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Abstract

Randomization schemes for two-treatment clinical trials are studied. Theoretical ex-

pressions for the power are derived under both complete randomization and Efron’s bi-

ased coin design for normal and binary responses. The better the scheme is at balancing

the numbers of patients across treatments, the higher the power is. Efron’s biased coin

design is more powerful than complete randomization. Normal approximations to the

powers are obtained. The power of the adjustable biased coin design is also investigated

by simulation.

Covariate-adaptive randomization schemes are analysed when either global or marginal

balance across cells is sought. By considering a fixed-effects linear model for normal

treatment responses with several covariates, an analysis of covariance t test is carried

out. Its power is simulated for global and marginal balance, both in the absence and in

the presence of interactions between the covariates. Global balancing covariate-adaptive

schemes are more efficient when there are interactions between the covariates.

Restricted randomization schemes for more than two treatments are then considered.

Their asymptotic properties are provided. An adjustable biased coin design is intro-

duced for which assignments are based on the imbalance across treatments. The finite-

sample properties of the imbalance under these randomization schemes are studied by

simulation. Assuming normal treatment responses, the power of the test for treatment

differences is also obtained and is highest for the new design.
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Imbalance properties of complete randomization and centre-stratified permuted block

randomization for several treatments are investigated. It is assumed that the patient re-

cruitment process follows a Poisson-gamma model. When the number of centres is large,

the imbalance for both schemes is approximately multivariate normal. The power of a

test for treatment differences is simulated for normal responses. The loss of power can

be compensated for by a small increase in sample size.
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Chapter 1

Introduction

1.1 Clinical trials

A clinical trial is a combination of studies, experiments and tests performed to test

the efficacy and the safety of some existing or new treatments or drugs on human. A

treatment refers to the method, the therapy or the remedy that is used on a patient for

a disease or injury. A drug refers to the chemical substance intake by humans and it is

used to cure, relieve or prevent diseases. During the trial, we collect data and gather

information about the efficacy and the safety of the treatments and drugs. This is to

identify any positive or adverse effects of the treatments or drugs on patients such that

the most suitable treatments and drugs can be available to patients in the future.

In clinical trials, the patients can be healthy volunteers or patients with specific char-

acteristics. For example, to test the effectiveness of a treatment for a particular disease,

we may have to recruit patients suffering from this disease. In particular, if we need to

recruit patients with several characteristics or we deal with trials for rare diseases, it may

take a very long period to recruit enough patients. The number of patients to be recruited

differs in the different phases of clinical trials.
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There are different types of studies for clinical trials. These include testing the ef-

ficacy and safety of new treatments and drugs on patients, studies of the effectiveness

and safety of existing treatments and drugs and assessing the effectiveness and safety of

different doses of drugs other than the existing dose of a drug. In addition, two or more

treatments or drugs are normally included in a trial.

The cost in completing all phases of a clinical trial is huge. Clinical trials are com-

monly sponsored and carried out by pharmaceutical companies or government-related

organizations. These trials can be carried out in several centres or even in several coun-

tries. We have to ensure the same design and analysis are carried out in different centres

and countries, and data are gathered from all centres and countries for the statistical

analysis.

Pre-clinical studies are also needed to identify the drug for assessment in clinical

trials. Before the trial, potential compounds for drugs have to be tested for several years

and only very few of them can reach the stage to be tested in clinical trials. Clinical trials

are normally classified into four phases. Each phases is usually considered as a separate

clinical trial. It can take years and even decades to complete all four phases of a clinical

trial before new treatments and drugs are available on the market for the general public.

However, sometimes some of these phases are combined. The reasons for combined

phases include making the assessment process quicker for a new treatment or drug to be

available to patients, reducing the costs in carrying out the trials, requiring fewer patients

and reducing the risk to the participants. For example, we often have Phases I and II or

Phases II and III combined.

For Phase I of clinical trials, the main focus is on drug safety. In this stage, studies

and experiments are carried out on around 20-80 patients. The main objective in this

stage is to determine the maximum safe dose, that is, the maximum dose level without
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causing toxicity. For Phase II, the studies will be carried out on a larger group of pa-

tients of size 100-200. At this stage, further investigation of the effectiveness and safety

of drugs is carried out. This is also a stage to narrow down the number of drugs, by

excluding those over-toxic or inactive drugs and choosing a few of the potential drugs to

proceed to Phase III.

In Phase III, we apply the new drugs or treatments to a larger group of patients.

Further tests will be carried out to confirm the effectiveness and safety of the treatments

and drugs. In here, we may compare the new treatments or drugs to the standard or

existing treatment. Details of different randomization schemes, the treatment assignment

rules to patients, for this phase will be covered in this thesis. This phase is also referred

to as the largest and most extensive study on the new treatments and drugs.

The last phase which is Phase IV is the postmarketing stage where remaining studies

have to be carried out before the drug is approved for marketing. These include studies

on adverse effects and benefits in using this drug.

1.2 Randomization schemes

Randomization refers to the process of randomly allocating patients to one of the

treatments in clinical trials. These randomization schemes can be applied in all phases

of a clinical trial. In this thesis, we will only study the randomization schemes used in

Phase III, where we want to assess the effectiveness of our new treatments or drugs. We

will test for differences in patients’ responses on the treatments. One of the main aims

of randomization schemes is to minimize selection bias.

Selection bias refers to the bias incurred when the experimenter or the investigator

consciously or unconsciously decides which treatment is to be allocated to the next pa-

tient. The assignment process should be unpredictable so that both the investigator and

19



the patients will not know in advance the treatment to be allocated next in the trial. The

selection bias is closely related to how likely the next treatment to be allocated to a sub-

ject can be guessed. The more likely that the treatment can be guessed the higher the

selection bias will be. A good randomization scheme should have a low probability of

correctly guessing which treatment is to be allocated to the next patient.

Another aim of randomization schemes is to balance the numbers of patients across

treatments. Statistical power refers to the probability of detecting a genuine treatment

effect in a test for treatment difference. The higher the power of the test under a ran-

domization scheme, the more likely the scheme is to detect a genuine treatment effect.

For example, for statistical analysis of a trial for comparing two treatments, assume the

population variances of the patients’ responses in the two treatment groups are the same.

Then it is optimal when the numbers of patients in the two treatment groups are the same.

In fact, the power of the test is maximized for a balanced trial when the population vari-

ances of the patients’ responses in the two groups are the same (Lachin, 1981).

There are also different types of randomization schemes. The most straightforward

randomization scheme is simple randomization. This is also called repeated simple ran-

dom sampling, simple random sampling or complete randomization. Under this scheme,

patients are randomly allocated to the treatments and it is the best at minimizing the

selection bias.

We also have other types of randomization schemes such as restricted randomization.

One of the main goals of restricted randomization schemes is to balance the numbers of

patients across treatments. Some examples are Efron’s (1971) biased coin design, the

adjustable biased coin design (Baldi Antognini and Giovagnoli, 2004) and permuted

block randomization. Except permuted-block randomization, most of these schemes

have a greater probability of allocating the next patient to a treatment group that has
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fewer patients and vice versa for a treatment group that is overrepresented. The current

numbers of patients on the treatments are therefore an important basis for the treatment

assignment of the next patient under these schemes. For permuted-block randomization,

a fixed block size and an allocation proportion of treatments within blocks are given such

that patients are allocated to treatments within a block randomly.

Covariate-adaptive randomization is also another type of randomization scheme that

will be described in Chapter 3 of this thesis. One of the examples of covariate-adaptive

randomization schemes is the minimization method of Pocock and Simon (1975). Ex-

amples of patients’ covariates or prognostic factors are age, gender, stage of disease and

so on. Under these randomization schemes, we aim to balance the numbers of patients

across treatments for patients classified by their prognostic factors or covariates.

We also have response-adaptive randomization schemes. Under these schemes, pa-

tients’ responses on treatments are recorded and are used for the treatment assignment

of the forthcoming patient. The probability of assigning the next patients to a treatment

that gives better responses will be higher. This is to increase the chance of allocating pa-

tients to treatments that are performing well. Details of response-adaptive randomization

schemes will not be discussed.

1.3 Outline of thesis

The research work presented in this thesis mainly focuses on the comparison of bi-

ased coin designs with other randomization schemes. The biased coin design was devel-

oped by Efron (1971). This is a design for patient allocation to treatments in sequential

clinical trials. Given two treatments, patients have to be allocated one of the two treat-

ments upon their arrival. The biased coin design has a fixed probability greater than a

half to allocate the next patient to a treatment that has been chosen less often. In particu-
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lar, the powers of the test for treatment effect under all these randomization schemes are

of our main concern throughout the thesis. Different assumptions under these random-

ization schemes will be investigated for their impact on the power.

The thesis consists of four main parts. Chapter 2 relates to randomization schemes

with only two treatments. These two treatments are usually referred to as the standard

treatment and the new treatment. A test is carried out to decide whether the new treat-

ment is better than the standard one. The power of the test has been analysed theoreti-

cally and numerical results for the powers have been produced by Chen (2006). Here,

both the theoretical expressions and the numerical results for the power will be given

by assuming normal patient responses with different variances. The cases when these

variances are known or unknown are studied under complete randomization and Efron’s

biased coin design. In Section 2.3, algorithms and numerical results for the power by

simulation under Efron’s biased coin design and the adjustable biased coin design will

be given. The adjustable biased coin design is an extension of Efron’s biased coin de-

sign where at each stage the probability of allocating the next patient to a treatment is a

function instead of a fixed probability. This function depends on the current difference

between the numbers of patients on the two treatments. We call the treatment with fewer

of patients the under-represented treatment. Under the adjustable biased coin design, the

fewer the number of patients on the under-represented treatment, the greater the proba-

bility of assigning the next patient to this treatment. In Section 2.4, the power functions

are analysed under complete randomization and Efron’s biased coin design when the

patients’ responses are binary. Details of the algorithm for the theoretical expression

and the numerical values for the power are given for both designs. In Section 2.5, nu-

merical values for the power using a normal approximation will be presented and hence

compared with the exact powers under complete randomization and Efron’s biased coin
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design.

Chapter 3 covers material on covariate-adaptive randomization schemes. Patient

prognostic factors or covariates such as age and gender will affect the responses of

patients to the treatments. Therefore, it is sensible to study the treatment effect in a

group of patients with the same or similar prognostic profiles. The covariate-adaptive

randomization schemes refer to randomization schemes that apply to patients grouped

by covariates. Such schemes are studied by Shao, Yu and Zhong (2010) when there is

a single covariate and two treatments under comparison. One of the main aims of these

covariate-adaptive randomization schemes is to balance the number of patients with the

same prognostic profile. Here, three covariate-adaptive randomization schemes are stud-

ied when either global or marginal balance is sought. By considering a fixed-effects

model for normal treatment responses when there are several covariates, an analysis of

covariance t test is carried out. Numerical values for the power are simulated for the

three randomization schemes for both global and marginal balance when there is an in-

teraction between the covariates. It is shown that the covariate-adaptive adjustable biased

coin design produces the highest power among the three. In addition, the power gain un-

der global balance is higher than under marginal balance when there is an interaction

between the covariates.

Chapter 4 gives results for different biased coin designs when there are more than

two treatments. In this chapter, the assignment rules for more than two treatments under

complete randomization and different biased coin designs will be demonstrated. A new

class of assignment rules will be given such that for each treatment the probability of

assigning the next patient to this treatment depends on the current value of the imbal-

ance in this treatment. The asymptotic properties of complete randomization and these

biased coin designs will be stated. This is followed by simulation results for the imbal-
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ances across treatments, which confirms the theoretical asymptotic properties under all

these schemes. Assuming patients’ responses to be normally distributed and given the

numbers of patients on the treatments, the analysis of variance F test is then used to test

whether there are any treatment differences.

Chapter 5 is about the imbalance properties of complete randomization and permuted

block randomization in clinical trials for several treatments. The number of patients to

be recruited in different centres can be described by a patient recruitment process. The

model is a Poisson process with arrival rate from a gamma distribution (Anisimov and

Fedorov, 2007) such that the number of patients to be recruited in each centre has a

beta-binomial distribution. Details about this model will be given in Section 5.3. We

then have the imbalances defined for each treatment within centres and for all centres,

and hence the column vector for the overall imbalance. In addition, for both of these

randomization schemes, analytical results for the imbalances are investigated assuming

that the number of patients to be recruited in different centres is fixed or when the pa-

tient recruitment process follows a Poisson-gamma model. When the number of centres

involved in a trial is large, the overall imbalance for both schemes is approximately a

multivariate normal. The accuracy of the approximations is assessed by simulation. The

variances of the imbalance in a particular treatment within a centre are then compared

under these two randomization schemes when the number of patients to be recruited in

each centre is fixed or random. A test is then suggested for testing if there is at least

one treatment difference when we compare each of the new treatments with the control

treatment. By considering different simulated scenarios under centre-stratified permuted

block randomization, the sample sizes are found in a balanced trial when a particular

level of the power is achieved. We use the same sample sizes to study the impact on the

power in the imbalanced case for each of the scenarios.
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Chapter 6 draws conclusions and gives an indication of possible future work.

Supplementary information for Chapters 2-5 is given in three appendices.
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Chapter 2

Restricted randomization schemes for

two treatments

In this chapter, we will consider clinical trials where only two treatments are in-

volved. Several randomization schemes will be covered and studied in detail with differ-

ent assumptions. Consider a sequential clinical trial where patients arrive one by one and

have to be assigned immediately to either of the two treatments. At each stage for each

newly arrived patient, the assignments to be made under these randomization schemes

are based on the current allocation status, that is, the current number of patients on each

of the two treatments. One group of patients will receive the standard treatment and we

call this the control group. The other group will receive the new treatment and is called

the treatment group. For simplicity, treatment 1 will represent the standard treatment

and treatment 2 will represent the new treatment.
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2.1 Treatment assignment rules under different random-

ization schemes

2.1.1 Complete randomization/ Repeated simple random sampling

The assignment rules under complete randomization (CR) are very straightforward.

Upon arrival, each patient is equally likely to be assigned to one of the two treatments.

That is, both treatments 1 and 2 have the same probability of 1/2 of being allocated the

next patient. The probabilities of assignment for different patients are independent. This

scheme achieves a high level of randomness in the assignment which means that the

treatment to be assigned to the next patient is less likely to be predicted. In other words,

the probability of correctly guessing the next treatment assignment for each newly ar-

rived patient is low and hence the sequence of treatment allocations is less obvious.

Furthermore, the selection bias discussed in Blackwell and Hodges (1957) and Efron

(1971) which refers to the bias incurred when the experimenter’s decision to allocate the

subject to a treatment for which the experimenter thinks it will be the most suitable for

the subject, is relatively low under complete randomization. In addition, the selection

bias of the design defined in Baldi Antognini and Giovagnoli (2004) as the expected

proportion of correct guesses equals 1/2 under complete randomization for any sample

size. Due to the randomness in the assignment of this design, the imbalances across the

treatments produced under this scheme is very high compared to other designs.

2.1.2 Efron’s biased coin design

In Efron (1971), the biased coin design BCD(p) was introduced and described as

follows: in an experiment with two treatments, each patient arrives sequentially and

has to be assigned immediately to one of the treatments. Based on the number of pa-
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tients currently on each of the treatments, the biased coin design assigns the next patient

to a treatment that has been chosen less often previously with probability p such that

p > 1/2. When patients arrive sequentially, the assignment rule is to balance the num-

ber of patients on the treatments. It aims to achieve some randomness when assigning

each patient to a treatment, which reduces any selection bias in the assignment of patients

to treatments. In addition, this design also aims to maintain a balance in the number of

patients on the two treatments. A balanced trial minimizes the variance of the test statis-

tic and hence increases the power of the test when the variances for patients’ responses

are equal for the two groups.

2.1.3 The adjustable biased coin design

A new design called the adjustable biased coin design (ABCD) introduced by Baldi

Antognini and Giovagnoli (2004) is an extension of Efron’s biased coin design. This is

also a design which aims to eliminate selection bias and maintain a balance in the number

of patients in the treatment groups. Efron’s biased coin design is similar to the adjustable

biased coin design for which assignment of patients to treatment groups depends solely

on the current number of patients in the two groups and biases the allocation towards the

under-represented treatment. The only difference between them is their probability of

selecting an under-represented treatment. The ABCD is a class of biased coin designs

for which the probability of selecting a treatment at stage n is a decreasing function of

the current difference between the numbers of patients on this treatment and the other

treatment. Let n1 and n2 be the numbers of patients on treatment 1 and 2, respectively.

Let δn = 1 if the nth patient is allocated to treatment 1 and δn = −1 otherwise. Let

p(n1, n2) be the conditional probability that the next patient is allocated to treatment 1
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so that

p(n1, n2) = P (δn+1 = 1|n, D̃n),

where D̃n =
∑n

i=1 δi = n1 − n2.

Let F (.) be a function F : Z → [0, 1] for Z the set of integers such that

1. F (x) is decreasing ;

2. F (−x) = 1− F (x).

Then F is the class of non-constant functions satisfying 1. and 2. above. Let

p(n1, n2) = F (n1 − n2),

so that p(n1, n2) = 1/2 if n1 = n2. The ABCD is generated by the function F (.) in F .

Antognini and Giovagnoli (2004) suggested a class of functions which is

Fa(x) =



|x|a
|x|a+1

if x ≤ −1,

1
2

if x = 0,

1
|x|a+1

if x ≥ 1,

(2.1)

where a ∈ R+ is a design parameter.

The ABCD generated by the above expression is abbreviated by ABCD(Fa). This

class of functions Fa(.) will be our main focus for studying the properties of the ad-

justable biased coin design. When a = 0, it becomes complete randomization and as

a → ∞, the design becomes deterministic. Note that F (.) is the general form of the

function that generates the ABCD and Fa(.) is the particular class of functions that we

are interested in. Therefore, by comparing F (.) and Fa(.) for (2.1), we see that the

unknown variable x is x = n1 − n2. In general, Fa(.) is the probability of allocating

the next patient to treatment 1 and this function depends on a chosen value of a and x

which is the difference between the numbers of patients on treatment 1 and treatment 2
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at different stages. Hence, the probability of allocating the next patient to treatment 2 is

1− Fa(x).

2.1.4 Wei’s class of biased coin designs

Wei (1978) developed a new class of biased coin designs called the adaptive biased

coin designs which are defined as follows.

Let D̃n = n1 − n2 be the difference in the numbers of patients on treatments 1 and 2

after n assignments. Under this class of designs, the probability of assigning the (n+1)th

patient to treatment 1 is a decreasing function of D̃n/n, denoted by p(D̃n/n). Similarly,

the probability of assigning the (n + 1)th patient to treatment 2 is denoted by q(D̃n/n),

where p(D̃n/n) + q(D̃n/n) = 1. The function p(x) is chosen to be symmetric such that

p(x) = q(−x) for x ∈ [−1, 1]. In Wei (1978), the special case p(x) = (1 − x)/2 is

considered and studied. This special case can be written as

p(n1, n2) =
n2

n1 + n2

for the probability of assigning the (n + 1)th patient to treatment 1.

2.1.5 Smith’s class of designs

In Smith (1984), the decreasing function p(D̃n/n) from Wei’s class of designs is

studied. Assuming this function is differentiable at zero, a class of designs is suggested

such that the probability of assigning treatment 1 to the (n + 1)th patient is p(x) =

(1− x)ρ/{(1 + x)ρ + (1− x)ρ}, which is the same as

p(n1, n2) =
nρ

2

nρ
1 + nρ

2

,

where ρ = −2p′(0) and p′(0) is the first derivative of the function p at 0. When ρ = 0,

this class of designs reduces to complete randomization.
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2.1.6 The D- and DA-optimum biased coin designs

In Atkinson (1982), the theory of optimum design is used to obtain the probabilities

of assigning the next patient to a treatment for the biased coin design. The D- and

DA-optimum biased coin designs are discussed. Consider a linear model for treatment

responses E(Y) = xT β for which the responses on the two treatments are independent

observations with the same variance σ2. The covariance matrix of the least squares

estimator of β is

Var(β̂) = σ2(XTX)−1.

The fitted value at x is denoted by ŷ(x) = β̂
T
x and the variance of the fitted value

at x is Var{ŷ(x)} = σ2xT (XTX)−1x. In the context of optimum experimental design,

it is suggested that we can represent the n patient design by a measure ξn. After n

assignments, the information matrix of the design ξn is denoted by M(ξn) = n−1(XTX),

where XTX is a p× p matrix. In addition, the standardized variance at x is given by

d(x, ξn) = n
Var{ŷ(x)}

σ2
= xT M−1(ξn)x.

The D-optimum criterion is used when all the parameters in β are of interest in the

study. The main purpose of the D-optimality criterion is to minimizes the generalized

variance of these parameters’ estimators. In other words, this maximizes the determinant

of M(ξn).

However, if the contrasts between the treatment effects are of interest, the DA-

optimality criterion is more appropriate to use for treatment allocations. The contrasts

are the components of the vector AT β where A is a p × s matrix for the contrasts

with rank s < p. The covariance matrix of the least squares estimator AT β̂ is pro-

portional to AT M−1(ξn)A. The DA-optimality criterion maximizes the determinant of

{AT M−1(ξn)A}−1. The standardized variance under the DA-optimality criterion is de-
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noted by

dA(x, ξn) = xT M−1(ξn)A{AT M−1(ξn)A}−1AT M−1(ξn)x.

For the biased coin design rules after n assignments, we have

pj =
d(j, ξn)∑2
i=1 d(i, ξn)

as the probability of allocating the next patient to treatment j for j = 1, 2.

The special case for which the model for treatment responses is E(Y ) = βj for

j = 1, 2 is used with two treatments and no prognostic factors involved. The contrast

β1 − β2 is of interest and AT = (1,−1) is the matrix of contrasts. The rank of this

matrix is 1. After n assignments, there are n1 patients on treatment 1 and n2 patients

on treatment 2. The covariance matrix of the least squares estimator in this case is

σ2diag(1/n1, 1/n2) and M(ξn) = diag(n1/n, n2/n).

The standardized variance for the D-optimality criterion is d(j, ξn) = n/nj for treat-

ment j = 1, 2. For the biased coin assignment rule, the probabilities of allocating the

next patient to treatments 1 and 2 are p1 = n2/n and p2 = n1/n , respectively.

For the DA-optimality criterion, the standardized variance is dA(1, ξn) = n2/n1 for

treatment 1 and dA(2, ξn) = n1/n2 for treatment 2. Here, the probabilities of allocating

the next patient to treatments 1 and 2 are p1 = n2
2/(n

2
1 + n2

2) and p2 = n2
1/(n

2
1 + n2

2),

respectively.

Under both the D- and the DA-optimality criteria, the probabilities of treatment al-

location are special cases of Smith’s class of designs. When ρ = 1 in p(x) or p(n1, n2),

this probability is the same as the p1 in Atkinson’s design for the D-optimality criterion.

Similarly, q(x) and p2 are the same. When ρ = 2, p(x) is the same as p1 in Atkinson’s

design, and also q(x) is the same as p2, for the DA-optimality criterion.
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2.1.7 Asymptotic properties of the treatment assignment designs

Complete randomization

For complete randomization, the number of patients on treatment 1, n1, has a bino-

mial distribution with parameters n and 1/2. Hence, the variance of n1 is n/4. By the

central limit theorem, we have

√
n

(
n1

n
− 1

2

)
→ N

(
0,

1

4

)
,

in distribution as n →∞. All of the above is also true for n2 for the number of patients

on treatment 2 under complete randomization.

Efron’s biased coin design

In Hu, Zhang and He (2009), for a two-treatment trial, the asymptotic variance of

n1/
√

n for the efficient randomized-adaptive designs (ERADE) attains the Cramér-Rao

lower bound. Efron’s biased coin design is a special case of ERADE with the target

allocation ξ = 1/2 on each treatment. As ξ is a constant under Efron’s biased coin de-

sign, the Cramér-Rao lower bound is zero. Hence, under Efron’s biased coin design, the

asymptotic variance of n1/
√

n attains the Cramér-Rao lower bound of zero. Therefore,

as n →∞,

√
n

(
n1

n
− 1

2

)
→ 0

in probability.

The adjustable biased coin design

The function F : Z → [0, 1], with Z the set of integers, is decreasing and symmetric.

The probability of assigning the (n+1)th patient to treatment 1 is Fa(x), where x = D̃n.

In Baldi Antognini and Giovagnoli (2004) and Baldi Antognini (2008), it is shown that
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n1/n → 1/2 and D̃n/
√

n → 0 almost surely as n →∞. Therefore, as n →∞,

√
n

(
n1

n
− 1

2

)
→ 0

in probability.

Wei’s, Smith’s and Atkinson’s classes of designs

It is shown in Wei (1978) that if p(x) is differentiable at x = 0, n−1/2D̃n converges to

a normal distribution with mean 0 and variance 1/{1− 4p′(0)}. By rearranging terms as

n →∞,
√

n(n1/n− 1/2) will converge to a normal distribution. Here, E(n−1/2D̃n) =

E{
√

n(n1/n−1/2)} = 0 and Var(n−1/2D̃n) = 4Var{
√

n(n1/n−1/2)}. It follows that

√
n

(
n1

n
− 1

2

)
→ N

(
0,

1

4{1− 4p′(0)}

)

in distribution as n →∞.

In Smith (1984), the particular class of designs with

p(x) =
(1− x)ρ

(1 + x)ρ + (1− x)ρ

is considered with ρ = −2p′(0). Since p(x) is differentiable at x = 0, n−1/2D̃n for

this particular class of designs has the above asymptotic properties. Note that, we have

4p′(0) = −2ρ. Therefore, under Smith’s class of designs with this p(x), we have

√
n

(
n1

n
− 1

2

)
→ N

(
0,

1

4(1 + 2ρ)

)

in distribution as n →∞.

In addition, Atkinson’s class of D- and DA-optimum biased coin designs are two

special cases of Smith’s class of designs when ρ = 1 and ρ = 2, respectively. So we

have

√
n

(
n1

n
− 1

2

)
→ N

(
0,

1

12

)
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in distribution as n →∞ under the D-optimum biased coin design and

√
n

(
n1

n
− 1

2

)
→ N

(
0,

1

20

)
in distribution as n →∞ under the DA-optimum biased coin design.

From all of the above, we can see that Efron’s biased coin design and the adjustable

biased coin are less variable asymptotically in balancing the numbers of patients on two

treatments. For both Efron’s biased coin design and the adjustable biased coin design,

√
n (n1/n− 1/2) converges to zero instead of a normal distribution.

In Baldi Antognini and Giovagnoli (2004), the plots of the asymptotic values of

the expected absolute differences D̃n and D̃n/n suggest that the adjustable biased coin

design converges to balance faster than Wei’s class of designs when a = 2ρ for a =

1, 2, 4 and is preferable to Efron’s biased coin design with p = 2/3 for n > 10. In

addition, in terms of the asymptotic predictability, the adjustable biased coin design

generated by (2.1) for any choice of a is preferable to Efron’s biased coin design with

p = 2/3 in balancing the numbers of patients on the two treatments.

2.2 Theoretical analysis of the power with normal re-

sponses for complete randomization and Efron’s bi-

ased coin design

2.2.1 Background

In Chen (2006), the power of two designs for detecting treatment effects is inves-

tigated. The power is treated as the conditional probability of correctly detecting a

treatment effect given a particular status of the treatment allocation. The powers of

the complete randomization and the biased coin design with a deterministic value of p
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are investigated and compared. Of course, if p = 1/2, the BCD(p) is just complete ran-

domization. One of the treatment groups is defined to be the control group and the other

the treatment group.

Firstly, it is assumed that there are n patients at the end of the trial with n2 of them in

the treatment group and n1 of them in the control group, so that n = n2 + n1. Secondly,

let the control responses X1, ..., Xn1 be independent and normally distributed with un-

known mean µ1, and similarly let the treatment responses Y1, .., Yn2 be independent and

normally distributed with unknown mean µ2. The control responses are independent of

the treatment responses. In addition, the control responses and treatment responses are

assumed to have a common variance σ2.

The null hypothesis H0 : µ1 = µ2 is tested against H1 : µ2 > µ1. With the variances

assumed to be the same for the treatment and control responses, the situations of known

and unknown variances are investigated. Expressions are derived for the conditional and

unconditional powers of the two designs in both cases. The total number of patients n

is assumed to be 20. Therefore, the absolute difference in the numbers of patients on

the control group and treatment group are all even numbers from 0 to 20. In particular,

four tables of numerical values for the powers are provided. In addition, the author has

included the powers of the biased coin design with different values of p. The conclusion

is that in both the known variance and the unknown variance cases, the biased coin design

is uniformly more powerful than complete randomization and the power increases when

the value of p in the biased coin design increases.

In what follows, extended work on the power based on Chen (2006) paper will be

presented. The theoretical analysis and numerical values produced for the powers under

complete randomization and the Efron’s biased coin design will be given both when

the variances of the responses are known and different and when the variances of the
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responses are unknown and different.

2.2.2 Exact power with known and different variances

Let σ1 and σ2 be the standard deviations for the control and treatment groups, re-

spectively. Further, let X̄n1 and Ȳn2 be the mean responses for the control and treatment

groups, respectively. Then, for known variances, we carry out a z-test on the treatment

responses. Let zα be the number that satisfies 1− Φ(zα) = α where Φ is the cumulative

distribution function of the standard normal distribution.

We reject H0 if and only if

Ȳn2 − X̄n1√
σ2
1

n1
+

σ2
2

n2

> zα.

Let

δ =
µ2 − µ1√

σ2
1

n1
+

σ2
2

n2

. (2.2)

Then the power of this test given a particular allocation status is the probability of re-

jecting H0 for H1 given a particular allocation status of n1 and n2. It is equal to

βZ,α(µ2 − µ1, σ1, σ2|n1, n2) = Φ(δ − zα).

By, multiplying the conditional power by the probability of a particular allocation status

and then summing over allocation status, the unconditional power of the test can be

obtained.

We need to know the probability mass function of the allocation status. Under com-

plete randomization, each of the patients is equally likely to be assigned to the treatment

group or the control group. The probability of obtaining a particular allocation status n1

and n2 is

PCR{(n1, n2)} =

(
n

n1

)
(1/2)n. (2.3)
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So the power of the α-level z-test under the complete randomization is

βZ,α,CR(µ2 − µ1, σ1, σ2) =
∑

n1+n2=n

βZ,α(µ2 − µ1, σ1, σ2|n1, n2)PCR{(n1, n2)}

=
∑

n1+n2=n

Φ(δ − zα)

(
n

n1

)
(1/2)n.

For the biased coin design, there is a probability p > 1/2 of allocating the next

patient to the treatment that has been chosen less often. Under this design, the probability

of obtaining a particular allocation status n1 an n2 depends on the absolute difference

in the numbers of patients on the treatment and control groups. Full details about the

allocation status under the biased coin design are given in Chen (1999). The key points

are as follows. Let Dn be the absolute difference in the numbers of patients on the two

treatments up to time n, so that Dn = |n1 − n2|. This Dn forms a Markov chain with

period 2 on the state space {0, 1, 2, ...} with P
(n)
l,m = P (Dn = m|D0 = l) as its n-

step transition probabilities for l,m, n ≥ 0. These probabilities yield the probability of

obtaining a particular allocation status under the biased coin design. Note that

• P
(1)
0,1 = P (Dn+1 = 1|Dn = 0) = 1 for any n ∈ Z and n ≥ 0.

• P
(1)
k,k+1 = P (Dn+1 = k + 1|Dn = k) = 1− p = q for q < 1/2 and k ≥ 1.

