysis,

there is an additional information that could be also used to improve segmenta-

tion. Clearly, depth based approaches bear the potential discriminative power of

ascertaining whether the object is nearer of farer. We show the usefulness of the

approach when stereo information is available and evaluate it using the standard

datasets against state of the art result.
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Chapter 2

Background and existing

techniques

The major drawback of the existing production audit process in the aerospace

industry is that manual inspection is needed in such complex environments. The

aim of the research is to provide an in-depth analysis of the potential of model

based computer vision technology to complement the aircraft level modelling and

analysis with a focus on system safety assessment. Visual sensing and analysis

tools could be potentially deployed for the validation (and potential optimiza-

tion) of an installation. 3D representations of the objects based on prior known

geometry model information can be built in a robust manner for further use in

the validation and recognition tasks. In this work, it is aimed to reconstruct

the installation parts of a plant assembly using knowledge based CATIA model

information and provide the safety engineer, accurate 3D locations of the discrep-

ancies or faults of installation parts thereby promoting the safety analysis and

considerable reduction in the time consumption.

During a production audit, these 3D locations can be used to check whether

certain installation safety constraints are duly respected. Installation safety con-

straints are discussed elaborately in Sect. 2.1.2. The target of the work is to

create an early working prototype of the concept and to carry out an in-depth

analysis of the shortfalls of the prototype, i.e. to discover what is required in order

for the prototype to be accepted for intended use. By starting with a prototype
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based on the today’s existing techniques and adapting them to this concept, the

vision of what will be delivered becomes more apparent, as do the limitations of

the application that need to be overcome. Once a working prototype is available,

it becomes easier to imagine spin-off uses for the application. This task is very

well aligned with the overall goal of MISSA [11] since it provides an additional

independent (vision-based) method to accelerate the convergence toward an opti-

mal system specification that conforms to the safety constraints. The application

can be achieved by building an accurate 3D representation from the multi-view

images captured of the actual product and using the addition of semantic meta-

data originating from the digital mock-up (e.g. description of the primitives that

make up the parts within the digital model, such as cylinders, cubes, rectangu-

lar boxes, etc.) in order to build the DMU based 3D reconstruction. The 3D

reconstruction is then used to replicate the measurement constraints that also

exist in DMU in order to test if the measurement constraints still conform to the

requirements that they represent. Though the main target application is safety

analysis during aircraft manufacturing, the potential outcomes can be used in a

wide-range of applications during and after the aircraft building. Example: dur-

ing an in-service aircraft maintenance inspection of the damaged structure. The

tools can be developed that can sense the installation environment in 3D space

and able to perform actions such as:

1. Stitching together the multiple scans to form a composite scan of a region

of interest.

2. Identification of the basic geometric shapes from the scan data such as:

points, planes

3. Various filtering tools to clean the data set of noisy data.

4. Various means to measure the distances or angles between identified objects,

e.g. angle between two planes, angle between edges.

There are various ways to automate some of the above functionality.

The objective of this chapter is to understand a) the industrial scenario where

the proposed solution primarily needs to be deployed, requirements and limita-
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tions, b) literature review in 3D measurement, 3D discrepancy checking, instal-

lation constraint checking and analysis with the perspective of production audit

process and c) basics of 3D reconstruction. The remainder of the chapter is orga-

nized as follows. In Sect. 3.2, we describe the application concept development

process. The various requirements and challenges are discussed. In Sect. 2.1, the

survey of image processing techniques with respect to industrial requirement is

provided. Specifically, the literature review of 3D measurement and discrepancy

checking are discussed in Sect. 2.1.3 and Sect. 2.1.4. The literature survey for

installation constraints checking is provided in Sect. 2.1.5. A brief introduction

about model based 3D vision methods are described in Sect. 2.2. 3D reconstruc-

tion methods are discussed in Sect. 2.3. The summary of this Chapter is provided

in Sect. 2.5.

Figure 2.1: Screenshot of a sample model installation (left) and related picture
of the actual installation (right)

2.1 Survey of image processing techniques

with respect to industrial requirement

A significant initial step in the algorithm development process was to understand

which image-processing techniques could be applied and which techniques needed

further development before they could be used for the purpose intended. A se-
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ries of mock-ups of a measurement scenario were captured and used for each of

the stages of image processing needed to perform the types of measurements and

comparisons that were intended as a result of the developed application. Various

stereo correspondence (disparity) estimation methods with specific attention to

extraction of features that are invariant to rotation, scaling, and translation irre-

spective of the view change was studied. For example, SIFT by Lowe 2004 [52],

SURF by Baye 2008 [18] are a few such techniques. A review of available tech-

niques and COTS tools was performed to see if there already existed some of

the capabilities that were needed. A number of tools e.g. from Geomagic [8],

Faro [7], Kubit [9], were found that went a significant way towards achieving

the objectives but none of the tools achieved the complete capability that could

verify safety related installation constraints as outlined in Section. 1.1.1. These

companies were contacted to see if there was anything on the horizon that might

deliver what was needed. The companies indicated that some of the requirements

were in the long-term development plans for their products, i.e. after MISSA was

finished and some expressed an interest to keep contact in the event that there

is an opportunity to collaborate in future activities. As the COTS tools were

not open source, it was decided to focus on state of the art techniques from the

research community.

2.1.1 MATHSAT3D and basic definitions

MathSAT(3D [21] has essentially been a system that takes in input a set of

geometrical shapes S and a set of constraints C and resolves the installation

optimization problems over S and C. Each shape described in S can be of one

of the following three kinds:

1. Volume: This represents a containment volume V , that is possible volumes

where the components can be installed. For each containment volume an

initial positioning has always to be specified and it cannot be changed during

the solution calculus.

2. Trajectory: This represents a risk trajectory T , that is trajectory from

which a possible risk for the installation can be derived (for example, tra-

jectories of fragments derived from an explosion). Also, for each trajectory
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requires an initial positioning and it is never modified during the solution

calculus.

3. Component: This is an installation component C, i.e. a physical component

that has to be installed.

2.1.2 Installation constraints

The constraints lead to the installation optimization which

1. Check the object is installed/setup in an AIV, else risk area

2. Check the trajectory path

3. Check enough distance between the components

It is necessary to ascertain the spatial relationship and that no objects are in the

trajectory path (to avoid collision during problems). For each of the constraints,

the system needs to be able to check whether it is satisfied. As an illustration

Figure 2.2: Representation of assembly (Mathsat3D)

example shown in Fig. 2.2, the 3 cubes (brightly colored) are the installation

components. The relatively bigger size cubes are AIVs. Red color protruding
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Tools/features 3D measurement tool palette [3] Meshlab [10]

F1 Yes Yes
F2 No No
F3 No No
F4 No No
F5 Yes No
F6 Yes No
F7 No No

Table 2.1: Feature comparison in state of the art measurement tools; F1: dis-
tance between positions, F2-planar surface detection, F3-distance between point
and planar surface analysis, F4-angular analysis between planes, F5-3D radial
dimension, F6-angular analysis between edges, F7-discrepancy checking

shapes are trajectories. Ideally, in an installation environment, every component

should satisfy certain safety rules that it is within acceptable installation volume

and trajectories.

The survey is presented for the different functionalities such as 3D measure-

ment, 3D discrepancy checking and advanced installation constraint checking that

are related in terms of assisting the production audit.

In Table 2.1, a feature comparison study is done for the existing state of the

art 3D measurement utilities. MeshLab [10] is an open source and extensible

system for processing and editing the 3D models. Adobe Acrobat [3] reads 3D

models that readers can move, turn, zoom in on, and examine part by part. It

can be noted that none of the tools have all the feature capabilities (F1− F7).

2.1.3 User guided 3D measurement and checking of

installations for production audit

The existing methods of measurement systems can be categorized into three broad

categories based on scanners, stereo vision, projection using coded structured

point light etc (refer Fig. 2.3). Nair has classified 3D vision techniques such as

stereo vision, laser triangulation, time of flight and projected light [31]. Nan et

al. (2010) [58] have made a study on 3D measurement technology for apparels

and accessories. 3D scanning systems are used to capture the point clouds by

using a laser-based range finding technique. The point clouds are then used to
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analyze the given environment [44].

Types of 3D measurement  
techniques  

Measurement  
based on stereo 

Measurement  
based on projection  

Measurement  
based on scanners 

Ours proposed method (Measurement based on FPSLR stereo)  

Figure 2.3: Types of 3D measurement techniques

2.1.3.1 Measurement based on stereo

Binocular stereo vision uses two cameras separated by a short distance. For a

simple stereo vision system, depth is given by

Z = f
b

d
(2.1)

where f is the focal length, b is the distance between two cameras(baseline) and d

is the disparity between corresponding points. In order to suit the real world 3D

applications, the system need to consider distortion, aberration which requires

calibration either using checker board pattern or grid of dots [31]. More details

regarding stereo triangulation is provided in Sect. 3.4.1.2 of Chapter 3. Nagatomo

et al. (2009) [57] have proposed calibration error-tolerant 3D measurement

method using stereo vision which exploits the scaling relationship of triangles.

The methodology is used for the systems where the robotic system that vibrates

or moves. The relationship between defined depth (H) and measured depth (H
′
)

is defined as

H
′
= 0.005H2 +H (2.2)

22



As mentioned by the authors, system suffer the problems such as a) lens aberra-

tion b) close range measurement when the distance between camera and object

is small. In general, the images need to have sufficient detail, and the objects

sufficient texture or non-uniformity so that features can be identified and differ-

entiated [31]. A way of addressing this problem is illuminating the scene with

structured lighting or profilometry system [31].

2.1.3.2 Measurement based on projection (3D Profilometry using

phase shifting and multifrequency heterodyne principle)

3D Profilometry system is composed of projector, CCD camera and target ob-

jects. 3D measurement can be achieved using viewpoint coded structured light

generated by some means of projection to reconstruct the 3D shape of an object

(Shi et al. 2009) [87]. Phase shifting and multi-frequency heterodyne principles

are applied to the images in order to enable measurement. As stated by Kim

et al. 2009 [49], the sinusoidal fringe pattern with single frequency is projected

by the projector to target objects. Then the image of target objects together

with fringe pattern on the surfaces are captured and saved by CCD cameras.

Three cameras are used to obtain multi-frequency fringe images. As stated by

Nair 2012, sophisticated algorithms are required to extract depth information and

quickly make decisions [31]. It is noted that mostly the works mentioned above

and industries rely on scanner technology for inspection tasks. Most of the indus-

trial components such as pipes, wires are not well textured which makes feature

detection and matching cumbersome for image processing techniques. Likewise

dark or highly polished surfaces of the subject matter make laser based ranging

techniques very noisy. This motivated us to prefer user guided 3D measurement

process which uses the inspection point of interest from the safety engineer itself

as key input for further processing with stereo images. The approach that was

developed in this research work was based on image processing techniques that

are assisted by user intervention to identify common features where they are not

immediately apparent due to the lack of texture. Further 3D measurement system

should have the capability to provide measurement with a reference model.
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2.1.4 Discrepancy checking of installations for

production audit

Discrepancy analysis is a process of estimating how much deviation is between

the actual 3D installation and corresponding geometry model. As stated by Kahn

et al. 2010 , discrepancy checking is used to ensure whether 3D model matches

the real geometry [48]. The discrepancy checking can be broadly categorized

into three types a) augmented discrepancy checking 2D space , b) 3D image

discrepancy checking via analysis by synthesis approach using ToF cameras and

c) ours proposed method: discrepancy checking on 3D point cloud using DMU

knowledge via synthesis and analysis approach (refer Fig. 2.4). There exist

several approaches for 3D model matching, however the work which is close to

our research are Georgel et al. (2007) [38], Kahn et al. 2010 [48]. The authors [38]

propose an augmented reality solution for discrepancy check for identifying the

differences between a planned 3D model and the corresponding built items in the

real world. Initially, anchor plates are used as reference information to obtain

pose in the coordinate system of the 3D model (refer Sect. 2.1.4.1). Kahn et

al. (2010) perform discrepancy checking using the time of flight cameras which

is discussed in Sect. 2.1.4.2.

Discrepancy checking  

Augmented 
Discrepancy checking 

(2D)  

3D Image Discrepancy 
checking via analysis 

by synthesis approach  

Ours proposed method 
Discrepancy checking 

on 3D point cloud using 
DMU knowledge 

synthesis and analysis   

Figure 2.4: Types of discrepancy checking
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2.1.4.1 Augmented discrepancy checking (2D space)

Georgel et al. 2007 have performed discrepancy checking using 2D images based

on the idea of superimposition of the images from a plant assembly with the CAD

model developed during planning phase [38]. The registration process is based

on identifying anchor plate and then match with anchor plates. The anchor plate

is segmented by the following strategy. Initially, user selects area around anchor

plate. The techniques such as a) canny edge detector to detect edges, b) hough

transform to reconstruct incomplete borders are used. The homography H is

computed using DLT algorithm based on correspondence between anchorplates

in image (Ap2D) and 3D (Ap3D). The authors have defined the mean projection

error to ensure the quality of homography. Specifically, the following equation

need to be minimized.

e(Hk) =
1

4n

n∑
i=1

4∑
j=1

∥∥∥Ap2Dij −HkAp
3D
ij

∥∥∥2 (2.3)

where Ap2Dij is the jth corner of ith 2D anchor plate. Ap3Dij is the corresponding

3D point, n is the number of anchor plates. Once pose is obtained, an augmented

CAD is created by positioning the image into the 3D view. Upon positioning,

a transparency level is used to view the deviation which is estimated using 2D

information. Georgel et al. 2007 has used 2D camera images and discrepancy

checking is performed in 2D space [38]. However, we use 3D information from

multiview images and perform robust matching in 3D space.

2.1.4.2 3D image discrepancy checking via analysis by synthesis

(ToF cameras)

Kahn et al. 2010 have performed discrepancy checking via analysis by synthesis

approach using the ToF cameras [48]. The method is based on a) synthetic 3D

image, b) time of flight camera 3D image and c) difference based on depth value.

In order to estimate the pose of ToF cameras, they install an extra camera which

is calibrated using Schiller method [48]. They use relative transformation (δR,
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δT ) between the two cameras.

RToF = RCam2DδR (2.4)

tToF = RCam2DtCam2D + δt (2.5)

The depth value dcam of a pixel (px, py) in 2D image coordinate system is

calculated as

dcam =
−2zfarznear

z′(zfar − znear)− (zfar + znear)
(2.6)

dcam is then transformed to 3D point pCCS(x, y, z) in the camera coordinate

system.

pCCS

xy
z

 =

(px − cx) 1
fx
dcam

(py − cy) 1
fy
dcam

dcam

 (2.7)

Euclidean distance is used to calculate the difference between the 3D value of

the synthetic 3D image and 3D measurement of the time of flight camera at the

same pixel. For visualization of discrepancy, 2D camera image is augmented with

semi transparent RGB image. The transparency of each pixel in the difference

visualization image is set such that pixels visualizing close distances have a higher

transparency than pixels at positions where there is a large discrepancy between

the 3D model and the real measurements o is the opacity factor.

αdist =

√
(xr − xs)2 + (yr − ys)2 + (zr − zs)2o (2.8)

where (xr, yr, zr) represents the 3D point in synthetic image and (xs, ys, zs)

represents the 3D point at corresponding pixel in 3D image by ToF cameras.

The colors of discrepancy image is as shown in Table 2.2 and the idea is to set

the transparency level of each pixel in difference image such that pixels visual-

izing close distance exhibit high transparency than pixels at positions where the

discrepancy between 3D model and real measurements is larger.

Indeed, there are few commercial applications like Geomagic [8] which at-
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3Dvalue r g b a

zr, zs 6= 0, zs ≥ zr 255 0 0 αdist
zr, zs 6= 0, zs < zr 255 255 0 αdist
zr = 0 or zs = 0 0 0 255 αnoref

Table 2.2: Colors of semitransparent discrepancy image

tempts for quality inspection using the CAD and scanned point cloud model.

The method provides the dimensions and datum information by verifying every

feature on the part and comparing it to a 3D CAD model. As mentioned earlier,

unlike the existing works, distinct nature of our work is as follows.

1. we use 3D information from the multiview images;

2. we use semantic metadata knowledge available from the geometry models

that evolve after installation optimization; and

3. we perform the discrepancy checking and analysis.

The common goal in all works is to identify where each of the individual parts

match or doesn’t match the geometry model information so called discrepancy

identification. This will assist the safety engineer to see and understand where the

problems lie and make necessary steps or modifications. Rabbani et al. (2005)

has used Hough transform for cylinder detection in 3D point clouds [65]. Attene

et al. (2006) has proposed a hierarchical mesh segmentation based on fitting the

primitives such as planes, spheres, cylinders etc [16]. Since all installation ob-

jects cannot be completely represented by a limited set of geometry primitives,

there is a need for a more generic framework which can fit multiple shape and

model matching. Further, we have key geometric knowledge information which

is already available such as in CAD and CATIA which can be used. This moti-

vated us to design a framework which can a) perform multiple shape matching

b) use model knowledge for processing. Ip et al. (2006) has made an exhaustive

study on using 3D object classification using different classifiers for discriminat-

ing the manufacturing processes [44]. More details regarding classifier usage in

discrepancy identification is provided in Chapter 4. With regard to computer

aided geometry models, they are usually available in formats such as CAD DXF,
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CATIA etc. In this research, we use CATIA which is a format used for conceptu-

alization, design (CAD), manufacturing (CAM), and engineering (CAE). Most of

the 3D information used in inspection tasks is obtained either using scanner/ToF.

There exists several approaches for the purpose of 3D reconstruction of a given

environment (refer Sect. 2.3 for more details). We used PMVS2 (Furukawa and

Ponce 2010) [37] for the experiments conducted regarding model matching in this

paper. From the reconstructed 3D cloud, individual objects can be segmented

based on available semantic metadata knowledge. If the segmented cloud is noisy,

further processing is done using component analysis. We also investigate and ex-

tract 3D shape discriminative feature information and use in training a classifier

which can complement the available geometric knowledge in object identifica-

tion. Upon the classification of objects, the model alignment can be done using

an Iterative Closest Point (ICP) algorithm.

2.1.5 Installation constraint checking and analysis

The problem of conflict or collision between the two equipments and the problem

of containment by the correct AIV or the relevant equipment of an idealization

are problems that have been solved by FBK [21]. The problem that we address

in this research work is.

1. Does the 3D point cloud model of an assembly environment raise a conflict

or collision?

2. Is the 3D point cloud model contained by the correct AIV (Acceptable

Installation Volume)?

3. Is the 3D point cloud model components are in trajectory path?

Up to our knowledge, there is no work available in the literature so far that

checks the 3D point cloud model against the model which evolved after instal-

lation optimization process and verify the set of installation constraints such as

AIV contains, intersect, disjoint, trajectory are met with a final 3D point cloud

assembly. Now, model based 3D vision techniques are introduced in Sect. 2.2.
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2.2 Model based machine vision in 3D space

This section discusses model based vision concept available in the literature. Ma-

chine vision is a research discipline devoted for machine analysis and recognition

started about two decades ago. As stated by Zhao et al 1989, the underlying

goals of machine recognition [89] are

1. to see what objects are present in the scene

2. to find precise positions and orientations of the objects

Also, a core general idea of all machine recognition approaches is to hypothesize

and verify. Model based recognition is based on the assumption of having a

library of models mostly required for training and classification [43]. Often, the

representation of model is in the form of geometric properties of objects. Model

based recognition is the task of searching consistent matches of the real world

model features and geometry model features. Since the study is related to aircraft

domain, the related exemplar or prior knowledge that we can better make use of

is explored.

Generally, an instance of a generic wide-body aircraft model is assembled out

of cylindrical and conical primitives with circular and polygonal cross-section.

The central cylinder so called fuselage and two symmetrical cylinders (wings) are

usually present in a simplistic airplane model. The target is to build an accurate

3D representation, 3D object structure and recognition using scenes with degrees

of complexity similar to sections of an aircraft fuselage. The sample aircraft

model with fuselage, wings and rudder component is shown in Fig. 2.5. Further,

bright sidewalk region in the upper middle of the image provides strong support

for the edges of the aircraft wings [56]. In order to have a complete description

of the three-dimensional structure of each model, we should be able to perceive

objects that could be constructed out of parts [56]. That is, either one of the

cases is true

1. whole object is a transformation (projection) of a prior known model

2. whole object can be broken into constituent parts.
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Figure 2.5: Model instance of an aircraft

A sample CATIA model representation of the toyhouse is shown in Fig. 2.6.

The main problems in processing this data are segmenting out reliable primitive

portions from the data and matching these primitives to those in a stored ge-

ometric model of an object [53]. The two methodologies that are available to

recognize 3D objects in 2D images are a) shape based (segmentation) and b)

texture based (object texture) [39]. Mundy et al. (2006) has done an exhaustive

review of key advances in geometric era and enunciated the paradigm shift made

from the formal geometry and prior models to statistical learning models based

on appearance features [56]. The appearance based method includes calculating

edge information, color histogram, texture information etc. Some of the com-

monly noticed structural shapes include pipes, tubes, cylinders, canal surfaces,

and polyhedron etc. The recognition of manufactured parts has been attempted

using a planar model [61]. The set of point and curve features are extracted by

a bottom up processing methodology. For example, toy house shown in Fig. 2.6

is made up of pyramids and cubes. This can be modelled using an algebraic

basis. The combination of geometry and symbolic algebraic constraints can lead
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Figure 2.6: CATIA model of a toyhouse

to accurate image interpretations [24]. The target is to make three dimensional

interpretations from 2D images (refer Chapter 5 for more details). For example,

if the cylinder is represented by a generalized cone, a class of all cylinders of

volume 5 (in some units) can be represented by two constraints as shown in the

following equation.

