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Abstract 

Nowadays, the development of externally stimuli responsive vesicles possessing novel 

functionalities is full of challenging for various potential applications. As a practical 

matter, ultraviolet (UV) light responsive vesicles are finding intensive interest, as their 

micro/nano-structures can be tuned remotely by UV lights without involving direct 

contact or interaction. The development of such highly UV responsive vesicle is of 

great importance, where sometimes light would be the only available stimulus to drive 

the systems.  

The mainly aim of this work was to design polyelectrolyte capsules with unique 

externally UV responsive properties by using layer-by-layer assembly technique, to 

develop their applications for cargo encapsulation and release, and to get a better 

understanding of underlying mechanism based on UV light triggered phenomena. 

Strategically, three kinds of UV sensitive chemical compounds, benzophenone, 

azobenzene and diazonium, were introduced into building blocks for capsule 

preparation. Different functionalities of these capsules were studied, and their potential 

applications were investigated.  

To get a better understanding on the topic and contents discussed, an introduction and a 

literature review were first presented. Then experimental section containing materials, 

methods and instruments was followed in Chapter 3. In Chapter 4, weak polyelectrolyte 

microcapsules containing benzophenone groups were prepared. Bezophenone related 

crosslinking showed a reliable and swift approach to tighten and stabilize the shells 

without losing their pH-responsive properties. Chapter 5 investigated the microcapsules 

containing azobenzene groups, which could be activated to form J aggregates and 

further to destroy the integrity of shells upon exposure to UV light. In Chapter 6, 

microcapsules were fabricated with diazo-resin containing diazonium groups, which 

showed the ability to seal the porous shells via photolysis between diazonium and 

paired nucleophilic groups. Finally, in Chapter 7, Dual-function complex microcapsules 

containing both azobenzene and diazonium groups were fabricated to achieve both 

encapsulation and release trigged by same externally UV stimulus.   
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1. Introduction 

1.1 Polyelectrolyte Capsules for Encapsulation and Release 

In recent years, a great deal of interest has been focused on the studies in the field of 

nanostructured material formations, benefitting from the fast developed impact and 

promising prospects of nanoscience and nanotechnology. A wide variety of methods 

have been developed to prepare potential delivery systems with novel micro-/nano- 

structures. The main objectives in designing and fabrication intelligent delivery systems 

are to protect their cargos from external influences and release them at specific sites in 

desired manners. To achieve the goals, various carrier systems based on different 

fabrication approaches have been developed. Typical examples are nanoparticles
[1]

, 

micelles
[2]

, liposomes
[3]

, dendrimers
[4]

, etc. Depending on the desired characteristics, 

each carrier system has its own advantages for specific applications, such as tunable 

size, chemical components, and physical properties, etc. Nevertheless, a multifunctional 

delivery system that can integrate all these properties is preferred, in order to meet the 

demands in complicated practical application. And most importantly, such 

multifunctional system should include increased stability and longevity in the 

circulation, great potential to be functionalized, and abilities to respond to numerous 

external stimuli
[5]

. Remarkably, Lay-by-Layer (LbL) assembled multilayer capsules 

have been intensively studied and developed as optional candidates. 

Generally, the LbL technique requires basic electrostatic interactions of the paired 

building blocks, as first proposed by Decher and co-workers
[6]

. Regarding to the 

versatile multilayer fabrication process, the employments of the complementary 

building block materials, and furthermore the various combinations with other 

assembly procedures facilitate the engineering of a series of unique multilayer systems 

with high application potential in different areas. Typically, multilayer systems 

composing of natural and/or synthetic polyelectrolytes, inorganic components and other 

charged substances have been fabricated by using such electrostatic self assembly 

method, and their specific architectures and properties have been well studied
[5, 7, 8]

. In 

particular, when the LbL assemble is carried out on spherical surfaces, steady hollow 

shell formations, termed as “capsules”,  can be obtained after removal of sacrificial 
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templates, as developed by Sukhorukov et al. firstly
[9]

. This method based on 

electrostatic interaction of the oppositely charged polyelectrolytes/components has 

recently attracted increasing interests and found many potential applications in 

numerous areas
[10, 11]

. Many nano- and micro- capsules with tunable size, composition, 

stability and surface functionality, have been fabricated and their various potential 

applications have been widely developed
[5, 12, 13]

.  

Besides the LbL assembly environmental parameters (e.g., salt concentration, pH), the 

multilayer components predominately take responsibility for the physical and chemical 

properties of multilayer capsules. Since the properties of the charged polyelectrolytes 

are mainly controlled by the functional groups/structures along the polymer chains, the 

stimuli-responsive abilities of the polyelectrolyte multilayer preferentially afford the 

control over the properties of the built-up capsule systems. In return, LbL capsules 

composed of polyelectrolytes demonstrate various unique stimuli responsive properties. 

Basic principles and recent developments of such stimuli responsive capsules have been 

studied and reviewed systematically
[14]

. With these external stimuli, these stimuli-

responsive capsules exhibit numerous functionalities and potential applications, have 

been widely used as promising delivery systems in various areas ranging from medicine 

and pharmaceutics to chemical synthesis and catalysis
[14, 15]

. 

As one of the most interesting part of the stimuli-responsive capsules, light responsive 

capsules are capable to affect their micro-/nano- structures come in the form of remote 

control triggered by light (e.g., laser, sun light) without requirement of direct contact or 

interactions. The development of such highly light sensitive vesicles is of great 

importance, especially in the fields of surface sciences and environmental applications, 

where sometimes lights would be the only available stimuli to activate the systems. 

Various strategies were applied to develop light addressable vesicles with different 

functionalities. For applications in agriculture and cosmetics, UV-Visible sensitive 

vesicles are the optimized options due to the abundant existence of sun light
[16, 17]

. 

Meanwhile, Near-IR-absorbing vesicles are of greater interest in turbid medium (e.g., 

biological tissues or pharmaceutical solids) because of their deep penetration and low 

light scattering effect at specific wavelengths
[18, 19]

. As a practical matter, the stepwise 

LbL assembly would be a promising technique to develop light responsive capsules due 

to its simplicity and versatility. The step by step polymer deposition of the multilayers 
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facilitates the modification and functionalization of these capsules, providing 

availabilities of engineer a novel class of capsules with desired structures, chemical 

groups, and reactive functional groups/sites. Thus, a series of light responsive capsules 

could be obtained via modified LbL assembly procedure, to which the light sensitive 

moieties and components can be introduced easily.  

One of the most essential attributes and functionalities of the capsules is encapsulation, 

which stems from entrapment of cargo substances in capsules’ large cavities. Basically, 

encapsulation of the substances, e.g. proteins and polymers, can be conducted during 

template preparation step (e.g., by co-precipitating with CaCO3)
[20]

 or after template 

removal procedure (e.g., by diffusing through porous shells
[21]

). The principle 

advantage of such capsules as delivery vehicles is that the multilayer structures provide 

storage and essential protection for the substances against degradation or potential 

harmful effect from outer environmental parameters on their way to desired sites, where 

they can be released and activated. The substances such as proteins
[20]

, DNA
[22]

, small 

inorganic materials
[23]

, enzymes
[24]

, etc., were successful entrapped and studied. 

Theoretically, fabricated capsules are porous network-like structures, which are high 

permeable to molecules with a molecular weight below 5 kDa
[25]

. Therefore, strategies 

such as heat treatment
[26]

, crosslinking within shell
[27]

 and shell shrinking based on 

chemical transitions
[16]

 were developed to decrease shell permeability, and to help 

cargo substance retention. On the other hand, the ultimate purpose of effective 

encapsulation should be accomplished by controlled or modulated substance 

entrapment in the capsules which could benefit a long enough storage duration with 

desired release properties. Practically, responsiveness to external stimuli endows the 

stimuli-responsive capsule a novel way to release encapsulated substances. As a 

consequence, a lot of methods have been developed, based on the stimuli-responsive 

properties of capsules, to achieve the goals. Classically, physical (laser, magnetic field, 

ultrasound), chemical (pH, salt) and biological (enzymatic/bio- degradation) 

approaches have been well investigated and summarized 
[28-30]

. 

1.2 Motivation and Aims   

Since the development of LbL assembly technique, the fast developed multilayer 

capsule formations with great versatility and architectures have emerged as a kind of 
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novel vesicle/container system, demonstrating a lot of advantages and applications in 

various areas. LbL assembled multilayer capsules with stimuli-responsive abilities have 

attracted great interests in multidisciplinary fields. Recently, there has been a growing 

interest in light responsive capsules which are able to be activated upon light exposure. 

The use of light, especially the abundantly existed UV light, as an external trigger is 

highly desirable since it requires no direct contact or interaction to accomplish 

functionality of fabricated capsule systems.  

Despite the broad range of possible applications for such UV light responsive micro-/ 

nano- vesicles have been proposed, obviously only several studies dealt with the 

fabrication and functionalization of the LbL capsules have been reported. This 

motivates the author to focus work on development capsule systems which could 

respond to external UV light. To obtain such capsules with desired functionalities, 

studies on the potential UV-sensitive chromospheres/groups and their UV induced 

possible chemical transitions are needed. There are many kinds of such 

chromospheres/groups available, but to the best of our knowledge, only few are 

introduced to build up multilayer capsules, and moreover their underlying mechanism 

to push forward chemical changes are still lacking.  

Cargo substances of interest, either with small- or macro- molecular weight, can be 

encapsulated into the capsule interior for delivery applications. Once the capsules are 

loaded with cargo substances, defined shell permeability is required in order to improve 

such loading and benefit a long enough storage time with desired release properties. 

Crosslinking within multilayers would be one of the optimal methods to decrease cargo 

diffusion. A most convenient way is to crosslink related ionic groups in multilayers. 

However, if the capsules are composed of weak polyelectrolytes, the resulting 

multilayers are favorable in many cases, because of their ability to answer to outer pH 

stimulus. For practical applications, such pH-responsive property allows modulated 

cargo release through the shrunk or swollen capsule shells, by adjusting the dissociation 

equilibrium of related weak polyelectrolytes. Therefore, development of an intelligent 

delivery vesicle system is complicated in practice, where more than one stimuli-

responsive property also needs to be reserved. Typically, to enhance the encapsulation 

effect of weak polyelectrolyte capsules, a strategy for encapsulation needed here aims 

to decrease shell permeation and also retain related pH-responsive ability. Chapter 4 
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introduces the benzophenone group for capsule preparation consequently, to provide 

high efficient crosslinking within multilayers triggered by UV light. Avoiding 

consumption of the functional groups of individual polyelectrolytes (mainly paired 

ionic charges), pH responsive property of the built capsule would be greatly reserved, 

which would benefit capsules’ further applications, for instance pH controlled shell 

stability adjustment.  

Release, as one of the major aims in the field of delivery is to liberate the entrapped 

substances at intended location with desired speed. The most straightforward method to 

achieve release is to destroy the integrity of vesicles/containers. Two distinct ways of 

releasing have been demonstrated, either instantly or sustained. Generally, capsules 

rupture upon exposure to near-infrared laser (incorporating with heating effect of gold 

naonparticles) or degradation can realize the burst release of encapsulated substances; 

whereas the slowly release over an extended period can be achieved by the slow 

diffusion through porous structures or increasing permeability of the shells. Regarding 

to the UV responsive capsules discussed in this thesis, strategies are expected to affect 

capsules’ nano- and/or micro- structures come in the form of remote control triggered 

by UV light. Chapter 5 therefore employs the polyelectrolytes containing UV 

responsive azobenzene groups as building blocks to achieve the goal. Hopefully, 

incorporating of the robust azobenzene molecules into multilayer capsule system would 

be able to influence related photoresponse, and generate crystallization or phase 

separation in micro-domains, which would provide damage to the spherical capsule 

structures and then achieve potential release. 

Micro- and nano- polymeric capsules made of LbL assembly technique have been 

intensively explored to achieve substance encapsulation. Many efforts have been 

devoted to develop strategies for macromolecule encapsulation. Particularly, several 

research works concerning about UV responsive microcapsules have reported to 

encapsulate the substances with an average molecular weight above 10 kDa through 

multilayer crosslinking or shell strengthen triggered by UV light. However, small 

molecules encapsulation remains a bottleneck. Because these small molecules, such as 

drugs, dyes, and other bioactive substances that have a molecular weight below 1 kD 

are small in size and relatively difficult to be encapsulated by the porous polyelectrolyte 

structures. Therefore, the encapsulation for such small molecules remains of great 



6 

 

challenging due to possible requirements in drug delivery and microreactors 

applications. An intrinsically hydrophobic multilayer capsule system with less and 

small pores as well as low water permeability is thus preferred. A robust and reliable 

approach to seal capsule shells via mild, preferentially externally induced, chemical 

modification is required to achieve the goal. Chapter 6 proposes a controllable method 

to modify the assembled polyelectrolytes via chemical reactions to change functional 

groups, which would lead to avoiding charges and hence expel water voids in between 

layers after capsule fabrication. A study is performed to investigate macro- and small- 

molecules encapsulation in capsule systems containing diazonium groups, which could 

help seal the prepared capsules via UV induced photolysis.  

Prepared LbL capsules with different stimuli-responsive ability endow themselves 

different functionalities. In order to achieve different functions in one capsule system, 

different stimuli are normally required. For example, UV light was used to encapsulate 

cargo substance, whereas pH adjustment was applied to modulate the release. 

Concerning about the UV responsive capsules discussed here, sometimes the 

continuous UV light (e.g., sunlight) would be the only one stimulus to functionalize 

such system. Ideally, by introducing UV sensitive chemical groups causing different 

potential response as building blocks, fabricated LbL capsules can be endowed with 

dual UV responsive properties in specific layers. One block is responsible for fast 

capsule sealing and the other for longer term capsule swelling and rupture. Therefore, 

the multi-function of these capsules could be activated selectively when exposed to 

external UV light with suitable wavelengths. Considering the stepwise capsule 

fabrication procedure, Chapter 7 offers the strategy to functionalize dual properties of 

microcapsules by introducing UV sensitive groups with opposite potential functions. 

Consequently, a complex capsule system containing azobenzene and diazonium groups 

is prepared, to realize both encapsulation and release through selective chemical 

transitions triggered by UV light.  

The aim of this thesis is to investigate the UV-responsive multilayer capsules with 

regards to the potential functionalities mentioned above by using LbL assembly 

technique. The most challenging task and ultimate purpose of this thesis is to design 

and explore the strategies for such UV responsive capsule fabrication as well as to 

accomplish their corresponding functionalities by using the externally UV stimuli. 
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Generally, different UV sensitive chemical groups/components are introduced in/as 

building blocks to prepare microcapsules. Cargo substances, for instance fluorescent 

polymers (AF488-Dextran and TRITC-Dextran) and small molecules (rhodamine B and 

fluorescein) are used as typical examples for further UV triggered encapsulation and 

release studies. Moreover, basic mechanism which represents the corresponding 

changes of microcapsule mechanical properties as well as morphologies is also 

investigated. The most essential attribution of this work is the development of UV 

induced encapsulation and release for the applications in the fields such as surface 

science and photochemical areas.  
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2. Literature Review  

This review mainly focuses on the preparation and application of polyelectrolyte 

microcapsules, with particular emphasis on developments of light-responsive 

microcapsules in recent years. Mainly, three areas will be addressed: (1) general 

capsule preparation process, (2) encapsulation and release based on multilayer capsules 

and (3) light responsive capsule. The different strategies using UV light to remote 

active capsules are highlighted, and the potential applications are discussed. 

2.1 Polyelectrolytes 

The term ‘polyelectrolyte’ refers to a kind of polymer who’s repeating units bear 

electrolyte groups, which will dissociate in aqueous solutions and generate free ions, 

producing an electrically conductive solution. If the resulting solution is positively 

charged, this polyelectrolyte is referred to as a polycation. On the contrary, if the 

solution is negatively charged, this polyelectrolyte is referred to as a polyanion.  

According to their dissociation degree in water, polyelectrolytes can be classified into 

‘strong’ or ‘weak’ types. A strong polyelectrolyte is the one which dissociates 

completely in solution within a normal pH range (~2 to ~10). By contrast, a weak 

polyelectrolyte only partially dissociates in water. Thus, the weak polyelectrolytes are 

not fully charged over a normal pH range, and their ionization degree depends on the 

solution pH value.  

Many polyelectrolytes, including natural, synthetic and composite, have been widely 

studied and used to fabricate LbL capsules. 

2.2 Dissociation Behavior of Weak Polyelectrolyte  

The dissociation behavior of weak polyelectrolyte in solution is described by the term 

apparent dissociation constant (Ka)
[31]

. For example, if a weak polyelectrolyte is 

dissolved in water, the acid dissociation reaction of the polyelectrolyte ion pair should 

be: 

+ -+ HA H A                                                      (1.1) 
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Where the weak polyelectrolyte HA reversibly dissociates by splitting into cationic H
+
 

and anionic A
-
.
 
Considering the weak polyelectrolyte is only partially dissociated in 

water, so the dynamic equilibrium can be described by the dissociation constant (Ka) as 

a quotient of the equilibrium concentrations: 

+ -[ ] [ ]
=

[ ]
a

H A
K

HA
                                                          (1.2) 

The acid dissociation equilibrium can be described as a modified HENDERSON-

HASSELBALCH equation as below:    

[ ]
log

[1 ]
a

a
pK pH n

a
 


                                                     (1.3) 

Where the parameter pKa is the acid dissociation constant, n is related to the extension 

of the polymer chains, which depends on their charge, α is degree of protonation or 

occupancy.   

From Equation 1.3, the pKa of a titrating site can be defined as the pH for which the site 

is 50% occupied (α=0.5). For a polyanion, when pH > pKa, the dissociation is improved 

because the neighboring negatively charged ions create an attractive potential for the 

proton, which pushes the departing proton of the acid group out more easily. Likewise, 

one can understand the repressed dissociation when pH < pKa with the increase of 

positively charged neighboring ions in the solution. For a polycation, the pH-dependent 

dissociation behavior is exactly the opposite.  

For the capsules made of weak polyelctrolytes, pH denpendent charge density along the 

molecule chains would be one of the most important properties of multilayer system. 

Thus, the acid-base equilibrium would influence the electrostatic interactions between 

the weak polyelectrolytes as well as the formation of the polyelectrolyte multilayers. 

Clear examples were demonstrated by Tatjana Mauser and co-workers
[32, 33]

, as shown 

in Scheme 2.1. The microcapsules composed of the weak polyelectrolytes 

poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) were stable 

in the pH range from 2.5 to 11.5. Decreasing pH caused these capsules swelling, due to 

a 90 % of protonation effect on PMA.  
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Scheme 2.1 Model of swelling of (PAH/PMA)2 capsules in acidic conditions
[32]

. 

The pH-dependent dissociation behavior of the weak polyelectrolytes helps researchers 

facilitate the capsule preparation and their potential applications. For example, in order 

to ensure a fully charged polyelectrolyte solution one can adjust the pH of 

polyelectrolyte solution; to obtain stable hollow capsules one can choose a mild core 

dissolution solvent; to adjust the permeability and stability of fabricated capsules one 

can adjust the environment pH values. 

2.2 Polyelectrolyte Complexes 

When mixing the oppositely charged polyelectrolyte solutions together, the polycation 

and polyanion usually attract and bind, resulting in the formation of bulk 

polyelectrolyte complex (PEC). The main attractive force involved are Coulombic and 

hydrophobic interactions, and the main driving force for the PECs formation is 

suggested to be the entropy gain when the counterions are released into solution
[34]

. 

Since the ability to be attracted to an opposite charged polyelectrolyte is the 

predominate force for the complex formation, it is obvious that the addition of salt or 

conductive polyelectrolyte will affect the interactions among the polyelectrolytes. 

Generally, the concentration of salt (e.g., NaCl) in the polyelectrolyte complex system 

has a profound influence on its formation and stability
[35]

. For the soluble complexes 

consist of weak polyelectrolytes with significant different molecular weights in non-

stoichiometric systems, the influence of addition of salt is quite complicated. 

Comprehensive studies have been reported by the groups of Tsuchida and Kabanov
[36-
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38]
: First addition of small amount of salt helps the PECs rearrangement and shifts the 

reaction to a thermodynamic equilibrium, facilitating the uniform distribution of short 

chain components. Subsequent addition of salt leads to a shrinking of the PECs due to 

the shielding of the charges by salt (Scheme 2.2); when at a critical ionic strength, a 

disproportionation occurs, resulting in the appearance of the insoluble PECs; further 

addition of salt causes the complete dissociation of the PEC, leading to the free 

polyelectrolyte chains in solution. In the case of strong polyelectrolyte system, the 

mechanism becomes a little different. According to Dautzenberg’s research work
[39, 40]

, 

the addition of small amount of salt leads to a drastic lower amount of aggregation; 

whereas at higher ionic strength, a secondary aggregation happens, resulting in 

macroscopic flocculation, leading to a precipitate out of solution.   

 

Scheme 2.2 Effect of salt on a polyelectrolyte in solution. 

2.4 Polyelectrolyte Multilayer 

When a charged surface is placed in an oppositely charged polyelectrolyte solution, the 

free polymers in the solution will adsorb onto the surface. If the adsorbed 

polyeletrolytes are enough to cover the solid surface, the polymer-coated system will 

carry the charge of the 1
st
 polyelectrolyte, providing an electro-absorbable 

polyelectrolyte layer for the 2
nd

 polyelectrolyte. Thus, alternating deposition of the 

oppositely charged polyelectrolyte on the solid surface will build up a polyelectrolyte 

multilayer (PEM) (as shown in Scheme 2.3). The general process for building up 

multilayers is the so called Layer-by-Layer assembly. Different from the 

polyelectrolyte complex, this LbL polyelectrolyte multilayer assembly process can be 
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repeated as many times as desired theoretically. Typically, a porous PAH/PAA film 

containing more than 100 assembled bilayers has been reported
[41]

.  

 

Scheme 2.3 Polyelectrolyte multilayer preparation
[42]

. 

After the first reported research work in 1990s, the field of polyelectrolyte multilayers 

has obtained a tremendous increased development. During the past decades, novel 

characterization techniques were used to investigate polyelectrolyte multilayer 

properties and their potential applications. These investigations revealed and 

summarized the multilayer components (polyelectrolytes, biopolymers, and inorganic 

particles), structure (thickness, pore size distribution), hydration properties (water 

content, water mobility, and swelling behavior), permeability, elasticity, dielectric 

properties and mechanical properties
[34]

.  

2.4.1 Driving Forces and Influence Factors for LbL Assembly 

Similarly as the main driving force for the PECs formation, the adsorption of the 

polyelectrolyte to a solid surface is driven by the decreased overall free energy of the 

whole multilayer-free polymer solution system. The step-by-step assembly process is 

controlled by several intermolecular interactions. The multilayer formation and the final 

internal structure are complex balances between different types of interactions. Mainly, 

these interactions could be classified as electrostatic interactions and non-electrostatic 

interactions (including hydrophobic interactions, hydrogen bonding, entropy and van 
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der Waal forces). Further, the importance of these interactions is controlled over the 

polymer configuration, charge and the solvent affinity. The types of these interactions 

and their contributions to enthalpic and/or entropic parts have been studied in detail and 

reviewed by Klitzing
[34]

. Briefly, For LbL assembly, a basic electrostatic (coulombic) 

interaction is required, which would be influenced by the following two factors: charge 

density and ionic strength of the solution.  

1) The effect of the charge density can be illustrated in two parts, the surface charge 

density and polymer density. On one hand, the charge density of template surface or 

polymer-coated template surface will affect the arrangement of the absorbed polymer 

layers. Briefly, when the surface charge density is 1:1 stoichiometric ratio to that of the 

polyelectrolyte, a flat conformation will be deposited (Scheme 2.4 b); when the surface 

charge is not 1:1 stoichiometric ratio to that the adsorbed polyelectrolyte, a tail-/loop- 

like formation will be deposited on the surface due to the standard of charge neutrality 

of the complete system (Scheme 2.4 a)
[43]

. On the other hand, the charge density along 

the polyelectrolyte chains will affect the interaction of the counter ions. For the strong 

polyelectrolytes, the charge density only depends on the chemical structure of 

themselves. However, for the weak polyelectrolytes, an intermediate charge density is 

favorable for the multilayer formation, because the charge density of the weak 

polyelectrolyte depends on the solution pH. Based on the theory of dissociation 

equilibrium, at a certain pH value, if the charge density of one polyelectrolyte is 

maximal, the other oppositely charged one must be very low, which will definitely 

result in a very small amount of polymer deposition (Scheme 2.4 c)
[32]

.  

 

Scheme 2.4 Effect of charge density on adsorbed polyelectrolytes.  

* Configuration at the interface of adsorbed polyelectrolytes influenced by low (a) and high charge 

density (b)
[43]

. Electrostatic interaction of weak polyelectrolyte influenced by their charge densities (c) 
[32]

.    



14 

 

2) The ionic strength (related to the addition of salt or electrolyte) in the polyion 

solution, influences the attraction of the polyelectrolyte and the oppositely charged 

interface. At low ionic strength, the polymer adsorption conformation and mass mainly 

depend on the dissociation degree of the polyelectrolytes. Thus the adsorption is similar 

as that of the charge density-dependent situation (as we discussed in the above 

paragraph). Mainly, at high dissociation degree, polyelectrolyte deposition layer will be 

flat; at low dissociation degree, more polyelectrolytes will be adsorbed with tail/loop-

like conformation on the surface. While at high ionic strength concentration, the 

electrostatic interactions between polyelectrolytes and the oppositely charged surface 

should be screened, resulting in a decrease of adsorbed polyelectrolyte amount
[44]

.  

Beside the electrostatic interactions, the non-electrostatic interactions between the 

charged polyelectrolytes and the solid surface are also the basic factors for multilayer 

fabrication. With these factors, the multilayer deposition on the surface becomes 

dominant part instead of complex formation.  

 

Figure 2.1 Multilayer thickness determined with ellipsometry. 

* PSS/PDADMAC multilayer deposited in 0.1 M sodium salt of the corresponding anions. The scheme 

on the right hand side illustrates the effect of different counterions
[34]

. 

1)  The type of counter ions in polyelectrolyte solutions plays important roles in 

multilayer formation. As the rule of “Hofmeister series”, the cations and anions in the 

solutions have effects on the solubility of the polyions and on the stability of their 

secondary and tertiary structure. Usually, small ions appear to have a larger effect than 

the big ones, due to their relatively small polarizibilty and tendency to keep their water 

of hydration. The reduction in intrachain repulsion will lead to a stronger chain coiling, 
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which will cause an increase in the multilayer thickness and roughness. For example, 

the thickness of the multilayer will be effected in the presence of different salts in the 

order: Li
+
 < Na

+
 < K

+
 and F

-
 < Cl

-
 < Br

- [45]
, as shown in Figure 2.1.  

2)  Solvent affinity affects the polyelectrolytes and the counterions in the solutions. For 

example, water has a stronger solvating effect on the ions than methanol and ethanol. 

Dissolution of polyelectrolytes in methanol or ethanol will result in a stronger ion-

polyelectrolyte association. Thus due to the stronger coiling effect of the 

polyelectrolyte chains, the increase of the multilayer thickness will happen when 

increase the ethanol concentration
[46]

.  

2.4.2 Multilayer Growth 

With the repeating of the LbL assembly procedure, the multilayer thickness increases as 

a function of the deposited layer numbers. Mainly, the thickness increase model, linear 

or exponential, depends on the polyelectrolytes used.    

Generally, the thickness of multilayer composing of strong polyelectrolytes increases 

linearly with the number of deposition cycles
[47]

. The linear growth mode shows a 

constant change of the layer thickness and surface roughness. Unlike the linear growth, 

lots of the weak polyelectrolytes, especially the biologically relevant polyelectrolyte 

(e.g., polysaccharides and polypeptides), whose thickness growth increase 

exponentially
[48, 49]

. Compared with the linear growth mode, exponential molded film 

multilayer thickness increases more rapidly.  It is reported that the exponential growth 

is caused as a consequence of constituent polymer diffusion, where one or both of the 

polyelectrolytes diffuses within the multilayers. Studies on polypeptides (e.g., poly(l-

lysine) and poly(L-glutamic acid)) revealed the diffusion theory
[49, 50]

: on one hand, a 

regular adsorption occurs when the oppositely charged polyelectrolytes meet. On the 

other hand, the excess amount of free polyelectrolytes can diffuse within the multilayer 

and form complexation with the counterpart polyions.  

However, it should be pointed out that for the exponentially growing films, the 

exponential increase of the film thickness occurs only during the initially deposited 

pairs of layers, and then a linear thickness increase is followed, as reported by Schaaf 

and co-workers
[51, 52]

. As shown in Scheme 2.5, the preparation process of hyaluronic 
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acid/poly (L-lysine) (HA/PLL) multilayers, which is one of the best known 

exponentially growing systems, was studied as typical example. Zone I showed the first 

layers deposition, where the substrate surface played the main role. Increase the number 

of deposited polymers, the diffusion occurred in Zone III, leading to the film thickness 

growth as an exponential manner. Later, further increase deposited layer numbers, a 

new Zone II as an internal part was then restructured, due to the restructuration of the 

bottom layers of Zone III. Because of the formation of Zone II, a continuous growth of 

Zone III was thus hindered, resulting in a constant layer thickness when the deposition 

process went on.  

 

Scheme 2.5 Schematic representation for the three-zone build-up mechanism model of an exponentially 

growing PEM film. 

* (a) At the beginning, the deposition of the first layers mainly depends on the properties of the substrate 

surface. Only the first pairs of layers in the vicinity of the substrate surface belong to this case, and they 

represent zone I. (b) As the number of deposition steps increases, the diffusion process takes place in 

zone III, leading to an exponential growth of the film thickness. (c) The construction goes on, and the 

film undergoes a restructuration of the bottom layers of zone III, leading to the formation of a 

restructured zone denoted as zone II. This new zone is supposed to hinder the diffusion process, so zone 

III reaches a constant thickness. From this point on, the film grows linearly with the number of 

deposition steps, the thickness increment per polyanion/polycation deposition step being equal to Δd as 

indicated when the number of deposition steps increases from n to n+1. The further thickness increment 

of the film concerns exclusively zone II 
[51]

. 

The authors found that this exponential-to-linear transition always took place after 

about 12 deposition steps, showing exclusive relationship with the values of parameters 

in deposition cycles. Combining with hypothesis model, the found results were 

attributed to the film restructuring which progressively forbade the diffusion of the film 

components (polyelectrolytes) over part of the film.  
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2.4.3 Polyelectrolyte Multilayer Surface Charge Reversal 

There are mainly three kinds of methods established to prepare thin multilayers, they 

are Langmuir-Blodgett technique, stepwise chemisorption and alternating deposition of 

oppositely charged polyions
[53]

. The first two are based on hydrophobic effect and 

covalent bonding, respectively. The last method requires electrostatic interactions of the 

paired polyelectrolytes. As the multilayers fabricated through physisorption need 

alternating deposition of two complementary polyions, the prepared multilayer film is 

centrosymmetric, having a centre of symmetry. The sublayer structure is chemically ill-

defined due to randomly distributed polyelectrolyte molecular fragments.  

 

Scheme 2.6 Schematic illustration of coating by multiple polyelectrolyte adsorption-surface activation 

(CoMPAS) procedure
[53]

. 

Unlike the centrosymmetric multilayer, non-centrosymmetric multilayer has a 

preferential chemical group alignment direction, either parallel or vertical to the 

template
[53]

. A drawback for such non-centrosymmetric multilayer fabrication is the 

low mechanical stability and cohesion, due to the weak adjacent layer adhesion (e.g., 

hydrophobic effect). In order to solve this problem which existed in the traditional non-

centrosymmetric multilayer preparation progress, a new technique based on 

physisorption and surface activation was developed to fabricate thin multilayers with 
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defined chemical components, known as coating by multiple polyelectrolyte 

adsorption-surface activation (CoMPAS), as proposed by Laschewsky et al
[53]

. This 

technique is easily providing strong bonding for non-centrosymmetric multilayers (not 

having a centre of symmetry) through electrostatic interactions and following site-

specific charge reversal.  

As shown in Scheme 2.6, polyelectrolytes carrying reactive groups are necessary for 

further chemical activation steps. Once the charged polyelectrolyte is adsorbed on an 

oppositely charged surface, the reactive groups are exposed at the surface and can 

accept activation reagents which would create reversed charges for next polyelectrolyte 

deposition step.  

 

Scheme 2.7 Schematic illustration of polyelectrolyte charge reversal reaction
[53]

. 

A typical example for preparation of non-centrosymmetic thin multilayer was also 

given by Laschewsky and co-workers
[53]

, as shown in Scheme 2.7. Briefly, a positively 

charged polymer 1 containing reactive moiety (tertiary aniline residue) was deposited 

on glass slides, and then the surface charges of polymer-coated glass slide were 

converted by a diazonium salt solution (sodium 2-amino-5-nitrobenzenesulfonate), 

producing negatively charged polymer 2. Repeating polyelectrolyte deposition and 

surface charge reversal cycles yielded stable homogeneous multilayers with a single 

layer thickness of 1.3 nm. It is worth noting that a preferred ordering of polymer at the 

surface was established due to the hydrophobic effect, demonstrating as exposure of the 

reactive groups at the surface of coating.  
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Several attempts based on CoMPAS method have been made to fabricate such thin 

films
[54, 55]

. Technically, when activation reagents are small enough (e.g., HSO3
-
), the 

fabricated multilayer film could be counted as single component. A clear example of 

single component multilayer composing of daizo-resin was reported by Cao and co-

worker
[56]

. This idea inspired a brilliant strategy to engineer a kind of polyelctrolyte 

capsules with single components, which will be discussed in Chapter 6.  

2.5 Polyelectrolyte Multilayer Capsules  

When the layer-by-layer assembly is applied onto colloidal particles, this technique 

permits the fabrication of composite core-shell particle formations. After core removal, 

hollow capsules with engineered features (unique size, shape, composition and 

functionality) could be obtained.  

2.5.1 General Preparation Process 

 

Scheme 2.8 Schematic representation of the LbL capsule preparation process
[57]

.  

Generally, the capsule preparation process includes three steps: colloidal template 

employment, stepwise polymer deposition and template removal procedures (as shown 

in Scheme 2.8)
[57]

. First, colloidal templates various from spherical inorganic particles 

to non-spherical bio-colloids with diameters in nano- to micro-scale can be used. Then 

the deposition of a charged polymer (oppositely from the charge of template surface) 

layer onto the templates is applied. The electrostatic interactions between the two 
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oppositely charged polymer-colloidal surfaces allow the combination of the polymer 

and templates, resulting in the polymer-coated colloids. Subsequent treating the 

polymer-coated colloids with oppositely charged polymers results in a deposition of 

multilayer shell formation on the template. After each polymer deposition procedure, 

the excess un-adsorbed/free polyelectrolytes are removed by following wash steps 

using either centrifugation or micro-filtration setups. Finally, after polymer deposition, 

the colloidal templates are removed by treatment with corresponding solvents (either 

chemically or thermally), thereby hollow capsules are produced.   

2.5.2 Templates  

Generally, templates provide supports (stable/metastable) for the LbL multilayer 

deposition 
[10, 58, 59]

. It is very important to choose the initial templates for capsule 

preparation, because the properties of fabricated capsules and the further use strategies 

(loading, release, targeting) will be significantly influenced by the templates. For 

instance, it has been found that the capsules built up on commercial organic cores have 

better mono-dispersity than those on the laboratory-made inorganic ones
[60]

. Briefly, 

multilayer capsules have been built on the organic, inorganic and biological templates. 