• P
(1)
k,k−1 = P (Dn+1 = k − 1|Dn = k) = p for k ≥ 1.

• for i 6= j, i, j ≥ 0 and |i− j| 6= 1, P
(1)
i,j = P (Dn+1 = i|Dn = j) = 0.

From Karlin and McGregor (1957), a formula for the n-step transition probabilities is

P
(n)
l,m = P (Dn = m|D0 = l)

= ηm + (−1)l+m+nηm + 2pq2ηm

η0

∫ 1

0

{2√pq cos(πx)}nhl(x)hm(x)

1− 4pq cos2(πx)
dx,

where

η0 =
p− q

2p
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and

ηm =
(p− q)qm−1

2pm+1
for m ≥ 1

are the stationary distribution of Dn, and

hm(x) =

(
p

q

)m+1
2

sin{(m− 1)πx} −
(

p

q

)m−1
2

sin{(m + 1)πx}.

The probability of obtaining a particular allocation status (n1, n2) is

PBCD(p){(n1, n2)} =


P

(n)
0,0 = P (Dn = 0|D0 = 0) if n1 = n2,

1
2
P

(n)
0,|n1−n2| =

1
2
P (Dn = |n1 − n2||D0 = 0) if n1 6= n2.

So the unconditional power under Efron’s biased coin design is

βZ,α,BCD(p)(µ2 − µ1, σ1, σ2) = Φ(
µ2 − µ1√

(2σ2
1 + 2σ2

2)/n
− zα)P

(n)
0,0

+
∑

n1+n2=n,n1 6=n2

Φ(δ − zα)
1

2
P

(n)
0,|n1−n2|.

One of the main aims of the above two designs is to achieve a balance in the numbers

of patients on the two treatments. However, since the variances of the patients’ responses

in the two treatment groups are not the same, the power of the test is not maximized when

the numbers of patients in the two treatment groups are the same. This means that the

optimal allocation for maximum power is not n1 = n2. Neyman allocation gives the

optimal allocation ratio for the numbers of patients on treatments 1 and 2. This ratio is

determined by the values for the variances of the patients’ responses in the two treatment

groups and is given by

ρ1 =
σ1

σ1 + σ2

for treatment 1 and 1−ρ1 for treatment 2. We can use this ratio to determine the optimal

numbers of patients in the two treatment groups. The probability of obtaining a particular

allocation status under Neyman optimal allocation (NOA) will be determined by this

ratio.
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We consider both the deterministic and the random cases under Neyman alloca-

tion. In the deterministic case, the probability of obtaining a particular allocation status

(n1, n2) under Neyman allocation is

PNOA(D){(n1, n2)} =


1 if n1 = round(nρ1) and n2 = round{n(1− ρ1)},

0 otherwise,

where the notation round(x) denotes rounding the value of x to the nearest integer.

The above probability mass function is an indicator function and can also be written as

1NOA(D){(n1, n2)}. So the power of the α-level z-test under Neyman allocation in the

deterministic case is

βZ,α,NOA(D)(µ2 − µ1, σ1, σ2) =
∑

n1+n2=n

βZ,α(µ2 − µ1, σ1, σ2|n1, n2)PNOA(D){(n1, n2)}

=
∑

n1+n2=n

Φ(δ − zα)1NOA(D){(n1, n2)}.

Next, we study the random case under Neyman allocation. Here, each patient has a

probability ρ1 of being allocated to treatment 1 and a probability 1−ρ1 of being allocated

to treatment 2. Therefore, n1 ∼ Bin(n, ρ1) and n2 ∼ Bin(n, 1− ρ1). The probability of

obtaining a particular allocation status (n1, n2) in the random case is

PNOA(R){(n1, n2)} =

(
n

n1

)
ρn1

1 (1− ρ1)
n2 .

So the unconditional power in the random case for Neyman allocation is

βZ,α,NOA(R)(µ2 − µ1, σ1, σ2) =
∑

n1+n2=n

βZ,α(µ2 − µ1, σ1, σ2|n1, n2)PNOA(R){(n1, n2)}

=
∑

n1+n2=n

Φ(δ − zα)

(
n

n1

)
ρn1

1 (1− ρ1)
n2 .

The new numerical results for the powers under complete randomization and the

biased coin design will be shown in the following three tables when we aim to balance

the numbers of patients on the two treatments. In addition, results for the power for
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Neyman allocation are given for comparison. We took n = 20, d̄ = µ2 − µ1 and

α = 0.05. Different values of p are considered. The greater the value of p in the BCD(p),

the more deterministic the design. Different values for the treatment difference d̄ have

also been considered. Three sets of values for σ2
1 and σ2

2 are studied.

Table 2.1: Powers of CR, BCD(p), NOA(D) and NOA(R) with σ2
1 = 0.5, σ2

2 = 1, n = 20

and α = 0.05

d̄ = 0 d̄ = 0.5 d̄ = 1 d̄ = 1.5 d̄ = 2

CR(p=1/2) 0.05 0.3504 0.8074 0.9816 0.9993

BCD(p=7/12) 0.05 0.3567 0.8178 0.9849 0.9997

BCD(p=8/12) 0.05 0.3595 0.8223 0.9862 0.9997

BCD(P=9/12) 0.05 0.3607 0.8241 0.9867 0.9998

BCD(p=10/12) 0.05 0.3612 0.8249 0.9869 0.9998

BCD(p=11/12) 0.05 0.3615 0.8253 0.9870 0.9998

BCD(p=1) 0.05 0.3617 0.8257 0.9871 0.9998

NOA(D) 0.05 0.3686 0.8349 0.9888 0.9998

NOA(R) 0.05 0.3560 0.8163 0.9841 0.9995
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Table 2.2: Powers of CR, BCD(p), NOA(D) and NOA(R) with σ2
1 = 1, σ2

2 = 2, n = 20

and α = 0.05

d̄ = 0 d̄ = 0.5 d̄ = 1 d̄ = 1.5 d̄ = 2

CR(p=1/2) 0.05 0.2257 0.5543 0.8458 0.9701

BCD(p=7/12) 0.05 0.2292 0.5641 0.8557 0.9746

BCD(p=8/12) 0.05 0.2308 0.5684 0.8598 0.9764

BCD(P=9/12) 0.05 0.2315 0.5702 0.8615 0.9771

BCD(p=10/12) 0.05 0.2318 0.5710 0.8623 0.9774

BCD(p=11/12) 0.05 0.2320 0.5715 0.8627 0.9775

BCD(p=1) 0.05 0.2321 0.5718 0.8630 0.9776

NOA(D) 0.05 0.2361 0.5819 0.8713 0.9802

NOA(R) 0.05 0.2289 0.5629 0.8541 0.9737

Table 2.3: Powers of CR, BCD(p), NOA(D) and NOA(R) with σ2
1 = 0.5, σ2

2 = 2, n = 20

and α = 0.05

d̄ = 0 d̄ = 0.5 d̄ = 1 d̄ = 1.5 d̄ = 2

CR(p=1/2) 0.05 0.2537 0.6231 0.8975 0.9851

BCD(p=7/12) 0.05 0.2570 0.6318 0.9060 0.9885

BCD(p=8/12) 0.05 0.2584 0.6357 0.9096 0.9899

BCD(P=9/12) 0.05 0.2590 0.6374 0.9111 0.9904

BCD(p=10/12) 0.05 0.2593 0.6381 0.9117 0.9906

BCD(p=11/12) 0.05 0.2594 0.6385 0.9121 0.9907

BCD(p=1) 0.05 0.2595 0.6388 0.9123 0.9907

NOA(D) 0.05 0.2771 0.6780 0.9352 0.9949

NOA(R) 0.05 0.2679 0.6568 0.9215 0.9915
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The first column of each table gives the probabilities of rejecting the null hypothesis

H0 when H0 is true. We can see that these values obtained from our equations match

with the assumed significance level of the test α = 0.05. From the tables, we can

also conclude that the biased coin design is uniformly more powerful than complete

randomization for the case where the control and treatment responses have different

but known variances. The power function increases as the p in the biased coin design

increases from 7/12 to 11/12 as well.

For Neyman allocation, the powers obtained are higher in the deterministic case than

in the random case for the same value of d̄. Furthermore, these powers in the determin-

istic case are higher than their corresponding powers under complete randomization and

the biased coin design for all values of p. Consider the case when σ2
1 = 0.5 and σ2

2 = 2.

The sum of the variances of the patients’ responses on the two treatments is the largest

in this case. The powers obtained here for Neyman allocation in the random case are

higher than their corresponding powers under complete randomization and the biased

coin design for all values of p. However, for the other two cases, the powers for Neyman

allocation in the random case are higher than the corresponding powers under complete

randomization but are lower than those for the biased coin design for all values of p.

2.2.3 Exact power with unknown and different variances

Welch’s (1938) approximate t-test is often used when the variances of the treatment

and control responses are unknown and different. The degrees of freedom are chosen

so that the test statistic under the null hypothesis has approximately a t distribution.

Let again X̄n1 and Ȳn2 be the mean responses for the control and treatment groups,

respectively. Further, let s2
2 and s2

1 be the sample variances for the treatment and control
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groups, respectively. Then the test statistic is

T =
Ȳn2 − X̄n1√

s2
1

n1
+

s2
2

n2

.

The degrees of freedom are

ν =
(

s2
2

n2
+

s2
1

n1
)2

s4
2

n2
2(n2−1)

+
s4
1

n2
1(n1−1)

.

We reject H0 if and only if T > tν,α, where tν,α is the right-tailed α-level critical

value of the t-test with degrees of freedom ν. Under H1 : µ2 > µ1, the test statistic T has

approximately a non-central t distribution with ν degrees of freedom and non-centrality

parameter δ in (2.2). When the variances of the control and treatment responses are

unknown and different, the power of this test given a particular allocation status is the

probability of rejecting H0 given a particular allocation status n1 and n2. It is equal to

βT,α(µ2 − µ1, σ1, σ2, s1, s2|n1, n2) = 1− Tν,δ(tν,α), (2.4)

where Tν,δ is the cumulative distribution function of the non-central t distribution with ν

degrees of freedom and noncentrality parameter δ. By multiplying the conditional power

by the probability of a particular allocation status and summing over allocation status the

unconditional power of the test can be obtained.

Now, we know the probability mass function of the allocation status n1 and n2 under

complete randomization from (2.3). Therefore, the power of the test under complete

randomization is

βT,α,CR(µ2 − µ1, σ1, σ2, s1, s2) =
∑

n1+n2=n

{1− Tν,δ(tν,α)}
(

n

n1

)
(1/2)n.

For the biased coin design, the probability of obtaining a particular allocation status

n1 and n2 depends on the absolute difference Dn in the numbers of patients on the two

treatments up to time n. This Dn forms a Markov chain on the state space {0, 1, 2, ...}
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with P
(n)
l,m = P (Dn = m|D0 = l) as its n-step transition probabilities for l,m, n ≥ 0

given in (2.4). So the power of the test is

βT,α,BCD(µ2 − µ1, σ1, σ2, s1, s2) = {1− Tν,δ(tν,α)}P (n)
0,0

+
∑

n1+n2=n,n1 6=n2

{1− Tν,δ(tν,α)}1

2
P

(n)
0,|n1−n2|.

The above two expressions give the powers of complete randomization and the biased

coin design when the variances of the control and treatment responses are different and

unknown. These are both expressed in terms of the means of the control and treatment

responses, the standard deviations of the control and treatment responses, and the sample

standard deviations of the control and treatment responses; which are the parameters

µ1, µ2, σ1 and σ2, and the variables s1 and s2, respectively. The sample variances s2
1 and

s2
2 are two random variables which take any non-negative values.

In order to produce numerical results for the powers of these two designs, the con-

ditional power is needed where neither of the variables s1 and s2 are involved. This can

be obtained by integrating the product of the conditional power and the joint probability

density function of s1 and s2, with respect to s1 and s2. The powers of the two designs

are then calculated by multiplying this new conditional power by the probability mass

function of the allocation status and summing. The original conditional power of the test

when the variances of the treatment and control responses are different and unknown is

given in (2.4), where both Tν,δ and ν involve the variables s1 and s2. Let f(s2
1, s

2
2|n1, n2)

be the joint probability density function of s2
1 and s2

2 given the allocation status (n1, n2).

Then the new conditional power is

CT,α(µ2 − µ1, σ1, σ2|n1, n2)

=

∫ ∞

0

∫ ∞

0

βT,α(µ2 − µ1, σ1, σ2, s1, s2|n1, n2)f(s2
2, s

2
1|n1, n2) ds2

1ds2
2

=

∫ ∞

0

∫ ∞

0

{1− Tν,δ(tν,α)}f(s2
2, s

2
1|n1, n2) ds2

1ds2
2.
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We know, (n1−1)s2
1/σ

2
1 ∼ χ2

n1−1 and that (n2−1)s2
2/σ

2
2 ∼ χ2

n2−1. Let y1 = s2
1, y2 =

s2
2, x1 = (n1 − 1)s2

1/σ
2
1 and x2 = (n2 − 1)s2

2/σ
2
2 . Then the probability density functions

of x1 and x2 are

f(x1|n1) =
x

n1−1
2

−1

1 e−x1/2

2
n1−1

2 Γ
(

n1−1
2

)
for x1 > 0 and

f(x2|n2) =
x

n2−1
2

−1

2 e−x2/2

2
n2−1

2 Γ
(

n2−1
2

) ,
for x2 > 0, where Γ is the gamma function. By the method of change of variables, the

probability density function of y1 is

f(y1|n1) =

∣∣∣∣dx1

dy1

∣∣∣∣ f (x1 =
(n1 − 1)y1

σ2
1

∣∣∣∣n1

)

=

∣∣∣∣n1 − 1

σ2
1

∣∣∣∣
(

(n1−1)y1

σ2
1

)n1−1
2

−1

e
−

„
(n1−1)y1

σ2
1

«
/2

2
n1−1

2 Γ
(

n1−1
2

) ,

and similarly for the probability density function of y2. So the probability density func-

tions of s2
1 and s2

2 are

f(s2
1|n1) =

n1 − 1

2
n1−1

2 Γ(n1−1
2

)σ2
1

(
n1 − 1

σ2
1

s2
1)

n1−1
2

−1e
−(

n1−1

σ2
1

s2
1)/2

(2.5)

and

f(s2
2|n2) =

n2 − 1

2
n2−1

2 Γ(n2−1
2

)σ2
2

(
n2 − 1

σ2
2

s2
2)

n2−1
2

−1e
−(

n2−1

σ2
2

s2
2)/2

.

The treatment responses are independent and normally distributed with mean µ2 and

variance σ2
2 , the control responses are independent and normally distributed with mean

µ1 and variance σ2
1 , and the control responses are independent of the treatment responses.

Therefore, the random variables s2
1 and s2

2 are also independent. The joint probability

density function of s2
1 and s2

2 is just the product of their individual probability density

functions, so that

f(s2
1, s

2
2|n1, n2) = f(s2

1|n1)f(s2
2|n2). (2.6)
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Finally, the power of complete randomization when the variances of the treatment

and control responses are unknown and different is

βT,α,CR(µ2 − µ1, σ1, σ2) =
∑

n1+n2=n

CT,α(µ2 − µ1, σ1, σ2|n1, n2)

(
n

n1

)
(1/2)n.

Similarly, the power of the biased coin design is

βT,α,BCD(p)(µ2 − µ1, σ1, σ2) = CT,α(µ2 − µ1, σ1, σ2|n1, n2)P
(n)
0,0

+
∑

n1+n2=n,n1 6=n2

CT,α(µ2 − µ1, σ1, σ2|n1, n2)
1

2
P

(n)
0,|n1−n2|.

We assume that the total number of patients in the trial is 20, so that n = 20. There

are in total 21 combinations of values for n1 and n2 which give n = n1 +n2 = 20. There

are two special cases for which a specific joint probability density function for s2
1 and s2

2

is used instead of (2.6).

• When n1 = 0, then n = n2 = 20. All the patients are allocated to the treatment

group and no patient is in the control group, which means there will be no sample

variance for the control responses and hence no probability density function for s2
1.

The joint probability density function of s2
1 and s2

2 is just the probability density

function of s2
2 alone, so that f(s2

1, s
2
2|n1, n2) = f(s2

2|n2). Similarly, when n2 = 0,

n = n1 = 20 and there is no sample variance for the treatment group. The joint

probability density function of s2
1 and s2

2 is now f(s2
1, s

2
2|n1, n2) = f(s2

1|n1).

• When n1 = 1, then n2 = n− n1 = 19. Only one patient is allocated to the control

group. As there is only one patient in the control group, the sample variance of

the control responses will be s2
1 = 0. Then, from (2.5), f(s2

1|n1) = 0 and the

joint probability density function is f(s2
1, s

2
2|n1, n2) = 0. Similarly, when n2 = 1,

the sample variance of the treatment responses is s2
2 = 0, and hence the joint

probability density function is f(s2
1, s

2
2|n1, n2) = 0.
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The new numerical values for the powers of complete randomization and the biased

coin design are presented in the following three tables.

Table 2.4: Powers of CR and BCD(p) with σ2
1 = 0.5, σ2

2 = 1, n = 20 and α = 0.05

d̄ = 0 d̄ = 0.5 d̄ = 1 d̄ = 1.5 d̄ = 2

CR(p=1/2) 0.05 0.3270 0.7683 0.9686 0.9975

BCD(p=7/12) 0.05 0.3345 0.7830 0.9756 0.9990

BCD(p=8/12) 0.05 0.3379 0.7893 0.9781 0.9993

BCD(P=9/12) 0.05 0.3393 0.7918 0.9790 0.9994

BCD(p=10/12) 0.05 0.3400 0.7929 0.9794 0.9994

BCD(p=11/12) 0.05 0.3403 0.7935 0.9796 0.9995

BCD(p=1) 0.05 0.3406 0.7939 0.9797 0.9995

Table 2.5: Powers of CR and BCD(p) with σ2
1 = 1, σ2

2 = 2, n = 20 and α = 0.05

d̄ = 0 d̄ = 0.5 d̄ = 1 d̄ = 1.5 d̄ = 2

CR(p=1/2) 0.05 0.2124 0.5177 0.8090 0.9530

BCD(p=7/12) 0.05 0.2166 0.5299 0.8233 0.9615

BCD(p=8/12) 0.05 0.2185 0.5354 0.8293 0.9648

BCD(P=9/12) 0.05 0.2193 0.5376 0.8318 0.9660

BCD(p=10/12) 0.05 0.2197 0.5386 0.8328 0.9665

BCD(p=11/12) 0.05 0.2199 0.5392 0.8334 0.9668

BCD(p=1) 0.05 0.2200 0.5396 0.8338 0.9670
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Table 2.6: Powers of CR and BCD(p) with σ2
1 = 0.5, σ2

2 = 2,n = 20 and α = 0.05

d̄ = 0 d̄ = 0.5 d̄ = 1 d̄ = 1.5 d̄ = 2

CR(p=1/2) 0.05 0.2367 0.5797 0.8618 0.9717

BCD(p=7/12) 0.05 0.2404 0.5906 0.8745 0.9791

BCD(p=8/12) 0.05 0.2420 0.5954 0.8800 0.9819

BCD(P=9/12) 0.05 0.2427 0.5974 0.8822 0.9829

BCD(p=10/12) 0.05 0.2430 0.5983 0.8832 0.9833

BCD(p=11/12) 0.05 0.2432 0.5988 0.8837 0.9836

BCD(p=1) 0.05 0.2433 0.5991 0.8841 0.9837

The first column of each table shows the significance level of the test, which gave the

assumed significance level α = 0.05. From the tables, we can see that the biased coin

design is uniformly more powerful than complete randomization for the case where the

control and treatment responses have different and unknown variances. Also, the power

function increases as the p in the biased coin design increases. The power is smaller in

the case when the assumed variances of the control and treatment responses are σ2
1 = 1

and σ2
2 = 2 than in the case when the assumed variances are σ2

1 = 0.5 and σ2
2 = 1. The

sum of the variances is smaller in the latter case and leads to a higher power. Therefore,

when the variances of the treatment and control responses are unknown and different,

the power increases when the sum of the two variances is smaller.

By comparing the powers of complete randomization and Efron’s biased coin design

above to the corresponding powers when the variances of the treatment and control re-

sponses are known and different, the powers here are slightly less. This is due to the

t-test being only approximate and the variances of the patients’ responses on the two

treatments being unknown. There is some variation in the values of the powers of the
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two designs due to the approximation. The first column in the table has values which

give the assumed significance level α = 0.05.

2.3 Simulation of power under Efron’s biased coin de-

sign and the adjustable biased coin design with nor-

mal responses

In this section, the powers under Efron’s biased coin design and the adjustable bi-

ased coin design will be studied by simulation. Baldi Antognini (2008) considered the

known variance case for the ABCD and investigated the power function of the z-test.

He then describes the Markovian properties of the BCD. A theoretical analysis is given

of the power by comparing the adjustable biased coin design with Efron’s (1971) BCD

and Wei’s (1978) adaptive biased coin design. Theoretically, the adjustable biased coin

design is shown to give a uniformly more powerful z-test than the other two designs.

Consider an experiment with n = 20 patients. Each of them arrive sequentially and

have to be assigned to one of the treatments immediately. Both the biased coin design

and the adjustable biased coin design have a probability which biases the allocation

of a patient in favour of an under-represented treatment. The biased coin design has

a fixed probability p > 1/2 of allocating a patient to an under-represented treatment.

The adjustable biased coin design has a probability Fa(x) of allocating a patient to a

treatment. This probability varies with the numbers of patients currently in the two

groups, unlike the p in Efron’s biased coin design.

The powers of Efron’s biased coin design and the adjustable biased coin design were

produced by simulations in R. Patients arrive one by one and are assigned to one of

the treatments immediately. The assignment rule is as follows. Firstly, we randomly
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generate a number from a uniform distribution U [0, 1]. When the first patient arrives, we

have a probability of 1/2 of assigning this patient to either of the treatments. The rules

for the biased coin design and the adjustable biased coin design will be applied from the

second patient onwards. For the biased coin design with fixed p > 1/2, if the random

number is less than or equal to p, then we will assign the patient to the under-represented

treatment group, and otherwise to the other group. If the random number generated is

less than or equal to the value Fa(x), we will allocate the patient to the control group,

and otherwise to the treatment group. The difference in the numbers of patients on the

two treatments is calculated after each patient is allocated to a treatment.

Twenty random numbers are generated in R to represent twenty patients and to al-

locate them to one of the treatments according to the biased coin rule. This is repeated

for the adjustable biased coin design. These twenty assignments are considered to be

one trial. The patients are assumed to have normal responses. At the end of a trial, the

numbers of patients in the control and treatment groups, n1 and n2, will be known. With

chosen values for the means and variances, we simulate values from a normal distribu-

tion to represent the patients’ responses. Thus, we simulate n1 values from a normal

distribution with mean µ1 and variance σ2
1 and n2 values from a normal distribution with

mean µ2 and variance σ2
2 . The averages of the responses for the control and treatment

groups, X̄n1 and Ȳn2 , respectively, can be calculated from the simulated responses. Then

we test H0 : µ2 = µ1 against H1 : µ2 > µ1. The test statistics is

Z =
Ȳn2 − X̄n1

σ
√

1
n1

+ 1
n2

,

when the variances for the control and treatment groups are the same, that is σ2
1 = σ2

2 =

σ2, and is

Z =
Ȳn2 − X̄n1√

σ2
1

n1
+

σ2
2

n2
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when the variances for the control and treatment groups are different, that is σ2
1 6= σ2

2.

The significance level is assumed to be α = 0.05. We reject H0 if Z > zα.

The above is repeated 10,000 times with Efron’s biased coin design and the ad-

justable biased coin design for different values for the means and variances. The number

of tests with H0 being rejected is counted for the two designs. The proportion of tests

for which H0 is rejected is the estimated power. Simulation results for the estimated

powers of Efron’s biased coin design and the adjustable biased coin design are shown in

the following four tables. Again let d̄ = µ2−µ1. Different values for d̄ are used to study

the power of the two designs.

Table 2.7: Powers of BCD(p) and ABCD with σ2 = 1, n = 20 and α = 0.05

d̄ = 0 d̄ = 0.5 d̄ = 1 d̄ = 1.5 d̄ = 2

BCD(p=7/12) 0.050 0.300 0.714 0.952 0.998

BCD(p=8/12) 0.051 0.297 0.720 0.953 0.998

BCD(p=9/12) 0.051 0.297 0.728 0.954 0.997

BCD(p=10/12) 0.047 0.298 0.733 0.958 0.997

BCD(p=11/12) 0.052 0.302 0.721 0.957 0.998

ABCD(a=1) 0.047 0.292 0.723 0.954 0.998

ABCD(a=2) 0.050 0.295 0.729 0.955 0.998

ABCD(a=4) 0.048 0.304 0.720 0.959 0.997
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Table 2.8: Powers of BCD(p) and ABCD with σ2
1 = 0.5, σ2

2 = 1, n = 20 and α = 0.05

d̄ = 0 d̄ = 0.5 d̄ = 1 d̄ = 1.5 d̄ = 2

BCD(p=7/12) 0.050 0.354 0.811 0.984 1

BCD(p=8/12) 0.050 0.358 0.821 0.986 1

BCD(p=9/12) 0.049 0.359 0.827 0.987 1

BCD(p=10/12) 0.052 0.356 0.830 0.986 1

BCD(p=11/12) 0.045 0.359 0.833 0.987 1

ABCD(a=1) 0.050 0.357 0.818 0.986 1

ABCD(a=2) 0.051 0.369 0.826 0.988 1

ABCD(a=4) 0.046 0.368 0.825 0.987 1

Table 2.9: Powers of BCD(p) and ABCD with σ2
1 = 1, σ2

2 = 2, n = 20 and α = 0.05

d̄ = 0 d̄ = 0.5 d̄ = 1 d̄ = 1.5 d̄ = 2

BCD(p=7/12) 0.052 0.225 0.568 0.849 0.975

BCD(p=8/12) 0.048 0.233 0.564 0.853 0.975

BCD(p=9/12) 0.050 0.240 0.567 0.859 0.979

BCD(p=10/12) 0.048 0.232 0.575 0.859 0.978

BCD(p=11/12) 0.049 0.234 0.571 0.865 0.977

ABCD(a=1) 0.050 0.238 0.581 0.867 0.980

ABCD(a=2) 0.048 0.232 0.579 0.866 0.980

ABCD(a=4) 0.051 0.228 0.573 0.869 0.980
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Table 2.10: Powers of BCD(p) and ABCD with σ2
1 = 0.5, σ2

2 = 2, n = 20 and α = 0.05

d̄ = 0 d̄ = 0.5 d̄ = 1 d̄ = 1.5 d̄ = 2

BCD(p=7/12) 0.051 0.257 0.638 0.907 0.989

BCD(p=8/12) 0.047 0.249 0.646 0.910 0.991

BCD(p=9/12) 0.048 0.267 0.637 0.909 0.990

BCD(p=10/12) 0.049 0.259 0.639 0.914 0.991

BCD(p=11/12) 0.045 0.260 0.635 0.911 0.990

ABCD(a=1) 0.049 0.255 0.651 0.911 0.990

ABCD(a=2) 0.056 0.256 0.638 0.914 0.992

ABCD(a=4) 0.052 0.260 0.641 0.912 0.990

For both designs, the power increases when d̄ increases. In addition, a larger value

is obtained for the power when the sum of the variances is smaller. However, the trend

in the power of the biased coin design when p increases is not obvious. Therefore, no

conclusion can be drawn about the power of the biased coin design when p increases

from the simulations. Similarly, no obvious pattern can be seen in the powers of the

adjustable biased coin design when a increases. Hence, we cannot draw any conclusions

about the power of the ABCD when a increases.

Theoretically, the adjustable biased coin design has been shown by Baldi Antognini

(2008) to be uniformly more powerful than Efron’s biased coin design. Here, we have

tried to quantify the increase in power by simulation. The numerical values for the pow-

ers give no evidence that the adjustable biased coin design is uniformly more powerful

than Efron’s biased coin design. We have also simulated the trial 100,000 times and one

million times and no significant increase in the power was shown by using the adjustable

biased coin design. Therefore, from the values that have been obtained, we cannot con-
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clude that the adjustable biased coin design is uniformly more powerful than Efron’s

biased coin design. Further theoretical work may be possible to study the degree of

increase in power for the adjustable biased coin design over Efron’s biased coin design.

2.4 Power under complete randomization and Efron’s

biased coin design with binary responses

Previously, we assumed that the treatment and control groups have normal responses.

In this section, the situation when binary responses are available is considered. There-

fore, each patient has a response which follows a Bernoulli distribution. Let Xi for

i = 1, ..., n1 represent the response of the ith patient in the control group and let Yj for

j = 1, ..., n2 represent the response of the jth patient in the treatment group such that

Xi =


1 if the ith patient in the control group survives,

0 otherwise,

and

Yj =


1 if the jth patient in the treatment group survives,

0 otherwise.

Let P (Xi = 1) = p1 be the probability that a patient survives in the control group and let

P (Yj = 1) = p2 be the probability that a patient survives and is in the treatment group.

By assumption, the random variables X1, X2, ..., Xn1 are independent and identi-

cally distributed and the random variables of Y1, Y2, ..., Yn2 are independent and identi-

cally distributed. The control and treatment responses are also independent. Let X =∑n1

i=1 Xi and Y =
∑n2

j=1 Yj . Then, given n1 and n2, we have X|n1 ∼ Bin(n1, p1) and

Y |n2 ∼ Bin(n2, p2). The conditional probability mass functions of these two random
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variables are

P (X = x|n1) =

(
n1

x

)
px

1(1− p1)
n1−x

and

P (Y = y|n2) =

(
n2

y

)
py

2(1− p2)
n2−y.

Since the control and treatment responses are independent, the joint conditional proba-

bility mass function of the numbers of patients who survive in the control and treatment

groups is just the product of their individual conditional probability mass functions given

by

P (X = x, Y = y|n1, n2) = P (X = x|n1)P (Y = y|n2)

=

(
n1

x

)
px

1(1− p1)
n1−x

(
n2

y

)
py

2(1− p2)
n2−y.

We are interested in whether there is a treatment effect. Here, p1 and p2 are the two

parameters of interest. A difference in these two parameters will indicate a treatment

effect in the case of binary responses. We want to test H0 : p1 = p2 against H1 : p2 > p1.

We reject H0 if Y −X > d for some positive integer d.

Numerical values for the powers of complete randomization and the biased coin

design with binary responses will be produced. The conditional power, which is the

probability of correctly detecting a treatment effect given a particular allocation status,

is needed first. This is the same as the probability of rejecting H0 given a particular

allocation status, P (Y −X = y − x > d|n1, n2), for a chosen critical value d ∈ Z+.

In order to obtain the probability mass function of Y −X , we use the joint conditional

probability mass function of X and Y and a change of variables. Let A = X + Y and

B = Y −X . Then we have to obtain the joint conditional probability mass function of A

and B denoted by g(a, b|n1, n2). Then we can sum over all values of a in g(a, b|n1, n2).

The resulting expression is the conditional probability mass function g(b|n1, n2) which
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is also the conditional probability mass function of Y −X given n1 and n2. Finally, by

choosing a critical value d, the probability P (Y −X = y− x > d|n1, n2) can be found.