5 ≥ CLR2π (2.9)

Where CL and R are cylinder length and radius respectively. It is also noted

that ribbon and GC are also yet another useful representation. The available

existing recognition systems include ACRONYM in which a 3D dock model of

the submarine is created using generalized cylinder as shown in Fig. 2.7.

A large fraction of the manufactured objects is designed using CAD models

and hence described by the primitive geometric elements such as planes, spheres
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3D Dock model 3D Submarine Model
(Generalized
Cylinders) 

Figure 2.7: Acronym: a submarine and 3D dock model [56]

etc. In fact, more complex shapes could be represented by the geometric de-

scriptions such as triangular mesh or polynomial patches [56]. Model based ap-

proaches are also investigated in medical, face recognition domain. Abdelrahim

et al 2010 has used shape model priors in medical domain for 3D reconstruction

of teeth [15]. Park et al 2007 has used model based face recognition in video

based on predefined facial features using active appearance model and face pose

estimation [59]. Rabbani et al. (2005) has used hough transform technique for

automatic detection of cylinders in point clouds which are obtained from scanners

[65]. (refer annexure. II for more details regarding hough transform) Grzegorzek

et al. (2010) [39] has used local wavelet features for classification and localization

of 3D objects in 2D digital images. The problem addressed is the estimation of

object pose in 2D images. It is clearly mentioned in [36] that the recognition

performance is not just dependent on the invariant structure but rather better

segmentation techniques . A proposed depth based segmentation technique is dis-

cussed later in Annexure III. Finding the intensity driven features such as affine

patches are vital since invariant regions provide a stable description of the ob-

jects and facilitates the reliable segmentation of object parts which would aid the

object recognition process. The integration of affine patches with associated ge-

ometric constraints lead to impressive performance in complex scenes [56]. Some

of the issues that can be considered for better segmentation [36] are:

1. Forming image segments: It is a first step in the recognition process where

regions that are of coherent color and texture are partitioned.

2. Fitting lines to the edge points: The machined objects contain lines where

the plane faces meet and circles. It is also suggested to find edges in any

32



image initially and then followed by fitting the lines and circles to them.

The estimation of parameters of the lines and correspondence between lines

and points need to be established. This method of fitting lines to the

edge points is useful for the DMU model generation in 3D space which is

discussed in Chapter 4.

3. Fitting fundamental matrix to a set of feature points: This relates to cor-

respondence between a set of feature points under different views.

The whole idea is to effectively use prior or exemplar knowledge for better recog-

nition by removing the outliers. In order to obtain the 3D reconstructed model

of the installation environment, we performed a brief literature review in the field

of 3D reconstruction of the installations.

2.3 3D reconstruction techniques

The aim of performing this review is to understand the available 3D reconstruc-

tion techniques using images so that assembly setup can be reconstructed to

perform discrepancy checking. The research goal of 3D reconstruction from mul-

tiview images depends on specific domain; however most common requirement

always centres around accuracy, admissible time, reliability, clearly defined as-

sumptions, environment conditions and testing with practical real world appli-

cation. A robust framework for stereo image analysis, 3D modeling and view

point synthesis has been provided by Izquierdo et al. (1998, 2000) [46], [47].

3D structure (eg. structure from motion) can be extracted using disparity results

and camera parameters. As stated by Mckinley et al. (2001) [54], there are three

approaches to 3D reconstruction using stereo image pairs.

1. The first, and the most familiar, is where both the intrinsic and the extrinsic

parameters of the stereo system are known.

2. In the second case, only the intrinsic parameters are available.

3. The third case is the one where both intrinsic and extrinsic parameters are

unknown, but a sufficiently large number of 3D object points are known.

[27].
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The process of recovering 3D shapes from multiple calibrated images can also be

called as image based modelling [37]. The commonly used techniques for the 3D

reconstruction tasks can be categorized as shape from shading, shape from silhou-

ettes (visual hulls), structure from motion, scanning, kinect based reconstruction,

plenoptic capture etc. etc. Shape from shading is the process of recovering the

3D shape of a surface through the analysis of the brightness variation in a single

image. Photometric stereo by Vogiatzis et al. 2010 is based on the light source di-

rection and can be used to get high quality reconstructions [85]. The methodology

incorporates estimation of light directions coloured light (variant of three source

photometric stereo) and intensities. Lambertian surfaces are the surfaces which

exhibit diffuse reflectance i.e reflecting light in all directions and its brightness is

proportional to the energy of incident light. It can be written as the product of

strength of light source Eo, albedo of the surface A and foreshortened area.

IL = R = EoAcosθi (2.10)

where R is the reflectance map which is the cosine of the angle between the unit

vector s in the light direction and the normal vector n. θ is the angle between

surface normal and source direction. The above equation can be written as

IL = R = EoA
−→
N .
−→
S (2.11)

where
−→
N is the local surface normal and

−→
S is the light source. This method may

be optimal for cases where specific individual objects need to be reconstructed

and certain indoor environment such as reconstructing single objects such as toy,

statue shapes or even dancer. Seitz et al. (2006) has made a study and classified

multi-view stereo reconstruction algorithms under categories such as 3D volume

surface extraction, visual hull (space carving), depth maps etc [70]. 3D volume

surface extraction is based on extracting a surface from 3D volume which is based

on cost function where voxels that cost below a threshold are in the same pass.

In order to extract the surface, techniques such as MRF, max flow, multiway

graphcut are used.

Visual hull based approaches rely on silhouette and recovered camera informa-
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tion. It is also a subset of structure from motion approach. As stated by Forbes

et al. 2004, visual hull is usually constructed from the multiple contours and cor-

responding camera parameters such as camera pose [35]. A sample visual hull

of elephant captured using seven silhouettes is shown in Fig. 2.8. The visual hull

method includes space carving and level set methods [70]. The space carving

method generally starts from initial volume and shrink inward. Visual hull based

techniques are based on space carving methods which operates by removing pixels

that are not photo consistent. The voxels are deleted based on energy minimiza-

tion function. Photo consistency measure can be defined in scene space or image

Figure 2.8: Visual hull of elephant [35]

space. Scene space works by taking a point, patch, or volume of geometry, pro-

jecting it into the input images, and evaluating the amount of mutual agreement
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between those projections. A simple measure of agreement is the variance of the

projected pixels in the input images. The other methods compare images using

window matching methods such as the sum of the squared differences or normal-

ized correlation. Image space methods use the scene geometry estimate to predict

a different view by warping images from one view point. The difference between

space carving methods and level set method is that latter can also locally expand

if needed to minimize an energy function. However, space carving method starts

from a large initial volume and shrink inward. The level set methods minimize a

set of partial differential equations based on a volume.

Visual hull techniques are better for reconstruction of the high curvature or thin

structures whereas not good for the low surface texture in which surface tends to

bulge out [70].

Structure from motion such as PMVS2 by Furukuwa et al. 2010 [37], Insight3d

[12] which performs 3D reconstruction from multiview images using key points

and auto calibration methods but the outliers need to be removed to make it read-

ily available for a particular application for example surgery, industrial, surveil-

lance etc. The filtering tools using segmentation and model fitting could be used

to alleviate the outlier problems. Further instead of using auto calibration meth-

ods, photometric calibration can be used which could improve 3D reconstruction

quality. (please refer Chapter 4 for more details)

There is also research towards using line or curve based methods than just point

based matching at disparity level. Fabbri et al. 2010 used curve based multiview

stereo reconstruction based on image curve content to 3D curve sketch [32]. The

key difference is unlike usage of traditional interest points, curve information is

used to perform reconstruction and bundle adjustment. The explicit curve infor-

mation can be used where interest points are not present. The line and plane

information are also used by Li et al. 2010 [50]. There are many works such as

reconstruction from line geometry, curves (instead of points) 3D curve sketches,

regularisation of shading, shapes, reconstruction from single image, reconstruc-

tion fusing image and range data etc. Creating 3D from 2D line drawings has

been accomplished using either depth or plane based approaches whose purpose

is to handle more complex objects than state of the art methods. Infact, these

techniques have been used in many applications such as cultural heritage for
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example, building rome in a day etc.

Plenoptic camera as stated by Shijagurumayum et al. 2010 has an array of

microlens and used to record information from all possible view points within lens

aperture [71]. The advantage is the estimation of depth information of pixels, no

need for geometric, color calibration, frame synchronization etc. The disadvan-

tage includes low resolution due to defocus of microlens image, smaller baseline

which leads to the degradation of depth estimation accuracy [60] [71]. The less

spatial resolution is due to spatio angular light field sampling [60].

The gap between either high quality object based or structure from motion

reconstruction and industrial application level usage is filled by model based

knowledge or scene geometry information. In particular, in industries, devia-

tion analysis or collision detection can be performed using stereo reconstruction

unlike laser scanners that are still used for testing purpose works such as Chunmei

et al. 2009 [29]. As stated by Seitz et al. (2006), all stereo algorithms assume

view independent intensities (Lambertian scenes) [70]. While there are features

such as color, shape and texture, they have their own limitations. For exam-

ple, color is not sensitive to the direction and scale changes of an image. Also,

texture information is not truly captured when the light or reflection is present

whereas shape based features depend on the segmentation. These features are

not invariant to rotation, affine distortion, scaling etc.

In this research we use features that are robust over a wide range of affine dis-

tortion change in 3D view,noise, illumination change, scaling, rotation etc. The

usage of geometric primitive shape knowledge and robust image characteristics

(LIFE) are explored. Inspite of the fact that LIFE algorithms such as SIFT (Scale

Invariant Feature extraction Technique) [52], SURF (Speeded Up Robust Fea-

tures) [18] are able to produce only sparse correspondence, they are used since

they are robust to geometrical and photometric transformations and invariant

towards translation, rotation and scaling. Further SIFT enable high discrimina-

tion for finding corresponding points and has been widely used for many vision

applications such as non identical duplicate video detection [83]. Morever, the

key target is to define a reference planar surface using enough number of distinct

key correspondences between stereoviews with a plane fitting algorithm (for more

details refer Section. 3.4.1.4).
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Bundle adjustment can provide a very accurate sparse estimate [34] of the

object structure. 3D information from the multiview images can be obtained

using a structure from motion approach such as Bundler by Snavely et al. [73],

[74]. There are few works regarding 3D reconstruction from single image (Saxena

et al. 2007) [68] and even from single silhouette using a probabilistic generative

method. Their strategy is to fuse both the monocular(texture variations, gra-

dients, color, haze) and stereo triangulation cues. et al. 2010) has modeled 3D

deformable shape variations and infers 3D shapes from a single silhouette [28].

The main issue is regarding the accuracy of 3D estimation. We need mm level of

accuracy in this research (refer Chapter 3 for more details).

2.4 Applications and properties

Though the main target application is safety analysis during aircraft manufac-

turing, the envisaged study and potential outcomes (3D models with semantic

metadata) can be used in a wide-range of applications during and after aircraft

building. The following properties are studied in order to build a system proto-

type and to determine the trade-off between efficiency, generality and accuracy.

1. Segregation: Safety constraints need to be respected to avoid effects/impact

such as stress and pressure on other machine parts.

2. Generality: A system has to be generic and also scope needs to be well

defined so that it is suitable for addressing class of real world problems.

There needs to be a separation between domain dependent modules and

domain independent module of the system.

3. Representation: When there are lots of features and constraints, repre-

sentation has a modular organization that facilitates indexing into model

library.

4. Accessibility: It is concerned with whether a description can be computed

easily given a representation.
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5. Uniqueness: The class of shapes and uniqueness of the description of

each shape is studied and also to find the discriminating power of each

shape description.

6. Sensitivity: The sensitivity is related to resolution with respect to small

variations in shape parameters.

7. Control: This refers to use of features and constraints of representation in

the core recognition process.

8. Model validation: The output from the model is cross checked with ref-

erence data from the production environment.

2.5 Conclusions

In this chapter, we briefly described the literature review in key fields related to

production audit such as a) 3D measurement, b) 3D discrepancy checking and c)

linking installation constraints to production audit. Firstly, it is noted that most

of the existing works for production audit and industries rely on scanner technol-

ogy for inspection tasks. Most of the industrial components such as pipes, wires

are not well textured which makes feature detection and matching cumbersome

for image processing techniques. Likewise dark or highly polished surfaces of the

subject matter make laser based ranging techniques very noisy. This motivated

us to prefer user guided 3D measurement process which uses the inspection point

of interest from the safety engineer itself as key input for further processing with

stereo images. The approach that was developed in this research work was based

on image processing techniques that are assisted by user intervention to identify

common features where they are not immediately apparent due to the lack of

texture. Further 3D measurement system should have the capability to provide

measurement with a reference model. Secondly, the common goal in the existing

works and commercial applications like Geomagic [8] is to identify where each of

the individual parts match or doesn’t match the geometry model information so

called discrepancy identification. This will assist the safety engineer to see and
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understand where the problems lie and make necessary steps or modifications.

Unlike the existing works, distinct nature of our work is as follows.

1. we use 3D information from the multiview images;

2. we use semantic metadata knowledge available from the geometry models

that evolve after installation optimizationto perform the discrepancy check-

ing and analysis.

In this research, we used CATIA which is a format used for conceptualization,

design (CAD), manufacturing (CAM), and engineering (CAE). Most of the 3D in-

formation used in inspection tasks is obtained either using scanner/ToF. We used

PMVS2 (Furukawa and Ponce 2010) [37] for the experiments conducted regarding

model matching in this paper. From the reconstructed 3D cloud, individual ob-

jects can be segmented based on available semantic metadata knowledge. If the

segmented cloud is noisy, further processing is done using component analysis.

We also investigated the use of 3D shape discriminative feature information in

training a classifier which can complement the available geometric knowledge in

object identification. Upon the classification of objects, the model alignment can

be done using an Iterative Closest Point (ICP) algorithm. Finally, the problem of

conflict or collision between the two equipments and the problem of containment

by the correct AIV or the relevant equipment of an idealization are problems that

have been solved by FBK [21]. The problem that we address in this research work

is.

1. Does the 3D point cloud model of an assembly environment raise a conflict

or collision?

2. Is the 3D point cloud model contained by the correct AIV (Acceptable

Installation Volume)?

3. Is the 3D point cloud model components are in trajectory path?

Up to our knowledge, there is no work available in the literature so far that

checks the 3D point cloud model against the model which evolved after instal-

lation optimization process and verify the set of installation constraints such as
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AIV contains, intersect, disjoint, trajectory are met with a final 3D point cloud

assembly. In next Chapter 3, we describe the proposed 3D production audit mea-

surement and testing (3DPAMT) approach. A proposed model matching solution

(3DPACT) using CATIA knowledge is discussed in Chapter 4.
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Chapter 3

3D PAMT (Production Audit

Measurement Tool) for industrial

verification

3.1 Introduction

The concept of 3D measurement plays key role in the industrial verification tasks

and it can be used as post processing step to get the precise measurement once

the component having discrepancy is identified. This Chapter describes a concept

application to aid a safety engineer to perform an audit of a production aircraft

against safety driven installation requirements. The capability is achieved using

image capture of a product and measurement of distances between datum points

within the product with/without references to a planar surface. The above step

gives the safety engineer a means to perform measurements on a set of captured

images of the equipment they are interested in. Recently, 3D vision and analysis

have attracted manufacturing industries for safety checking and advanced pro-

duction audit analysis. From industrial safety engineer perspective, the distance

between any datum inspection point of interest and/or with reference to pla-

nar surface is useful and important to check whether safety constraints are duly

respected. In this Chapter, we provide a robust production audit framework
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targeting industrial applications using a) user guided input from test engineer

(point based disparity), b) optimal combination of focused point and LIFE based

disparity, c) outliers removal using back projection and d) distance between 3D

measurements with respect to planar surface. The usefulness of the approach is

described with substantial results. By assisting safety testing engineer with au-

tomated checking and feedback in minimal time, necessary precautionary steps

can be taken so that their installation safety and quality constraints are adhered

properly. Specifically the hypothesis statement of the Chapter is

H1: User input from the safety engineer based on FPSS Focused point SLR

stereo can be used for accurate 3D measurements(point, planar, angular) at mm

level while ensuring reliability of the measurements using the backprojection cri-

terion.

The remainder of the Chapter is organized as follows. In Sect. 3.3, we provide

the advantages of proposed 3DPAMT. The proposed approach and framework

description is provided in Sect. 3.4. In Sect. 3.4.1, we describe 3D distance

calculation between points of interest and 3D stereo triangulation in Sect. 3.4.1.2.

In Sect. 3.4.2, we discuss distance measurement between 3D points and planar

surfaces. The various techniques for planar detection is discussed and results are

compared. The angular analysis between planes and edges are discussed in Sect.

3.4.3 and 3.4.4. The summary of the Chapter is provided in Sect. 3.6.

3.2 Application concept development process

A work-study was performed as a part of the MISSA project by partners in [4] [21]

to understand the industrial context and needs. Ad hoc tools were prototyped to

test the application of various state of the art techniques and to develop some new

techniques to try to achieve the objectives of the project. Meanwhile, COTS light

and sound based scanning measurement devices and the recommended software

tools were trialled on a wooden mock-up of a physical installation and on various

types of equipment [4] [21]. A prototype tool-set was produced and tested on

various simple installations to prove the workflow and to validate the ideas behind

the toolset. Finally, an evaluation to test the accuracy that was achieved was

performed and future directions for improvement of the concept were identified
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and discussed with potential future partners [4] [21].

3.2.1 Understanding the industrial context for using the

device

In order to have a good idea of the requirements for a device that satisfied the

measurement objectives and could be used within an industrial context meant

that the necessary stakeholders had to be involved.

3.2.1.1 Visiting the final assembly line

As a starting point, a meeting was organized by [4] with FAL (Final Assem-

bly Line) management and with zonal safety engineers. The meeting with the

FAL management, amongst other things, involved a thorough walk through a

possible inspection area on a live production aircraft to understand the actual

environment.

It was understood that the practical aspects of accurate data acquisition were

not the only obstacles. Health and safety, privacy, production process and ac-

countability (what happens if during scanning an area, damage is sustained that

is not noticed and so is not reported) concerns were seen as potentially more

significant obstacles. This led to the identification of a list of industrial require-

ments related to the environment that the measurements would be performed in,

regarding the objects that would be measured, as well as performance targets

regarding achieved measurement accuracy based on the accuracy needed at the

FAL for things that needed to be checked. It was recognised that the MISSA

3D production audit process would have to be worked into the official production

process for it to be used. The issue of accountability and damage reporting would

be considered during such a process integration activity and so would be handled

outside the scope of MISSA.
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Figure 3.1: Assembly wooden mockup [6]

3.2.1.2 Experience in using the current state of the art equipment

and software

Companies specializing in performing measurements using various lasers, white

light and ultrasonic scanning equipment were invited by [4] to demonstrate their

products on a set of test specimen in order to experience the existing state of the

art scanning measurement processes first hand and to see the level of measurement

accuracy that could be achieved. The process of performing a scan, regardless

of the technology, processing the scanning information so that measurements

could be performed, and finally carrying out specific measurements was studied

carefully. The various parts of aircraft model is shown in Fig. 2.5. Various devices

were used for measuring five objects [21].
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1. The leading edge of a wooden mock-up of an aircraft wing and the various

installed equipment.

2. A black composite panel.

3. A highly polished shiny metallic wing, wind tunnel model.

4. A transparent stereo lithographic wing, wind tunnel model.

5. A mat painted fuselage panel cut out with the machine cut shiny metal

edges exposed, with riveted joints and bare metal riveted repair plates.

The accuracy of measurement using the light and sound based measurement

techniques were heavily dependent on the user skill during data pre-processing

(cleaning) step before performing a measurement. Once the cleaning step was

complete, then during the measurement step, it was just as important that iden-

tifiable features were present and correctly selected to perform the measurement.

Measurements, such as perpendicular offset from a plane depended on the ac-

curate definition of a plane, making sure that the points that were selected to

define a plane did not include outlier points that would give a poor definition of

a plane. As long as the various stages of pre-processing and measurement were

performed well, then it was possible to achieve significantly better measurement

accuracy than what was required for the types of measurement needed. As a

consequence of using any of the scanning techniques above, once a measurement

process is complete, an engineer is left with not only confirmation of the measure

they are interested in but also the raw dataset, the processed data, as well as the

actual measure that was performed; and so a complete record of the audit are

present that can be visited and used at a later stage to repeat the measurements

or to perform modified measurements if there is a need. It was concluded that

the duration for the devices to perform a scan was acceptable regardless of the

accuracy obtained with the device, but duration to study the environment, to set

up and calibrate the equipment, to make sure that the measurements of interest

could be performed from the scanning results, all activities that would be per-

formed regardless of which technique was used, actually took much longer. The

main factors concerning the equipment were related to health and safety, due to
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the use of laser technology, the use of flash equipment, since some industrial en-

vironments contain flash sensors for fire protection, and to scanning sensor noise

due to the nature of the surfaces that were being scanned. E.g. dark, shiny,

translucent surfaces did not scan easily or accurately. The idea of accuracy was

also affected by the fact that the aircraft is a structure that changes shape every

time that, somebody boards to take a measurement, the temperature changes or

more equipment is installed. Each time the flexing of an aircraft is different as

the loading conditions evolve as the aircraft is assembled. The trialling activity

helped qualify the requirements.