2.5.2.1 Organic Templates 

For the capsules deposited on organic colloidal templates, the majority templates used 

are melamine formaldehyde (MF) particles (Scheme 2.9). These commercial available 

MF particles are weakly crosslinked monodisperse ones with a size range from nano- to 

micro-meter (Micro-particle GmbH, Germany). Due to their good stability at pH values 

above 5, LbL assembly can be carried out at neutral pH, and cores can be dissolved by 

treatment with 0.1M HCl
[61]

. One of the disadvantages of using MF is that the dissolved 

MF oligomers are too large to diffuse easily out of the capsule shells during the core 

dissolution procedure. Bulk deposition of the oligomers inside the shells will lead to a 

high osmotic pressure inside, which resulting in swelling behaviours of capsules and 

mechanical stress on the shells
[10]

. With increase of multilayer numbers, this effect 

increases remarkably, which will lead to breakage and high permeability of multilayer 

capsules
[62]

. Another drawback is that the positively charged MF oligomers by-product 

will stick to the capsule negatively charged shell layers, resulting in difficulty of getting 

rid of the core material completely even after several dissolving steps
[63]

.  
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Scheme 2.9 Chemical structure of melamine formaldehyde. 

Similarly, other organic templates such as Polystyrene (PS) latices
[64]

, and bio-friendly 

Poly(DL-lactic acid)/poly(DL-lactic-co-glycolic acid) (PLA/PLGA) particles
[65]

 have 

been used in a few research works. These particles provide well-stable templates for 

LbL assembly, but unfortunately, they all have disadvantages of large oligomers and 

difficult to be totally removed. 

2.5.2.2 Inorganic Templates 

Considering the difficulty of organic templates removal, inorganic particles may be 

promising templates due to their small products after core dissolution. These particles 

could be either inorganic salt or molecular crystals that can be dissolved in acidic or 

organic solvent.  

Highly monodispersite silicon dioxide (SiO2) particles with a broad size range have 

been used as promising templates recently and subsequently removed by suspending in 

hydrofluoric acid (HF). The advantage of using the SiO2 as templates is because of its 

fast decomposition and integration of the capsule formations when treated with 1M HF 

solution.  Comparing with the MF capsules, the capsules templated on SiO2 are quite 

intact, and possess low permeability that can prevent from fluorescent macromolecule 

permeation (rhodamine-labeled PAH, 2×10
-2

 M; 70 kDa)
[10]

. However, it should be 

noted that attention must be paid on the core dissolution procedure when handling 

dangerous HF solution.   

Due to the fast development of inorganic crystals currently, carbonate particles such as 

calcium carbonate (CaCO3)
[66]

, cadmium carbonate (CdCO3)
[67]

, and manganese 

carbonate (MnCO3)
[68]

 are used as promising templates for capsule preparation. These 

particles can be prepared in several micro-scales. For example, if the Na2CO3 and 

CaCl2 solutions were mixed together, a white precipitate will be formed. Leaving the 
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mixture still for several minutes, nano-scale particles will aggregate to generate micro-

scale particles (CaCO3). After a desired multilayer deposition, core dissolution can be 

performed mildly by treatment with ethylene diamine tetraacetic acid (EDTA), and the 

small molecule products can leave the capsule interior without problem. However, one 

disadvantage of the carbonate cores would be their high polydispersity and non-

spherical products (e.g., CaCO3 crystal)
[20]

. 

Most interesting, the porous structure of these inorganic particles provides useful 

cavities for the active loading of cargo materials, such as protein
[69]

, DNA
[70]

 and other 

materials. After core dissolution, the cargo materials will be encapsulated inside the 

capsules automatically.  

2.5.2.3 Other Templates 

Besides the organic and inorganic (non-metallic) particles, a large variety of materials 

can be used for the capsule preparation. Gold nano-particles
[71]

, living cells
[72-74]

, oil 

emulsion
[75]

, as well as the metastable air bubbles
[76]

 have been used as templates to 

fabricate capsules, as shown in Figure 2.2. Considering the practical applicability, if the 

cargo materials were used as the templates directly, they were already encapsulated 

without the core dissolution steps after LbL assembly. Specially, this strategy will 

facilitate the encapsulation of biological materials, like cell, gene, virus, etc. This 

diversity of template options makes the LbL capsules attractive for numerous 

applications in different areas.  
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Figure 2.2 LbL capsules deposited on various templates. 

* (a) TEM images of capsules deposited on gold nanopaticules before (left) and after (right) core 

removal
[71]

. (b) Fluorescent image of capsules deposited on living cells
[72]

 (Scale bar = 10 µm). (c) 

Fluorescent images of freeze-dried linseed oil capsules at different excitation wavelengths
[75]

. (d) A 

photograph of air-containing polyelectrolyte capsules in aqueous solution after centrifugation
[76]

. 

2.5.3 Hollow Capsule Formations 

The stepwise depostition procedure offers versatility of building capsules with different 

composition and functionality. Pure polymers, organic/inorganic components can be 

introduced into the shell formations, with particular active functional sites.   

2.5.3.1 Polymeric Capsules 

In most cases, pure polymers (polyelectrolytes) were used to fabricate capsules on 

various templates. After core removal, hollow capsules could be produced with 

different diameters. One of the typical examples is the capsule composing of 

poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) 

templating on melamine formaldehyde (MF) resin particles (diameter = 8.7 µm)
[77]

. 
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Such capsules are thin spherical shells when suspended in aqueous solution. After 

drying, creases and folds can be found as a consequence of capsule shell collapse 

caused by water evaporation. At the same time of colloidal template dissolution process, 

capsules undergo a slight shrinking due to the elastic relaxation
[78]

. Atomic force 

microscopy (AFM) and small-angle neutron scattering (SANS) measurements revealed 

the mean thickness of capsules composing of PAH and PSS is 1~2 nm per single 

polyelectrolyte layer
[77, 79]

, as shown in Figure 2.3.  

 

Figure 2.3 SEM (a) and AFM (b) image of (PSS/PAH)5 capsules prepared on MF (4.6 µm)
[80]

. 

Besides the PAH and PSS, a lot of polymeric capsules have been fabricated and their 

properties have been widely studied. The choice of shell components plays an 

important role in the potential application of the LbL capsules. Interestingly, polymer 

capsules offer a kind of novel vesicles for post-loading drugs, dyes and other material. 

Typical cases have been demonstrated, for instance, the combination of biocompatible 

shell components and encapsulated pH sensitive materials inside make the capsules 

become good candidate for pH sensors inside different organelles
[81]

 (Scheme 2.10 a); 

and the biodegradable components (e.g. chitosan
[82]

 or poly-L-arginine and synthetic 

poly(hydroxypropyl)methacrylamide dimethylaminoethyl 
[83]

) facilitate the 

deconstruction of capsule shells, resulting in the controlled release of encapsulated 

substances inside living cells (Scheme 2.10 b). 
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Scheme 2.10 Schematic representation of capsules for pH sensing (a) and drug delivery (b). 

* (a) The capsule interior was filled with pH sensitive SNARF-1-dextran. Capsules demonstrated 

different fluorescent colours in acidic and alkaline pH
[81]

. (b) Biodegradable capsules containing basic 

fibroblast growth factor (bFGF) inside demonstrated the local and sustained release 
[82]

.  

2.5.3.2 Inorganic Capsule 

During the stepwise polymer deposition procedure, if charged inorganic components 

were added, after removal of the colloidal templates and organic components (bridging 

polymer multilayers) by calcination, hollow inorganic capsules can be obtained. One of 

the first examples is the hollow silica capsules obtained after calcination of silica 

nanoparticles (SiO2)/polymer multilayer coated PS latex spheres
[84]

, as shown in Figure 

2.4. After twice deposition of SiO2/PDADMAC mixture, individual SiO2 nanoparticles 

can be found on the surface of the PS latex particle. After calcination, the PS core was 

removed and the SiO2 nanoparticles were fused, resulting in a crosslinked uniform 

silica wall (cage) with a spherical morphology. The high-temperature treatment 

condensated the silica nanoparticles within single spheres and generated structural 

integrity for the hollow silica sphere. The sintered silica spheres can be redispersed in 

water after sonication, illustrating that this coalescence predominately occurred intra-

individual SiO2 nanoparticles, rather than inter-spheres.  
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Figure 2.4 TEM images of calcined silica microspheres with deposition of two (a) and three (b) 

SiO2/PDADMAC layers
[84]

. 

LbL assembly also provides a simple way to control the wall thickness and outer 

diameter of the hollow silica spheres. TEM images demonstrated a regular increase of 

silica sphere wall thickness (increment of 30 nm) and diameter (increment of 60 nm) 

with the increase of deposited silica nanoparticle layers. And it was obvious that the 

more silica particles deposited, the more uniform wall would be fabricated. According 

to the cross-sections TEM images, the average silica wall thickness was found to be 

100-120 nm
[84]

. 

Due to the versatility of layer-by-layer assembly technique, other nanoparticles 

(Titanium dioxide, silica, magnetic, Laponite and luminescent semiconductors (CdTe)) 

with different composition, size and shape could also be used as building blocks for 

multilayers preparation on sphere templates (MF, PS)
[85]

, offering numerous potential 

applications ranging from electrical, chemical as well as optical areas. 

2.5.3.3 Composite Capsules  

High temperature sintering of the inorganic/organic composite leads to the formation of 

hollow and porous inorganic cages. Due to the porous structure, these cage-like 

inorganic capsules lose the film-like properties (e.g. permeability), resulting in their 

limited application. However, if only the templates were removed by using selected 

solvents or other methods, composite capsules composing of inorganic particles and 

bridging polymeric multilayers can be obtained. Such inorganic/organic composite 

capsules exhibit combination properties of controllable permeability and mechanical 
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strength. 

Considering the LbL assembly capsule fabrication procedure, there are two time points 

for introduction of the inorganic components, one is after the LbL deposition procedure, 

and another one is during the LbL assembly process.  

 

Figure 2.5 Preparation of composite hollow capsules. 
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; MAn=YF3, Fe3O4, or hydroxyapatite; below: 

SEM images of the YF3 capsules at different preparation stages
[86]

. 

For the former, a clear example has been done by Sukhorukov and co-workers
[86]

, as 

shown in Figure 2.5. Generally, hollow PAH/PSS capsules with an inner PAH/citrate 

layer were built up firstly. Then the citrate ions were placed by other anions 

(precipitating agent) by exposing PAH/citrate–PAH/PSS capsules to a mixture 

containing 0.01 M NaOH, 0.1 M H3PO4, or 0.1 M HF. After anion replacement, water 

insoluble iron (II, III) oxide (Fe3O4), hydroxyapatite and yttrium fluoride (YF3) 

particles were deposited on the inner capsule surface, respectively. Finally, PAH/PSS 

shells were removed by treating the resulting PAH/inorganic–PAH/PSS polyelectrolyte 

capsules with alkali solution for 24 h. Raman microscopy and UV-Vis spectroscopy 

results indicated that only the inner PAH layer existed after polymer dissolution, and 

the survived inner PAH layer maintained the connection of the inorganic particles. Such 

versatile approach generate a kind of capsules with higher mechanical stability 

(compared to the pure polyelectrolyte ones), and good shape persistence after drying. In 

addition, due to the variety of deposited inorganic particles, the composite capsules 
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could be endowed with various potential applications, such as YF3 shells can be used as 

adsorbents for rare earth ions, the magnetic active Fe3O4 shells can be used in delivery 

systems, and the capsules with calcium hydroxyapatite shells can find applications as 

novel biomaterials. Most importantly, comparing with the inorganic capsules, these 

composite capsules possess a polymer layer, which would facilitate control of the 

encapsulation and release of the encapsulated substances.  

 

Figure 2.6 TEM images of composite capsules with (a) GNPs and (b) GNRs embedded inside the 

multilayer shell of hollow (PSS/PAH)4 capsules
[5]

. 

Besides the method of inorganic deposition on fabricated hollow capsule, charged 

inorganic particles (gold, silver, iron, etc.) can also be introduced during the LbL 

process via the direct electrostatic assembly
[18, 87-89]

. After removal of core templates, 

hollow capsules with nanoparticles absorbed in the multilayer shells can be obtained. 

Typical examples of nano-size gold particles loaded hollow capsules are presented. As 

shown in Figure 2.6, TEM images demonstrated the polyelectrolyte capsules with (a) 

gold nanoparticles (GNPs), (b) gold nanorods (GNRs) incorporated in the multilayer 

(PSS/PAH)4 shell.  

The integration of polymer multilayer shells and nanoparticles allows the production of 

capsules with important functionalities, such as labeling, adjusting the 

permeability/opening of the capsule shell, targeting, etc. For example, by modifying the 

capsule shells with gold nanoparticles, site specific release of the loaded contents could 

be performed with the help of near infrared laser light
[19]

. Details of the application of 

such composite capsules will be discussed in Section 2.6.2.1. 
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2.5.4 Cargo Substance Encapsulation 

2.5.4.1 Encapsulation Strategies 

The most straightforward method to encapsulate cargo substances originates from 

incorporating these substances with the templates (cores), which accomplishes 

entrapment during microcapsule fabrication procedure, also known as active loading
[90]

. 

After template removal, desired cargo substances are trapped inside capsules directly, a 

schematic illustration is shown in Scheme 2.11. For instance, encapsulation of bioactive 

compounds are successfully achieved in porous CaCO3 microparticles
[20, 90]

. By co-

precipitating with or adsorbing on CaCO3 particles, protein and dextran are easily to be 

loaded into porous CaCO3 microparticles (~ 4.75 µm), and then the protein/dextran-

filled particles can be used as templates for polyelectrolyte deposition. By treatment 

with EDTA solution, shell-like structures with loaded macromolecules inside are 

obtained. Practically, this approach allows an encapsulation efficiency of 80% for 

protein (66 kDa)
[91]

. Generally, loading of such macro-substances in porous CaCO3 

particles is affected by their properties, such as molecular weight and solubility. As 

suggested, materials with amorphous property or long needle shapes are not suitable for 

fabrication of spherical templates; their molecular weight, water solubility as well as 

affinity to carbonate surface (holes) determines the encapsulation efficiency due to 

diffusion-limited permeation of the multilayers
[10, 20]

. Promisingly, this approach can 

easily be applied to encapsulate macromolecules at neutral pH, which benefits the 

engineering of a series of micro-containers for bioactive substances with widely ranges 

in the field of biotechnology, biochemistry and medicine areas. 

 

Scheme 2.11 Active loading of cargo into the preformed hollow capsules 
[92]

. 

Comparably, a second method for encapsulation is developed, known as passive 

loading, to which the cargo substances were introduced after capsule fabrication
[90]

. 

Mainly, two kinds of strategies are developed to achieve such passive loading, either by 
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diffusion or in-situ precipitation/generation. For the former, the desired substances are 

incubated together with the hollow capsules, and then the porous network-like structure 

of capsule formations allows the selective diffusion of cargo substances into capsules 

driven by physicochemical differences (e.g., substance concentration, solvent 

components) between the capsule interior and environmental medium. Scheme 2.12 

showed the schematic representation of this concept. The method has been applied for 

encapsulation of urease
[93]

, dextran
[26]

, DNA and protein
[94]

. Comparing with active 

loading, this approach allows a lower encapsulation efficiency of water soluble 

substance in aqueous system
[95]

.  

 

Scheme 2.12 Passive loading of cargo into prepared capsules
[30]

.   

Different from diffusion, other methods have been developed such as substance 

precipitation/generation within capsules, which are driven by ionic polarity gradient, 

complexation, chemical reactions, etc. General idea of this method has been presented 

in Section 2.5.3.3. A classical example of photochemical microreactors has been 

demonstrated as the “ship in bottle” synthesis of copolymers in capsules, involving 

monomer and initiator permeation through capsule shells followed by photoreactions 

inside capsules
[96]

. Specially, other two strategies based on spontaneous deposition of 

water-soluble substances via bounding to charged oligomers
[63]

 or controlled 

precipitation into capsules via variable solubility 
[97]

 are also developed. These 

approaches realize encapsulation of substances with low molecular weight. 

2.5.4.2 Sealed Encapsulation 

Theoretically, the LbL capsules are normally permeable for molecules with a molecular 

weight below 5 kDa
[30]

. Considering the porous structure of capsules, an adjustment to  

decrease capsule shell permeability is required, in order to achieve the cargo substance 

encapsulation
[19]

. Many strategies have been developed to accomplish a better 
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encapsulation in the purpose to achieve longer storage duration.  

 

Figure 2.7 Schematic illustration (a) and SEM (b) images of heat shrinkage. 

* (a) Configurational arrangements of the (PSS/PAH)5 capsules before and after heating. The reduction 

of the capsule diameter is accompanied by an increase of the thickness of the layer
[77]

. (b) SEM images 

of (PDADMAC/PSS)4 capsules shrunk to different sizes as a function of diameter after temperature 

treatment. The first image shows an initial capsule with a diameter of 4.55 µm
[98]

. 

Typically, after cargo substance loading, either active or passive, heat treatment can be 

applied to adjust the shell permeability through the so called heat-shrink process. After 

incubated at elevated temperature, the building block polymers consequently change 

ones’ two-dimensional arrangement with a low entropy state into a more coiled 

arrangement with increased entropy
[77]

, as shown in Figure 2.7 a. This polymer chains 

re-arrangement decreases shell permeability, as a result of capsule size decrease 

accompanying with shell thickening and densification
[98]

 (Figure 2.7 b). For 

(PSS/PAH)5 capsules, after heating at 70 ℃ for 2h, a remarkable heat-induced size 

decrease can be observed (1 µm decrease of the diameter). Meanwhile, AFM revealed 

the accompanied increase of capsule shell thickness, changed from 41 ± 1nm to 53.3 ± 

0.8 nm
[77]

.   
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Interestingly, not all the capsule systems undergo a heat-shrinking process when heated; 

it was suggested that the heat-dependent change in size was governed by the so called 

‘odd-even effect’, which associated with the capsule internal electrochemical properties 

as reported by Köhler and co-workers. The microcapsules composing of 

poly(diallyldimethylammonium chloride) and poly(styrene sulfonate) 

(PDADMAC/PSS) were studied as typical examples (Figure 2.8). After heating, 

capsules with an even number of multilayers (PSS with negative charges as the outmost 

layer) showed a heat induced shrinking accompanied by a increase of  shell thickness; 

in contrast, capsules with an odd number of multilayers (PDADMAC with positive 

charges as the outmost layer) swelled to 5-fold of their initial size followed by their 

rupture
[98]

. And further research work revealed the heat-dependent behavior in water 

was mainly controlled by the charge amount of the outer polyelectrolyte layer, where 

the surface potential will influence the water mobility in the internal layers, and then to 

induce the swell or shrinking of capsule shells
[99, 100]

. 

 

Figure 2.8 SEM images of dried PDADMAC/PSS capsules after 20 min incubation at different 

temperatures.  

* The first row shows (PDADMAC/ PSS)4 capsules (A) before and after heating at (B) 35, (C) 40, (D) 50, 

and (E) 70 °C. The second row presents (PDADMAC/ PSS)4-PDADMAC capsules (F) before and after 

heating at (G) 35, (H) 40, (I) 55, and (J) 70 °C 
[99]

. 

And, it is worth mentioning that the this odd-even effect becomes less pronounced with 

increasing number of deposited polyelectrolyte multilayers
[101]

. It should be noted that 

not all the cargo substance can undergo a heating procedure, thus development of other 

strategies for encapsulation of heat-sensitive materials is urgently necessary. 

Crosslinking approach has been developed as an alternative way for sealed 

encapsulation. Basically, crosslinkable polymers, either natural or synthesized, have 

been introduced as building blocks for capsule preparation. Chemical crosslinkers or 
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external triggers are used to bond related functional groups of the individual 

polyelectrolytes. For example, the frequently-used crosslinker EDC (N-(3-

Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride) is applied to crosslink the 

polyelectrolytes containing amino groups and carboxylic acid groups through amidation 

reactions. Consequently, stabilities of the capsules have been largely improved
[102]

 as 

evidenced by steady multilayer shells in extreme pH conditions
[103]

 and storage of 

macromolecules (500 kDa) at high pH
[27]

. Besides chemical crosslinkers, photo-active 

groups are also applied to crosslink the multilayer capsules via light triggered reactions, 

typical examples are given as the  phtotosensitive diazoresin-based microcapsules, in 

which the enzyme is successfully encapsulated after photolysis reactions
[104]

. One 

should notice, after crosslinking of the functional groups (mainly the ionic groups), pH 

responsive ability of these stabilized capsules will be greatly reduced or eliminated, 

depending on the degree of reacted ionic groups. 

Other methods that can tighten or strengthen the multilayer structures without 

consuming the ionic groups have also been developed to help encapsulation. One of the 

typical examples has been demonstrated by B dard and co-workers. Remote controlled 

capsule shrinkage based on length reduction of azobenzene molecule 

photoisomerization leads to decrease of shell permeability, resulting in retention of 

dextran (10 kDa)
[16]

; details can be also found in Section 2.6.1.2. 

2.5.5 Modulated Release 

Basically, polyelectrolytes are primary building blocks for multilayer capsules. 

Therefore, any external parameters (stimuli) that can influence on these polyelectrolytes 

will make their contributions to modulate release. Generally, such parameters could be 

classified into three categories: physical, chemical and biological. In this section, a brief 

overview of these three parts will be presented. 

2.5.5.1 Physical approaches 

For these physical parameters, capsule rupture should be the most intuitive manner to 

achieve release. Near-infrared (IR) laser, magnetic field and ultrasound have been used 

to disrupt the multilayer shell by direct mechanical deformation. 
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Incorporating noble metal nanoparticles (especially the gold and silver nanoparticles) in 

multilayer shells, (near-) IR laser light with different wavelengths (e.g., 830 nm
[105]

, 

532 nm and 1064 nm
[106]

)  has been applied to break the capsule shell site specifically, 

leading to shell permeability change, deformation
[19, 88]

 and controlled release in living 

cells
[107, 108]

. Theoretically, the composite capsules containing gold or silver 

nanoparticles exhibit a broad absorption at (near-) IR region (approximately 700 ~ 1000 

nm), the incorporated nanoparticles absorb irradiation energy in this region and then 

release it in the form of light scattering or heat, benefiting deformation of capsule 

formations
[18, 19]

. In the meantime, the light in this region has unique properties, high 

transmission and low scattering to be specifically, would cause no severe damage 

objectives (human body, biological medium). Therefore, this strategy has found great 

interests in the field of biological and medical areas, by applying fabricated composite 

capsules which exhibited a preference to absorb the bio-friendly infrared light. Related 

issue such as mechanism and potential applications will be discussed in Section 2.6.2.1.  

Ultrasound has been applied for capsule ruptures remotely. For the pure polymeric 

capsule without metal nanoparticles, ultrasound with high power and low frequency 

(e.g., 120 W, 20 kHz
[109]

; 500 W, 20 kHz
[110]

) has shown the ability to split the 

polyelectrolyte capsule shells into piece, which is based on the shear forces generated 

from acoustic cavitation in liquids under ultrasonic vibrations. The nanoparticles 

(Ag
[109]

, Fe3O4
[110]

 and ZnO
[111]

) incorporated in the multilayer shells help enhance and 

accelerate the effect. The strengthened effect was attributed to the low elasticity and 

high brittleness of the nanoparticle/polyelectrolyte shell as well as the resulted higher 

density gradient, which led to reflection and superposition of the acoustic waves
[110]

. 

For practical applications in biomedical areas, low frequency ultrasound at high power 

is not suitable, because the strong wave intensity might cause permanent damage to 

tissue or body. Therefore, development of ultrasound with low power which eventually 

approaches the allowed in medicine is a challenging task. In this regard, a case using 

the ultrasound with the parameters close to current medical care use, low-power (≤ 3.2 

W) and high-frequency (850 kHz) particularly, has been reported by Sukhorukov and 

co-workers
[91]

. As in their work, high frequency ultrasound was found capable to 

rapture the (PAH/PSS)4 microcapsules, which led to gradually release of encapsulated 

protein (66 kDa) within 10 minutes. In the mean time, addition of gold nanoparticles in 
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capsule shells speeded up the release efficiency by up to 4 times, which was proposed 

as the resulted mechanical rigidity of the composite shells.   

Capsules containing magnetic nanoparitcles can response to the outer magnetic field, 

facilitating a way to modulate capsules’ permeability by employing outer magnetic 

field to rotate these particles. By treatment with an oscillating magnetic field (100-300 

Hz, 1200 Oe) for 30 minutes, the gold-coated cobalt (Co@Au) nanoparticles (3 nm) 

embedded in shells were twisted, which consequently destroyed the integrity of 

PSS/PAH multilayer microcapsules, demonstrating as increased permeability to 

macromolecules
[112]

. Research works have also been done on the capsules containing 

magnetite (Fe3O4) nanoparticles. Upon applying outer magnetic field, nanocavity was 

found on the surface of capsules composing of Fe3O4 and PAH; extending the magnetic 

stimulus duration, nanocavities gradually became cracks on capsules and finally 

destroyed the intact capsules; moreover, controlled rupture in living cells (cancerous 

A549 cell line) offered a potential application of these magnetic capsules as effective 

drug delivery system
[113]

. Besides the increased shell permeability triggered by 

alternated magnetic field, a temperature increase was found after exposure of these 

magnetic capsules to magnetic field for long time. As reported by Katagiri
[114]

, the heat 

originated from Fe3O4 nanoparticles under magnetic field cannot rupture the 

polyelectrolyte microcapsules, but caused phase transition of the outer lipid membranes, 

benefiting the release of encapsulated dye molecules (phenol red). It is also worth 

mentioning, the external magnetic field could also realize other functions of these 

magnetic capsules. Typical strategies such as targeted delivery and imaging in vivo 

have been demonstrated in other works
[115, 116]

.    

2.5.5.2 Chemical Approaches 

Generally, fabricating capsules with pH-sensitive weak polyelectrolytes, the charges or 

ionization degrees along the polyelectrolytes could be controlled by varying the 

solution pH value. Therefore, the stability of formed multilayer shells is greatly 

influenced by environmental pH conditions. The examples of polyelectrolyte 

complexes containing weak polyelectrolytes is shown in Figure 2.9. Typically, PAH, as 

a weak polyelectrolyte with an apparent dissociation constant pKa = 8.7, has been 

widely used for capsule preparation and well studied
[117]

. When the PAH was mixed 

with equimolar strong polyelctrolyte PSS, the stoichiometric complex formation 
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PAH/PSS (1:1) showed a large change of the pKa value, shifting to 10.7 at alkaline 

region
[117]

 (Figure 2.9 a). When the PAH was mixed with equimolar weak poly 

(methacrylic acid) (PMA, pKa = 6.8), the titration curve of stoichiometric complex 

formation PAH/PMA (1:1) was divided into two branches, either located in alkaline 

(pKa = 10.8) or acidic (pKa = 3.9) regions (Figure 2.9 b). The titration curve in alkaline 

region represented the protonation of PAH (amino groups); while that in acidic region 

represented the deprotonation of PAM (carboxylate groups) 
[118]

.  

 

Figure 2.9 Potentiometric titration of PAH/PSS (a) and PAH/PMA (b) complexes. 

* The protonation degree α is plotted versus the pH value 
[32, 117]

. 

Similar shifts in pKa were also found in many cases, where the pKa shifted to alkaline 

region for polybases and shifted to acidic region for polyacids
[119, 120]

. Since the 

dissociation of polyelectrolyte and polyelectrolyte complex is pH dependent, thus the 

stability of polyelectrolyte multilayer/capsules could be tuned by outer pH, leading to 

swelling or even dissolution in different pH conditions. For example, the capsules 

composing of PAH and PMA were found stable in the pH range from 2.5 to 11.5. 

However, beyond this pH range, the dissociation of polyelectrolyte, either PAH or 

PMA, was suppressed, which resulted in capsule dissolution due to lack of electrostatic 

interactions between polyions
[118]

. Using such capsule stability changes triggered by pH, 

reversible swelling or irreversible dissolution, encapsulated substances were released in 

water directly
[62]

 or in living cells
[83]

.   

Ionic strength is another parameter that can influence the morphology
[47, 121]

, 

permeability 
[122]

 and stability
[123]

 of multilayer capsules in aqueous solutions, by 

screening the charges along the polyelectrolyte molecular chains or forming defects in 



37 

 

multilayers; the effect of ionic strength on polyelectrolyte capsules can be easily judged 

by detecting the diffused cargo substance amount through the multilayers as a function 

of ionic concentrations
[124]

. It was found that the formed cavities mostly attributed to 

the permeability through multilayers. In the mean time, increasing the ionic strength 

proportionally promoted the permeability increase
[124]

.   

2.5.5.3 Biological Approaches 

For the ones who care much about the materials science domain, bio-degradable 

polymers would be their first choices to achieve release due to possible capsule 

disassembly caused by polymer degradation. This strategy involves employing bio-

degradable polymers to build up capsule systems and using biological stimuli to reduce 

shell integrity and release encapsulated substances. These stimuli mainly originate from 

enzymatic reactions or hydrolysis. Li and co-workers reported the first study of bio-

degradable polyelectrolyte capsules
[125]

. As in their work, the enzyme (phospholipase 

A2) caused hydrolysis reactions on the lipid/polyelectrolyte surface of lipid-coated 

polyelectrolyte multilayer capsules, which further adjusted shell permeability. Several 

biopolymers, such as DNA
[126]

, polypeptides
[127]

 and polysaccharides
[128]

, are promising 

candidates to fabricate such capsules. De Geest and co-workers reported two bio-

degradable capsule systems containing polypeptides and polysaccharide
[83]

. These 

capsules were decomposed by either enzymatic degradation of poly-L-arginine (pARG) 

component or hydrolysis degradation of carbonate ester of 

poly(hydroxypropylmethacrylamide dimethylaminoethyl) (p(HPMA-DMAE)). 

Degradation of the capsules inside cells is very attractive and practical important for 

drug delivery, especially for the targeted intracellular delivery
[129]

. Typical example has 

been demonstrated for the capsules composing of hyaluronic acid and poly(lysine) 

(HA/PLL), offering a potential drug delivery vesicle for intracellular use
[130]

. As shown 

in Figure 2.10, the bio-degradable microcapsules, both (HA/PLL)4.5 as well as 

(HA/PAH)4.5 capsules,  were found to be internalized into endo/lyso- somatic vesicles 

within 2 hours, when they were cultured with macrophages. Then a rapid rupturing of 

these capsules due to degradation effect intracellular was observed, demonstrating as 

yellow/orange images representing the overlay of the colors of both capsules and cells 

in the same focus plane.  
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Figure 2.10 Schematic and confocal microscopy images of degradation of the bio-capsules in living cells. 

* The bottom panel showed confocal microscopy images of bio-degradable capsules after 2 h 

coincubation with RAW mouse mcarophages.  Capsules were stained green fluorescent using HAFITC, 

while the cellular lysosomes are stained using LysoTracker Red. The left pane gives the overlay of the 

green and red channel, the right pane was the overlay of green, red, and DIC. Colocalization between the 

green and red channel is observed as a yellow/orange color
[130]

. 

Polyelectrolyte capsules containing glucose sensitive components (glucuronic acid
[131]

, 

phenylboronic acid
[132]

) have been devoted to achieve release of encapsulated substance, 

e.g., insulin. However, no successful capsule decompose based on effect of glucose 

stimuli have been illustrated.  

For all the biodegradable polyelectrolyte capsules inside cells, no external stimulus but 

the stimuli inside cells is required for their decomposition, providing them high 

potential for intercellular applications, e.g., gene therapeutics. However, no matter 

triggered enzymatically, hydrolyticly or by other manners, it is difficult to precisely 

control over the release of encapsulated substance, which will definitely limit the 

practical use of such biodegradable capsules.  

2.6 Light Stimuli Responsive Capsules 

Stimuli responsive capsules are demonstrating numerous functionalities, widely used as 

promising systems in various areas ranging from medicine, drug delivery to chemical 

synthesis and catalysis, etc
[14, 15]

. Polymers/polyelectrolytes are the main components of 

the capsules multilayers. Thus the capsule properties mainly depend on the properties 

of the polymers, such as their hydrophobic/hydrophilic properties, molecular weight, 
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chemical components and functional groups of the molecular chains. All these 

parameters endow the capsules with special functionalities when they are dealing with 

various outer stimuli. The classification, basic principles, building blocks, preparation, 

potential applications, as well as the recent development of  stimuli-responsive capsules 

have been widely studied and reviewed
[14]

. The stimuli system is too huge and 

complicated to be discussed in this review. Here this section mainly focuses on the light 

addressable capsules and their potential applications, with the highlight in the UV 

responsive capsules and their potential applications.  

Light stimuli responsive capsules are capable to affect their micro-/nano- structures 

come in the form of remote control triggered by external light (e.g., sun light) without 

requirement of direct contact or interactions. The development of such highly light 

sensitive vesicles is of great importance, especially in the fields of surface sciences and 

environmental applications, where sometimes lights would be the only available stimuli 

to drive the systems. Various strategies were applied to develop light addressable 

vesicles with different functionalities.  

 

Scheme 2.13 The electromagnetic spectrum. 

Light radiation with wavelength in the range of 200~1200 nm is the most studied type 

of remote trigger for polyelectrolyte capsules (as shown in Scheme 2.13). Mainly, there 

are two types of light sources commonly used for research, ultraviolet and infrared 

lights. Ultraviolet (UV) light, the electromagnetic radiation with a wavelength ranging 

from 10 nm to 400 nm, has been found large number of applications in agriculture, 

environment and cosmetics areas. UV sensitive vesicle is one of the optimized options 

for these applications due to the abundant existence of UV light in sunlight. Meanwhile, 
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Near-infrared (NIR) waves have been found greater interest in turbid medium (e.g., 

biological tissues or pharmaceutical solids) because of the deep penetration and low 

light scattering at specific wavelengths
[19]

. A lot of research works have been done on 

both UV and NIR lights, here the following section will summarize these work and 

discuss their underlying working mechanism and potential applications.   

2.6.1 Light Induced Chemical Changes 

The main chemical constituents of LbL multilayers are primarily of atoms of carbon, 

hydrogen, oxygen held together by covalent bonds. Upon irradiation of ultraviolet 

and/or visible light, sufficient energy is introduced to excite or reactive most molecule 

covalent bonds and atomic valence electrons. Thus the capsule multilayers are capable 

of absorbing irradiation at certain wavelengths. In the UV-Visible region (the abundant 

light), shorter wavelength (200 to 400 nm) near ultraviolet region (150 to 70 kcal/mol) 

is more energetic than the longer wavelength (400 to 800 nm) visible light (70 to 35 

kcal/mol) 
[133]

 based on the Planck–Einstein equation (E = hc / λ). As consequence, UV 

light is most often used in the photochemical reactions.   

For LbL capsule application, it has been reported that the UV irradiation causes 

chemical changes within the capsule multilayers, which led to structural rearrangement 

and capsule size change. One example has been reported by Katagiri and co-

workers
[134]

. After 2 hours of UV irradiation (20 mW/cm
2
) at a wavelength of 365 nm, 

capsules made of poly(sodium 4-styrenesulfonate) (PSS) and 

poly(diallyldimethylammonium chloride) (PDDA) were found a size shrinkage of 20% 

of their original. It was revealed that the UV absorbable aromatic groups can absorb the 

UV energy, and push chemical transition towards within the multilayers, resulting in 

the capsule shrinking. And this UV induced process was confirmed by the generation of 

product SO4
2-

 ions. Thus it is inspired that UV absorbing chromophoric functional 

group are good alternative for introducing of UV sensitive properties to capsules. 