By a change of variables, the joint conditional probability mass function g(a, b|n1, n2)

is

g(a, b|n1, n2) = P

(
X =

a− b

2
, Y =

a + b

2

∣∣∣∣n1, n2

)
=

(
n1
a−b
2

)
p

a−b
2

1 (1− p1)
n1−(a−b

2
)

(
n2
a+b
2

)
p

a+b
2

2 (1− p2)
n2−(a+b

2
).

We have to sum over all values of a in g(a, b|n1, n2) to obtain the conditional probability

mass function of B. Therefore, the range for a has to be known. We know that x can

take any integer value between 0 and n1. Similarly, y can take any integer value between

0 and n2. From x = (a − b)/2, we know that a is an integer that lies between b and

2n1 + b inclusively. Similarly, from y = (a + b)/2, a is an integer that lies between −b

and 2n2 − b inclusively. So we have four conditions for the range of a: a ≥ b, a ≥ −b,

a ≤ 2n1 + b and a ≤ 2n2 − b. By drawing the four lines a = b, a = −b, a = 2n1 + b

and a = 2n2 − b on a graph, we can identify the values for a and b that satisfies these

conditions. The values for a and b are the discrete points inside the shaded area. Three

graphs are given to show the shaded area of interest, when n1 > n2, when n1 = n2 and

when n1 < n2. The red, blue, yellow and green lines represent the lines with equations

a = b, a = −b, a = 2n1 + b and a = 2n2 − b, respectively.
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Figure 2.1: Values of a and b when n1 > n2
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Figure 2.2: Values of a and b when n1 = n2
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Figure 2.3: Values of a and b when n1 < n2

 values of b

va
lu

es
 o

f a

(−n1,n1)

(n2−n1,n2+n1)

(n2,n2)

(0,0)

The first two conditions a ≥ b and a ≥ −b imply that a is greater than or equal to

|b| and the last two conditions a ≤ 2n1 + b and a ≤ 2n2 − b imply that a is less than or

equal to n− |b + n1−n2|. We know that all values for a depend on the current value for

b. Consider all values for a when b is fixed. Then, we have a = b + 2x, so that a takes

values in steps of two and a = {|b|, |b| + 2, ..., n − |b + n1 − n2|}. Therefore, we sum

over a in steps of two for each value for b in the conditional power.

The conditional power P (Y −X = b > d|n1, n2) = P (Y −X = y− x > d|n1, n2)

for a chosen critical value d is

n2∑
b=d

n−|b+n1−n2|∑
a=|b|

(
n1
a−b
2

)
p

a−b
2

1 (1− p1)
n1−(a−b

2
)

(
n2
a+b
2

)
p

a+b
2

2 (1− p2)
n2−(a+b

2
).

The above formula may be written as

(1− p1)
n1(1− p2)

n2

n2∑
b=d

{
p2(1− p1)

p1(1− p2)

} b
2

n−|b+n1−n2|∑
a=|b|

(
n1
a−b
2

)(
n2
a+b
2

)

×
{

p1p2

(1− p1)(1− p2)

}a
2

.

This is the power given the allocation status n1 and n2.

The unconditional power can be obtained by multiplying the conditional power by

the probability mass function of the allocation status and summing. The power of com-
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plete randomization is

∑
n1+n2=n

(1− p1)
n1(1− p2)

n2

n2∑
b=d

{
p2(1− p1)

p1(1− p2)

} b
2

n−|b+n1−n2|∑
a=|b|

(
n1
a−b
2

)(
n2
a+b
2

)

×
{

p1p2

(1− p1)(1− p2)

}a
2
(

n

n1

)(
1

2

)n

.

and the power of the biased coin design is

(1− p1)
n
2 (1− p2)

n
2

n
2∑

b=d

{
p2(1− p1)

p1(1− p2)

} b
2

n−|b|∑
a=|b|

( n
2

a−b
2

)( n
2

a+b
2

){
p1p2

(1− p1)(1− p2)

}a
2

× P
(n)
0,0 +

∑
n1+n2=n,

n1 6=n2

(1− p1)
n1(1− p2)

n2

n2∑
b=d

{
p2(1− p1)

p1(1− p2)

} b
2

×
n−|b+n1−n2|∑

a=|b|

(
n1
a−b
2

)(
n2
a+b
2

){
p1p2

(1− p1)(1− p2)

}a
2

× 1

2
P

(n)
0,|n1−n2|.

We now consider the power when the significance level is fixed. Numerical values

for the power are given for complete randomization and Efron’s biased coin design in

the following two tables. The first column of each table shows the significance level. By

choosing the appropriate critical value d in each case, we want to fix the value for the

significance level to be around 0.05. The critical value d is chosen so that this is less than

or equal to 0.05. Here, d may not be the same for different designs as the probability

distribution of the allocation status is different, since Efron’s biased coin design is better

than complete randomization in terms of balancing the numbers of patients on the two

treatment groups.

60



Table 2.11: The power of CR and BCD with µ = p2 − p1 and n = 20

µ = 0 µ = 0.2 µ = 0.4 µ = 0.6 µ = 0.8

CR(p=1/2) d=6 0.0430 0.1313 0.3134 0.5745 0.8320

BCD(p=7/12) d=5 0.0464 0.1708 0.4279 0.7492 0.9547

BCD(p=8/12) d=5 0.0320 0.1478 0.4221 0.7762 0.9750

BCD(p=9/12) d=5 0.0259 0.1366 0.4192 0.7900 0.9829

BCD(p=10/12) d=5 0.0232 0.1311 0.4178 0.7970 0.9861

BCD(p=11/12) d=5 0.0217 0.1279 0.4170 0.8012 0.9877

Table 2.12: The power of CR and BCD with µ = p2 − p1 and n = 50

µ = 0 µ = 0.2 µ = 0.4 µ = 0.6 µ = 0.8

CR(p=1/2) d=9 0.0443 0.2403 0.6249 0.9234 0.9970

BCD(p=7/12) d=7 0.0513 0.3523 0.8281 0.9916 1

BCD(p=8/12) d=7 0.0385 0.3417 0.8483 0.9960 1

BCD(p=9/12) d=7 0.0489 0.3898 0.8820 0.9980 1

BCD(p=10/12) d=7 0.0337 0.3370 0.8570 0.9972 1

BCD(p=11/12) d=7 0.0330 0.3362 0.8584 0.9974 1

From the above tables, we can see that the biased coin design performs much better

than complete randomization in terms of power for each value of µ = p2 − p1. We took

five values of p1 from 0.5 to 0.1 in steps of 0.1 and p2 takes five values from 0.5 to 0.9

in steps of 0.1. In Table 2.11, for µ = 0.6 and µ = 0.8, we can also see that the power

of the biased coin design increases when p increases. Similar conclusions hold when the

number of patients is n = 50 in Table 2.12. An increase in the number of patients in the

trial gives a larger value for the power in each case.
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2.5 Normal approximation for the power under com-

plete randomization and Efron’s biased coin design

In this section, we assume that patients’ responses in the two treatment groups are

normally distributed. We study the numerical values for the power obtained using a

normal approximation for complete randomization and Efron’s biased coin design, and

compare these with the exact values. The exact values were obtained by Chen (2006)

when the variances are the same, in Section 2.2.2 when the variances are known and

different, and in Section 2.2.3 when the variances are unknown and different.

In Shao, Yu and Zhong (2010), normal approximations to the power are given under

different randomization schemes. The responses of patients in the two treatment groups

are assumed to be normally distributed. We wish to test H0 : µ1 = µ2 against H1 : µ2 >

µ1. The test statistic is

T =
Ȳn2 − X̄n1√
s2
1/n1 + s2

2/n2

.

The sample variances for the standard and new treatments are denoted by s2
1 and s2

2,

respectively. We will replace s2
1 and s2

2 by the population variances σ2
1 and σ2

2 when the

variances are known. Given a significance level of α, we reject H0 if T > cα, where cα

is the critical value of a Student’s t-distribution or the standard normal distribution when

the variances of the patients’ responses are unknown or known, respectively.

When the variances of the responses in the two treatment groups are the same, we

have σ2
1 = σ2

2 = σ2. Then we have,

lim
n→∞

P (T > cα) = Φ(−cα).

The unconditional power under H1 for the two sample t-test under complete randomiza-
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tion and the biased coin design is given by

P (T > cα) ≈ Φ

(
d̄
√

n

2σ
− cα

)
.

This represents the normal approximation to the power. The following three tables give

the exact power and the normal approximation to the power for complete randomization

and Efron’s biased coin design. In the calculations, we took σ2 = 1.

Table 2.13: Exact powers of CR and BCD(p) with normal approximation when n = 20,

α = 0.05, σ = 1 and known

d̄ = 0 d̄ = 0.5 d̄ = 1 d̄ = 1.5 d̄ = 2

CR(p=1/2) 0.05 0.2893 0.7024 0.9461 0.9960

BCD(p=7/12) 0.05 0.2947 0.7139 0.9522 0.9971

BCD(p=8/12) 0.05 0.2972 0.7190 0.9546 0.9975

BCD(p=9/12) 0.05 0.2983 0.7211 0.9555 0.9976

BCD(p=10/12) 0.05 0.2987 0.7220 0.9560 0.9976

BCD(p=11/12) 0.05 0.2990 0.7225 0.9562 0.9976

N.Approx 0.05 0.2992 0.7228 0.9563 0.9977

We can see that the normal approximation to the power is slightly higher than the ex-

act values obtained under complete randomization and Efron’s biased coin design when

the variances of the responses are the same and known. The differences in the exact and

approximate powers under complete randomization are no more than about 2%, while

those in the powers under Efron’s biased coin design are no more than about 1%. As the

exact power is higher for the biased coin design than for complete randomization, the

over-approximation is less serious for the biased coin design than for complete random-

ization.
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Table 2.14: Exact powers of CR and BCD(p) with normal approximation when n = 20,

α = 0.05, σ = 0.5 and unknown

d̄ = 0 d̄ = 0.5 d̄ = 1 d̄ = 1.5 d̄ = 2

CR(p=1/2) 0.05 0.6732 0.9937 1 1

BCD(p=7/12) 0.05 0.6847 0.9952 1 1

BCD(p=8/12) 0.05 0.6897 0.9957 1 1

BCD(p=9/12) 0.05 0.6918 0.9959 1 1

BCD(p=10/12) 0.05 0.6927 0.9959 1 1

BCD(p=11/12) 0.05 0.6932 0.9960 1 1

N.Approx. 0.05 0.7228 0.9977 1 1

Table 2.15: Exact powers of CR and BCD(p) with normal approximation when n = 20,

α = 0.05, σ = 2 and unknown

d̄ = 0 d̄ = 0.5 d̄ = 1 d̄ = 1.5 d̄ = 2

CR(p=1/2) 0.05 0.1313 0.2755 0.4709 0.6732

BCD(p=7/12) 0.05 0.1329 0.2806 0.4802 0.6847

BCD(p=8/12) 0.05 0.1337 0.2829 0.4843 0.6897

BCD(p=9/12) 0.05 0.1340 0.2839 0.4861 0.6918

BCD(p=10/12) 0.05 0.1341 0.2844 0.4868 0.6927

BCD(p=11/12) 0.05 0.1342 0.2846 0.4873 0.6932

N.Approx 0.05 0.1388 0.2992 0.5128 0.7228

In the case of unknown and equal variances, the normal approximation to the power

again gives larger values for the power under both schemes than the exact calculations.

The over-approximation is also more serious for complete randomization than for the

biased coin design. However, the differences in the exact and approximate values are
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greater than those when the variances are the same and known.

When the variances of the responses are different, the unconditional power under the

two designs for the two sample t-test is

P (T > cα) ≈ Φ

(
d̄
√

n√
2(σ2

1 + σ2
2)
− cα

)
,

The next two tables present the exact power and the normal approximation to the power

for the two designs.

Table 2.16: Exact powers of CR and BCD(p) with normal approximation when n = 20,

α = 0.05, σ2
1 = 0.5, σ2

2 = 2 and known

d̄ = 0 d̄ = 0.5 d̄ = 1 d̄ = 1.5 d̄ = 2

CR(p=1/2) 0.05 0.2537 0.6231 0.8975 0.9851

BCD(p=7/12) 0.05 0.2570 0.6318 0.9060 0.9885

BCD(p=8/12) 0.05 0.2584 0.6357 0.9096 0.9899

BCD(P=9/12) 0.05 0.2590 0.6374 0.9111 0.9904

BCD(p=10/12) 0.05 0.2593 0.6381 0.9117 0.9906

BCD(p=11/12) 0.05 0.2594 0.6385 0.9121 0.9907

BCD(p=1) 0.05 0.2595 0.6388 0.9123 0.9907

N.Approx 0.05 0.2595 0.6388 0.9123 0.9907

For known and different variances, the normal approximation to the power gives the

most accurate approximation compared to the previous cases. The normal approximation

to the power gives the same results as to the biased coin design when p = 1. There is

still an over-approximation to the power under the two schemes. The differences in the

exact and approximate values are no more than 1% for all d̄ and p 6= 1 under the biased

coin design. The normal approximation to the power also works better for the biased

coin design than for complete randomization.
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Table 2.17: Exact powers of CR and BCD(p) with normal approximation when n = 20,

α = 0.05, σ2
1 = 0.5, σ2

2 = 1 and unknown

d̄ = 0 d̄ = 0.5 d̄ = 1 d̄ = 1.5 d̄ = 2

CR(p=1/2) 0.0500 0.3270 0.7683 0.9686 0.9975

BCD(p=7/12) 0.0500 0.3345 0.7830 0.9756 0.9990

BCD(p=8/12) 0.0500 0.3379 0.7893 0.9781 0.9993

BCD(p=9/12) 0.0500 0.3393 0.7918 0.9790 0.9994

BCD(p=10/12) 0.0500 0.3400 0.7929 0.9794 0.9994

BCD(p=11/12) 0.0500 0.3403 0.7935 0.9796 0.9995

BCD(p=1) 0.0500 0.3406 0.7939 0.9797 0.9995

N.Approx 0.05 0.3617 0.8257 0.9871 0.9998

When the variances of the responses are unknown and different, the exact power is

obtained for Welch’s approximate t-test. The normal approximation to the power again

gives larger values for the power than the exact calculations under the two schemes. The

differences in the exact and approximate values are no more than 4% for the biased coin

design.

The asymptotic expression given for the normal approximation to the power are the

same under complete randomization and the biased coin design. The values obtained

for the power by the normal approximation are therefore the same under complete ran-

domization and the biased coin design. For each case, the numerical values for the

power given by the normal approximation are higher than the exact values. There is an

over-estimation to the power. The problem of over approximation is more serious for

complete randomization than for the biased coin design.

In the planning stage of a clinical trial, we have to estimate the number of patients
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that are needed to achieve a certain power for a given treatment difference. The prob-

lem of over approximation to the power will lead the planning team to recruit too few

patients. By knowing the degree of over-approximation can help the planners to adjust

their sample size estimate accordingly.

2.6 Conclusions

It is clear that complete randomization gives the lowest power among the designs

both when patients’ responses are binary and normally distributed. Complete random-

ization schemes are less likely to detect a genuine treatment difference than the other

designs. Efron’s biased coin design is basically as good as the adjustable biased coin

design in terms of balancing the numbers of patients on two treatments.

In this chapter, we have described the simplest case in clinical trials. Restricted

randomization schemes are considered where patient assignment only depends on the

current numbers of patients on the two treatments. In the next chapter, we will study

schemes where covariate information will be used for treatment assignment. In other

words, we study covariate-adaptive randomization schemes in two-treatment trials. In

Chapter 4, we will study restricted randomization schemes for more than two treatments.
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Chapter 3

Covariate-adaptive randomization

schemes

3.1 Introduction

Consider a clinical trial in which there are two treatments under comparison. Patients

arrive sequentially and have to be assigned to one of the treatments immediately. A ran-

domization scheme can be used for treatment assignment to ensure that there are similar

numbers of patients in the two treatment groups and to maintain some randomness in the

assignment for valid statistical inference. These randomization schemes have their own

assignment rules for which the assignments are made based on the current numbers of

patients on the treatments.

In addition, some of the patients’ prognostic factors like their age, gender, current

health condition and so on will have an influential effect on their responses to different

treatments. Therefore, it is sensible to include these prognostic factors as covariates both

in the randomization stage and in the analysis stage. When the randomization schemes

are applied to patients classified by their prognostic factors, we call these covariate-
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adaptive randomization schemes. These schemes ensure that patients with the same

prognostic profile are balanced across the treatment groups. One of the most well-known

covariate adaptive randomization processes is the minimization procedure developed by

Pocock and Simon (1975) and described as follows. We first identify patients’ prognos-

tic profiles by classifying them into different levels within each of the covariates. Let

the total number of treatments involved be K. Then we calculate the imbalance between

the treatments at different levels of the prognostic factors if the next patient is assigned

to treatment j for j = 1, .., K. If some of the levels of the covariates are more impor-

tant, more weight will be put on these. The overall imbalance is calculated from the

imbalances of each level of the covariates. The next assignment will be made to the

treatment which gives the minimum overall imbalance. Covariate-adaptive randomiza-

tion schemes are also studied by Shao, Yu and Zhong (2010) when there is only one

covariate and K = 2. Here, the covariate is considered to be a random variable.

In this chapter, we will investigate different covariate-adaptive randomization schemes

when K = 2. In Section 3.2, the linear models for patients’ responses is introduced

when there are several covariates. We will only consider a fixed- effects model. Under

any covariate-adaptive randomization scheme, we can achieve either global or marginal

balance in the numbers of patients in the two treatment groups. Their properties are

investigated for two covariates by Baldi Antognini and Zagoraiou (2011). In Section

3.3, global and marginal balance will be described for two or more covariates. The pa-

tient assignment rules will be introduced in Section 3.4 for covariate-adaptive simple

random sampling, the covariate-adaptive biased coin design and the covariate-adaptive

adjustable biased coin design for both global and marginal balance. In Section 3.5, an

analysis of covariance t test on the treatment difference under the above three randomiza-

tion schemes will be described. In Shao, Yu and Zhong (2010), an analytical approach is
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given to obtain expressions for normal approximations to the power under different ran-

domization schemes for a single covariate. In Section 3.6, we assess the accuracy of the

normal approximation to the power for different scenarios. The corresponding expres-

sion for the normal approximation will also be given when there are p ≥ 2 covariates.

Numerical values for the power of the analysis of covariance t test will be simulated in

Section 3.7. The values will be simulated for different scenarios under the three random-

ization schemes for both global and marginal balance. Finally, we draw conclusions in

Section 3.8.

3.2 Models for covariate-adaptive randomization

Consider a trial with two treatments and n patients in total. Treatment 1 represents

the standard treatment and treatment 2 represents the new treatment. We call the group

of patients that receive treatment 1 the control group and the group of patients receiving

treatment 2 the treatment group. Let n1 and n2 be the numbers of patients in the control

and treatment groups, respectively. The response of the ith patient on treatment j is Yij

for i = 1, .., n and j = 1 if the ith patient is allocated to treatment 1 or j = 2 if the ith

patient is allocated to treatment 2. Let Ii be the indicator variables such that

Ii =


0 if the ith patient is allocated to treatment 1,

1 if the ith patient is allocated to treatment 2

(3.1)

for i = 1, ..., n. The response of patient i can be represented as

Yi = IiYi2 + (1− Ii)Yi1.

3.2.1 Linear model for patients’ responses

We are interested in the model for the Yij . Let Zik be the kth covariate used in the
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randomization process for the ith patient and let the total number of covariates used be

p. Then our model for patients’ responses may be written in matrix form as

Y = Wµ + Zβ + ε. (3.2)

Here, Y is the n× 1 column vector which contains all the responses Yij for i = 1, ..., n

and j = 1 or 2 such that

Y =
(
Y11, Y21, ..., Yn11, Y(n1+1)2, Y(n1+2)2, ..., Yn2

)T
.

The column vectors µ and β represent the parameters in the model. Let µ1 and µ2 be

the mean responses for treatment 1 and 2, respectively. Then µ is 2 × 1 column vector

with components µ1 and µ2 − µ1. The ith patient will take µ1 in the model when the

subject is allocated to treatment 1 and µ2 when the subject is allocated to treatment 2.

Furthermore, W is an n × 2 matrix with ones in the first column and the values of Ii in

the second column.

The matrix Z contains the values of the covariates used in the randomization and

their interactions. More specifically, it includes all values of the p covariates Zik for

i = 1, ..., n and k = 1, ..., p, together with any interaction terms between them. These

interaction terms can be interactions between two or more covariates and will consist of

at most (
p

2

)
+

(
p

3

)
+ . . . +

(
p

p

)
terms. Therefore, Z is a n× q matrix, where p ≤ q.

These covariates are either qualitative or quantitative variables. Quantitative vari-

ables refer to variables with numerical values. They can be discrete or continuous. Ex-

amples of quantitative covariates are the height and weight of a patient, the amount of

alcohol intake per day, the number of packs of cigarettes smoked and so on. The first ex-

ample is a continuous quantitative variable and the last is a discrete quantitative variable.
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Qualitative variables refer to variables that cannot be measured in terms of numbers and

are classified into different categories. These variables can be further divided into two

categories which are categorical and ordinal. For ordinal variables, the categories are

ordered. For example, the current health condition of a patient can be classified into cat-

egories in terms of status with levels such as ’very bad’, ’normal’,’very good’ and so on.

Categorical covariates have no sense of ordering. Gender is an example of categorical

covariates for which has the levels ’male’ or female’.

We transform all the quantitative and qualitative covariates into factors variables as

follows. Consider the covariate Zik which represents the prognostic profile for the kth

covariate of the ith patient. This particular covariate is divided into lk levels, where lk

represents the total number of levels for the kth covariate and k = 1, ..., p. These total

numbers of levels for different covariates may be the same.

In the case where the covariates are quantitative, we have to define ranges for each

of the levels within each covariate. For a particular covariate k, it will be classified as

being in a particular level if its values lie within the range of that level. We allocate an

integer value to each level of the covariate. For example, the covariate for age will take

the value −1 if the age of a patient is between 0 − 20, 0 for ages between 21 to 40 and

so on. Another covariate, the height of a patient may take value −1 if their height is less

than or equal to 100 cm, 0 for height above 100 cm and less than or equal to 120 cm and

so on.

When the covariates are qualitative and ordinal, a value will be assigned to each of the

levels of the covariates. For example, the health condition of a patient is represented by a

value of −2 for ’very bad’ condition and 2 for ’very good’ condition. For qualitative and

categorical covariates, we will also assign a value to each of the categories of a covariate.

For example, we take −1 for a female patient and 1 for a male patient.

72



The values of all of the levels for each covariate add up to zero. This is to ensure that

an effect of one level can be compensated for by inverse effects of all the other levels.

Therefore, these values are used for the values of the covariates Zik for i = 1, .., n and

k = 1, ..., p in the model.

The q× 1 column vector β contains the regression parameters for the covariates and

is

β = (β1, β2, ..., βp, βp+1, ..., βq)
T .

Here, there are in total p covariates used in the randomization and β1 to βp are the

regression parameters for each of the covariates. The rest of the components in β from

βp+1 onwards are the regression parameters for the interactions between the covariates.

Finally, ε is the n× 1 column vector for the random errors εij such that

ε =
(
ε11, ..., εn11, ε(n1+1)2, ..., εn2

)T
,

where the εij for i = 1, ..., n and j = 1 or 2 are independent and identically distributed

with mean 0 and variance σ2
ε . These random errors εij are independent of all of the

covariates Zik. The model can be considered as either a fixed-effects or a random-effects

model.

3.2.2 Background

In Shao, Yu and Zhong (2010), the model for treatment responses is written in the

form

Yij = µj + bZi + εij.

The above equation is a special case of (3.2). Here, Yij and εij for i = 1, .., n and j = 1

or 2 are the components of the vectors Y and ε, respectively. Also,

µ = (µ1, µ2)
T (3.3)
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and

W =

1 1 . . . 1 0 0 . . . 0

0 0 . . . 0 1 1 . . . 1


T

. (3.4)

In this model, only one covariate is considered and hence there are no interaction

terms. This covariate is assumed to be a univariate covariate with finite second order

moment. The covariate Zi here is the same as Zik in (3.2) with k = p = 1. So Zi1 can

be written as Zi in this case. This means that Z = (Z1, Z2, ..., Zn)T . In addition, the

column vector β in (3.2) which contains all the regression parameters for the covariates

and their interactions is now just b.

In Shao, Yu and Zhong (2010), the covariates Zi used in the randomization are ran-

dom variables. In fact, (Yi1, Yi2, Zi) for i = 1, ..., n are assumed to be independent

random variables from some distribution. The random variables Zi are independent and

identically distributed and can be from a discrete or continuous distribution. The random

variables εij are independent of the Zi.

When Zi is discrete, there will be a list of possible values for Zi. These Zi take

any values in this list. If Zi is continuous, then we have to define a discrete function of

Zi, denoted by D(Zi). Under any covariate-adaptive randomization scheme, when Zi

is discrete, we will apply its assignment rule for each value of Zi. When Zi is continu-

ous, we will apply the assignment rules to patients in each of the categories defined by

D(Zi). Our aim is to achieve balance between the two treatment groups for each of the

prognostic factors.

3.2.3 Fixed-effects model

Consider now (3.2) as a fixed-effects model. The parameters in β for the covariates

Zik and in µ are some fixed quantities. These parameters are called the fixed-effect
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coefficients in the model. Under the fixed-effects model, the covariates Zik that we use

are also fixed quantities with integer values instead of random variables that takes value

from some distribution. Under this model, all levels of each covariate are used. We will

not randomly choose samples of levels for each covariate. All of the patients’ responses

have the same variance.

3.3 Global balance and marginal balance

3.3.1 Background

One of the main aims of randomization schemes is to balance the numbers of patients

across treatment groups. When a patient arrives at a clinical centre, we have to assign

this patient to one of the treatments immediately. Therefore, for a covariate-adaptive

randomization scheme, one of its aims is to ensure a balance in the numbers of patients in

the two treatment groups when patients are classified by their prognostic factors. When

there are two or more covariates, either global or marginal balance can be sought under

different covariate-adaptive randomization schemes. Global and marginal balancing are

only used when the fixed-effects model is considered for patients’ responses. There

are in total p covariates to consider. Each of the covariates is classified into different

levels. Let the total number of levels for the kth covariate be lk for k = 1, ..., p. Let Lsk
k

represents level sk of the kth covariate for k = 1, ..., p and sk = 1, ..., lk. For a particular

covariate k, we will denote the levels of this covariate by L1
k, L

2
k, ..., L

lk
k . The values of

lk for k = 1, ..., p can be the same or different.

3.3.2 Global balance

Global balance is where balance is achieved in the numbers of patients on the two
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treatments for all combinations of the levels of the covariates. There are a total of l1 ×

l2 × . . .× lp possible combinations for all levels of the covariates. We will refer to each

of the combinations as one of the l1 × l2 × . . . × lp cells for the covariates. When a

patient arrives, the subject’s prognostic profile will be recorded. We will know which

cell the patient falls into. The assignment rule for a particular randomization scheme

will be applied within that cell. We normally use the same randomization scheme for

all cells. We may also use different randomization schemes in all or some of the cells.

It will depend on how important it is to balance the numbers of patients between two

treatments in a particular cell. Global balance therefore balances the numbers of patient

in each of the cells {(L1
1, L

1
2, ..., L

1
p), (L

2
1, L

1
2, ..., L

1
p), ..., (L

l1
1 , Ll2

2 , ..., L
lp
p )}.

We will let Dm(Ls1
1 , Ls2

2 , ..., L
sp
p ) be the difference between the number of patients on

treatment 1 and the number of patients on treatment 2 up to the mth assignment based on

all patients with the prognostic profile {(Ls1
1 , Ls2

2 , ..., L
sp
p )}. This Dm(Ls1

1 , Ls2
2 , ..., L

sp
p )

is used for the treatment assignment of the next patient in global balance for covariate-

adaptive randomization schemes. Given the sign of this Dm, we know the under-represented

treatment for this particular prognostic profile after m assignments have been made.

3.3.3 Marginal balance

Marginal balance is another way to balance the numbers of patients between two

treatment groups. Here, we consider the difference in the numbers of patients on two

treatments marginally for the levels of the covariates. When a patient arrives, its prog-

nostic profile is noted and we know the levels of each of the p covariates for this patient.

Let the prognostic profile of the next patient be (Ls1
1 , Ls2

2 , ..., L
sp
p ). Assume that m as-

signments have been made prior to this patient, let Dm(Ls1
1 ) be the difference between

the number of patients on treatment 1 and the number on treatment 2 based on all pa-

76



tients with level s1 of the first covariate, and similarly define Dm(Ls2
2 ), ..., Dm(L

sp
p ).

These quantities measure the marginal imbalance at the individual levels of the p co-

variates for the next patient. Let D̄m denote the overall imbalance used under covariate-

adaptive randomization for the treatment assignment of the next patient based on the first

m assignments in the marginal approach. This imbalance is a linear combination of the

marginal imbalances at the individual levels of the p covariates and is defined as

D̄m = c1Dm(Ls1
1 ) + c2Dm(Ls2

2 ) + ... + cpDm(Lsp
p ),

where ck for k = 1, ..., p are any real numbers which represent the weights chosen to

reflect the relative importance of the covariates. The overall imbalance D̄m is calculated

at each stage m and the sign of D̄m will be noted. Hence, at each stage, the under-

represented treatment will be known.

3.4 Assignment rules for covariate-adaptive randomiza-

tion schemes

The treatment assignment rules are now described for covariate-adaptive simple ran-

dom sampling, the covariate-adaptive biased coin design and the covariate-adaptive ad-

justable biased coin design which achieve either global or marginal balance when pa-

tients are classified by their prognostic factors.

Under covariate-adaptive simple random sampling for global balance, the next pa-

tient has a probability of 1/2 of being allocated to either of the treatments in the appro-

priate cell for all values of Dm(Ls1
1 , Ls2

2 , ..., L
sp
p ). For marginal balance, the probability

of allocating the next patient to either of the treatments is 1/2 for all values of D̄m.

Next, the covariate-adaptive biased coin design is introduced. This is a design that

applies Efron’s (1971) biased coin design in the randomization process to patients grouped
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by their prognostic profiles. Under the covariate-adaptive biased coin design, given the

prognostic profile (Ls1
1 , ..., L

sp
p ) of the next patient, for global balance there is a fixed

probability p > 1/2 of allocating the next patient to a treatment that has been chosen

less often. Thus, we have

P (Im = 1) =



p if Dm−1(L
s1
1 , Ls2

2 , ..., L
sp
p ) > 0,

1/2 if Dm−1(L
s1
1 , Ls2

2 , ..., L
sp
p ) = 0,

1− p if Dm−1(L
s1
1 , Ls2

2 , ..., L
sp
p ) < 0

as the probability of assigning the next patient to treatment 2. As p → 1, the assignments

tend to be more deterministic. For marginal balance, the allocation rule is similar but the

difference Dm−1(L
s1
1 , ..., L

sp
p ) is replaced by D̄m−1 such that

P (Im = 1) =



p if D̄m−1 > 0,

1/2 if D̄m−1 = 0,

1− p if D̄m−1 < 0.

Note that, for both global and marginal balance, when p = 1/2, the covariate-adaptive

biased coin design reduces to covariate-adaptive simple random sampling.