3.2.2 Challenges

There are restrictions that need to be considered while performing a measurement

and testing process within a complex installation environment. The safety engi-

neers make measurements within areas where access or space is limited, limited

exposure of light, no exposed sparks, low power etc. Furthermore, there should

not be any permanent markers and no systems that might have an affect on

“health and safety” are allowed. People cannot be captured as well. Hence any

equipment used for safety measurement should consider the above requirements.

As such only photographic techniques using low cost cameras were considered.

The amount of effort involved is much less in terms of logistics required to use

a camera when compared to the usage of scanner solutions. There may be dis-

crepancies during the production process which leads to faulty installations. As

an example, one can visualize that two cylinders like structures present in an ac-

tual installation is not present in the corresponding CATIA or geometric model

(refer Fig. 2.1). To be specific, the task beforehand is to design and implement

a solution that can a) identify defaults (in this case cylinders) thereby aiding the

verification and validation process, b) provide accurate position of the 3D object

structures. The project is challenging since it is stated in the literature (Rabbani

et al. 2004) [64] that only 85% of the objects in industrial installations can be

approximated by CSG primitives such as planes, spheres, cones, cylinders. It

would be increased to 95% if toroidal surfaces are considered. Now, survey of

image processing techniques with respect to industrial requirement is provided in
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Sect. 2.1.

3.3 Advantages of proposed 3D PAMT

The unique features of the 3D Measurement tool are the automated calibration

utility, the zoom in option (to help selecting points accurately) and optimal com-

bination of point based disparity and Local Invariant Feature Extraction (LIFE)

based disparity which complements each other. These two techniques enable

the measurement between any combination of two points, as well as the distance

between any points and the perpendicular distance to a defined plane. The porta-

bility feature of the digital cameras is worthy factor to be considered since the

working environment during production audit is too complex where sometimes

even difficult to carry scanners due to constrained free space especially lot of

cables. In terms of time complexity, for 3D measurement and analysis, we pro-

cess only minimal information i.e., stereo to achieve high level accuracy. The

algorithm run time analysis and discussion is provided in Section. 6.1.1. A brief

case study is provided that demonstrates safety driven installation requirements

having been achieved not only in design but have also been maintained through

production. The safety driven installation requirements are met through this 3D

stereo vision based audit process.

3.4 Proposed approach and framework

description

The PAMT framework provided in Fig. 3.2 aims to solve two distinct issues: a)

distance between any datum points of interest, b) accurate distance measurement

between 3D points and planar surface. In the former method, user provides points

of interest with which distance constraints need to be checked. The 3D distance

between the points is calculated and accuracy is typically achieved in mm level

(refer Table. 3.13, Table. 3.6 for more details). The latter requires components

such as plane detection, point based disparity and triangulation. This portion

requires reasonable 3D cloud using automatic correspondence to facilitate planar
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surface detection. In this part, we perform outlier removal based on backprojec-

tion which is discussed in detail in Sect. 3.4.1.4. The plane detection techniques

are discussed in Sect. 3.4.2. With thus obtained plane and any user point of in-

terest, 3D distance with respect to planar surface is estimated. The flowchart for

3DPAMT is provided in Fig. 3.3 and would be discussed elaborately in succeed-

ing sections. The screenshot of implemented MISSA [11] 3D PAMT: a complete

framework for 3D measurement and inspection and user manual is provided in

Annexure I.
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Figure 3.2: MISSA 3D PAMT (Production audit measurement tool)

3.4.1 3D distance calculation between points of interest

3.4.1.1 Calibration

Camera calibration in the context of three-dimensional machine vision is the

process of determining the internal camera geometric and optical characteristics
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Figure 3.3: Measurement audit component module

(intrinsic parameters) and/or the 3D position and orientation of the camera frame

relative to a certain world coordinate system (extrinsic parameters). Calibration

is needed for at least two reasons: a) to estimate the epipolar geometry of the sys-

tem, in order to constrain the matching search along the epipolar lines and b) to

reconstruct the 3D structure of objects after correspondence estimation (Izquierdo

and Ohm 2000) [47]. Furthermore, it is also stated that although epipolar lines

may be estimated for unregistered images using exclusively stereo image infor-

mation, camera parameters are required in the process of depth reconstruction.

Calibration broadly fall under two categories such as as photometric and auto-

calibration. Photometric calibration uses calibration object such as checkerboard

pattern. This can be achieved by using different views of checker board using

the same camera set-up. By using structure from variety of angles, the task is

to find relative location and orientation of camera for each image and intrinsic
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parameters. There are three traditional algorithms for photometric calibration

which uses a checkerboard pattern including (Tsai 1987) [79], Heikkila and Silven

(1997) [42] and Zhang (2000) [88] calibration method. Auto calibration does

not need any calibration object and the camera parameters are estimated from

the images. We used Zhang (2000)’s calibration method for estimating extrinsic

parameters [88] since the technique requires the planar pattern to be observed at

a few (at least two) different orientation and does not need any equipment with

two or three orthogonal planes. The method contains the following key steps:

1. The homography is calculated between the image patterns and the model

using labeled features using DLT (Direct Linear Transformation) algorithm

2. Estimation of intrinsic and extrinsic parameters

3. Estimation of distortion parameters

4. Refine all parameters using optimization technique

In practice, it is advised to use 7 or more images for better calibration results

[22]. There should be at least minimum two orientations (Zhang 2000) [88]. The

calibration error is calculated as

caliberr =

[∑
(xi − x

′
i)

n
,

∑
(yi − y

′
i)

n

]
(3.1)

where x
′
i and y

′
i represent backprojected 2D points and xi, yi represent the

checkerboard corner points. The number of checker board corners of calibra-

tion grid is n = (width − 1)(height − 1), (as only inner corners are used for the

calibration process).

3.4.1.2 3D SLR stereo triangulation and backprojection

As stated by (Izquierdo and Ohm 2000) [47], two corresponding points represent

the projection onto the image planes of the same object point. 3D position is the

intersection of both viewing lines and can be estimated using the coordinates of its

projection in both images and the camera parameters. The stereo reconstruction
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problem can be formulated in terms of maximum likelihood estimation(inference

problem) as follows.

X̂ = arg max
nc∑
j=1

log Pr(xj|P,Mj) (3.2)

where Mj is the camera projection matrix of the jth camera. xj
nc
j=1 is the pro-

jection (zl, zr) as shown in Fig. 3.4 in nc ≥ 2 calibrated cameras. This can be

rewritten as

P̂ = arg max
nc∑
j=1

log Pr(xj|P,Kj[Rj|tj]) (3.3)

P need to be manipulated until the predictions BP (P,Mj) agree with the data xj

where BP is the backprojection (refer Sect. 3.4.1.2.1). Triangulation is the key

process behind reconstruction which is a process of determining the 3D location

of a point by measuring angles to it from known points at either end of a fixed

baseline, rather than measuring distances to the point directly. The point can

then be fixed as the third point of a triangle with one known side and two known

angles. As shown in Fig. 3.4, we retrieve P in space from observed projection zl =

(ul, vl) and zr = (ur, vr) onto image planes. u, v represent the coordinate system

used in computers or digitized image. It can also be noted that triangulation is not

possible if P lies on Ol, Or or zl = zel and zr = zer where zel and zer are epipoles.

Given two 3×4 camera projection matrices Ml,Mr and zl,zr which represents the

corresponding points in stereo images, then mathematically triangulation can be

written as a function

P = τ(Ml,Mr, zl, zr)i=1:nc ,Mi = Ki[Ri|ti] (3.4)

where i is the index representing the number of cameras nc. K is the calibration

matrix. Rl and Rr represent the rotation matrixes of an object relative to the

first camera and to the second camera. The rotation between them Rlr can be

calculated as

Rlr = RrR
−1
l (3.5)
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Rlr can be written as

Rlr =

 cosαcosγ + sinαsinβsinγ cosβsinγ −sinαcosγ + cosαsinβsinγ

−cosαcosγ + sinαsinβcosγ cosβcosγ sinαsinγ + cosαsinβcosγ

sinαcosβ −sinβ cosαcosβ


(3.6)

where α, β and γ are rotation angles around X, Y and Z axis. Similarly given two

translation vectors tl and tr, translation between two cameras can be obtained as

Tlr = tr −Rlrtl (3.7)

The 3D position of a point P can be reconstructed from the perspective projection

of M on the image planes of the cameras, once the relative position and orienta-

tion of the two cameras are known. Let X
′

l = (Xl, Yl, Zl) and X
′
r = (Xr, Yr, Zr)

represent the 3D world coordinate points of point P in left and right camera

coordinate systems.

Ul =
X

′

l

Zl
= [ul vl 1] (3.8)

and

Ur =
X

′
r

Zr
= [ur vr 1] (3.9)

are the coordinate vectors of perspective projection of P on the image. Xl and

Xr are related by the rigid motion equation as

X
′

l = RlrX
′

r + Tlr (3.10)

UlZl = RlrZrUr + Tlr (3.11)

[Ul −RlrUr]

[
Zl

Zr

]
= Tlr (3.12)

With each of the two cameras, we get linear equations in unknown coordinates

of P , which can be written as AP = Tlr where A = [Ul − RlrUr] is 3 × 2 matrix

involving projection matrix Ml,Mr of the camera [33]. In order to find the best
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Figure 3.4: Epipolar stereo geometry

reconstructed 3D point, linear method minimizes the criterion ‖AP − b‖2 with

respect to P . P can be determined as

P = (ATA)−1AT b (3.13)

where ATA is nonsingular and (ATA)−1AT is the pseudo inverse of A.

3.4.1.2.1 Backprojection (BP): 3D points can be projected onto the im-

age plane using perspective transformation which is described as below. World

coordinates (X, Y, Z) are transformed to image coordinates using perspective pro-

jection. Let ~m =
[
u v 1

]
be coordinates of projection points in pixels and
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~M =
[
X Y Z 1

]
be coordinates of 3D world points

s~m = Im

[
R3×3 t3×1

~0 1

][
~M

1

]
(3.14)

[R t] describes camera motion around the object or rigid motion of objects in

front of camera. Considering tangential distortion coefficients (p1, p2).

xv = xu + [2p1yu + p2(r
2 + 2x2u)] (3.15)

yv = yu + p1(r
2 + 2y2u) + 2p2xu (3.16)

u and v are updated as

u = αxxv + u0, v = αyyv + v0 (3.17)

xu and yu are distorted points; xv and yv are corrected points. k1, k2 and k3 are

radial distortion coefficients, p1, p2 are tangential distortion coefficients, fx, fy are

focal length in pixel units.

3.4.1.2.2 Correspondence estimation: Disparity is a vector field mapping

from one stereo to another (refer Fig. 3.5). Let (xl, xr) and (yl, yr) be the cor-

responding points in left and right images respectively. The horizontal disparity

is a function of depth (xr − xl) and vertical disparity is a function of the camera

geometry (yr − yl).

3.4.1.3 Point based disparity

Point based disparity is based on an inspection audit by test engineers from the

perspective of testing and analysis of any datum points of interest. Initially, the

user will select the corresponding points in 2D images. For each selected point,

the more focused window of point selected is shown (refer Fig. 3.6). With thus

obtained disparity (point of interest from inspection perspective) and calibration

parameters, we perform triangulation to get 3D points. Since disparity is obtained
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(305,58) (306,58)(305,58) (306,58)

Figure 3.5: Disparity

manually, there is no need for outlier removal and mm level accuracy can be

achieved (refer Fig. 3.21 and Table 3.6 for more details). As stated by Takahashi

et al 2010, in general the captured stereo image file cannot provide a reasonable

measurement result without any additional information since an image file has no

information about digital zooming [76]. Images are captured with high resolution

digital cameras with size of 2160 × 3840 pixels. When displaying the image on

screen, it is resized to fit on the screen and selecting points with resized images

is not accurate enough. In order to solve this problem, we provide a two-step

selection process. Let w = (x1, y1) represents the point that user has selected in

the first image and corresponding point x = (x2, y2) in second image respectively.

In the subsequent window, the user will be shown an image with a portion (y1−δ :

y1 + δ, x1 − δ : x1 + δ) where δ = 150 in our setup. The points selected now in

focused images be m = (u1, v1) and n = (u2, v2) respectively. Then the points

x
′
1 and y

′
1 for the first image are updated as follows: x1

′
= w(1) + (m(1) − δ),

y1
′

= w(2) + (m(2)− δ) Similarly, the corresponding points in second image are

updated as x2
′
= x(1) + (n(1)− δ), y2

′
= x(2) + (n(2)− δ).
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Figure 3.6: Corresponding point selection in stereo images

3.4.1.4 LIFE based disparity and outlier removal based on

backprojection

Local Invariant Feature Extraction (LIFE) techniques such as SIFT (Lowe 2004)

[52], SURF (Bay et al. 2008) [18] can be used to get auto correspondence.

The advantage of this method is its invariant capability towards translation,

rotation, scaling etc. (refer Fig. 3.7 to Fig. 3.8 as an example). The aim

of getting automatic correspondence is to get enough points to facilitate planar

surface detection of the environment which can be used for safety analysis. In

this research work, we used SIFT and triangulated with calibration information.

In order to ensure all reconstructed points are in line with real world points, we

perform outlier removal based on backprojection. The two stereo images and thus

obtained 3D cloud is shown in Fig. 3.9. In general, outliers are removed based on

fundamental matrix. After backprojection, we calculate the distance between the

selected point in the image and the backprojected coordinates. If the distance

is above certain threshold, then we reject that point. But, this rejection was

added for automatic correspondences. We use Local Invariant Feature Extraction

technique such as SIFT (Lowe 2004) [52] for demonstrating the process. Let

Dc1(2D) = {Xc1i, Y c1i}ni=1 and Dc2(2D) = {Xc2i, Y c2i}ni=1 represent the arrays

of 2D disparity points in two camera (c) views. i represent the index and n is
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Figure 3.7: Automatic stereo correspondence using SIFT

Figure 3.8: Automatic stereo correspondence using SURF

the number of stereo correspondences between images. c1, c2 denote the left and

right views of stereo images. These points are triangulated to obtain real 3D

points Preconst(3D) = {Xi, Yi, Zi}ni=1. After 3D calculation and backprojection, for

each of the corresponding camera views, we have backprojected points as D
′
c1 and

D
′
c2. Though we use multiview images (more than 7) in the calibration process

as suggested in [22], we only use 2 camera views for correspondence estimation

58



and measurement tasks. For the stereo camera views, error between actual and

re-projected 2D points is calculated as

ec1 = D
′

c1 −Dc1, ec2 = D
′

c2 −Dc2 (3.18)

The outlier removed 3D points P
′

reconst(3D) as

Preconst(3D) = Preconst(intersect(k, l)) (3.19)

where

k = find(ec1(:, 1) < bperrthr and ec1(:, 2) < bperrthr) (3.20)

l = find(ec2(:, 1) < bperrthr and ec2(:, 2) < bperrthr) (3.21)

Now, the outlier removed 2D points can be found using

Dor
c1 = Dc1(intersect(k, l), :) (3.22)

Dor
c2 = Dc2(intersect(k, l), :) (3.23)

Intersect is defined as the set of points in 2D or 3D space that represent

common elements in the set. The measurements are not reliable for cases where

backprojection error is high. The probability that random data from 3D cloud

selected has less backprojection error (bperr) is

Pr(X) = ω(1− φ) + δφ;φ =

∣∣∣P ′

reconst(3D)

∣∣∣∣∣Preconst(3D)

∣∣ (3.24)

|| represent cardinality of inliers and outliers. ω is the probability of data having

less backprojection error given the data is outlier. δ represents the probability

of data having less backprojection error given the data is inlier which is 1. Now,

the probability of data being outlier given observed (obs) data is having less
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Figure 3.9: Stereo images and point cloud

backprojection error is

Pr(Preconst(3D)outlier | obs<<bperr) =
ω(1− φ)

P (X)
(3.25)

For example, consider the case of 3D cloud of pipe (Fig. 3.10) with total

number of 8105 points, using our model we have inliers of 8091 and 5791 for

back−projection error less than 10 and 1 pixels respectively. It can be noted

that for later case, inliers 71% and outliers 29%. P (X) as mentioned in equation

21 can be calculated as (0.5)(0.29) + (1)(0.71) which is 0.855. Similarly, the

probability of data being outlier can be obtained as (0.5× 0.29)/0.855 = 0.169.

The sample backprojected result of 3D cloud obtained using SIFT onto 2D

image is shown in Fig. 3.11 and Fig. 3.12.
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bp = 29, Npts = 8098 
bp = 10, Npts = 8091 

bp = 5, Npts = 8074 bp = 2, Npts = 7182 bp = 1, Npts = 5791 

bp = 15, Npts = 8093 

Figure 3.10: 3D cloud result corresponding to different bp errors (bp-
back−projection error, Npts-number of 3D points)

3.4.1.5 Experimental results: distance between points of interest

In order to validate the framework, we experimented on different categories of

datasets (3DMT) that we created as there is no standard benchmark dataset

publicly available that could be used for verification tasks. We have posted our

dataset online at [2]. In fact, the MISSA project partner [4] has tested the tool

exhaustively on industrial parts such as composite panel, fuselage, metallic wing

and have obtained high accuracy. Those results are not included in this thesis

due to copyright of the images of industrial parts. In this thesis, we report results

with pyramids, basic blocks, pipes, compressor, foyer etc.

3.4.1.5.1 Dataset:Pyramids and basic blocks. The results comprising se-

lected points, 3D cloud of points and backprojected points for pyramid and basic

block dataset is shown in Fig. 3.13 and Fig. 3.14. As one can see from the results,

the distance between estimated 3D points using a given framework is close to the
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Backprojected on first camera

Figure 3.11: Backprojection of 3D cloud onto image 1

real world measurement. The quantitative error (relative or absolute measure-

ment) is provided in Table 3.1 and 3.2. The mean error (in mm) and standard

deviation for pyramid dataset are 2.0813 and 1.2704 mm units respectively. In

this case, the minimum, maximum and rms value are 0.3000, 4.4900 and 2.4176

respectively. The mean error (in mm) and standard deviation for basic blocks

dataset are 0.7685 and 0.5375 units respectively. The minimum, maximum and

rms value are 0.1781, 1.6380 and 0.9237 respectively. The general discussion is

provided at the end of this section.

3.4.1.5.2 Dataset: Pipes. The actual and estimated distance for grid 7,10

is provided in Table 3.3. We got accuracy of maximum 99.7% for (P4, P5) and

minimum 92.9% for (P6, P7). The mean error (in mm) and standard deviation

for the points selected in pipe as shown in Fig. 3.15 are 1.2722 and 1.3802 mm

units respectively. The minimum, maximum and rms value are 0.1850, 3.8207
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Backprojected on second camera

Figure 3.12: Backprojection of 3D cloud onto image 2

and 1.7905 respectively.

3.4.1.5.3 Dataset: compressor engine. The distances between 3D coor-

dinates of various selected points (Fig. 3.16) are summarized in Table 3.4. The

mean error (in mm) and standard deviation are 2.1683 and 1.4403 mm units re-

spectively. The minimum, maximum and rms value are 0.1271, 3.9252 and 2.5455

respectively.

3.4.1.5.4 Dataset:Foyer. The distance between set of points selected in the

foyer dataset (Fig. 3.17) is shown in Table 3.5. The mean error (in mm) and

standard deviation are 1.7451 and 1.2856 mm units respectively. The minimum,

maximum and rms value are 0.1072, 3.9760 and 2.1493 respectively.
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Input Images  Reconstructed Points  

Generated model using points  
Backprojected Points  

P4 

P1 
P2 

P3 P5 

P6 P8 

P7 P9 

P10 

P11 

P12 

P1 

P2 
P4 P6 P8 

P10 

P3 

P9 P5 
P7 

P12 

P11 

Figure 3.13: 3D points, model, backprojected points of pyramid

3.4.1.5.5 Discussion The overall results of the 3DMT dataset categories

such as pyramids, basic blocks, pipes, compressor and foyer are summarized in

Table 3.6 and mean error (excluding compressor) is 1.4 mm whereas mean error

including compressor is 1.6 mm. The error is within the maximum and minimum

range of 3.4 - 0.19 mm (excluding compressor) and 3.6 - 0.18 mm (including

compressor). The error comparison graph is shown in Fig. 3.21.