Several chromophoric groups will be discussed, with the emphasis on the chemical 

groups used in this thesis.  
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2.6.1.1 Benzophenone  

Benzophenone (BP) is an organic compound with the UV absorbable phenyl rings 

linked by a carbonyl (C=O) group. Basically, the UV absorption of benzophenone and 

derivates is discrete but extremely complicated owing to the thermal distribution of 

molecules over many levels of low-lying torsional modes. Principally, BP has two UV 

absorption bands around 220~300 nm (attributed to the π-π* transition) and 300~380 

nm (attributed to n-π* transition), respectively
[135]

. BPs in different solvents (e.g., 

ethanol and cyclohexane) with different solvent affinity exhibit a slight difference of 

UV absorption spectrum, as shown in Figure 2.11
[136]

.  

  

Figure 2.11 UV absorption spectra of BP in ethanol (dotted line) and in cyclohexane (solid line)
[136]

. 

Two of the advantages of BPs are their better stability when compared with other 

chromophors (e.g. diazo esters, aryl azides, and diazirines) and their preferential 

reactivity with unreactive C–H bonds, even in the presence of water and bulk 

nucleophiles
[137]

. These two advantages combine to produce highly efficient and 

remarkable site specified molecule covalent modifications, which make BPs become of 

great usefulness in chemical and biochemical applications. Generally, the BP related 

molecule covalent modification process can be illustrated as shown in Scheme 2.14. 

First, upon exposure to UV irradiation, electromagnetic energy pushes the electron 

transition from a nonbonding sp
2
-like n-orbital on oxygen to an antibonding π*-orbital 

of the carbonyl group. Then the electrophilic electron-deficient oxygen n-orbital 

interacts with weak C–H σ-bonds, leading to a hydrogen abstraction (H–abstraction) in 

http://en.wikipedia.org/wiki/Organic_compound
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order to complete the half-filled n-orbital. When amines or similar heteroatoms are 

proximal to the excited carbonyl, a recombination occurs, resulting in generation of a 

new C–C bond
[137]

.  

 

Scheme 2.14 Geometric (a) and schematic (b) representations of the photo-crosslinking via hydrogen 

abstraction of benzophenone derivatives
[137, 138]

. 

This basic C–C generation process induced by UV irradiation via hydrogen abstraction 

offers a simple but effective way to remotely crosslink the nearby molecule chains. 

This distinct crosslinking method endows BP and its derivates great interesting as the 

subject of optical spectroscopy and photochemistry. From 1980s, BPs have been used 

as photo initiators in UV-curing applications such as inks, imaging; and the 

biocompatible BP compounds have been approved as chemical UV absorbers used in 

products such as makeup and perfumes
[139, 140]

. In addition, BPs have been used as 

photoactivatable reagents to functionalize specific C–H bonds remotely in steroids, and 

further to map chains conformations in various systems, such as micelles  and 

membranes
[141, 142]

. In biological applications, BPs have been introduced in site-specific 

photo-crosslinking proteins (e.g. p-benzoyl-L-phenylalanine) to identify and sense the 

protein-peptide interactions in living cells
[143, 144]

.  

To the best of our knowledge, the application of BPs in LbL assembly multialyer 

system is rare. One research work reported the preparation of the photo-crosslinking 

multilayer structure composing of benzophenone modified polyelectrolyte. Upon UV 

http://en.wikipedia.org/wiki/Photoinitiator


43 

 

irradiation, a highly stable film can be obtained through BP associated chemical 

transition
[145]

. Another research work reported nano-scale hollow particles (~500 nm) 

made of benzophenone modified poly(allylamine hydrochloride). After UV irradiation 

(190 mW/cm
2
, 3 min), a decreased shell permeability was found, which allowed a 

controlled release of encapsulated substance (rhodamine B)
[146]

. For modification of 

polyelectrolyte microcapsule, BP compounds could be introduced into capsule layers as 

potential crosslinking sites, which could offer a novel way to crosslink the capsule 

shells through UV induced H–abstraction and further recombination reactions with 

adjacent un-reactive C–H bonds. This strategy and possible applications will be 

discussed in Chapter 4. 

2.6.1.2 Azobenzene  

Azobenzene (AZO) refers to a class of molecules that composed of two phenyl rings 

linked by an azo (N=N) double bond. The conjugated chemical structure owes AZO 

strong electronic absorption in both near-UV and visible light regions. The UV 

absorption spectrum of AZO and derivatives could be slightly different due to the 

different ring substitution patterns. But, generally the electronic absorption of AZO 

exhibits two absorption peaks, a low intensity peak in the visible region (attributed to 

the n-π* transition), and a more pronounced absorption peak in ultraviolet region 

(attributed to the π-π* transition), as shown in Figure 2.12 a 
[147]

. 

 

Figure 2.12 UV absorption (a) and schematic representation of reversible trans-cis photoisomerisation (b) 

of AZO molecules
[147]

. 
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One of the most interesting properties of AZO is the efficient and reversible 

photoisomerisation behaviour. Normally, AZO exists in a stable trans state, upon 

irradiation at a certain wavelength, the two isomers can be switched from thermal stable 

trans state to metastable cis state via absorption of a photon within the absorption band. 

Reversibly, with the addition of proper thermal treatment or irradiation at a wavelength 

in the cis absorption band, the cis molecule will be converted back to the trans state (as 

shown in Figure 2.12 b).  For the thermal isomerisation, an energy barrier is 90 kJ/mol. 

Besides, a length reduction of the AZO molecule from 9.0 to 5.5 Å is accompanying 

with the trans-cis isomerization
[148, 149]

. This trans-cis isomerization provides a novel 

method to facilitate the preparation of photoswichable materials.  

It is still a debate on the mechanism of the tran-cis photoisomerization of azobenzene. 

Mainly, two theories have been developed: rotation around the azo bond with a reduced 

bond order in analogy to stilbenes, or inversion in the plane due to rehybridization of 

one AZO-nitrogen with small changes of AZO π bond, as shown in Scheme 2.15
[150, 151]

. 

 

Scheme 2.15 Schematic illustration of tran-cis photoisomerization mechanism
[150]

. 

With different substituted chemical functional groups (e.g., –NH2, –NO2) extending 

from the phenyl rings, AZOs are coloured with yellow, orange or red, leading to the 

subtle shifting of their electronic absorption spectra. In particular, the configuration of 

pseudo-stilbene class with a pair of ‘push-pull’ groups substituting the 4, 4' positions 

http://en.wikipedia.org/wiki/Functional_groups
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results in a strongly asymmetric electron distribution, which shifts the absorption of 

trans and cis isomers, leading to the overlap of the two absorption regions
[152]

. An 

interesting idea would be using a single wavelength to induce a continuous cycling of 

the forward (trans→cis) and reverse (cis→trans) photoisomerisation in one system, 

which might be beneficial for many photoresponsive effects.  

 Figure 2.13 LCSM images of (PAH/PAZO)n/PVS capsules, showing the dye permeability with (c) or 

without (b) UV irradiation
[16]

. 

The AZO molecules are rigid and anisotropic, which make them become idea liquid 

crystal mesogens. However, for other applications, these robust and non-reactive 

moieties should be incorporated into other materials. Ionic attachment should be an 

advisable way to introduce the AZOs, due to the resulting homogenous and stable 

formations
[153]

. Many research works have been done to introduce small molecular 

AZO dyes, AZO-functionalized polymers and micelles have already been fabricated 

[154-157]
. The incorporation of AZO chromospheres in LbL multilayers can demonstrate 

many novel photo-induced changes. Typically, multilayers containing the polyanion 

poly [1-4[4-(3-carboxy-4-hydroxyphenyl-azo)benzene-sulfonamido]-1,2-ethanediyl] 

(PAZO) have demonstrated unique photoisomerization effect of azobenzene groups. A 

light induced encapsulation strategy for microcapsule based on such photoisomerization 

was first illustrated by Bédard and co-workers
[16]

. In their work, (PAH/PAZO)n/PVS 

including the photoactive AZO units were reported to shrink fabricated microcapsules 

and allow the encapsulation of macromolecules (AF488-Dextran) after irradiation 

under near-UV light (300-400 nm) (as shown in Figure 2.13). However, the reversible 

photophysical process of AZO was found somewhat diminished, as the results of 

irreversible change of the capsule permeability. 
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Azobenzene-related transitions not only cause the trans-cis molecular conformation 

change in plane, but also cause changes in molecular alignment in domain. Exposure to 

UV light, depending on mutual orientation of the interacting dipole moments between 

the counterpart molecules, the AZO molecules tend to form J styled (end-to-end) or H 

styled (plane-to-plane) aggregates, respectively (Scheme 5.2) 
[158]

. In theory, the 

changes in molecular alignment can be easily monitored by UV-Visible spectroscopic 

measurements, illustrating as red- or blue- shift of corresponding maximum absorption. 

Consequently, these individual self-organized AZO moieties led to polymer chain 

motions in sub-domains or features, and then anisotropic orientation would further 

cause a phase separation of neighbouring areas. Several research works based on such 

photoresponsive micro-crystallization or phase separation have been developed to 

functionalize related optical storage and liquid crystal systems
[159, 160]

. For LbL 

polyelectrolyte capsule, strategy of UV controlled capsule behaviour based on 

azobenzene molecule re-alignment could be established to adjust their morphology 

and/or structure stability, which will be discussed in Chapter 5.  

2.6.1.3 Diazonium 

Diazonium compounds (salts) refer to a group of organic compounds containing a 

functional group R–N
+
≡NX

-
, where R could be organic residue (e.g. alkyl or aryl), and 

X is an inorganic or organic anion such as a halogen. The diazonium group (–N
+
≡N:) 

has two different functionalized nitrogen atoms, the charge deficient one (connected to 

the phenyl moiety) is balanced with the counter ion X
-
, and the other charge riched one 

containing a pair of unbonded electrons can react with the strong H donor (e.g., 

phenolic hydroxy group) to form a hydrogen bond
[161, 162]

. Diazonium group is very 

photosensitive, can be decomposed fast and readily when exposed to UV irradiation 

around 380 nm, which makes the diazonium groups ideally UV light triggered 

crosslinkable sites based on photolysis. 

One of the typical examples of diazonium contained polyelectrolytes used for layer by 

layer assembly is the diazo-resin (also known as DAR), which has been synthesized in 

a polycondensation reaction of formaldehyde and diphenylamine-4-diazonium salt, as 

first reported by Cao et al
[163]

. DAR has a strong UV absorption around 380 nm which 

could be assigned to the π-π* transition in the diazonium group
[164]

. Upon exposure to a 

380 nm UV light, the diazonium group is activated to form phenyl cation and then be 

http://en.wikipedia.org/wiki/Organic_compounds
http://en.wikipedia.org/wiki/Functional_group
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substituted by nucleophilic groups, such as carboxylic, phosphate and sulfonate groups, 

providing a novel light triggered covalent bonding with other compounds
[163-165]

. 

Basically, upon exposure to UV light (~380 nm), the polyelectrolyte complexes 

composing of DAR and the cationic polyelctrolytes or other charged substances can 

undergo a chemical transition from weak ionic interaction to covalent bonding, leading 

to readily crosslinked complexes. This brilliant strategy has been accomplished in 

various systems to fabricate formations with different architectures and properties, such 

as composite ultrathin films containing magnetic particles 
[166]

, single-walled carbon 

nanotube
[167]

 and DNA
[168]

, DAR/pectin films for cell culture supports
[169]

, as well as 

fancy “giant” hollow capsules (> 280 µm)
[170]

. Specially, a novel feature of the DAR 

contained capsules would be able to seal the capsules and to entrap the cargo 

substances for the possible application in the field of delivery, biosensors and 

controlled release.  

 

Scheme 2.16 Schematic illustration of substance encapsulation in DAR-based microcapsules
[104]

. 

Generally, after capsule fabrication and cargo substance penetration, the DAR-realted 

photolysis (Scheme 2.16 a) could decompose the diazonium group and converted ionic 
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groups (–N2
+
 and –SO3

-
) to covalent ester bond (–SO3–), further provides tight 

crosslinking to seal the porous capsule shells, resulting in decrease of shell 

permeatbility and retention of cargo substances (Scheme 2.16 b). As presented in Zhu’s 

work
[104]

, the microcapsules composing of DAR and PSS could be demonstrated as a 

stable enzyme encapsulation technique, which was benefited from the DAR-related 

shell crosslinking triggered by UV light. And the encapsulated enzyme exhibited high 

(52.8 %) catalytic activity compared with the same amount of free enzyme, illustrating 

good preservation and sufficient transport rates for cargo substances. 

 

Scheme 2.17 The photoreaction of diazo-resin (DAR) and phenol-formaldehyde resin (PR) in a self-

assembled film
[162]

. 

As mentioned above, one of the two nitrogen atoms carries a pair of unbonded electrons, 

which can react with strong H donors. Thus, the DAR is easy to build up multilayers 

with the other (non-charged) polymers/substances via H-bonding attraction between 

N
+
N: of DAR and strong hydrogen donors (e.g., –OH) of counterpart polymers

[162]
. 

Typical examples have been presented by Cao
[161, 162]

, basic mechanism was given in 

Scheme 2.17. In this new multilayer system, it was the H–bonding not the electrostatic 

interactions that pushed forward the polymer deposition. And it was reported that after 

UV irradiation, the covalent bonds formed in the multilayers as a consequence of 

diazonium group decomposition. Specially, it was confirmed to be a very useful 

method to fabricate stable ultra-thin film from a precursor film formed via H–bonding. 

Although there is no UV responsive microcapsule based on such strategy reported by 

our colleagues, it still would be a promisingly method to fabricate stable multilayer 
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capsules composing of DAR and other components via H–bonding and further 

photolysis. 

2.6.1.4 o-Nitrobenzyl 

Other chemical compounds could also cause related chemical transitions within the 

multilayers, which would also benefit the functionalization of capsules. Here, the o-

Nitrobenzyl derivative will be discussed as an example, which could be introduced into 

UV-responsive LbL capsule.  

Unlike other chemical groups, which are photo-crosslinkable and re-alignmentable, o-

Nitrobenzyl (ONB) and derivatives would be the most popular and well studied type of 

photoremovable protecting groups. Different form the BP, AZO and diazonium groups 

discussed above, o-Nitrobenzyl is a class of light mediated chemical bond cleavable (or 

removable) groups, providing a simple and efficient method for the remote cleavage of 

substrate molecule chains. Normally, a photoresponsice initiator (ONB) is used to 

couple hydrophilic and hydrophobic chains to generate a photo-responsive amphiphilic 

block copolymer 
[171]

. After exposure to near-UV light (> 320 nm), a rapid ester 

cleavage occurs, leading to decoupling of the substrate system, and providing full 

activity of the two separated molecule chains, as shown in Scheme 2.18.  

 

Scheme 2.18 Photocleavage of ONB-coupled amphiphilic copolymer triggered by UV light
[171]

. 

Photocleavable ONB and derivates have been widely used in protein mapping and 

organic synthesis areas. Thompson and co-workers reported a convenient method to 

build up large molecule proteins with sufficient photo-removable groups to inhibit its 

biological function without using the highly specific cite-directed manner
[172]

. For drug 

delivery system applications, various systems have been studied. Interaction with light 

induced deconstruction of the self assembly vesicles have been demonstrated with 
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various architectures, including nanoparticles
[173]

, micelles
[174]

 and liposome
[175]

. The 

use of ONB derivatives allows for spatial and temporal control of such vesicle 

deconstruction, facilitating possible light (UV specifically) triggered application such 

as imaging, sensing and most importantly, delivery. For delivery system, Meier and co-

workers reported a potential light-triggered nanocarrier system trough self assembly of 

a photocleavable amphiphilic block copolymer. After exposure to UV light, this 

amphiphilic carrier disintegrate, generating small micellar-like structure, and 

simultaneously release their encapsulated substances
[171, 176]

.  

Another outstanding feature of ONB is its ability to be cloven by bio-friendly near-

infrared (NIR, 700-1000 nm) irradiation
[177]

. With the ability of cleavage triggered by 

both UV and NIR light, ONB could be a very useful chemical group to trigger release 

the encapsulated cargos. However, to date, no work has been associated with LbL 

capsules. Strategically, if the ONB was introduced into polyelectrolyte chains to build 

up multilayer capsules, both UV and NIR light can be used to adjust the capsule 

permeability selectively and even to deconstruct the shell formation gradually from the 

outer layer to inner layer with the breakage of the polyelectrolyte chains. Thus, these 

UV and NIR responsive ONB capsules would serve as smart, triggerable vesicles that 

can be applied to release encapsulated substances when directly exposure to sunlight, or 

to release the encapsulated substances in living cells or organs under irradiation of NIR 

lasers.  

2.6.2 Light Induced Local Heating  

How to release the encapsulated substances in specific sites without affecting their 

activities is still a challenging task. As one of the strategies to solve this stated problem, 

light induced local heating for remotely activation of the release of encapsulated 

materials using light is recently developed. After exposure to light at a certain 

wavelength, metal and/or metal oxide nanoparticles inside the capsule shells could 

absorb the radiation energy, and then generate local heating as the consequence of 

energy release.  

For example, if a spherical gold nanoparticle (GNP) is much smaller than the light 

wavelength (3~80 nm)
[178]

, an electromagnetic frequency will predominantly generate a 

local surface plasmon resonance (LSPR) oscillation at the surface of GNPs. The 
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oscillation of LSPR decays by release its energy in the form of light scattering or 

heat
[179]

. The generation of heat affects the local environment, and facilitates the 

enlargement of holes on capsule shells (Scheme 2.19-2). Furthermore, continuous 

treatment of intensive laser lead to the deconstruction of the capsule shells (Scheme 

2.19-1). Thus, the light induced release can be achieved by the process of 1) multilayer 

melting caused by local heating as a result of conversion of absorbed light to heat, and 

2) multilayer swell or deconstruction caused by increased thermal stresses within the 

capsule shell 
[180]

.  

 

Scheme 2.19 Two possible release scenarios of encapsulated material by the laser nanoparticle 

interaction. 

* (1) Upon illumination, the nanoparticles produce a large amount of heat that breaks the capsule wall 

open. (2) During illumination, the nanoparticles produce a small quantity of heat sufficient to exceed the 

glass transition of the polymer complex of the capsule, decreasing the shell's permeability until 

illumination is stopped. The increased permeability allows for encapsulated material to be released from 

the capsules without the shell being damaged 
[147]

. 

2.6.2.1 Gold and Silver Nanoparticles  

The most popular and well studied type of metal particles used in biomedical 

application is gold nanoparticles (GNPs). Gold nanoparticle synthesis, physical-

chemical properties as well as the combined applications with biological and 

biocompatible ligands in various areas including sensing, diagnostics, therapy have 

been widely studied and summarized
[178]

. 
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Predominantly, GNPs can absorb light in the visible range (400~800 nm). Due the 

LSPR effect, GNPs in the 10 nm size range have a strong absorption maximum around 

520 nm in water. Increase the size to 40 nm, the absorption shifts to 530 nm due to the 

red shift effect. For biological applications, a desirable optical light region ranging from 

700 nm to 1000 nm is preferred. In this radiation window, light has a high transmission 

and low scattering of biological medium
[181]

, which would facilitate the site specified 

release without causing severe damage to surrounding medium, especially for 

biological applications. For this reason, strategies were developed to shift the light 

absorption position of GNPs to, the so called “biologically friendly window”, near 

infrared (NIR) region. 

One way of tuning the red shift is to change the shape of gold nanoparticle, for example 

from spherical to rod-shaped. As shown in Figure 2.14 a, changing the shape of gold 

particles from spherical to rod-like shifted the maximum absorption from 530 nm to 

1050 nm
[182]

. Interestingly, nanoparticles with rod-shape have two resonances: one 

along the short axis, another one along the long axis. The plasmon oscillation of the 

nanorod strongly depends on its aspect (length to width) ratio; with increase of the 

nanorod aspect ratio, the long-axis LSPR effect pushes red-shifting from the visible to 

NIR with the accompanied increase of oscillator strength
[183]

. Thus, the tuning of red-

shifts can be easily controlled by adjusting the shape or aspect ratio of gold 

nanoparitcles via the seeded growth method
[184, 185]

.  

Figure 2.14 UV-Vis spectra of gold nanoparticles of various sizes and shapes. 

* (a) Detected gold nanoparticles- absorption of various sizes and shapes
[182]

. (b) Theoretically calculated 

optical resonances of metal. Theoretically calculated optical resonances of metal nanoshells (silica core, 

gold shell) over a range of core/radius thickness ratios
[186]

. 
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Metal nanoshells offer another method to red-shift the absorption position
[186]

, as shown 

in Figure 2.14 b. Decreasing the nanoshell thickness deposited on the silicon particle 

surface, the absorption shifts from the visible to NIR region due to increased coupling 

between the inner and outer shell surface plasmons. The LSPR could be tuned via 

controlling the ratio of shell thickness to core radius. The integrity of the gold nanoshell 

and the substrate particle perform as a strong light absorber in NIR region, offering a 

good approach for thermal therapeutics applications. After exposure to NIR light (820 

nm, 35 W/cm
2
), the human breast carcinoma cells incubated with gold nanoshells 

exhibited a local cell death effect. Likewise, tumour tissue treated with gold nanoshells 

exhibited an irreversible local damage after exposure to low doses of NIR light (820 

nm, 4 W/cm
2
)
[187]

.  

 

Figure 2.15 Modeling the temperature distribution for non-aggregated (top) and aggregated gold 

nanoparticles (bottom).  

* Nonaggre-gated nanoparticles do not possess absorption in the near-IR part of the spectrum. For 20 nm 

nanoparticles, the absorption coefficient is about 0.02 at 830 nm, so the temperature rise at 50 mW of 

incident power is less than 1 degree. For a single line of four aggregated nanoparticles, a temperature rise 

of 7 K can be produced (red). TEM images of uniform distribution and aggregatesof nanoparticles are 

shown on the left side of corresponding simulations. The scale bars for the TEM images are 100 nm
[19]

. 

The third method of red-shifting the LSPR is to control the distribution of gold 

nanoparticles in the multilayer shells. Usually, the colloidal gold naonparticles applied 
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in the LbL process are single ones. To control the distribution state, gold nanoparticles 

could be aggregated by pre-mixing the dispersive gold nanoparticle suspension with 

oppositely charged mixing components (molecules or NaCl solution) 
[19, 44]

. Upon 

aggregation, gold nanoparticles assemble to form bigger clusters. Due to the inter-

particle plasmon coupling effect, these gold clusters exhibit a maximum absorbance 

above 600 nm. It is also found that different mixing components can result in different 

gold aggregates with string-like or ball-like morphologies. And it seems that the ball-

like aggregated gold clusters show a more pronounced absorbance (~700 nm) than the 

string-like ones. Controlling the distribution state of gold nanoparticles not only 

develop an absorbance at longer wavelength, but also generate a bigger surface area for 

the laser illumination. Exposure to laser illumination at 830 nm, aggregated gold 

nanopaticles was estimated to get a 5 times increase of absorption coefficient 
[188]

, and a 

linear assembly of four gold nanoparticles can produce up to 7 K of temperature rise in 

comparison with less than 1 K of a single nanoparticle
[19]

, as demonstrated in Figure 

2.15.  

Light induced local heating as the consequence of absorption of light in surface 

plasmon region can be developed as novel strategies to affect the capsule shells. NIR 

pulsed lasers with different wavelengths has been applied to investigate the capsule 

deconstruction effect. Modulated NIR pulse lasers (1064 nm) with different intensity 

(30~700 mJ/cm
2
 per pulse) were used to investigate the shell rupture effect of 

polymeric multilayer capsules cooperating with one or more layer of densely packed 

GNPs. After a 5 min of continuous 1064 nm laser irradiation, a moderated laser dosage 

(30 mJ/cm
2
) started to break the capsules, further increase the laser dosage to 50 

mJ/cm
2
, no capsule outline cannot be discerned

[106]
.  

The NIR illumination with a wavelength at 840 nm showed a sophisticated optical 

opening of the inner capsules of the shell in shell microcapsules, which triggered the 

release of encapsulated substance (fluorescent labeled dextran, 150 kDa) into a larger 

container, realizing a novel way for bioreactions application in a confined volume
[105]

. 

Using the gold nanoparticles and NIR LSPR, encapsulated substances, for example 

drug, biomolecules, can be easily delivered to the living cells. Parak et al. demonstrated 

the capsule shell rupture caused by moderate intensity (2.3 mW) NIR laser (830 nm) 

induced heating of the gold sulfide/gold nanoparticle in the shells
[107]

. The 
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disintegration of capsule wall led to release of the encapsulated substance in living 

breast cancer cells without causing significant cell damage (Figure 2.16). 

 

Figure 2.16 NIR laser induced release in living cells. 

* Before irradiation, capsules were ingested by living cells with no uncontrolled release of the 

encapsulated cargo (A, B); upon exposure to NIR laser (830 nm), light induced heating of the gold 

nanoparticles in the capsule shells lead to rupture of the capsule shells, released the encapsulated cargo 

(C, D) 
[107]

. 

As another kind of noble metal, silver is also used as remote triggers for laser 

illumination applications in the form of nanoparticles. Mainly, the silver nanoparticles 

have absorption bands in the visible region (380-500 nm); typically, silver 

nanoparticles in the 10 nm size range have an absorption maximum around 390 nm
[189]

. 

Similar as gold nanoparticles, the changes of particle size
[190]

, shape
[191]

, as well as 

junction
[192]

 also have effect on the absorption spectra of silver nanoparticles, and 

further to push forward the red-shift progress. Particularly, silver nanoprisms (with 100 

nm in width and 50 nm in height) with high sensitivity (200 nm/RIU)
[193]

, have been 

used as sensors for Alzheimer’s disease research
[194]

 and single-particle assays study 

[190]
. 
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2.6.2.2 Titanium Oxide Nanoparticles 

Nanosized titanium dioxide (TiO2) and related titanium composites have been well 

studied due to their excellent catalytic and oxidative properties. TiO2 nanoparticles 

have been widely used as approved inorganic UV absorber in sunscreen cosmetics due 

to their strong UV absorption in UV region around 360 nm
[195]

. Many attempts have 

been made to prepare TiO2 and/or composites with enhanced UV absorption or red-

shift the light absorption to visible region. These methods, such as doping (with 

transition metals
[196]

, non-metal carbon
[197]

, sulfur
[195]

) and coupling (with 

semiconductor
[198]

), have improved the UV-Visible absorption of TiO2 and related 

composites, making them become better candidates in surface science and 

environmental applications, where light (mainly UV light) would be the only available 

external stimulus. Sasaki et al., reported the fabrication of self-assembled multilayer 

films composing of TiO2 nanoparticles/nanosheets and polyelectrolytes on various 

substrates
[199]

. After UV irradiation, bridging polymers between the nanoparticle and/or 

nanosheet layers could be decomposed, resulting in inorganic multilayer films. Katagiri 

et al., reported a UV-responsive organic-inorganic hybrid capsules composing of binary 

inorganic oxide system (SiO2/TiO2) and polymeric bridging multilayers
[200]

. These 

hybrid capsules showed strengthened mechanical integrity resulting from the inorganic 

component. In addition, exposure to UV light, these capsules showed a UV induced 

rupture due to the existence of UV absorption of TiO2 component at low irradiation 

intensity (up to 20 mW/cm
2
). Besides the UV-Visible responsive properties, capsules 

composing TiO2 nanoparticles possess improved mechanical integrity resulting from 

the incorporated metal components, which may offer them with mechanical properties 

in solid-state applications. 
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3. Materials, Methods and Instruments 

3.1 Materials 

Poly(methacrylic acid) (PMA, 100 kDa) was purchased from Polysciences Inc. (USA). 

Nafion
®
 perfluorinated resin (aqueous dispersion), Poly(allylamine hydrochloride) 

(PAH, 70 kDa), Poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-

ethanediyl, sodium salt] (PAZO, ~100kDa), Poly(diallyldimethylammonium chloride) 

(PDADMAC, 100-200 kDa, 20 wt. % in H2O), Poly(styrenesulfonate sodium salt) (PSS, 

70 kDa) were purchased from Sigma-Aldrich. 

9-Bromo-1-nonanol, Calcium chloride dihydrate (CaCl2·2H2O), N,N′-

Dicyclohexylcarbodiimide (DCC), 4-(Dimethylamino) pyridine (DMAP) , 

Diphenylamine-4-diazonium salt (Variamine Blue RT Salt), Ethylenediaminetetraacetic 

acid (EDTA), 4-Hydroxybenzophenone, R-Limonene, Paraformaldehyde, Sodium 

carbonate (Na2CO3), Sodium sulfite (Na2SO3), Zinc chloride (ZnCl2) were purchased 

from Sigma-Aldrich.  

 
Scheme 3.1 Structural formulas of polyelectrolytes used for capsule preparation. 

http://www.sigmaaldrich.com/catalog/ProductDetail.do?lang=en&N4=409022|ALDRICH&N5=SEARCH_CONCAT_PNO|BRAND_KEY&F=SPEC
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Monodisperse silica particles (SiO2, 4.99 ± 0.22 µm, 5% weight dispersion) were 

purchased from Microparticles, GmbH (Germany).  

Gold nanoparticles suspension (20 nm, ~7.2×10
11

 particles/ml, and stabilized in 0.1 

mM PBS, reactant free) was purchased from Sigma-Aldrich. 

Alexa Fluor®488 labeled- dextran (AF488-dextran, 10 kDa) was purchased from 

Invitrogen. Bovine serum albumin (BSA, 66 kDa), Fluorescein, Rhodamine B (RhB), 

Rhodamine B   Isothiocyanate (RBITC), Tetramethylrhodamine isothiocyanate–

Dextran (TRITC-Dextan, 500 kDa), were purchased from Sigma-Aldrich.  

 

Scheme 3.2 Structural formulas of fluorescent polymer and monomers. 
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Ammonium fluoride (NH4F), Ammonium hydroxide (NH4OH, 28% NH3 in H2O), 

Hydrofluoric acid (HF, 48 wt. % in H2O), Hydrogen peroxide (H2O2, 30%), Sulfuric 

acid (H2SO4, >95%) and other chemicals were purchased from Sigma-Aldrich. 

All the chemicals were used as received without further purification. All solutions were 

prepared with water from three stage Millipore Milli-Q 185 water purification system 

(Millipore, USA) with a resistivity higher than 18.2 Ω·cm. All the commercial 

available polymer/polyelectrolytes used to prepare polyelectrolyte/multilayer capsules 

were illustrated in Scheme 3.1. All the bought fluorescent polymer and monomers were 

presented in Scheme 3.2.  

3.2 Polymer Synthesis and Fluorescence Labelling  

3.2.1 Synthesis of Benzophenone-Substituted Poly(methacrylic acid) 

The synthesis process of benzophenone-substituted poly(methacrylic acid) (PMA-BP) 

was shown in Scheme 3.3. First, 4-(9-Hydroxynonyloxy) benzophenone was 

synthesized in the same way as previously reported
[145]

. Then, Benzophenone-

Substituted Poly(methacrylic acid) was synthesized. Briefly, PMA (2.0446 g, 23.75 

mmol) was dispersed in 30 ml Dimethyl sulfoxide (DMSO), 4-(dimethyl-amino) 

pyridine (DMAP, 1mmol) and 4-(9-hydroxynonyloxy) benzophenone (2.5 mmol) were 

added at 0 ℃. The mixture was then stirred for 1 hour and N, N′-dicyclohexyl 

carbodiimide (DCC, 2.5mmol) was added in three times in 30-min interval. After 6 

hours, the reaction was left overnight and the solution temperature was increased to 

room temperature gradually. After the reaction, the insoluble substance was filtered and 

the filtrate was concentrated under vacuum. The filtrate was re-precipitated to large 

amount of acetone and dried under vacuum.  

The product of PAM-BP was confirmed by the 
1
H NMR spectrum (D2O, 600MHz, 

Brucker ) (as shown in Figure 13) : δ (ppm) 1.13-1.15 (t, –CH3), 2.19 (s, –CH2–), 3.59-

3.63 (m, O=C–O–CH2–, –CH2–O–BP), 2.78-3.01 (m, – (CH2)6–), 4.68 (s, H2O) , 7.82-

7.99 (m, H of BP group ). The degree of benzophenone substitution was calculated 

from rationalizing and comparing the integration values of single protons from the 

methylene groups (O=C–O–CH2–, –CH2–O–BP) (Figure 3.1, peak c; representing the 
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portion of BP) against that of the methyl groups (Figure 3.1, peak b; representing the 

portion of PMA backbone), and it was determined to be ~50 %. 

  

Scheme 3.3 Synthetic scheme of benzophenone-substituted poly(methacrylic acid), PMA-BP. 

 

Figure 3.1 
1
H NMR (D2O, 600MHz

 
) spectrum of PMA-BP. 

3.2.2 Synthesis of diazo-resin  

Diazo-resin (DAR) was synthesized through a polycondensation reaction of 

diphenylamine-4-diazonium salt with paraformaldehyde, following an electrophilic 
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mechanism, as reported by Cao et al (Scheme 3.4)
[163]

. Briefly, 4.7 g (0.016 mol) of 

diphenylamine-4-diazonium salt and 10 ml of concentrated H2SO4 was added to a 50 

ml flask. Then 0.5 g (0.167 mol) of paraformaldehyde was added in several batches at ~ 

0 ℃ (ice cooled). The reaction was left stirring for 4 hours at this temperature. Then the 

resulting mixture was dissolved in 25 ml of cold water (0~5 ℃), and precipitated out 

with 2.2 g of ZnCl2. After purification and drying in vacuum, a yellow-green powder 

(as a ½ ZnCl2 complex) was obtained and used for capsule preparation. All the 

operation was carefully performed in the dark. 

 

Scheme 3.4 Preparation of diazo-resin
[163]

. 

3.2.3 Preparation of Fluorescently Labelled PAH  

Rhodamine B isothiocyanate labeled PAH (RBITC-PAH) was prepared as a fluorescent 

polyelctrolyte. Briefly, 100 mg PAH was dissolved in 40 ml borate buffer (pH was 

adjusted to 9.0 with 0.1M NaOH). And then a solution of 4.32 mg of RBITC dye (in 

5ml ethanol) was added to the PAH solution (at a molar ratio of 1:100, dye: amino 

group) under vigorous stirring for 12 hours. To remove unbound dye, the mixture was 

dialysed against water (resistivity 18.2 MΩ·cm) in a dialysis membrane (Carl Roth 

GmbH + Co. KG, Germany) with a cutoff 14 kDa for one week in fridge after reaction 

(~ 4 ℃). The resulting RBITC-PAH was freeze-dried and kept in dark for further study. 