The last covariate-adaptive randomization scheme to be introduced is the covariate-

adaptive adjustable biased coin design. This design was developed by Baldi Antognini

and Giovagnoli (2004). It is an extension of Efron’s biased coin design in which the

probability of assigning the next patient to a treatment depends on a decreasing and

symmetric function F (.) of the difference in the numbers of patients in the two treat-

ment groups. For the covariate-adaptive adjustable biased coin design, given that the

prognostic profile of the next patient is (Ls1
1 , Ls2

2 , ..., L
sp
p ), the probability of assigning

this patient to treatment 1 is F a
s1,s2,...,sp

(.), where a is a design parameter. For global

balance after m assignments, let x = Dm(Ls1
1 , ..., L

sp
p ). Then the probability or function
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to assign the next patient to treatment 1 given the prognostic profile is F a
s1,...,sp

(x) and

can be expressed as

F a
s1,...,sp

(x) =



|x|a
|x|a+1

if x ≤ −1,

1/2 if x = 0,

1
|x|a+1

if x ≥ 1,

(3.5)

where a ≥ 0. As a → 0, the design reduces to covariate-adaptive simple random

sampling, whereas the design becomes more deterministic as a → ∞. Similarly, for

marginal balance under the covariate-adaptive adjustable biased coin design, the prob-

ability of assigning the next patient to treatment 1 given the same prognostic profile as

above is F a
s1,...,sp

(x) in (3.5) with x = D̄m.

3.5 Analysis of covariance for fixed-effects model

After the treatment assignments have been made, the patients’ responses in the two

treatment groups will be studied under these covariate-adaptive randomization schemes.

We are now interested in whether there is a genuine treatment difference between the

two treatment groups.

Under the fixed-effects model, the covariates Zik used take integer values and all

levels within any of the covariates are considered. In what follows, assume that the total

number of levels of each of the covariates is the same, so that l1 = l2 = ... = lp. We

also assume that the values of all the levels of the covariates add up to zero. Finally, the

patients’ responses in the two treatment groups can be obtained from (3.2)

To test whether the population means are different, that is, there is a treatment effect,

a two-sample t-test will be carried out. An analysis of covariance on the responses of the

patients is considered. For each patient, the effect of the covariate will be removed from
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the patients’ responses to obtain the adjusted responses. The sample mean and variance

of the adjusted responses will give estimated values for µj for j = 1, 2.

Let Rij be the adjusted response of the ith patient allocated to treatment j for i =

1, ..., n and j = 1 or 2. Let R represent the n×1 column vector of the adjusted responses

Rij given by

R = (R11, R21, ..., Rn11, Rn1+12, ..., Rn2)
T ,

where

R = Y − Zβ.

Each of the matrices R, Z and Y can be split into two sub-matrices. We have R =

(R1,R2)
T as an n× 1 column vector such that R1 is the n1 × 1 vector for the adjusted

responses Ri1 for the patients on treatment 1 and R2 is the n2× 1 vector for the adjusted

responses Ri2 for the patients on treatment 2. Similarly, Y = (Y1,Y2)
T is an n × 1

column vector with Y1 as an n1 × 1 column vector for the responses Yi1 on treatment

1 and Y2 is an n2 × 1 column vector for the responses Yi2 on treatment 2. Finally,

Z = (Z1,Z2)
T is an n×q matrix such that Z1 represents the n1×q matrix with the values

of the covariates and their interaction terms for those patients allocated to treatment 1 and

Z2 is an n2 × q matrix which contains the values of the covariates and their interaction

terms for the patients allocated to treatment 2.

Let the sample means of the adjusted responses for treatments 1 and 2 be m1 and m2,

respectively. Then we have

m1 =
1

n1

n1∑
i=1

Ri1

and

m2 =
1

n2

n∑
i=n1+1

Ri2.
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Consider a test of H0 : µ2 − µ1 = 0 against H1 : µ2 − µ1 6= 0. The test statistic is

TC =
m2 −m1√

̂Var(µ̂2 − µ̂1)

.

Given α as the significance level of the test, H0 is rejected if |TC | > tn−2−q,α/2. Under

H0, the test statistic TC has a Student’s t-distribution with n− 2− q degrees of freedom.

Next, we have to find an estimate for the variance of µ̂2− µ̂1 for the test statistic. Us-

ing Hinkelmann and Kempthorne (2008) and (3.2), the estimation is as follows. Matrices

W and Z are of full rank, 2 and q, respectively, so that (WTW)−1 exists.

Model (3.2) reduces to Y = Wµ∗ + ε∗ if no covariates are included, where µ∗

represents the 2×1 column vector of population means and ε∗ is the n×1 column vector

of error terms in this model. The least squares estimator of µ∗ in this model is µ̂∗ =

(WTW)−1WTY. Now let PW be the projection matrix or the orthogonal projection on

W such that PW = W(WTW)−1WT . Also, let RW = In − W(WTW)−1WT =

In − PW , where In is the n × n identity matrix, be the orthogonal projection on the

orthogonal complement of W. Then, Y = PWY + RWY, where PWY and RWY are

orthogonal, so that (RWY)T (PWY) = 0.

The least squares estimator of β

β̂ = (ZT RWZ)−1ZT RWY

and the estimator of µ in (3.2) is

µ̂ = µ̂∗ − (WTW)−1WTZβ̂.

The error sum of squares is obtained as

SSE = YTY − µ̂∗TWTY − β̂
T
ZT RWY.

An unbiased estimator of the variance of the random error is then the mean square error

given by

σ̂2
ε = SSE/(n− 2− q).

81



Since, µ̂∗ and β̂ are uncorrelated, the variance of the estimator of µ can be calculated

as

Var(µ̂) = Var(µ̂∗) + (WTW)−1WTZVar(β̂)[(WTW)−1WTZ]T

= [(WTW)−1 + (WTW)−1WTZ(ZT RWZ)−1ZTW(WTW)−1]σ2
ε ,

which can be estimated by

V̂ar(µ̂) = [(WTW)−1 + (WTW)−1WTZ(ZT RWZ)−1ZTW(WTW)−1]σ̂2
ε

An estimator of the variance of any linear combination of the µ̂j for j = 1, 2 can be

calculated from the variance of µ̂. Let a be a 2 × 1 column vector such that it contains

the coefficients of the linear combination of the µ̂j , j = 1, 2. Then the linear combination

of the µj can be written as aT µ̂. Therefore, an estimator of the variance of this linear

combination of the µj is

̂Var(aT µ̂) = σ̂2
εa

T [(WTW)−1 + (WTW)−1WTZ(ZT RWZ)−1ZTW(WTW)−1]a.

(3.6)

This can be used to obtain an estimator of the variance of the difference between the

mean responses of the two treatment groups.

3.6 Normal approximation for power when the covari-

ates are random variables

3.6.1 Background

Consider a clinical trial where patients are classified into different groups according

to their prognostic profiles. The patients are allocated to one of the treatments by a

covariate-adaptive randomization scheme. In Shao, Yu and Zhong (2010), the covariates
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used in the randomization Zi for i = 1, ..., n are random variables. The responses of

patients in the two treatment groups are compared by carrying out a two sample t-test to

see whether there is a difference between the two treatment groups. The null hypothesis

of the test is H0 : µ2 = µ1 and the alternative is H1 : µ2 6= µ1. The test statistic is

Ts =
Ȳ2 − Ȳ1√

s2
1/n1 + s2

2/n2

, (3.7)

where Ȳ2 and Ȳ1 are the sample mean on treatments 2 and 1, respectively. With a signif-

icance level α, the null hypothesis is rejected if |Ts| > cα, where cα is the critical value

of a Student’s t-distribution or the standard normal distribution.

Let Y = {Yij, i = 1, .., n, j = 1 or 2} and I = {Ii, i = 1, ..., n}, and let Z =

{D(Zi), i = 1, .., n}. Further, let ∆i = Zi − E{Zi|D(Zi)} and ∆i = 0 if Zi = D(Zi).

Then, the difference in the sample means was calculated as

Ȳ2 − Ȳ1 = µ2 − µ1 +
2

n

n∑
i=1

{b(2Ii − 1)∆i + Iiεi2 − (1− Ii)εi1}+ op(n
−1/2)

conditionally on Z = {D(Zi), i = 1, .., n}, where (∆i, εi1, εi2) are conditionally inde-

pendent of I given Z .

The asymptotic mean and variance of Ȳ2−Ȳ1 were shown to be µ2−µ1 and 4(b2σ2
∆+

σ2
ε )/n, where σ2

∆ = Var(∆i). It was also shown that

(Ȳ2 − Ȳ1)− (µ2 − µ1)

2τ∆/n1/2
→ N(0, 1)

in distribution as n →∞, where τ 2
∆ = b2σ2

∆ + σ2
ε , conditionally on Z .

An estimate of the variance of Ȳ2 − Ȳ1 was shown to be

s2
1

n1

+
s2
2

n2

=
4τ 2

z

n
+ op

(
1

n

)
,

where τ 2
z = b2σ2

z + σ2
ε and σ2

z = Var(Zi) conditionally on Z. Under H0, we have

lim
n→∞

P (|Ts| > cα) = 2Φ(−cατz/τ∆).
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Consider three randomization methods: simple randomization, biased coin random-

ization and covariate-adaptive biased coin randomization. Then, the unconditional power

under H1 for the two-sample t-test under simple randomization and the biased coin

method is given by

P (|Ts| > cα) ≈ Φ

(
d̄
√

n

2τz

− cα

)
+ Φ

(
− d̄

√
n

2τz

− cα

)
. (3.8)

The power under covariate-adaptive biased coin randomization is given by

P (|Ts| > cα) ≈ Φ

(
d̄
√

n

2τ∆

− cατz

τ∆

)
+ Φ

(
− d̄

√
n

2τ∆

− cατz

τ∆

)
. (3.9)

3.6.2 One covariate

Consider a trial in which there is only one covariate. Assume that patients’ responses

follow a fixed-effects model of the form (3.2). Here, Z is an n × 1 column vector

containing the values for Zi for i = 1, ..., n.

Two-sample t test

Consider a two sample t test and assume that the Zi for all i = 1, ..., n are discrete

uniform random variables. We will study the power of this test under the covariate-

adaptive biased coin design with null hypothesis H0 : µ2 − µ1 = 0 and alternative

hypothesis H1 : µ2 − µ1 > 0. Since we assume that treatment 1 is the control treatment,

we are interested in whether the new treatment which is treatment 2 is better than the

standard or the control treatment. Therefore, the alternative hypothesis for this test is

one-sided.

Simulation is carried out to study the numerical values for the power of the two

sample t test under the covariate-adaptive biased coin design for different scenarios and

to compare these with the numerical values obtained using a normal approximation.
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When the Zi are discrete uniformly distributed with possible values 1, ..., K, each value

has probability 1/K. We will consider the values K = 2, 4, 8 such that they divide the

real line into K categories with equal probabilities. The parameter b in the model is

assumed to be 0.75 and the significance level is α = 0.05. We have n = 100 and the

random error term εij is generated from a normal distribution with mean 0 and σε =

0.5, 1, 2. The probability p used in the covariate-adaptive biased coin design is 2/3.

We first want to obtain the numerical values for the power using a normal approxi-

mation. For the above one-sided test, we have

P (Ts > cα) ≈ Φ

(
d̄
√

n

2τ∆

− cατz

τ∆

)
(3.10)

as the normal approximation. When Zi is discrete, ∆i is by definition 0. It follows that

Var(∆i) = σ2
∆ = 0 and τ 2

∆ = σ2
ε . The covariate Zi is discrete uniformly distributed with

variance σ2
z = (K2−1)/12 for K = 2, 4, 8 and τ 2

z = b2(K2−1)/12+σ2
ε . The following

table gives numerical values for the power for various choices of d̄ = µ2 − µ1.
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Table 3.1: Power by simulation and normal approximation when Zi are discrete uni-

formly distributed

d̄ 0 0.25 0.5 0.75 1 1.25 1.5

Simulation

K σε

2 0.5 0.023 0.661 0.998 1 1 1 1

1 0.039 0.297 0.795 0.974 0.999 1 1

2 0.043 0.144 0.336 0.568 0.787 0.921 0.979

4 0.5 0.004 0.269 0.924 1 1 1 1

1 0.022 0.198 0.626 0.931 0.996 1 1

2 0.038 0.126 0.296 0.537 0.760 0.906 0.975

8 0.5 0.003 0.048 0.317 0.773 0.974 0.999 1

1 0.008 0.066 0.273 0.624 0.890 0.982 0.999

2 0.024 0.083 0.196 0.384 0.614 0.796 0.922

Normal Approximation

K σε

2 0.5 0.020 0.672 0.998 1 1 1 1

1 0.040 0.306 0.771 0.977 0.999 1 1

2 0.047 0.147 0.336 0.580 0.796 0.927 0.981

4 0.5 0.001 0.238 0.963 1 1 1 1

1 0.016 0.185 0.638 0.946 0.998 1 1

2 0.037 0.123 0.297 0.536 0.763 0.910 0.975

8 0.5 0 0 0.187 0.947 1 1 1

1 0.001 0.022 0.221 0.684 0.958 0.999 1

2 0.015 0.061 0.179 0.385 0.630 0.831 0.943
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The numerical values in the first column represent the significance level of the test

for each scenario. Clearly, the values obtained by simulation and by the normal ap-

proximation are less than 0.05. In a two-sample t test, the significance level obtained is

conservative under the covariate-adaptive biased coin design, as explained by Shao, Yu

and Zhong (2010). As Var(Ȳ2 − Ȳ1) is less variable than Var(Ȳ2) + Var(Ȳ1), there is a

negative correlation between Ȳ1 and Ȳ2. The unbiased estimator of Var(Ȳ2) + Var(Ȳ1),

s2
1/n1 + s2

2/n2, is the denominator in the test statistic and gives a smaller value for the

test statistic. Hence, the test is less likely to reject H0 and produces a smaller value

for the significance level. This explains why the numerical results obtained here are

conservative.

For each K, the significance level increases when σε increases. When K is larger,

the power for the same values for d̄ and σε decreases. The power tends to 1 more quickly

when σε is smaller. For large values of d̄, it is clear that the power obtained from the

normal approximation is larger than the simulated value.

Analysis of covariance t test

An analysis of covariance t test can also be carried out on the treatment difference.

This is a two-sample t test when the effect of the covariates is removed from the patients’

responses. In Shao, Yu and Zhong (2010), the normal approximation to the power by

analysis of covariance is given by

P (|TC | > cα) ≈ Φ

(
d̄
√

n

2σε

− cα

)
+ Φ

(
− d̄

√
n

2σε

− cα

)
,

where TC is the test statistic for the analysis of covariance t test. Here, we consider

a one-sided t test with null hypothesis H0 : µ2 − µ1 = 0 and alternative hypothesis

H1 : µ2 − µ1 > 0. The normal approximation to the power is

P (TC > cα) ≈ Φ

(
d̄
√

n

2σε

− cα

)
.
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Therefore, the power obtained from the normal approximation is not affected by the

distribution of Zi.

Now consider the general case where we have p covariates. Let Zik have mean 0 and

variance σ2
zk

for k = 1, ..., p. Then using the same notation as in Section 3.5, µ∗ is the

vector of population means in the model without covariates and µ̂∗ = (WTW)−1WTY.

The variance of µ̂∗ then becomes

Var(µ̂∗) = (WTW)−1WT Var(Y)W(WTW)−1

= (WTW)−1WT{βT Var(Z)βIn + Var(ε)}W(WTW)−1,

where Var(Y) is the n×n covariance matrix for the column vector of patients’ responses

and In is the n×n identity matrix. As patients’ responses are independent, the covariance

of Yij and Yi′j for i, i′ = 1, ..., n and i 6= i′ is zero. The covariance matrix of Y will have

the variance of Yij for i = 1, ..., n as the ith diagonal element and zeros elsewhere.

Similarly, Var(Z) is the covariance matrix of Z. As the Zik are independent and

identically distributed for each k = 1, ..., p with mean 0 and variance σ2
zk

, Var(Z) is a

p × p covariance matrix with σ2
zk

as the kth diagonal element and zeros elsewhere. In

fact, for each patient i = 1, ..., n, βT Var(Z)β is a scalar of the form β2
1σ

2
z1

+ ...+β2
pσ

2
zp

.

Finally, as εij for i = 1, ..., n are independent and identically distributed random errors

with mean 0 and variance σ2
ε , Var(ε), the covariance matrix of ε is an n× n matrix with

diagonal entries σ2
ε and zeros elsewhere.

So

Var(Y) = (βT Var(Z)β + σ2
ε )In.

Therefore,

Var(µ̂∗) = (βT Var(Z)β + σ2
ε )(W

TW)−1.
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Now, consider the variance of Zβ̂. Then we have

Var(Zβ̂) = E[(Zβ̂)(Zβ̂)T ]− E(Zβ̂)E(Zβ̂)T

= E[Zβ̂β̂
T
ZT ]− E(Zβ̂)E(Zβ̂)T .

As Z and β̂ are independent, as shown in the Appendix, we can now write

Var(Zβ̂) = E(Z)E(β̂β̂
T
)E(ZT )− E(Z)E(β̂)E(β̂)T E(Z)T

= E(Z){E(β̂
T
β̂)− E(β̂)T E(β̂)}E(Z)T

= E(Z)Var(β̂)E(Z)T .

We are interested in obtaining an estimate of the variance of µ̂. Since µ̂∗ and β̂ are

uncorrelated, the variance of µ̂ can be written as

Var(µ̂) = Var(µ̂∗) + (WTW)−1WT Var(Zβ̂)W(WTW)−1

= (βT Var(Z)β + σ2
ε )(W

TW)−1

+ (WTW)−1W{E(Z)Var(β̂)E(Z)T}W(WTW)−1.

The estimate of the variance of µ̂ becomes

V̂ar(µ̂) = (β̂
T
V̂ar(Z)β̂ + σ̂2

ε )(W
TW)−1

+ (WTW)−1W{E(Z)V̂ar(β̂)E(Z)T}W(WTW)−1,

where σ̂ε
2 is defined earlier as the error mean square, V̂ar(Z) is the estimator of the

covariance matrix of Z and V̂ar(β̂) is the estimator of the covariance matrix of the least

square estimator β. Let a be the column vector of contrasts of the population means.

Then we have

̂Var(aT µ̂) = aT [(β̂
T
V̂ar(Z)β̂ + σ̂2

ε )(W
TW)−1

+ (WTW)−1W{E(Z)V̂ar(β̂)E(Z)T}W(WTW)−1]a.
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In the simulations, we assume there is only one covariate. The matrix Z in (3.2)

is just an n × 1 column vector and all of the Zi for i = 1, ..., n take values from one

distribution. Here, E(Z) = 0 and Var(Z) = σ2
z . So Var(Zβ̂) = 0. In addition, the

vector β will only contain a single scalar and is denoted by b. Then we have

Var(µ̂) = Var(µ̂∗) = (b2σ2
z + σ2

ε )(W
TW)−1.

The least squares estimator of b will also become a scalar and is denoted as β̂. We have

V̂ar(µ̂) = (b2σ̂2
z + σ̂2

ε )(W
TW)−1,

where σ̂2
z is the estimator of the variance of Z and the sample variance of Z is used. Let

aT = (0, 1), as we want to study whether treatment 2 is better than treatment 1. We have

to estimate the variance of µ̂2 − µ̂1, which can be expressed as

σ̂2
ε (0, 1) (b2σ̂2

z + σ̂2
ε )(W

TW)−1 (0, 1)T .

The numerical values for the power obtained from analysis of covariance using sim-

ulation and the normal approximation are given below. The values for α, β, n, K and σε

are the same as for the two-sample t test.
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Table 3.2: Power by simulation and normal approximation for analysis of covariance t

test

d̄ 0 0.25 0.5 0.75 1 1.25 1.5

Simulation

K σε

2 0.5 0.048 0.795 1 1 1 1 1

1 0.054 0.345 0.801 0.981 0.999 1 1

2 0.057 0.153 0.341 0.594 0.795 0.926 0.982

4 0.5 0.044 0.802 1 1 1 1 1

1 0.050 0.341 0.800 0.983 0.999 1 1

2 0.049 0.147 0.345 0.586 0.799 0.927 0.980

8 0.5 0.051 0.800 1 1 1 1 1

1 0.054 0.346 0.798 0.980 0.999 1 1

2 0.049 0.166 0.335 0.589 0.799 0.923 0.980

Normal Approximation

All K σε

0.5 0.05 0.804 1 1 1 1 1

1 0.05 0.347 0.804 0.982 1 1 1

2 0.05 0.154 0.347 0.591 0.804 0.931 0.982

The numerical values for the power obtained using a normal approximation are usu-

ally larger than the simulated values. However, the significance level of the test is close

to 0.05 for each scenario.
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3.6.3 More than one covariate

The theoretical calculations for the normal approximations to the power in Shao,

Yu, Zhong (2010) were considered when a single univariate covariate is involved in

the randomization process. However, in real trials, more than one prognostic factor or a

combination of several prognostic factors will affect the responses of patients to different

treatments. We now consider the case where more than one univariate covariate is used

in the randomization process.

Let p be the number of covariates used. Here, the covariates Zik for i = 1, ..., n

and k = 1, ..., p are assumed to be random variables. In Shao, Yu and Zhong (2010), a

first-order linear model for the patients’ responses Yij was constructed for a univariate

covariate. We extend the analysis to a second-order linear model for patients’ responses

where there is more than one univariate covariate.

The model for patients’ responses is written as

Yij = µj +

p∑
k=1

bkZik +

p∑
k=1

ckZ
2
ik +

p∑
k,m=1,
k<m

dkmZikZim + εij,

where µj is the mean response on treatment j for j = 1, 2 and Zik is the kth covariate for

the ith patient. There are p first-order terms. Next, we have two types of second-order

terms in the model. The first type is the squared term in the covariate Zik and there are

p of them. The second type is the interaction term between two different covariates and

there are p× (p− 1) of these. Finally, εij is the random error term.

In (3.2), Yij and εij are the components of the column vectors Y and ε, respectively.

The column vector µ will be the same as in (3.3) and the matrix W will be of the same
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form as in (3.4). The matrix Z can be written as

Z =



Z11 . . . Zn11 Z(n1+1)1 . . . Zn1

...
...

...
...

Z1p . . . Zn1p Z(n1+1)p . . . Znp

Z2
11 . . . Z2

n11 Z2
(n1+1)1 . . . Z2

n1

...
...

...
...

Z2
1p . . . Z2

n1p Z2
(n1+1)p . . . Z2

np

Z11Z12 . . . Zn11Zn12 Z(n1+1)1Z(n1+1)2 . . . Zn1Zn2

Z11Z13 . . . Zn11Zn13 Z(n1+1)1Z(n1+1)3 . . . Zn1Zn3

...
...

...
...

Z1(p−1)Z1p . . . Zn1(p−1)Zn1p Z(n1+1)(p−1)Z(n1+1)p . . . Zn(p−1)Znp



T

.

Next, we have

β =
(
b1, b2, ..., bp, c1, ..., cp, d11, d12, ..., d(p−1)p

)T
.

Now let

∆ik = Zik − E{Zik|D(Zik)},

∆2
ik = Z2

ik − E{Z2
ik|D(Zik)}

and

∆ik∆im = ZikZim − E{ZikZim|D(Zik)},

where D(Zik) is the discrete function of Zik if Zik is continuous. Then the covariate-

adaptive biased coin design applies Efron’s biased coin assignment rule within each

category defined by D(Zik). In this case, Z is defined as Z = {D(Zik), i = 1, ..., n, k =

1, ..., p}, so that when Zik = D(Zik), ∆ik = 0.

The same test will be carried out of H0 : µ2 − µ1 = 0 against H1 : µ2 − µ1 > 0.

Here, we want to test if treatment 2 is better than treatment 1. We have the same test
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statistic Ts as in (3.7) and H0 will be rejected if Ts > cα, for cα defined as earlier. The

sample means of the responses on the two treatments Ȳ1 and Ȳ2 are needed for the test

statistic. We may write

Ȳ2 − Ȳ1 = µ2 − µ1 +
2

n

n∑
i=1

p∑
k=1

(2Ii − 1)bk∆ik

+
2

n

n∑
i=1

p∑
k=1

(2Ii − 1)bkE{Zik|D(Zik)}

+
2

n

n∑
i=1

p∑
k=1

(2Ii − 1)ck∆
2
ik +

2

n

n∑
i=1

p∑
k=1

(2Ii − 1)ckE{Z2
ik|D(Zik)}

+
2

n

n∑
i=1

p∑
m=1,
k<m

p∑
k=1

(2Ii − 1)dkm∆ik∆im

+
2

n

n∑
i=1

p∑
m=1,
k<m

p∑
k=1

(2Ii − 1)dkmE{ZikZim|D(Zik)}

+
2

n

n∑
i=1

{Iiεi1 − (1− Ii)εi0}+ op(n
−1/2),

The asymptotic mean of Ȳ2 − Ȳ1 is calculated by taking the expectation of Ȳ2 − Ȳ1

conditionally on Z and is equal to µ2 − µ1.
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The asymptotic variance of Ȳ2 − Ȳ1 can be written as

4

n

 p∑
k=1

b2
kE(∆2

k) +

p∑
k=1

c2
kE(∆4

k) + σ2
ε +

p∑
k,m=1,
k<m

d2
kmE(∆2

k∆
2
m)

+ 2

p∑
k=1

bkckE(∆3
k) +

p∑
k,m,s=1,
k<m<s

dkmdmsE(∆k∆
2
m∆s)

+

p∑
k,m,s=1,
k<m<s

dkmdksE(∆2
k∆m∆s) + 2

p∑
k=1

bkckE(∆2
kZk)

+ 2

p∑
k,m=1,
k<m

bkdkmE(∆2
k∆m) + 2

p∑
k=1

c2
kE(∆2

kZ
2
k) + 2

p∑
k,m=1,
k<m

ckdkmE(∆3
k∆m)

+ 2

p∑
k,m=1,
k<m

ckdkmE(∆k∆mZ2
k) +

p∑
k,l=1,
k 6=l

bkblE(∆k∆l) +

p∑
k,l=1,
k 6=l

ckclE(∆2
k∆

2
l )

+

p∑
k,m,s,r=1,
k<m<s<r

dkmdsrE(∆k∆m∆s∆r) + 2

p∑
k,l=1,
k<l

bkclE(∆k∆
2
l )

+

p∑
k,m,s=1,
k<m<s

dksdmsE(∆k∆m∆2
s) + 2

p∑
k,m,s=1,
k<m<s

bkdmsE(∆k∆m∆s)

+ 2

p∑
k,l=1,
k 6=l

ckclE(∆2
kZ

2
l ) + 2

p∑
k,m,s=1,
k<m<s

ckdmsE(∆2
k∆m∆s)

+ 2

p∑
k,m,s=1,
k<m<s

ckdmsE(∆m∆sZ
2
k) + 2

p∑
k,l=1,
k<l

bkclE(∆2
l Zk).

+ 2

p∑
k,m=1,
k<m<

bkdkmE(∆k∆mZk) + 2

p∑
k,m,s=1,
k<m<s

bkdmsE(∆m∆sZk)


This is the form 4τ ∗2∆ /n, where τ ∗2∆ is known from above. We also have

(Ȳ2 − Ȳ1)− (µ2 − µ1)

2τ ∗∆/n1/2
→ N(0, 1)

in distribution as n → ∞. Clearly, τ ∗2∆ has a more complicated form than τ 2
∆ for one

covariate.
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Similarly, we have

s2
1

n1

+
s2
2

n2

=
4

n

 p∑
k=1

b2
kE(Z2

k) +

p∑
k,l=1,
k 6=l

bkblE(ZkZl) + 2

p∑
k=1

bkckE(Z3
k)

+

p∑
k,l=1,
k 6=l

bkclE(ZkZ
2
l ) + 2

p∑
k,m=1,
k<m

bkdkmE(Z2
kZm)

+ 2

p∑
k,m,s=1,
k<m<s

bkdmsE(ZkZmZs) +

p∑
k,l=1,
k 6=l

blckE(Z2
kZl)

+

p∑
k=1

c2
kE(Z4

k) +

p∑
k,l=1,
k 6=l

ckclE(Z2
kZ

2
l ) + 2

p∑
k,m=1,
k<m

ckdkmE(Z3
kZm)

+

p∑
k,m=1,
k<m

d2
kmE(Z2

kZ
2
m) +

p∑
k,m,s=1,
k<m<s

ckdmsE(ZkZmZs)

+

p∑
k,m,s=1,
k<m<s

ckdmsE(Z2
kZmZs) +

p∑
k,m,s=1,
k<m<s

dkmdmsE(ZkZ
2
mZs)

+

p∑
k,m,s=1,
k<m<s

dksdmsE(ZkZmZ2
s ) +

p∑
k,m,s=1,
k<m<s

dkmdksE(Z2
kZmZs)

+

p∑
k,m,s,r,

k<m<s<r

dkmdsrE(ZkZmZsZr) + σ2
ε

+ op

(
1

n

)
.

This can be written in the form

s2
1

n1

+
s2
2

n2

=
4τ ∗2z

n
+ op

(
1

n

)
.

Again, as compared with τ 2
z , τ ∗2z is more complicated.

The normal approximation to the power when there are p covariates can be obtained

as in (3.8) for simple random sampling and the biased coin design and as in (3.9) for

the covariate-adaptive biased coin design by replacing τz and τ∆ with τ ∗z and τ ∗∆, respec-

tively.
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3.7 Simulation for global and marginal balance

3.7.1 Algorithms for global balance

In this section, we look at different covariate-adaptive randomization schemes when

global and marginal balancing are sought in the numbers of patients on the two treat-

ments by simulation.

The model for patients’ responses to be considered here is the fixed-effects model.

Assume that the covariates Zik are fixed and take integer values. For the kth covariate

for k = 1, .., p, the values for all levels of this covariate will add up to zero. We assume

that the number of levels for each covariate is the same.

Assume that two covariates or prognostic factors are considered to be of particular

importance in affecting patients’ responses to the treatments. Let Zi1 and Zi2 denote the

first and second covariates. The numbers of levels for these are denoted by l1 and l2,

respectively, where l1 = l2.

We consider two scenarios where both of the covariates either have two or three

levels. For example, for three-level covariates, that is, l1 = l2 = 3, we denote the

levels by a1, a2 and a3 for the first covariate and b1, b2 and b3 for the second covariate.

Global balancing balances the numbers of patients at each of the combinations of the

levels of the covariates. There will be in total nine possible combinations of the levels of

the two covariates. Patients will be classified into nine cells or strata according to their

prognostic profiles. The nine combinations for the two covariates are

{(a1, b1), (a1, b2), (a1, b3), (a2, b1), (a2, b2), (a2, b3), (a3, b1), (a3, b2), (a3, b3)}.

In other words, global balancing balances the numbers of patients in the two treatment

groups in each of the nine cells.

In the simulations, we generate two random numbers from a uniform distribution
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between 0 and 1 for each patient. The first number will represent the level of the first co-

variate and the second number the level of the second covariate for this patient. Suppose

that we consider covariates with two levels. Then, if the first random number is greater

than or equal to 0 and less than or equal to 0.5, then this patient belongs to level a1 of

the first covariate. If the first random number is greater than 0.5 and less than or equal to

1, then this patient belongs to level a2 of the first covariate. For a three-level covariate,

if the first random number has value greater than or equal to 0 and less than or equal to

1/3, then this patient belongs to level a1 of the first covariate. If the first random number

has value greater than 1/3 and less than or equal to 2/3, then this patient belongs to level

a2 of the first covariate. Finally, if the first random number is greater than 2/3 and less

than or equal to 1, this patient belongs to level a3 of the first covariate. Similarly, this

applies to the second random number for the second covariate at two or three levels. By

making use of the random numbers, each patient is equally likely to fall into one of two

or three levels for both covariates. Therefore, we can obtain a prognostic profile for each

patient by simulation.