It is observed that the measurement is usually not acceptable for any point

combination whose backprojection error (BPE) is higher. For example, backpro-

jection error as shown in Fig. 3.18 for foyer, any measurement associated with

point 7 has high error since backprojection error is relatively large and at peak

value (7pixels). The backprojection error of the pyramid as shown in Fig.3.19

is relatively lesser within 0.8 pixels. In this case, the user is advised to a) use

different combination of stereo images captured from the environment to ensure
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Ipts D1 D2 MEr Ipts D1 D2 MEr

P1,P2 30 28.9 1.1000 P3,P5 40 42.69 2.6900
P3,P4 30 30.694 0.6940 P4,P6 40 42.9 2.9000
P5,P6 30 29.14 0.8600 P7,P9 30 31.92 1.9200
P7,P8 30 29.70 0.3000 P8,P10 30 33.94 3.9400
P9,P10 30 28.98 1.0200 P9,P11 30 30.71 0.7100
P11,P12 30 31.48 1.4800 P10,P12 30 33.09 3.0900
P1,P3 40 43.4 3.4000 P1,P5 57 59.18 2.1800
P2,P4 40 42.527 2.5270 P7,P11 40 44.49 4.4900

Average error 2.0813 mm

Table 3.1: 3D measurement accuracy of pyramid dataset Ipts- Inspection points,
(D1-actual distance(mm), D2- estimated distance(mm), MEr- measurement er-
ror)

Input images  Reconstructed points  

Generated model using points  

Backprojected points  

P2 P4 P6 P8 

P1 

P3 

P5 
P9 

P10 
P7 P1 

P3 
P5 

P9 

P10 

P7 

P8 P6 P2 P4 

Figure 3.14: 3D points, model, backprojected points of basic blocks

reliability and high accuracy is met, b) take multiview images focusing the object

of interest and the calibration pattern for better calibration. Also, the set of
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Ipts D1 D2 MEr Ipts D1 D2 MEr

P1,P2 30 30.1781 0.1781 P9,P10 30 29.3603 0.6397
P3,P4 30 28.9182 1.0818 P5,P6 30 29.7002 0.2998
P2,P4 30 28.7959 1.2041 P7,P8 30 29.2842 0.7158
P1,P3 30 28.3620 1.6380 P5,P9 30 29.4887 0.5113
P6,P8 30 30.2433 0.2433 P7,P10 30 31.6162 1.6162
P5,P7 30 29.6750 0.3250 P5,P6 30 29.7002 0.2998

Average error 0.7685 mm

Table 3.2: 3D measurement accuracy of basic blocks dataset Ipts- Inspection
points, (D1-actual distance(mm), D2- estimated distance(mm), MEr- measure-
ment error)

P1 P3 

P7 P5 P6 

P4 P2 P8 P9 

Figure 3.15: Pipes dataset and points selected on images

guidelines for taking multiview images for 3D measurement are summarized.

1. Use the calibration pattern which has board width = 7 and height = 10
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Ipts D1 D2 MEr

P1,P2 64 ± 0.5 65.3780 1.3780
P1,P3 28 ± 0.5 29.5734 1.5734
P4,P5 56 ± 0.5 55.8150 0.1850
P5,P6 28 ± 0.5 28.3370 0.3370
P6,P7 54 ± 0.5 50.1793 3.8207
P8,P9 22 ± 0.5 22.3390 0.3390

Average error 1.2722 mm

Table 3.3: Actual distance and distance comparison between points of inter-
est (Pipe) Ipts- Inspection points, D1-actual distance(mm), D2- estimated dis-
tance(mm), MEr- measurement error

P16 

P13 
P11 

P1 
P2 

P29 P30 

P12 

P17 

P6 

P7 

P8 

P9 

P10 

Figure 3.16: Compressor dataset and points selected on images

and dimensions of square 23 respectively.

2. All the squares must be clearly visible (unoccluded).

3. The chessboard must be plane

4. Take photos with camera positions as shown in Fig.3.20
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Ipts D1 D2 MEr

P1,P2 25 ±0.5 26.2795 1.2795
P6,P7 20 ±0.5 23.651 3.651
P8,P9 39 ±0.5 39.8643 0.8643
P10,P11 19 ±0.5 16.2592 2.7408
P12,P13 39 ±0.5 42.9252 3.9252
P16,P17 80 ±0.5 80.1271 0.1271
P29,P30 96 ±0.5 98.59 2.5900

Average error 96 ±0.5 98.59 2.1683 mm

Table 3.4: 3D measurement accuracy of compressor dataset Ipts- Inspection
points, (D1-actual distance(mm), D2- estimated distance(mm), MEr- measure-
ment error)

P1 P3 

P5 

P2 P4 P17 

P10 
P9 

P7 

P8 

P11 
P15 P16 P12 

P21 

P22 
P19 

P20 

P18 
P13 

P14 

Figure 3.17: Foyer dataset and points selected on images

5. Use a tripod

6. The tilt angle is constant (for example 45 deg)

Also, as shown in Fig. 3.22 to Fig. 3.25, FPSS is much more accurate and

68



Ipts D1 D2 MEr Ipts D1 D2 MEr

P1,P2 60 61.2416 1.2416 P12,P14 30 28.5565 1.4435
P1,P3 30 29.8928 0.1072 P12,P16 30 30.1227 0.1227
P2,P4 30 26.3269 3.6731 P15,P16 30 31.9356 1.9356
P4,P6 30 29.0957 0.9043 P17,P18 90 93.1355 3.1355
P3,P4 60 61.2520 1.2520 P17,P19 15 16.3776 1.3776
P5,P6 60 62.2860 2.2860 P18,P20 15 14.7329 0.2671
P7,P8 30 33.9760 3.9760 P19,P20 90 93.5801 3.5801
P8,P10 30 32.4982 2.4982 P19,P21 29 28.8006 0.1994
P11,P12 30 31.2943 1.2943 P20,P22 29 29.7181 0.7181
P11,P13 30 30.4805 0.4805 P21,P22 90 93.5472 3.5472
P11,P15 30 32.6068 2.6068

Average error 1.7451 mm

Table 3.5: 3D measurement accuracy of foyer dataset Ipts- Inspection points, (D1-
actual distance(mm), D2- estimated distance(mm), MEr- measurement error)

Dataset Max(e) RMS(e) Min(e) µ(e) σ(e)

Pyramids 4.4900 2.4176 0.3000 2.0813 1.2704
Basic blocks 1.6380 0.9237 0.1781 0.7685 0.5375
Pipes 3.8207 1.7905 0.1850 1.2722 1.3802
Compressor 3.9252 2.5455 0.1271 2.1683 1.4403
Foyer 3.9760 2.14931 0.1072 1.7451 1.2856

Average 3.5700 1.9653 0.1795 1.6071 1.1828

Table 3.6: 3D measurement accuracy overall error comparison

close to ground truth measurements compared to just PSS.

3.4.2 Distance measurement between 3D points and

planar surface

Given a 3D point (MX ,MY ,MZ) and a plane represented by parameters in normal

form, the distance can be calculated using

dist = f(MX ,MY ,MZ , Pθ, Pφ, Pρ) (3.26)
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Figure 3.18: Backprojection error of sample datasets (foyer)

dist(P,MX ,MY ,MZ) = cosPθcosPφMX+sinPθcosPφMY +sinPφMZ−Pρ (3.27)

where Pθ, Pφ and Pρ are the parameters of the plane normal passing through the

origin [refer Fig. 3.26].

As stated by Borrmann et al. (2010), plane extraction or plane fitting is the

problem of modeling a given 3D point cloud as a set of planes that ideally explain

every data point [19]. Plane can be detected using techniques such as RANSAC

(RANdom SAmple and Consensus), 3DHT (3D Hough transform) with 3D cloud

obtained using automatic correspondence. The details regarding RANSAC is

provided in this Chapter whereas 3DHT is provided in Annexure II.
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Figure 3.19: Backprojection error of sample datasets (pyramids)

In order to obtain point cloud, we used SIFT correspondence between stereo

information of two images and triangulated to 3D. The aim is to detect plane

with this cloud and estimate distance between the plane and chosen 3D point. In

fact, plane can be detected just using 3 non-collinear points. The latter method

requires user to select 3 non-collinear points in stereo in order to obtain the plane.

3.4.2.1 Planar surface detection from noncollinear points (method1)

A plane can be defined just using 3 non-collinear points. As shown in Fig. 3.27,

user is required to select 3 non-collinear points in the stereo images in order to

obtain the plane. The system of equations (Pax + Pby + Pcz + Pd = 0) with the

selected points can be solved using Cramer’s rule. Let three noncollinear points

of 3D data be Mx1,My1,Mz1, Mx2,My2,Mz2 and Mx3,My3,Mz3. Then the
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Figure 3.20: Multiview camera positions

parameters of the plane can be obtained as

Pθ = tan−1(Pb/Pa) (3.28)

Pφ = tan−1(−cos(Pθ)./Pa) (3.29)

Pρ = Pcsin(Pφ) (3.30)

where Pa, Pb, Pc are calculated as follows.

Pa = (
−d
D

)

∣∣∣∣∣∣∣
1 My1 Mz1

1 My2 Mz2

1 My3 Mz3

∣∣∣∣∣∣∣ (3.31)
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Figure 3.21: Measurement error comparison graph : all datasets

Pb = (
−d
D

)

∣∣∣∣∣∣∣
Mx1 1 Mz1

Mx2 1 Mz2

Mx3 1 Mz3

∣∣∣∣∣∣∣ (3.32)

Pc = (
−d
D

)

∣∣∣∣∣∣∣
Mx1 My1 1

Mx2 My2 1

Mx3 My3 1

∣∣∣∣∣∣∣ (3.33)

where D is determinant of the 3D data and d = 2

3.4.2.1.1 Dataset:Pipes The 3D coordinates obtained from three selected

points and the plane parameters are provided in Table 3.7 and Table 3.8 respec-

tively. The obtained plane is shown in Fig. 3.28. The distance between selected

point and manual plane is shown in Table 3.9.
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Figure 3.22: Comparison of FPSS and PSS for 3DMT dataset: basic blocks

Points 3D Coordinates

(P1) (-23.0522,139.108,-3.03038)
(P2) (-21.7688,-23.7566,-0.202109)
(P3) (184.81,137.566,-0.372388)

Table 3.7: 3D coordinates of selected 3 points (pipe)

3.4.2.2 Planar surface detection from automatic correspondence

using RANSAC (method2)

The RANSAC algorithm is a non-deterministic algorithm that is used to estimate

the parameters of a certain model (plane) starting from a set of data. RANSAC

is composed of two steps: Hypothesize and test framework.
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Figure 3.23: Comparison of FPSS and PSS for 3DMT dataset: pipe

Plane Parameters Values

Pa -0.0752
Pb 0.1026
Pc 5.9397
Pρ 5.8923
Pφ 1.4443
Pθ -0.9381

Table 3.8: Plane parameter values for plane from 3 points (pipe)

3.4.2.2.1 Hypothesize: First minimal sample sets (MSSs) are randomly se-

lected from the input dataset and the model parameters are computed using only

the elements of the MSS [92]. The cardinality of the MSS is the smallest suffi-
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Figure 3.24: Comparison of FPSS and PSS for 3DMT dataset: pyramids

cient to determine the model parameters (as opposed to other approaches, such

as least squares, where the parameters are estimated using all the data available,

possibly with appropriate weights).

3.4.2.2.2 Test: In the second step, RANSAC checks which elements of the

entire dataset are consistent with the model instantiated with the parameters

estimated in the first step. The set of such elements is called consensus set (CS).

RANSAC terminates when the probability of finding a better ranked CS drops

below a certain threshold. In the original formulation the ranking of the CS was its

cardinality [92](i.e. CSs that contain more elements are ranked better than CSs

that contain fewer elements). Let 3D point cloud (point list) be a matrix of three
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Figure 3.25: Comparison of FPSS and PSS for 3DMT dataset: foyer

coordinate columns X, Y and Z; As stated by Tarsha-kurdi and Grussenmeyer

2007, RANSAC algorithm searches the best plane among the 3D points based

on best support criterion [77]. Initially, it selects randomly three points and it

calculates the parameters of the corresponding plane. Then it detects all points

of the original cloud belonging to the calculated plane, according to a given

threshold. The tolerance threshold of distance t between the chosen plane and

the other points is used to decide whether a point is an inlier or not. The value of

t is related to the altimetric accuracy of the point cloud [77]. Altimetric accuracy

refers to how well the data are reconstructed at different altitudes compared to

the real world. The altimetric discrepancies would be usually negligible along

flat areas compared to sloppy areas [23]. Afterwards, RANSAC repeats these
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Figure 3.26: Representation of parameters of plane in its normal form

procedures N times; in each one, it compares the obtained results with the last

saved one. If the new result is better in terms of the best support criterion [77],

then it replaces the saved result by the new one. This plane is obtained by a least

squares fit to all the points that were considered to be inliers. The parameters

that need to be tuned properly [69] are

1. maximum probable number of points belonging to the same plane and

2. minimum probability of finding at least one good set of observations in N

trials. They lie usually between 0.90 and 0.99.

The pseudo code for the RANSAC plane detection algorithm [77] is given in

Algorithm. 2.
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Figure 3.27: Non collinear points selected in pipe

Figure 3.28: Plane from three non collinear points

Let Pa, Pb, Pc, Pd represent the array of plane coefficients obtained by RANSAC

method where

PaX + PbY + PcZ + Pd = 0 (3.34)

Let X and Y arrays represent grid of points determined by size of the square

and step size. The Z array that needs be estimated can be formed as

zarr = Axarr +Byarr + C; (3.35)
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Algorithm 1 pseudo code for the RANSAC plane detection algorithm [77]

1: while i ≤ N do
2: k = generaterandom(3, 3DpointsArray)
3: pl = pts2plane(k)
4: dis = dist2plane (pl, 3DpointsArray)
5: s = find(abs(dis) <= t)
6: st = Standarddeviation (s)
7: if (length(s) > bestSupport or (length(s) = bestSupport and st < bestStd))

then
8: bestSupport = length (s)
9: bestPlane = pl; bestStd = st
10: endif
11: i = i+ 1
12: end while

where A,B,C are the parameters used for grid generation for display of planar

surface specifically z level. x and y are obtained with size of the square and step

size.

A = −Pa
Pc

;B = −Pb
Pc

;C = −Pd
Pc

(3.36)

Then Pθ, Pφ, Pρ can be found using Eqs. 3.29, 3.30 and 3.31.

The parameters A, B and C can also be determined as follows.

A = −cos(Pθ(π/180))cos(Pφ(π/180))/sin(Pφ(π/180)) (3.37)

B = −sin(Pθ(π/180))cos(Pφ(π/180))/sin(Pφ(π/180)) (3.38)

C = Pρsin(Pφ(π/180)) (3.39)

Now, the distance between any given 3D point and plane can be obtained

using the following Eq.(4.39).

dist(P,X, Y, Z) = cosPθcosPφX + sinPθcosPφY + sinPφZ − Pρ (3.40)
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where Pθ, Pφ and Pρ are the parameters of the plane normal passing through

the origin [77].

Alternatively, it can also be estimated as

dist =
|PaMx + PbMy + PcMz + Pd|√

P 2
a + P 2

b + P 2
c

(3.41)

The sample point cloud fitted using RANSAC method is shown in Fig. 3.29.

Figure 3.29: Fitted plane: RANSAC (number of vertices: 2011092)

3.4.2.3 Experimental result: distance between datum points and

planar surface model

The distances between selected points (refer Fig. 3.30) and plane is provided in

Table 3.9. It can be observed from the graphs shown in Fig. 3.31 that in some

cases the error is less for both method 1 (1.2248%) and method 2 (0.8938%) re-

spectively. It is worthy to note that method1 is computationally less expensive

than RANSAC method as it requires just selection of non collinear points. Fur-

ther, the mean error in this example is 1.6483 mm for method 1 which is lesser

than that of method 2 (2.3214).
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Figure 3.30: Selected point in pipe dataset for estimating distance with reference
to plane

3.4.3 Angular analysis between user defined planes

Given the parameters of plane (Pa, Pb, Pc, Pρ, Pφ, Pθ) the angle between planes

can be calculated (refer Table 3.11). Let π1 and π2 be two planes in the three

dimensional euclidean space < .

The angle θ between these planes is defined by means of the normal vectors

n1 and n2 of π1 and π2 through the relationship:

cosθ = |< n1, n2 >

||n1||||n2||
| (3.42)

In this example, we consider the angle between planes (both horizontal and

vertical) with horizontal (plane ground truth) obtained from non collinear point

selection of the calibration pattern as shown in Fig. 3.32. The planar parameters

(refer Table. 3.10) are obtained as discussed in Sect. 3.4.2. The mean error

between planes is 0.0328 radians (1.8 degree).
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Point D1 D2(M1) MEr Err(%) D2(M2) MEr Er (%)

P1 233 ±0.5 231.4464 1.5536 0.6668 232.1580 0.8420 0.3614
P2 173 ±0.5 168.1276 4.8724 2.8164 168.8310 4.1690 2.4098
P3 233 ±0.5 231.0840 1.9160 0.8223 231.4620 1.5380 0.6601
P4 227 ±0.5 226.5170 0.4830 0.2128 226.2930 0.7070 0.3115
P5 175 ±0.5 174.6055 0.3945 0.2254 174.3440 0.6560 0.3749
P6 151 ±0.5 150.1623 0.8377 0.5548 149.9530 1.0470 0.6934
P7 96 ±0.5 96.9993 0.9993 1.0409 96.7866 0.7866 0.8194
P8 211 ±0.5 218.3710 7.3710 3.4934 215.8830 4.8830 2.3142
P9 207 ±0.5 209.4647 2.4647 1.1907 207.206 0.2060 0.0995

Average error 2.3214 1.2248 % 1.6483 0.8938 %

Table 3.9: Distance of selected points in pipe with reference to plane (mm) ,
MEr- measurement error, D1 - actual distance from plane, D2 - distance from
plane, M1-RANSAC, M2-Manual

Planar parameters Horizontal(GT)π1 Vertical π2 Horizontalπ3

a 0.0277 -0.1120 0.0079

b 0.1751 0.0040 0.0114

c -6.7889 -0.0024 -0.2002

ρ 6.6846 -0.0024 0.2002

φ -1.3953 1.4592 -1.5568

θ 1.4139 -0.0361 0.9614

Table 3.10: Estimated planar parameters of the planes, GT-Groundtruth

Planes GT(rad) Angle(rad) E1(rad) E2(rad)

HP(GT) vs. VP(assembly) 1.570796327 1.552580325 0.0182 0.0016

HP(GT) vs. HP(assembly) 0 0.047458993 0.047458993 -

Average error - - 0.0328(1.8 deg) -

Table 3.11: Angle between planes in assembly (HP-Horizontal plane,VP-Vertical

plane, E1-Absolute error, E2-Relative error, GT-Groundtruth rad-radians, deg-

degrees)
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Figure 3.31: (a)Selected points vs. planar distance comparison (b)Selected points
vs. percentage error

3.4.4 Angular analysis between edges

Given three 3D points (for example P2, P4, P6) (Mx1,My1,Mz1), (Mx2,My2,Mz2)

and (Mx3,My3,Mz3), three edges can be defined between the vertices. The vec-

tor for each of these lines are given as follows:

v1 = (Mx2 −Mx1)i+ (My2 −My1)j + (Mz2 −Mz1)k (3.43)
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Figure 3.32: Planes selected in stereo views: φ1- horizontal plane (ground truth),
φ2 - vertical plane of discrepancy blue component (assembly) φ3 - horizontal
plane (green rectangular prism in assembly)

Figure 3.33: Horizontal and vertical planes

v2 = (Mx2 −Mx3)i+ (My2 −My3)j + (Mz2 −Mz3)k (3.44)

v3 = (Mx1 −Mx3)i+ (My1 −My3)j + (Mz1 −Mz3)k (3.45)
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The angle between any vectors V 1 = aMxi+aMyj+aMzk,V 2 = bMxi+bMyj+

bMzk, and V 3 = cMxi+ cMyj + cMzk can then be determined as

θ(V 1, V 2) = cos−1
(aMxbMx + aMybMy + aMzbMz)√

(a2Mx + a2My + a2Mz)
√

(b2Mx + b2My + b2Mz)
(3.46)

The angle between various edges of discrepancy component (blue cube) shown in

Fig. 3.34 are listed in Table 3.12. The mean absolute error for calculated angle is

0.0256 radians(1.4 degrees) and the relative error is 0.0163 radians(0.9 degrees).

Edges GTA(rad) MA(rad) E1(rad) E2(rad)

< P2, P1, P3 > 1.570796327 1.543696599 0.0271 0.0173

< P3, P1, P5 > 1.570796327 1.553735733 0.0171 0.0109

< P1, P3, P4 > 1.570796327 1.553397139 0.0174 0.0111

< P3, P4, P2 > 1.570796327 1.555144214 0.0157 0.0100

< P1, P5, P6 > 1.570796327 1.621705836 0.0509 0.0324

Average error 0.0256(1.4 deg) 0.0163(0.9 deg)

Table 3.12: Angle between edges in assembly (E1-Absolute error, E2-Relative

error, GTA-Groundtruthangle, MA-MeasuredAngle, rad-radians, deg-degrees)
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Figure 3.34: Selected edges in assembly for angular analysis

3.5 Usability study

Ten participants took part in usability study of the measurement system. The

system was introduced to the users and they rated using the questionaire as

provided below.