3.3 Methods 

3.3.1 Capsule Preparation 

Multilayers were assembled on the templates by using the layer-by-layer technique as 

described previously
[66]

. Prior to the assembly, SiO2 particles (4.99 ± 0.22 µm, 
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Microparticles GmbH) were first cleaned with a solution of 25 % NH3 : 30 % H2O2 : 

H2O (1 : 1 : 5) for 15 min at 75 ℃  to ensure a better attachment of the first polymer 

layer to the SiO2 surface
[26]

, and then washed 3 times with pure water (resistivity 18.2 

MΩ·cm). Oppositely charged polyelectrolytes (normally 2 mg/ml in 0.5 M NaCl) were 

alternatively deposited on the SiO2 templates with 15 min of shaking, followed by three 

wash steps. To avoid aggregation, polymer coated particles were ultrasonicated 10 

second after each wash step. After the polymer deposition steps, the SiO2 templates 

were dissolved with a 0.2 M NH4F and HF buffer solution at pH=4.5
[33]

. Hollow 

microcapsules with desired multilayer numbers were obtained after several wash steps. 

For (PAH/PMA-BP)4 microcapsule preparation, the PMA-BP solution (2mg/ml in a 

mixture of 1:1 methanol and H2O, 0.5 M NaCl) was adjusted to pH=6 to ensure a 90% 

charged solution.  

For (Nafion/DAR)4 microcapsule preparation, negatively charged Nafion was deposited 

on templates as the first layer, then followed by the positively charged DAR. One 

should notice, the commercial product Nafion (Nafion
®

 perfluorinated resin) does not 

form true solution, it only disperses in water
[201]

. When the templates (SiO2 

microparticles) were immersed in Nafion dispersion, the hydrophobic effect here 

became the main driving force to finish the deposition of the 1
st
 Nafion layer. After that 

the electrostatic interactions between opposite charges take back the predominant role 

for LbL assembly. For the DAR solution, no salt was added because the DAR is a ½ 

complex of ZnCl2, and fresh made solution was used for each capsule preparation 

procedure. 

For UV controlled protein release study, BSA was used as the model protein. To 

fabricate protein encapsulated microcapsules, BSA was co-precipitated with CaCO3 

micro-particles by mixing 0.33 M CaCl2 , Na2CO3 and 2 mg/ml BSA solution in 1 : 1 : 

1 proportion
[20]

. And then BSA encapsulated particles were used as templates for 

polymer deposition. CaCO3 component removal was performed with treatment with 0.2 

M EDTA solution followed by several wash steps.  

For the capsule sample containing gold nanoparticles (20 nm, Sigma), RhB 

encapsulated microcapsules were deposited with additional two gold layers and one 

polyelectrolyte bilayer. For gold nanoparticle deposition, the capsules were re-dispersed 
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in the pre-aggregated gold nanoparticles suspension
[19]

. After wash steps, RhB 

encapsulated capsules with the structure of RhB-(Nafion/DAR)4-( Au/Nafion/DAR/Au) 

were obtained.  

3.3.2 Multilayer Film Preparation 

Quartz slides were carefully cleaned as the way of SiO2 particles clean procedure 

mentioned above (Section 3.3.1). LbL deposition was carried out by hand. The slides 

were alternately immersed in oppositely charged polyelectrolyte solutions for 8 min 

each, followed by 3 min of wash. All the light sensitive multilayers were carefully 

prepared in dark. 

3.3.3 Polymer-coated Oil Droplets Preparation  

R-Limonene was used here as a model oil for this study. To encapsulate limonene, 

ultrasonication technique was used to fabricate limonene emulsion as the following two 

steps. Scheme 3.5 showed the preparation procedure schematic. First, a ‘pre-emulsion’ 

was prepared by homogenizing 20 % Limonene and 80 % aqueous surfactant solution 

(20 mM SDS). This oil and surfactant mixture was blended using an ultrasonic 

processor (Vibra-Cell™, Sonics & Materials, Inc. USA) for 2 min (20 kHz, 750 Watt × 

40 %). And then 1 portion of pre-emulsion was sonicated with 2 portion of PDADMAC 

solution (2 wt. %) for 2 min (20 kHz, 750 Watt × 40%). After the two emulsion process, 

stable limonene emulsion oil droplet suspension was obtained, and these droplets were 

used as spherical templates for further alternative polyelectrolyte deposition steps.  

After centrifuged at 8000 rpm for 5 min, the water phase of secondary emulsion was 

removed by inserting a syringe needle through the oil phase. And then the remaining oil 

droplets were treated with equal volume of the PAZO and PDADMAC (2 mg/ml in 0.5 

M NaCl, pre-heated to 30 ℃) alternatively, and the mixture was shaken for 10 min. To 

prevent aggregation, the first two polymer deposition steps were followed by removal 

of water phase without wash steps. Then the resulting intermediate product was 

consecutive treated with PAZO and PDADMAC, followed by 3 wash steps.  
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Scheme 3.5 Preparation of limonene emulsion. 

3.3.4 UV Irradiation 

Samples with different multilayer components were treated with different UV sources. 

Briefly, microcapsules containing benzophenone groups, (PAH/PMA-BP)4, were 

irradiated with a mercury lamp (UVACUBE 100, Honle UV Technology) with the 

effective working wavelength ranging from 200 nm to 600 nm; and the other 

microcapsules containing azobenzene or diazonium groups, (PDADMAC/PAZO)4, 

(Nafion/DAR)4, DAR8, (PDADMAC/PAZO)4-(DAR/Nafion)2 and polyelectrolyte 

coated limonene droplets were treated with a UV lamp (OmniCure® 2000, Lumen 

Dynamics Group Inc.) with the effective working wavelength ranging from 320 nm to 

500 nm. In particular, for the (PDADMAC/PAZO)4 capsules, an optical filter (# 

011FG09-25, LOT-Oriel Ltd) was used to cut off the visible light, leaving UV 
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irradiation only. For visible light irradiation, a dichroic longpass filter (# NT69-864, 

Edmund Optics Inc) was used to cut off UV light.  

The irradiation intensity was detected by using a ILT1400 radiometer (International 

Light Technologies Inc.) 

The samples were dispersed in pure water in a cuvette, and exposed to UV lights 

directly. The dispersions were continuously stirred with a magnetic stirrer during UV 

irradiation. To reduce temperature increases, an ice bath was applied to ensure that the 

temperature change of the capsule suspension is less than 5 ℃ .  

For the multilayer films, polymer-coated quartz slides were placed above a water-ice 

bath, and be irradiated with the same irradiation system as their corresponding 

microcapsules, respectively. 

3.3.5 Heat Treatment  

In order to investigate the effect of local heating on microcapsules during the UV 

irradiation period, heat treatment was carried out to monitor capsules’ heat-related 

behaviour as a function of temperature. Briefly, capsule suspensions were incubated for 

every 1h in water bath at different temperatures ranging from 25 ℃ to 90 ℃. After 

thermal incubation, these capsule samples were observed under SEM, and their size and 

distribution was statistic analysed. 

3.3.6 Capsule Stability and Permeability Study 

Capsule stability and permeability studies were investigated by using Confocal Laser 

Scanning Microscopy (CLSM) measurements with a Leica TS confocal scanning 

system (Leica, Germany) equipped with a 63x/1.4 oil immersion objective.  

For the pH sensitive (PAH/PMA-BP)4 and (PAH/PMA)4 microcapsules, they were 

visualized by the incorporation of a rhodamine labeled polymer (RBITC-PAH)
[20]

 

during capsule preparation, their stability at different pH conditions were investigated. 

Briefly, the pH of capsule suspensions was carefully adjusted with addition of 0.1 M 

HCl and 0.1 M NaOH, the images of these capsules were captured and the diameter of 

the capsules was determined by the Image-Pro Plus 6.0 (Media Cybernetics, USA) 
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software. For permeability study, irradiated (PAH/PMA-BP)4 microcapsules were re-

suspended in fluorescent polymer solution (AF488-Dextran, 10 kDa, 1mg/ml). Then the 

gradual polymer penetration progress was captured with confocal laser scanning 

microscope. 

For other microcapsules, (Nafion/DAR)4, DAR8 and (PDADMAC/PAZO)4-

(DAR/Nafion)2 to be specifically, their shell permeability was demonstrated as a time 

dependent fluorescent polymer/molecule penetration progress, which was quantified as 

the relative fluorescent intensity inside capsules by using a Leica Microsystems 

(Heidelberg GmbH).  

3.3.7 UV Induced Fluorescent Molecule/Polymer Encapsulation   

To detect the feasibility of encapsulation in fabricated microcapsules, fluorescent 

molecules and polymers were used as model cargo substances for the studies. Briefly, 

fabricated microcapsules were re-dispersed in these fluorescent solutions for ~ 2 h with 

shaking. Later, the mixtures were treated with UV irradiation for certain time, washed 

several times to remove free fluorescent substances in water, and observed with a Leica 

TS confocal scanning system (Leica, Germany) equipped with a 63x/1.4 oil immersion 

objective. For confocal observation, capsules were centrifuged and washed twice with 

water to remove free dye polymers before each set time point.  

Quantification of encapsulated fluorescent substance amount was also studied. The 

fluorescence intensity of each sample was determined with a fluorescence spectrometer 

(Perkin Elmer LS 55), and normalized with the standard solutions (either RhB or AF 

488-Dextran) with known concentrations.   

Specially, for DAR contained microcapsules, (Nafion/DAR)4 and DAR8 to be 

specifically, 150 µl of   microcapsule suspension (containing 1.5×10
7
 capsules) were re-

suspended in 1.5 ml dye solution (RhB, 100 µg/ml) for 2 hours with shaking. The 

capsule-dye mixtures were exposed to UV light (55 mW/cm
2
) directly for 10 min. After 

irradiation, capsules were collected, and washed at least 5 times with water. And then, 

400 ul of water was added to re-disperse the dye encapsulated capsules. At a set 

experimental time, 50 µl of a capsule suspension containing RhB was taken out, 

centrifuged and the supernatant was carefully collected. The precipitated capsules 
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containing RhB were re-suspended in same volume of water, and were broken after 5 

freeze-thaw cycles incorporating with 5 min of ultrasonic treatment
[202]

.  

For complex microcapsules, (PDADMAC/PAZO)4-(DAR/Nafion)2, capsules were re-

dispersed in excess amount of AF 488-Dextran solution (300 µg/ml, 2 ml). After shell 

sealing triggered by the first 10 min of UV irradiation, capsules were collected, and 

washed several times with water to remove free polymers. A portion of the sample 

(containing 6.7 ×10
6
 capsules) without further UV irradiation was taken to quantify the 

encapsulated polymer amount. 

3.3.8 UV Triggered Substance Release 

Basically, UV irradiation triggered the release of two substances, BSA and AF488-

Dextran to be specifically. 

For quantification of released protein from (PDADMAC/PAZO)4 microcapsules, a 

portion of protein encapsulated capsule suspension was taken out at a set UV irradiation 

time, centrifuged, and  the supernatant was used for the protein quantification with a 

commercially available assay bioassay kit (BCA Protein Assay Kit 33227, Pierce) 

according to a bicinchoninic acid (BCA) assay method based on reactions of copper 

ions in working reagent and peptide bonds of BSA, as reported by Smith et al 
[203]

. The 

absorbance at 570 nm was measured in micro-plate reader (BIO-RAD, model 550). 

For quantification of released fluorescent polymers (AF488-Dextran, 10 kDa) from 

complex microcapsules, 1 ml of capsule stock suspension (containing 1 ×10
8
 capsules) 

was re-suspended in 2.0 ml AF488-Dextran solution (300 µg/ml) for 2 hours with 

shaking. The capsule-dye mixtures were exposed to UV light (50 mW/cm
2
) directly for 

10 min. After irradiation, capsules were collected, and washed several times with water 

to remove free polymers. The resulting suspension was then split into two portions 

(diluted to 3 ml for each), one was treated with additional UV irradiation up to 7 hours, 

and the other part was kept in dark. Then, additional UV treatment up to 7 hours was 

applied to trigger the release of encapsulated fluorescent polymers. After a set UV 

experimental time point, 400 µl of capsule-dye mixture (containing 6.7×10
6 

capsules) 

with/without additional UV treatment was taken out, centrifuged, the supernatant was 

carefully collected, and the precipitate was added with equal volume of pure water. The 
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fluorescence intensity of each sample (in supernatant or in precipitate) was determined 

with a fluorescence spectrometer (Perkin Elmer LS 55), and normalized with the 

standard fluorescent polymers solutions with known concentrations.  

3.3.9 Remote Instant Release of Encapsulated Small Molecule 

Remote release of the encapsulated small molecular dye was carried out by using a 

laser setup, as presented in earlier research work
[204]

. The fluorescent dye RhB was used 

as the model substance. Briefly, the pre-aggregated gold nanoparticles
[19]

 were 

incorporated in multilayers after capsule preparation and molecule encapsulation with 

addition of a polyelectrolyte layer, resulting in the (Nafion/DAR)4-GNP/DAR/GNP 

microcapsules. A laser diode operating (see Section 3.4.4) at 840 nm with incident 

power of up to 100 mW was applied to break the microcapsules. The fast release of 

encapsulated dyes was acquired with Leica TS confocal laser scanning system. 

3.4 Instruments 

3.4.1 Atomic Force Microscopy  

Atomic force microscopy (AFM), also known as scanning force microscopy (SFM), 

scans within a fraction of nanometer with very high resolution, offering an advanced 

tool for imaging, measuring and manipulating. AFM is based on measurement of 

atomic forces (e.g., Van der Waals, Capillary, chemical bonding, electrostatic forces), 

providing information by “feeling” the sample surface. 

Figure 3.2 shows the basic principle of AFM (a) and the instrument used in this thesis 

(b). AFM is a member of Scanning Probe Microscopy (SPM) family, who employ 

sharp probes to scan across sample surfaces. As shown in Figure 3.2 a, a silicon-based 

cantilever with a sharp tip (several nanometers) performs scans. The tip feels the 

interactions/forces between tip and specimen, and leads to a cantilever deflection 

according to Hooke's law
[205]

. A laser beam pointed at the tip detects the deflection and 

reflects it to the position detector (an array of photodiodes). A computer processes the 

collected data and reconstructs the detected surface. Piezoelectric components are used 

to fabricate the moving stage and cantilever, facilitating desired tiny but accurate and 

precise scanning.   
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Figure 3.2 Schematic (a) and photographic (b) images of AFM instrument. 

* Image (a) is reprinted from 
[206]

. 

Generally, AFM is commonly applied to detect surface morphology, providing 

information such as roughness, material distribution, thickness, etc. AFM also allows 

the analysis of biological specimens, imaging biological molecules and possible 

interactions. Besides, AFM can be used to manipulate a surface by scratching it or 

creating desired nano-structures on the surface.  

In this work, the thickness of the microcapsules (PAH/PMA-BP)4 before and after UV 

irradiation was determined by an AFM system (Ntegra Therma, NT-MDT, Russia), 

where a drop of the diluted capsule suspension was placed onto a silicon wafer and air-

dried at room temperature. The single-shell thickness of a capsule was then estimated 

as the half-height of the flat region of a dried collapsed capsule. 

3.4.2 Confocal Laser Scanning Microscopy 

Confocal laser scanning microscopy (CLSM, also known as Laser Scanning Confocal 

Microscopy) is a non-destructive technique frequently used for acquiring in-focus 

optical images with depth selectivity.
 
Compared with traditional wide-field microscopy, 

CLSM allows point-by-point information collecting with desired depth and high 

resolution three-dimensional image reconstruction.  

Since the first introduction originally patented by Marvin Minsky in 1957, tremendous 

explosion in the popularity of confocal microscopy have been achieved, demonstrating 
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as great interest growth of applications in biological fields which rely on imaging both 

opaque and non-opaque specimens. For the early studies, the principle of confocal 

microscopy involved employment of both the laser scanning method and the three-

dementional detection of the biological specimens with fluorescent labeling. Then it 

was developed into a fully mature technology, which could be considered as an 

integration of electronic systems, including optical microscope, computer, and laser 

systems with selective wavelengths and beam scanning assembly. By applying of 

spatial filtering techniques, these modern confocal microscopes are able to eliminate 

the light or glare which is out-of-focus due to their thickness exceeds the immediate 

plane of focus, resulting in numerous applications for routine investigations on 

molecules, cells, as well as living tissues. For observation, the samples are often labeled 

with fluorescent dyes/markers to make selected objects visible. 

 

Scheme 3.6 Schematic illustration of CLSM setup and its light path
[207]

. 

Scheme 3.6 presents a typical schematic representation of CLSM setup and related light 

path. In a confocal laser scanning microscope, a laser beam emitted from the laser 

source passes through a source pinhole, is reflected on a dichroic mirror and then is 

focused within/on specimen surface through the objective lens. The 

scattered/reflected/emitted light by sample is then collected by the objective lens and 
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then is separated by a beam splitter. Selected light signal with suitable wavelengths 

passes through the detector pinhole and then is detected by a photodetector and 

transformed into data points by a computer.  

One of the primary advantages of CLSM is its ability to acquire relative thin (0.5~1.5 

µm) optical sections through fluorescent specimen which has a thickness up to 50 µm. 

Technically, out-of-focus light that is not coming from focused point is obstructed by 

the detector pinhole, permitting one to obtain images with desired plane/section depth. 

Therefore, sample information from different plane depths can be obtained with 

sequential image acquisition after adjustment of interested sample Z-positions by 

raising or lowering the microscope stage or objective lens. Image information is 

restricted to a well-defined plane, and its quality is greatly improved due to reduction of 

background fluorescent signals. In particular, once a series of optical images (two-

dimensional) with desired depths (normally Z-series) has been collected, a three-

dimensional representation of the specimen can be packed by assembling a stack of 

these two-dimensional images from successive focal planes. This approach facilitates 

analysis of the specimens with complicated interconnected structures, and helps 

investigate inter-relationships between different structures and functions, typical 

examples are cells and tissue. 

In this work, Confocal laser scanning microscopy graphs were captured with a Leica 

TS confocal scanning system (Leica, Germany) equipped with a 63x/1.4 oil immersion 

objective. Capsule sample suspension was deposited on a thin glass slide (22×40 mm, 

thickness no. 1.5, VWR) and covered by a cover glass (18×18 mm, thickness no. 1, 

VWR). The samples were fluorescent labeled in advance. 

3.4.3 Contact Angle Measurement 

Contact angle measurement exhibits the ability of a liquid (water, organic solvent) 

spreads on a solid, demonstrating as measurement of the outline tangent of a liquid 

droplet deposited on the solid surface. The contact angle measurement tells the 

information of a surface, such as surface energy and wettability. 

The contact angle measurement instrument used in this work is shown in Figure 3.3. 

The principle of this instrument is quite simple. Briefly, when a drop of liquid is 
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deposited on a solid surface, the detector captures its image with the help of 

illumination. The angle between outline tangent of the droplet at its located solid 

surface is calculated and named as contact angle (θ). A surface with a better liquid 

affinity shows a more spread liquid shape, resulting in a smaller θ value. For example, a 

hydrophilic surface (low surface energy) shows a fast water spread, great water 

wettability and a small contact angle.  

 

Figure 3.3 Contact angle measuring instrument. 

* The inset shows the contact angle schematic. 

Measuring the contact angles can be performed static and dynamic according to the 

sessile and captive drop method. The sessile drop method is the commonly used 

approach for characterization of surface energies. Measuring the contact angle of 

droplet profile by using a goniometer (by eye or software) allows one to analyze the 

contact angle visually, and this method is called the static sessile drop method. In 

comparison, a dynamic sessile drop method requires adding liquid dynamically or 

titling the surface. Without increasing the interfacial area of contacted two phases 

(liquid/solid), the maximum angle is defined as advancing angle, while the smallest 

angle is defined as receding angle when the liquid is removed or the surface is titled. 
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The difference between the two angles is defined as contact angle hysteresis. This 

hysteresis shows a possible range of contact angles could reach.  

In this work, static sessile drop method was used to evaluate the water wettability of 

obtained multilayer films, and to judge their hydrophilicity. Generally, contact angle 

measurements of water (15 µl) on multilayer films containing DAR were captured 

using a Drop Shape Analysis System (Krüs, DSA100, Germany).  

3.4.4 Continuous Laser Irradiation 

The laboratory-made laser setup used in this work is shown in Figure 3.4. The main 

idea is similar to confocal laser scanning microscope, irradiating the sample in the 

focused plane. Briefly, the laser beam is launched in Z direction, passes through a 100× 

objective and is focused on the sample slide. A white light source working together 

with a XYZ moving stage helps locate and focus on the capsule samples. A detector 

(CCD camera) connected to a computer provides direct view of focused capsules and 

laser spot, also records the laser induced capsule breakage progress.  

 

Figure 3.4 Laser irradiation setup. 
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In this work, remote instant release of the encapsulated small molecular dye was carried 

out by using this laser setup, as presented in earlier report
[204]

. The capsule suspension 

was dropped on a thin glass slide (22×40 mm, thickness no. 1.5, VWR), covered by a 

cover glass (×18 mm, thickness no. 1, VWR) and then sealed by using nail polish in 

order to prevent the sample to dry out. A laser diode operating at 840 nm with incident 

power of up to 100 mW was applied to break the gold nanoparticle incorporated 

microcapsules. The fast release of encapsulated dyes was acquired with Leica TS 

confocal laser scanning system right after laser treatment. 

3.4.5 Dynamic Light Scattering 

Dynamic light scattering (DLS) is one of the most popular methods used to determine 

size and distribution of particles, emulsions or molecules, which are 

dispersed/dissolved in liquid.  Theoretically, when a monochromatic light beam, such 

as a laser, hits onto a solution/suspension, the Brownian motion of particles/molecules 

causes the incoming light to be scattered at different intensities. This intensity 

fluctuation is related to the size of the particle. Therefore, it is possible to calculate the 

spherical particle size distribution and describe these particle motions in liquid medium, 

measuring these changes and using the Stokes-Einstein relationship:  

r
6

Bk T
m

D
 


                                                           (3.1) 

Where r is the radius of particle, kB is Boltzmann’s constant, T is the temperature, η is 

viscosity, and D is the diffusion constant.  

DLS was used to determine the size of fabricated emulsion and polymer-coated oil 

droplets in aqueous solutions. For measurements, a small volume of sample solution 

was transferred to a transparent cuvette, diluted with water and placed in the 

thermostated cavity of a Malvern Nano ZS zetasizer (Malvern Instruments Ltd, UK).  

3.4.6 Electron Microscopy 

Generally, electron microscope creates images of specimens at sub-nanometre 

resolution by using electron beams. Comparing with traditional optical microscope, it 

allows a much higher magnification (up to 10,000,000×) and greater resolving power 
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(50 pm resolution), because the electrons accelerated by electrostatic/electromagnetic 

lenses have wavelengths great shorter (100,000 times) than visible light photons. 

Electron microscopes are often used as an integral part of laboratories for study on a 

wide range of specimens ranging from inorganic to biological samples, presenting 

various sample surface information. Moreover, electron microscopes have been applied 

in industry applications for quality control.  

3.4.6.1 Scanning electron microscopy 

Scanning electron microscope (SEM) generates the images of sample surfaces by using 

a focused beam of high energy electrons to scan the surface of specimens. SEM 

produces images by collecting emitted secondary electrons from the sample which is 

excited by primary focused electrons.  In a SEM, the electron beam scans across the 

surface in a raster pattern, various detected signals with beam position are used to build 

up images of the located area, giving the information about the surface composition, 

structure and topography, etc. SEM allows a high resolution better than 1 nanometer. A 

SEM instrument used in this work is presented in Figure 3.5.  

 

Figure 3.5 SEM instrument. 
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For conventional SEM observation, SEM relies on electron interactions at the surface, 

therefore specimens should be electrically conductive or semi-conductive, and 

electrically grounded in order to avoid electrostatic charge accumulation at the surface. 

Nonconductive specimens are usually coated with an ultrathin layer (nanometers thick) 

of electrically conducting material; gold and graphene are the two commonly used ones, 

being deposited onto the specimens either by low-vacuum sputter coating or by high-

vacuum evaporation. However, such coating method sometimes may cover some detail 

information of the delicate samples, due to the nano-scaled thickness of coating layer. 

Specimens can be observed in vacuum with different vacuum degrees. In order to 

prevent electron beam penetration into sample, low accelerating voltages are normally 

used. For example, a voltage in the range of 1~5 kV is preferred for biological samples, 

even though the SEM can be operated up to 30 kV.  

In this thesis, morphology observation of all the samples (microcapsules and polymer-

coated oil droplets) with and without UV irradiation were observed by SEM. Briefly, 

sample suspension was dropped on a glass wafer, air-dried, and coated with gold before 

SEM observation (FEI inspect-F). Images were taken at various magnifications, with an 

accelerating voltage approximately to be 10 kV and spot size to be 3.5 at a working 

distance about 10 mm. Statistical analysis of capsule size and distribution was done by 

using Image-Pro Plus Version 6.0 (Media Cybernetics, Inc.). 

3.4.6.2 Transmission electron microscopy 

Different from SEM, TEM relies on transmission rather than surface processes, 

involving a high voltage electron beam transmission through an ultra-thin specimen and 

interactions within specimen and electrons. The electron beam is accelerated by an 

anode, focused by electrostatic and electromagnetic lenses, and then strike on specimen. 

The electrons that partially passed through specimen give information about the 

structure of specimen. The resulting information is then magnified by a series of 

objective lens until it is recorded by the viewing screen. A TEM instrument used in this 

work is presented in Figure 3.6. 

TEM generates two-dimensional, black and white images with significant high 

resolution. Specially, high resolution transmission electron microscopy (HRTEM) 
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allows the resulted images with high resolution at 50 million times of magnification, 

owing to correction of the spherical aberration. Consequently, TEM is able to examine 

the detail of a specimen, for instance to determine a single column of atoms. TEM has 

been applied as an indispensable tool for widely applications in scientific fields.  

 

Figure 3.6 TEM instrument. 

For TEM measurements, a high-resolution TEM (JEOL 2010) operating at 200 kV was 

used. Diluted capsule suspension was deposited on a carbon-coated copper grid, and 

air-dried for several hours. Then the copper grid was installed to a sample holder and 

placed into the vacuum chamber of TEM for observation.  

3.4.7 Fluorescence Spectroscopy 

Fluorescence spectroscopy (also known as fluorometry) analyzes fluorescence from a 

sample by using a fluorescence spectrometer. This technique is complementary to UV-

Vis spectroscopy, in which light absorption deals with electronic transitions from 
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ground state to excited state, while here measures transitions from excited state to 

ground state.  

Scheme 3.7 shows the light path of fluorescence spectrometer used in this thesis. 

Specially, in an emission mode, the excitation light beam (generated by high energy 

pulsed Xenon source) hits the Ex. Mono (monochromator), becomes desired single 

wavelength. The obtained monochromatic light passes the slit and strikes on sample, 

generating excited sample molecules. The excited molecule emits their energy in the 

form of fluorescent light. Part of the light passes through the Em. Mono (another 

monochromator) and be detected by the emission detector.  

 

Scheme 3.7 Light path of fluorescence spectrometer. 

This technique requires using a light beam to excite electrons in sample molecules and 

causes them to emit light. Typically, in an emission spectrum, the excitation light used 

to excite the molecules is kept as a single wavelength, and then emission through a 

wavelength region excited by this monochromatic light is recorded.  Contrarily, to 

obtain an excitation spectrum, the emission light is set as a constant, while the 

excitation light is measured in a wavelength range. A fluorescence spectrum gives 

information of the maximum emission/excitation location and related fluorescent 

intensities.  

In this work, the quantification of encapsulated and released fluorescent substance was 

carried out using the fluorescence spectrometer (Perkin Elmer LS 55). The slit width 

was 10 nm. Specifically, for samples containing AF 488-Dextran, the excitation and 
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emission wavelengths used are 496 nm and 518 nm; for samples containing RhB, the 

excitation and emission wavelengths used are 553 nm and 627 nm, respectively. 

3.4.8 Fourier Transform Infrared Spectroscopy 

Fourier Transform Infrared Spectroscopy (FTIR) is a technique that can be applied to 

indentify the chemical samples due to the information of chemical bonds (functional 

groups) presenting in the detected infrared spectrum. The chemicals could be organic or 

inorganic in their status of solid, gas and even the liquid, although the interference from 

water is not favoured.  

The main purpose of the FTIR absorption spectroscopy is to measure light absorption 

of the sample at each wavelength. Generally, a monochromatic light is used to irradiate 

the sample, the light absorption by the sample is measured, and then the similar process 

is repeated for each light with different wavelengths. As shown in Figure 3.7, a light 

source containing the full spectrum of wavelengths is used to shine into a Michelson 

interferometer, which contains a several stationary mirrors and a moving mirror. Once 

the light shines into the interferometer, each wavelength is blocked periodically, thus 

monochromatic light is separated and passes the sample at different rates. Afterwards, 

the collected the raw data of light absorption is processed by a computer and used to 

generate a spectrum. The data processing requires a algorithm named Fourier 

transform, thus this method was called “Fourier transform spectroscopy” when the 

technique was developed by employing of light containing different wavelengths to 

irradiate the sample at first time.  

  

Figure 3.7 Schematic illustration (a) and photographic image (b) of FTIR setup. 
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Theoretically, this spectrum gives the information of related molecular bond vibrating 

at different frequencies, due to the various bonds existed in the sample. Technically, the 

infrared spectra of pure compounds/chemicals with known components are used as gold 

standards or “fingerprint” to interpret chemical components of the samples. Therefore, 

the chemical bonds in a sample can be determined when comparing the obtained 

infrared spectrum with the infrared spectra of known compounds. Sometimes, the FTIR 

spectrum is not adequate enough to indentify an unknown sample, thus other 

characterization tools such as UV-Visible spectroscopy, nuclear magnetic resonance 

(NMR), mass spectrometry, X-ray diffraction, etc., are also needed for investigations. 

Moreover, due to the proportional dependent relationship between FTIR absorption 

intensity and sample concentration, FITR spectroscopy can be also used for quantitative 

analysis.  

In this work, FTIR spectra of vacuum dried microcapsule samples with and without 

irradiation were obtained using an infrared spectroscopy (FTIR spectrometer 100, 

Perkin Elmer). All data were collected at a spectral resolution of 4 cm
-1

 ranging from 

4000 cm
-1

 to 600 cm
-1

. 

3.4.9 Nuclear Magnetic Resonance Spectroscopy 

Nuclear magnetic resonance (NMR) is a physical phenomenon which occurs when the 

nuclei of certain atoms are immersed in a static magnetic field and exposed to a second 

oscillating magnetic field, in which the nuclei absorb and emit electromagnetic 

radiation. NMR spectroscopy is the use of the NMR phenomenon to study molecules’ 

information (e.g. chemical, structural), which is based on resonant frequencies of the 

nuclei present in the sample. This information is also known as chemical shift (δ, in 

ppm).  

NMR is a very powerful but theoretically complex analytical tool, it can be used to 

study any sample containing nuclei possessing spin theoretically. Briefly, the resonance 

frequencies in the same magnetic field are influenced by neighbouring NMR active 

nuclei, depending on the bonding electrons that connect the nuclei. This dependence is 

known as spin-spin or “J” coupling. Such coupling permits one to indentify the 

connections between atoms on a molecule.  
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NMR spectroscopy is routinely used by chemists to investigate properties of organic 

molecules, with the help of NMR active nuclei (e.g., 
1
H, 

13
C, 

31
P, 

15
N, 

29
Si). 

1
H NMR 

and 
13

C NMR spectroscopies are the two most frequently used types. From them, one 

can get the information about the number of chemically non-equivalent nuclei (H or C) 

and the environment of nuclei (e.g. attached atoms, hybridization state). Comparably, 

they are different. 
1
H NMR spectrum is much more sensitive (

13
C nuclei is only 1 % as 

intense as 
1
H) and can be acquired more quickly than 

13
C NMR (

13
C signals spread over 

a much wider range).  Specially, in a 
1
H NMR spectrum, one can determine how the 

atoms combine to form a unique molecular structure, by quantifying information from 

peak intensities. However, the integrals are not used in a 
13

C NMR spectrum. 

One important thing needs to be concerned about in the course of routine use of NMR 

is the signals deriving from possible contaminants, for example water and solvents, 

which would mislead to signal identification. Helpfully, the 
1
H and 

13
C chemical shifts 

of the commonly used solvents, usually presenting as extra peaks, have been collected 

by Gottlieb and co-workers 
[208]

, providing great assistance to the practicing chemists. 

In this work, NMR measurement was applied to characterize the substitution ratio of 

Benzophenone-substituted Poly(methacrylic acid). 
1
H NMR spectrum was obtained by 

using a Bruker spectrophotometer (D2O, 600 MHz).  

3.4.10 Quartz Crystal Microbalance 

A quartz crystal microbalance (QCM) is applied to measure the mass variations of thin 

films on a specified surface by measuring the changes in frequency of a quartz crystal 

resonator. A typical schematic representation of QCM setup is given in Scheme 3.8. A 

common QCM setup mainly contains frequency sensing equipment, an oscillation 

source, a measurement and recording device. 
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Scheme 3.8 Schematic illustration of QCM setup
[209]

. 

The measurement of QCM is based on the piezoelectric effect. Generally, a 

piezoelectric effect is defined as electric polarization produced by applied mechanical 

strain. Conversely, applying of electric field on a substance produces mechanical 

deformation, demonstrating as shrink or expansion. For example, upon applying a 

potential to quartz crystal by two electrodes mounted on the across sides, the crystal 

starts vibrating. Generally, when an alternating current with proper frequency is applied 

(normally 8 or 10 MHz for quartz), the crystal will vibrate in its fundamental resonant 

mode. The resonant frequency change of the crystal mainly depends on its mass change, 

increasing the mass on crystal surface causes a decrease in resonant frequency. 

Theoretically, in the case of ideal mass layers (very thin film), a linear relation between 

mass variation and frequency shift which derivate from Sauerbrey equation
[210]

 is used 

to determine mass change:  

2

02 f
f m

A 


                                                              (3.2) 

Where 0f is the resonant frequency (Hz), f is frequency change (Hz), m is mass 

change (g), A is piezoelectrically active crystal area (cm
2
),  is density of quartz (2.648 

g/cm
3
), and  is shear modulus of quartz crystal (2.947×10

11
 g/cm·s

2
).  

The QCM technique can be used in different environmental conditions, such as under 

vacuum, in gas phase and more recently in liquid environments. It is very useful to 

monitor substance deposition progress (rate, mass change, layer thickness), to evaluate 
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the affinity of molecules to a functionalized surface, and it could also be used to 

investigate possible interactions between to substances occurred on the crystal surface. 

QCM was applied to monitor the stepwise assembly process in this thesis. Briefly, the 

crystal resonator (#151218-10, International Crystal Manufacturing CO, INC.) was 

immersed alternatively in polyelectrolyte solutions for a period of 15 min, carefully 

washed, and air dried; then the frequency shifts were recorded using the experimental 

setup described by Krause
[209]

. All the measurements were carried out at 30 ℃ in a 

thermal stable incubator (Digi Therm
TM

, Tritech Research, Inc.) in the duration of 

approximately 17 min for 200 total scans.  

3.4.11 UV-Visible Spectroscopy 

An Ultraviolet-Visible (UV-Vis) spectroscopy demonstrates light absorption or 

reflectance in the ultraviolet (200 to 400 nm) and adjacent visible (400 to 800 nm) 

regions. In this wavelength range, sample molecule adsorbs the energy of light and 

undergoes an electronic transition to a higher energy orbital. The UV-Vis 

spectrophotometer is used to record the possible absorption, together with its intensity 

(absorbance). Likewise, the UV-Vis spectrophotometer can also be used to record the 

intensity of light that reflected from a sample. 