We consider three covariate-adaptive randomization schemes, which are covariate-

adaptive simple random sampling, covariate-adaptive biased coin randomization and

covariate-adaptive adjustable biased coin randomization. The covariate-adaptive ran-

domization schemes are applied to each of the nine cells. At each stage, when a pa-

tient arrives, the patient is classified into one of the nine cells according to the patient’s

prognostic characteristics. Within this cell, the current imbalance in the numbers of pa-

tients on the two treatments will be noted and this patient will be allocated to the under-

represented treatment with a probability p. Under covariate simple random sampling p

is fixed and equals 1/2. For the covariate-adaptive biased coin design, p is also fixed

and takes value greater than a half to allocate the patient to the treatment that has been
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chosen less often. Here, we only consider the same p for all cells under the covariate-

adaptive biased coin design. Under the covariate-adaptive adjustable biased coin design,

this probability p varies with the current imbalance and equals F a(x) defined in Chapter

2 with some chosen design parameter a. Thus, we assume that a is the same for all cells

and for all stages. At the same stage, F a(x) may be different in different cells as x the

difference in the numbers of patients on treatments 1 and 2 may be different in different

cells.

In the simulations for global balance, given the prognostic profile of a patient, we

know which of the cells the patient belongs to. A third random number is generated

for this patient. This random number is generated from a uniform distribution between

0 and 1 and will be used for treatment assignment. For this particular cell, we have to

identify the current numbers of patients on the two treatments. Under covariate-adaptive

simple random sampling in global balance, if the third random number has value greater

than or equal to zero and less than 0.5, this patient will be allocated to treatment 1. If the

third random number has value greater than or equal to 0.5 and less than or equal to 1,

then this patient will be allocated to treatment 2.

Under the covariate-adaptive biased coin design for global balance, we take different

values for p in the simulations. Given the prognostic profile of the next patient, we will

just look at the current numbers of patients on the two treatments in this particular cell. If

the third random number has value greater than or equal to 0 and less than p, this patient

will be allocated to the treatment that has fewer patients. If the third random number

has value greater than or equal to p and less than or equal to 1, then this patient will

be allocated to the treatment that has more patients. If the numbers of patients on the

two treatments are the same, then the covariate-adaptive biased coin assignment process

will reduce to the covariate-adaptive simple random sampling assignment process with
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p = 1/2.

Under the covariate-adaptive adjustable biased coin design for global balance, given

the prognostic profile of the next patient, we have to calculate the difference in the num-

bers of patients on treatments 1 and 2 in this particular cell. This difference is denoted

by x in the function F a
s1,s2

(x) for the probability of allocating this patient to treatment 1

given the prognostic profile as (s1, s2). If the third random number for this patient has

value greater than or equal to zero and less than F a
s1,s2

(x), this patient will be allocated

to treatment 1. If the third random number has value greater than or equal to F a
s1,s2

(x)

and less than or equal to 1, this patient will be allocated to treatment 2.

3.7.2 Algorithms for marginal balance

Marginal balancing balances the numbers of patients on the two treatments marginally

for each level of the covariates. For example, suppose that the two covariates have three

levels. Denote the three levels of the two covariates by a1, a2 and a3 and b1, b2 and b3.

We aim to balance the numbers of patients on the two treatments at each level of the

covariates. In other words, we balance across the levels {a1, a2, a3} of the first covariate

and balance across the levels {b1, b2, b3} of the second covariate. The patient’s prog-

nostic profile is recorded upon arrival at a clinical centre and classifies the patient into

one of the three levels of both covariates. Suppose that we have made m assignments

so far and the prognostic profile of this next patient is level a1 for the first covariate and

level b1 for the second covariate. First, we have to calculate the current imbalance in the

numbers of patients on treatments 1 and 2 at level a1 for the first covariate for all levels

of the second covariate, that is, Dm(a1). We then calculate the imbalance at level b1 for

the second covariate for all levels of the first covariate, Dm(b1).
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From Section 3.3, the overall imbalance after m assignments is

D̄m = c1Dm(a1) + c2Dm(b1),

where c1 and c2 are integers representing the weights given to Dm(a1) and Dm(b1),

respectively. This overall imbalance is used for treatment assignments in marginal bal-

ance. More specifically, we either consider the overall imbalance as D̄m = Dm(ai), for

i = 1, .., 3, so that c1 = 1 and c2 = 0, or D̄m = Dm(bi) for i = 1, .., 3, so that c1 = 0

and c2 = 1. In other words, we only consider the levels of one of the covariates.

In the simulations for marginal balance, the prognostic profile of a patient is created

in exactly the same way as in the global balancing case. By using the two random

numbers generated from a uniform distribution between 0 and 1, we can identify the

levels of the two covariates for each patient. For the (m + 1)th patient, we can then

calculate the overall imbalance D̄m. Similar to global balancing, based on the sign of

the overall imbalance D̄m = Dm(a1) or D̄m = Dm(b1), we will know the current under-

represented treatment. A third random number is generated for each patient from a

uniform distribution between 0 and 1 for treatment assignment.

Under covariate-adaptive simple random sampling for marginal balance, the sign of

D̄m is ignored for treatment assignment. The assignment is made to treatment 1 if the

third random number for this patient has value greater than or equal to 0 and less than

0.5. Similarly, assignment is made to treatment 2 if the third random number has value

greater than or equal to 0.5 and less than or equal to 1.

Under the covariate-adaptive biased coin design, we will have a probability p > 1/2

of allocating the next patient to the treatment that has been chosen less often. As we

know the sign of D̄m, we know which is the under-represented treatment. If the third

random number for this patient has value greater than or equal to zero and less than p,

we will allocate this patient to the treatment that has fewer patients based on D̄m. If the
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third random number has values greater than or equal to p and less than or equal to 1,

then this patient will be allocated to the treatment that has more patients.

Finally, under the covariate-adaptive adjustable biased coin design for marginal bal-

ance, the next patient is allocated to treatment 1 with probability F a(x) where x = D̄m.

If the third random number for this patient has value greater than or equal to zero and

less than F a(x), treatment 1 will be allocated to this patient. If the third random number

has value greater than or equal to F a(x) and less than or equal to 1, then this patient is

allocated to treatment 2.

3.7.3 Model and test for treatment difference

In the simulations, interactions can either be present or absent between the covariates.

In both situations, we study the simulated power of the covariate-adaptive randomiza-

tion schemes for global and marginal balance. Two different models for the patients’

responses will be considered. Let Yij be the response of the ith patient on treatment j.

Then the model used for two covariates with no interaction is

Yij = µ1 + (µ2 − µ1)Ii + β1Zi1 + β2Zi2 + εij

and

Yij = µ1 + (µ2 − µ1)Ii + β1Zi1 + β2Zi2 + β3(Zi1 ∗ Zi2) + εij

when there is an interaction between the covariates.

We have Ii as defined in (3.1) for i = 1, ..., n, and β1 and β2 are the unknown

parameters for the first and second covariates Zi1 and Zi2, respectively. As the levels for

a covariate add up to zero, for two-level covariates we have either 1 or −1 for the values

of Zi1 and Zi2; and −1, 0 or 1 for the values of Zi1 and Zi2 when these two covariates

have three levels. The term Zi1 ∗ Zi2 denotes the interaction term for the two covariates
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and is the product of the two values from the first and the second covariate. Therefore,

for two-level covariates, the interaction term will take values of 1 or−1, and similarly for

three-level covariates, the interaction term will take values of −1, 0 or 1. The parameter

for the interaction term in this model is β3.

We can express the above two models in matrix form as in (3.2). The patients’

responses Yij and the random error terms εij are represented by the vectors Y and ε,

respectively. The matrix W here is exactly the same as in (3.2). This is an n× 2 matrix

with all ones in the first column and the values for Ii in the second column. The column

vector µ is also the same as in (3.2).

Next we have β = (β1, β2)
T when there is no interaction between the two covariates

and β = (β1, β2, β3)
T when there is an interaction between the covariates. The matrix Z

is

Z =



Z11 Z12

Z21 Z22

...
...

Zn11 Zn12

Z(n1+1)1 Z(n1+1)2

...
...

Zn1 Zn2


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and

Z =



Z11 Z12 Z11 ∗ Z12

Z21 Z22 Z21 ∗ Z22

...
...

...

Zn11 Zn12 Zn11 ∗ Zn12

Z(n1+1)1 Z(n1+1)2 Z(n1+1)1 ∗ Z(n1+1)2

...
...

...

Zn1 Zn2 Zn1 ∗ Zn2



,

respectively.

We construct a test of H0 : µ2 − µ1 = 0 against H1 : µ2 − µ1 > 0. The same

procedure will be applied as in Section 3.5. An analysis of covariance t test is used and

the power is simulated for the three covariate-adaptive randomization schemes under

global and marginal balance, when there are two or three levels for the covariates and

when interactions between the two covariates are either present or absent. This test has

a Student’s t distribution under H0 with n− 2− q degrees of freedom.

3.7.4 Power under global and marginal balance

We now study the numerical values for the power obtained using the above test by

simulation under the covariate-adaptive simple random sampling, the covariate-adaptive

biased coin design and the covariate-adaptive adjustable biased coin design. Let the total

number of patients in a trial be n. We will study two scenarios: n = 100 and n = 200.

Let β1 = 1, β2 = 0.75 and β3 = 3. For all i = 1, ..., n and j = 1, 2, when n = 100, the

random error term εij is generated from a standard normal distribution, whereas, when

n = 200, εij is generated from a normal distribution with mean 0 and standard deviation

1.5. Let the significance level of the test be α = 0.05.

We reject H0 when the test statistic is greater than some critical value from a Stu-
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dent’s t distribution. When n = 100, we have 95 degrees of freedom when there are

interactions and 96 degrees of freedom when there are no interactions. Similarly, when

n = 200, we have 195 and 196 degrees of freedom, respectively.

The adjusted means m1 and m2 described in Section 3.5 for treatments 1 and 2, re-

spectively, are calculated as the estimators of the population means µ1 and µ2. These

two adjusted means are needed in the numerator of the test statistic TC . To obtain the

estimator of the variance of µ̂2 − µ̂1 in the denominator of the test statistic, recall from

Section 3.5 that we need to use (3.6). Here, a is a column vector containing the coeffi-

cients in the linear combination of µ. In this case, we have µ2 − µ1 = (0, 1) µ. From

the above, we know that aT = (0, 1). Therefore, we have ̂Var(µ̂2 − µ̂1), which is the

estimator of the variance of µ̂2 − µ̂1 with aT = (0, 1) in (3.6).

We simulate each such trial 10, 000 times and record the number of times that H0 is

rejected. The proportion of rejections is calculated and represents the simulated power

of the test. The simulated power will be studied for different values of d̄ and different

values of the design parameters in the biased coin designs.

In what follows, we abbreviated covariate-adaptive simple random sampling, the

covariate-adaptive biased coin design and the covariate-adaptive adjustable biased coin

design by CSRS, CBCD and CABCD. The following four tables give values for the sim-

ulated power under global and marginal balance for three-level and two-level covariates

with interactions.
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Table 3.3: Powers of CSRS, CBCD and CABCD with interactions between the three-

level covariates when n = 100 and α = 0.05

Schemes d̄ = 0 d̄ = 0.25 d̄ = 0.5 d̄ = 0.75 d̄ = 1 d̄ = 1.25

Global Balance

CSRS(p=1/2) 0.053 0.329 0.782 0.977 0.999 1

CBCD(p=8/12) 0.053 0.349 0.795 0.981 1 1

CBCD(p=9/12) 0.051 0.337 0.795 0.979 0.999 1

CBCD(p=10/12) 0.049 0.339 0.802 0.981 1 1

CBCD(p=11/12) 0.050 0.338 0.801 0.983 1 1

CABCD(a=1) 0.049 0.335 0.795 0.981 0.999 1

CABCD(a=2) 0.050 0.344 0.795 0.979 1 1

CABCD(a=4) 0.050 0.342 0.797 0.980 1 1

Marginal Balance

CSRS(p=1/2) 0.050 0.341 0.791 0.978 1 1

CBCD(p=8/12) 0.048 0.335 0.788 0.979 1 1

CBCD(p=9/12) 0.047 0.337 0.784 0.979 0.999 1

CBCD(p=10/12) 0.049 0.346 0.790 0.978 0.999 1

CBCD(p=11/12) 0.054 0.345 0.797 0.978 1 1

CABCD(a=1) 0.052 0.334 0.785 0.976 1 1

CABCD(a=2) 0.050 0.350 0.792 0.979 0.999 1

CABCD(a=4) 0.050 0.332 0.790 0.980 0.999 1
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Table 3.4: Powers of CSRS, CBCD and CABCD with interactions between the three-

level covariates when n = 200 and α = 0.05

Schemes d̄ = 0 d̄ = 0.25 d̄ = 0.5 d̄ = 0.75 d̄ = 1 d̄ = 1.25

Global Balance

CSRS(p=1/2) 0.048 0.317 0.753 0.966 0.999 1

CBCD(p=8/12) 0.050 0.315 0.760 0.971 0.999 1

CBCD(p=9/12) 0.047 0.319 0.754 0.970 0.999 1

CBCD(p=10/12) 0.050 0.316 0.754 0.969 0.999 1

CBCD(p=11/12) 0.050 0.317 0.767 0.970 0.999 1

CABCD(a=1) 0.053 0.322 0.757 0.965 0.999 1

CABCD(a=2) 0.048 0.315 0.766 0.968 0.999 1

CABCD(a=4) 0.054 0.320 0.757 0.971 0.998 1

Marginal Balance

CSRS(p=1/2) 0.052 0.328 0.754 0.969 0.998 1

CBCD(p=8/12) 0.051 0.316 0.755 0.968 0.999 1

CBCD(p=9/12) 0.048 0.312 0.761 0.971 0.998 1

CBCD(p=10/12) 0.049 0.317 0.760 0.969 0.999 1

CBCD(p=11/12) 0.048 0.321 0.753 0.969 0.998 1

CABCD(a=1) 0.052 0.320 0.758 0.969 0.999 1

CABCD(a=2) 0.049 0.323 0.754 0.967 0.999 1

CABCD(a=4) 0.052 0.311 0.749 0.969 0.999 1
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Table 3.5: Powers of CSRS, CBCD and CABCD with interactions between the two-level

covariates when n = 100 and α = 0.05

Schemes d̄ = 0 d̄ = 0.25 d̄ = 0.5 d̄ = 0.75 d̄ = 1 d̄ = 1.25

Global Balance

CSRS(p=1/2) 0.048 0.336 0.785 0.979 1 1

CBCD(p=8/12) 0.050 0.342 0.795 0.979 1 1

CBCD(p=9/12) 0.049 0.343 0.802 0.982 1 1

CBCD(p=10/12) 0.051 0.347 0.794 0.983 1 1

CBCD(p=11/12) 0.052 0.343 0.800 0.979 0.999 1

CABCD(a=1) 0.052 0.345 0.800 0.981 1 1

CABCD(a=2) 0.048 0.333 0.796 0.978 1 1

CABCD(a=4) 0.053 0.344 0.789 0.983 0.999 1

Marginal Balance

CSRS(p=1/2) 0.048 0.336 0.790 0.982 0.999 1

CBCD(p=8/12) 0.049 0.340 0.791 0.977 0.999 1

CBCD(p=9/12) 0.053 0.347 0.790 0.979 1 1

CBCD(p=10/12) 0.048 0.336 0.791 0.981 0.999 1

CBCD(p=11/12) 0.045 0.349 0.787 0.979 1 1

CABCD(a=1) 0.047 0.350 0.794 0.982 1 1

CABCD(a=2) 0.049 0.341 0.796 0.981 1 1

CABCD(a=4) 0.052 0.345 0.793 0.978 1 1
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Table 3.6: Powers of CSRS, CBCD and CABCD with interactions between the two-level

covariates when n = 200 and α = 0.05

Schemes d̄ = 0 d̄ = 0.25 d̄ = 0.5 d̄ = 0.75 d̄ = 1 d̄ = 1.25

Global Balance

CSRS(p=1/2) 0.050 0.317 0.756 0.971 0.999 1

CBCD(p=8/12) 0.047 0.318 0.760 0.971 0.998 1

CBCD(p=9/12) 0.050 0.316 0.759 0.969 0.999 1

CBCD(p=10/12) 0.051 0.325 0.762 0.967 0.999 1

CBCD(p=11/12) 0.051 0.308 0.762 0.969 0.999 1

CABCD(a=1) 0.054 0.320 0.764 0.972 0.999 1

CABCD(a=2) 0.051 0.321 0.758 0.971 0.999 1

CABCD(a=4) 0.051 0.321 0.759 0.973 0.999 1

Marginal Balance

CSRS(p=1/2) 0.054 0.316 0.753 0.968 0.999 1

CBCD(p=8/12) 0.049 0.324 0.756 0.969 0.999 1

CBCD(p=9/12) 0.050 0.317 0.763 0.966 0.999 1

CBCD(p=10/12) 0.050 0.317 0.754 0.969 0.999 1

CBCD(p=11/12) 0.049 0.314 0.751 0.967 0.999 1

CABCD(a=1) 0.051 0.323 0.755 0.970 0.998 1

CABCD(a=2) 0.049 0.315 0.768 0.969 0.999 1

CABCD(a=4) 0.050 0.312 0.756 0.969 0.999 1

The first column in the tables shows the actual significance level of the test in each

scenario. Due to the variation in the simulations, we obtain values close to 0.05 but not

exactly this value. The power increases when d̄ increases. For the CBCD and CABCD,
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the power also increases when the design becomes more deterministic, that is, when p in

the CBCD and a in the CABCD increase. For a fixed sample size, we can see from the

tables that the power is highest for the CABCD and lowest for CSRS. This means that

the former design will require fewer patients than the other two to achieve the same level

of power.

Obviously, the simulated power under covariate-adaptive simple random sampling

gives the lowest power among all schemes. The standard error of the values in the

second column is
√

0.3× 0.7/10, 000 ≈ 0.004. For example, for 3-level covariates and

n = 100, the value of the power for CSRS under global balance is 0.329 and is 0.349 for

the CBCD with p = 8/12. The difference between the two powers is 0.02, which is more

than three standard errors. In addition, under marginal balance, the increase in the power

is around one to two standard errors. We can see that the increase in the power is greater

under global balance than marginal balance. These conclusions are also generally true

for other values of d̄ and when n = 200. Furthermore, the same conclusions apply when

there are only two levels for the covariates.

The results show a genuine increase in the power when using the covariate-adaptive

biased coin design instead of covariate-adaptive simple random sampling. In other

words, the covariate-adaptive biased coin design achieves a more balanced trial than

covariate-adaptive simple random sampling when patients are classified according to

their prognostic profiles. In addition, both covariate-adaptive designs gain more power

when we consider global balance instead of marginal balance when there are interactions

between the covariates.

In the situation without covariates, the adjustable biased coin design has been proved

theoretically to give a more balanced trial than Efron’s biased coin design. We will

first discuss the difference in the simulated powers for the covariate-adaptive adjustable
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biased coin design and the covariate-adaptive biased coin design when there is an inter-

action between the covariates. As p in the covariate-adaptive biased coin design and a

in the covariate-adaptive adjustable biased coin design increase, theoretically both of the

designs will become more deterministic in treatment allocation and hence increase the

power. From the values of the simulated power obtained, for both two-level and three-

level covariates and when n = 100 or n = 200, under the CABCD, the increase in the

power when a increases is not very obvious. It shows around one to two standard errors

of variation with different values of a in the above four tables for global and marginal

balance. The tables also suggested that the power under the CBCD shows no obvious

increase when p increases. For both global and marginal balance, the variation in the

power is less than two standard errors.

We can see that, when there is an interaction between the covariates, there is no dif-

ference in the powers between global and marginal balance for covariate-adaptive simple

random sampling. However, global balance gives around 1% more power than marginal

balance under the covariate-adaptive biased coin design and the covariate-adaptive ad-

justable biased coin design. This means that, under these two covariate-adaptive ran-

domization schemes, global balance is more efficient at detecting a genuine treatment

difference than marginal balance.

However, by comparing the powers obtained under global balance for two-level and

three-level covariates, there is no obvious difference in their values for the same value

of d̄ under the three covariate-adaptive randomization schemes. Therefore, we cannot

conclude in the case where there are interactions between covariates whether two-level

or three-level covariates give a higher power under global balance. This conclusion holds

for marginal balance as well.

Next, the simulated power will be shown in the following four tables for the covariate-
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adaptive randomization schemes when there are no interactions between the two covari-

ates under global and marginal balance.

Table 3.7: Powers of CSRS, CBCD and CABCD with no interactions between the three-

level covariates when n = 100 and α = 0.05

Schemes d̄ = 0 d̄ = 0.25 d̄ = 0.5 d̄ = 0.75 d̄ = 1 d̄ = 1.25

Global Balance

CSRS(p=1/2) 0.049 0.331 0.789 0.977 1 1

CBCD(p=8/12) 0.050 0.336 0.795 0.978 1 1

CBCD(p=9/12) 0.047 0.343 0.799 0.981 1 1

CBCD(p=10/12) 0.049 0.346 0.797 0.982 0.999 1

CBCD(p=11/12) 0.046 0.342 0.792 0.981 1 1

CABCD(a=1) 0.049 0.348 0.794 0.980 0.999 1

CABCD(a=2) 0.049 0.343 0.797 0.978 0.999 1

CABCD(a=4) 0.053 0.338 0.799 0.979 0.999 1

Marginal Balance

CSRS(p=1/2) 0.047 0.333 0.789 0.978 0.999 1

CBCD(p=8/12) 0.048 0.334 0.789 0.979 1 1

CBCD(p=9/12) 0.048 0.344 0.798 0.980 1 1

CBCD(p=10/12) 0.052 0.339 0.794 0.977 1 1

CBCD(p=11/12) 0.049 0.337 0.798 0.979 0.999 1

CABCD(a=1) 0.051 0.338 0.792 0.980 0.999 1

CABCD(a=2) 0.051 0.353 0.795 0.977 1 1

CABCD(a=4) 0.051 0.335 0.795 0.979 0.999 1
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Table 3.8: Powers of CSRS, CBCD and CABCD with no interactions between the three-

level covariates when n = 200 and α = 0.05

Schemes d̄ = 0 d̄ = 0.25 d̄ = 0.5 d̄ = 0.75 d̄ = 1 d̄ = 1.25

Global Balance

CSRS(p=1/2) 0.048 0.320 0.752 0.970 0.999 1

CBCD(p=8/12) 0.049 0.314 0.764 0.967 0.999 1

CBCD(p=9/12) 0.046 0.315 0.763 0.971 0.998 1

CBCD(p=10/12) 0.056 0.327 0.763 0.971 0.999 1

CBCD(p=11/12) 0.051 0.311 0.767 0.972 0.999 1

CABCD(a=1) 0.049 0.323 0.758 0.968 0.999 1

CABCD(a=2) 0.053 0.326 0.757 0.972 0.999 1

CABCD(a=4) 0.051 0.318 0.760 0.970 0.999 1

Marginal Balance

CSRS(p=1/2) 0.050 0.314 0.748 0.965 0.999 1

CBCD(p=8/12) 0.056 0.316 0.751 0.967 0.999 1

CBCD(p=9/12) 0.049 0.312 0.755 0.968 0.998 1

CBCD(p=10/12) 0.049 0.317 0.760 0.969 0.999 1

CBCD(p=11/12) 0.043 0.318 0.766 0.970 0.999 1

CABCD(a=1) 0.047 0.314 0.761 0.971 0.999 1

CABCD(a=2) 0.053 0.323 0.752 0.971 0.998 1

CABCD(a=4) 0.049 0.322 0.750 0.968 0.998 1
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Table 3.9: Powers of CSRS, CBCD and CABCD with no interaction between the two-

level covariates when n = 100 and α = 0.05

Schemes d̄ = 0 d̄ = 0.25 d̄ = 0.5 d̄ = 0.75 d̄ = 1 d̄ = 1.25

Global Balance

CSRS(p=1/2) 0.051 0.335 0.794 0.975 0.999 1

CBCD(p=8/12) 0.051 0.333 0.803 0.983 1 1

CBCD(p=9/12) 0.050 0.352 0.798 0.981 1 1

CBCD(p=10/12) 0.052 0.343 0.796 0.981 0.999 1

CBCD(p=11/12) 0.049 0.343 0.801 0.982 1 1

CABCD(a=1) 0.049 0.339 0.790 0.979 0.999 1

CABCD(a=2) 0.049 0.345 0.797 0.981 1 1

CABCD(a=4) 0.053 0.345 0.794 0.981 1 1

Marginal Balance

CSRS(p=1/2) 0.049 0.333 0.789 0.979 1 1

CBCD(p=8/12) 0.048 0.348 0.789 0.982 0.999 1

CBCD(p=9/12) 0.051 0.338 0.795 0.982 0.999 1

CBCD(p=10/12) 0.047 0.343 0.792 0.981 1 1

CBCD(p=11/12) 0.050 0.346 0.800 0.980 0.999 1

CABCD(a=1) 0.047 0.346 0.796 0.980 0.999 1

CABCD(a=2) 0.056 0.333 0.802 0.980 0.999 1

CABCD(a=4) 0.055 0.346 0.798 0.982 0.999 1
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Table 3.10: Powers of CSRS, CBCD and CABCD with no interaction between the two-

level covariates when n = 200 and α = 0.05

Schemes d̄ = 0 d̄ = 0.25 d̄ = 0.5 d̄ = 0.75 d̄ = 1 d̄ = 1.25

Global Balance

CSRS(p=1/2) 0.052 0.325 0.752 0.967 0.999 1

CBCD(p=8/12) 0.051 0.316 0.763 0.969 0.999 1

CBCD(p=9/12) 0.051 0.321 0.755 0.965 0.999 1

CBCD(p=10/12) 0.049 0.325 0.761 0.969 0.999 1

CBCD(p=11/12) 0.049 0.327 0.753 0.970 0.999 1

CABCD(a=1) 0.050 0.315 0.759 0.970 0.999 1

CABCD(a=2) 0.050 0.309 0.757 0.967 0.999 1

CABCD(a=4) 0.050 0.321 0.756 0.971 0.999 1

Marginal Balance

CSRS(p=1/2) 0.047 0.319 0.753 0.967 0.998 1

CBCD(p=8/12) 0.051 0.314 0.756 0.967 0.999 1

CBCD(p=9/12) 0.046 0.310 0.760 0.967 0.999 1

CBCD(p=10/12) 0.055 0.313 0.761 0.968 0.999 1

CBCD(p=11/12) 0.051 0.324 0.754 0.970 0.999 1

CABCD(a=1) 0.054 0.321 0.757 0.968 0.999 1

CABCD(a=2) 0.052 0.317 0.749 0.967 0.999 1

CABCD(a=4) 0.049 0.323 0.759 0.971 0.999 1

When there is no interaction between the two covariates, the powers are similar for

global and marginal balance under all three covariate-adaptive randomization schemes.

Covariate-adaptive simple random sampling again gives the lowest power for each value
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of d̄. We cannot conclude whether global balance or marginal balance is better when

there is no interaction between the covariates. In this case, we can say that global balance

is as good as marginal balance when there is no interaction between the covariates. In

addition, under each of the covariate-adaptive randomization schemes, it is not clear

whether two-level or three-level covariates give a higher power under global or marginal

balance.

3.8 Conclusions

Covariate-adaptive randomization schemes provide methods for patient allocation

when we want to study treatment effects in patients classified by prognostic factors. This

is to ensure that we have the same numbers of patients in the two treatment groups for

each combination of the covariates’ profiles. One of the main aims of covariate-adaptive

randomization schemes is to balance the numbers of patients on the two treatments with

patients classified by their prognostic factors. Under any such scheme, we can further

achieve global or marginal balance. When there are two covariates, the simulated power

obtained under global balance is higher than that under marginal balance when there

are interactions between the covariates. The powers obtained are similar for global and

marginal balance when there are no interactions between the covariates.

Numerical values for the power using a normal approximation are also given under

covariate-adaptive simple random sampling and the biased coin design when a single

covariate is uniformly distributed. It is shown that these values for the power over-

approximate the actual value for the power in both cases. This will cause the planner

for the trial to prepare less resources than are needed to achieve a particular level of

power for the study. For example, we can estimate the sample size needed to achieve a

certain level of power by the normal approximation method. However, in reality, under
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both randomization schemes, this sample size will give a power too low. The theoret-

ical properties and the expression for the normal approximation to the power when we

consider more than one covariate are also provided.
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Chapter 4

Randomization schemes with more

than two treatments

In the previous two chapters, we studied different randomization schemes and their

power properties when two treatments are compared in a clinical trial. It is sometimes

more efficient to compare several treatments in the same trial for ease of comparison and

to identify their effects. In this chapter, we consider different randomization schemes

when there are more than two treatments.

4.1 Introduction

Most of the randomization schemes that we have studied and which are considered

in the literature are based on trials with two treatments. Here, assume that patients enter

a clinical trial sequentially and have to be assigned immediately to one of K > 2 treat-

ments. Assume also that the variances of the patients’ responses on different treatments

are the same. It will be most efficient to have a balanced trial. These randomization

schemes will have to maintain a balance in the numbers of patients across the K treat-

ments and preserve randomness in the allocation. The assignment rules for these ran-
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domization schemes can be based on different criteria. One of the most commonly used

criteria is the number of patients currently on each of the treatments. For each new pa-

tient, the probabilities of assigning this patient to each of the K treatments are obtained

by incorporating this information into the calculations. The probabilities obtained may

be all different or some of them may be the same. The larger the probability for a given

treatment, the more likely the next patient will be allocated to that particular treatment.

In most cases, the goal is to obtain a larger probability of assigning the next patient to an

under-represented treatment. Another criterion used for treatment assignment is the im-

balance across treatments. The imbalance is defined in the two-treatment case as simply

the difference in the numbers of patients on the two treatments. In the case of more than

two treatments, the imbalance at each stage for each treatment has to be defined.

In Section 4.2, different randomization schemes for more than two treatments will be

introduced. Their probabilities of assigning the next patient to the different treatments

will also be given. In addition, a new class of designs called the adjustable biased coin

design will be proposed such that each assignment is made based on all of the current

imbalances at each stage. The values for these imbalances are incorporated into the prob-

abilities of assignment to all K treatments at each stage. Section 4.3 will be concerned

with comparing the covariances of the numbers of patients on different treatments un-

der complete randomization and the biased coin design. In Section 4.4, the asymptotic

properties of the randomization schemes will be described. This is followed by simula-

tions of the imbalances under different randomization schemes in Section 4.5, where the

finite-sample behaviour of the imbalances under different randomization schemes will

be demonstrated. In Section 4.6, numerical values for the power of an F test are given

by simulation for different randomization schemes. Finally, conclusions will be drawn

in Section 4.7. Note that, similar to previous chapters, treatment 1 is always the standard
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treatment. The patients that are allocated to this treatment group form the control group.

4.2 Classes of treatment assignment rules

4.2.1 Complete randomization

Under complete randomization, each patients is equally likely to be assigned to one

of the K treatments. In other words, the probability of allocating treatment j to a patient

for each j = 1, ..., K is 1/K. These probabilities remain the same for all stages. This

design ignores the current numbers of patients on the treatments at each stage. Complete

randomization gives the highest level of randomness in assignment among all schemes

and selection bias is a minimum. Selection bias refers to the bias where the experi-

menter’s decision depends on the suitability of a subject, and is discussed by Blackwell

and Hodges (1957) and Efron (1971). However, complete randomization is more likely

to produce severe imbalances in the numbers of patients across the treatments.