1. How do you rate the system in terms of easy to use? 0 1 2 3 4 5

2. How do you rate the system providing measurement output functionalities?

0 1 2 3 4 5

3. How do you rate the system handling images of various environment? 0 1 2 3 4 5

4. How do you rate the system in terms of accuracy in 3D measurement?

0 1 2 3 4 5

5. How well does the user input selection process work? 0 1 2 3 4 5

6. How well does the system work on less textured objects? 0 1 2 3 4 5
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7. How will you rate the experience with over all system? 0 1 2 3 4 5

Q/U U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 Mean Score%

Q1 3 4 3 5 4 4 5 3 3 2 72

Q2 4 5 4 4 5 4 5 5 4 4 88

Q3 4 5 5 5 5 4 5 5 5 3 92

Q4 4 5 4 4 5 5 5 5 5 4 92

Q5 3 5 3 5 4 4 5 4 5 3 82

Q6 4 5 4 5 5 4 5 5 4 3 88

Q7 4 5 3 5 5 4 5 4 4 3 84

Table 3.13: Usability study, (U-User, Q-Question)

The usability test rates and mean score are summarized in Table. 3.13. Firstly,

the users are satisfied with a mean score of 92% that system can handle images of

various environments and can provide high accuracy 3D measurement. Secondly,

the users rated 88% for the system that it can handle less textured objects and

provide output in both GUI and XML format. The overall experience with the

system and input selection is given a score of 84% and 82% respectively. Finally,

72% score was provided for system ease of use since the subjects think that some

level of knowledge in the calibration and the stereo view selection process is

required.

3.6 Conclusions

In this Chapter, a new 3D measurement framework is proposed for checking a

system installation and show whether it is within some predefined tolerance using

a camera based calibrated stereo image capture technique with human interac-

tion to select matching disparity points from the multi-view images of the same

scene. This enables performing linear measurements that are used to show that

two named points that are constrained by some requirement are within toler-

ance. The distance between multiple identified points or between the identified

points and a reference plane defined by a set of identified points, are the types
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of measurements that are of interest and are possible. We described the sys-

tem flow, plus validate the technique via a number of experimental data sets. A

measurement tool has been implemented with unique features such as the auto-

mated calibration utility, the zoom in option (to help selecting points accurately)

and optimal combination of point based disparity and Local Invariant Feature

Extraction (LIFE) based disparity which complements each other. These two

techniques enabled the measurement between any combination of two points,

as well as the distance between any points and the perpendicular distance to a

defined plane. The distance between any datum points of interest could be es-

timated with or without reference to the planar surface model. The tool used

multiple views of a scene captured using a basic digital camera and requires the

inclusion of a calibration grid within the scene. The application allowed for a user

to select a specified number of consistent points/features on the multiple views,

which allows the application to indicate the distance between every permutation

of pairs of these points and also to give a measure of off-set from a selected refer-

ence plane, also defined by three of the selected points. The framework provided

two distinct functionalities. The first functionality was where a user provided the

points of interest with which distance constraints need to be checked. The second

functionality was to get a reasonable 3D cloud using automatic correspondence

to facilitate planar surface detection. At this level, we performed outlier removal

based on back projection to ensure only correct 3D points are retained. A refer-

ence plane was detected using a non-deterministic algorithm, such as RANSAC.

We thus obtained the 3D distance with respect to the reference planar surface to

any user points of interest. In summary, the distance between any datum points

is found and also the distance between any chosen point and planar surface is

estimated in a given installation environment at mm level accuracy. Beyond the

state of the art, we designed and implemented a 3D measurement tool which can

provide accurate measurements between any given datum points of interest at the

mm level in an installation environment with or without reference to the planar

surface model. The idea of using image based stereoscopic measurement and the

optimal combination of point based and automatic disparity for measurement in

3D space with respect to the planar surface reference is used in the proposed

framework. A system has been designed and implemented that addresses the
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problem of accurate 3D measurement of any given environment in a relatively

quicker manner. We describe in next Chapter 4, how this measurement frame-

work is used as a bottom up approach for discrepancy checking and analysis task

in the industrial production audit.
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Chapter 4

3D PACT (Production Audit

Compare Tool) for discrepancy

checking

4.1 Introduction

This Chapter describes a new model matching solution which comprises the fol-

lowing capabilities.

1. A digital reconstruction of the fabricated product by using multiple cap-

tured images to reposition parts according to the actual model.

2. The projection onto the 3D digital reconstruction of the safety related in-

stallation constraints, respecting the original intent of the constraints that

are defined in the digital mock-up.

3. Identification of the differences between the 3D reconstruction of the actual

product and the design time digital mock up of the product

4. Identification of the differences/non conformances that have a relevance to

safety driven installation requirements with reference to the original safety

requirement intent.
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Steps ‘1’, ‘2’, ‘3’ and ‘4’ together give the safety engineer the ability to overlay a

digital reconstruction that should be as true to the fabricated product as possible

so that they can see how the product conforms or doesn’t conform to the safety

driven installation requirements. The work has produced a concept demonstrator

that will be further developed in future work to address accuracy, workflow and

process efficiency. The hypothesis statement of this Chapter is H2: Use semantic

knowledge of the model (intelligence from DMU model) as key information for

discrepancy checking (DMU model generation, point cloud segmentation such as

color, connected component analysis, pose estimation using datum and object

etc.)

4.2 Proposed approach and framework

description

The schematic framework as shown in Fig. 4.1 contains key components such as

pose estimation using datum, generation of geometry primitives using semantic

metadata knowledge, 3D segmentation using knowledge and noise removal, 3D

feature extraction and classification, model alignment, discrepancy checking etc.

The prior knowledge that we have beforehand regarding the product design is

in CATIA XML format (please refer Fig. 4.2). Semantic refers to the tags or

label available in XML file of CATIA model. The tag represents the components

present in an assembly environment. In the example scenario, we have 5 nodes.

The shape types are calibration, cube, rectangular prism, and triangular prism

(refer Sect. 4.2.2 for more details). Specifically, the information such as compo-

nent label, size, width, height, color, orientation (rotation, translation) are used

for 3D point cloud processing (for more information refer Sect. 5.2.1 of Chapter

5). We have implemented an utility using XML tool box that can parse the XML

data in GUI.

4.2.1 3D structure recovery from multi-view images

Furukawa and Ponce (2010) [37] has proposed a multiview stereopsis method for

reconstruction which constitutes three key components such as : a) patch based
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Figure 4.1: MISSA knowledge based 3D model matching framework

MVS (multi-view stereo) algorithm that reconstructs a set of oriented points, b)

conversion of the patches into a polygonal mesh model and c) polygonal-mesh

based MVS algorithm for mesh refinement. In PMVS2, camera parameters are

estimated using automatic correspondences from multi-view images. However,

both accuracy and completeness of the 3D structure can be ideally achieved by

using calibration pattern especially with objects that lack texture. This is because

most of the objects present in the industrial installations are not well textured.

3D for textured objects (house dataset with 18 images) and non textured objects

(pipes dataset with 13 images) using PMVS2 without and with calibration pattern

are shown in Fig. 4.3. It can be seen that though the results of 3D for the textured

portion of the house dataset is visually promising, it can be still improved using

PMVS2 with calibration. Further, for pipe dataset, 3D obtained using PMVS2

with calibration is significantly better. Also, as another example, 3D cloud for

compressor for multiview images shown in Fig. 4.5 is provided in Fig. 4.6.
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Figure 4.2: Model XML file (from automated reasoning system)
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            PMVS2            PMVS2 with calibration 

 

                                                    House dataset (18 images) 

 

                        Pipe dataset (13 images) 

Figure 4.3: 3D cloud using PMVS2 without and with calibration
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Figure 4.4: Multi-view images

Figure 4.5: Sample images of compressor dataset

4.2.2 Initial environment and datum setup / generation

of geometry shapes database for training and

classification

In order to perform model matching, we require an assembly environment that

needs to be tested whether the setup is in line with geometry model. We gen-96



Figure 4.6: 3D cloud of compressor dataset (number of points = 55779)

erated a setup of multiple objects for example, 4 geometric primitive shapes in

a controlled environment. Since we know the exact geometry and position of

various parts, we can use this for model alignment tasks. The multiview images

of this setup environment in the real world are shown in Fig. 4.4. The dataset is

available online at [1]. The objective of having this kind of setup is to test the

abilities of the system and as proof of concept for model matching methodology.

We generated a database of 1400 3D geometric shapes such as cubes, rectangular

and triangular prisms of scaling sizes, different orientations along x, y and z axis.

The rotation is performed on each individual axis of 5 degrees from 1 to 360 (refer

Fig. 4.7 for generated sample shapes). Unlike Georgel et al. (2007), instead of

anchor plates [38], we use calibration pattern as datum reference information.

Initially, we use calibration pattern as part of prior geometric knowledge. Instead

of using a calibration pattern, an object can be defined as datum.

4.2.3 Pose estimation using datum

Let M be the reconstructed CV model of the datum shape and M
′

represent

the geometry model shape. For example, calibration as shown in Fig. 4.8 is

used as datum to recover the pose information. The task is to minimize the

difference between cloud of points and find the best alignment of M with M
′

to
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Figure 4.7: Sample 3D geometry shapes: cube, rectangular prism, triangular
prism rotated along x, y and z axis

obtain the pose information. The points are associated with nearest neighbor

criteria and transformation parameters are estimated using a mean square cost

function. With the estimated parameters, points are transformed. {m1i} and

{m2i} represent the point sets of models.

M = {m1i}N1
i=1 and M

′
= {m2i}N2

i=1

This problem can be formulated based on least square (LS) criterion as follows.

min
R,T,jε{1,2...N2}

N1∑
i=1

‖(Rm1i + T )−m2j‖22 (4.1)

where RTR = Im and |R| = 1, R and T are rotation and translation parame-

ters.

The two main steps of ICP algorithm are as follows.

The correspondence between two point sets M and M
′
based on (p−1)th rigid

transformation is achieved as

cp(i) = arg min
jε{1,2...N2}

‖(Rp−1m1i + Tp−1)−m2j‖22 (4.2)

The rotation and translation parameters are obtained by minimizing the
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(a)  Geometry model shape (N = 4800) 

  

(b) Reconstructed CV model (N = 1920)  

 

(c) Aligned models (N = 6720)  

Figure 4.8: Geometry model shape, reconstructed CV model and model alignment
for pose estimation
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squared distance

(Rk, Tk) = arg min
RTR=Im,det(R)=1,T

(
N1∑
i=1

∥∥(Rm1i + T −m2cp(i)
∥∥2
2
) (4.3)

The obtained R and T transform the CV model to the geometry model. In

order to transform from geometry to CV model, the parameters such as R
′

and

−T ′
can be used.

The ICP convergence error and the number of iterations for datum (calibration

in this example) and other shapes are plotted in Fig. 4.9.
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Figure 4.9: Iteration vs. convergence error (ICP) [Datum-calibration pattern,
TP-triangular prism, RP1,2-rectangular prism (green and yellow)]
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4.2.4 Generation of geometry knowledge primitive

The semantic information is used for building the part primitives with the ex-

act object component. For example, a geometry primitive pyramid generated is

shown in Fig. 4.10. The primitives thus formed for shapes such as cube, trian-

gular and rectangular prism can be seen in Fig. 4.11. 3D cloud is segmented

using metadata knowledge where information such as color, location and shape

class labels etc., are available. The 3D cloud of points needs to be compared

and fitted with DMU (digital mock-up) model shape primitives thereby enabling

further discrepancy analysis. Model based matching is based on fact that the

whole object is a transformation (projection) of a preconceived model.

Figure 4.10: Sample geometry primitive generation
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CL S,W,H R T C

CUBE 30 0 0 1 0 0 0 1 0 0 0 1 25 25 15 0 0 255
RECTANGULARPRISM 30 90 15 1 0 0 0 1 0 0 0 1 25 135 7.5 0 255 0
RECTANGULARPRISM 30 60 30 1 0 0 0 1 0 0 0 1 85 40 15 255 255 0
TRIANGULARPRISM 43 30 21 1 0 0 0 1 0 0 0 1 77.75 165 10.5 255 0 0

Table 4.1: Geometry representation CL-Class Label,S-Size,W-Width,H-Height,R-
Rotation matrix,T-Translation vector, C-Color(RGB)

N = 1208 N =906 N =1208 N = 1208 

Figure 4.11: Three geometry shapes

4.2.5 Point cloud processing (3D segmentation using

knowledge and noise removal)

As discussed in previous sections and shown in Table 4.1, since we know the

semantic description regarding each of the objects such as color, position, class

label we use it as key information to aid segmentation. For example in this setup,

each object has distinct color information which is highly useful in segmenting

those objects. The rule based color segmentation based on constraints is provided

in Algorithm.2. In the algorithm, indR, indG, indB denote an index array of 3D

cloud corresponding to R,G,B respectively. rh, rl, gh, gl, bh, bl denote the higher

and lower limit of color values as shown in Table 4.2. Further, the location

information can be used to localize the search space of the model within the

vicinity. The pseudo code for rule based color segmentation is provided.

Thus, from the reconstructed 3D cloud, individual objects can be segmented
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Algorithm 2 pseudo code for 3D color based segmentation

Input:3D point cloud array d = (X, Y, Z)
Output: Segmented cloud array based on color

1: for i = 1 : size(d, 1)
2: if d(i, indR) <= rh & d(i, indR) >= rl&...
3: d(i, indG) <= gh & d(i, indG) >= gl&...
4: d(i, indB) <= bh & d(i, indB) >= bl
5: extract d(i, :)
6: end
7: end

Color RH RL GH GL BH BL

Red 255 102 90 0 100 0
Green 90 0 255 100 170 0
Blue 90 0 75 0 255 0
Orange 255 153 173.4 76.5 76.5 0
Yellow 230 100 200 100 45 0
Indigo 173.4 0 255 153 255 153
Violet 255 153 173.4 0 255 153
Black 50 0 50 0 50 0

Table 4.2: Table of color ranges used for segmentation

based on CATIA knowledge. If the segmented cloud is noisy, further processing is

done using connected component analysis. The segmented cloud based on color

information and connected component analysis is shown in Fig. 4.12. Any 3D set

of points that are not separated by boundary is connected. The set of connected

components partition the 3D cloud into segments. Connected component analysis

is based on union-find technique and label equivalence relationship. The method

finds distance between each 3D point index in the point cloud and assign the

smallest label to the minimum distance set according to a pre-defined threshold

(in this case 0.5 cm). If both of them have labels, then the minimum of two

labels is assigned to the other. The algorithm for connected component analysis

is provided in Algorithm.3.

As an example, as shown in Fig. 4.12, by performing connected component
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Algorithm 3 pseudo code for connected component analysis

Input: Noisy 3D point cloud, N, threshold m = 0.5cm
Output: Segmented cloud array based on connected components

1: find the distance between each point
2: Create list for labels of the points a vector of size N. Label all to −1
3: set label counter = 0
4: for loop
5: find minimum distance in matrix. indexes i and j. if min dist > m, stop
6: check the labels of both
7: if they have no labels, set their labels to label counter and increment label

counter.
8: if one of them have a label, then set the other one with the same label.
9: if they both have labels, then choose the label with smaller label. set the

other to the smaller label.
10: replace the other label with the smaller one in label vector
11: go to 5
12: end

analysis, the cloud can be segmented reliably.

From segmented objects, discriminative features such as shape D2, A3, DIR,

and spherical moments can be used for classification. Upon the classification of

objects, the model alignment can be done using ICP.

4.2.6 3D shape feature extraction

Initially, we used just D2 shape feature extraction from 3D data to demonstrate

the classification purpose that can complement CATIA knowledge for model

matching. Corresponding to each label (a label represents a common visual char-

acteristic shared between a set of pixels) of the shape models, 3D descriptors

such as D2 shape histogram is used in this work. D2 distribution [63] for a set

of points P can be calculated as

D2(d) =
|p, qεPs.t ‖p− q‖ = d|

|P |2
(4.4)

The value of D2 distribution at d is the number of point pairs whose pair-
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Figure 4.12: Point cloud segmentation (color and connected component analysis),
outliers visible in the cloud of points shown in 2nd column.

wise distance is d. As machine contains curvature information, shape histogram

information would be useful [44].

4.2.7 Training and 3D classification

The shape models such as cube, rectangular prism and triangular prism are used

in the database repository. The mean of all data shape histograms from the model

of each class is shown in Fig. 4.14. The shape histogram of sample segmented
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N = 1065 N = 1448 

N = 3198  N = 818 

Figure 4.13: Segmented cloud

data of each class is provided in Fig. 4.15. We train and test the classifier using

nearest neighborhood method and SVM. The input to the classifier is 3D features

extracted from the segmented cloud for identifying the corresponding class labels.

4.2.7.1 k-NN nearest neighbourhood classifier (non parametric

method)

This is a method for classifying objects based on closest training examples in the

feature space. If k = 1, then the object is simply assigned to the class of its

nearest neighbor. Given a training set and a distance defined in the attribute

space, the basic k-NN rule consists in searching for the k nearest neighbors of

an attribute vector. The estimated class probabilities are proportional to the

number of Cj class among k nearest neighbors (with 1 < j < n and n is the

number of classes in the training set), then the chosen j corresponds to the class

which has the maximum probability. The value of k must be chosen to minimize
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Figure 4.14: Probability vs. number of bins of model data (samples = 512)
[mc-model cube, mtp-model triangularprism, mrp-model rectangular prism]

the expectation of test error. To classify a new point, k nearest points from the

training dataset is identified and assigned new point to class having large number

of representatives among this set. The training vectors include D2 values of

1348 objects in a multidimensional feature space, each with a class label. During

classification, an unlabeled vector so called query is classified by assigning the

label which is more frequent among the k training samples nearest to that query

point. L1 is used to determine the distance between the query Q and model M .

L1(M,Q) =
n∑
i=1

|Qi − µ(Mi)| (4.5)

where Q is the segmented cloud and M is the model.
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Figure 4.15: Probability vs. number of bins of segmented data (samples = 512)
[segcube-segmented cube, segtp-segmented triangular prism, segrp-segmented
rectangular prism]

Class Class A Class B Class C

Class A 0.0665 0.6243 1.0239
Class B 0.6250 0.0770 0.8960
Class C 1.0260 0.8978 0.0925

Table 4.3: Average distance between objects and class features

Class Class A Class B Class C

Class A 0.8165 0.5427 0.8130
Class B 0.9833 0.7119 0.7928
Class C 0.9437 0.7129 0.7008

Table 4.4: Average distance between segmented objects and class features
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4.2.7.2 Support vector machine (SVM) classifier:

Given samples x1...l, SVM finds a linear classifier that satisfies

yi(w.xi + b)− 1 ≥ 0 (4.6)

with margin width 2/ ‖w‖2. Minimizing ‖w‖2 in the formulation of the classifier

maximizes the margin width and forms the quadratic programming problem

LP =
1

2
−

l∑
i=1

‖w‖2 − αiyi(xi.w + b)− 1 ≥ 0 (4.7)

This is equivalent to maximization of dual of LP

LD =
l∑

i=1

αi −
1

2

l∑
i,j

αiαjyiyjxi.xj (4.8)

In order to generalize SVM for nonlinear cases, training examples can be projected

to higher dimensional space by φ(x) for linear separation. Since LD depends

on dot product between xi and xj, this can be substituted by kernel function

K(xi, xj) that computes φ(xi).φ(xj) rather than directly computing in higher

dimensional space.

4.2.7.3 Experimental results for classification:

A) With regard to NN classifier, the average distance between objects and class

features from the whole database of objects is summarized in Table.4.3. The

correct class being identified can be determined by minimum value in the diagonal

elements. Each of the classes A, B, C has a minimum mean value of the cluster as

0.0665, 0.0770 and 0.0925 respectively. Secondly, the average distance between

segmented objects and class features is provided in Table 4.4. NN classifier is

based on L1 distance metric. k-NN classifier is used to predict labels of shape

type. The probability values should be ranging from 0 to 1. The values close to

1 represent the the label that best represents the class. Training phase is trivial.

Initially, training example is stored with its label. In order to make a prediction,
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distance is calculated to training example. Then k closest training examples

are retained where k ≥ 1. Finally, a label that is most common among these

examples is chosen. The label is prediction of this test example. The nearest

neighbor is a supervised algorithm with function of type (X × Y )n ×X → Y . n

is the cardinality of the training set. A distance function has type X ×X → R.

There are two important factors to consider a)k, b) distance function. It can be

observed that each class can be clearly identified except a false detection case

where triangle prism is identified with a value of 0.5427 (refer Table 4.4).

B) We used LIBSVM classifier [25] to train the model using generated geom-

etry models individually for three shape classes.

Index Shape

1− 316 Cube
317− 832 RP
833− 1348 TP

Table 4.5: Train data details

As shown in Table 4.5, among 1348 shapes, first 316 represent cube models.