A typical example of light path of the UV-Vis spectrophotometer used in this thesis is 

given, as shown in Scheme 3.9. Generally, two light sources, a D2 (deuterium) lamp and 

a tungsten lamp, are used to generate ultraviolet light and visible light for UV-Visible 

spectrophotometer, respectively. The light beam reflects from mirrors and hits a 

monochromator. The monochromator separates the light beams into single wavelengths 

by applying diffraction grating, which allows only selected monochromatic light 

successfully pass through a slit. The monochromatic light with specific wavelength hits 

a CBM (common beam mask) and then is conducted to a CBD (common beam 

depolarizer), at where it is split into two equal beams. One of the resulting beams is 

conducted to pass through a sample cuvette, the other is allowed to pass through a 

reference cuvette. A detector is used to measure and compare the intensities of these 

light beams.  
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Scheme 3.9 Light path of UV-Vis spectrophotometer. 

Similar as other absorption spectroscopy, for example FTIR, the goal of the UV-Vis is 

to measure how well a sample absorbs light at each wavelength. Practically, in order to 

detect the absorption of single wavelength, a scanning monochromator in the UV-Vis 

spectrophotometer employs the diffraction grating to allow a “step-through” of each 

wavelength. The absorption of each wavelength in UV-Vis range corresponds to the 

excitation of outer electrons, promotes them from ground state to an exited state. 

Generally speaking, the transitions involving π (multiple-bond), σ (single bond), and n 

(n-caused by lone pairs) electrons and charge transfer electrons are most discussed 

types. Normally, most absorption spectroscopy of organic samples, locating in an 

experimentally convenient region from 200 to 700 nm, is attributed to the electronic 

transitions of n or  electrons to the 
*
 excited state; thus, unsaturated groups in the 

molecule are required, which could provide the  electrons.  

UV-Vis spectroscopy is frequently applied in analytical chemistry, where the 

determination of different compounds could be made quantitatively. Typically, 

measurements of transition metal ion solutions (e.g., Au, Ag) and organic compounds 

(e.g., DNA, protein and chromophores) have been carried out. 

In this work, a UV-Vis spectrophotometer (LAMBDA 950, Perkin Elmer) was 

employed to investigate the UV absorption of the polyeletrolyte discussed here. 
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Aqueous solution measurements were made using quartz spectrophotometer cuvettes 

(sigma, S10C). For multilayer films, another detector suitable for film measurement 

was used.  Films were placed in the sample chamber directly.  
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4. UV CrossLinkable Microcapsules Made of Weak 

Polyelectrolytes Containing Benzophenone 

4.1 Introduction 

4.11 Background 

Light-addressable vesicles demonstrate a novel channel to activate material delivery 

remotely, with emphasis on either encapsulation or release. However, the development 

of an intelligent or smart delivery system would be more complicated in practice, where 

more complex functionalities or multi-functionalities are required to satisfy different 

external stimulus triggers (i.e., enzymes, temperature, pH, ionic strength)
[29]

. Therefore, 

the integration of two or more stimuli-responsive functionalities in one vesicle system 

has important implications.  

As a practical matter, LbL assembly would be a promising technique to achieve the 

goals due to its simplicity and versatility
[11]

. The step-by-step polymer deposition of the 

capsule preparation process facilitates the modification of the fabricated capsules, 

providing opportunities to engineering a novel class of capsules with desired structures 

and properties. Specially, if the multilayer shells are composed of weak polyelectrolytes, 

the resulting capsules will automatically have a pH-responsive property. Consequently, 

LbL assembly offers a relatively simple and effective way to introduce a pH-responsive 

property at the very beginning of the capsule fabrication. In return, the pH-responsive 

property allows the control of the shrink-swell behaviours of capsule shell reversibly as 

a consequence of the dissociation equilibrium of the weak polyelectrolyte complex. 

Thus, a controlled release could be achieved through the controllable shell thickness or 

permeability, as well as the deconstruction of the capsule by adjusting the acidity of the 

surrounding solution.  

It has been shown that, by responding to a certain UV wavelength, capsules are able to 

alter their shell thickness, permeability, and multilayer arrangement
[16, 134]

. In particular, 

chemically stable benzophenone (BP) is widely used as a photoactivatable reagent to 

functionalize or reconstruct the remote C−H bonds in flexible molecular chains. The 

highly efficient and good site-specific covalent modifications of macromolecules make 
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BP a promising candidate for capsule modification. Upon irradiation at a certain 

wavelength, BPs react with unreactive C−H bonds predominantly
[137]

. The introduction 

of BP groups in the multilayers will therefore endow the LbL capsules with novel UV 

responsive properties. In addition, microcapsules or multilayers composed of weak 

polyeletrolytes are sensitive to outer pH stimuli. It is possible to adjust reversibly the 

fabricated capsule’s shrink-swell behaviour by altering the environmental pH values
[211, 

212]
. 

4.1.2 Aim and Objectives 

The general aim here is to fabricate UV responsive multilayer capsules for potential 

cargo encapsulation use. Specially, for capsules composed of weak polyelectrolytes, the 

chemical and physical properties of polyelectrolyte capsules could be controlled and 

altered by UV light remotely, while preserving the pH-responsive properties of the 

weak polyelectrolyte multilayers. In return, the external pH stimulus can be used to 

adjust the shrink-swell of the UV crosslinked capsules through the control over 

dissociation equilibrium of the weak polyelectrolyte complex.  

Therefore the main objectives of this chapter are:  

1) To design and fabricate multilayer microcapsules composed of weak polyelectrolytes 

(PAH, PMA) with UV-absorbable benzophenone groups.  

2) To investigate the UV induced capsule shell crosslinking effect, for example the 

possible morphology change, thickness change, and permeability changes 

(molecule encapsulation). 

3) To study the pH response (shell stability) of the UV crosslinked capsules, in 

normal pH range (pH = 3~11) and extreme pH conditions (pH = 2 or 12).  

4.2 UV Induced Capsule Shrinking 

The UV response properties of these fabricated capsules were studied. In this work, the 

UV irradiation intensity used was approximately 5 mW/cm
2
, and the UV treatment 

duration was 0~2 hours. The structural formulas of these polyelectrolytes used for 

capsule fabrication were given in Scheme 4.1. 
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Scheme 4.1 Structural formulas of the polyelectrolytes used in this chapter. 

(PAH/PMA-BP)4 capsule suspensions were exposed to the UV light under a power of 5 

mW/cm
2
 for  different irradiation durations. As shown in Figure 4.1, the size change of 

these capsules before and after UV irradiation was obvious. Before the irradiation, the 

capsules showed round and flat morphologies on the silicon wafer with an average 

diameter of 5.12 µm (Figure 4.1 a).  
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Figure 4.1 SEM images of (PAH/PMA-BP)4 capsules before (a), and after UV irradiation for 15 (b), 30 

(c), 60 (d), 90 (e), and 120 min (f). 

After being placed under the UV light, the capsule shrinkage happened immediately. 

For only 15 minutes, the average diameter was decreased to 4.54 µm (Figure 4.1b). 



90 

 

With the increase of UV irradiation time, the capsule size continued to decrease. After 

120-minute UV irradiation, a significant reduction in the capsule diameter could be 

found, i.e, the capsule size reduced to 3.65 µm (i.e., a reduction of ~30% in diameter) 

(Figure 4.1 f). Further increasing the UV irradiation period to 3 hours did not show 

obvious size decrease. With the shrinkage of capsule, the capsule shell appeared thicker 

and stronger, which resulted in a three-dimensional spherical capsule appearance under 

the SEM observation (Figure 4.1 f). The capsule change in diameter and shell thickness 

could be verified by the AFM results, as shown in Figure 4.2 and TEM results in Figure 

4.3. After 2 hours’ UV irradiation, the (PAH/PMA-BP)4 capsule shell thickness was 

almost doubled, changed from ~35 nm to ~70 nm. Furthermore, the irradiated capsules 

shrunk to diameters below 4 µm, consistent with the SEM results. 

 

Figure 4.2 AFM images (top) and cross-section profiles (bottom) of (PAH/PMA-BP)4 capsules before 

(left), and after UV irradiation for 120 min (right). 

*The height (single shell thickness×2) of the dried collapsed capsules changed from 71.2 nm to 139.8 nm. 
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Figure 4.3 TEM images of (PAH/PMA-BP)4 capsules before (a) and after UV irradiation for 120 min (b). 

* Shell thickness changed from 34 ± 3 nm to 72 ± 9 nm (Capsule shell thickness and distribution was 

expressed as mean ± SD of at least 4 capsules per sample and 10 locations per capsule randomly 

measured, as shown  in the red rectangle) 

In order to investigate the main reason that caused the shrinkage of (PAH/PMA-BP)4 

capsules, PAH/PMA-BP multilayer films were made as previously described, and UV-

Visible spectroscopy was used to detect the possible UV absorbance change happened 

in the films.  

 

Figure 4.4  UV-Vis spectra of polyelectrolytes. 

As shown in Figure 4.4, for the polyelectrolytes used in the experiment, PMA-BP 

showed a UV absorbance peak at 265 nm wavelength, which could be attributed to the 

π-π* transition of the benzophenone groups in the polymer chains, totally different 
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from those of PAH, PSS, and PMA polymers. When the electrostatic reactions 

happened between PAH and PMA-BP polymers, the maximum absorption peak 

changed slightly, shifting to 275 nm, as shown in Figure 4.5.  With the increase of the 

number of PAH/PMA-BP layers (e.g., from 8 layers to 64 layers), the intensity of 

maximum absorption peak became more pronounced (increased from 0.054 to 0.383 

a.u.), which indicated the increasing amount of benzophenone groups deposited on the 

planar substrate.  

 

Figure 4.5 UV-Vis spectra of PAH/PMA-BP multilayer films. 

* The inset showed the increase of absorbance at 275 nm with increase number of deposited polymer. 

When the multilayer films were exposed to UV lights, the intensity of absorption peak 

at 275 nm decreased with the irradiation times, as illustrated in Figure 4.6, which 

showed the UV-Vis spectra of 64 multilayer of PAH/PMA-BP film on a quartz slide as 

a function of UV irradiation time. Under UV irradiation, benzophenone groups were 

excited, and tended to absorb photons from the nearby unreactive C–H bonds, leading 

to the generation of a new C–C bond and crosslinking within the multilayers
[137]

.  
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Figure 4.6 UV-Vis spectra of PAH/PMA-BP 64-layer film. 

* The inset showed the decrease of absorbance at 275 nm with increase of UV irradiation time. 

Fourier transform infrared (FTIR) spectra analysis of 0~2 hour irradiated (PAH/PMA-

BP)4 capsules confirmed this chemical transition (Scheme 4.2). As shown in Figure 4.7, 

the FTIR spectra of the samples containing the BP groups exhibited a decrease in the 

C=O carbonyl group peak at 1603 cm
-1

, which could be attributed to the deformation of 

BP radicals after UV irradiation. In addition, the decrease in the aromatic ring at 1512 

cm
-1 

also
 
verified this BP-related chemical change. However, a broad peak that 

corresponds to the generation of hydroxyl group (–OH) accompanied with BP 

deformation in the region 3400~3500 cm
−1

 was too weak to be observed.  

                 

Scheme 4.2 Schematic representation of crosslinking reaction in the capsule shells. 

* The photo-crosslinking won’t influence the electrostatic interactions between polyanion and polycation. 
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Figure 4.7  FTIR spectra of PAH/PMA-BP samples before (black line) and after (other lines) UV 

irradiation. 

* The 1603 cm
-1

 and 1512 cm
-1

 are the benzophenone’s carbonyl group (C=O) and aromatic ring skeletal 

stretch vibrations, respectively. 

                          

Figure 4.8 Size changes of three different kinds of capsules after UV irradiation. 

* The UV irradiation was fixed at 5 mW/cm
2 
. Capsules diameters and distributions were expressed as 

mean ± SD of at least 35 capsules per sample random measured of SEM images. 
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Capsules without BP groups were introduced in other two capsule systems for the study. 

As found in the control groups, other capsules without BP group such as (PAH/PMA)4  

and (PAH/PSS)4 capsules cannot absorb UV energy at a wavelength between 250 and 

600 nm, and exhibit no capsule shrinkage. As shown in Figure 4.8, capsules with BP 

groups shrunk from 5.12 ± 0.31 µm to 3.65 ± 0.33 µm upon 2 hours of UV irradiation. 

While the (PAH/PMA)4 and (PAH/PSS)4 capsules without BP group showed no 

obvious shrinkage (Figure 4.9).  

   

Figure 4.9 SEM images of (PAH/PMA)4 (a) and (PAH/PMA)4 (b) capsules after UV irradiation of 2 

hours. 

It has been reported that PSS possesses a maximum UV absorption ~220 nm. 

Theoretically, exposure PAH/PSS to UV light will cause a size shrinkage. As reported 

by Katagiri, after 2-hour irradiation under a power of 20 mW/cm
2
, PAH/PSS shrunk to 

less than 50 % of their original diameter
[134]

. However, no obvious PAH/PSS capsule 

shrinkage could be found in our experiments (Figure 4.8 and Figure 4.9). The low UV 

power (only 5 mW/cm
2
) used in our study could be one explanation. Another reason 

may be attributed to the limitation of our UV source. As the UV source is selected 

predominately to suit the chemical transition of BP groups in this work, a mercury lamp 

(UVACUBE 100, Honle UV Technology) was used, which only emit a small fraction 

of UV light at wavelength smaller than 250 nm (i.e. < 10%). Consequently, the 

contribution from the most expected spectral range to cause effect on PSS (i.e., around 

220 nm) is small and may well resulted in no apparent shrinkage of PAH/PSS capsules 

in our condition after 2 hours of irradiation. It should be noted, however, that the 

PAH/PSS capsules were only used as control to contrast the BP-related capsule change.  
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4.3 UV Triggered Fluorescent Polymer Encapsulation 

Besides the environmental influencing factors (e.g., pH, ionic strength), the 

permeability of capsules mainly depends on their shell density. Shrinkage is one of the 

effective methods to increase shell density. Different strategies such as light induced 

morphology change
[134]

 and heat treatment
[26]

 were used to alter the shell density. Both 

however suffer certain limitation: for instance the former shrinks the capsules through a 

length reduction of azobenzene molecule caused by trans to cis photoisomerization, 

while the latter cannot deal with temperature sensitive materials such as DNA and 

protein. Different from the physical contraction caused by in-plane molecule 

photoisomerization or heat treatment, benzophenone related shrinking requires a stable 

chemical covalent bonding within multilayers, which leads to a re-conformation of the 

neighbouring polymer chains, and benefits a new method of engineering steady 

delivery systems.  

In this sub-experiment, the fluorescent polymer AF488-labeled dextran (AF488-

Dextran, 10 kDa) was chosen for the encapsulation study due to its strong fluorescence 

resistance to photobleaching, and most importantly, good visualization characteristics 

to demonstrate the changes in permeability of the microcapsules during long periods of 

irradiation. As shown in Figure 4.10, Confocal Laser Scanning Microscopy (CLSM) 

images illustrated the fluorescent polymer encapsulation of (PAH/PMA-BP)4 capsules 

in the presence of a AF488-Dextran. Due to the photobleaching, encapsulation can only 

be viewed after a short irradiation duration, consequently 15 minute of irradiation result 

was used as an example here. Before UV irradiation, all the capsules were suspended in 

the fluorescent polymer solution (the green back ground) for 1 hour, and the fluorescent 

dextran can permeate into the hollow capsules (Figure 4.10 a). However due to the 

porous structure of capsule shells, hollow capsules can’t hold the dye inside (Figure 

4.10 b), only very few amount of the dye was stuck in the capsule shells. Upon UV 

irradiation, the capsule shell of the hollow capsules obtained photo crosslinking, 

became shrunk and closed or decreased the porosity of the shells to keep the dye inside 

(Figure 4.10 c).     
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Figure 4.10 CLSM images illustrating the dye encapsulation of (PAH/PMA-BP)4 capsules in the 

presence of a AF488-Dextran. 

* Before UV irradiation, the fluorescent polymer (green) can permeate into the hollow capsules (a), can’t 

be hold if washed directly (b), but can be encapsulated in the capsules after 15 min irradiation, even after 

3 wash steps (c). 

4.4 UV triggered Capsule Permeability Change 

The fluorescent polymer encapsulation limits our study to short irradiation durations 

due to the photobleaching effect. For longer irradiation periods, we will use the 

suspensions of already-irradiated capsules to examine the dye penetration effect, which 

again can demonstrate the capsule permeability changes caused by UV lights. As 

shown in Figure 4.11 and Figure 4.12, (PAH/PMA-BP)4 capsules were first irradiated 

for 2 hours, and were then suspended in AF488-labeled dextran solution. Throughout 

the dye permeation experiments, aliquots of the sample solutions were taken after 

certain incubation time, and then illustrative images were captured to represent typical 

examples of different dye permeation status (hollow, half-filled, filled). At the 

beginning, there was no dye permeation into the capsule shells, capsules showed black 

shadow images under the microscope (Figure 4.11 a). With the increase of time, dye 

polymers started to penetrate capsule through the shell network structure or defects. 

Extending the UV irradiation time to 3 hours, it was obvious that the dye polymers had 

already penetrated into part of the capsules, as the color of the capsules gradually 

became dark grey (Figure 4.11 b). When the time reached 4 hours, a part of the 

capsules were filled with fluorescent polymers. A clear example was presented in 

Figure 4.11 c, which demonstrates an intermediate state of permeability, i.e., about 40 

% capsules were filled with fluorescent polymers and showed bright green images. 

Compared with Figure 4.10 a (1 hour in dextran solution), it was obvious that the UV 
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crosslinking strengthened the capsule shells and decreased the porosity of the shells, 

resulting in a much stronger shell structure to resist dye penetration. 

    

Figure 4.11 CLSM images illustrating the dye permeation of 2 hours-irradiated (PAH/PMA-BP)4 

capsules in the presence of a AF488-Dextran for 0 hour (a), 3 hours (b) and 4 hours (c) . 

   

Figure 4.12 CLSM images (at low magnification) illustrating the dye permeation of 2 hours-irradiated 

(PAH/PMA-BP)4 capsules in the presence of a AF488-Dextran for 0 hour (a), 3 hours (b) and 4 hours (c). 

* Typical dye permeation status, hollow (black shadow image), half filled (Δ) and filled (→), were 

demonstrated. (The symbol * represented a capsule with defect). Scale bars measured 10 µm. 

4.5 Capsule Stability and pH Response 

Fabricating multilayer capsules with pH sensitive weak polyelectrolytes, the charges or 

ionization degrees along the PAH (pKa = 8.6) and PMA (pKa = 6.8) molecular chains 

could be controlled by varying the solution pH value. It has been shown that after LbL 

assembly, pKa values of the electrostatic absorbed PAH-PMA multilayers could be 

shifted by approximately 2~3 pH units to the alkaline (pKa, PAH =10.8) or to the acidic 

(pKa, PMA=3.9) region, respectively
[32]

. Therefore, after capsule preparation, 

electrostatic interactions between the polyanion and polycation could be influenced by 

the outer pH environments. Here we described the pH-dependent behaviours of weak 

polyelectrolyte microcapsules, (PAH/PMA)4, (PAH/PMA-BP)4, as well as irradiated 

(PAH/PMA-BP)4 capsules.  
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Figure 4.13 CLSM images of different capsules at pH3, pH6 and pH11. 

* The scale bar measured 5 µm. 

As shown in Figure 4.13 (1
st
 row), the stability of (PAH/PMA)4 capsules in different 

pH solutions depended on their dissociation behaviour, similar to those reported in 

Mauser’s work
[32]

. At pH=6, both PAH and PMA were highly charged, all the capsules 

are stable with a diameter of 5.0 ± 0.30 µm (Figure 4.13 b). By decreasing the pH value, 

PAH was fully charged, but more and more carboxylate (–COO
-
) groups of the PMA 

were protonated. At pH= 3 (i.e., below the pKa of PMA in PAH-PMA multilayers), 

only a small amount of carboxyl (–COOH) groups were dissociated, resulting in PAH 

with excess amount of uncompensated ammonium (–NH
3+

) groups. The electrostatic 

repulsion between the positive charges of PAH caused a swelling of the shell structure. 

If the electrostatic repulsion played a predominant role here, the remaining electrostatic 

interactions between the minority ionic pairs of PAH and PMA would not be strong 

enough to stabilize the shell structure. However, at pH= 3, uncharged PMA molecules 

provided a hydrophobic association, which helped the capsule shell survive and 
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exhibited only a slightly size increase to 5.35 ± 0.29 µm in diameter (Figure 4.13 a). 

Likewise, PMA became fully charged at pH=11, while most of the PAH got 

deprotonated. Without a hydrophobic interaction, electrostatic repulsion of the negative 

charges became the dominate interaction, resulting in the dissolution of the shell 

(Figure 4.13 c). Adjusting the capsule suspension pH value to 12, capsule dissolution 

occurred immediately, no image could be captured. As for the (PAH/PMA-BP)4 

capsules (2
nd

 row), the stability of the capsule system composed of PMA-BP was a 

slightly  different. Due to the existence of ~50 % esterified PMA segment, the total 

amount of PAH in PAH/PMA-BP capsules was only half of that in PAH/PMA capsules 

in order to obey the rule of charge balance. Thus, an increase in pH will lead to a more 

pronounced effect on the PAH/PMA-BP system (Figure 4.13, 2
nd

 row), exhibiting an 

early swelling state of capsules at pH=11. At high pH, the excess amount of 

uncompensated carboxylate groups of PMA segment would cause the dissolution of the 

shell, but the existence of the esterified PMA segment (~50 % of PMA-BP) played a 

role in stabilizing the shell structure in basic conditions. As shown in Figure 4.13 f, an 

immediate dissolution was depressed, resulting in swollen capsules in diameter of 9.71 

± 0.60 µm. 

Stabilizing the pH sensitive multilayers in extreme pH conditions is a challenging task. 

Crosslinking might be an effective method to solve this problem. By crosslinking the 

functional groups of the individual polyelectrolytes with chemical crosslinkers, this 

strategy provides good protection against the dissolution of polyelectrolyte 

multilayers
[213, 214]

. For instance, if we use a crosslinker, e.g., EDC, to crosslink the 

functional groups (–NH2 and –COOH) of PAH/PMA capsule shells, the multilayer 

system will become stable in extreme pH condition. In the meantime, these capsules 

also became rigid and would not respond to the outer pH anymore as the charge sites of 

the multilayers were consumed and became amide bonds (–NH–CO–)
[32]

. Here we 

introduced the photoactive BP groups to crosslink the PAH/PMA capsule. As shown in 

Scheme 4.1, UV irradiation caused a recombination of BP and unreactive C–H 

bond
[138]

, providing crosslinking sites within multilayers. Unlike the amidation reaction 

of –COOH and –NH2 groups, UV crosslinking not only stabilized the capsules, but also 

maintained ionizable groups. As shown in the Figure 4.13 (the 3
rd

 row), at pH=6, 15-

minute irradiated capsules were stable with a size of 4.30 ± 0.29 µm (Figure 4.13 g), 

which was consistent with the SEM results. By decreasing the pH value, capsule got a 
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slight swelling and the size increased to 4.55 ± 0.24 µm (Figure 4.13 h). Increasing the 

pH value to 11, the capsule size was increased to 6.79 ± 0.54 µm (Figure 4.13 i). 

Comparing with the un-irradiated (PAH/PMA-BP)4 capsules, the UV-crosslinked 

capsules still possessed a pH-responsive property but was not as extreme as the un-

irradiated ones.  

 

Figure 4.14 Diameter of microcapsules as a function of pH (a), and LCSM images of (PAH/PMA-BP)4 at 

pH2 and pH12 (b). 

*The gray areas indicate the regions where the un-irradiated capsules are dissolved. (Scale bar: 10 µm) 

Besides the relatively normal pH ranges from 3 to 11, capsules in extreme pH 

conditions were also investigated, as shown in Figure 4.14. Adjusting the capsule 

suspension to a pH value beyond the pKa values of the PAH/PMA multilayers, capsule 

without irradiation cannot survive due to the lack of electrostatic interactions (Figure 

4.14 a). However, the UV irradiated capsules were still stable after suspending in a 

solution of pH=2 for 1 week. Comparing with the capsules in pH=3 solution, there 
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appears to have no obvious size change of the irradiated (PAH/PMA-BP)4 capsules at 

pH=2, i.e. an average diameter of 4.56 µm. However at pH=12, the irradiated capsules 

continued to swell to a diameter of 7.24 µm.  

Response to environmental pH stimulus allows controlling the structures of delivery 

systems. As a consequence, the release of encapsulated cargos from pH-activated 

carriers could be adjusted. pH sensitive carriers such as nano-/micro- spheres, 

hydrogels and liposomes have been widely studied and developed
[215]

. For examples, 

the pH-responsive organic-inorganic hybrid spheres composed of sandwich-like 

organoclay layers controlled release of ibuprofen and eosin at different pH (4-9) due to 

the pH-induced protonation of amino groups
[216]

. The PEGylated siRNA nanoparticle 

showed rapid release of the encapsulated siRNA at pH 5.5, which could serve as novel 

delivery system for treatment of liver diseases
[217]

. In this chapter, it is expected that 

these (PAH/PMA-BP)4 microcapsules with UV responsive properties and pH 

dependent stability could provide a novel way for controlled drug delivery systems, in 

which UV light could be used to encapsulate chemicals and drugs without heating, and 

the UV caused shrinkage as well as the pH dependent stability could be used to 

modulate cargo release. Nevertheless, one should notice, the extreme pH conditions 

investigated here might be not suitable for applications in biological media such as 

human skin and internal tissue, organ. However, modifying the permeability of 

polyelectrolyte multilayer shell through benzophenone-related crosslinking without 

consumption of ionic groups would offer an optional approach for the researchers to 

fabricate crosslinked (or sealed) vehicles or delivery systems for biological uses, where 

such vehicles would respond to subtle pH changes and thus to be activated. 

4.6 Conclusions 

In this chapter, the fabrication and characterization of UV responsive (PAH/PMA-BP)4 

capsules from two weak polyelectrolytes with enabling pH response were reported. The 

capsule properties were found tuneable by the exposure to UV light. i.e., the capsules 

can shrink about 30 % in diameter with nearly doubled shell thickness upon 2 hours of 

irradiation at a wavelength of 275 nm. Such UV-triggered shrinkage modified the 

capsule permeability, providing a novel method for the entrapment biologically active 

compound avoiding heating. In addition, (PAH/PMA-BP)4 capsules exhibited tuneable 
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pH responsive properties. It was demonstrated that the capsule size and stability can be 

controlled reversibly by varying the solution pH values. It was shown that after UV 

irradiation, crosslinking happened in the capsule shells, increasing the capsule stability 

in extreme pH conditions. The increased stability didn’t consume the functional groups 

of weak polyelectrolytes, which kept the capsule’s pH-responsive capability. These 

(PAH/PMA-BP)4 microcapsules with UV responsive properties and pH dependent 

stability could provide a promising way for delivery systems. As shown in Scheme 4.3, 

a schematic illustration of this UV responsive microcapsule system composing of weak 

polyelectrolytes was demonstrated.   

 

Scheme 4.3 Schematic representation of the two-channel controllable microcapsule system. 
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5. UV-induced Microcapsule Disruption Based on 

Azobenzene Re-alignment 

5.1 Introduction 

5.1.1 Background 

One of the most challenging tasks and the ultimate purposes to develop delivery 

systems is to modulate the release of encapsulated cargo materials
[218]

. Strategies such 

as heat treatment and light-induced morphology change were used to alter the shell 

density and integrity, and then to influence capsule permeability 
[16, 26, 219] 

. As one of 

the most interesting parts of stimuli-responsive capsules, photo stimuli responsive 

capsules are able to affect their micro-/nano- structures come in the form of remote 

control triggered by external light (e.g., sun light, infrared laser) without requirement of 

direct contact or interactions
[220]

. The development of such highly light sensitive 

vesicles is of great importance, especially in the fields of surface sciences and 

environmental applications, where sometimes lights would be the only available stimuli 

to drive the systems. Various strategies were applied to develop such light addressable 

vesicles with different functionalities
[220]

. One of the classical examples is the laser 

induced local heating
[19]

, which has been widely studied to deconstruct the capsule 

shells, demonstrated good site specificity, and can be used as promising delivery 

system for biological and clinical applications. However, the requirement of specific 

laser wavelength and site-directed energy supply will definitely limit its application. 

For practical uses, the abundant existence of UV light in sunlight may offer a new kind 

of natural triggers for such applications. One of the key points is how to trigger the 

shell disruption or capsules breakage by using UV light directly. 

Polyelectrolytes are basic components for LbL capsule fabrication. Diverse 

polyelectrolytes have been used to build up capsules. Different combinations of the 

oppositely charged polyelectrolytes with active functional groups endow their capsules 

with unique architectures and properties, which affect their further applications. An 

ideal strategy here for controlled release would be achieved by UV light induced 

polyelectrolyte microcapsule breakage due to the activation of UV responsive 
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component in polyelectrolyte shells. A kind of novel UV responsive compounds that 

access the needs is the azobenzene (AZO). AZO derivates refers to a class of molecules 

that composed of two phenyl rings linked by an azo (N=N) double bond. Theoretically, 

the conjugated chemical structure owes AZO strong electronic absorption in both UV 

(π-π* transition) and visible light (n-π* transition) regions, leading to efficient and 

reversible trans–cis photoisomerisation behaviour by switching the treatment between 

UV irradiation and visible light irradiation or thermal treatment
[221]

. For LbL assembly, 

polyanions with the AZO chromophore in the side chains were employed to make 

multilayers with counterpart polyelectrolytes. It has been reported that incorporation of 

the robust AZO chromophores into various polycations could influence its 

photoresponse (e.g. micro-crystallisation and phase separation) due to their mobility 

and preference of dipolar azo units to form aggregates
[222]

, exploring intensively 

functionalities for optical storage
[160]

 and liquid crystal alignment
[159]

. Specifically, for 

PDADMAC/PAZO system, when the UV light triggered a photoisomerization reaction, 

a UV spectral change towards longer wavelength side (also known as red shift) 

accompanied with a decrease in the π-π* band intensity occurred, which was 

interpreted by the formation of J aggregate
[223]

. As a consequence of J aggregate, these 

individual end-to-end self-organized AZO moieties led to polymer chain motions in 

sub-domains or features, which further exhibited as phase separation of adjacent 

domains due to anisotropic oriented average aggregate directions
[18]

. This kind of AZO 

motion based phase transitions have found interesting applications to photo-control 

over the matrix and vesicle destruction
[18, 224]

.   

5.1.2 Aim and Objectives 

The aim here is to break the multilayer capsule shell integrity by using the UV light 

remotely, and thus to realized the UV triggered cargo substance release. The general 

idea is based on UV light controlled capsules disruption through J-styled aggregation of 

AZO moieties in these multilayer shells. 

Therefore the main objectives of this chapter are:  

1) To design and fabricate polyelectrolyte multilayer microcapsules 

(PDADMAC/PAZO) 4 containing azobenzene molecules.  
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2) To investigate the UV induced capsule shell disruption, for example the UV-

dosage dependent capsule morphology change (swelling and breakage). 

3) To study on the underlying mechanism of UV induced capsule shell disruption. 

And to study the feasibility of UV triggered cargo substance release from the 

multilayer capsules.   

5.2 UV Induced Capsule Breakage 

The UV response properties of these fabricated capsules were studied. In this work, the 

UV intensity used was approximately 55 mW/cm
2
, and the UV treatment duration was 

0~3 hours. Specially, for UV triggered protein release, UV irradiation was also carried 

out with the intensity of 27 mW/cm
2
. The structural formulas of these polyelectrolytes 

used for capsule fabrication were given in Scheme 5.1. 

 

Scheme 5.1 Structural formulas of the polyelectrolytes used in this chapter. 

The experimental results showed that exposure of the PDADMAC/PAZO microcapsule 

suspensions to UV light led to breakage of the capsules. Figure 5.1 illustrated the 

breakage of the (PDADMAC/PAZO)4 capsules as a function of time. In this sub-

experiment, capsules exposed to the UV light with intensity of 55mW/cm
2
 were 

demonstrated as an example of UV induced capsule breakage. Before irradiation, the 

capsules were flat with creases and folds with an average diameter of 5.12 µm (Figure 

5.1 a). After 10 min of UV irradiation, part of the hollow shells started to swell, and an 
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increase in the average diameter of the capsules from 5.12 µm to more than 7 µm was 

observed (Figure 5.1 b). In the meantime, capsule debris (white dots) appeared around 

the swollen capsules, which indicated the starting of shell disruption. Further extending 

UV irradiation time, capsules continued to increase in size, which led to complete 

disruption of the shell formations. After 60 min of irradiation, almost 70% capsules 

were broken; typical example of the broken capsules after 60 min of UV irradiation was 

shown in Figure 5.1 c. When the irradiation time reached 120 min, no intact capsules 

survived, only the split capsule debris and some needle-like formations were observed 

on the silica wafer (Figure 5.1 d). 

  

  

Figure 5.1 SEM images of (PDADMAC/PAZO)4 capsules after UV irradiation of  0 (a), 10 min (b), 60 

min (c) and 120 min (d). 

* The inset represented needle-like formations. 

During all the irradiation process, ice bath was used to keep the whole capsule 
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suspension in a thermo-stated environment. However, due to the existence of UV 

absorbable material PAZO, local heating effect based on UV energy absorption in the 

polyelectrolyte shells was unavoidable. Previous works of Sukhorukov’s group have 

already revealed the temperature-dependent behavior of hollow polyelectrolyte 

multilayer capsules, which resulted in either capsule shrinkage
[225]

 or swelling
[201, 226]

. 

In particular, for PDADMAC contained capsules, it was proven that the unbalanced 

energy of multilayer system originated shell swelling
[226]

; and for PAZO contained 

capsules, the heat treatment showed no significant influence on capsule size change
[16]

. 

Since the capsule swelling and disruption phenomena were also found in our work, 

careful attention to the local heating related behavior of the PDADMAC/PAZO system 

was required to illustrate the UV induced capsule disruption. Briefly, 

(PDADMAC/PAZO)4 suspension were incubated in water bath for 1 h at each  

temperature point ranging from 20 ℃ to 90 ℃. After thermal incubation, the capsules 

were observed under SEM, and the possible capsules morphology and size changes 

were analyzed. As shown in Figure 5.2, it was obvious that the heat treatment barely 

showed any dramatic influence on capsule morphology. At 20 ℃, capsules were flat 

with a diameter distribution of 5.12 ± 0.328 µm. Increase of the temperature did not 

show any significant influence, either on capsule size or shell roughness. As the SEM 

images shown in Figure 5.2, a typical example of capsules after incubated at 90 ℃ was 

given. Unlike the effect of UV irradiation, such capsules had an average diameter of 

5.008 ± 0.368 µm, and all of them kept their shell integrity after heating, almost no 

broken one could be found, indicating that these (PDADMAC/PAZO)4 capsules had 

high thermal stability, and the local heating was not the main reason caused capsule 

breakage. 
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Figure 5.2 Quantification of the (PDADMAC/PAZO)4 capsule diameter after heat treatment.  