4.2.2 Permuted-block randomization

Permuted-block randomization is another example of a randomization scheme for

several treatments. The block length and the proportion of patients allocated to a partic-

ular treatment within a block are pre-specified. The sequence of treatments is randomly

permuted within a block. By combining the sequences for all blocks, a complete se-

quence for the treatment assignments is formed. Each patient arrives in a trial and is

allocated to a treatment following this sequence. Under permuted-block randomization,

an equal proportion of patients is usually allocated to each treatment in order to balance

the numbers of patients across the treatment groups. In addition, the block size or the

length of the block K1 can be chosen to be a multiple of the number of treatments in
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the trial so as to obtain a balance across the treatment groups for every K1 patients in

the trial. Permuted-block randomization is very efficient at maintaining a balance in the

numbers of patients across the treatment groups. However, the assignments are very

deterministic and the selection bias for this design is very high.

In this chapter, we will not consider permuted-block randomization. In practice, a

clinical trial can be carried out in different centres. The assignment rules for different

centres may be the same or different. When a patient arrives at a particular centre,

the assignment rules for this particular centre will be applied. This is called a centre-

stratified randomization scheme and centre-stratified permuted-block randomization will

be discussed in the next chapter.

4.2.3 Efron’s biased coin design

The biased coin design introduced by Efron (1971) gives a compromise between

randomness and maintaining balance in the treatment allocation. Under the biased coin

design for two-treatment trials, we have a fixed probability p > 1/2 of allocating the next

patient to a treatment that has been chosen less often and 1− p otherwise. This idea can

be extended to the case of more than two treatments. The aim is to balance the proportion

of patients on each of the treatments. We have a fixed probability p > 1/K of allocating

the next patient to the treatment that has the least number of patients. Furthermore, the

probability of allocating the next patient to one of the other treatments is (1−p)/(K−1).

If we have more than one treatment that has the least number of patients, the following

can be applied. Let n∗ be the number of treatments that have the least number of patients.

Then, for a chosen probability p > 1/K, we have p/n∗ as the probability of assigning

the next patient to one of the n∗ treatments and (1 − p)/(K − n∗) as the probability of

allocating the next patient to one of the other treatments.
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4.2.4 Optimum biased coin design

In Atkinson (1982, 2004), the ideas of D- and DA-optimality are used to obtain the

probabilities in the biased coin design for allocating the next patient to one of the K

treatments. The linear model E(y) = xT β is for the responses of the patients, which

are independent and have variance σ2. The variance of the least square estimates of β

is Var(β̂) = σ2(XTX)−1, where the p × p information matrix XTX is assumed to be

of full rank from n observations. In the construction of optimum experimental designs,

let the measure be ξn for an n-point design over the design region X. The information

matrix for this design is M(ξn) = n−1(XTX). The fitted value is ŷ(x) = β̂T x at x with

variance Var{ŷ(x)} = σ2xT (XT X)−1x. The scaled variance of the predicted responses

is Var{ŷ(x)}/σ2. The standardized variance is obtained by scaling the variance by σ2

and the number of observations, so that it is given by

d(x, ξn) = n
Var(ŷ(x))

σ2
= xT M−1(ξn)x.

To achieve D-optimality, the determinant of M(ξn) is maximized and this minimizes the

variances of the estimates of the parameters. For an n-point design, the (n + 1)st point

is added where d(x, ξn) is a maximum.

If all of the parameters in the model are of interest, the D-optimal criterion will be

appropriate. Alternatively, if the contrasts between the treatment effects are of interest,

the DA-optimal criterion can be used. For most of this chapter, the DA-optimal crite-

rion will be appropriate to use instead of the D-optimal criterion. The contrasts are s

linear combinations. These are the components of the vector AT β, where A is an p× s

matrix with rank s < p. The least squares estimate of the contrast vector will be de-

noted by AT β̂. The covariance matrix of AT β̂ is proportional to AT M−1(ξn)A and the
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standardized variance is given by

dA(x, ξn) = xT M−1(ξn)A{AT M−1(ξn)A}−1AT M−1(ξn)x.

Sequential DA -optimum designs are generated one point at a time by adding an obser-

vation at x where dA(x, ξn) is a maximum.

In a clinical trial with K > 2 treatments, we will study the design region X which

consists of K points. Here, we replace d(x, ξn) and dA(x, ξn) with d(j, ξn) and dA(j, ξn),

respectively. The sequential construction of the D- or the DA- optimum designs allocates

the (n+1)st patient to the treatment such that its respective standardized variance d(j, ξn)

or dA(j, ξn) is maximized.

The probability of allocating the next patient to treatment j for the D-optimal biased

coin design is

pj =
d(j, ξn)∑K
i=1 d(i, ξn)

and

pj =
dA(j, ξn)∑K
i=1 dA(i, ξn)

,

for the DA-optimal biased coin design. Assume that the s = (K− 1)-dimensional space

of the contrasts is orthogonal to the overall mean for which the matrix AT is arbitrary.

Then the standardized variance can be written as

dA(j, ξn) = (n− nj)/nj = rj − 1,

where rj = n/nj is the reciprocal of the proportion of patients on treatment j. Under

the DA-optimality criterion, the probability of allocating treatment j for j = 1, ..., K to

the next patient is

pj =
rj − 1∑K

i=1 ri −K
.
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4.2.5 Wei’s class of biased coin designs

A class of treatment assignment rules was suggested by Wei (1978) for more than two

treatments. Suppose that, in a clinical trial after n assignments, there are nj,n patients

on treatment j for j = 1, ..., K such that
∑K

j=1 nj,n = n. Let p be the K × 1 vector

p = (p1, p2, ..., pK)T , where pj is the probability of allocating treatment j to the (n+1)st

patient. Then the vector p is a function of the vector (n1,n/n, n2,n/n, ..., nK,n/n)T and

has the following properties.

1. The vector p is a function from Ω to Ω where

Ω =

{
y = (y1, y2, ..., yK)T :

K∑
j=1

yj = 1

}
.

2. If yi < yj , then pi ≥ pj and, if yi = yj , then pi = pj for i 6= j and i, j = 1, ..., K.

3. We have pj (y1, ..., yj−1, 1/K, yj+1, ..., yK) = 1/K for all yi such that i 6= j and

i = 1, ..., K. In addition,
∑

i6=j yi = 1− 1/K.

4. Finally, pj(y) is continuous at the point (1/K, ..., 1/K)T for j = 1, ..., K.

The numbers of patients on the treatments after n assignments are represented by the

vector Dn = (n1,n, n2,n, ..., nK,n)T . This vector forms a Markov chain with transition

probabilities

pj (Dn/n) = P
{
Dn+1 = (n1,n, ..., nK,n)T + ej|Dn = (n1,n, ..., nK,n)T

}
,

where ej is a K × 1 vector which contains 1 in its jth component and zeros elsewhere

for j = 1, ..., K. Wei (1978) proves that E(nj,n) = n/K and E[pj(Dn/n)] = 1/K,

and also that Dn/n → (1/K, ..., 1/K)T in probability as n → ∞. It is also shown by

induction that the variance of the number of patients on treatment j after n assignments

under this class of treatment assignment rules is smaller than the corresponding variance
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under complete randomization. In the next section, these results will be extended to the

covariance of the numbers of patients on any two treatments.

4.2.6 Smith’s extension of Wei’s class of biased coin designs

Wei’s class of treatment assignment rules was extended by Smith (1984). A new

procedure was proposed by generalizing Wei’s procedure to achieve a limiting design

measure (ξ1, ..., ξK) for ξj ≥ 0, j = 1, ..., K and
∑K

j=1 ξj = 1. Here, we want the

limiting proportion of patients allocated to treatment j to be ξj . In this case, all ξj for

j = 1, .., K are known at the start of the trial. The vector p has to satisfy two properties.

1. The vector p is twice continuously differentiable on Ω.

2. If yj ≥ ξj , then pj(y) ≤ ξj .

The main result is given as the following theorem. Let ρ be the parameter which is

the sum of all the limiting proportions of patients allocated to the treatments such that

ρ =
∑K

j=1 ξj . Further, let δj,n be 1 if the nth patient is allocated to treatment j and 0

otherwise. Then we have the approximation

Cov(nj,l, nm,n) ≈


(1 + 2ρ)−1l1+ρn−ρ(ξj − ξ2

j ), j = m,

−(1 + 2ρ)−1l1+ρn−ρξjξm, j 6= m,

for l ≤ n as l →∞ with the joint distributions asymptotically normal and

Cov(δj,l, δm,n) ≈



ξj − ξ2
j , l = n, j = m,

−ξjξm, l = n, j 6= m,

−ρ(1 + ρ)(1 + 2ρ)−1lρn−1−ρ(ξj − ξ2
j ), l 6= n, j = m,

ρ(1 + ρ)(1 + 2ρ)−1lρn−1−ρξjξm, l 6= n, j 6= m.
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The above two approximations for the covariances are very useful in obtaining the

asymptotic form of the covariance matrix under Wei’s class of biased coin designs. These

will be given explicitly in Section 4.4.

4.2.7 The adjustable biased coin design

The idea of the biased coin assignment rule can be extended to situations where

more than two treatments are used in a trial. The simplest case was given for Efron’s

biased coin assignment rule in Section 4.2.3. This assignment rule only depends on the

number of patients on each treatment at each stage. The probabilities are fixed and do

not take into account the numbers of patients on all treatments at different stages and

the degree of imbalance at different stages. A new class of treatment assignment rules

is now suggested. Here, the probability of assigning the next patient to treatment j is

calculated by taking into account the imbalances on all treatments.

The imbalance on treatment j at stage n is defined by

∆j,n = nj,n −
n

K
.

At each stage n, the imbalance shows the difference between the number of patients on

treatment j and the average number of patients per treatment. When the imbalance is

zero, this implies that we have an average number of patients on treatment j at stage n

and that there is no imbalance. A negative imbalance shows that treatment j is under-

represented with fewer patients than the average at stage n and vice versa for a positive

imbalance. The sum of these imbalances at any stage n is 0, that is,
∑K

j=1 ∆j,n = 0.

Let Fj(z) be a function of the current imbalance on treatment j. This function will be

different according to the sign of the current imbalance. Define this function as Fj : R →

[0, 1], where R is the set of real numbers. Then the function depends on the value z ∈

∆j,n for any treatment j after n assignments. For a particular stage n and treatment j, the
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imbalance is zero when the number of patients on treatment j equals the average number

of patients per treatment. So, at stage n + 1, we define Fj(z) = 1/K. If the value of the

imbalance is negative, which means that treatment j is under-represented, we will need

more patients on this treatment to achieve a balanced trial. Therefore, for the (n + 1)st

assignment, we should have Fj(z) > 1/K. Similarly, for a positive imbalance, there

are more patients on treatment j than on average, and we should have Fj(z) < 1/K.

The values for Fj(z) take into account the degree of imbalance on treatment j at stage

n. The function Fj(z) is not symmetric and is decreasing. More specifically, after n

assignments, the function Fj(z) is defined as

Fj(z) =



1
|z|+K

, z > 0,

1
K

, z = 0,

|z|+1
|z|+K

, z < 0,

where z ∈ ∆j,n.

For j = 1, ..., K, the probability of assigning the next patient to treatment j is defined

as

pj =
Fj(z)∑K
i=1 Fi(z)

, (4.1)

where
∑K

j=1 pj = 1. As Fj(z) depends on the imbalance on treatment j, the probability

pj of the next patient being allocated to treatment j depends on Fi(z) for all treatments

i = 1, ..., K and is therefore obtained from the imbalances on all treatments from the

previous stage. We call this class of designs the adjustable biased coin design.

Remark For the above design, assume that K = 2. Then the probability pj for

j = 1, 2 of assigning the next patient to treatment j becomes pj = Fj(z), as the denom-

inator in (4.1) is
∑2

i=1 Fi(z) = 1. It is clear that this does not give the same results as

the adjustable biased coin design for two treatments proposed by Baldi Antognini and

Giovagnoli (2004). Recall from Chapter 2 that pj = Fa(x) for this design. For K = 2,
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the value z in Fj(z) is the difference between the number of patients on treatment j for

j = 1, 2 and the average number of patients on each treatment up to n assignments. This

z can be any real number. However, the value x in Fa(x) is the difference between the

number of patients on treatment 1 and the number of patients on treatment 2. The values

for x can only be integers and this is the imbalance defined by Baldi Antognini and Gio-

vagnoli (2004) for their adjustable biased coin design. This means that the imbalances

for the two designs are different.

4.3 Comparison of the covariances under complete ran-

domization and Wei’s class of biased coin designs

In this section, we will compare the covariances of the numbers of patients on any

two treatments for complete randomization and Wei’s class of biased coin designs. We

want to show by induction that the covariances under complete randomization are at

least as large as those under Wei’s class of biased coin designs.

Let Sn = (L1,n, ..., LK,n)T be the K × 1 vector, where Lj,n is the number of patients

on treatment j after n assignments under complete randomization. It is clear that Sn

has a multinomial distribution with parameters n and p. Under complete randomization,

each patient is equally likely to be assigned to one of the K treatments. The probability

pj of assigning treatment j to the next patient will be 1/K for j = 1, ..., K. So the

covariance of the numbers of patients on treatment j and m for j 6= m and j, m =

1, ..., K is Cov(Lj,n, Lm,n) = −npjpm = −n/K2 after n assignments. We want to

show that Cov(Lj,n, Lm,n) ≥ Cov(nj,n, nm,n) for all n ≥ 1 and j 6= m. Now, if n =

1, the covariance under complete randomization is Cov(Lj,1, Lm,1) = −1/K2. Under

the biased coin design, the assignment rule for the first assignment is just complete
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randomization. Therefore, if n = 1, we have Cov(Lj,1, Lm,1) ≥ Cov(nj,1, nm,1). We

assume that the result holds at stage n, so that

Cov(Lj,n, Lm,n) ≥ Cov(nj,n, nm,n)

for j 6= m and j, m = 1, ..., K.

We can write the covariance after n + 1 assignments for the biased coin design as

Cov(nj,n+1, nm,n+1) = E[{nj,n+1 − E(nj,n+1)}{nm,n+1 − E(nm,n+1)}]

= E

[{
nj,n+1 −

n + 1

K

}{
nm,n+1 −

n + 1

K

}]
= E

(
E

[{
nj,n+1 −

n + 1

K

}{
nm,n+1 −

n + 1

K

}] ∣∣∣∣Dn

)
.

After n + 1 assignments, for any treatment j = 1, ..., K, the number of patients on

treatment j will be nj,n+1 = nj,n or nj,n+1 = nj,n + 1. Now consider treatment m where

m 6= j and m = 1, ..., K. If nj,n+1 = nj,n, we will have either nm,n+1 = nm,n + 1 or

nm,n+1 = nm,n. However, if nj,n+1 = nj,n + 1, then nm,n+1 = nm,n. Let qj(Dn/n) =

1− pj(Dn/n) for any treatment j = 1, ..., K, so that pj(Dn/n) + qj(Dn/n) = 1.

Using the above, the covariance for the biased coin design after n + 1 assignments

can be written as

E

[{
nj,n + 1− n + 1

K

}
pj

(
Dn

n

)(
nm,n −

n + 1

K

)
qm

(
Dn

n

)]
+ E

{(
nj,n −

n + 1

K

)
qj

(
Dn

n

)(
nm,n + 1− n + 1

K

)
pm

(
Dn

n

)}
+ E

{(
nj,n −

n + 1

K

)
qj

(
Dn

n

)(
nm,n −

n + 1

K

)
qm

(
Dn

n

)}
.

We can expand the first expectation as

E

[{(
nj,n −

n

K

)
pj

(
Dn

n

)
+

(
1− 1

K

)
pj

(
Dn

n

)}
×
{(

nm,n −
n

K

)
qm

(
Dn

n

)
− 1

K
qm

(
Dn

n

)}]
.
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Similarly, the second expectation can be expanded as

E

[{(
nj,n −

n

K

)
qj

(
Dn

n

)
− 1

K
qj

(
Dn

n

)}
×
{(

nm,n −
n

K

)
pm

(
Dn

n

)
+

(
1− 1

K

)
pm

(
Dn

n

)}]
.

Finally, the third expectation can be written as

E

[{(
nj,n −

n

K

)
qj

(
Dn

n

)
− 1

K
qj

(
Dn

n

)}
×
{(

nm,n −
n

K

)
qm

(
Dn

n

)
− 1

K
qm

(
Dn

n

)}]
.

By combining the three expectations, the covariance of nj,n+1 and nm,n+1 for the

biased coin design is

E

[(
nj,n −

n

K

)(
nm,n −

n

K

){
pj

(
Dn

n

)
qm

(
Dn

n

)
+ pm

(
Dn

n

)
qj

(
Dn

n

)
+ qj

(
Dn

n

)
qm

(
Dn

n

)}]
+ E

[(
nj,n −

n

K

){
− 1

K
pj

(
Dn

n

)
qm

(
Dn

n

)
+

(
1− 1

K

)
pm

(
Dn

n

)
qj

(
Dn

n

)
− 1

K
qj

(
Dn

n

)
qm

(
Dn

n

)}]
+ E

[(
nm,n −

n

K

){(
1− 1

K

)
pj

(
Dn

n

)
qm

(
Dn

n

)
− 1

K
pm

(
Dn

n

)
qj

(
Dn

n

)
− 1

K
qj

(
Dn

n

)
qm

(
Dn

n

)}]
+ E

[
− 1

K

(
1− 1

K

)
pj

(
Dn

n

)
qm

(
Dn

n

)
− 1

K

(
1− 1

K

)
pm

(
Dn

n

)
qj

(
Dn

n

)
+

1

K2
qj

(
Dn

n

)
qm

(
Dn

n

)]
.

Since we know that, for any treatment j, E {pj (Dn/n)} = 1/K and E(nj,n) = n/K,
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the covariance can be written as

E
{(

nj,n −
n

K

)(
nm,n −

n

K

)}
+ E

{(
nj,n −

n

K

)
pm

(
Dn

n

)}
− E

{(
nj,n −

n

K

)(
nm,n −

n

K

)
pj

(
Dn

n

)
pm

(
Dn

n

)}
−

(
1− 1

K

)
E

{(
nj,n −

n

K

)
pj

(
Dn

n

)
pm

(
Dn

n

)}
+ E

{(
nm,n −

n

K

)
pj

(
Dn

n

)}
−

(
1− 1

K

)
E

{(
nm,n −

n

K

)
pj

(
Dn

n

)
pm

(
Dn

n

)}
+

(
2

K
− 1

K2

)
E

{
pj

(
Dn

n

)
pm

(
Dn

n

)}
− 1

K2
.

Further, we know that Cov(nj,n, nm,n) = E {(nj,n − n/K) (nm,n − n/K)}, and so

Cov(nj,n+1, nm,n+1) has the form

Cov(nj,n, nm,n)− 1

K2
− E

{(
nj,n −

n

K

)(
nm,n −

n

K

)
pj

(
Dn

n

)
pm

(
Dn

n

)}
+ E

{(
nj,n −

n

K

)
pm

(
Dn

n

)}
+

(
2

K
− 1

K2

)
E

{
pj

(
Dn

n

)
pm

(
Dn

n

)}
−

(
1− 1

K

)
E

{(
nj,n −

n

K

)
pj

(
Dn

n

)
pm

(
Dn

n

)}
+ E

{(
nm,n −

n

K

)
pj

(
Dn

n

)}
−

(
1− 1

K

)
E

{(
nm,n −

n

K

)
pj

(
Dn

n

)
pm

(
Dn

n

)}
.

We know that, for any treatment j, 0 ≤ pj (Dn/n) ≤ 1. The covariance of Lj,n+1 and

Lm,n+1 is Cov(Lj,n+1, Lm,n+1) = −(n + 1)/K2 = Cov(Lj,n, Lm,n)− 1/K2. It is clear

that, for Wei’s class of biased coin designs, if nj,n−n/K = 0, then pj(Dn/n) = 1/K. If

nj,n−n/K > 0, then pj(Dn/n) < 1/K, and, if nj,n−n/K < 0, then pj(Dn/n) > 1/K.

The two random variables pj(Dn/n) and nj,n−n/K are negatively correlated. We know

that

Cov

{(
nj,n −

n

K

)
, pj

(
Dn

n

)}
= E

{(
nj,n −

n

K

)
pj

(
Dn

n

)}
≤ 0.

We conjecture that

E

{(
nj,n −

n

K

)(
nm,n −

n

K

)
pj

(
Dn

n

)
pm

(
Dn

n

)}
≥ 0.
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We conjecture that

Cov(nj,n+1, nm,n+1) ≤ Cov(Lj,n+1, nm,n+1).

4.4 Asymptotic properties of randomization schemes

One of the main aims of randomization schemes in clinical trials is to achieve balance

in the numbers of patients across treatment groups. It is clear that, for any treatment

j = 1, ..., K, Lj,n/n → 1/K almost surely under complete randomization and nj,n/n →

1/K almost surely under the biased coin design as n →∞.

4.4.1 Complete randomization

By the central limit theorem

√
n

[(
L1,n

n
, ...,

LK,n

n

)T

−
(

1

K
, ...,

1

K

)T
]
→ NK(0,Σc)

in distribution as n →∞. Here,NK(0,Σc) represents a multivariate normal distribution

with mean vector a K × 1 vector of zeros and the K ×K covariance matrix Σc. For any

treatment j = 1, ..., K, the variance of
√

n(Lj,n/n− 1/K) is

Σc
j,j = Var

[√
n

(
Lj,n

n
− 1

K

)]
=

1

K

(
1− 1

K

)
,

since Lj,n has a binomial distribution with parameters n and 1/K. For any two different

treatments j and m, the covariance of
√

n(Lj,n/n− 1/K) and
√

n(Lm,n/n− 1/K) is

Σc
j,m = Cov

[√
n

(
Lj,n

n
− 1

K

)
,
√

n

(
Lm,n

n
− 1

K

)]
= − 1

K2
.

The covariance matrix Σc has Σc
j,j as its jth diagonal element and Σc

j,m as element (j, m).
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4.4.2 Wei’s class of biased coin designs with Smith’s approximation

The approximation for the covariance of the numbers of patients on two different

treatments was obtained by Smith (1984) and is given in Section 4.2.6. We will only look

at a particular stage n. For this class of biased coin designs, we aim to achieve the same

limiting proportion of patients on each treatment. Therefore, the limiting proportion is

ξj = 1/K for j = 1, ..., K and ρ =
∑K

j=1 ξj = 1. By the central limit theorem,

√
n

[(n1,n

n
, ...,

nK,n

n

)T

−
(

1

K
, ...,

1

K

)T
]
→ NK(0,Σw)

in distribution as n → ∞. For any stage n, the covariance matrix Σw can be obtained

using the approximation obtained by Smith (1984). We have

Σw
j,j = Var

[√
n

(
nj,n

n
− 1

K

)]
=

1

n
(1 + 2ρ)−1n1+ρn−ρ(ξj − ξ2

j )

=
1

3K

(
1− 1

K

)
.

Similarly, for j 6= m,

Σw
j,m = Cov

[√
n

(
nj,n

n
− 1

K

)
,
√

n

(
nm,n

n
− 1

K

)]
= − 1

n
(1 + 2ρ)−1n1+ρn−ρξjξm

= − 1

3K2
.

The K ×K covariance matrix has Σw
j,j as its jth diagonal element and Σw

j,m as element

(j, m). It is clear that, with Smith’s approximation, both the variance and the covariance

are one-third of their respective values under complete randomization.

4.4.3 DA-optimum biased coin design

In the case where there are only two treatments, Smith (1984) studied Wei’s (1978)

class of designs when f : [−1, 1] → [0, 1] is the conditional probability that the next
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patient is allocated to treatment 1 given the numbers of patients n1 and n2 on treatments

1 and 2, respectively. This function is differentiable at 0 with special case

p(n1, n2) = ft(x) =
(1− x)t

(1− x)t + (1 + x)t
,

where

x =
n1 − n2

n1 + n2

.

When t = 1 or 2, this is the same as Atkinson’s (1982) designs. The asymptotic prop-

erties of Smith’s class of designs apply to Atkinson’s designs when there are two treat-

ments.

Smith (1984) showed that, for K ≥ 2, the probabilities pj in Atkinson’s DA-optimum

biased coin design satisfy the two conditions in Section 4.2.6 with ξj = 1/K for all

treatments j = 1, ..., K. So, by the central limit theorem,

√
n

[(n1,n

n
, ...,

nK,n

n

)T

−
(

1

K
, ...,

1

K

)T
]
→ NK(0,Σw)

in distribution as n →∞.

4.4.4 Efron’s biased coin design

For Efron’s biased coin design, the assignment is made based on the numbers of

patients on the treatments from the previous stage. There is a fixed probability p > 1/K

of allocating the next patient to the treatment that has been chosen least often. This

probability is a fixed constant instead of a continuous function used in Wei’s class of

biased coin designs.

In Hu, Zhang and He (2009), Efron’s biased coin design is a special case of the

efficient randomized-adaptive design which is a family of response-adaptive designs and

asymptotically attains a lower bound for the variance of the allocation proportion. Hu,

Rosenberger and Zhang (2006) state that any procedure that attains the lower bound is
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asymptotically best. For K > 2 treatments, the asymptotic properties of the response-

adaptive design are given. The regularity conditions are as follows.

• The parameter space Θj is an open subset of Rd, d ≥ 1, for j = 1, ..., K.

• The limiting proportion of patients on treatment j for j = 1, ..., K is ρj(θ) and

ρ(θ) = (ρ1(θ), ..., ρK(θ))T ∈ (0, 1)K , where

nj,n

n
→ ρj(θ)

almost surely as n →∞.

• For some positive definite matrix V (θ),

√
n

[(n1,n

n
, ...,

nK,n

n

)T

− (ρ1(θ), ..., ρK(θ))T

]
→ NK(0, V (θ))

in distribution as n →∞.

A procedure is said to be asymptotically best if V (θ) attains the lower bound

B(θ) = ∇ρ(θ)I−1(θ)∇ρ(θ)T ,

where I(θ) = diag{ρ1(θ)I1(θ1), ..., ρK(θ)IK(θK)} and Ij(θj) is the information matrix

for treatment j. The form of V (θ) is

V (θ) =
1

1 + 2γ
Σ1(θ) +

2(1 + γ)

1 + 2γ
B(θ),

when the above conditions hold, Σ1(θ) = diag{ρ(θ)} − ρ(θ)ρ(θ)T and γ is some non-

negative integer. When γ = 0, the procedure becomes deterministic. The larger the

value of γ, the greater the randomness in the design. As γ → ∞, 1/(1 + 2γ) → 0 and

2(1 + γ)/(1 + 2γ) → 1, so that V (θ) attains the lower bound B(θ). In other words, as

γ →∞, the response-adaptive design is asymptotically the best.

Under Efron’s biased coin design for K > 2 treatments, the limiting proportion of

patients on treatment j is ρj = 1/K for j = 1, ..., K, so that ρ(θ) = (1/K, ..., 1/K)T .
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As ρ(θ) is a vector of constants, the lower bound B(θ) is 0 and V (θ) attains this lower

bound. Therefore,

√
n

[(n1,n

n
, ...,

nK,n

n

)T

−
(

1

K
, ...,

1

K

)T
]
→ (0, ..., 0)T

in probability as n →∞.

4.5 Imbalance for different randomization schemes

In this section, we will study the imbalance in the numbers of patients on the treat-

ments for four different randomization schemes, complete randomization, Efron’s biased

coin design, DA-optimal randomization and our new class of randomization schemes, the

adjustable biased coin design. It is always most efficient to test for treatment differences

using balanced treatment groups when the variances of patients’ responses on different

treatments are the same. Imbalances reduce the power of the test.

We define the overall imbalance across treatments to be a vector which contains

the imbalances ∆j for j = 1, ..., K, which are the imbalances obtained at stage n. In

other words, we have ∆j = ∆j,n for j = 1, ..., K in the vector. Denote this vector by

∆ = (∆1, ∆2, ..., ∆K)T . From Lemma 2 of Wei (1978), we have

∆

n
→ 0

in probability as n →∞. This result holds for each of the four randomization schemes.

We are interested in the asymptotic distribution and the properties of the imbalances

under these designs. For any particular treatment j,
√

n(nj,n/n − 1/K) can be written

as
√

n(∆j/n). Hence, from Section 4.4,

√
n

(
∆

n

)
→ NK(0,Σc)
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in distribution as n → ∞ under complete randomization. As the DA-optimum biased

coin design is a special case of Wei’s class of designs, from Smith’s approximation,

√
n

(
∆

n

)
→ NK(0,Σw)

in distribution as n →∞ under DA-optimum biased coin design. Finally,

√
n

(
∆

n

)
→ (0, ..., 0)T

in probability as n →∞ for Efron’s biased coin design.

4.5.1 Simulations for the imbalances

We will now study the imbalance properties of the different randomization schemes

by simulation. First, the values for the imbalances under these randomization schemes

are produced. Then the properties of the imbalances will be shown using their quartiles

and the spike plot for one of the K treatments.

In the simulations, assume that there are 60 patients in the trial. They are allocated

to one of the treatments upon arrival according to the assignment rules under complete

randomization, Efron’s biased coin design, the DA- optimum biased coin design and the

new class of designs, the adjustable biased coin design. We took K = 3 and K = 4.

The trial is simulated 10, 000 times under each scheme. When each patient arrives, we

generate a random number for this patient from a uniform distribution between 0 and 1.

Complete randomization

Under complete randomization, each patient is equally likely to be allocated to one

of the K treatments. We divide the real line between 0 and 1 into K equal intervals

and identify the interval in which the simulated values lies. When the simulated value

is greater than or equal to 0 and less than 1/K, we allocate this patient to treatment 1.
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If the value is greater than or equal to 1/K and less than 2/K, the patient is allocated

to treatment 2, and similarly for all other treatments, until an assignment is made. The

imbalances across all treatments will be calculated after each assignment. At the end of a

trial, the imbalance ∆ is obtained by computing the imbalances after the last assignment

for all treatments j = 1, ..., K.

Efron’s biased coin design

For Efron’s biased coin design, we fix the probability p > 1/K of allocating the

treatment that has been chosen least often. We considered the values for p which are

8/12, 9/12, 10/12 and 11/12. As p increases, the assignment becomes more determin-

istic. The trial starts off with complete randomization.

The process of treatment assignment of the first patient is the same as that described

for complete randomization. The first patient is assigned to treatment 1 if the simulated

value is greater than or equal to 0 and less than 1/K, to treatment 2 if the simulated value

is greater than or equal to 1/K and less than 2/K, and so on for all other treatments until

an assignment is made. From the second patient onwards, the current numbers of patients

on the treatments are noted. The treatments that have the least number of patients are

identified. Let the number of treatments that have the least number of patients at the

current stage be n∗ for n∗ = 1, ..., K. At any particular stage, if there is only one

treatment that has the least number of patients, we will allocate the next patient to this

treatment if the simulated value is less than p. Otherwise, for all other K− 1 treatments,

the assignment is to the first of these treatments if the simulated value is greater than or

equal to p and less than p+(1−p)/(K−1), to the second of these treatments if the value

is greater than or equal to p + (1− p)/(K − 1) and less than p + 2(1− p)/(K − 1), and

so on. When there are more than two treatments that have the least number of patients,
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the next patient will be allocated to the first of these treatments if the simulated value

is greater than or equal to zero and less than p/n∗, to the second of these if the value is

greater than or equal to p/n∗ and less than 2p/n∗, and so on. If the simulated value is

greater than p, the patient will be allocated to the group of treatments that do not have

the least number of patients at the current stage. The patient will be allocated to the first

of these if the simulated value is greater than or equal to p + (1− p)/(K − n∗) and less

than p + 2(1 − p)/(K − n∗), to the second of these if the value is greater than or equal

to p + 2(1 − p)/(K − n∗) and less than p + 3(1 − p)/(K − n∗), and similarly for the

rest of the intervals until an assignment is made. After all assignments are made at the

end of the trial, the vector ∆ is obtained.