For defining each of the classifier, we trained data of corresponding indexes as

train data and labels as 1 while others are set as 0. For test data, we tried different

combination to test the prediction performance. For example while testing the

cube classifier with same data, we got 100%. For the data from say 200 to 330 we

got performance of 89% since the data comes from another class and 0% for data

completely different (317 − 1348). The classification accuracy is dependent on

the training data. We tested with two sets of segmented cubes, rp and tp. Using

classifier, the detection of segmented data for cube and tp fall into the same cat-

egory since both are similar due to its incomplete representation. This is because

our segmented models are not dense rather it represents the boundary skeleton

of shapes. Though semantic information from geometry model alone suffices to

provide good results (refer 4.16) as reported in this paper, the idea of having

classifier in this framework is to complement and cross check the verification pro-

cess. Also, usually classifier works fine if training data and discriminative feature

are robust enough. Initially, we used D2 features and in the future, we intend to
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increase the performance by testing with more discriminative features/optimal

combination of multiple features and robust classifiers.

4.2.8 Model alignment of CV and DMU Model

Geometry primitive  Segmented CV model Aligned model 

Calibration  

Blue cube 

Rectangular 

prism 

(green) 

Rectangular 

prism 

(yellow) 

Triangular 

prism (red) 

N = 4800 N =1920 N = 6720 

N = 1208 N = 1065 N = 2273 

N =1208 N = 1448 N = 2656 

N = 1208 N = 3198 N = 4406 

N =906 N = 1724 N = 818 

Figure 4.16: Geometry model shape, segmented CV model and model alignment

Let M be the segmented CV model shape and M
′

represent the geometry

model shape. The aim is to obtain pose from each of the segmented point cloud

and corresponding geometry shape for model fitting. This information together

with pose recovered as in Sect. 4.2.3 is used for discrepancy checking. {m1i} and

{m2i} represent the point sets of models. M = {m1i}N1
i=1 and M

′
= {m2i}N2

i=1

The task is to find the best alignment of M with M
′
. This can be formulated

based on least square criterion as follows.

minR,T,jε{1,2...N2}

N1∑
i=1

‖(Rm1i + T )−m2j‖22 (4.9)

111



where RTR = Im where R and T are rotation and translation parameters. The

correspondence between two point sets M and M
′

based on (p− 1)th rigid trans-

formation is achieved as

cp(i) = argminjε{1,2...N2} ‖(Rp−1m1i + Tp−1)−m2j‖22 (4.10)

The rotation and translation parameters are obtained by minimizing the squared

distance

(Rk, Tk) = argminRTR=Im,det(R)=1,T (
N1∑
i=1

∥∥(Rm1i + T −m2cp(i)
∥∥2
2
) (4.11)

The obtained R and T transform the CV model to the geometry model. In order

to transform from geometry to CV model, the parameters such as R
′

and −T ′

can be used. The geometry model shape, segmented CV model and fitted model

is shown in Fig. 4.16.

4.2.8.0.1 Case:single objects The 3D model alignment fitting of the single

objects such as cubes and pyramids in the assembly setup are provided in Fig.

4.17 and Fig. 4.18 respectively.

4.2.8.0.2 Case: multiple objects The 3D model fitting results of the mul-

tiple objects (four shapes) in an assembly setup is provided in Fig. 4.19.

4.2.9 Discrepancy checking and analysis

The discrepancy result of the original sample installation (set A) and (set B)

used for experimentation is shown in Fig. 4.20 and Fig. 4.21. We use single

pose recovered from the whole system (using datum as discussed in Sect. 4.2.3)

and pose for each of the objects in a system (as defined in Sect. 4.2.8) so that

the entire system is available. The model and CV cloud aligned using the pose

information is shown. It can be clearly seen from Fig. 4.21 that the shift of 1

cm in the cube component (blue color) of the sample assembly setup is visible.

This deviation from the model would be useful for automatic verification analysis.

The difference between the center of the objects aligned by ICP and aligned by
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Figure 4.17: Model alignment in 3D space : single object (cube)

calibration location for both normal (set A) and blue shifted (set B) cloud is

provided in Table 4.6 and Table 4.7 respectively.

Set A
Class X Y Z

Cube 0.0597 0.0165 0.0997
Rectangular Prism1 0.0061 0.0315 0.5877
Rectangular Prism2 0.6549 0.2610 0.0746
Triangular Prism 0.2232 0.1043 0.8892

Table 4.6: Difference between centre of objects aligned by ICP and calibration
location (setA)

Quantitatively, we can infer and analyze that the distance between center of

objects aligned by calibration for set A is 0.11 cm for cube and 0.966 cm. This is

obtained using norm of the XYZ difference of the corresponding object (in this
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Figure 4.18: Model alignment : single object (pyramid)

Set B
Class X Y Z

Cube 0.0663 0.9556 0.1275
Rectangular Prism1 0.3401 0.0435 0.4443
Rectangular Prism2 0.1190 0.2941 0.0225
Triangular Prism 0.4288 0.0945 0.7117

Table 4.7: Difference between centre of objects aligned by ICP and calibration
location (setB)

example cube). This means there is a drift of 0.966 cm for blue shifted cube with

a centre as a reference. This value ideally reflects the discrepancy (magnitude).

The relative discrepancy obtained using the pipeline is shown in Fig. 4.22. At this

point, we propose to use a bottom up approach to get very precise discrepancy

magnitude using 3D SLR FPSS technique discussed in the previous Chapter 3.
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Figure 4.19: Multiple objects alignment in assembly setup

4.3 Discrepancy magnitude and distance

analysis using 3D SLR stereo triangulation

(FPSS) of an assembly

Traditionally, 3D stereo triangulation [47] is used to estimate the 3D points with

the correspondence obtained using the correspondences and camera projection

matrices. Recently, Smisek et al 2011 [72] has made a study and found that SLR

stereo outperforms kinect in measurement followed by SR4000. The mean error of

kinect is 2.39 mm whereas SLR stereo is 1.57 with their data and analysis. Most of
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Figure 4.20: Alignment of cloud (set A)

Figure 4.21: Alignment of cloud (set B)

the industrial components such as pipes, wires are not well textured which makes

feature detection and matching cumbersome for image processing techniques and

sometimes only sparse matches are available. Likewise dark or highly polished

surfaces of the subject matter make laser based ranging techniques very noisy.

3D cloud of installation environment obtained using kinect sensor is shown

in Fig. 4.23. Also, as mentioned in the previous Chapter, we need to achieve

116



1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

shapes in assembly

R
el

at
iv

e 
d

is
cr

ep
an

cy
 

 

 

shift(X)
shift(Y)
shift(Z)

Triangular
prism

Cube

Rectangular
prism2

Rectangular
prism1

Figure 4.22: Relative discrepancy between the components

Figure 4.23: 3D cloud of installation environment using kinect sensor

mm accuracy for production audit purposes. The approach that was developed

in this work phase was based on image processing techniques that are assisted

by user intervention to identify common features where they are not immediately

apparent due to the lack of texture. We propose to use focused point based SLR
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Figure 4.24: Stereo views used for measurement analysis of discrepancy compo-
nent of fault assembly (Set B)

Assembly M1 M2 M3 M4 M5 M6

Faulty 20 mm 30 mm 30.076 mm 10.076mm 0.076 0.0025
Normal 20 mm 20 mm 21.485 mm 1.485 mm 1.485 0.0743

Table 4.8: Discrepancy measurement using SLR stereo FPSS, M1-constraint
knowledge, M2-ground truth datum point reference [P1], blue component cor-
ner [P2] , M3-measured datum point reference [P1], blue component corner [P2],
M4-discrepancy, M5-measurement error, M6- relative error

stereo (FPSS) where a safety test engineer selects inspection points of interest

with which distance measurement check need to be accomplished. With the

camera views, a linear method is used to find the best reconstructed 3D point.

Once the blue cube component has been identified to have discrepancy, precise

measurement can be made using FPSS. The stereo views used for measuring

discrepancy (faulty assembly) is shown in Fig. 4.24.

As shown in Table 4.8, for faulty assembly setup, the measurement between

datum(calibration) point reference [P1] and blue component corner [P2] is 30.076

mm which shows the discrepancy of 10.076mm with the measurement error of

0.076 mm. Similarly for the normal assembly, the measurement between da-

tum(calibration) point reference [P1] and blue component corner [P2] is 21.485

mm which shows the discrepancy of 1.485 mm with measurement error of 1.485

mm.
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4.4 Conclusions

In this Chapter, we presented a new model comparison that uses input from dig-

ital camera and semantic metadata knowledge available from geometry models

which can be used for verification tasks. Traditional 3D model matching ap-

proaches perform model matching between any given cloud of points. The key

achievement in our work is: the usage of CATIA model information to perform

model alignment and discrepancy checking. The semantic information XML file

output from the automated reasoning system MATHSAT3D which solves instal-

lation optimization such that the components obey safety constraints is used.

Discrepancy checking is obtained by point cloud processing (segmentation) and

pose estimation of the predefined datum and individual objects present in the

scene. Each of the components in the 3DCV model is segmented based on the

prior knowledge available for the model. Segmentation based on the color knowl-

edge information is performed on the 3D point cloud and if there are any outliers

present in the segmented cloud, then connected component analysis approach is

used for error removal. For each of the segmented components in 3DCV model,

object pose is estimated by matching with the corresponding component in DMU

model. The datum (reference) is used for estimating the pose information. Da-

tum could be either calibration pattern, or anchor plates or any well-defined

object. Using the pose, the components in real world space are projected to

model space. The components in model space can be transformed to real world

space vice versa also. By displaying together the real world space model and the

transformed DMU model, the discrepancy result is shown. A system has been

developed that performs discrepancy checking between 3D vision model of the ac-

tual installation to the original digital mock-up, with a focus on the safety driven

installation constraints, such as segregation, proximity and orientation. The tool

takes a set of images and uses various image processing techniques to create a

3D digital reconstruction of the objects within the set of images. The digital re-

construction is in the form of a cloud of points. The application takes the digital

mock-up of the scene and converts it into a similarly defined cloud of points. The

two clouds are aligned to each other such that the selected datum, an equipment

or calibration chart, has the lowest positioning error, based on feature extrac-
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tion and comparison techniques. The rest of the equipment that are recognized

are then aligned to the digital reconstruction. The offsets for these equipments

are reported as positioning errors that can be used to check for acceptability to

the installation tolerances derived from zonal safety installation constraints. The

measurement error of the tool is estimated by comparing the measures performed

on the calibration grid against the actual dimensions of the grid. As a proof of

concept and installation case study, a CV model assembly with four components

with one of the components shifted by 1 cm is created whereas the DMU model

has all of the components which are in normal position. The discrepancy of the

component is demonstrated and the magnitude is quantitatively obtained by find-

ing the norm of the XYZ difference of the corresponding object. Once the object

having discrepancy is identified, precise magnitude can be estimated using stereo

FPSLR. Ideally, the framework has been a proof of concept for safety analysis and

verification and tested in a controlled environment data set for model matching.

3D object structures with respect to other objects position in the scene can be

extracted. In future, experiments would be conducted in real industry setup.
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Chapter 5

Linking installation constraints

to production audit

Discrepancy checking can be performed to check whether there is a deviation in

the component placement of a plant assembly using datum (reference) informa-

tion. The link between the installation optimization constraints and the existing

PACT (production audit compare tool) [82] [80] [81] need to be realized. Safety

related constraints are used for installation optimization in production audit pro-

cess. It is possible to perform comparisons between a CATIA product and a 3D

computer vision model in the PACT and to measure the error but an automated

check that shows that the constraints are respected in the 3D computer vision

model of the fabricated product need to be achieved. This chapter addresses this

problem using AIV contains, intersect, disjoint, trajectory testing methods on

the 3D point cloud model of a sample assembly setup. The hypothesis statement

of this Chapter is H3: AIV contains, intersect, disjoint, trajectory test can be

performed on the point cloud model to check whether the installation satisfies

constraints.

5.1 Introduction

Production audit refers to the process of verification of a plant assembly in an

industrial environment against the set of pre-defined safety conditions or instal-
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lation constraints. Plant Assembly refers to the components in an installation

environment. Installation constraints refer to different danger levels, different

components fall within the volume etc. The components should satisfy certain

constraints in order to pass the safety testing and auditing/analysis process. In

order to facilitate the automation of production audit, in the works [82] [80],

discrepancy checking is performed to check whether there is a deviation in an as-

sembly component placement using datum information. For example, we created

two use case scenarios that resemble plant assembly setup: a) set A with compo-

nents analogous to DMU model setup and b) set B with one of the components

(blue cube) deviated by 1 cm from its original position.

The proposed algorithm and PACT [82] [80] was able to identify the discrep-

ancy and test results were reported. The model we use is not just a geometry

model representation (CATIA format) but it is subjected to a process where in-

stallation optimization is performed to check whether the model satisfies certain

installation constraints criterion [21]. The optimization process is required to

obtain a more accurate model that evolves over time. This model knowledge

available in an XML file format is used for DMU generation. In this Chapter, we

discuss how safety related constraints are used for production audit process and

whether the 3D point cloud model respects these constraints. The contribution

of this chapter is the fact that AIV, trajectory, contains, intersect and disjoint

test can be performed on the point cloud model to check whether the installation

satisfies constraints. The problem of conflict or collision between two equipments

and the problem of containment by the correct AIV or the relevant equipment of

an idealization are problems that have been solved by FBK [21]. The problem

that we address in this research work is.

1. Does the 3D point cloud model of an assembly environment raise a conflict

or collision?

2. Is the 3D point cloud model contained by the correct AIV?

3. Is the 3D point cloud model components are in trajectory path?

Up to our knowledge, there is no work available in the literature so far that checks

the 3D point cloud model against the model which evolved after installation
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optimization process and verify the set of installation constraints such as AIV

contains, intersect, disjoint, trajectory are met with final 3D point cloud assembly.

The Chapter is organized as follows. In the first Sect. 5.1, we have introduced

production audit. The significance of AIV, trajectory testing is provided in Sect.

5.1.1. Sect. 5.2 provides the framework description. DMU, AIV and trajectory

model creation is discussed in Sect. 5.2.1. The details regarding pose estimation

and model alignment is provided in Sect. 5.2.2. In Sect. 5.2.3, methodology and

results for AIV contains, intersect and disjoint are discussed. Trajectory testing

is provided in Sect. 5.2.4.

5.1.1 Significance of AIV, trajectory related safety

related constraints

There may be some components which are not in an acceptable zone as it exceeds

the bounding planes of AIV. There may be cases where the component looks from

one angle seems that it obligues the safety constraint but actually it doesn’t. In

most cases where the physical model deviate from the DMU model confirmed by

the existence of LD constraint, the components need to be re-positioned spatially

such that any possibility of a high danger condition is alleviated at an early level

since aggregation of these LD constraints can cause high danger. At any point

of time as the assembly is progressing, installations have to be regularly moni-

tored/examined to make sure that a) either components respect the installation

constraints or b) taken remedy measures to alleviate the hazardous levels such

as ones by possible bursts. If both components say C1 and C2 are placed in the

same trajectory path T, these components should be of a nature such that the

burst of one doesn’t affect the other component placement. If there are too many

components in an assembly without respecting the model assembly design, this

could be hazardous and should be fixed.

5.2 Methodology description

The proposed production audit pipeline shown in Fig.5.2 is based on two key

inputs: a) 3D point cloud structure recovery from the images and b) DMU model
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Figure 5.1: DMU and real model of the assembly setup

generation using XML file [82] [80]. The point cloud is assimilated from the

environment and comparison is done to the DMU, AIV, trajectory model based

on model knowledge.
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Figure 5.2: Proposed framework pipeline overview
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5.2.1 DMU, AIV, Trajectory model generation based on

model knowledge

DMU model is generated using semantic knowledge information available from

the system design model. Constraints XML file represents the new configuration

of components that satisfies the constraints high danger, low danger, non-safety

related constraints (the volume containing the components) and the components

cannot overlap etc. AIV is modeled based on library parts knowledge which is

defined as in XML format as provided in Fig. 5.3. In this example, “dimension”

represent width, height and depth parameter of the object. “TranslationPt”

represent the translation vector and “XVector, YVector, ZVector” represent the

rotation matrix, color represents the RGB value of the component. “kind” repre-

sents whether the shape type is component, volume or trajectory. In this example

component with name c6 is of a kind volume (AIV), c7 is trajectory whereas other

components with name c1-c5 are of component types. The library parts are cre-

ated using the DMU knowledge. Then the library part is converted into a set of

vertices that are then used to draw edges and then planes. Then the edges and

planes are used to check that the idealization lies within the AIV and does not

conflict etc. i.e.

1. Use the 3D point cloud to check that it is contained within the AIV.

2. Use the 3D point cloud to show that there is no conflict or collision

5.2.2 Model alignment of the assembly components

(datum vs. object fitted)

The collision detection analysis can be done on the point cloud but alignment

needs to be done before this constraint checking. Model alignment is a problem

of registering 3D shapes and involves estimating the pose information that can

facilitate discrepancy checking and constraint testing. The aim is to perform

collision tests with fitted 3D point cloud based on model alignment rather directly

on the 3D point cloud. Both datum (reference based: eg. Calibration) and object

fitted (individual component such as c1-c4 in XML file) are considered. The pose
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Figure 5.3: Sample model XML file with AIV, trajectory

for the environment is determined using both datum fitted (DF) and object fitted
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(OF) as follows.

Pi
OF
i=1..Sn

= PE(Si
CVM
i=1..Sn

, Si
GM
i=1..Sn

) (5.1)

Pi
DF
i=1..Sn

= PE(DCVM , DGM) (5.2)

Where CVM is the Computer vision model of the segmented object of a setup and

GM is the corresponding geometry model. PE (Pose estimation) is the 3D model

alignment function which recovers the transformation matrix that minimizes the

difference between CVM and GM.

(Rk, Tk) = arg min
RTR=Im,det(R)=1,T

(
N1∑
i=1

∥∥(Rm1i + T −m2cp(i)
∥∥2
2
) (5.3)

where

cp(i) = arg min
jε{1,2...N2}

‖(Rp−1m1i + Tp−1)−m2j‖22 (5.4)

N1 and N2 are the number of 3D points in CVM and GM respectively. FE

is the fitting error between two models. Fitting error (FE) is the absolute

difference between distance (AIVcentre, component) in model space and dis-

tance(AIVcentre,component) in fitted(translated) space [2 cases, both datum and

object fitted]. Pose for object fitted is the function of segmented objects in the

computer vision reconstructed model and the corresponding segmented objects

in the geometry model space. Object fitted is data transformed according to

transformation matrix recovered from segmented object and corresponding model

object. Datum fitted is data transformed according to transformation matrix

recovered from datum (calibration information) calib cloud and corresponding

model.

The point cloud along with AIV before and after alignment is shown in Fig.

5.4 and Fig. 5.5.
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Figure 5.4: 3D Point cloud with DMU, AIV (before alignment)

Figure 5.5: 3D Point cloud model with the DMU, AIV (after alignment)

5.2.3 AIV Contains, Intersect and Disjoint Test

5.2.3.1 Contains test(AIV)

Given the individual components of an assembly setup and the acceptable in-

stallation volume in an installation environment, it is necessary to automatically

understand the spatial relationship between components such that it does not

interfere with trajectory fragments and are within the Acceptable Installation

Volume (AIVs). AIV should be designed such that the components are in safe
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zone. Either the component placement is safe or not is adaptive and always sub-

jective to that particular point of time as each component placement is dependent

on neighboring component nature. So in order to ensure the overall safety of the

system, the checking of individual component is vital but not enough. AIVs and

trajectory sort of checks need to be done.

5.2.3.2 Collision detection using boundary check

In general, the components with AIV can be spatially categorized under the

following cases

1. components fully inside the other component,

2. components that touch partially.

3. components that do not interfere with one another

The collision algorithm 4 has been able to provide just whether object collides

or not (case 1) however, it is not able to identify two components with two cases

(case 2 and 3).

Algorithm 4 Finding contains relationship(AIV, Assembly component)

Input: AIV, 3D segmented point cloud model
Output: Component state

1: Collision (AIV, assembly component) = {0, if minx1 > minx2
2: maxx1 < minx2
3: miny1 > maxy2
4: maxy1 < miny2
5: minz1 > maxz2
6: maxz1 < minz2
7: 1 else }

The case 1 is under contains relationship whereas case 2 and 3 should be

observing intersect and disjoint relationship. In the next section, we discuss

about how to identify the spatial relationships such as intersect and disjoint for

the components with AIV.
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5.2.3.3 Intersect and Disjoint test (AIV)

The environment is analyzed for understanding spatial relationship between cor-

ners of each component of the assembly (both object and datum fitted) with AIV.

The distance between AIVcentre and corner of the components of segmented point

cloud is estimated. The center of AIV (pink cube : transformed space) is 4.4363,

54.1817, 15.5334 whereas for AIV(pink cube: model space) is 25.0000, 25.0000,

15.0000. The graph shown in Fig. 5.6, 5.7, 5.8, 5.9 displays the distance between

AIV center and components (object, datum fitted), object (model space). It can

be observed that the only blue cube has distance less than half of the edge length

of AIV (50) and hence satisfying contain constraint.