* The lower panel: SEM images represented the capsules incubated at (a) 20 ℃ and (b) 90 ℃. The scale 

bars measure 2 µm. Capsule diameter and distribution were quantified by randomly averaging the 

diameters of at least 35 capsules per sample from the SEM data. 

Here in this experiments, (PAH/PAZO)4 capsules, containing a more flexible polycation 

PAH with positive charges on the side chains, were used as control groups. However, a 

gradually capsule breakage process as happened to PDADMAC/PAZO system was not 

observed over 2 hours. Contrarily, UV irradiation caused a capsule size decrease 

slightly. As shown in Figure 5.3, after 2 hours of irradiation, (PAH/PAZO)4 capsules 

diameter gradually decrease from 4.96 ± 0.273 µm to 4.20 ± 0.383 µm. On the other 

hand, almost all the capsules were intact without any obvious damage. Interesting, 

light-induced capsule shrinkage has also been observed in the LbL multilayer system 

containing azobenzene compounds, as reported by Bédard and co-workers
[16]

. In their 

work, (PAH/PAZO)3PAH/PVS capsules were built up with PAZO, PAH and 

poly(vinylsulfonate) (PVS). It was believed that the UV induced trans to cis 

isomerisation of azobenzene that caused a significant shrinkage in their capsule system, 

demonstrating as significant size decrease, apparent shell morphology changes as well 

as shell permeability decrease. 
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Figure 5.3 Quantification of the (PAH/PAZO)4 capsule size before and after UV irradiation.  

Lower panel: SEM images represent the capsules before irradiation (a), after irradiation for 1 hour (b) 

and 2 hours (c). 

Comparing these above three capsule systems containing PAZO, one might obviously 

presuppose that different properties of the positively charged counterpart 

polyelectrolytes should be associated with the different UV responsive behaviour, such 

as capsule disruption and shrinkage. Preliminary investigation has already found 

significant influence of polycations on the azobenzene molecular orientation in films 

and on the photoisomerization kinetics
[227]

. In our experiments, similar influences were 

recorded by UV-Vis spectroscopy.  
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Figure 5.4 UV-Vis spectra of (a) (PDADMAC/PAZO)4 and (b) (PAH/PAZO)4 microcapsule suspensions 

before (–), and after UV irradiation for 30min (
…
), 60min (Δ) and 120min (×). 

As shown in Figure 5.4, the UV-Vis absorption spectra, obtained from the two kinds of 

microcapsules containing azobenzene groups in the multilayer shells were given. For 

both of the fresh fabricated (PDADMAC/PAZO)4 and (PAH/PAZO)4 microcapsule 

aqueous suspensions, a strong absorption at ~366 nm was found, which was assigned to 

the π-π* transition of trans-azobenzene, and the absorption detected at ~268 nm was 

due to a transition that roughly parallel to the short axis of the trans-azobenzene 

chromophore
[223]

. As a consequence of photoisomerization reaction induced by UV 

light, the spectra of the two kinds of microcapsule suspensions showed a decrease in the 

π-π* band maximum intensity. But this band did not disappear even after 2 hours of 
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irradiation, indicating that the photoisomerization did occur but was not completed. 

Similar phenomenon was also observed in Stroeve’s work
[223]

, and reasonable 

interpretation was attributed to steric hindrances against trans to cis conversion
[228]

 and 

hindrances of tight AZO aggregate formations
[229]

. 

 

Scheme 5.2 Shematic representation of the relationship between azobenzene arrangement and the 

spectral shift based on molecular exciton theory.    

* The azobenzene molecules aggregated in a face-to-face way (parallel) to form H-aggregates or in an 

end-to-end way to form J-aggregates. 

UV absorbance spectra change on isomeriaztion is one of the most well known 

phenomena as photochromism, demonstrating as the AZO molecular conformation 

change in plane qualitatively. However, one must notice, the photoisomerization also 

causes changes in dipole moment. Depending on mutual orientation of the interacting 

dipole moments between the counterpart molecules, AZO moieties tend to form end-to-

end or plane-to-plane aggregates, also known as J or H aggregates (Scheme 5.2), 

respectively
[230]

. Theoretically, such aggregate formations can be easily monitored by 

spectroscopic measurements. As shown in Figure 5.4, exposing the capsule suspensions 

to UV light, another spectral change occurred. Specifically, a time dependent red shift 

in the maximum absorbance was clearly visible. For (PDADMAC/PAZO)4 capsules, 

after 30 min of irradiation, the maximum absorption peak was centered at 381 nm, 

demonstrating a red shift by 15 nm caused by UV light. Further exposing to UV light 

for 1 hour, an additional red shift by ~2 nm was found at 383 nm. After that, increasing 

the UV irradiation period to 120 min did not show significant red shift any more. In 
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comparison, the maximum absorption position of (PAH/PAZO)4 microcapsule 

suspension was located at ~371 nm after 30 min of irradiation. After 2 hours of 

irradiation, the maximum absorption was observed a total red shift by 7 nm and 

subsequently receding to a constant value of ~373 nm. These phenomena can be 

interpreted as azobenzene aggregation in the form of J aggregates, as suggested by 

Stroeve
[223]

. It should be noted that the decrease of absorption intensity in 

PDADMAC/PAZO system was more pronounced, which illustrated the mobility of 

AZO moieties was higher than that in PAH/PAZO system
[223]

, further facilitated AZO 

orientation when the capsules were exposed to UV light. 

The differences caused by polycations in PAZO contained systems were also supported 

by FTIR studies. As shown in Figure 5.5, for both of (PDADMAC/PAZO)4 and 

(PAH/PAZO)4, weak shoulder peaks were assigned to the N=N stretching vibration in 

trans azobenzene, which appeared at ~1400 cm
-1[231, 232]

. Additional, a medium peak at 

1042 cm
-1

 was found in the spectrum of (PAH/PAZO)4, which was attributed to the C–

N out-of-plane bending
[233, 234]

. For (PDADMAC/PAZO)4, after 2 hours of UV 

irradiation, no significant difference in FTIR spectra can be found. This result was in 

accord with UV-Vis spectra, where no clear band assigned to cis isomer can be 

observed, indicating the re-orientation was preferred in the PDADMAC/PAZO system. 

For (PAH/PAZO)4 capsules, UV irradiation not only caused the disappearance of N=N 

and C–N peaks, but also induced a generation of NH4
+
 ions signals at 3054 cm

-1
 and 

3144 cm
-1

. These new ions were converted from –NH3
+
 of PAH segment, as suggested 

by Katagiri and co-workers
[134]

. According to their work, chemical transitions caused 

by 120 min of UV irradiation at 20 mW/cm
2
 can result in structural rearrangement and 

capsule shrinkage. Considering Bédard’s work, it can be concluded that the chemical 

transitions and/or azobenzene molecule conformation changes should be the main 

reason to drive (PAH/PAZO)4 capsule shrinkage. However, the (PDADMAC/PAZO)4 

capsules didn’t demonstrate similar UV induced shell shrinkage due to the lack of such 

chemical and conformation transitions. 
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Figure 5.5 FTIR spectra of (PDADMAC/PAZO)4 (a) and (PAH/PAZO)4 (b) microcapsules before (dot 

lines) and after 2 hours of UV irradiation (solid lines). 

A remarkable feature is that the azobenzene related aggregates caused by 

photoisomerization have been used as triggers to adjust the functions of Langmuir 

Blodgett films, typical applications are electrical conductivity switching
[235]

 and liquid 

crystal alignment
[236]

. Moreover, it was reported that the aggregates or clusters of 

azobenzene derivatives induced by UV irradiation can lead to “catastrophic” 

destruction of the shell-like formations, which have been developed as strategies to 

build up photosensitive liposomes
[164]

 and polymersomes
[204]

 for drug delivery use. As 
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mentioned above, a significant red shift was observed with the (PDADMAC/PAZO)4 

microcapsule suspension as the consequence of UV irradiation. Considering the distinct 

different capsule morphology changes occurred in these two capsule systems 

containing PAZO, the authors proposed that these significant end-to-end J aggregates 

as in-line effected by PDADMAC were the main reason that caused the gradually 

capsule breakage process in our (PDADMC/PAZO)4 capsule system.  

 

Scheme 5.3 Schematic illustration of (PDADMAC/PAZO)4 microcapsule disruption induced by UV 

irradiation. 

As suggested, in the case of PDADMAC/PAZO film, layer-by-layer polyelectrolyte 

deposition was not as regular as other polyion pairs, interdigitation of the polyion 

chains were found instead of proper deposition; moreover, the patchy structures with 60 

nm of aggregates were confirmed by TEM investigation
[223]

. In the case of LbL 

microcapsules, as schematic illustrated in Scheme 5.3, such aggregates directly 

exhibited as apparent rough shell surface consisting of various domains with 

anisotropic AZO moieties (Scheme 5.3 a). Combining results of UV-Vis spectroscopy, 

one may draw a conclusion that it was the combination of PDADMAC and PAZO led 

to aggregation of PAZO segment in the progress of polymer deposition, which further 

facilitated the large extent of J aggregates when capsules were exposed to UV light 

(Scheme 5.3 b). Such aggregates in many cases have been proposed as a chiral 

“pinwheel” structure composing of a trimer or tetramer, and they were preferred to 

form readily in presence of water via strong noncovalent aromatic-aromatic 
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interactions
[237]

. Further studies described such extended aggregates in several 

assemblies as a mosaic or lattice of the small “unit” aggregates having a surface area of 

~20 Å
[238]

 (Scheme 5.3 c). The numerous formations of such mosaic aggregates in one 

microcapsule led to presence of stress raisers between the neighboring aggregates, 

which became the breaking points in progress of further aggregate assemblies (Scheme 

5.3 d). When the integrity of the microcapsules was lost on irradiation and the 

aggregate formations were not flexible enough to retain the spherical shell structures, 

the capsule gradually started to be split on the local scale, demonstrating as capsule 

swelling phenomena. Further accumulated tearing effect led to the visualized capsule 

breakage.  

   

Figure 5.6 SEM images of (PDADMAC/PAZO)4 microcapsule debris after UV irradiation of  60 min (a)  

and 120 min (b).  

* The symbols represented macro-mosaic formations (*), related stress raisers (↖) and lamellar-like 

formations (Δ), respectively. 

The hypothetical capsule disruption mechanism was supported by SEM studies. Typical 

images of the macro-mosaic like aggregates (symbol: *) and related stress raisers 

(symbol: ↖ ) in one microcapsule were given, as shown in Figure 5.6 a. With the 

increase of irradiation time, more and more capsules became broken, resulting in more 

and more debris formations. The photoisomerization induced aggregation also occurred 

in these capsules debris, leading to further re-orientation within these pieces. Such re-

orientation caused generation of small lamellar- and needle- like formations
[53]

. As 

shown in Figure 5.6 b, after 2 hours of irradiation, split capsule debris was observed 

accompanied by lamellar-like formations (symbol: Δ) nearby. And in the solution, 
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numerous needle-like structures were also observed, as the ones deposited on silicon 

wafer (Figure 5.1 d).  

Different external triggers with their abilities to affect microstructures of fabricated 

capsules have been applied to break multilayer capsules. For example, ultrasound 

radiation, with either high (850 kHz
[91]

) or low (20 kHz
[111]

) frequency, can tear the 

microcapsules into pieces through the generated cavitation; IR laser can trigger a  

instant capsule shell breakage
[106]

. Unlike the UV triggered gradually capsule swelling-

disruption process in this work, these two methods demonstrated rapid and powerful 

abilities to break fabricated LbL capsules. Moreover, ultrasound and IR laser both 

showed great potential application in biological media, where encapsulated cargo drugs 

could be released rapidly. However, one should notice, our capsule system here offered 

another possible way to liberate the cargos with slow release rate. And most 

importantly, the release speed could be adjusted by the UV intensity as well as the 

number of capsule layers (see section 5.4). 

5.3 Irreversible Effect on Capsule Disruption 

In theory, azobenzene-related aggregates, either in J or H form, are reversible. After 

irradiation, a cis to trans isomerization can be achieved through thermal treatment or 

exposure to visible light (> 400 nm). As for the PDADMAC containing multilayers, it 

was found a much higher intensity of recovery when the samples were left in dark or 

heated
[223]

. A strategy based on reversible trans to cis photoisomerization was applied 

to realize reversible control of formation and disruption of bilayer vesicles composing 

of azobenzene modified amphiphillic molecules
[239]

.  

However, for capsules composing of PDADMAC and PAZO, the UV induced capsule 

swelling was not reversible. As shown in Figure 5.7 a, capsules showed swollen but 

relatively intact morphologies after 1 hour of UV irradiation with UV intensity of 10 

mW/cm
2
. Later, subsequent visible light irradiation (>400 nm, 5 mW/cm

2
) did not 

show any reformation or shrinkage of the swollen capsules, even after 2 hours or 

irradiation (Figure 5.7 b). These results confirmed the back-isomerizaiton, if there was 

any, cannot push backwards of capsule shell changes. And these results further 

provided a clear indication that capsule disruption was based on stress destroy 
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originated from azobenzene moieties assemblies, as presented in our hypothesis 

(Scheme 5.3).   

  

Figure 5.7 SEM images of (PDADMAC/PAZO)4 capsules after 1 hour of UV irradiation (a), and  after 

additional 2 hour of visible-light irradiation (b). 

5.4 UV-regulatable Protein Release  

The organized J aggregates within the capsule multilayers induced by UV lights led to 

the disruption of PDADMAC/PAZO shells, which could offer a promising strategy for 

the controlled release of the encapsulated substances, especially for the applications 

where the abundant UV light (e.g., sunlight) could be used. To determine the feasibility, 

UV induced protein release experiments were studied (for experimental section see 

Section 3.3.8).   

Here the bovine serum albumin (BSA, 66 kDa) was used as the model substance. To 

quantify the protein release, the initial encapsulated protein amount of the sample for 

BCA test should be calculated first. For every BSA encapsulated capsule suspension (2 

ml), the initial BSA concentration in the capsule preparation procedure was 2 mg/ml, its 

volume used was 1ml, and the encapsulation effect was detected to be 80%, which 

showed good accordance with pervious work
[91]

, thus the encapsulated BSA total 

amount was 1.6 mg. To measure the protein release, the BSA-capsule suspension was 

diluted to 20 ml, which referred to the working samples. Then for protein release test, 

0.5 ml of working sample was taken out after UV irradiation. If there was no protein 

release, every portion used for protein quantification contains 40 µg of BSA protein in 

capsules.  
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As shown in Figure 5.8, BSA encapsulated PDADMAC/PAZO capsules with different 

layers (two and four bilayers) were irradiated with different UV power, 55 mW/ cm
2
 

and 27 mW/cm
2
, respectively. Generally, the protein amount released in the supernatant 

of all the measured samples increased slowly during all the irradiation times. From the 

first beginning of 80 min, the protein amount increased from ~3.5 µg to ~14 µg, and 

there was almost no difference could be found among the four samples. After that, the 

difference between samples irradiated with different UV powers gradually became 

significant. As one can see clearly, BSA was released faster with the increase of UV 

power. Meanwhile, two-bilayer capsules demonstrated a faster protein release rate than 

that of the four-bilayer capsules, which could be attributed to the faster breakage of 

relatively thin shells. As for the non-irradiated capsules, a time-dependent protein 

release behavior was detected. No pronounced difference between the microcapsules 

with different multilayers could be found during the short incubation time. After 3 

hours of stirring in water, a maximum BSA amount approximately to be 6.4 µg escaped 

from the network shell structures was determined, which was only 16% of the 

encapsulated BSA amount in microcapsules. Comparing with the irradiated ones, it was 

obvious to raise the idea that the UV irradiation exhibited pronounced effect on cargo 

substance release. And most importantly, this UV induced release was found to be 

controllable through adjusting UV energy and architecture of these microcapsules. 
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Figure 5.8 UV induced protein release as a function of irradiation time. 

For the hollow capsules, 2 hours of irradiation was enough to break all of them (Figure 

1 d). However, in the protein release experiments, the protein release from the 

(PDADMAC/ PAZO)2 capsules was only 75% (30 µg) even after 180 min of irradiation 

with intensity of 55 mW/ cm
2
. It should be noted that after UV irradiation the samples 

were centrifuged, and the supernatant was used for BCA test. It may be proposed that a 

certain amount of protein would adsorb on the debris formed during irradiation. If the 

debris was big enough, the adsorbed protein would precipitate with the pieces, leading 

to a smaller protein amount in supernatant. And another possible explanation might be 

attributed to the electrostatic interactions between the encapsulated BSA and the 

deposited PDADMACADMAC layers. These negatively charged BSA and the 

positively charged PDADMAC polymers may interact with each other via direct 

attachment or by diffusion
[240]

, which prevented the breakage of the multilayer shells, 

resulting in the slow release of the encapsulated BSA. 

5.5 Oil Encapsulation and UV Triggered Release 

As mentioned above, microcapsule swelling-breakage originated from the UV induced 

re-alignment of azobenzene molecules has triggered a UV-dosage dependent protein 
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release, illustrating great potential for externally triggered release from microcapsules. 

The initial encapsulated BSA macromolecules were active-loaded into these capsule 

shells, by co-precipitating with the formed CaCO3 particles. These resulting micro-

scaled CaCO3 particles containing BSA provided stable solid supports for following 

stepwise polyelectrolyte deposition. Differently, LbL assembly process was carried out 

on metastable templates in this section, and further cargo substances encapsulation and 

controlled release behaviors were also studied. Briefly, the UV sensitive 

PDADMAC/PAZO multilayers were deposited on oil droplets, limonene to be 

specifically, which were prepared by using emulsion technique previously (Section 

3.3.3). Generally, we are aiming to control the evaporate rate of limonene by coating 

with UV responsive polymers, proposing a possible method for the sunlight triggered 

release in cosmetic application. 

R-limonene is a stable scent ingredient with orange-like smell extracted from citrus 

fruit. Upon exposure to sunlight and moist air, limonene evaporates and oxidizes to 

produce oxidation products which act as skin and respiratory irritants and sensitizers. 

In this section, the oil droplets of R-limonene were obtained though a two-step 

emulsion approach, as schematic illustrated in experimental section (Scheme 3.5, 

Section 3.3.3).  A pre-emulsion was prepared by treating a mixture of limonene (O, oil 

phase) and surfactant solution containing negatively charged SDS (W, water phase) 

with sonication. As shown in Figure 5.9, the two-phase mixture was turned into a 

homogeneous oil in water (O/W) milky-white emulsion (Figure 5.9, b). Then, a 

secondary emulsion was obtained by sonicating the pre-emulsion with positively 

charged PDADMAC, as shown in Figure 5.9 c.  

 
Figure 5.9 Preparation of limonene emulsion.  
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These oil droplets in pre-emulsion showed good dispersity under optical microscopic 

observation, and exhibited an average size of 1616.7 nm determining by DLS (Figure 

5.10). Exposure the mixture of pre-emulsion and PDADMAC to sonication led to a 

slightly size decrease, DLS presented an average size of 1589.8nm of the secondary 

emulsion (Figure 5.11).  

 

Figure 5.10 Characterization of pre-emulsion: (a) optical image and (b) average size and distribution.  

 

Figure 5.11 Characterization of secondary emulsion: (a) optical image and (b) average size and 

distribution. 

The obtained secondary emulsion (positively charged) was used for further LbL 

polyelectrolyte deposition, starting with the negatively charged PAZO. After LbL 

assembly, five double layers of PDADMAC/PAZO-coated R-Limonene were obtained 

(as shown in Figure 5.12), named as L-(PD/PAZO)5, and used for further study. These 

encapsulated limonene droplets were visualized as a yellow suspension, because of the 

color of PAZO (Figure 5.12 a).   
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Figure 5.12 Prepared L-(PDADMAC/PAZO)5 suspension  (a) before (left) and after centrifugation (right), 

and CLSM images of [L-(PDADMAC/PAZO)2 (RBITC-PAH /PAZO) (PDADMAC/PAZO)2] with 

fluorescent dyes in the multilayer (b).  

Confocal Laser Scanning Microscopy (CLSM) measurement was also performed for 

observation of these coated droplets, as shown in Figure 5.12 b. Encapsulated limonene 

[L-(PDADMAC/PAZO)2 (RBITC-PAH/PAZO) (PDADMAC/PAZO)2] were visualized 

by incorporating rhodamine labeled polymer (RBITC-PAH) during capsule preparation 

process. CLSM image confirmed the successful encapsulation of limonene droplets by 

exhibiting the red polymer layers, and also showed good accordance with the result of 

droplet size distribution obtained from DLS data.   

After encapsulation, the average size of L-(PD/PAZO)5 was determined to be 1338 nm, 

with the distribution ranging from 955 nm to 1990 nm, judging from DLS data, as 

shown in Figure 5.13.  This size change should be attributed to the vigorously shaking 

in fabrication process, which split big oil droplets into small ones. 

 

Figure 5.13 Characterization of L-(PD/PAZO)5: (a) optical image and (b) average size and distribution. 
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UV irradiation of the encapsulated limonene was carried out with intensity of 55 

mW/cm
2
. UV irradiation caused the deconstruction of the polymeric shells, resulting in 

the release of limonene. As shown in Figure 5.14 (a-e), after irradiation, the outline of 

droplets under optical microscope exhibited a gradually increase tendency with the 

increasing of irradiation time. It can be explained that the released hydrophobic oil 

droplets tend to aggregate together to form bigger droplets in water. In the mean time, a 

lot yellow/orange colored debris was found in the suspension due to the disruption of 

multilayer shells.   

 

Figure 5.14  Optical images of oil droplets after UV irradiation and the creaming of encapsulated 

limonene.  

* Image a to e showed the optical images of oil droplets after UV irradiation for 0 min, 10 min, 30 min, 

1h, and 3 h respectively.    
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Besides the UV induced release of limonene from multilayer shells, creaming 

phenomena was observed as a function of irradiation time when exposure to UV light, 

as shown in Figure 5.14 f. These irradiated L-(PD/PAZO)5 samples were collected and 

placed into tubes. It was clear that no creaming can be found in the non-irradiated 

sample. On the contrary, creaming was found in all the irradiated samples.  It seemed 

that the amount of creaming depended on the duration of irradiation, indicating a UV-

dosage dependent disruption of the polyelectrolyte multilayers.   

UV irradiation induced multilayer deconstruction not only acted as the creaming of the 

encapsulated limonene, but also demonstrated as the precipate of the polymer shells. A 

typical example was shown in Figure 5.15. Broken shells and/or hollow shells started to 

precipitate in the 3 h-irradiated sample. While in the 30 min-irradiated sample, there 

was no obvious precipitate can be found. The formation of polymer precipitation 

provided another evidence for the UV induced changes in the limonene suspensions. 

 

Figure 5.15 Polymer shell precipitation after UV irradiation.  

* The blue arrow showed the formation of polymer precipitate. 

SEM images revealed the UV induced breakage process of L-(PD/PAZO)5 shells. After 

UV irradiation, these diluted samples with different irradiation time were dropped on 

glass slides, dried, and observed under SEM. After limonene evaporation, polymeric 

shells were left. Different from the multilayer on solid templates, these shells fabricated 

on oil seemed not uniform and possessed rough surfaces (Figure 5.16 a, b). Before 

irradiation, the PDADMAC/PAZO shells were relatively intact, and showed clear 

outline. It was obvious that more and more PDADMAC/PAZO shells became rough 

and broken with the increase of UV irradiation time. After exposure to UV light, these 
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shells underwent a process of swell (Figure 5.16 c, d and e, f) and breakage (Figure 

5.16 g~j) gradually.  
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Figure 5.16 SEM images of L-(PD/PAZO)5 polymeric shells before (a, b) and after UV irradiation of 10 

min (c, d), 30 min (e, f), 1 h (g, h) and 3 h (i, j). 

5.6 Conclusions 

In this chapter, a novel class of UV responsive polyelectrolyte microcapsules was 

successfully fabricated by alternative deposition of PDADMAC and PAZO on SiO2 

microparticles. Upon exposure to UV light, the AZO moieties in the multilayers tended 

to be self-organized in the form of J aggregates due to the influence of the polycation 

PDADMAC. SEM studies revealed that the re-orientation of AZO within shell 

formations led to great damage of capsule integrity, illustrating as a progress of 

capsules swelling and further disruption. Upon 2 hours of UV irradiation, no intact 

capsules can be found, and the capsule debris was further split into needle-like 

formations. Moreover, this UV induced microcapsule disruption process was proved to 

be irreversible, even when the capsules were exposed to the visible light. In addition, 
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such UV induced capsule disruption based on J aggregated was employed to modulate 

the release of encapsulated BSA and R-Limonene, which demonstrated a convenient 

way to controllable release of the encapsulated substance by adjusting UV intensity and 

microcapsule architecture. Promisingly, this PDADMAC/PAZO microcapsule system 

showed great application for many environmental and photochemical uses, where 

sometimes the UV light could be the only available stimuli to drive these micro-vesicle 

systems. As shown in Scheme 5.4, a schematic illustration of this UV triggered 

microcapsule swelling-disruption was given.   

 

Scheme 5.4 Schematic representation of UV triggered AZO-microcapsule swelling-disruption. 
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6. Polyelectrolyte Microcapsules Made of Diazo-resin for 

Encapsulation  

6.1 Introduction  

6.1.1 Background  

Molecule encapsulation into polymer based capsules with controlled release properties 

has attracted increasing interests during the past decades. Ideally, such encapsulation 

should provide efficient loading and essential protection for cargo substances together 

with time and site specific release. Most importantly, effective encapsulation should 

offer a way to modulate substance entrapment in the capsules which could benefit a 

long enough storage with a desired release properties
[241]

. Generally, polymeric micro- 

and nano- capsules made of LbL assembly had been intensively explored to achieve 

substance encapsulation. However, small molecules encapsulation remains a bottleneck 

and could be achieved such procedures as heat-treatment
[26]

 and crosslinking
[219]

 within 

the multilayers to decrease the shell porosity, strengthen the capsule walls and thus to 

decrease shell permeability. Many efforts have been devoted to provide solutions for the 

problems of how to encapsulate large molecules effectively into microcapsules without 

losing their activities. However, small molecules, such as drugs, dyes, and other 

bioactive substances that have a molecular weight below 1 kD are small in size and 

relatively difficult to be encapsulated by the porous polyelectrolyte complex made 

capsule shells
[242]

. Therefore, the encapsulation for such small molecules remains of 

great challenging due to possible requirements in drug delivery and microreactors 

applications. 

As mentioned above, many efforts have been devoted to provide solutions for the 

problem of how to encapsulate large molecules effectively into microcapsules without 

losing their activities. However, for small molecule encapsulation, it is still a 

challenging task. Interestingly, an effective loading of small molecule rhodamine 6G 

(Rh6G, positively charged) into microcapsules templating on melamine formaldehyde 

(MF) was demonstrated
[240]

. Unfortunately, driving force for such Rh6G encapsulation 

was based on electrostatic interaction of the oppositely charged Rh6G and PSS/MF 

complex (negatively charged), which would definitely limit the encapsulation of non-
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charged or negatively charged molecules. And the existence of MF residue in capsules 

might influence on the further bio-applications. Another example of small molecule 

encapsulation was reported as precipitation of molecules from supersaturated 

solutions
[97]

. However, the nucleation and precipitation in the capsule interior were 

conducted by controlling the pH of outer environments, which might affect the activities 

of some pH sensitive substances, unfortunately.  

To encapsulate desired cargo substance with small molecular weight requires a denser 

network structure with less and small pores. A promising approach named shell sealing 

could be used to adjust capsule properties. That is, after capsule fabrication, a 

controllable crosslinking could be employed to covalent bond the assembled 

polyelectrolytes due to the chemical reactions of functional groups. A kind of novel 

crosslinkable polyelectrolytes that access the needs is the diazo-resin (DAR). DAR has 

a strong UV absorption around 380 nm which could be assigned to the π-π* transition in 

the diazonium group
[164]

. Upon exposure to a 380 nm UV light, the diazonium group 

could be activated to form phenyl cation and then be substituted by nucleophilic groups, 

offering a novel light triggered crosslinking based on photolysis
[163, 164]

. In addition, 

DAR is easy to form LbL film via H–bonding attraction between N
+
N: of DAR and 

strong hydrogen donors (e.g., –OH) of counterpart polymers
[162]

. These entire charming 

advantages make the DAR ideal candidate to build up UV-crosslinkable microcapsules 

for encapsulation.  

On the other hand, the properties of microcapsules mainly depend on the shell 

composition. Therefore, the selection of counterpart polyelectrolyte become of great 

importance. It was suggested that a very hydrophobic multilayers would contain less 

water and should therefore be less permeable for water soluble substances than the 

hydrophilic ones
[10]

. Thus, Nafion, which consists of a perfluorinated backbone and 

contains sulfonic acid groups in short side chains
[243]

, would be an optimal polyanion to 

build up multilayer capsules with DAR. On the other hand, polyelectrolytes having 

diazonium groups, such as positively charged DAR discussed in this chapter, can react 

with Na2SO3 to form diazo-sulfonate (–N=N–SO3
-
) under mild conditions, resulting in 

charged reversed DAR to negatively charged polymer
[53, 56]

. New strategy to seal the 

porous capsule multilayer systems is therefore inspired by externally triggered reactions 

within the DAR single component microcapsules made of positively and negatively 
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charged forms of DAR. Practically, after UV induced photolysis, interacted ion charges, 

such as diazonium and diazo-sulfonate here, are eliminated, leaving the crosslinked 

diazo-resin backbones to form rigid and more internally hydrophobic phenyl ring-rich 

multilayers in DAR single component capsule system. Thus, aim of this work was to 

explore the possibilities to reduce capsule permeability via UV-induced charge group 

modification. Strategically, the use of DAR components with both charges as well as 

the polyelectrolyte Nafion
[244]

 as layer constituents for capsules fabrication would 

endow the prepared capsules with minimal shell permeability. 

6.1.2 Aim and Objectives 

The aim here is to prepare novel capsule systems containing diazonium groups and to 

use them as potential microcontainers for small molecule encapsulation. The basic idea 

is that the ionic bonds of counterpart ions could be converted to covalent chemical 

bonds through DAR-related photolysis upon direct exposure to UV light. And this 

chemical transition could provide a remote controlled method to seal the multilayers and 

further to influence permeability the fabricated microcapsules.  

Therefore the main objectives of this chapter are:  

1) To design and fabricate multilayer microcapsules (Nafion/DAR)4, DAR8 containing 

diazonium groups. To synthesize UV sensitive DAR, and use it to fabricate 

microcapsules with Nafion and charge reversed DAR.    

2) To investigate the parameters corresponding to the UV induced capsule shell sealing, for 

example chemical transitions within multilayers, and the change of shell hydrophilicity.  

3) To study the possibilities of cargo substances (macro-/small- molecules) encapsulation 

in these UV sealed microcapsules.  

6.2 Fabrication of DAR-contained Microcapsules 

6.2.1 A New Route to Fabricate Single Component Microcapsules  

The single component DAR microcapsules were built up based on Laschewsky’s 

coating by multiple polyelectrolyte adsorption-surface activation (CoMPAS) method
[53]
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with minor adjustment, as shown in Scheme 6.1. Generally, unlike the charge reversal 

activation performed on the film surface directly, the positively charged DAR polymers 

were converted into negatively charged ones by treatment with equal moles of an ice-

cooled mixture of Na2SO3 and Na2CO3 firstly; then these oppositely charged polymers 

were used as polyanion and polycation for layer-by-layer assembled microcapsule 

preparation. This improved method benefited a simple way to fabricate single 

component multilayer capsules through a traditional route as alternating deposition of 

“positively” and “negatively” charged polyelectrolytes. 

 
Scheme 6.1 Schematic illustration of single component DAR microcapsule preparation procedure. 

* The charges of DAR polymers were reversed firstly (a), layer-by-layer assembly was carried out by 

alternating deposition of oppositely charged DAR polymers (b). 

The key factor for fabrication of single component microcapsules is the charge reversal 

step, either on the multilayer surface or in the polyelectrolyte solution strategically. As 

shown in Scheme 6.1 a, upon exposure to alkali sulfite, the aromatic diazonium salt 

groups (–N2
+
) underwent a diazo coupling reaction, which converted them into diazo-

sulfonate (–N2–SO3
-
). This reaction occurred very fast with an obvious colour change, 

from dark green to yellow/orange in this work, could be finished within few seconds
[245]

. 

The most commonly used sulfite is sodium sulfite (Na2SO3)
[245]

, as the one used in our 

experiment. The pH of the reaction system would greatly influence the coupling 
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reaction. As suggested, the reaction only led to generation of dark decomposition 

product phenylhydrazine at lower pH, therefore the sodium carbonate (Na2CO3) was 

added to buffer the reaction mixture at low temperature
[245]

. 

It was suggested that the DAR had a strong absorption at ~ 380 nm
[164]

. In this work, the 

original DAR aqueous solution (positively charged, DAR○+ ) was found a strong 

absorption at 372 nm (Figure 6.1, solid line), which originated from the π-π* transition 

of the diazonium group
[164]

. By treatment with a mixture of Na2SO3/Na2CO3 at low 

temperature, a charge reversed DAR solution (negatively charged, DAR○- ) was obtained, 

characterized as a significant red-shift by 28 nm located at 400 nm, accompanying with 

a maximum absorption intensity decrease in UV-Visible spectroscopy (Figure 6.1, dot 

line). This pronounced change was attributed to formation of diazo sulfonate groups, 

which was found a maximum absobance at longer wavlength
[56]

.  

 

Figure 6.1 UV-Vis absorption spectra of DAR (solid line) and charge reversed DAR (diazo sulfonate, dot 

line) solutions. 

6.2.2 Fabricated DAR-contained Microcapsules  

After LbL assembly driven by electrostatic interactions of polyions, monodisperse 

hollow (Nafion/DAR)4 and DAR single component microcapsules (DAR8) with four 

double layers were obtained, as shown in Figure 6.2, respectively. Under SEM 
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observation, these capsules were flat with creases and folds. Specially, a unique pattern 

of creases and folds that different from other ordinary microcapsules were observed in 

(Nafion/DAR)4 microcapsule system. Compared with the SEM images of DAR single 

component microcapsules, these special patterns should be attributed to the existence of 

Nafion component, which made capsules more hydrophobic internally and apparently 

looking more elastic once collapsed upon drying. 

   

   

Figure 6.2 SEM images of DAR contained microcapsules at various magnifications.  

Top panel: (Nafion/DAR)4 microcapsules, bottom panel: DAR single component microcapsules. 

The stepwise assembly processes of the two kinds of microcapsules were monitored by 

using quartz crystal microbanlance technique (QCM). The mass increase due to the 

polyelectrolyte adsorption was estimated from the QCM frequency shift according to 

the Sauerbrey equation
[210]

 as follows:  

2

02 f
f m

A 


                                                          (6.1) 

where the area of the gold coated crystal (A) was 0.205cm
2
, the density of the crystal (ρ) 

was 2.648g/cm
3
, and the shear modulus (µ) was 2.947×10

11
 g/cm·s

2
, and the resonant 

frequency of the crystal (f0) used in this work was 10 MHz. Thus, the mass change due 

to the polymer adsorption on the electrode can be estimated as follows:  
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 m( ) 0.905468 ( )ng F Hz                                              (6.2) 

Taking into account the polyion film density adsorbed on the electrode, assumed to be 

1.2 ± 0.1g/cm
3[246]

, the thickness of adsorbed film can be estimated as follows:  

d ( ) 0.368076 ( )Å F Hz                                                 (6.3) 

 

 

Figure 6.3 Frequency shift (-ΔF) due to alternatively polyelectrolyte adsorption (a, c), and estimated film 

mass (Δm) and thickness (Δd) changes (b, d).  