DA-optimum biased coin design

For the DA-optimum biased coin design, the probability pj of assigning the next

patient to treatment j is calculated at each stage based on the current number of patients

on the jth treatment for j = 1, ..., K. For the initial K patients, we will allocate the

first patient to treatment 1, the second patient to treatment 2 and so on. We then have

one patient on each of the K treatments before the assignment rules are applied. For

the (K + 1)st patient onwards, a simulated value is generated for each patient. For the

(K + 1)st patient, we have pj = 1/K for all j = 1, ..., K. The (K + 1)st patient will be

allocated to treatment 1 if its simulated value is greater than or equal to 0 and less than

1/K, to treatment 2 if the simulated value is greater than or equal to 1/K and less than

2/K, and so on for all other treatments until a treatment assignment is made. For the

(K + 2)nd patient onwards, the probabilities pj obtained for each patient are sorted into

ascending order. Some of these probabilities may be the same. The next patient will be

allocated to the treatment with the smallest pj if the simulated value is greater than or
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equal to zero and less than pj . For the next largest pl, treatment l 6= j will be assigned to

the next patient if the simulated value is greater than or equal to pj and less than pj + pl,

and similarly for the other probabilities. At the end of the trial, we will obtain the vector

of imbalances under this scheme.

The adjustable biased coin design

Finally, we will describe the new class of designs proposed, the adjustable biased

coin design. The probability pj of assigning the next patient to treatment j for j =

1, ..., K is calculated at each stage based on the current imbalance across the treatments.

For each trial, the values for the imbalances on the treatments at each stage are needed

to obtain pj for j = 1, ..., K. The first patient under this scheme is equally likely to be

assigned to one of the K treatments with pj = 1/K for all j = 1, ..., K. For the second

patient, we need to obtain ∆j,1, the imbalances on treatment j for j = 1, .., K. Then

values for Fj(z) for all j can be obtained and hence the pj for the treatment assignment

of the second patient. Once the values for pj are known, they are put into ascending

order. The treatment assignment process is then the same as that described for the DA-

optimum biased coin design. The next patient will be allocated to the treatment with the

smallest pj if the simulated value for this patient is greater than or equal to 0 and less

than pj , and to the treatment with the next smallest pl if the simulated value is greater

than or equal to pj and less than pj +pl. The process continues for the other probabilities

until a treatment is assigned. This process of assignment applies to all other patients

until the assignment is made for the last patient. Although the vector of imbalances ∆ is

obtained here at each stage, we will only study the vector of imbalances obtained at the

end of the trial.

After 10, 000 trials under each randomization scheme are simulated, the values for
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the 10, 000 vectors of imbalances ∆ are recorded and the imbalances obtained for each

of the treatments are plotted. Here, we show the plots for the first treatment under each

randomization scheme when K = 3 and K = 4. The rest of the plots for the other

treatments will be given in Appendix B.

When K = 3, the plots under these four randomization schemes for treatment 1 are

given. Different values of p which are 8/12, 9/12, 10/12 and 11/12 are considered under

Efron’s biased coin design. Then, we show the plots of the imbalances for treatment 1

when K = 4.
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We also give the numerical values for the quartiles of the imbalances on treatment 1

under the four randomization schemes for the above two scenarios. Here, CR represents

complete randomization, DA represents the DA-optimum biased coin design, ABCD

represents the adjustable biased coin design and BCD for the Efron’s biased coin design.

Also min denotes the minimum value and max the maximum value. The numerical

values of the quartiles for treatments 2, 3 and 4 for both scenarios are given in Appendix

B.

Table 4.1: Numerical values of the quartiles of imbalance under all schemes for K = 3

for treatment 1

CR DA ABCD BCD

p = 8/12 p = 9/12 p = 10/12 p = 11/12

min -14 -6 -5 -8 -5 -4 -2

Q1 -2 -1 -1 -1 -1 0 0

Q2 0 0 0 -1 0 0 0

mean -0.0067 -0.0112 -0.0027 -0.7298 -0.2821 -0.1041 -0.03632

Q3 2 1 1 0 0 0 0

max 16 8 5 8 6 5 4
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Table 4.2: Numerical values of the quartiles of imbalance under all schemes for K = 4

for treatment 1

CR DA ABCD BCD

p = 8/12 p = 9/12 p = 10/12 p = 11/12

min -14 -7 -6 -8 -8 -6 -4

Q1 -2 -1 -1 -1 -1 0 0

Q2 0 0 0 -1 0 0 0

mean -0.0188 0.0034 0.0018 -0.6709 -0.3430 -0.1295 -0.0316

Q3 2 1 1 0 0 0 0

max 15 8 5 21 14 14 11

From the values of the quartiles and the shapes of the plots above, we can see that

these confirm the theoretical results that we stated in Section 4.4. The range of the im-

balances is largest for complete randomization and smallest for the DA-optimum biased

coin design and the adjustable biased coin design. This means that complete random-

ization is the most variable randomization scheme. For complete randomization, the

DA-optimum biased coin design and the adjustable biased coin design, the imbalances

are approximately normally distributed. The values for the imbalances under these three

randomization schemes for each of the treatments have peaks at 0. These results sug-

gest that each of the vectors of imbalances ∆ under these two schemes are multivariate

normal with mean vector (0, ..., 0)T , which confirms the theoretical results for complete

randomization and Wei’s class of designs.

For Efron’s biased coin design, the increase in p from 8/12 to 11/12 means that the

design becomes more deterministic. The plots for this design show that the imbalances

on each of the treatments in both scenarios have sharp peaks at 0 and do not follow a nor-
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mal distribution. These results suggest that ∆ for Efron’s biased coin design converges

to (0, ..., 0)T in probability and confirm the theoretical results.

The idea of this design is to give a greater probability of assignment to the treatment

that has been chosen less often. Therefore, we have to choose the appropriate p in order

to balance the numbers of patients across treatments. For example, p = 8/12 may not

be a good choice. For K = 3, when there are two treatments that have the least number

of patients, then we have a probability 1/2 × 8/12 = 1/3 of allocating the next patient

to either of these treatments and 1/3 to the treatment that has the largest number of

patients. The probabilities are the same and the design at this stage becomes complete

randomization. For K = 4, when three of the four treatments have the least number of

patients, the probability p = 8/12 will have to be divided by three to give 2/9 as the

probability of assigning each of these three treatments. The treatment with the largest

number of patients has a probability 1/3 of being allocated to the next patient. Since 1/3

is greater than 2/9, this invalidates the idea of Efron’s biased coin design in balancing

the numbers of patients across the treatments. As a result, there are a few extreme values

for the imbalances. These values are either too large or too small, particularly when p is

small. Although the plots have peaks at zero, the median and mean will be affected by

these few extreme values. We can see that the range of the values is becoming smaller

as p increases. Therefore, the value for p has to be chosen carefully according to the

number of treatments involved in the trial.

For the adjustable biased coin design, the numerical values of the quartiles for dif-

ferent treatments show that the range of the imbalances is the smallest compared to the

other designs for both scenarios. In other words, the variability under this design is

the smallest. The shapes of all of the plots suggest that the imbalances on each of the

treatments have a normal distribution with mean 0. This may indicate that, under the ad-
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justable biased coin design, the vector of imbalances has asymptotically a multivariate

normal distribution with mean vector (0, ..., 0)T .

4.6 Power under different randomization schemes

Let µj be the mean response on treatment j for j = 1, ..., K. We have the null

hypothesis H0 : µ1 = µ2 = ... = µK of no treatment differences and the alternative

hypothesis H1 : at least two of the mean responses are different. We test these hypothe-

ses by constructing the analysis of variance table. It is assumed that the responses on

treatment j are normally distributed with variance σ2, all independent.

With the assignment rules at each stage for different randomization schemes, we will

know the number of patients on each of the treatments at the end of the trial. Let n be

the total number of patients at the end of the trial with nj the number of patients on

treatment j for j = 1, ..., K. Also, let yij be the response of the ith patient on treatment

j, so that we have the treatment total Tj =
∑nj

i=1 yij for the jth treatment. After obtaining

K treatment totals, we calculate the grand total G =
∑K

j=1 Tj and the correction factor

G2/n. Next, the treatment sum of squares is

ST =
K∑

j=1

T 2
j

nj

− G2

n
.

Then we have the total sum of squares given by

SG =
K∑

j=1

nj∑
i=1

y2
ij −

G2

n
.

Finally, the residual sum of squares is

SR = SG − ST .

The analysis of variance table can now be constructed. The degrees of freedom for

the treatment, residual and total sums of squares are K−1, n−K and n−1, respectively.
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Each of their mean squares are then defined as their sums of squares divided by their

corresponding degrees of freedom. The mean treatment sum of squares is

MT =
ST

K − 1

and the mean residual sum of squares is

MR =
SR

n−K
.

An F test is carried out to test whether there is a difference between the µj . The F

statistic is

F =
MT

MR

.

Under H0 given the number of patient on treatment j for j = 1, ..., K, F has an F

distribution with K − 1 and n − K degrees of freedom. We reject H0 at the 100α%

level if F > FK−1,n−K,α, where FK−1,n−K,α is the upper 100α% value of the FK−1,n−K

distribution. The power given the nj , or, in other words, the conditional power of the

test, is the probability of rejecting H0 given that there is a genuine treatment difference,

that is, when H1 is true.

We will study the power of the test under the four randomization schemes by sim-

ulation. We will again consider the two scenarios K = 3 and K = 4. Consider a trial

where patients are allocated to treatments according to the assignment rules for the ran-

domization schemes. The numbers of patients on the treatments are then recorded at

the end of the trial. Next we generate the patients responses for the test. In the sim-

ulations, nj responses will be generated from a normal distribution with mean µj and

variance σ2 for j = 1, ...K. We took σ2 = 1. Various values for the mean responses

on different treatments will be considered. The trial is simulated 10, 000 times and the

number of rejections of H0 is counted. The proportion of rejections of H0 will be the
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estimated power for the test for different randomization schemes. This estimated power

is the unconditional power.

For simplicity, we assume that the value for µ1 is always 0. For µ2, we take nine

values from 0 to 2 with increments of 0.25. We take 0 together with eight values from

0.5 to 2.25 with increments of 0.25 for µ3. Finally, we have 0 and eight values from

0.75 to 2.5 with increments of 0.25 for µ4. The values for µ1, µ2 and µ3 are the same in

both scenarios. Let dj = µj − µ1 for j = 2, ..., K. Then the numerical values for the

power will be given under the four randomization schemes for different values of d2 and

d3 when K = 3 and d2, d3 and d4 when K = 4. Let α = 0.05 the significance level of

the test.

Table 4.3: Powers under four randomization schemes for K = 3

d2 = 0 d2 = 0.25 d2 = 0.5 d2 = 0.75 d2 = 1 d2 = 1.25 d2 = 1.5

d3 = 0 d3 = 0.5 d3 = 0.75 d3 = 1 d3 = 1.25 d3 = 1.5 d3 = 1.75

CR 0.050 0.258 0.540 0.815 0.957 0.994 1

BCD(p=8/12) 0.050 0.261 0.544 0.824 0.961 0.995 1

BCD(p=9/12) 0.051 0.262 0.548 0.825 0.962 0.996 1

BCD(p=10/12) 0.050 0.262 0.547 0.824 0.963 0.996 1

BCD(p=11/12) 0.050 0.263 0.547 0.827 0.962 0.996 1

DA 0.050 0.262 0.542 0.824 0.962 0.995 1

ABCD 0.050 0.260 0.545 0.825 0.963 0.996 1

151



Table 4.4: Powers under four randomization schemes for K = 4

d2 = 0 d2 = 0.25 d2 = 0.5 d2 = 0.75 d2 = 1 d2 = 1.25 d2 = 1.5

d3 = 0 d3 = 0.5 d3 = 0.75 d3 = 1 d3 = 1.25 d3 = 1.5 d3 = 1.75

d4 = 0 d4 = 0.75 d4 = 1 d4 = 1.25 d4 = 1.5 d4 = 1.75 d4 = 2

CR 0.050 0.384 0.621 0.833 0.950 0.989 0.998

BCD(p=8/12) 0.050 0.393 0.633 0.845 0.957 0.993 0.999

BCD(p=9/12) 0.050 0.393 0.630 0.846 0.958 0.993 0.999

BCD(p=10/12) 0.052 0.391 0.634 0.846 0.960 0.993 1

BCD(p=11/12) 0.051 0.392 0.632 0.849 0.960 0.994 0.999

DA 0.050 0.387 0.629 0.847 0.958 0.993 0.999

ABCD 0.051 0.391 0.629 0.845 0.960 0.993 0.999

The first column in the two tables represents the significance level of the simulated

test. The values are very close to α = 0.05, which is the assumed significance level of the

test. We can see that the values for the powers increase when the differences in the mean

treatment responses increase. The powers obtained under complete randomization are

the lowest among the randomization schemes in both scenarios. The power under Efron’s

biased coin design usually increases as p increases. In addition, for both scenarios, when

Efron’s biased coin design is very deterministic with p = 10/12 or p = 11/12, the

power obtained is higher than that under the adjustable biased coin design. For K = 3,

the DA-optimum biased coin design sometimes achieves a higher power than Efron’s

biased coin design with p = 8/12, and p = 9/12.

For each randomization scheme, the powers achieved when K = 3 are lower than

those obtained when K = 4. When more treatments are involved in the trial, the prob-

ability of detecting a treatment effect under different randomization schemes is higher.

When K = 4, the powers under the DA-optimum biased coin design is lower than that

under Efron’s biased coin design for most values of p. In general, we can say that the
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adjustable biased coin design is very efficient regardless of the number of treatments

involved and the values for the treatment differences.

4.7 Conclusions

In the literature, randomization schemes for more than two treatments have not

gained great attention over the years and there are only limited theoretical results avail-

able about these randomization schemes. In this chapter, a new class of designs called

the adjustable biased coin design is proposed and the results given show that this design

is generally more efficient at balancing the numbers of patients across the treatments

than complete randomization, Efron’s biased coin design when p = 8/12 and p = 9/12,

and the DA-optimum biased coin design.

The adjustable biased coin design is the only design which uses the imbalances in-

stead of the numbers of patients on the treatments at each stage. The advantage of this

design is that the imbalances are taken into account in the calculation of the assignment

probabilities. Furthermore, under this design, the probability of assigning treatment j to

the next patient not only depends on the current imbalance on treatment j, but also on

all current imbalances on the other treatments.

The results from simulations indicate that the vector of imbalances under the ad-

justable biased coin design has a multivariate normal distribution asymptotically with

mean vector (0, ..., 0)T . The form of the covariance matrix is not known. Further work

can be carried out on the theoretical properties of the imbalance and power under this

design. The rate of convergence of the imbalance and the structure of the covariance

matrix are of particular interest.
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Chapter 5

Imbalance properties of

centre-stratified permuted-block

randomization and complete

randomization for several treatments in

clinical trials

5.1 Introduction

Randomization schemes used in clinical trials are considered as essential and of great

importance to maintain a balance in the numbers of patients across treatment groups and

to gain some randomness in assigning a treatment to a patient to avoid any selection or

accidental bias. A trial having similar numbers of patients across treatment groups is bet-

ter for comparison purposes. Statistical inference based on an equal number of patients

in each treatment group is the most efficient method to detect a genuine treatment effect
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when the variances of the patients’ responses across treatments are the same. However,

imbalance in assignments will still occur, even in well-defined randomization schemes.

The problem of imbalance in the numbers of patients across treatment groups is more

serious in clinical trials where fewer patients are recruited and involved in the study. An

imbalance in the numbers of patients in the treatment groups will decrease the power,

the probability of correctly detecting a genuine treatment effect (McPherson, Campbell

and Elbourne, 2012).

Under complete randomization for two-treatment assignments, each patient is equally

likely to be assigned to either of the treatments. The number of patients in any of the two

treatment groups will follow a binomial distribution with parameters the sample size and

the probability of 1/2 to assign either treatment to a patient. Complete randomization

is very likely to produce very serious imbalance and have most of the patients assigned

to one treatment group. It is known that imbalance caused by complete randomization

is unlikely to occur in a large trial when the number of patients involved is greater than

200.

Another randomization scheme that is used in clinical trials by pharmaceutical com-

panies is randomly permuted-block randomization. There are two basic schemes: un-

stratified and centre-stratified permuted-block randomization. Given an assigned propor-

tion of patients for each treatment within a block, a sequence of treatment assignments

is generated by randomly listing all of the possibilities for different permuted blocks.

Patients are then assigned to the treatment according to this sequence in order upon their

arrival. Here, unequal allocations are allowed within a block. However, in order to

achieve a balance in the numbers of patients across treatment groups, the treatment al-

location ratio within a block is usually assumed to be the same. Under this assumption,

imbalance will not occur in any of the complete blocks, but it may occur in the incom-

155



plete block. In other words, under the permuted-block design, it is sufficient to study the

imbalance in the numbers of patients across treatments by investigating the properties of

the incomplete block.

The treatment imbalance properties for different randomization schemes have been

investigated by Hallstrom and Davis (1988) for stratified block randomization, Lachin

(1988a, 1988b) for complete randomization and urn randomization, and Anisimov (2007,

2010, 2011) for centre-stratified permuted-block randomization. All of the above au-

thors have considered the imbalance in the number of patients for two treatments. This

chapter extends work on the analysis of the imbalance properties to more than two treat-

ment groups. In the previous papers, the expectation and the variance of the imbalance

are obtained. The distribution of the overall imbalance is approximately normal with

the same expectation and variance. In this chapter, the main focus is to investigate the

imbalance properties for two randomization schemes, centre-stratified permuted-block

randomization and complete randomization when more than two treatments are studied

in a clinical trial. The overall imbalance is represented as a vector of imbalances on

different treatments rather than a scalar in the two-treatment case, and asymptotically it

has a multivariate normal distribution with a vector of means and a covariance matrix.

In Section 5.2, we consider centre-stratified permuted-block randomization and com-

plete randomization for cases when there are more than two treatments. In Section 5.3,

the imbalance for both randomization schemes will be defined for a particular treatment

in a particular centre and for all centres. The means, variances and covariances of the im-

balances within a centre or for all centres will be evaluated when the numbers of patients

to recruit in different centres are known.

In Section 5.4, we will consider the case where the numbers of patients recruited

in different centres are random variables. This is based on the Poisson-gamma patient
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recruitment model developed by Anisimov and Fedorov (2007), where the recruitment

process follows a Poisson process with recruitment rates from a gamma distribution.

Therefore, the numbers of patients recruited in different centres have beta-binomial dis-

tributions. The expectations, variances and covariances of the imbalances within a centre

or for all centres will be evaluated. In Section 5.5, the variances of the imbalance for the

two randomization schemes are compared. In Section 5.6, numerical values are simu-

lated for the imbalances on treatments for two particular scenarios. The values for the

expectations and the covariance matrices are given together with histograms of the im-

balances, which confirm the theoretical results produced in Section 5.4. In Section 5.7,

a test will be described for all pairs of treatment differences with the control group and

hence how the power can be obtained from this test. Numerical results for the power

and the sample size are also given by simulation for different scenarios. By fixing a

particular level of power to be achieved for the balanced case, the sample size can be

found. The same sample size will be used to study the power in the imbalanced case.

In addition, the number of patients that need to be added in each scenario to achieve the

same level of power in the balanced case is given. Finally, conclusions will be drawn in

Section 5.8.

5.2 Randomization schemes for more than two treatments

Consider a multi-centre trial study, where in total n patients have to be recruited by

N clinical centres. Patients have to be assigned to one of the K ≥ 3 treatments. Let ni

be the number of patients who have to be recruited in centre i. Then
∑N

i=1 ni = n.

There are two types of permuted-block randomization schemes that are commonly

used in clinical trials: unstratified permuted-block randomization and centre-stratified

permuted-block randomization. Unstratified randomization means that patients are ran-

157



domized to treatment according to independent randomly permuted blocks of fixed size

without regard to centres. Centre-stratified permuted-block randomization means that

each of the centres has a separate permuted-block randomization scheme. Patients for

the study are randomized to treatments according to the independent randomly permuted

blocks of fixed size within each centre.

For example, suppose that there are three treatments a, b and c, the size of the block

is 3 and the ratio within blocks is 1 : 1 : 1. Then there will be six possibilities for

the different permuted blocks: {(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a)}. A

randomly chosen sequence of blocks forms a sequence of treatments. The patients are

assigned to treatments according to this sequence in the order of their registration.

It is obvious that unstratified permuted-block randomization will minimise the imbal-

ance in the number of patients on different treatments for the whole study and increase

the imbalance in each centre compared to centre-stratified permuted-block randomiza-

tion.

Assume that there are in total K ≥ 3 treatments with the allocation in the block

(k1, k2, ..., kK), where kj is the number of patients within a block that are allocated to

treatment j for j = 1, ..., K. Let K1 =
∑K

j=1 kj be the block size.

Now consider centre-stratified permuted-block randomization. The total number of

patients recruited ni in centre i may not be a multiple of the block size K1. This may

lead to incomplete blocks in some of the centres. These incomplete blocks will, however,

have the chance to contain an unequal number of patients on each treatment and cause

imbalance. In a multi-centre clinical trial, if there exist many incomplete blocks, this will

cause serious imbalance in the total numbers of patients on the treatments. Therefore, we

can study the imbalance properties of a randomization scheme by studying the properties

of these incomplete blocks. The last block can be incomplete. If the size of the last block
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is K1, ni is a multiple of K1 and contains no incomplete block for this study. For some

centre i, let the size of the incomplete block be r such that r = 1, ..., K1 − 1.

Let ξj(r) be the number of patients on treatment j in an incomplete block of size r.

We can see that ξj(r) has a hypergeometric distribution, that is,

P[ξj(r) = l] =

(
kj

l

)(
K1−kj

r−l

)(
K1

r

)
for l = 0, 1, ..., min(kj, r) with

E[ξj(r)] =
kjr

K1

and

Var[ξj(r)] =
kjr(K1 − kj)(K1 − r)

K2
1(K1 − 1)

.

If r = 0, we set ξj(r) = 0.

Let the total number of patients in centre i on treatment j be nij . Denote by bzc the

integer part of z and mod(z, K1) = z − bz/K1cK1. Then we have

nij =

⌊
ni

K1

⌋
kj + ξj [mod(ni, K1)] .

The centre-stratified permuted-block design will be studied and referred to as permuted-

block randomization in this chapter.

Consider now complete randomization. For ease of comparison, centre-stratified

complete randomization is studied and referred to as complete randomization. Each

patient is assigned to a treatment j with probability pj . The total number of patients in

centre i on treatment j, nij , has a binomial distribution with parameters ni and pj . In

general, pj is the proportion of patients that are allocated to treatment j in a complete

block such that pj = kj/K1. For equal treatment proportions within each complete

block, we have k1 = k2 = ... = kj with block size K1 = Kk1. In this case, we have

pj = 1/K.
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For investigation of the properties of imbalance, we will consider two cases: when

the number of patients recruited in a centre is given or is random. Let {ni} be the

numbers of patients to be recruited in centre i. Define for centre i the imbalance on

treatment j under the permuted block design as

∆ij = nij −
ni

K1

kj (5.1)

for j = 1, ..., K and i = 1, ..., N. Similarly, the imbalance on treatment j under complete

randomization is defined as

∆∗
ij = nij −

ni

K1

kj. (5.2)

5.3 The numbers of patients recruited in a centre are

given

5.3.1 Permuted-block design

First, assume that the {ni} are given. By (5.1), the expectation of ∆ij given ni under

the permuted-block design is

E(∆ij) =
ni

K1

− ni

K1

= 0.

The variance of ∆ij is

Var(∆ij) = E(∆2
ij),

where

E(∆2
ij) = E

({⌊
ni

K1

⌋
kj + ξj[mod(ni, K1)]−

ni

K1

kj

}2
)

.

Let r = mod(ni, K1) be the size of the incomplete block in this particular centre i. Then
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we have

Var(∆ij) = E

{⌊
ni

K1

⌋
kjξj(r) + [ξj(r)]

2 − ni

K1

kjξj(r)

}
= E

(
− r2

K2
1

k2
j

)
+ E

{
[ξj(r)]

2
}

= − r2

K2
1

k2
j +

rkj(K1 − kj)(K1 − r)

K2
1(K1 − 1)

+
k2

j r
2

K2
1

=
rkj(K1 − kj)(K1 − r)

K2
1(K1 − 1)

.

We now consider the covariance of the imbalances on two different treatments j and

m in a trial. Let i and l be two different centres. Then, due to the independence of the

numbers of patients on a particular treatment j in different centres, the imbalances on a

particular treatment j in different centres are also independent, so that Cov(∆ij, ∆lm) =

0. Therefore, we have to calculate the covariance for two different treatments in the same

centre i, that is,

Cov(∆ij, ∆im) = E(∆ij∆im)− E(∆ij)E(∆im) = E(∆ij∆im).

It follows that

Cov(∆ij, ∆im) = E

({⌊
ni

K1

⌋
kj + ξj[mod(ni, K1)]−

ni

K1

kj

}
×
{⌊

ni

K1

⌋
km + ξm[mod(ni, K1)]−

ni

K1

km

})
= E

{⌊
ni

K1

⌋
kjξm[mod(ni, K1)]

+ξj[mod(ni, K1)]ξm[mod(ni, K1)]

− ni

K1

kjξm[mod(ni, K1)]

}
.

Putting r = mod(ni, K1), we have

Cov(∆ij, ∆im) = −r2kjkm

K2
1

+ Cov[ξj(r), ξm(r)] + E[ξj(r)E(ξm(r)],

where Cov[ξj(r), ξm(r)] is the covariance for a multivariate hypergeometric distribution.
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Lemma 5.3.1 The covariance of ξj(r) and ξm(r) is

Cov[ξj(r), ξm(r)] = −kjkmr(K1 − r)

K2
1(K1 − 1)

,

and the covariance of ∆ij and ∆im is equal to the covariance of ξj(r) and ξm(r).

Proof. See Appendix C.

Now consider the imbalance on any particular treatment for all centres. The overall

imbalance on a particular treatment j for all centres is defined as

∆j =
N∑

i=1

nij −
n

K1

kj =
N∑

i=1

(
nij −

ni

K1

kj

)
=

N∑
i=1

∆ij. (5.3)

The expectation of ∆j is

E(∆j) =
N∑

i=1

E

(
nij −

ni

K1

kj

)
=

N∑
i=1

[
E(nij)−

ni

K1

kj

]
= 0.

The variance of ∆j is

Var(∆j) = Var

(
N∑

i=1

∆ij

)
= E

(
N∑

i=1

∆2
ij

)
,

so that

Var(∆j) =
N∑

i=1

E

{⌊
ni

K1

⌋
kjξj[mod(ni, K1)] + [ξj(mod(ni, K1))]

2

− ni

K1

kjξj[mod(ni, K1)]

}
.

Let ri = mod(ni, K1) be the size of the incomplete block in centre i. Then we have

Var(∆j) =
N∑

i=1

⌊
ni

K1

⌋
kjE[ξj(ri)] + {E[ξj(ri)]}2 − ni

K1

kjE[ξj(ri)]

= E

{
N∑

i=1

rikj(K1 − kj)(K1 − ri)

K2
1(K1 − 1)

}

=
kj(K1 − kj)

K1(K1 − 1)

N∑
i=1

ri −
kj(K1 − kj)

K2
1(K1 − 1)

N∑
i=1

r2
i . (5.4)
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Similarly, the covariance of ∆j and ∆m can be written as

Cov(∆j, ∆m) =
N∑

i=1

⌊
ni

K1

⌋
kjE[ξm(ri)] + E[ξj(ri)ξm(ri)]−

ni

K1

kjE[ξm(ri)]

= − kjkm

K2
1(K1 − 1)

N∑
i=1

ri(K1 − ri)

= − kjkm

K1(K1 − 1)

N∑
i=1

ri +
kjkm

K2
1(K1 − 1)

N∑
i=1

r2
i . (5.5)

5.3.2 Complete randomization

General Case

Now consider another randomization scheme, complete randomization, where the

{ni} for different centres are given. Let nij be the number of patients in centre i assigned

to treatment j. Then nij has a binomial distribution with parameters ni and kj/K1.

The expectation of the imbalance defined in (5.2) is

E(∆∗
ij) = E

(
nij −

ni

K1

kj

)
=

ni

K1

kj −
ni

K1

kj = 0.

The variance is then

Var(∆∗
ij) = E(∆∗2

ij ) = E

[(
nij −

ni

K1

kj

)2
]

,

and so

Var(∆∗
ij) = E(n2

ij)−
2ni

K1

kjE(nij) +
n2

i

K2
1

k2
j

= Var(nij) + [E(nij)]
2 − n2

i

K2
1

k2
j

=
nikj(K1 − kj)

K2
1

. (5.6)

The variables ∆∗
ij for a particular treatment j in different centres are independent. If

we have two different treatments j and m and two different centres i and l, then ∆∗
ij and

∆∗
lm are independent. Therefore, Cov(∆∗

ij, ∆
∗
lm) = 0. The covariance is then calculated
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for the same centre i as

Cov(∆∗
ij, ∆

∗
im) = E(∆∗

ij∆
∗
im)− E(∆∗

ij)E(∆∗
im) = E(∆∗

ij∆
∗
im).

Thus,

Cov(∆∗
ij, ∆

∗
im) = E

[(
nij −

ni

K1

kj

)(
nim −

ni

K1

km

)]
= Cov(nij, nim) + E(nij)E(nim)− n2

i

K2
1

kjkm.

At centre i, each of the {nij} for j = 1, . . . , K has a binomial distribution. The co-

variance of nij and nim is deduced from the multinomial distribution of nij and nim as

Cov(nij, nim) = −nikjkm/K2
1 . Finally, the covariance of ∆∗

ij and ∆∗
im under complete

randomization is

Cov(∆∗
ij, ∆

∗
im) = − ni

K2
1

kjkm +
n2

i

K2
1

kjkm −
n2

i

K2
1

kjkm

= −nikjkm

K2
1

.

We then define the imbalance on a particular treatment j over all centres under com-

plete randomization by

∆∗
j =

N∑
i=1

nij −
n

K1

kj =
N∑

i=1

(
nij −

ni

K1

kj

)
=

N∑
i=1

∆∗
ij. (5.7)

The expectation of ∆∗
j is

E(∆∗
j) = E

(
N∑

i=1

∆∗
ij

)

= E

(
N∑

i=1

nij

)
−

N∑
i=1

ni

K1

kj

=
N∑

i=1

ni

K1

kj −
n

K1

kj = 0.