Dist Co1 Co2 Co3 Co4 Co5 Co6 Co7 Co8

AIV,Cube 40.9290 41.3181 58.5327 58.8055 47.1621 21.7569 46.8216 21.0085

AIV,RP1 130.7490 131.6674 50.4778 52.8111 39.4359 126.8955 36.2517 125.9424

AIV,RP2 97.9383 98.1016 106.2719 106.4224 80.5724 69.2105 80.3735 68.9789

AIV,TP 135.6910 158.3072 136.9532 110.0322 120.7722 145.7224 NA NA

Table 5.1: Distance between AIV centre and components (object, datum fitted),
object(modelspace) Co-corner

Algorithm 5 Finding spatial relationship(AIV, Assembly component)

Input: AIV, 3D segmented point cloud model
Output: Component state

1: For all components in assembly
2: if distance(AIV,allcorners) < edgelength(AIV)/2
3: then componentstate = ‘CONTAINS’;
4: elseif min(distance(AIV,allcorners))< edgelength(AIV)/2

max(distance(AIV,allcorners)) > edgelength(AIV)
5: then componentstate = ‘INTERSECTS’;
6: elseif min(distance(AIV,allcorners))> edgelength(AIV)/2

max(distance(AIV,allcorners)) > edgelength(AIV)
7: then componentstate = ‘DISJOINT’;
8: end
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5.2.3.3.1 Proposed algorithm for finding spatial relationship whether

the components in assembly are contained, intersect, disjoint The

methodology is tested for both datum fitted and object fitted. The algorithm

5 is able to identify whether the components in assembly are contained, intersect

and disjoint. Since the components are basic shapes and AIV is also well de-

fined, the method works. However, there is a need for robust collision detection

method for handling complex shapes. We would discuss plane plane intersection

and octree collision detection technique in next Section.
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Figure 5.6: Distance between AIV centre and blue cube component(object, datum
fitted), object(modelspace)

5.2.4 Trajectory test

The aim of trajectory test is to check how far the components have deviated

from the trajectory path. A trajectory is an obelisk like structure which can be
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Figure 5.7: Distance between AIV centre and rectangular prism 1 compo-
nent(object, datum fitted), object(modelspace)

used to find the spatial compatibility of the components. It also resembles an

elongated rectangular prism which has a triangular prism like shape at the end.

This test is necessary since there might be a situation where engine bursts and

component placement is affected in the assembly. The purpose of the test is to

assist installation optimization. The rules that are formulated in the constraints

as shown in Fig. 5.12 need to be checked. The safety result(HD-High Danger,

LD-Low Danger) and the corresponding possible cause condition are provided in

the left and right side respectively. This means that the components should not

be placed in the trajectory path that has particular risk possibility either low or

high. The purpose is to alleviate the high danger conditions while minimizing

the low danger conditions.
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Figure 5.8: Distance between AIV centre and rectangular prism 2 compo-
nent(object, datum fitted), object(modelspace)

5.2.4.0.2 Use case The trajectory is modeled using the DMU model XML

knowledge and the pose information recovered from the transformation between

a DMU and the 3D point cloud model (refer Fig. 5.11).
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Figure 5.9: Distance between AIV centre and triangular prism component(object,
datum fitted), object(modelspace)

(a) (b) 

Figure 5.10: Planes in sample assembly components (a-cube, b- rectangular
prism)
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AIV,Assembly component Contains Intersect Disjoint

AIV, BLUE CUBE Yes No No
AIV, RECTANGULARPRISM (GREEN) No No Yes
AIV, RECTANGULAR PRISM (YELLOW) No Yes No
AIV, TRIANGULAR PRISM (RED) No No Yes

Table 5.2: AIV, Assembly component spatial relationship

Figure 5.11: Trajectory and the fitted 3D point cloud

 
DEFINE high_danger1: BOOLEAN : = ((intersect(traj1,final(comp1)) and  
Intersect(traj1, final(comp2))) or (intersect(traj1, final(comp1)) and  
Intersect(traj1, final(comp3))) or (intersect(traj1, final(comp2)) and  
Intersect(traj1, final(comp3)))) 
DEFINE high_danger2: BOOLEAN : =  ((intersect(traj2,final(comp1)) and  
Intersect(traj2, final(comp2))) or (intersect(traj2, final(comp1)) and  
Intersect(traj2, final(comp3))) or (intersect(traj2, final(comp2)) and  
Intersect(traj2, final(comp3)))) 
DEFINE high_danger3: BOOLEAN : =  ((intersect(traj3,final(comp1)) and  
Intersect(traj3, final(comp2))) or (intersect(traj3, final(comp1)) and  
Intersect(traj3, final(comp3))) or (intersect(traj3, final(comp2)) and  
Intersect(traj3, final(comp3)))) 
Formula (high_danger1 = false) and (high_danger2 = false) And (high_danger3 = false) 
DEFINE low_danger1: BOOLEAN : =  (intersect(traj1, final(comp1)) or 
intersect(traj1, final(comp2)) or intersect(traj1, final(comp3)))  
DEFINE low_danger2: BOOLEAN : = (intersect(traj2, final(comp1)) or 
intersect(traj2, final(comp2)) or intersect(traj2, final(comp3)))  
DEFINE low_danger3: BOOLEAN : = (intersect(traj3, final(comp1)) or 
intersect(traj3, final(comp2)) or intersect(traj3, final(comp3)))  
PROBLEM ADJUST MINIMIZE countTrue (low_danger1, low_danger2, low_danger3) 
  
 

Figure 5.12: Constraints for checking the trajectory
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5.2.4.1 Plane plane intersection

A simplistic approach is to define plane for the assembly components in 3D space

and check the intersection with other planes i.e checking 6 planes of trajectory

intersecting with any of the 23 planes of the components?. C1 Cube 6 planes

(plane top, plane bottom, plane left, plane right, plane front, plane back) C2

RP 6 planes (plane top, plane bottom, plane left, plane right, plane front, plane

back) C3 RP 6 planes (plane top, plane bottom, plane left, plane right, plane

front, plane back) C4 TP 5 planes (slant left, slant right, plane front, plane back,

plane bottom) Volume V1 6 planes (plane top, plane bottom, plane left, plane

right, plane front, plane back). Given the normal vectors to the planes and any

point on the plane, the relationship between planes can be identified. If the dot

product between N1 and V is 0, then plane 1 and plane 2 coincide else it is

disjoint. Where V is the vector between a point that belongs to plane 1 and

point that belongs to plane 2. The plane collide iff there exists a line when they

intersect. If the planes are not parallel, they should intersect in a line. Plane

plane intersection is not optimal solution for complex shapes and further only

plane front and back trajectories can be used to check collision.

5.2.4.2 Octrees collision detection

Octrees discretize the input data and are used to partition 3D points recursively

into eight octants (refer Fig.5.13). The node stores center of the space the node

represents. The advantage of the octree is that only required surface levels to

be tested can be considered. The point cloud is projected from object space to

planar space using octree approach and then perform the collision detection in

this space. In this example, we use the node that has the maximum number

of grids at a given level. The translated object is calculated based on the pose

recovered using datum.
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Figure 5.13: Octree representation

Algorithm 6 Obtaining octree group center (pseudo code)

1: Estimate pose between CV model and geometry model

2: transobjectlabel= transformpoints(pose, modelpoints)

3: tx3 = transobjectlabel(:, 1)

4: ty3 = transobjectlabel(:, 2)

5: tz3 = transobjectlabel(:, 3)

6: tOctreelabel= Octree(tx3, ty3, tz3, MinCubeSide)

For example, the transformation matrix in the sample assembly setup is

MCalib =


0.9999 −0.0125 −0.0007 −20.2380

0.0125 0.9999 −0.0076 28.9850

0.0008 0.0076 1.0000 0.3247

0 0 0 1.0000


The minimum cube side is 2. For each of the components, the number of

groups considered for the discretization is provided in Table .5.3. There are

child, groupcentre and cube length for each of the octree representation.

S is the structure level of octree.

Algorithm 7 Obtaining octree group center (pseudo code)

1: for I = 1 :Ngroups

2: x(I, :) =tOctreelabel(1, S). group(1, I).groupcenter

3: end
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Component NGroups
Traj1 1:249
Traj2 1:269
Bluecube 1:60
RP1 1:170
RP2 1:96
TP 1:63

Table 5.3: Groups for octree discretization

Here label represents either the trajectory, components or volume (AIV) ,

x is the array that contains 3D point center of the nodes. It can be observed

from Table 5.5 and 5.4 that HD1, LD1, LD2 is true for the defined scenario.

For installation optimization, LD1 and LD2 should be minimized by relocating

the components such that the rules C1 is not in trajectory 1 , C2 is not in

trajectory 1, C3 is not in trajectory 2 are adhered. The high danger condition

as shown in constraint T1,C1+T1,C2 should be false. This can be achieved

since by minimizing the low danger condition LD1, high danger is automatically

alleviated (since LD1 is a subset of HD1 with aggregated conditions based on and

operation).

Intersect Traj1 Traj2

Bluecube 1 0
RP1 1 0
RP2 1 1
TP 1 1

Table 5.4: Intersect status of the components (trajectory and point cloud)

Safety condition HD1 HD2 LD1 LD2

T,C(IR) (T1,C1 and (T2,C1 and (T1, C1 or (T2, C1 or
T1,C2) or T2,C2) or T1, C2 or T2, C2 or
(T1,C1 and (T2,C1 and T1, C3) T2, C3)
T1, C3) or T1,C3) or

(T1, C2) and (T2, C2 and
(T1, C3) T2, C3)

Table 5.5: Trajectory component and danger conditions, IR-intersect relation
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Figure 5.14: Scatter plot of group centers (octree) of assembly setup (gc-group
center)

5.3 Conclusions

In this Chapter, we described how installation constraints are useful and the var-

ious means of testing on the point cloud model to check these constraints during

the production audit process. AIV contains, intersect and trajectory testing has

been discussed. AIV testing is performed based on the necessity to make mea-

surement within areas where the assembly or DMU is not complete or where the

nature of the material used in the product means that accurate measurements

are not possible but rather the part needs to be shown to lie within an acceptable

installation volume, eg. wire harness attachment points are precisely installed to

within a tight tolerance though the actual wire harness are installed compared

to a much more approximate tolerance. Trajectory testing is performed to check

how far the components have deviated from the trajectory path since there might

be a situation where engine bursts and component placement is affected in the
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assembly.

The various boundary based, spatial constraint based, plane plane intersection

and octree collision detection based algorithms were discussed. A novel algorithm

is proposed which uses the pose recovered from the PCAT module and perform

collision detection between AIVs, trajectory and the installation components.

The usefulness of AIV and trajectory concept to check the point cloud installation

to assist the production audit process has been shown.
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Chapter 6

Conclusions

The aim of this chapter is to summarize what have been discussed in this thesis. A

description of what has been achieved in this research work, benefit and possible

direction for facilitating the safety engineer to use the tool has been outlined.

In Chapter 1, basic concepts of the production audit process and prevailing

limitations were discussed. The scope for improvement and a list of contributions

that had been accomplished during this research work were provided. The work

was about the 3D vision assisted production safety audit process that takes mea-

surements of the fabricated sections of an installation from captured images and

uses model knowledge to compare the measurements to the required constraints

defined within the specification model of the installation in the Digital Mock-Up.

The background and existing techniques were described in Chapter 2. The back-

ground of the industrial environment and the application concept development

process was discussed. The list of identified requirements that need to be consid-

ered while designing the application and challenges had been summarized. We

provided the literature review made on 3D model based vision related to the pro-

duction audit. The survey was presented in two key fields related to this research

such as user guided measurement and testing, discrepancy checking of installa-

tions. The techniques such as discrepancy checking using augmented reality and

ToF cameras were discussed. Few basics of 3D reconstruction were described.

In Chapter 3, a proposed framework for 3D PAMT (Production audit measure-

ment tool) that uses input from a digital camera used for the verification tasks

was presented. A 3D based measurement system was demonstrated with capa-
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bilities that aims to assist the safety personnel and verify whether the following

segregation constraints are duly respected a) distance between datum points of

interest, b) distance between points with respect to planar surface. The advan-

tage of optimally using the combination of both point and automatic disparity

coupled with planar surface detection was demonstrated.

A new cost-effective and robust framework for 3D PACT (Production audit com-

pare tool) that uses input from a digital camera and semantic metadata knowledge

available from geometry models which can be used for verification tasks was de-

scribed in Chapter 4. The discrepancy checking and analysis of CV model with

DMU was carried out to confirm whether the installation requirements are met.

Furthermore, 3D feature extraction and classification had also been studied to

complement the verification tasks. Ideally, the framework acted as proof of con-

cept for safety analysis and verification and had been tested with a controlled

environment data set for model matching. 3D object structures with respect to

another object’s position in the scene can be extracted.

In Chapter 5, how safety installation constraints fit within the production audit

process had been described. It was also demonstrated that how the installation

optimization constraints file were linked to the ACAT (Advanced constraint anal-

ysis tool) and to perform an automated check that the installation constraints

were respected.

In Annexure I, the description of user manuals for the proposed production audit

software such as 3D PAMT, 3D PACT were provided. Further, an additional

software for constraint viewing has been described.

In Annexure II, 3DHT (3D Hough Transform) technique for planar surface de-

tection is discussed.

Finally, in Annexure III, a new depth based segmentation technique GrabcutD,

an improvement to existing Grabcut (graph cut based) segmentation method was

proposed. The goal is to extract pixel accurate object silhouettes from the mul-

tiple views of an object that can then be used to generate 3D convex hulls for

the objects. Conventional Grabcut relies only on colour information to achieve

segmentation. However, in stereo or multiview analysis, there is an additional in-

formation that could be also used to improve segmentation. Clearly, depth based

approaches bear the potential discriminative power of ascertaining whether the

142



object is nearer of farer. We show the usefulness of the approach when stereo

information is available and evaluate it using the standard datasets against state

of the art result.

6.1 Impact, Benefit of the proposed system

This research proposed a potential capability that could be used to both audit the

product during final assembly against safety installation constraints and may be

used within the line maintenance environment to check if in-service modifications

or damage invalidates an installation constraint or safety assumption regarding

an installation. The workflow that has been identified seems to fit the needs of

both the engineers in both use scenarios. The measurement system has been

tested by a MISSA project partner on an industrial aircraft dataset and results

are quite promising. The user experience needs to be polished but the main ideas

needed behind the user interface have been identified and are mainly present in the

developed application. The key success of the proposed system is underlined by

low cost budget and processing time compared to existing methods in the market

which are much expensive and time consuming. Moreover, the end users typically

need less knowledge expertise to handle system which process the selected portion

of the environment at a particular instant of time that need to be analyzed. It

is anticipated that this type of cost and time driven solutions would ideally have

a tangible impact over a period of time in both small and large scale industrial

applications that require 3D measurements and discrepancy checking. Further,

the various techniques in proposed system can also be potentially deployed in

other applications that are based on rigid and non deformable objects. More

details regarding run time analysis of the system are provided in Section. 6.1.1.

6.1.1 Algorithm run time analysis

A system with Intel (R) core 2 Duo CPU E8500 at 3.16 GHz, 2GB RAM and

Matlab/C++ based implementation is used for the experiments. The run time

results for various algorithms are reported in Table. 6.1. In the PAMT mea-
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Algorithm Average runtime(sec)

PAMT measurement (C++,Matlab) < 60
PAMT planar, angular analysis (Matlab) < 300
PACT discrepancy checking (C++,Matlab) < 240
(excluding 3D reconstruction)

Table 6.1: Algorithm run time

surement process, excluding calibration, from the experiments conducted on few

trials of data algorithm computes in less than 60 Sec. The distance with refer-

ence to planar surface angular analysis is achieved < 300 Sec. In order to speed

up the calibration process, C++ environment is preferred. This has to be done

initially just once for each new environment. Similarly, in the PACT discrep-

ancy checking process, 3D reconstruction using structure from motion in C++ is

computationally expensive. The processing time is around 3 to 4 hours depend-

ing on the number of multiview images. All the other processes (combination of

both Matlab and C++ implementation) are completed in less than 4 minutes for

the defined use case scenario. In the PACT algorithm, C++ is used for outlier

removal using connected component analysis.

6.2 Progress achieved beyond the state of the

art

The following section discusses the achieved advancement beyond the state of the

art. Work was carried out in two fields. The first was related to 3D Measurement

and Testing and the second was related to 3D Model Matching.

6.2.1 3D measurement progress achieved beyond the

state of the art

Beyond the state of the art, we designed and implemented a 3D measurement

tool which can provide accurate measurements between any given datum points of
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interest at the mm level in an installation environment with or without reference

to the planar surface model. The idea of using image based stereoscopic mea-

surement and the optimal combination of point based and automatic disparity

for measurement in 3D space with respect to the planar surface reference is used

in the proposed framework. A system that addresses the problem of accurate

3D measurement of any given environment in a relatively quicker manner. The

distance between any datum points of interest can be estimated with or without

reference to planar surface model. The tool uses multiple views of a scene cap-

tured using a basic digital camera and requires the inclusion of a calibration grid

within the scene. The application allows for a user to select a specified number

of consistent points/features on the multiple views, which allows the application

to indicate the distance between every permutation of pairs of these points and

also to give a measure of off-set from a selected reference plane, also defined by

three of the selected points.

6.2.2 3D model matching progress achieved beyond the

state of the art

Traditional 3D model matching approaches perform model matching between any

given cloud of points. The key achievement in our work is: the usage of CATIA

model information to perform model alignment and discrepancy checking. This

is obtained by point cloud processing (segmentation) and pose estimation of any

predefined datum and individual objects present in the scene. A system has been

developed that performs discrepancy checking between 3D vision model of the

actual installation to the original digital mock-up, with a focus on the safety

driven installation constraints, such as segregation, proximity and orientation.

The tool takes a set of images and uses various image processing techniques to

create a 3D digital reconstruction of the objects within the set of images. The

digital reconstruction is in the form of a cloud of points. The application takes

the digital mock-up of the scene and converts it into a similarly defined cloud of

points. The two clouds are aligned to each other such that the selected datum,

an equipment or calibration chart, has the lowest positioning error, based on
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feature extraction and comparison techniques. The rest of the equipment that

are recognized are then aligned to the digital reconstruction. The offsets for

these equipments are reported as positioning errors that can be used to check for

acceptability to the installation tolerances derived from zonal safety installation

constraints. The measurement error of the tool is estimated by comparing the

measures performed on the calibration grid against the actual dimensions of the

grid.

The work has achieved the main objective of defining an application to ad-

dress production audit of the fabricated product from a safety perspective and

developing and testing a prototype. Not all the requirements have been achieved

that are needed for an industrial instance of such an application.
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Chapter 7

Annexure I : Production Audit

Software

7.1 MISSA3DAudit PAMT GUI tool details

7.1.0.0.1 Compiling instructions: Run Click on MISSA3DAudit.exe to run

the system. Initially, command prompt will be shown and will take some time to

open the GUI. Note : If you get dll errors, then install MCRInstaller.exe which

is enclosed in package.

7.1.1 GUI tool details

GUI Tool comprises three main panels in the tool. A) Display Panel, B) Control

Panel and C) Result Panel.

7.1.1.0.2 Load images User selects the production audit images (here after

called images) using this button as shown below.
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MISSA 3DAudit: Production Audit Tool  

Reconstruction/Analysis GUI 

Display panel 

Installation image (left and right views)  Triangulated 3D  Calculated distance   

Result panel 

Load Demo images 

Load images 

Calibration tool  

Load demo calib file 

Load calibparamfile1 

Load calibparamfile2 

Sample correspondences 

Corresponding point selection  

Display selected points 

Triangulate/3D reconstruct 

Sample triangulation  

Backprojection  

Sample  

backprojection  

Outlierremoval  

VRML 

Generator  

Control panel  

Close  

Figure 7.1: MISSA 3D audit GUI system

Figure 7.2: Loading images
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7.1.1.0.3 Calibration tool The images need to be captured using the cal-

ibration pattern attached in the package and placed inside the folder ”Image-

sandCalibfiles”. For further detailed instructions, refer Calibration Instructions

Manual. This utility will generate .clb calibration file for all the images.

7.1.1.0.4 LoadCalibParamfile1 Here user selects .clb calibration file cor-

responding to first image. The calibration file contains intrinsic and extrinsic

camera parameters.

7.1.1.0.5 LoadCalibParamfile2 Here user selects .clb calibration file corre-

sponding to second image. The calibration file contains intrinsic and extrinsic

camera parameters.

7.1.1.0.6 Corresponding Points selection User will be given choice how

many points he needs to select for the inspection and safety analysis process.

While selecting points, first user will be shown left image where he will select

the point coarsely. Then, the system will show the point location on left image

that is zoomed so that user can select the point location very accurately (refer

Fig. 7.3). Similarly, user will be shown right image where he will select the point

coarsely. Then the point location on right image will be zoomed so that user can

select the point location very accurately. Note: Before running corresponding

points selection button, close any displayed Message Dialog box figures. Upon

successful loading of corresponding points, following message dialog box will be

displayed.

7.1.1.0.7 Display selected points This will show the selected points with

tags like P1, P2..etc as shown in Fig. 7.4.

7.1.1.0.8 Triangulate/3D Reconstruct Utilizing correspondence points and

camera parameters, this button reconstructs 3D points. This also finds the 3D

distances between individual points. Both 3D point locations and distances are

fed to result panel.
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Figure 7.3: Selection of point(coarsely) and (accurate)

Figure 7.4: (a) Message dialog box and (b) displaying selected points

7.1.1.0.9 Backprojection Using the known camera parameters, calculated

3D points are backprojected to each of the camera for testing purpose.