Top panel: (Nafion/DAR)4 system; Bottom panel: DAR8 system. 

Since there are two different microcapsule systems involved here, the results will be 

presented in two parts: 

(Nafion/DAR)4. As shown in Figure 6.3 a, QCM monitored a linear relationship (R² = 

0.9895) between frequency shift, -Δf, and the number of polyelectrolyte deposition 

cycles, due to the alternate adsorption of aqueous Nafion and DAR. The average 

frequency decrease were found to be 56 Hz for Nafion and 45 Hz for DAR, which 

meant that 5/9 of the  bilayer mass was composed of Nafion and 4/9 of DAR. After 4 
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bilayers deposition, a total mass increase of 367.03 ng was found on a surface of 0.205 

cm
2
, which was accompanied with a thickness increase of 14.92 nm for 4 Nafion/DAR 

bilayers (Figure 6.3 b). To be specifically, an average thickness of one Nafion layer was 

estimated to be about 2 nm. Such relatively thin polyelectrolyte layers revealed that 

almost no free –SO3
-
 ions dissociated from Nafion were present in the internal 

multilayers, which would affect water uptake and proton conductivity of the multilayer 

system
[225]

 (will be discussed later, see Section 6.4).  

(DAR)8. As shown in Figure 6.3 c, a better linear relationship (R² = 0.9998) between 

frequency shift, -Δf, and the number of polyelectrolyte deposition cycles was observed 

by QCM measurements, due to the alternate adsorption of aqueous DAR with two kinds 

of charges. The average frequency decrease were found to be 37.38 Hz for DAR○+  and 

39.56 Hz for DAR○- , which meant almost equal moles of oppositely charged DAR 

deposited on the crystal surface. After 4 bilayers deposition, an average mass increase 

of 69.9 ng was estimated from one double layer (DAR○+ /DAR○- ), accompanying with a 

thickness increase of 1.4 nm for each single layer (Figure 6.3 d).  

6.3 UV Induced in-situ Covalent Bonding within Capsule Shells 

The UV responsive properties of these fabricated capsules were investigated. In this 

work, the UV intensity used was approximately 55 mW/cm
2
, and the UV treatment 

duration was 10 min. The structural formulas of these polyelectrolytes used for capsule 

fabrication were given in Scheme 6.2. 
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Scheme 6.2 Structural formulas of the polyelectrolytes used in this chapter. 

The diazonium group was reported as a good leaving group and it would be cleaved 

forming phenyl cation under UV irradiation with a suitable light source. Thus, upon 

irradiation it could be substituted by nucleophilic groups resent in polyanions, such as 

carboxylic, phosphate and sulfonate groups
[163]

. Therefore, in this work, UV irradiation 

led to photolysis within the interacted ion pairs of Nafion/DAR and DAR○+ /DAR○- , 

which exhibited as the decomposition of diazonium group (and formation of a sulfonate 

covalent bond), as shown in Scheme 6.3. Different from the other UV-related transitions, 

as reported by Katagiri
[134]

 and Sukhorukov
[16, 219]

, this DAR related transition from 

ionic bonds to covalent ester bonds required no polymer chain re-arrangement or re-

conformation within the multilayers, thus there was no obvious capsule size decrease 

can be found in this work and somewhere else
[104]

.    

http://pubs.acs.org/action/doSearch?action=search&author=Katagiri%2C+Kiyofumi&qsSearchArea=author
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Scheme 6.3 Photolysis reactions of (a) Nafion/DAR and (b) DAR single component multilayer systems. 

The process of UV-induced DAR decomposition can be easily monitored by the 

observation of absorbance change in UV-Vis spectroscopy. As shown in Figure 6.4, for 

both of these two kinds of DAR contained microcapsules, the remarkable decreases in 

the intensity of ~ 380 nm absorption band were followed, indicating of the reactivation 

of diazonium groups during UV irradiation.  
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Figure 6.4 UV-Vis absorption spectra of (Nafion/DAR)4 (a) and DAR8 (b) capsules before (solid line) and 

after (dot line) UV irradiation. 

In particular, comparing with DAR aqueous solution (Figure 6.1, solid line), assembled 

DAR8 microcapsule suspension was observed an absorption centred at 382 nm 

accompanying with a red-shift by 10 nm and a signal intensity decrease (Figure 6.4 b, 

solid line). Both of the two changes could be explained as a consequence of deposition 

of charge reversed DAR (diazo-sulfonate). However, this shifting towards longer 

wavelength was not as pronounced as that of the pure DAR○-  solution, indicating that 

the DAR○-  was only the partial component for the single component multilayers
[56]

.  

After 10 min of UV irradiation (Figure 6.4 b, dot line), the absorbance at 382 nm 

decreased dramatically due to the photoreactions occurred within paired charges. In the 
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mean time, a concomitant increase was observed at about 290 nm, similar results can be 

found elsewhere 
[56, 165, 169]

.  

Diazonium is well known as a kind of good leaving group activated by UV (~ 380 nm 

wavlenght), which could rapidly react with nucleophilic groups presenting in 

polyanions, such as carboxylic, phosphate and sulfonate groups
[247]

. In this work, upon 

exposure to UV light, the paired diazonium/sulfonate and diazonium/diazo-sulfonate 

groups underwent a chemical transition process. Specially, one should notice that for 

DAR single component system this photoreaction process in water is quite complex 

involving diazonium group decompositon followed by generation of cationic 

intermediates
[165]

 and isomerization of diazo-sulfonate
[248]

. As a concequence, the 

electrostatic interacted charges were eliminated and new covalent bonds were generated 

instead upon exposure to UV light. Technically, this UV induced photolysis within 

DAR contained microcapsules can be also confirmed by FTIR results. As shown in 

Figure 6.5, for both of the (Nafion/DAR)4 and DAR8 microcapsule systems, absorption 

peaks around 2222 cm
-1

, 2169 cm
-1 

and 1580 cm
-1 

were observed in the FTIR spectra 

before irradiation (Figure 6.5 a, c), which were originated from the asymmetric 

stretching of –N2
+[164]

 and symmetric stretching of –C=C– in phenyl group conjugated 

with the diazonium group
[237]

.  

For (Nafion/DAR)4, after 10 min of irradiation with an UV source (50 mW/cm
2
), the 

absorption at 2222 cm
-1

, 2169 cm
-1 

and 1580 cm
-1

 disappeared completely (Figure 6.5 b), 

indicating the fast decomposition of the diazonium groups. However, a new absorption 

peak at 1162 cm
-1

 corresponding to the generation of sulfonate group coupled with the 

phenyl group
[164]

 was overlapped by the strong C–F2 stretching of Nafion
[230]

.  
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Figure 6.5 FTIR spectra of (top panel) (Nafion/DAR)4 and  (bottom panel) DAR8 microcapsules before (a, 

c) and after (b, d) 10 min of UV irradiation. 

Similar results were also found in DAR8 microcapsule system, demonstrating as a 

complete disappearance of diazonium group signals and partially decreased absorption 



142 

 

of –C=C– in phenyl group. Specially, the peak at 1364 cm
-1

 was originated from the 

stretching of –SO3
-
 conjugated with the azo bond;  and the peak at 1106 cm

-1
 

corresponded to the N–O stretching of the complexes of diazonium and sulfonate 

groups (–N2
+

 →OSO2
-
)
[249]

. Similar stretching in the FTIR spectra of Nafion/DAR 

system was covered by C–F2 signal. With the fast decomposition of the diazonium 

group, the peak representing normal absorption of phenyl ring at 1595 cm
-1

 was 

observed due to the missing of previous dominating peak (phenyl group linked with 

diazonium group) in the nearby region
[250]

. In the mean time, the absorption peaks at 

1364 cm
-1

 and 1106 cm
-1

 disappeared, for both of which should be attrributed to the 

elimination of diazonium and diazo-sulfonate groups in the progress of photolysis 

(Figure 6.5 d). 

 

Figure 6.6 FTIR spectra of (Nafion/DAR)4 capsules before (a), and after UV irradiation with UV lamp (b) 

and sunlight (c). 

This DAR related photolysis occurred very fast, e.g., could be almost completed within 

50 s with a 80 W medium mercury lamp at a distance of 13 cm
[163]

. In this work, no 

further change can be found when extending irradiation duration to 20 min (data not 
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shown). In addition, this UV induced photolysis reaction in our work was very sensitive 

to natural sunlight. Exposure of these DAR contained capsules (in quartz cuvette) to 

sunlight for 6 hours with UV intensity ranging from 431 µW/cm
2
 to 1.848 mW/cm

2 

(detected with 30 min intervals by using a ILT1400 radiometer, International Light 

Technologies Inc.) can also cause a similar chemical transition within multilayers, 

indicating that the gradually accumulated sunlight energy eliminated the absorption 

peaks at 2169 cm
-1 

and 1580 cm
-1

. A typical example of the DAR contained 

microcapsules with UV irradiation of UV lamp and sunlight, (Nafion/DAR)4 to be 

specifically, was shown in Figure 6.6.  

Figure 6.7 Photographs of water droplets on (Nafion/DAR)4 (a, b) and DAR8 (c, d) multilayers before 

(left) and after (right) UV irradiation. 

UV induced chemical transitions not only converted the electrostatic interactions 

(diazonium/sulfonate, diazonium/dizao-sulfonate) into covalent bonding, but also 

changed the water permeability of the multilayers, demonstrating as a decreased 

multilayer film wettability directly. As shown in Figure 6.7, typical water droplet shapes 

and corresponding contact angles on the multilayers were given.  

For (Nafion/DAR)4 multialyers, an average water contact angle of 53.5 ± 3.42 ° was 

detected before UV irradiation, and then the UV treatment resulted in a remarkable 
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reduction of surface water wettability, demonstrating as observed an average water 

contact angle of 78.05 ± 0.99 ° (Figure 6.7 a, b). Similarly, the UV irradiation decreased 

the surface water wettability of DAR single component multilayer system, as a clear 

change of average water contact angle from 37.56 ± 4.07° to 49.20 ± 4.24° was detected 

before and after irradiation, respectively (Figure 6.7 c, d). 

6.4 UV-induced Macromolecule Encapsulation  

UV exposure triggered a chemical reaction in the DAR contained systems, either 

Nafion/DAR or DAR○+ /DAR○- , converting electrostatic interactions to covalent bonds, 

where the polyelectrolyte molecules likely become compacted and the pore size in the 

multilayer wall was therefore reduced. Thus, the water permeability of the multilayer 

wall was decreased upon UV irradiation, due to the covalent cross-linking between 

paired diazonium/sulfonate or diazonium/diazonium sulfate groups, resulting in 

retention of encapsulated substances. 

First, an attempt was made for the purpose of encapsulation of polymers with a large 

molecular weight. (Nafion/DAR)4 capsules were studied here as typical examples to 

encapsulate the model cargo substance, fluorescent polymer AF488-Dextran. 

As shown in the following Confocal Laser Scanning Microscopy (CLSM) images 

(Figure 6.8), 10 min of UV irradiation can crosslink (Nafion/DAR)4 capsules, and can 

retain fluorescent polymers (AF488-Dextran, 10 kDa) for a long time (2 or more weeks), 

when compared with capsules without irradiation. As one can see clearly, right after UV 

irradiation, all the capsules were filled with fluorescent polymers, showing very strong 

fluorescent signal (more than 250 units, Figure 6.8 a). With increase of time, fluorescent 

polymers gradually penetrated through the capsule shell network structures or defects, 

demonstrating as part of the capsules became hollow under CLSM observation. 

However, besides the empty capsules, most of the irradiated capsule can retain the 

fluorescent polymers inside even after 2 weeks, which was confirmed by the high 

fluorescent intensity inside capsules (~200 units, Figure 6.8 f). 
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Figure 6.8 CLSM images of AF488-Dextran encapsulation in (Nafion/DAR)4  microcapsules at various 

magnifications.  

* These images were captured right after irradiation (a, b), and over 1 week (c, d) and 2 weeks (e, f) after 

irradiation. The line scan insets showed relative fluorescent intensity in capsules. 
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The substantial change in permeability of the capsule shells was further verified by the 

control groups, to which no UV irradiation was introduced. As one can see from the 

following images, without irradiation, fluorescent polymers cannot be retained inside 

capsules for as long as in the irradiated ones. Briefly, after 1 week, almost half of the 

dye polymers had already escaped, leading to weak fluorescent signals (~100 units, 

Figure 6.9 d); After 2 weeks, no fluorescent signal can be found, even doubled the 

emission laser power at high magnification (Figure 6.9 e, f). 
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Figure 6.9 CLSM images of AF488-Dextran encapsulation in (Nafion/DAR)4  microcapsules without 

irradiation at various magnifications.  

* These images were captured after wash steps (a, b), and over 1 week (c, d) and 2 weeks (e, f) after wash 

steps. Image f presented corresponding capsules in bright field at high magnification. The line scan insets 

showed relative fluorescent intensity in capsules. 

  

Figure 6.10 CLSM images of AF488-Dextran contained (PSS/DAR)4  microcapsules without irradiation 

after wash.  

* Image b showed the corresponding capsules in bright field. The line scan insets showed relative 

fluorescent intensity in the capsule. 

As one can see clearly that the capsules without irradiation can also retain fluorescent 

polymers inside even after 1 week (Figure 6.9). Thus, it was assumed that the existence 

of Nafion, may have an effect on the permeability of (Nafion/DAR)4 microcapsules. 

Here, (PSS/DAR)4 microcapsule without fluorine (F) element were fabricated and 

studied. As shown in the following images, it was obvious that without irradiation, no 
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fluorescent polymers can be retained inside, only few of them can be trapped in the 

shells, leaving green ring-like images (Figure 6.10). 

Since the significant difference of permeability for fluorescent polymer (10 kDa) 

between the non-irradiated (Nafion/DAR)4 and (PSS/DAR)4 capsules were observed, 

the authors proposed this could be attributed to the different multilayer composition of 

the two capsule systems. Nafion, as a classic example of the perfluorosulfonic polymers, 

was reported as the most common membrane polyelectrolyte used in direct methanol 

fuel cells due to its good chemical and thermal stability and high proton conductivity 
[201, 

226, 239]
. Here, in our experiments, this Nafion was used to build up (Nafion/DAR)4 

multilayer film. Comparing with the (PSS/DAR)4 multilayer, (Nafion/DAR)4 multilayer 

was found to be a more hydrophobic surface, as determined by the water contact angle 

measurement. As shown in Figure 6.11, a more hydrophilic surface with an average 

water contact angle of 39.65 ± 1.80° for (PSS/DAR)4 multilayers demonstrated when 

compared with that of the (Nafion/DAR)4 multilayers (Figure 6.7 a). In theory, the 

water contact angle of Nafion terminating film should be very hydrophobic, close to 

118° of Teflon
[227]

. Here, in this work, the water wettability of Nafion/DAR was great 

adjusted by the outmost DAR layer, although the underlying hydrophobic Nafion layer 

still had influence on the surface property due to the interpenetrated chains.  

 

Figure 6.11 Photographs of water droplets on (PSS/DAR)4 multilayers. 

LbL assembly facilitates molecule encapsulation in microcapsules, especially for the 

large macromolecules have a molecular weight above 4 kDa
[26, 66, 219]

. As shown in 

above, the (Nafion/DAR)4 allowed effective encapsulation of dye polymers with a 

molecular weight of 10 kDa, even without UV irradiation. In other words, these 10 kDa 

dye polymers were easy to go inside microcapsules, but slightly difficult to go outside. 
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The authors proposed this unique semi-one-way permeability as a result of the 

combination of high hydrophobicity and good film-forming property of Nafion layers. 

In bulk membrane, it was reported Nafion possessed a highly permeable to water due to 

very high water hydration effect of its –SO3
-
 groups, and the existence of 

interconnections between –SO3
-
 groups which facilitated rapid transfer of water through 

the Nafion
[228]

. In LbL films containing Nafion, such interconnected ionic channels 

were not expressed, because the –SO3
-
 charges were complemented with –N2

+
 of DAR, 

preventing rearrangement of fast ion channel formations
[221, 229]

. Therefore, the proton 

mobility of Nafion/DAR system mainly depended on free –SO3
-
 groups in the 

multilayer. However, as motioned above, QCM results revealed a thin layer structure of 

Nafion in the Nafion/DAR multilayer system (Figure 6.3), demonstrating the lack of 

free –SO3
-
 in the internal layers. As restricted by the counterions of DAR, no 

hydrophilic domain (mainly the dissociated –SO3
- 
groups) can achieve water uptake and 

assist proton conductance, leaving the very hydrophobic Teflon-like backbone structure 

of Nafion to play a dominant role. As a consequence, the water mobility was greatly 

reduced in the multilayer system, leading to a low permeability of the Nafion/DAR 

multilayer shells. After diffused through the capsule shells driven by concentration 

difference, the fluorescent polymers were trapped inside the shells due to the less water 

containing and less permeable hydrophobic Nafion membranes, which tended to shrink 

in aqueous solution. 

6.5 UV-induced Small Molecule Encapsulation  

However, the challenge is in encapsulation and securely storing of small active 

molecules. Many efforts have been devoted to altering the permeability of multilayer 

shells in the purpose of nanoscale encapsulation of bio-polymers, drugs and dyes. Such 

strategies as spontaneous deposition of water-soluble substances with charged 

oligomers
[63]

 and controlled precipitation into capsules
[97]

 were developed to achieve the 

goals. Here, in this work, we explored a novel method based on DAR contained capsule 

system to realize small molecule encapsulation without any chemical bonding to cargo 

substances or help of external adjustment, but only with the remote trigger of UV light.  
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Specifically, the dye molecule rhodamine B (RhB) with a molecular weight of 479 was 

used as a typical example of small molecules. And the DAR contained microcapsules, 

both   (Nafion/DAR)4  and DAR8 were studied. 

   

 

Figure 6.12 CLSM images of rhodamine B contained (a) (Nafion/DAR)4  and (b) DAR8 microcapsules 

after 10 min of UV irradiation. Image c presented the RhB encapsulated DAR microcapsules before (left) 

and after (right) centrifugation at 4500 rpm for 5 min. 

* The line scan insets showed relative fluorescent intensity in capsules. The arrow represented a broken 

capsule, in which no RhB could be retained.   

Generally, after 10 min of UV irradiation, the DAR-related photolysis covalent 

crosslinked the multilayers
[104]

, and also converted the hydrophilic diazonium groups to 

the hydrophobic ester groups
[251]

 (see Scheme 6.2). Accompanied by the elimination of 

paired charges, the network-like shell structures became denser with less and smaller 

pores, resulting in a great reduction of capsule shell permeability. As shown in the 
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Figure 6.12, after 10 min of UV irradiation, the DAR contained microcapsules, both 

(Nafion/DAR)4 and DAR8, acted like excellent micro-containers for the small RhB 

molecules, demonstrating as an average fluorescent signal intensity of ~ 89 units inside 

capsules and ~ 0 unit outside capsules. In the contrary, the capsules with defects can’t 

entrap any dye molecule inside, exhibiting an empty cavity under confocal laser 

scanning microscopy (CLSM) observation (Figure 6.12 b, ~ 0 units inside capsules, as 

pointed out by an arrow).  

As found in our work (section 6.4 and 6.5), the UV-induced shell sealing facilitated 

molecule encapsulation in fabricated microcapsules. Remarkably, small molecule RhB 

was successful encapsulated in these UV-sealed DAR capsules through diazonium-

related photolysis. However, one should notice, small molecule encapsulation was not 

only attributed to the conversion of electrostatic interactions into covalent bonds, but 

also benefited from the capsule architectural property. To be specifically, the 

counterpart polymers (Nafion and DAR○- ) of DAR made their contribution to successful 

encapsulation (as discussed in section 6.3 and 6.4). On the contrary, the PSS/DAR 

microcapsules without such hydrophobic polymers in their shells can’t encapsulate 

macromolecules (AF488-Dextran, 10 kDa, Figure 6.10) in their cavities. Moreover, UV 

irradiation can’t decrease their shell porosity significantly, as confirmed by their limited 

ability to encapsulate macromolecules with molecular weight from 9.5 kDa to 186 

kDa
[104]

. Similarly, the polymeric shells containing diazonium groups were only able to 

encapsulate macromolecular dextran (4 kDa)
[252]

.   

6.6 Modulated Long-term Release of Encapsulated Small 

Molecules  

Theoretically, capsule shells were network-like structures, with a lot of pores in the 

multilayers. Sealing methods, e.g., DAR-related photolysis discussed here, could 

decrease the pore size and then to make the shells become semi-permeable or less 

permeable, resulting in the retention of loaded substances for certain time. In this work, 

two novel microcapsule systems containing DAR were used to achieve small molecule 

encapsulation, and to modulate the encapsulated substance release (for experimental 

section see Section 3.3.7). As one can see from Figure 6.13, the encapsulated RhB 

amount in the microcapsules with and without 10 min of UV irradiation normalized by 

capsule number was shown. For the (Nafion/DAR)4 capsules, 690 fg RhB can be 
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retained in one (Nafion/DAR)4 capsule, while there was no more than 1/3 of RhB 

content (204 fg) detected in the non-irradiated (Nafion/DAR)4 capsules. This 

pronounced difference between the microcapsules with and without irradiation 

illustrated remarkable decreased permeability which was attributed to the DAR-related 

sealing effect on the capsules. As time went on, the RhB molecules gradually penetrated 

out the microcapsules. 11 days later, there was only 93 fg of RhB found in the non-

irradiated capsules. This could be explained as that the charged dye molecules were 

trapped in the shells through electrostatic interactions with oppositely charged Nafion. 

However, in the irradiated capsules, there was 262 fg of RhB can be detected, which 

was almost triple of that in non-irradiated ones, confirming that most of the RhB 

molecules were retained by physical encapsulation instead of the chemical bonding. In 

addition, the sum of the RhB content in capsules and in supernatant roughly matched 

the total RhB amount encapsulated in per sample. From the two curves, it was 

confirmed that the DAR-related photolysis greatly ‘sealed’ the capsules, slowed down 

RhB molecules penetration. Similar results of the sealing effect can also be found in 

DAR single component microcapsule system, where 707 fg and 202 fg of RhB were 

found in irradiated DAR8 microcapsules at Day 0 and Day 11 respectively, showing 

continuous gradual leakage from possibly not completely sealed capsules. 

 

Figure 6.13  Mass of encapsulated RhB amount in per DAR contained microcapsule with and without UV 

irradiation. 
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Specially, one thing that worth mentioning for encapsulation should be the relatively 

small RhB amount found in the non-irradiated DAR8 capsules when compared with the 

non-irradiated (Nafion/DAR)4 capsules. As shown in Figure 6.13, at the beginning there 

was 156 fg of RhB found in non-irradiated DAR8 microcapsules, then a very fast release 

occurred in a duration of 11 days, resulting in 10% (16 fg) of RhB retained inside 

capsules over 11 days. On the contrary, 11 days later, there was 45.6% of RhB can be 

found in the non-irradiated (Nafion/DAR)4 capsules. As discussed in Section 6.4, in the 

Nafion/DAR system, Nafion played a predominant role in encapsulating of large 

molecule, due to its high hydrophobicity and good film-forming properties. Therefore, 

with the existence of Nafion, the (Nafion/DAR)4 system was more hydrophobic and less 

water permeable after fabrication, exhibiting a good dye retention effect than DAR8, 

even without UV irradiation. 

Due to the possible bleaching effect of RhB, it might be not precise for fluorescent 

molecule amount quantification over a long time. However, the CLSM images of RhB 

encapsulated capsules over long duration after UV irradiation could provide us 

qualitative proof of the successful small molecules encapsulation. As shown in Figure 

6.14, over two months after UV irradiation, there was still certain fluorescent signal 

could be detected in the UV-sealed (Nafion/DAR)4 microcapsules, although the average 

fluorescent signal intensity was very weak (~ 38 units). Comparing with the CLSM 

images in Figure 6.12, these images were taken with an enhanced laser power, leading 

to low-contrast capsule images and quite noisy background with an average fluorescent 

signal intensity of ~ 20 units. On the other hand, no fluorescent signal can be visualized 

from the other capsules (non-irradiated (Nafion/DAR)4 and irradiated/non-irradiated 

DAR8) (data not shown), illustrating that almost all the encapsulated fluorescent RhB 

molecules were penetrated out these microcapsules during two months. Therefore, 

considering the RhB release curves in Figure 6.13, it could be concluded that the 

existence of Nafion in (Nafion/DAR)4 microcapsules benefited a slow RhB permeability 

behavior, especially for the irradiated ones. At low magnification, almost all the 

irradiated (Nafion/DAR)4 microcapsules containing RhB showed red dot-like images 

under CLSM observation, as shown in Figure 6.14 c. Specially, a broken capsules was 

pointed out in bright filed (Figure 6.14 d). This broken capsule, similar as other ones 

with defects in our work, cannot entrap any dye molecule in cavity, showed no 

corresponding fluorescent images under CLSM investigation (Figure 6.14 c). This result 



154 

 

confirmed the mobility of RhB molecules in capsule cavity, and further verified that the 

successful small molecular RhB encapsulation in DAR-related microcapsules was based 

on capsule shell sealing, rather than potential electrostatic interactions between polyions 

and RhB or chemisorption effect. 

  

  

Figure 6.14 CLSM images of rhodamine B contained (Nafion/DAR)4  microcapsules over 2 months after 

UV irradiation.  

* The line scan inset showed relative fluorescent intensity in capsule. The arrow presented a broken 

capsule. 

Besides the micro-scale LbL multilayer capsules as discussed in this thesis, other 

delivery systems with diverse architectures and release manners have been developed, 

in order to meet the urgent requirements in controlled small drug delivery field. For 

examples, the ultrathin (11 ± 2 Å) LbL film system composed of poly(b-amino esters) 
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(PBAEs) and poly(carboxy-methyl-b-cyclodextrin) (polyCD) complexes was proposed 

to control the release of small drugs (ciprofloxacin, flurbiprofen, and diclofenac). These 

drug molecules were non-covalent chemical interacted with cyclodextrins, and their 

release was modulated as zero-order release kinetics through hydrolytic top-down 

degradation of the film layers
[253]

. Unlike the LbL multilayer system, other hybrid 

delivery carriers (e.g. liposomal-, polymeric-, micelle-, dendrimeric- based and viral-

like) based on nanoparticle platform have been developed as well
[254]

. The use of such 

nano-carriers for drug delivery includes many advantages, for example enhanced water 

solubility, specific accumulation and low nonspecific toxicity. And the most 

outstanding feature of these nano-carriers should be their great potential for clinic use, 

as several products of them have been become commercial available (e.g. liposomes: 

Doxil, Myocet, Daunoxome) or under approval of preclinical/clinical trials (e.g. micelle: 

Genexol-PM, NK911; Viral-like: HSP-DOX, CPMV-DOX)
[254]

. However, there are still 

some challenges existed such as limited drug encapsulation efficiency and uncontrolled 

drug release. To overcome these problems, careful considerations of carrier design (e.g. 

structural improvements) should be made. Strategically, LbL assembly approach would 

be a promising technique to solve the problem, by providing steady nano-scale shells 

with large hollow cavities to entrap small molecular drugs and modulate their release.  

6.7 Infrared Laser Induced Instant Release of Encapsulated Small 

Molecules 

A laser induced RhB molecule release double confirmed the physical encapsulation 

effect, for both of the (Nafion/DAR)4 and DAR8 microcapsules. In order to achieve 

laser induced cargo substance release, the pre-aggregated gold nanoparticles were 

introduced in capsule shells after capsule fabrication and dye encapsulation processes 

with the addition of a polyelectrolyte layer. Consequently, these capsules after gold 

modification looked not as monodisperse as initial ones; some cloud-like gold 

nanoparticle clusters were formed (symbol Δ, Figure 6.14 b), bridging the adjacent 

microcapsules (symbol *, Figure 6.14 b). The fluorescent intensity inside capsules 

became lower which might be attributed to the many wash steps during gold 

nanoparticle introduction. However, the purpose of this work was to observe the 

potential instant release of RhB triggered by IR laser qualitatively, thus the slightly 

changes in capsules could be acceptable.  
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Figure 6.15 CLSM images of RhB-(Nafion/DAR)4-( Au/Nafion/DAR/Au) microcapsules before (a, b) 

and after (c, d) laser irradiation.  

* Images b and d presented capsules in bright field. The arrow presented a broken capsule, from which 

the fluorescent molecules were released. The symbol * presented the microcapsules, symbol Δ presented 

gold clusters. 

As shown in Figure 6.15 (a, b), the laser induced Nafion/DAR microcapsules were used 

as a typical example here (for experimental section see Section 3.3.9). Before laser 

irradiation, the gold cooperated microcapsules showed red fluorescent images under 

confocal laser scanning microscopy observation. After irradiation for several seconds, 

laser generated local heating damaged capsule shells
[224]

, promoted RhB molecule 

release. A typical example of the hollow broken capsule was given, as in Figure 6.15 (c, 

d). Compared with the initial ones, when the dye molecules were released, the 

microcapsule cavity became slightly dark, and local circumstance became fluorescent 

visible.  
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6.8 Conclusions 

In summary, two kinds of novel UV responsive polyelectrolyte microcapsules 

containing DAR were fabricated by using layer by layer assembly. Upon direct 

exposure to UV light, the ionic bonds of counterpart ions were fast converted to 

covalent chemical bonds through DAR-related photolysis, which offered an externally 

controlled method to seal the multilayer capsules. These capsules were investigated as 

unique micro-containers for cargo substance encapsulation, which benefited from UV 

induced photolysis of the paired charges and the remaining hydrophobic backbones. 

Simply triggered by UV light, both of the two kinds of microcapsules exhibited 

excellent and efficient macro-/small- molecule encapsulation effect. When compared 

with the non-irradiated ones, the UV-sealed microcapsules exhibited a much higher 

RhB preservation, even over a long time (11 days) after UV irradiation. Specifically, 

without UV irradiation, the (Nafion/DAR)4 microcapsules showed a better dye 

encapsulation effect, which could be attributed to the exsitence of Nafion. These two 

DAR contained microcapsule systems would be very promising micro-

containers/vesicle for medical, biotechnological applications. And remarkably, such 

microcapsules also showed great application for many environmental and 

photochemical uses, where sometimes the abundant UV light could be applied as the 

efficient external trigger. As shown in Scheme 6.4, schematic illustration of this UV 

triggered capsule shell sealing based on DAR-related photolysis was shown. 
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Scheme 6.4 Schematic representation of UV triggered capsule sealing based DAR-related photolysis. 
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7. Externally Triggered Dual-function of Complex 

Microcapsules  

7.1 Introduction  

7.1.1 Background 

Numerous works have been done to provide solutions for diverse requirements in 

different fields ranging from biotechnology, pharmaceutics and chemical synthesis to 

catalysis perspectives. Delivery system originated from polyelectrolyte multilayer 

capsules has attracted increasing interests during the past decades. Generally speaking, 

different external stimulus have been employed to fabricate LbL capsule systems and to 

realize their functionalities, in order to meet their various requirements
[29]

. Typically, as 

earlier discussed in this thesis, UV light responsive capsules represent one series of the 

fast developed stimuli-responsive vesicles for potential applications in different areas. 

UV treatment allowed the functionalization of these fabricated capsules with 

accompanied changes in their morphologies, shell stability as well as permeability, 

benefiting from underlying chemical transitions. However, to the best of our knowledge, 

most of the research works concerning about UV responsive capsules have been focused 

on single functionality, with their emphasis on either encapsulation or release, triggering 

by remote UV light. 

To develop multi-functional capsules system is of great importance, which sometimes 

can accomplish multi-functionalities, for example both the encapsulation and release, in 

one system just simply triggered by applying of only one external stimulus. 

Strategically, for multilayer capsules, it is not difficult to achieve this goal with 

introduction of different UV responsive chemical components (groups) in one system. 

In Chapter 5, the microcapsules composed of PDADMAC and PAZO demonstrated a 

novel UV induced swelling-disruption process, which was revealed as the J-styled 

aggregation of azobenene molecules. This gradually capsule breakage triggered by long 

term UV treatment (up to 3 hours) benefited an externally controlled release of cargo 

substances. On the other hand, in Chapter 6, the microcapsules containing diazonium 

groups exhibited an excellent ability to seal the multilayers, offering an excellent ability 

for molecule encapsulation via UV induced photolysis of paired ion charges, typical 
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example was demonstrated as high preservation of small molecule RhB (Mw=479). 

This UV induced sealing effect occurred very fast, e.g. 10 min was found enough to 

finish corresponding reactions. Therefore, cargo substance encapsulation and release 

triggered by single UV light can be integrated in one complex capsule system, as 

inspired by the completely different UV responsive behaviours of microcapsule systems 

discussed in above two chapters.  

Ideally, with proper control over the balance of shell sealing and breakage (swelling 

and/or disruption), UV light with continuous wavelengths (containing the effective 

working wavelengths at ~ 365 nm and ~ 380 nm for azobenzene and diazonium group 

respectively) could push forward a UV dosage-dependent progress of capsule shell 

sealing and further breakage. Under a given UV irradiation condition, the fast shell 

sealing effect could be finished by in situ crosslinking of Nafion/DAR multialyers 

through a short-term UV induced photolysis; in the meantime, no obvious capsule 

breakage must be ensured in this duration. Further gradually breakage would be 

accomplished by re-alignment of azobenzene molecules in PDADMAC/PAZO 

multialyers triggered by long-term UV irradiation. Practically, this balance control can 

be easily achieved through adjustment of the ratio of two multilayer systems which 

might have different influence on built capsules. Regarding to the strengthened shell 

structures of Nafion/DAR capsules after sealing, which required combination of freeze-

thaw and sonication treatments to break them (see Section 3.3.7),  the multialyers 

containing  a small percentage of crosslinking sites (diazaonium of DAR) would be 

preferred.  

7.1.2 Aim and Objectives 

The aim of this chapter is to realize dual-function of the LbL microcapsules triggered by 

the same UV stimulus, to achieve the both encapsulation and release to be specifically.  

By introducing UV sensitive chemical groups causing different potential response as 

building blocks, fabricated LbL capsules can be endowed with dual UV responsive 

properties in specific layers. One block is responsible for fast capsule sealing and the 

other for longer term capsule swelling and rupture. Therefore, the multi-function of 

these capsules could be activated selectively when exposed to external UV light with 

suitable wavelengths. 
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Therefore the main objectives of this chapter are:  

1) To design and fabricate complex multilayer microcapsules (PDADMAC/PAZO)4-

(DAR/Nafion)2  containing both azobenzene and diazonium groups.  

2) To investigate the parameters corresponding to the UV induced capsule shell stability 

change, for example chemical transitions within multilayers, the capsule morphology 

changes based on rapid shell sealing (short-term, mins) and gradually shell disruption 

(long-term, hours).   

3) To study the possibilities of cargo substances (macro-/small- molecules) encapsulation 

and successive release by these UV responsive microcapsules 

7.2 UV–induced Capsule Sealing and Further Swelling 

After layer-by-layer assembly, microcapsules containing both azobenzene and 

diazonium groups were obtained. As typical examples studied here, 

(PDADMAC/PAZO)4-(DAR/Nafion)2 were fabricated, to which four 

PDADMAC/PAZO and two DAR/Nafion layers were introduced.  