7.1.1.0.10 VRML generator VRML generator converts calculated 3D points

to VRML proprietary format and displays using VRML viewer.

7.1.2 Result panel

This shows reconstructed 3D points and 3D distances as shown in Fig. 7.5.
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3D Points 3D distance 

Figure 7.5: Result panel

7.1.3 Sample case

The buttons highlighted in red colour makes this sample case sequence run flow.

First load images (DSC01677.JPG, DSC01678.JPG) and then followed by corre-

sponding calibration files (LoadDemoCalibfile button).

7.1.3.0.11 Sample correspondences: This will load the set of correspon-

dences which are already selected. One can visually those points using display

points button.

7.1.3.0.12 Sample triangulation Using the sample correspondences , this

button displays reconstructed 3D points and distances.

7.2 MISSA 3D model matcher/discrepancy

checking GUI tool details

7.2.0.0.13 Compiling instructions: Run Click on MISSAModelMatcherV2.exe

to run the system. Initially, command prompt will be shown and will take some
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time to open the GUI. Note : If you get dll errors, then install MCRInstaller.exe

which is enclosed in package.

7.2.1 GUI tool details

Load images and 
generate 3D model  

Load 3D model  

Load geometry 
model file  

Run MISSA model 
matcher 

Save 3D model  

Display geometry 
model 

Display fitted 
model 

Display 3D model 

Close 

Figure 7.6: Model matcher graphical user interface

7.2.1.0.14 Prerequisites All the captured multiview images need to be in

a separate folder (say images). Model file of the environment (text format) is

required for matching process (see example: modelcalibrationdatum.txt for more

information). Install MeshLab [10], an opensource software in the PC. It is as-

sumed that Software is installed in C:Files MeshLab. Otherwise display buttons

will not work.
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7.2.1.0.15 Sequence of flow to test The first sequence can be followed if

new set of images are fed to the system for 3D processing.

7.2.1.0.16 Sequence 1 Loadimages and generate 3D Model → Display 3D

model → Load geometry model file → Display geometry model → Run MISSA

Model Matcher→Display fitted model The second sequence is suitable for reusing

the already generated 3D model for further processing.

7.2.1.0.17 Sequence 2 Load 3D model→ Display 3D model→ Load geom-

etry model→ Display geometry model→ Run MISSA model matcher→ Display

fitted model.

7.2.1.0.18 Load images and Generate 3D model (Button1): Here all

the images are loaded and steps including calibration and 3D model generation

from images are achieved. This will take some minutes and once the process is

done, a display message can be noticed. This will also use whole processor, so do

not try to run other applications while it is generating 3D cloud.

7.2.1.0.19 Save 3D model(Button2): The 3D model generated from the

previous step is saved in any required folder for further use.

7.2.1.0.20 Load 3D model (Button 3): Any model that is saved in the

previous step before is loaded into the run environment.

7.2.1.0.21 Display 3D model (Button 4): Using this button, either gen-

erated 3D model from button 1 or button 3 can be visualized using MeshLab

Viewer. As it can be seen in GUI, this button is common for viewing 3D from

button 1 or from button 3.

7.2.1.0.22 Load geometry model file (Button 5): The geometry file (or

model file) is loaded. In this release, a model format as shown below is used. The

last column highlighted in red defines which object is the datum (by setting value

as 1). Datum object should be the first object if it is CALIBRATION pattern,
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second object if it is different than CALIBRATION pattern. CALIBRATION

pattern should always be the first object in the file).

7.2.1.0.23 Display geometry model file (Button 6): Visualization of the

model file can be done.

7.2.1.0.24 Run MISSA model matcher (Button 7): Using both the gen-

erated 3D model obtained from images and the geometry model, model matching

can be achieved.

7.2.1.0.25 Display fitted model (Button 8): The result of fitting 3D

model with geometry model can be visualized. In current version release, the

discrepancy checking result can be seen in the command line.

7.2.1.0.26 Close (Button 9) The system can be quit.

7.3 Software: 3D viewer utility and constraint

viewer

This GUI software is based on QT (Qtopia) framework, OpenGL and C++ im-

plementation. The customized application is built with constraint msat viewing

utility on top of the opensource meshviewer.

7.3.0.0.27 Load 3D CV model: Loads and displays 3D cloud from an ex-

isting folder.

7.3.0.0.28 Load installation constraints: Load and displays installation

constraint msat format, xml format

7.3.0.0.29 Load Discrepancy output model: Load and displays 3D fitted

cloud.
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Figure 7.7: 3D viewer utility and constraint viewer

7.3.0.0.30 Load CATIA geometry model: Load and displays 3D geome-

try model. This is GUI supplementary software and has two way control windows

one for viewing the 3D cloud and other for viewing installation constraints and

has control bar for accessing 3D cloud views. Note: Multiwindows in same in-

terface makes cloud unzoomable and hence in this version 1 window but 2 way

control is designed for both installation constraint viewing and 3D viewing. Ac-

knowledgements: Meshviewer.
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Chapter 8

Annexure II: 3D Hough

transform

8.1 3D Hough transform

3DHT is used to fit plane to 3D points and it is performed in parametric space

Borrmann et al. (2010) [19] Kurdi et al. (2007) [77]. As discussed in Chapter

3, plane can be parameterized by its normal vector n and its distance from the

origin. Initially parameters of model (plane) are calculated, and the method looks

for the accumulator’s bin that the parameters fall into, and increase the value

of that bin. Local maxima in accumulator space are identified by finding the

bins with the highest values. The peaks can be identified by fixing the threshold

and by choosing multiple thresholds, primary and secondary level plane can be

extracted. The 3D point cloud (pointlist) which is a matrix of three coordinate

columns X, Y and Z; θ, φ and ρ axis (discrete intervals). The pseudo code for 3D

hough transform is given in algorithm 8.

Dismin and Dismax are the distances between the origin and the two extrem-

ities of the cloud points calculated at lines 1 and 2; H is a 3D matrix; θmat, φmat
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Algorithm 8 3DHT algorithm: planar surface detection [77]

1: Xmin = min(X); Ymin = min(Y); Zmin = min(Z)
2: Xmax = max(X); Ymax = max(Y); Zmax = max(Z)
3: Calculation of Dismin; Dismax
4: θ = from 0 to 360, step = θstep; nθ = length(θ)
5: φ = from -90 to +90, step = φstep; nφ = length(φ)
6: nrho = 2× (Dismax - Dismin)/ρstep
7: ρ = from Dismin to Dismax; step = ρstep
8: θmat(nφ, nθ) = [θ θ θ θ]′π/180
9: φmat(nφ, nθ) = [φ φ φ φ]′π/180

10: H(nθ, nφ, nρ) = 0
11: ratio = (nρ − 1)/(ρ(nρ)− ρ(1))
12: for k = 1 to length(X)
13: ρmat = cos(φmat)cos(θmat)X(k) + ...cos(φmat)sin(θmat)Y (k) + sin(φmat)Z(k)
14: ρindix = round(ratio(ρmat − ρ(1) + 1))
15: for i = 1 to nφ
16: for j = 1 to nθ
17: H(j, i, ρindex(i, j)) = H(j, i, ρindex(i, j)) +1
18: next j ; next i ; next k

and ρmat are 2D matrices; θ, φ and ρ are three lists. Once H is determined as

shown in the above algorithm, peak can be detected in the 3D matrix by searching

the voxels having maximum values.

As it is shown in Fig. 8.1, the plane obtained using RANSAC and Hough

transform is in line with the base of pipe point cloud. However, we used RANSAC

since it is faster than other methods due to its iterative concept model.
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Plane fitted (RANSAC)  

Plane fitted (3D Hough)  

Figure 8.1: Plane fitting using RANSAC, 3DHT
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Chapter 9

Annexure III : GRABCUTD :

Improved GRABCUT using

depth information

Popular state of the art segmentation methods such as GrabCut include a mat-

ting technique to calculate the alpha values for boundaries of segmented regions.

Conventional GrabCut relies only on color information to achieve segmentation.

Recently, there have been attempts to improve GrabCut using motion in video

sequences. However, in stereo or multi-view analysis, there is additional infor-

mation that could be also used to improve segmentation. Clearly, depth based

approaches bear the potential discriminative power of ascertaining whether the

object is nearer of farer. In this work, we propose and evaluate a GrabCut seg-

mentation technique based on combination of color and depth information. We

show the usefulness of the approach when stereo information is available and eval-

uate it using standard datasets against state of the art results. The hypothesis

statement of this Chapter is H4: Using extra depth information in existing graph

cut mechanism, segmentation can be improved.

159



9.1 Introduction

Image segmentation has been very old and active research over several decades.

It can be used in silhouette generation which is used in many potential computer

vision applications such as 3D reconstruction using visual hull [35], event detec-

tion [55] etc. For example, Guillemaut et al. (2009) has used joint robust Graph-

cut optimization and reconstruction for high quality free viewpoint video [40].

Izquierdo et al. (2002) has explained the key components that are necessary for

an advanced segmentation toolbox [45]. The six different schemes deployed are

variance-based detection of uniform regions, real-time histogram-based segmen-

tation, fast nonlinear diffusion, diffusion-based object segmentation, morphology-

based object segmentation and object segmentation by contour matching.

Popular state of the art segmentation methods such as GrabCut by Rother et al.

(2004) include a matting technique to calculate the alpha values for boundaries

of segmented regions [67]. Conventional GrabCut relies only on color informa-

tion to achieve segmentation. Our goal is to enhance the capability of GrabCut

technique using depth information obtained from stereo or multiview analysis.

GrabCut is an improved version of GraphCut which uses energy minimization

techniques for segmentation [20] [51]. Lazy snapping is another interactive im-

age cut system which is also based on graph cut and boundary refinement.

Recently, there have been few attempts made to improve the existing GrabCut

technique. Corrigan et al. (2008), has provided a matting using motion extended

GrabCut which works for videos [30].

Han et al. (2009) has extended the GrabCut integrating multiscale nonlinear

structure tensor [41]. Chen et al. (2008) has provided improved GrabCut using

Gaussian mixture model optimization [26]. Prakash et al. (2008) has provided

a combined approach based on both active contour and GrabCut for automatic

foreground object segmentation [62].

Other approaches for foreground segmentation utilize extra information by pro-

cessing two images. Sun et al. (2007) has proposed Flashcut for foreground

segmentation based on flash, motion, and colour information [75]. Reinhard et

al. (2005) has used depth of field information in which they consider object which
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is in focus and other without focus [66].

As stated by Torralba et al. (2002), there exists a strong relationship between

structure of the scene and depth [78]. In stereo or multi-view analysis, there

is additional information that could be also used to improve segmentation. In

fact, during the generation of computer generated 3D movies and animations,

depth information is known prior. The depth can also be generated using (Time

of Flight) ToF cameras or using stereo vision techniques. Several methods for

disparity estimation [17], [84] have been proposed. They can be categorized

into local and global stereo methods.

The only approach that uses depth information in foreground segmentation is

Zhu et al. (2009), who has provided a methodology for optimized depth infer-

ence where information from both depth and stereo images are considered. Thus

obtained depth map is subsequently used to enhance matting [90].

The organization of the Chapter is as follows: In Sect. 9.1.1, we will explain

GrabCut techniques. In Sect. 9.2.1, depth based segmentation is described.

GrabCut using 4 channels is explained in Sect. 9.2.2. In Sect. 9.3, we provide

the experimental results and analysis of our framework. Finally, the conclusions

and futurework are described in Sect. 9.4.

Figure 9.1: Ballet sequence image [13]

161



The dataset of ballet sequence is as shown in Fig. 9.1. The disparity map of

image can be obtained using many state of the art local or global methods. For

example, the depth map of dancer image [91] is as shown in Fig. 9.1 above.

Figure 9.2: Existing method(GrabCut) results for Ballet sequence

9.1.1 Existing GrabCut technique

Existing GrabCut technique by Rother et al. (2004) [67] works as follows: Ini-

tial trimap is created by user selecting a rectangle. Background class B is rep-

resented by the pixels outside rectangle and outer are unknown which belongs

to foreground class A. The corresponding pixels are assigned to each class which

is created using Orchard bouman clustering algorithm. The GMMs are thrown

away and new GMMs are learned from the pixel sets created in the previous set.

The segmentation is estimated using GraphCut which provides tentative classifi-

cation of pixels belonging to the respective classes. The above process is iterated

until convergence. As one can see from the Fig. 9.2, quality of the existing Grab-

Cut over the dataset is not satisfactory especially in the case of dancer. The arm

and hand portion is totally missing. This problem can be alleviated using depth

information along with the available color based segmentation model.
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9.2 Proposed Method

As discussed earlier, our proposed method is based on both depth and colour

segmentation model. Firstly, we discuss about depth based segmentation in order

to show justification for using disparity along with colour information later in our

framework.

9.2.1 Depth based segmentation (DBS)

We have already proposed an optimal framework for finding disparity in model

based 3D reconstruction [84]. Using any of the available techniques, dispar-

ity map can be found. Disparity range information provides details regarding

whether the object is nearer or farer.

The algorithm used in generation of disparity maps by Zitnick et al. (2004) con-

sists of three main steps [91]: a) segmentation of image (smooth image using

ansiotropic diffusion function), b) find initial disparity distribution (DSD) for

each segment where DSD is set of probabilities over all disparities for individual

segment in image and c) disparity smoothing using constraints which states that

neighbouring segments with similiar color also has same disparity The depth

range of interest can be obtained by finding the pixels with specific disparity

range interval and subsequently, silhouette can be formed by assigning the pixels

inside a region 255 value for highlighting foreground while all others are assigned

0 (background).

For example, in tsukuba image, we can isolate lamp and head separately (refer

Fig. 9.3,9.4). However, in Ballet sequence man dataset, the methodology could

not generate accurate silhouettes (refer Fig. 9.3,9.1) since too many pixels fall

in the same range that makes classification of pixels more tedious. In fact, this

problem could be alleviated by searching for pixels in a range within a bounding

box.

Considering the various issues that have been discussed so far, we propose a novel

framework that includes both color and depth information.
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Figure 9.3: Results of silhouette extraction from depth map.

Figure 9.4: Segmentation of lamp in Tsukuba using depth.

Usually, any given image can be represented as 3 channel image R, G, B

components. RGB values encoded in 24 bits per pixel and are specified using

three 8-bit unsigned integers (0 through 255) representing the intensities of red,

green, and blue.
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We also include the depth level (8 bit) information. In this work, we consider

image as 4 channel components including disparity map [0-255]. The values

255 and 0 means nearer and farer respectively. The histogram of R,G,B and D

channels of Ballet image is shown in Fig. 9.5.

Figure 9.5: Histogram of a)red, b)green, c)blue and d) Depth channels of Ballet
image.

9.2.2 GrabcutD: modified GrabCut using 4 channels

GrabCutD works as follows. Initially, user selects a bounding box and the pixels

inside and outside rectangle is represented by foreground and background classes

respectively. From each trimap selection of the foreground and background, the

histograms are formed using 4 channels information (Red,Green,Blue,Depth)

instead of just color (Red,Green,Blue). The gaussian mixture model (GMM)

components are assigned to pixels and learned from the 4 channel Image. The

energy model is defined based on the foreground and background histograms and

the minimum energy represents good segmentation. The segmentation is esti-

mated using graph cut which provides tentative classification of pixels belonging

to the respective classes. The above process is iterated until convergence. The
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formulation of above mentioned process is briefly described below. Let us consider

image as an array I = (I1, ..In...IN) which includes both R,G,B levels and depth

values respectively. The segmentation is array of opacity values α = (α1, ...αN)

at each pixel. 0 for background and 1 for foreground. θ is the parameter which

represents foreground and background histogram distribution (histogram model).

θ = h(I;α), α = 0, 1 (9.1)

Given an image I and model θ, the segmentation task is to infer unknown

opacity variables α.

The energy E is defined such that minimum represent good segmentation and

it captures coherence in both color space and depth.

α = arg min
α

E(α, θ) (9.2)

GMM components are a full covariance gaussian mixture with K components

(K = 5). A vector k = k1...kn...kN is defined and kn assigns unique GMM

component to each pixel either from background or foreground.

The Gibbs energy for segmentation is of the following form

E(α, k, θ, I) = U(α, k, θ, I) + V (α, I) (9.3)

The data term U which considers both color GMM and depth GMM models

evaluates the fit of opacity distribution α to data I. It is defined as follows.

U(α, k, θ, I) =
∑
n

D(αn, kn, θ, In) (9.4)

where

D(αn, kn, θ, In) = − log p(In|, αn, kn, θ)− log π(αn, kn) (9.5)

p(.) is Gaussian probability distribution and π(.) refers to mixture weighting

coefficient.
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The model parameters are represented by

θ = {π(α, k), µ(α, k),
∑

(α, k), α = 0, 1, k = 1...K} (9.6)

where π is the weight, µ is the mean and
∑

is the covariance of 2K Gaussian

components for foreground and background distributions.

Smoothness factor V is defined as follows.

V (α, I) = γ
∑
m,n∈C

[αn 6= αm]exp− β||Im − In||2 (9.7)

m,n represent the set of neighbouring pixels in C.

In this work, we propose to use scaling function in smoothness factor thereby

emphasizing the importance of depth. This can be achieved by using weighted

L2 norm

||Im − In||2τ =

√√√√m,n∑
i=1

τi(c(i,m)− c(i, n))2 (9.8)

Where the scaling weightage factor τ and c are as follows.
τ0 co = r

τ1 c1 = g

τ2 c1 = b

τ3 c1 = d

 (9.9)

The tuning parameter ψ is τ3.

τ0 = τ1 = τ2 = (1− ψ)/3; (9.10)

If ψ values are set to zero and 1, then the model represents GrabCut and

GrabCut(depth) respectively.
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9.3 Experimental results

We have evaluated the proposed methodology using two publicly available stan-

dard datasets a) MSR (ballet dancer) [Fig. 9.1] and b) middlebury dataset (baby,

midd1, tsukuba, teddy, art, moebius) [Fig. 9.8].

Figure 9.6: Ballet sequence dancer: (a) GrabCut and (b) GrabCutD (color and
depth)

As shown in Fig. 9.6, arm and hand portion of dancer is not identified using

GrabCut method (refer a), while our proposed method performed relatively better

(refer b). Also, while considering the segmentation of man Fig. 9.7, bottom

portion of the image has not been identified using GrabCut while ours is able to

segment.

As shown in Fig. 9.8, our algorithm is able to segment the objects better in

at most all dataset images. For the first example (Baby dataset), the GrabCut

technique (colour) performs poorly since color of map in the background and that

of baby significantly coincides. On the other hand, just using depth information,

it fails to segment the dancer dataset since the view is close to camera. How-

ever, using both depth and colour with tuning parameter value (ψ = 0.75) , our

algorithm performs better as expected. In order to illustrate the convergence per-
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Figure 9.7: Ballet sequence man: (a) GrabCut and (b) GrabCutD (color and
depth)

Baby φ  = 0.75  

Midd1 φ  = 0.93975  

Tsukuba φ  = 0.825 

Teddy φ  = 0.6 

Art φ  = 0.75 

Moebius φ  = 0.7 

Dataset Segmentation 

 region 
Disparity 

map 
GrabcutD 

(proposed) 
Grabcut 

(color) 
Grabcut 

(depth) 

Figure 9.8: Middlebury dataset results comparison using GrabCut (color), pro-
posed GrabCutD (color and depth) and GrabCut (depth)
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formance, we show different results of varying the parameters with corresponding

silhouette information (Fig. 9.9,9.10).

Figure 9.9: Baby (ψ = 0.25) and (ψ = 0.75).

Figure 9.10: Midd1 (ψ = 0.25) and (ψ = 0.9375).

In the middl1 image, the right side curve portion of the hat is clearly seen in

GrabCutD whereas in GrabCut, it is not the case. It can also be inferred that

depth alone might not be sufficient for segmentation in some challenging datasets

especially if there is no distinct depth information of the object of interest (refer

teddy image). For this example, color information is also needed. (ψ = 0.60).

Further, in moebius image, star like structure on the top portion is not having

clear depth which might affect the resulting quality. However, bottom portion of
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the image is segmented clearly using our method.

Iterations 

En
e

rg
y 

Figure 9.11: Energy vs. Iteration (GrabCutD).

The graph shown in Fig. 9.11 displays the energy convergence of different

middlebury datasets using the proposed GrabCutD method. As shown in the

graph, teddy took maximum of iterations n = 8 to converge to the minimum

energy for segmentation while midd1 image converged in n = 3 iterations.

9.4 Conclusions

In conclusion, based on the above results, we proved that depth based informa-

tion will improve the GrabCut technique. In this work, we have proposed a novel

method extended with depth information. The limitations of the GrabCut are

overcome by integrating depth information. If there are challenging situations like

having erroneous depth, it might affect the resulting quality. In order to show

usefulness of the approach, we have conducted experiments on different standard

datasets. The efficiency of the proposed methodology is clearly justified. As fu-
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ture work, we would further investigate to learn the tuning parameter adaptively

for any given model based on color and disparity information.
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