As shown in Figure 7.1, the prepared microcapsules were flat with creases and folds 

under SEM observation, which were similar as the other ones found in this thesis. 

Without UV irradiation, these capsules showed uniform size distribution, with an 

average diameter of ~ 5 μm. At high magnification (× 120 k), the capsule exhibited an 

intact and relatively smooth surface (Figure 7.1 c). 

    

Figure 7.1 SEM images of fabricated (PDADMAC/PAZO)4-(DAR/Nafion)2 microcapsules. 
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The UV response properties of these fabricated complex capsules were studied. In this 

work, the UV intensity used was approximately 55 mW/cm
2
, and the UV treatment 

duration was 0~3 hours. The structural formulas of these polyelectrolytes used for 

capsule fabrication were given in Scheme 7.1. 

  

Scheme 7.1 Structural formulas of the polyelectrolytes used in this chapter. 

With the constant UV irradiation intensity, these capsules exhibited a time-dependent 

swelling process after exposure to UV light, as shown in Figure 7.2 and Figure 7.3. 

After first 10 min of UV irradiation (Figure 7.2 1
st
 row), no obvious size change could 

be found when compared with the initial capsules (Figure 7.1), and the shell formations 

seemed intact, no pore or crack could be found under SEM observation (Figure 7.2 c). 

Therefore, the first 10 min of UV irradiation could be chosen as the treatment to seal the 

outmost DAR/Nafion layers, which will be discussed later. Extending the UV 

irradiation duration to 20 min (Figure 7.2 2
nd

 row), an obvious size increase was 

observed. More than 60% of the capsules increased their size to above 6 µm; however, 

there were still some capsules found at their initial size (Figure 7.2 d); in the mean time 

some tiny pores could be observed on the shells (Figure 7.2 f). After exposure to UV for 

30 min (Figure 7.2 3
rd

 row), most of the capsules swelled to ~ 7 µm, and obvious pores 

in the size of 30~40 nm were found (Figure 7.2 i).  
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Figure 7.2 SEM images of complex microcapsules after UV irradiation of 10 min (1
st
 row), 20 min (2

nd
 

row) 30 min (3
rd

 row), 1 h(4
th

 row),  2 h (5
th

 row), and 3 h (6
th

 row) at different magnifications. 
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When the UV irradiation time reached 1 hour (Figure 7.2 4
th

 row), there was no 

significant further increase in capsule diameter could be found. However, the pores on 

the shells exhibited a size growth; some of them were found as large as 100 nm in 

diameter (Figure 7.2 l). Further extending the UV duration to 2 hours (Figure 7.2 5
th

 

row), a similar pore size increase tendency was found; more and more pores were 

emerged (Figure 7.2 o). After 3 hours of UV irradiation (Figure 7.2 last row), almost all 

of the capsules were swollen, some of them possessed a size of > 8 µm (Figure 7.2 q); 

as a consequence of continuous UV irradiation, numerous pores were found on the shell 

surfaces (Figure 7.2 r).  

 

Figure 7.3 Size changes of complex capsules after UV irradiation.  

* Capsule diameters and distributions were expressed as mean ± SD of at least 30 capsules per sample of 

random measurement of SEM images. 

In general, as a result, 3 hours of UV irradiation caused remarkable capsule swelling 

(size change from 5 µm to 8 µm), and generated a lot of pores with the size more than 

100 nm on their shells. Different from the UV induced capsule disruption found in 

(PDADMAC/PAZO)4 system, the UV treatment didn’t tear these capsules into pieces, 

as the spherical morphologies still can be watched under SEM observation. As 

demonstrated in Chapter 5, the UV irradiation triggered the azobenzene moieties to 

form end-to-end aligned J aggregates, which further led to an irreversible swelling-
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disruption process. And this process was evidenced by the generation of lamellar- and 

needle- like formations.  However, in this work, a few broken capsules (Figure 7.4 a, the 

symbol *) can be found, only few lamellar-like formations (Figure 7.4, the symbol △ ) 

can be found occasionally after 3 hours of UV irradiation.  

  

Figure 7.4 SEM images of broken complex microcapsules and lamellar-like formations after UV 

irradiation of 3 hours. 

* The symbol * and △ showed the broken capsule and lamellar-like formations, respectively. 

These changes in capsule morphologies were evidenced by the UV-Visible 

spectroscopy. As shown in Figure 7.5, the UV-Vis spectra of the complex capsules were 

demonstrated. Due to the analogical UV absorption curves and neighbouring maximum 

UV absorption peaks, the absorption of the complex multilayer capsules exhibited as a 

compromise of azobenzene and diazonium groups. Before UV irradiation, a strong 

absorption centered at 372 nm was found, which was contributed by the absorption of 

both azobenzene (π-π* transition at 365 nm) and diazonium (π-π* transition at 380 nm), 

and the weak peak detected at 270 nm was attributed to their parallel or concomitant 

adsorption
[164, 223]

. Exposure to UV irradiation, a fast absorbance decrease at maximum 

was observed, demonstrating as the consequences of photolysis of diazonium groups 

and possible photoisomerization reaction of azobenzene moieties. After 10 min of 

irradiation, the absorption intensity decreased to 50 % of the initial absorbance. 

Considering the SEM image of complex capsules after 10 min of UV irradiation (Figure 

7.2, 1
st
 row), potential chemical changes occurred during this period wouldn’t cause 

capsule swelling. 
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Figure 7.5 UV-Vis spectra of complex microcapsules upon exposure to UV light. 

Practically, the DAR-related photolysis reaction occurred very fast, previous report has 

demonstrated a completed crosslinking effect with treatment of a 80 W mercury lamp at 

a distance of 13 cm within 50 s
[163]

.  For the Nafion/DAR system, 10 min of UV 

irradiation was found sufficient enough to decompose all the diazonium groups and 

disappear the maximum absorption with a UV intensity of 50 mW/cm
2
 (Figure 6.4 in 

Chapter 6).  However, corresponding peak didn’t disappear after 3 hours of UV 

irradiation in this work. This result should be attributed to the existence of 

PDADMAC/PAZO layers. As suggested, the photoisomerization azobenzene molecule 

couldn’t be completed in this system due to the steric hindrances against this tran to cis 

conformation changes as well as possible hindrances of azobenzene aggregate 

formations
[223, 255, 256]

 (the aggregate formations will be discussed in the following). 

Therefore, the remained absorption was assigned to that of   PDADMAC/PAZO layers. 

Similar result was also found before (Figure 5.4 in Chapter 5), 2 hours of UV treatment 

didn’t show the ability to disappear adsorption of azobenzene groups in 

PDADMAC/PAZO multilayers. 

Theoretically, the UV triggered photoisomerization of azobenzene not only exhibited as 

trans to cis conformation change in plane, but also caused motions of azobenzene 
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moieties, exhibiting as re-alignment of azobenzene molecules. Consequently, J-styled 

(end-to-end) or H-styled (plane-to-plane) aggregates was preferred, depending on the 

mutual orientation of the interacting dipole moments between the counterpart 

molecules
[158]

. The generation of such aggregates can be easily monitored by UV-

Visible spectroscopy, representing as blue shift for H aggregates and red shift for J 

aggregates. As found in (PDADMAC/PAZO)4 capsule system (Chapter 5), a significant 

red-shift by 17 nm was observed, which was interpreted as the J aggregates of 

azobenzene molecules. In this work, besides the absorbance decrease, a time-dependent 

shift of maximum absorption towards longer wavelength was also found, as shown in 

Figure 7.5. Briefly, after 10 min of UV irradiation, the maximum absorption was 

located at 376 nm, exhibiting a red shift by 4 nm. Further exposing to UV light led to 

gradually red shift. Increasing the UV treatment duration to 3 hours a total red shift by 8 

nm was visible at 380 nm. These results revealed that the J aggregates of azobenzene 

molecules were also formed in this complex multilayer capsules after UV irradiation.  

The FTIR spectra of complex capsules before and after UV irradiation were exhibited in 

Figure 7.6, in order to demonstrate possible chemical changes in detail. Before UV 

irradiation, three absorption peaks representing the existence of diazonium groups were 

observed at 2222 cm
-1

, 2162 cm
-1 

and 1577 cm
-1 

in the FTIR spectra, the former two 

showed  the stretching vibrations of –N2
+
 and the latter showed the symmetric stretching 

of a phenyl group conjugated with the diazonium group.  

After 10 min of UV irradiation, the peaks at 2222 cm
-1

 and 2162 cm
-1 

disappeared 

completely. With the disappearance of the peak at 1577 cm
-1

, a new peak representing a 

normal absorption of the phenyl group, which was overlapped by signal of diazonium 

group before, was observed at 1590 cm
-1

. All these changes should be explained as the 

UV induced decomposition of diazonium groups in the multilayers. In the meantime, 

another peak at 1111 cm
-1

 corresponded to the N–O stretching vibrational mode of 

complexes formed within DAR and adjacent polyanion also disappeared. Considering 

the existence of both Nafion and PAZO polymers surrounding DAR, this peak should 

be attributed to N–O stretching of complexes diazonium and sulfonate groups (in 

Nafion) (–N2
+

 →OSO2
-
)
[257]

 and also the complexes of diazonium and carboxylate 

groups (in PAZO) (–N2
+

 →OCO
-
)
[165]

. The disappearance of this peak also evidenced 

decomposition of diazonium groups under UV irradiation.  
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Figure 7.6 FTIR spectrum of complex capsules before (a) and after UV irradiation for 10 min (b) and 3 

hours (c). 

It should be pointed out here, a weak shoulder peak located at 1393 cm
-1 

was weakened 

after 10 min of UV irradiation. However, it is difficult to deal related signal 

identification. The reason is, on one hand, this weak peak could be assigned as 

association interaction (H-bonding) between the –N2
+
 and –OH within DAR and PAZO 

[162, 250]
. On the other hand this peak could be originated from the signal of trans-

azobenzene
[231, 232]

. For the former, UV irradiation was reported to be able to destroy the 

H-bonding between DAR and PAZO layers, convert it to stable ester bond (Ph–O–Ph), 

leaving stabilized layers against dissolution in polar solvent
[250]

. Whereas for the latter, 

it was reported that the UV irradiation can cause molecular conformation change in 

plane, which led to capsule shrinkage
[16]

. Therefore, any of these two chemical                                                                                                                                                                                                                                       

transitions, if there was any, could help the multilayer shells stable under UV irradiation, 

through possible inter-layer corsslinking between PAZO and DAR and/or capsule 

shrinkage attributed photoisomerization of azobenzene in plane. Unavoidable, the 

motion of azobenzene molecules would be suppressed to some extent consequently. 
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When the UV irradiation duration reached 3 hours, no obvious changes due to 

diazonium decomposition or azobenzene related photoisomerization could be observed. 

Combining the found red-shift effect in UV-Vis spectroscopy (Figure 7.4), the J 

aggregation would be the primary transition in this duration, although the degree of 

aggregation was found not as significant as that in pure PDADMAC/PAZO system 

(Chapter 5). Such end-to-end J aggregate of azobenzene has been found ability to break 

the integrate structure of film, shell-like formations 
[235, 258, 259]

. And most importantly, it 

has been applied to break the (PDADMAC/PAZO)4 microcapsules, as demonstrated in 

Chapter 5 schematic.  

Generally, UV induced chemical changes in these complex capsule system is 

complicated, involving J-styled re-alignment of azobenzene molecules which mostly 

influenced by the interplay of PDADMAC polymers, and in-situ covalent bonding 

between paired diazonium and sulfonate groups. In this work, a polymer PAZO 

containing azobenzene groups on its side chains was used as polyanion for microcapsule 

preparation. The interplay of PAZO with its counterpart polymers was very important. 

As found in earlier work (Chapter 5), when the rigid polymer PDADMAC bearing the 

ionic charges in the backbone structure was used as polycation, the azobenzene 

molecular motion in domain was found predominately in a PDADMAC/PAZO 

multilayer system, where the rigid PDADAMC chains restricted the azobenzene 

molecule conformation change in plane and resulted in phase separation in nano-scale 

areas. Different from PDADMAC, the “soft” polymers showed different influence on 

fabricated multilayers with PAZO. For examples, when Polyethylenimine (PEI) was 

used as the polycation, a blue shift towards shorter wavelength of the maximum 

absorption in a UV-Vis spectroscopy was observed, when increasing the number of 

deposited PEI/PAZO bilayer on surface
[223]

; the multilayer microcapsules containing 

PAZO and relatively flexible counterpart polymers, (PAH/PAZO)3PAH/PVS
[16]

 and 

(PAH/PAZO)4 (Chapter 5), showed capsule size decrease instead of capsule swelling 

when treated with UV light. Thus one should notice, as presented in the (PD/PAZO)4-

(DAR/Nafion)2 structure, the diazonium of DAR not only interacted with the sulfonate 

groups of Nafion, but could also paired with carboxylate groups of PAZO. As a 

consequence, the interaction between the PDADMAC and PAZO was somewhat 

weakened, while the effect of DAR-related sealing was strengthened by the appearance 

of crosslinking between PAZO and adjacent DAR layers. Therefore, the UV-induced 
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red shift in complex capsules here was not as significant as that observed in the capsules 

composed of only PDADMAC/PAZO layers (Figure 5.4 in Chapter 5). In return, in the 

multilayer system of (PDADMAC/PAZO)4-(Nafion/DAR)2, the potential azobenzene 

molecular motion as J aggregates (together with possible trans-cis isomerization) 

occurred in the (PDADMAC/PAZO)4 layers was not powerful enough to cause obvious 

phase separation or patch-like structures in macro-scale, which might be visualized as 

clear damage of shell integrity under SEM observation. Instead, the intrinsic chemical 

transition here primarily led to swollen microcapsules, with a lot of pores on the shell.  

7.3 Macromolecule Encapsulation and Release Triggered By 

Continuous UV Light 

Theoretically, 10 min of UV irradiation with an intensity of 55 mW/cm
2
 can accomplish 

DAR-related photolysis reaction, which could convert the electrostatic interacted 

charges into covalent chemical bonds, as discussed in Chapter 6. This crosslinking 

within paired ionic groups provided adequate capability for molecule encapsulation; 

both small molecule RhB and macromolecule AF488-Dextran were studied. Here, 

efforts were devoted to encapsulate molecules in the complex capsules, in which the 

DAR/Nafion multilayers might provide potential sealing layers to achieve the goal (for 

experimental section see Section 3.3.7). 

As the SEM images presented in Figure 7.1 and Figure 7.2, UV irradiation was found to 

have a significant effect on the morphology changes of complex capsules, exhibiting as 

a time-dependent swelling progress. In particular, no obvious capsule size increase or 

shell porosity change can be observed after the first 10 min of UV irradiation. 

Considering the DAR-related photolysis can be rapid completed within 10 minutes (as 

found in Chapter 6), thus the 10 min of UV irradiation was chosen here as a working 

duration to seal the complex capsules. Later, continuous UV treatment up to 7 hours 

was used to trigger possible release of encapsulated molecules. 

In order to detect the feasibility, fluorescent polymers with different molecular weights, 

for example TRITC-Dextran (500 kDa) and AF488-Dextran (10 kDa), were used as 

cargo substances for this study. Briefly, the fabricated complex capsules were incubated 

in fluorescent polymer solutions for 2 hours with shaking. Then the mixture was 
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exposed to UV light (55 mW/cm
2
) for 10 min. After that, the capsules were collected as 

washed for several times and observed under confocal laser scanning microscope.  

  

  

Figure 7.7 CLSM images of the (a) TRITC-Dextran and (b) AF 488-Dextran encapsulated complex 

capsules.  

* Images b and d showed corresponding microcapsules in bright field. The symbol ↗ presented a broken 

capsule, the symbol * presented a capsule with defects on its shell. 

As shown in Figure 7.7, bright images were observed, which demonstrated that 10 min 

of UV irradiation can crosslink the Nafion/DAR layers of complex micrcocapsules, and 

can successful retain the fluorescent polymers (both TRITC-Dextran and AF 488-

Dextran) inside capsules. Very strong fluorescent signal intensity (more than 250 units) 

can be detected (Figure 7.7 a, c). Only a few broken capsule (symbol ↗) and defected 

capsule (symbol *) with hollow cavities can be found occasionally (Figure 7.7 a). It is 
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worth mentioning, in this work, the complex capsules were fabricated firstly, then 

incubated with fluorescent polymers. Thus it could be explained that the complex 

multilayer formations were permeable to these fluorescent polymers before UV 

treatment, even permeable for the polymers with high molecular weight of 500 kDa 

(TRITC-Dextran).  

The UV triggered cargo release was also investigated in this work. Considering the long 

UV treatment duration would be applied, fluorescent polymers with high photostability 

could be used here. Typically, the Alexa Fluor-labeled dextran (AF488-Dextran) was 

used here, because it was reported that the sulfonic acid substituents of Alexa Fluor 

could increase water solubility and inhibit dye-dye interactions, which made the Alexa 

Fluor dyes much brighter and more stable than common dyes (e.g., Fluorescein and 

rhodamine), reducing quenching and bleaching
[260]

. As also it has been used in other 

research works for fluorescent visualization and encapsulation study 
[16, 108]

.  

After first 10 min of UV irradiation, the complex capsules were sealed, and the AF488-

Dextran was therefore retained inside, visualizing as bright fluorescent image in capsule 

cavities; very strong fluorescent signal intensity (more than 250 units) was detected 

(Figure 7.8 a). Further UV irradiation caused a gradually capsule swelling progress, 

which resulted in the release of encapsulated AF488-Dextran. After 7 hours of UV 

irradiation, only hollow capsules with limited amount of fluorescent signal can be 

observed (Figure 7.8 b). In the mean time, some of the swollen capsules were found 

collapsed in water (pointed out by the symbol ↖).  Contrarily, the capsules without the 

PDADMAC/PAZO layers, (DAR/Nafion)4 to be specifically, demonstrated a constant 

fluorescent signal intensity before and after 7 hours of UV irradiation (Figure 7.8 c, d). 

This result was attributed to the UV-induced sealing effect of the DAR/Nafion layers, 

which can predominantly seal the multilayer shells and not break complex capsules at 

relevant time-point.  



173 

 

  

  

Figure 7.8 CLSM images of AF488-Dextran encapsulation in complex (top row) and (DAR/Nafion)4 

(bottom row) capsules right after shell sealing (a, c) and after 7 hours of additional UV irradiation (b, d). 

* The line scan insets showed relative fluorescent intensity in capsules; the symbol ↗ represented 

collapsed capsules in water. 

The UV triggered release was then quantified. Briefly, capsules were re-dispersed in 

excess amount of fluorescent polymer AF488-Dextran solution (300 µg/ml, 2ml). After 

shell sealing triggered by the first 10 min of UV irradiation, capsules were sedimented, 

and washed several times with water to remove free fluorescent polymers. The resulting 

suspension was then split into two portions, one was treated with additional UV 

irradiation up to 7 hours, and the other part was kept in dark. The released mass of 

AF488-Dextran was then investigated, either released by UV irradiation or by diffusion 

(for experimental section see Section 3.3.8). In the meantime, an AF488-Dextran solution 

was also irradiated as the control group in this work, in order to monitor possible UV 

induced photobleaching effect. Its concentration was adjusted to be 20 µg/ml, or 8000 
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ng of AF488-Dextran in 400 µl to be specifically. This amount roughly matched the 

mass of encapsulated AF488-Dextran inside the complex capsules, determining from 

the results of preliminary experiments. 

After set UV irradiation time, 400 µl of capsule-dye mixture was taken out, centrifuged, 

the supernatant was carefully collected for further measurements. The first portion of 

the sample containing 6.7×10
6
 capsules without further UV irradiation was taken out, 

for quantification of the encapsulated fluorescent polymer amount. The mass of the 

encapsulated AF488-Dextran was found to be 7164 ng encapsulated inside 6.7 ×10
6
 

capsules, which meant that 1.07 pg of AF488-Dextran was encapsulated in one capsule. 

In the 7 hours of UV treatment duration, the control group (pure AF488-Dextran 

solution) showed very good stability against UV light, the detected amount was 7845 ng 

after 7 hours of UV treatment, demonstrating a roughly constant mass of AF488-

Dextran at each set point (Figure 7.9, inset). Therefore, it could be believed that the 

influence of UV irradiation on photostability of AF488-Dextran solution with a 

concentration of 20 µg/ml was negligible, and the data of UV triggered AF488-Dextran 

release could be reliable in this duration.  

With the increase of UV irradiation duration, the detected AF488-Dextran amount was 

found an increase tendency, as shown in Figure 7.9. For each sample containing 6.7×10
6
 

capsules, after 10 min of UV irradiation, 874 ng of released fluorescent polymers was 

found. Then extending UV irradiation to 30 min, 1243 ng was detected. When the UV 

irradiation duration reached 4 hours, more than 50 % of polymers (3908 ng) were 

released from capsules. After 7 hours, 5049 ng of the fluorescent polymers was found, 

which demonstrated a UV triggered release efficiency of 70.5%. On the other hand, for 

the capsules kept in dark, the fluorescent polymer release was found quite slow when 

compared with that of the irradiated ones. At the beginning, 667 ng of AF488-Dextran 

escaped from the porous shells. With increase the incubation duration, this natural 

release by diffusion showed a continuously increase tendency. However, there was only 

2237 ng of AF488-Dextran detected after 7 hours of incubation, only 31% of the initial 

encapsulated amount. 
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Figure 7.9 Mass of UV triggered AF 488-Dextran release from complex capsules. 

* The inset showed the detected mass of AF488-Dextran of the control group after UV irradiation.  

7.4 Small Molecule Encapsulation and Release Triggered By 

Continuous UV Light 

As found in above section, the complex capsules showed the feasibility of encapsulation 

of macromolecules, and then the UV light triggered their release. In this section, the UV 

triggered small molecule release was also studied. 

Typically, small fluorescent molecule Fluorescein with a molecular weight of 332 was 

used as an example here, as shown in Figure 7.10. Generally, after incubation with 

Fluorescein solution for 2 hours, the capsule-dye mixture was irradiated for 10 min to 

achieve molecule encapsulation through shell sealing, and then capsules were collected 

and washed for several times with water. Under confocal laser scanning microscopic 

observation, almost all the irradiated capsules were intact with an average size of 5 µm; 

and these capsules were filled with green dye molecules (average signal intensity of 100 

units, Figure 7.10, 1
st
 row). Exposure these dye-filled microcapsules to additional UV 

irradiation exhibited a gradual capsule swelling process, which was coincident with the 

SEM results. With the improved capsule swelling effect, the small molecules gradually 
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penetrated through the porous multilayers, showing as fluorescent signal intensity 

decrease inside these capsules. As one can see clearly, after 30 min of UV irradiation 

(Figure 7.10, 2
nd

 row), part of the capsules became bigger with a diameter larger than 

5.88 µm, and the encapsulated dye molecules were released, leaving an average dye 

intensity of ~ 50 units. When the UV irradiation time reached 1 hour (Figure 7.10, 3
rd

 

row), most of the dye molecules penetrated out, only very small amount attached on the 

shells, demonstrating as the same dye intensity inside and outside capsules (~ 10 units). 

Further extending the UV irradiation time only led to partial collapsed capsules in water 

(pointed out by the arrows) (Figure 7.10, 4
th

 and 5
th

 rows).  
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Figure 7.10 CLSM images of Flurescein encapsulated complex capsules (1
st
 row), and triggered release 

under further UV irradiation of 30 min (2
nd

 row), 1h (3
rd

 row), 2 h (4
th

 row) and 3h (5
th

 row) in total.  

The right panel presented corresponding capsule images in bright field. 
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One should notice that the swollen capsules in water were found an average diameter 

less than 7 µm (Figure 7.10, 5
th

 row), whereas some of the capsules observed under 

SEM became larger than 8 µm after 3 hours of UV irradiation (Figure 7.2). This 

difference could be interpreted as effect of surface tension caused by bonded water 

in/around multilayers. When the capsules became too large to keep their spherical 

structures, they were preferred to collapse in water.  

Generally speaking, the encapsulated Fluorescein amount inside capsules was very 

small, as one can tell from the weak fluorescent images. On the other hand, upon 

exposure to such strong UV light for several hours, these fluorescent molecules would 

undergo a photobleaching progress, where a 20 % signal loss was found in similar UV 

irradiation experiment, though it was reported more stable than other fluorescent 

dyes
[176]

. In this work, the Fluorescein was used as a model molecule to judge the small 

molecule encapsulation ability of the complex capsules and possibility of UV triggered 

release. However, it might not be accurate to quantify the mass of released Fluorescein 

triggered by UV in this work, due to possible UV induced bleaching effect. 

7.5 Conclusions 

UV triggered dual-function complex microcapsules were fabricated in this chapter, for 

the purpose of integrating both encapsulation and release in one capsule system. Two 

different multilayer systems were introduced to build up these complex capsules, they 

were (PDADMAC/PAZO)4 and (DAR/Nafion)2. Exposure of these capsules to 10 min 

of UV irradiation (at 380 nm) led to sealing effect within DAR and adjacent Nafion or 

PAZO layers based via diazonium related photolysis, which facilitated cargo substance 

encapsulation. In this work, Fluorescein, and fluorescent polymers (AF488-Dextran and 

TRITC-Dextran) were used and small and macro- molecules for the encapsulation study, 

respectively. Later, exposure of these capsules to longer UV treatment duration (at 365 

nm) caused an irreversible shell swelling-disruption progress, which was activated by 

the preferred J aggregations of azobenzene molecules in PDADMAC/PAZO multilayers, 

providing a way to release the encapsulated substances. Generally, this UV triggered 

release was investigated by the release of AF 488-Dextran and Fluorescein molecules. 

Promisingly, this complex capsule system containing two different functional 

multilayers would be very useful micro-container for various applications, for which 
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their encapsulation and controlled release could easily be trigged by continuous near-

UV light. As shown in Scheme 7.2, schematic illustration of this UV triggered dual-

functionalities of the complex capsule was given. 

 
Scheme 7.2 Schematic illustration of UV induced complex capsule shell sealing and further swelling. 
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8.  Conclusions and Future Work 

8.1 General Conclusions 

In this thesis, four different types of UV responsive polyelectrolyte microcapsule 

systems were proposed. These capsules containing different functional chemical groups 

were fabricated by using layer-by-layer assembly technique. Their potential applications 

for encapsulation and release were investigated, which were achieved by applying of 

externally activation from UV light with different wavelengths. Generally, all the UV 

exposure experiments of these microcapsules were performed in water with cooling 

bath directly. The corresponding changes in capsule morphology, shell stability and 

permeability, which were originated from underlying chemical changes of related 

functional groups, were investigated. The aim of these research works mainly devoted 

to the potential applications in special areas where the abundant UV light would be 

available.  

In chapter 4, benzophenone groups with highly efficient and remarkable site specified 

molecule covalent modification ability were introduced to build up the UV responsive 

microcapsules (PAH/PMA-BP)4. Upon exposure to UV light at 275 nm, the generation 

of new C–C bonds originated from initial bezophenone groups and adjacent un-reacted 

C–H bonds led to crosslinking within the PAH/PMA-BP multilayers, shrinking the 

capsule size up to 30% in diameter. The shrinkage adjusted the capsule permeability, 

providing a novel way to encapsulate fluorescence-labeled dextran molecules without 

heating. Meanwhile, crosslinking within the multilayer shells based on hydrogen 

abstraction via excited benzophenone units showed a reliable and swift approach to 

tighten and stabilize the capsule shell without losing the pH-responsive properties of 

these weak polyelectrolyte capsules. 

In chapter 5, azobenzene groups which can undergo a UV induced photoisomerization 

were used to build up microcapsules with PDADMAC. With the combination of rigid 

PDADMAC polymer bearing negative charges along its molecular chain, the most 

commonly azobenzene molecular conformation change in plane was somewhat 

restricted; whereas the UV triggered self-organization of azobenzene molecules in the 

form of J aggregate was preferred. This re-orientation of azobenzene within capsule 
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multilayer formations led to great damage of capsule integrity, which caused capsules 

swelling and further shell disruption. Upon 2 hours of UV irradiation at 365 nm, almost 

all the capsules were torn into pieces, leaving capsule debris and needle-like formations. 

Moreover, this UV induced microcapsule disruption process based on molecule re-

alignment was proved to be irreversible, even when the capsules were exposed to the 

visible light. Strategically, this UV induced capsule disruption offered a novel way to 

controlled release encapsulated cargo substances. The UV-dosage dependent release 

behaviours of model substances (protein and limonene) were investigated.  

In chapter 6, a good active leaving group diazonium was substituted in diazo-resin 

(DAR), and used to build up microcapsules with perfluorosulfonic Nafion and charge 

reversed DAR, (Nafion/DAR)4 and DAR8 to be specifically. Upon exposure to a 380 

nm UV light, the diazonium group was activated to form phenyl cation and then be 

substituted by sulfonate groups of paired Nafion or charge reversed DAR, converting 

ionic interactions in to covalent bonding in situ. This photolysis reaction offered an 

externally controlled method to seal the multilayer capsules. The encapsulation of 

macro- and small molecules (AF488-Dextran and RhB) were investigated, illustrating 

good retention of these molecules inside capsules for long time. DAR-related capsules 

were found great potential as unique micro-containers, benefiting from generation of 

covalent bonds and remained hydrophobic backbones. Specifically, the (Nafion/DAR)4 

microcapsules showed a better small molecule encapsulation ability than the DAR8, 

benefiting from the existence of Nafion layers. 

In chapter 7, a complex microcapsule (PDADMAC/PAZO)4-(DAR/Nafion)2 system 

containing both of the two chemical groups were fabricated, which was inspired from 

research works of microcapsules containing azobenzene and diazonium groups,. Dual-

function of these capsules was demonstrated as a shell sealing and further swelling 

progress simply triggered by the same UV source. Theoretically, the shell sealing was 

attributed to crosslinking within DAR and adjacent Nafion or PAZO layers via DAR-

related photolysis; the irreversible shell swelling was due to the preferred aggregations 

of azobenzene molecules in PDADMAC/PAZO multilayers. Such dual-

functionalization of the complex capsules integrated cargo substance encapsulation and 

controlled release in one system, triggering by externally UV light. Fluorescein and 
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fluorescent labeled dextran (AF488-Dextran) were studied as the small and macro- 

molecules for the encapsulation and release investigations. 

In summary, four UV responsive multilayer microcapsule systems with unique 

functional groups and architectures were prepared, in order to explore new UV light 

responsive vehicles for the purpose of cargo encapsulation and release. Apart from 

capsule fabrication process and UV induced corresponding functionalities such as 

small/macro- molecule encapsulation and/or triggered release, the underlying principles 

that attributed to the observed phenomena were also investigated. Promisingly, these 

strategies developed in this thesis could be applied as typical approaches for fabrication 

of light addressable multilayer systems for intelligent encapsulation and release based 

solely on optical stimuli. Hopefully, these UV-responsive capsules could offer a series 

of micro- vesicles or containers for the development of new optically active systems, 

especially the UV light active systems, to which abundant light  

(e.g. sunlight) could be introduced. Predicted applications could potentially be found 

use in various fields ranging from drug delivery, micro-reactor and photocatalysis to 

environmental science, material surface science, agricultural and cosmetic areas, 

benefiting from one or more light induced functionalities of such optically active 

systems. This thesis contributes to existing knowledge of photo-active LbL capsules by 

providing the findings:  

1) Weak polyelectrolyte (PAH/PMA-BP)4 microcapsules were crosslinked by 275 nm 

UV light through benzophenone-related hydrogen-abstraction and recombination, 

resulting in stabilized shells and decreased shell permeability without consumption of 

ionic charges.  

2) (PDADMAC/PAZO)4 microcapsules were gradually ruptured by ~366 nm UV light  

via J-styled aggregation of azobenzene molecules in multilayers.  

3) (Nafion/DAR)4 and DAR8 microcapsules were sealed by ~380 nm UV light though 

diazonium-related photolysis, leading to good preservation ability of small molecules.  

4) (PDADMAC/PAZO)4-(DAR/Nafion)2 complex microcapsules demonstrated rapid 

shell sealing and further gradually shell disruption upon exposure to UV light with 

different wavelengths.  
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8.2 Future Work 

This thesis has initiated new UV responsive capsule systems for cargo substance 

encapsulation and/or release. However, there are still some challenges left to be 

overcome for improvement of these systems. Moreover, hurdles remain in the smooth 

transition of these experimental works into practical uses.  

1) pH stimuli-responsive capsules. One possible application of these pH sensitive 

capsules (PAH/PMA-BP)4 could be carriers for in vivo delivery. In order to truly 

evaluate the use of pH sensitive capsules proposed in this thesis (chapter 4), careful 

study on the capsule stability influenced by normal pH conditions (e.g. pH= 4 ~ 9) that 

close to biological media (body fluid, tissue and organ) should be made. Moreover, 

cargo substance release controlled by varied pH conditions should be investigated, in 

order to understand the pH-dependent drug release kinetics from these polyelectrolyte 

capsules.  

2) Capsules for small molecule encapsulation. The (Nafion/DAR)4, DAR8 capsule 

systems (chapter 6) and complex capsules (PDADMAC/PAZO)4-(DAR/Nafion)2 

(chapter 7) demonstrated good capability to encapsulate and release small molecules 

upon UV irradiation. However, due to the possible quenching and photo-bleaching 

effect of RhB and Flurescein molecules, long-term study on small molecule 

encapsulation/release in these capsules was restricted. Employment of other photo-

stable substances (e.g. quantum dots) for long-term UV triggered encapsulation/release 

should be performed in future work. In addition, long-term storage of these capsules 

containing small molecule cargos would benefit their practical use. Strategies such as 

freeze-drying or filtration might be used to separate these cargo-loaded capsules from 

water, and hence to avoid cargo diffusion.  

3) Successive encapsulation and release by multilayer capsules. In chapter 7, complex 

capsules (PDADMAC/PAZO)4-(DAR/Nafion)2 were able to achieve UV triggered 

sealing and further disruption. Thus more details of the influencing factors (e.g. UV-

dosage, capsule architecture) on the underlying UV triggered capsule mechanical 

change as well as cargo encapsulation and release need to be investigated. Proper 
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balance control over the ratio of azobenzene/diazonium groups in capsule shells should 

be carefully studied. 

4) UV triggered release from capsules. Considering the cargo release from 

PDADMAC/PAZO and complex capsule systems was triggered by UV light, thus 

possible application of these capsules might be stressed on sunlight controlled release. 

Future research emphasis should be focused on industrial areas (e.g. sunscreen and 

surface protecting), where the release and activation of encapsulated cargo substances 

could be adjusted by sunlight. 

5) Capsules for in vivo use.  One of the possible contributions of these capsules is their 

use as carriers for small molecular drugs. The release might be performed by diffusion 

from sealed capsules (e.g. Nafion/DAR cpasule) or internal stimuli-triggered capsule 

opening in biological media (e.g. pH).  For possible in vivo use, carful considerations 

should be given to the design of the capsule carriers. Corresponding parameters such as 

capsule hydrodynamic size, constituents, outmost layers (coatings) which would have 

effect on their in vivo transportation, biostability and biocompatibility should be 

addressed. Furthermore, other functional groups or components could be integrated on 

capsule shells, in order to realize multi-functionalities, which might benefit potential in 

vivo applications such as targeted delivery, sensing, imaging and therapy.  
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