The variance of ∆∗
j is then

Var(∆∗
j) = E

(
N∑

i=1

∆∗2
ij

)
.
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The variables ∆∗
ij for a particular treatment j in different centres are independent. It

follows that

Var(∆∗
j) =

N∑
i=1

Var(∆∗
ij)

=
N∑

i=1

nikj(K1 − kj)

K2
1

=
nkj(K1 − kj)

K2
1

. (5.8)

Similarly, the covariance of ∆∗
j and ∆∗

m is

Cov(∆∗
j , ∆

∗
m) = E

(
N∑

i=1

∆∗
ij∆

∗
im

)

= E

[
N∑

i=1

(
nij −

ni

K1

kj

)(
nim −

ni

K1

km

)]

=
N∑

i=1

[
Cov(nij, nim) + E(nij)E(nim)− n2

i

K2
1

kjkm

]

= −
N∑

i=1

ni

K2
1

kjkm

= − n

K2
1

kjkm. (5.9)

Equal Treatment Allocation

Assume that the {ni} are given. Then nij has a binomial distribution with parameters

ni and 1/K for equal treatment proportions within each block.

Let ∆∗
ij be the imbalance on treatment j in centre i. Then we have

∆∗
ij = nij −

ni

K
. (5.10)

The expectation of this imbalance is

E(∆∗
ij) = E

(
nij −

ni

K

)
= 0.

Its variance is

Var(∆∗
ij) = E(n2

ij)−
ni

K
E(nij) =

ni(K − 1)

K2
.
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Since the covariance of nij and nim from the multinomial distribution is Cov(nij, nim) =

−ni/K
2, the covariance of ∆∗

ij and ∆∗
im is

Cov(∆∗
ij, ∆

∗
im) = − ni

K2
− n2

i

K2
+

n2
i

K2

= − ni

K2
.

The imbalance on a particular treatment j over all centres is defined as

∆∗
j =

N∑
i=1

nij −
n

K
=

N∑
i=1

∆∗
ij, (5.11)

with expectation

E(∆∗
j) = E

(
N∑

i=1

nij

)
−

N∑
i=1

ni

K
= 0.

The variance of ∆∗
j is

Var(∆∗
j) =

N∑
i=1

E(∆∗2
ij ) =

n(K − 1)

K2
. (5.12)

Similarly, the covariance of ∆∗
j and ∆∗

m is

Cov(∆∗
j , ∆

∗
m) = E

[
N∑

i=1

(
nij −

ni

K

)(
nim −

ni

K

)]
= − n

K2
. (5.13)

5.3.3 Overall imbalance

When the number of centres N involved in a clinical trial is large, the imbalance

defined in (5.3) and (5.7) is approximated by a normal distribution with mean 0, and

variance (5.4) and (5.8), respectively, for the permuted-block design and complete ran-

domization. Let the overall imbalance for the permuted-block design and complete ran-

domization be ∆ and ∆∗, respectively. Then each of these is a vector of imbalances

on different treatments for all centres. In other words, ∆ = (∆1, ∆2, ..., ∆K)T and

∆∗ = (∆∗
1, ∆

∗
2, ..., ∆

∗
K)T .
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As each of the ∆j and ∆∗
j are asymptotically normally distributed, both ∆ and ∆∗

are asymptotically multivariate normal. Under the permuted-block design, the asymp-

totic multivariate normal distribution of ∆ has zero mean vector and covariance matrix

Σ =



σ2
1 σ12 . . . σ1K

σ21 σ2
2 . . . σ2K

...
... . . . ...

σK1 σK2 . . . σ2
K


,

where σ2
j = Var(∆j) in (5.4) and σjm = Cov(∆j, ∆m) in (5.5). Similarly, for complete

randomization, the overall imbalance ∆∗ has zero mean vector and covariance matrix

Σ∗ =



σ∗21 σ∗12 . . . σ∗1K

σ∗21 σ∗22 . . . σ∗2K

...
... . . . ...

σ∗K1 σ∗K2 . . . σ∗2K


,

where σ∗2j = Var(∆∗
j) in (5.8) or (5.12) and σ∗jm = Cov(∆∗

j , ∆
∗
m) in (5.9) or (5.13).

5.4 The numbers of patients recruited in a centre are

random variables

5.4.1 Patient recruitment model

We assume that the {ni} are random and use the Poisson-gamma model of Anisimov

and Fedorov (2007) for the patient recruitment process. Assume that the number of

patients recruited in centre i follows a Poisson process with rate λi. The rates {λi} are

gamma distributed with known parameters (α, β), where these are the shape and the rate

parameters, respectively. For given rates, the number of patients recruited in centre i,

ni, has a binomial distribution with parameters n and pi, where n is the total number of
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patients recruited in all centres and pi is the probability of recruiting a patient in centre i

given by

pi =
λi∑N

k=1 λk

.

Since the {λi} are gamma distributed, pi has a beta distribution with parameters (α, α(N−

1)). Therefore, ni has a beta-binomial distribution with

P (ni = l) = P (n,N, α, l) =

(
n

l

)
B(α + l, α(N − 1) + n− l)

B(α, α(N − 1))
, (5.14)

where B(a, b) =
∫ 1

0
xa−1(1− x)b−1dx denotes the beta function, and expectation

E(ni) =
n

N
(5.15)

and variance

Var(ni) =
n(N − 1)(αN + n)

N2(αN + 1)
.

5.4.2 Permuted block design

Under the permuted block design with the {ni} random, consider the properties of

the imbalance defined in (5.1). The expectation is

E(∆ij) = E[E(∆ij|ni)] = 0.

The variance of ∆ij is then

Var(∆ij) = E[E(∆2
ij|ni)]

= E

(
E

{⌊
ni

K1

⌋
kjξj[mod(ni, K1)] + {ξj[mod(ni, K1)]}2

− ni

K1

kjξj[mod(ni, K1)]

∣∣∣∣ni

})
= E

(⌊
ni

K1

⌋
kjE{ξj[mod(ni, K1)]|ni}+ E({ξj[mod(ni, K1)]}2|ni)

− ni

K1

kjE{ξm[mod(ni, K1)]|ni}
)

.
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Let Ri = mod(ni, K1) be a random variable which represents the size of the incomplete

block in a particular centre i. The variance can be written as

Var(∆ij) = E

(⌊
ni

K1

⌋
kj

Ri

K1

kj + Var[ξj(Ri)|ni] + {E[(ξj(Ri)|ni]}2 − ni

K1

k2
j Ri

K1

)
= E

[
Ri

K1

k2
j

(
−Ri

K1

)
+

Rikj(K1 − kj)(K1 −Ri)

K2
1(K1 − 1)

+
k2

j R
2
i

K2
1

]
= E

[
Rikj(K1 − kj)(K1 −Ri)

K2
1(K1 − 1)

]
=

kj(K1 − kj)

K1(K1 − 1)
E(Ri)−

kj(K1 − kj)

K2
1(K1 − 1)

E(R2
i ). (5.16)

The covariance for two different treatments j and m is calculated in a similar way

using

Cov(∆ij, ∆im) = E(∆ij∆im)− E(∆ij)E(∆im) = E(∆ij∆im),

so that

Cov(∆ij, ∆im) = E[E(∆ij∆im|ni)]

= E

(⌊
ni

K1

⌋
kjE{ξm[mod(ni, K1)|ni]}

)
+E (E{ξm[mod(ni, K1)]ξj[mod(ni, K1)]|ni})

−E

(
ni

k1

kjE {ξm[mod(ni, K1)]|ni}
)

.

Let Ri = mod(ni, K1). Then

Cov(∆ij, ∆im) = E

(⌊
ni

K1

⌋
kj

kmRi

K1

+ Cov(ξj(Ri), ξm(Ri)|ni)

+ E[ξj(Ri)|ni]E[ξm(Ri)|ni]−
ni

K1

kj
Rikm

K1

)
= E

[
−kjkmRi(K1 −Ri)

K2
1(K1 − 1)

]
= − kjkm

K1(K1 − 1)
E(Ri) +

kjkm

K2
1(K1 − 1)

E(R2
i ). (5.17)

In Anisimov (2007, 2011), the probability P (mod(ni, K1) = r) = P (Ri = r) is

given as

qr(n, N, α, K1) =

n/K1−1∑
s=0

P (n, N, α, r + sK1) (5.18)
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for r = 0, 1, ..., K1 − 1, where P (n,N, α, r + sK1) is defined in (5.14). So

E(Ri) =

K1−1∑
r=0

rP (Ri = r)

=

K1−1∑
r=0

n/K1−1∑
s=0

r

(
n

r + sK1

)
B(α + r + sK1, α(N − 1) + n− r − sK1)

B(α, α(N − 1))
.

Similarly,

E(R2
i ) =

K1−1∑
r=0

n/K1−1∑
s=0

r2

(
n

r + sK1

)
B(α + r + sK1, α(N − 1) + n− r − sK1)

B(α, α(N − 1))
.

Note that, if n/N > 2K1, we can assume that the random variable Ri has an approxi-

mate discrete uniform distribution on the interval between 0 and K1−1. The probability

of obtaining each of the values between 0 and K1−1 is 1/K1. Therefore, the expectation

of Ri is

E(Ri) =
K1 − 1

2

and its variance is

Var(Ri) =
K2

1 − 1

12
.

Then we can obtain

E(R2
i ) = Var(Ri) + [E(Ri)]

2 =
(K1 − 1)(2K1 − 1)

6
.

Therefore, (5.16) and (5.17) become

Var(∆ij) =
kj(K1 − kj)

2K1

− kj(K1 − kj)(2K1 − 1)

6K2
1

=
kj(K1 − kj)(K1 + 1)

6K2
1

(5.19)

and

Cov(∆ij, ∆im) = −kjkm

2K1

+
kjkm(2K1 − 1)

6K2
1

= −kjkm(K1 + 1)

6K2
1

.
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The imbalance ∆j on treatment j for all centres is defined in (5.3) and has expecta-

tion

E(∆j) = E

[
E

(
N∑

i=1

∆ij

∣∣∣∣ni

)]

= E

{
N∑

i=1

E

(
nij −

ni

K1

kj

∣∣∣∣ni

)}

= E

[
N∑

i=1

E (nij|ni)

]
− E

(
N∑

i=1

ni

K1

kj

)

=
nkj

K1

− nkj

K1

= 0.

Given the {ni}, the variables {∆ij} for a particular treatment j in different centres are

independent, and so

Var(∆j) = E[E(∆2
j |ni)]

= E

[
N∑

i=1

Var(∆ij|ni)

]

=
N∑

i=1

Var(∆ij).

From (5.16), we obtain

Var(∆j) =
N∑

i=1

[
kj(K1 − kj)

K1(K1 − 1)
E(Ri)−

kj(K1 − kj)

K2
1(K1 − 1)

E(R2
i )

]
. (5.20)

For n/N > 2K1, the random variable Ri has an approximate discrete uniform distri-

bution. Using the results for E(Ri) and E(R2
i ), and (5.19), the variance of ∆j is

Var(∆j) =
Nkj(K1 − kj)(K1 + 1)

6K2
1

. (5.21)

Similarly, the covariance of ∆j and ∆m is

Cov(∆j, ∆m) =
N∑

i=1

E [Cov(∆ij, ∆im|ni)] =
N∑

i=1

Cov(∆ij, ∆im).

Using (5.17), we obtain

Cov(∆j, ∆m) =
N∑

i=1

{
− kjkm

K1(K1 − 1)
E(Ri) +

kjkm

K2
1(K1 − 1)

E(R2
i )

}
. (5.22)
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Finally, when Ri has an approximate discrete uniform distribution, the covariance of ∆j

and ∆m is

Cov(∆j, ∆m) = −Nkjkm(K1 + 1)

6K2
1

. (5.23)

5.4.3 Complete randomization

General Case

Now we study the imbalance of complete randomization when the {ni} are random.

Under complete randomization, the imbalance on treatment j in centre i is defined

in (5.2). So its expectation is

E(∆∗
ij) = E[E(∆∗

ij|ni)]

= E[E(nij|ni)]− E

(
ni

K1

kj

)
= E

(
ni

K1

kj

)
− E

(
ni

K1

kj

)
= 0.

The variance of ∆∗
ij is

Var(∆∗
ij) = E[E(∆∗2

ij )|ni]

= E

{
E

[(
nij −

ni

K1

kj

)(
nij −

ni

K1

kj

) ∣∣∣∣ni

]}
= E

[
E(n2

ij|ni)−
ni

K1

kjE(nij|ni)

]
= E

{
Var(nij|ni) + [E(nij|ni)]

2 − n2
i

K2
1

k2
j

}
= E

[
nikj(K1 − kj)

K2
1

+
n2

i

K2
1

k2
j −

n2
i

K2
1

k2
j

]
=

kj(K1 − kj)

K2
1

E(ni)

=
nkj(K1 − kj)

NK2
1

, (5.24)

using (5.15).

Since ∆∗
ij and ∆∗

lm are independent variables for two different centres i and l, their
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covariance is zero. The covariance of ∆∗
ij and ∆∗

im for a particular centre i is

Cov(∆∗
ij, ∆

∗
im) = E[E(∆∗

ij∆
∗
im|ni)]

= E

{
E

[(
nij −

ni

K1

kj

)(
nim −

ni

K1

km

) ∣∣∣∣ni

]}
= E

[
E(nijnim|ni)− E

(
ni

K1

kjnim

∣∣∣∣ni

)]
= E

[
Cov(nij, nim|ni) + E(nij|ni)E(nim|ni)−

ni

K1

kjE(nim|ni)

]
.

For centre i, the conditional covariance of nij and nim can be obtained from the multi-

nomial distribution and is given by −nikjkm/K2
1 . So the covariance of ∆∗

ij and ∆∗
im

is

Cov(∆∗
ij, ∆

∗
im) = E

(
− ni

K2
1

kjkm +
n2

i

K2
1

kjkm −
n2

i

K2
1

kjkm

)
= −kjkm

K2
1

E(ni)

= −nkjkm

NK2
1

.

The imbalance over all centres on treatment j defined in (5.7) has expectation

E(∆∗
j) = E

{
E

[
N∑

i=1

(
nij −

ni

K1

kj

) ∣∣∣∣ni

]}

= E

{
N∑

i=1

[
E(nij|ni)−

ni

K1

kj

]}

=
N∑

i=1

[
E

(
ni

K1

kj

)
− E

(
ni

K1

kj

)]
= 0.

Given the {ni}, the variables {∆∗
ij} for a particular treatment j are independent for

different centres, so that

Var(∆∗
j) =

N∑
i=1

Var(∆∗
ij)

=
N∑

i=1

nkj(K1 − kj)

NK2
1

=
nkj(K1 − kj)

K2
1

. (5.25)
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The covariance of ∆∗
j and ∆∗

m is

Cov(∆∗
j , ∆

∗
m) = E(∆∗

j∆
∗
m)

=
N∑

i=1

E(∆∗
ij∆

∗
im)

= −
N∑

i=1

nkjkm

NK2
1

= −nkjkm

K2
1

. (5.26)

Here, it is clearly seen that, under complete randomization, the variance and covariance

of the imbalance on treatments for all centres are the same as those when ni is given.

Equal Treatment Allocation

From (5.10), the imbalance on treatment j in centre i has expectation

E(∆∗
ij) = E[E(∆∗

ij|ni)] = 0.

The variance of ∆∗
ij is

Var(∆∗
ij) = E[E(∆∗2

ij )|ni]

= E

{
Var(nij|ni) + [E(nij|ni)]

2 − n2
i

K2

}
=

n(K − 1)

NK2
.

We only consider the covariance of the imbalance on two different treatments in the same

centre. Given the {ni}, ∆∗
ij and ∆∗

lm, the imbalances on two treatments j and m in two

different centres i and l are independent with covariance equal to zero. The covariance

of ∆∗
ij and ∆∗

im is

Cov(∆∗
ij, ∆

∗
im) = E[E(∆∗

ij∆
∗
im|ni)]

= E
[
Cov(nij, nim|ni) + E(nij|ni)E(nim|ni)−

ni

K
E(nim|ni)

]
.
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Since the conditional covariance of nij and nim is −ni/K
2, we have

Cov(∆∗
ij, ∆

∗
im) = E

(
− ni

K2
+

n2
i

K2
− n2

i

K2

)
= − n

NK2
. (5.27)

The imbalance over all centres on treatment j from (5.11) has expectation

E(∆∗
j) = E

{
N∑

i=1

[
E(nij|ni)−

ni

K

]}
= 0.

The variance of ∆∗
j is

Var(∆∗
j) =

N∑
i=1

n(K − 1)

NK2
=

n(K − 1)

K2
. (5.28)

Using (5.27), the covariance of ∆∗
j and ∆∗

m is

Cov(∆∗
j , ∆

∗
m) =

N∑
i=1

Cov(∆∗
ij, ∆

∗
im)

= −
N∑

i=1

n

NK2

= − n

K2
. (5.29)

5.4.4 Overall imbalance

When N the number of centres involved in a trial is large, the imbalances ∆j and ∆∗
j

will be asymptotically normally distributed with mean 0 and variance given by (5.20)

and (5.25), respectively. Therefore, the overall imbalances ∆ and ∆∗ are asymptotically

multivariate normal.

Under the permuted block design, the imbalance ∆ has zero mean vector and covari-

ance matrix Σ with entries σ2
j in (5.21) and σjm in (5.23). We use the approximation for

the variables {Ri} that they have an approximate discrete uniform distribution. For large

N , the variance of ∆j is just N times the variance of ∆ij and similarly for the covariance.

The covariance matrix of the overall imbalance is N times the covariance matrix for a
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particular centre. Similarly, for complete randomization, the overall imbalance ∆∗ has

an approximate multivariate normal distribution with zero mean vector. The covariance

matrix Σ∗ has entries σ∗2j in (5.25) or (5.28) and σ∗jm in (5.26) or (5.29), or it can be

obtained by multiplying the covariance matrix for a particular centre by N .

Remark 1 For K = 2 when there are only two treatments, a and b, the overall

imbalance was defined by Anisimov (2007) as the difference between the numbers of

patients on treatments a and b. We denote this overall imbalance by ∆̃ = n.a − n.b,

where n.a =
∑N

i=1 nia and n.b =
∑N

i=1 nib. In our case when K = 2, treatment 1 refers

to treatment a and treatment 2 refers to treatment b. The overall imbalance ∆̃ defined by

Anisimov (2007) can be written in terms of our notation as

∆̃ = n.a − n.b

= ∆a −∆b +

(
n

K1

ka −
n

K1

kb

)
.

When there is an equal proportion of patients for the two treatments within a complete

block, we have ∆̃ = ∆a − ∆b. Now, the overall imbalance in our notation is ∆ =

(∆a, ∆b)
T with expectation E(∆) = (0, 0)T and covariance matrix Σ with entries σ2

j in

(5.21) and σjm in (5.23).

Let u = (1,−1)T . Then we can write the overall imbalance ∆̃ in terms of ∆ as

∆̃ = uT∆. The expectation of ∆̃ is zero and its variance can be written as

Var(∆̃) = uT Σu

= (1,−1)

Nka(K1−ka)(K1+1)

6K2
1

−Nkakb(K1+1)

6K2
1

−Nkakb(K1+1)

6K2
1

Nkb(K1−kb)(K1+1)

6K2
1


 1

−1


=

2Nkakb(K1 + 1)

3K2
1

.

Remark 2 For equal proportions ka = kb = K1/2 within a complete block, we have

Var(∆̃) = N(K1 + 1)/6.
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For large N , ∆a and ∆b are approximately normal. Therefore, the imbalance ∆̃ as

a linear combination of ∆a and ∆b is also approximately normal. The result calculated

here in terms of our notation for the expectation and variance of ∆̃ matches with the

expectation and variance of the overall imbalance calculated by Anisimov (2007, 2010).

5.5 Comparison of imbalance of complete randomiza-

tion and the permuted block design

5.5.1 The numbers of patients recruited in different centres are given

One of the main aims of a randomization scheme is to balance the numbers of patients

across treatment groups. This ensures that an adequate level of power can be achieved.

The higher the power, the more likely a test will detect a genuine treatment difference.

The variance of the imbalance is always considered to be a good indicator of which

randomization schemes provide better balance. The greater the variance of the imbalance

of a randomization scheme, the less efficient is the design for balancing the numbers of

patients across groups.

By using the calculated variance of the imbalance in (5.3), (5.6), (5.19) and (5.24),

comparisons can be made between the two randomization schemes on their effectiveness

in balancing the numbers of patients across treatment groups. First suppose that ni, the

number of patients in a particular centre i, is given. The ratio of the variances of the

imbalances for the two randomization schemes is

Var(∆ij)

Var(∆∗
ij)

=
rkj(K1 − kj)(K1 − r)

K2
1(K1 − 1)

/
nikj(K1 − kj)

K2
1

=
r(K1 − r)

ni(K1 − 1)
.
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Let s ≥ 0 such that ni = sK1 + r. Then the ratio becomes

Var(∆ij)

Var(∆∗
ij)

=
r(K1 − r)

(sK1 + r)(K1 − 1)
.

If s = 0 and r = 0, there will be no patients in the trial and we cannot calculate the

ratio. When s = 0, there is only one incomplete block, so that the ratio becomes

K1 − r

K1 − 1
=


1, r = 1,

< 1, r > 1.

When r = 1, there will be only one patient in centre i and the variance of the imbalance

is the same for complete randomization and the permuted-block design. When r > 1,

there is only one incomplete block in centre i. The variance of that imbalance under

complete randomization is greater than that of the permuted block design for a non-

empty incomplete block, which means that the permuted-block design is more efficient

than complete randomization.

Now consider the case s ≥ 1. When r = 0, centre i contains only complete blocks

and the ratio becomes zero. It is obvious that there is no imbalance in a complete block.

Therefore, there is no imbalance in this centre and hence no variance for the imbalance

can be calculated for both randomization schemes. Now suppose that r ≥ 1, which

implies that K1 − r ≤ K1 − 1, and, for s ≥ 1 and K1 ≥ 1, implies that sK1 + r ≥ r.

Therefore, we have r(K1−r) ≤ (sK1+r)(K1−1). If in centre i, there are more than two

blocks which include at least one complete block and one incomplete block, the variance

of the imbalance for complete randomization is greater than that of the permuted-block

design.

To conclude, the variance of the imbalance in a particular centre i on a particular

treatment j is greater under complete randomization than the permuted-block design in

all cases. In other words, the permuted-block design is more efficient than complete

randomization, except when there is only one patient in each centre.
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We will now study the overall imbalance on treatments under these two randomiza-

tion schemes. We can look at the covariance matrices for the randomization schemes to

see which randomization scheme is better. Therefore, we will study the entries in the

covariance matrices, which are Var(∆j), Var(∆∗
j), Cov(∆j, ∆m) and Cov(∆∗

j , ∆
∗
m).

The imbalances on a particular treatment j are independent for different centres. The

variance of the imbalance on a particular treatment j for all centres is just the sum of all

the imbalances on treatment j for each centre i for i = 1, ..., N . Therefore, the variance

of the imbalance on treatment j for all centres under permuted-block randomization will

be less than the variance of the imbalance on treatment j for all centres under complete

randomization. Similarly, consider the covariances for two different treatments j and m

in centre i under these two randomization schemes. The ratio of the two covariances is

Cov(∆ij, ∆im)

Cov(∆∗
ij, ∆

∗
im)

= −kjkmr(K1 − r)

K2
1(K1 − 1)

/
−nikjkm

K2
1

=
r(K1 − r)

(sK1 + r)(K1 − 1)
,

for ni = sK1 + r.

The covariance ratio of the imbalance is exactly what we obtained for the variance

ratio of the imbalance. Therefore, we can draw the same conclusions here for the covari-

ance ratio of the imbalance. The covariance of the imbalance in a particular centre i on

two different treatments j and m is greater under complete randomization than permuted

block randomization in all cases. Therefore, all the entries in the covariance matrix Σ∗

for complete randomization have values greater than all the entries in the covariance

matrix Σ under permuted-block randomization. For the overall imbalance across treat-

ments, the covariance under permuted-block randomization is less than that under com-

plete randomization, which implies that, under permuted-block randomization, a more

balanced trial can be achieved across treatments for all centres than complete random-

ization.
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5.5.2 The numbers of patients recruited in different centres are ran-

dom

Consider now the case where the numbers of patients {ni} to be recruited are random

variables and the patient recruitment process follows a Poisson-gamma model.

As proved above,

Var(∆ij|ni) = Var(∆∗
ij|ni) if ni = 1

and

Var(∆ij|ni) < Var(∆∗
ij|ni) if ni > 1.

Now, when the ni are random, if n > 1, then P (ni > 1) > 0. Thus,

Var(∆ij) = E[Var(∆ij | ni)]

=
n∑

s=0

Var(∆ij|ni = s)P (ni = s)

<
n∑

s=0

Var(∆∗
ij|ni = s)P (ni = s)

= Var(∆∗
ij).

Therefore, if we have more than one patient in a trial, Var (∆ij) < Var(∆∗
ij) and

permuted-block randomization always has lower variability in the imbalance than com-

plete randomization.

Similarly, for the covariance of the imbalance for two different treatments j and m

in centre i,

Cov(∆ij, ∆im|ni) = Cov(∆∗
ij, ∆

∗
im|ni) if ni = 1

and

Cov(∆ij, ∆im|ni) < Cov(∆∗
ij, ∆

∗
im|ni) if ni > 1.

Therefore, for ni random, if there is more than one patient in the trial, we have Cov (∆ij, ∆im) <

Cov(∆∗
ij, ∆

∗
im).
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For the overall imbalance, we look at the covariance matrices under the two ran-

domization schemes. The conclusion is the same as when ni is fixed. Permuted-block

randomization is better than complete randomization and thus permuted-block random-

ization provides less imbalance in the number of patients on a particular treatment for all

centres than complete randomization. The entries in the covariance matrix for permuted-

block randomization are all less than those for complete randomization. Therefore,

permuted-block randomization gives less overall imbalance than complete randomiza-

tion.

5.6 Simulation for the expectation and covariance ma-

trix of the overall imbalance

Results of simulation support what we have found theoretically in Section 5.4. Con-

sider the centre-stratified randomization process in a study. Assume that the patient

recruitment process is modelled by the Poisson-gamma model, where the number of

patients to be recruited in each centre is simulated from a beta-binomial distribution.

Within each centre, patients are allocated to a treatment according to some randomly

permuted blocks. Assume that an equal proportion of patients is to be allocated to each

treatment within each complete block. Some randomly permuted blocks of size K1 will

be generated in the simulation and the patients will be allocated to treatments accord-

ing to the sequence formed by these randomly permuted blocks. As the imbalance on

treatments is found in the incomplete block for each centre, the treatment allocation to

patients in these incomplete blocks will be simulated from a multivariate hypergeometric

distribution. The imbalance on treatments can be calculated by subtracting the simulated

number of patients allocated to each of the treatments from the expected number of pa-
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tients on each treatment. The imbalance on treatments can be calculated within each

centre and for all centres. Finally, the vector for the overall imbalance on treatments will

be obtained.

The above procedure will be simulated s times. The sample mean vector and the

sample covariance matrix of the overall imbalance can be obtained after s runs. For K

treatments, let ∆̂p be the vector for the overall imbalance obtained in the pth simulation

run. The sample mean vector is calculated by

¯̂
∆ =

1

s

s∑
p=1

∆̂p.

The sample covariance matrix is obtained by

Σ̂ =
1

s− 1

s∑
p=1

(∆̂p −
¯̂
∆)(∆̂p −

¯̂
∆)T .

The values for the sample mean vector and covariance matrix will then be compared

with the theoretical mean and covariance matrix. We consider two particular scenarios.

The first scenario has n = 168, N = 100 K = 4 and K1 = 8, with α = 1.2 and β = 2

for the patient recruitment process. In the second scenario, we have n = 232, N = 100

and the same K, K1, α and β as in the first. The theoretical mean vector and covariance

matrix of the overall imbalance can be calculated by using results in Section 5.4. In both

scenarios, the theoretical expectation of the overall imbalance is the vector of zeros. The

theoretical covariance matrix of the overall imbalance has diagonal entries in (5.20) and

off-diagonal entries in (5.22). If the size of the incomplete block Ri in centre i has an

approximate discrete uniform distribution, the theoretical covariance matrix has entries

(5.21) and (5.23).

For both scenarios, we took s = 100, 000. For the first scenario, the sample mean

vector is

¯̂
∆ = (−0.003,−0.015, 0.025,−0.007)T ,
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which is close to the theoretical mean vector. The theoretical covariance matrix for this

scenario is

Σ =



18.961 −6.320 −6.320 −6.320

−6.320 18.961 −6.320 −6.320

−6.320 −6.320 18.961 −6.320

−6.320 −6.320 −6.320 18.961


. (5.30)

If the size of the incomplete block Ri in centre i has an approximate discrete uniform

distribution, the theoretical covariance matrix is

Σ =



28.125 −9.375 −9.375 −9.375

−9.375 28.125 −9.375 −9.375

−9.375 −9.375 28.125 −9.375

−9.375 −9.375 −9.375 28.125


. (5.31)

The sample covariance matrix is

Σ̂ =



18.863 −6.284 −6.258 −6.320

−6.284 19.095 −6.454 −6.356

−6.258 −6.454 18.962 −6.250

−6.320 −6.356 −6.250 18.926


,

We can see that Σ̂ has values close to the theoretical values in (5.30).

Consider the second scenario with n = 232, N = 100, K = 4, K1 = 8, α = 1.2 and

β = 2. The sample mean vector is

¯̂
∆ = (0.002,−0.019, 0.025,−0.008)T ,

which is again close to the theoretical mean vector. The theoretical covariance matrix is

Σ =



21.668 −7.223 −7.223 −7.223

−7.223 21.668 −7.223 −7.223

−7.223 −7.223 21.668 −7.223

−7.223 −7.223 −7.223 21.668


. (5.32)
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When Ri, the size of the incomplete block in centre i, has an approximate discrete uni-

form distribution, we have

Σ =



28.125 −9.375 −9.375 −9.375

−9.375 28.125 −9.375 −9.375

−9.375 −9.375 28.125 −9.375

−9.375 −9.375 −9.375 28.125


. (5.33)

The sample covariance matrix of the overall imbalance is

Σ̂ =



21.723 −7.080 −7.404 −7.239

−7.080 21.444 −7.136 −7.228

−7.404 −7.136 21.667 −7.126

−7.239 −7.228 −7.126 21.593


,

which also has values close to the theoretical values in (5.32).

For both scenarios, the results from simulation are consistent with the numerical val-

ues for the theoretical mean vector and covariance matrices in (5.30) and (5.32). When

the size of the incomplete block Ri in centre i has an approximate discrete uniform dis-

tribution, the theoretical covariance matrix is less accurate. In the second scenario, the

value assumed for n, the number of patients recruited, is higher than the corresponding

value assumed in the first scenario. The difference between the two theoretical covari-

ance matrices is larger when we have fewer patients.

The theoretical covariance matrices in (5.30) and (5.32) hold when N the number of

centres involved in the trial is large. Furthermore, those in (5.31) and (5.33) hold when

n/N > 2K1 such that Ri has an approximate discrete uniform distribution. This is a

good approximation, since for any size of the incomplete block r, P (Ri = r) ≈ 1/K1

when n/N > 2K1. For example, take n = 720, N = 80, K1 = 4 and α = 1.2 such

that n/N = 9 and 2K1 = 8. Using (5.18), P (Ri = r) for r = 0, 1, 2, 3 is 0.2761,
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0.2616, 0.2416 and 0.2207, respectively. We can see that all of these values are close

to 1/K1 = 0.25, and so it will be appropriate for us to use the approximate discrete

uniform for Ri when n/N > 2K1. We have n/N equal to 1.68 for the first scenario and

2.32 for the second scenario, which are both far less than 2K1 = 16. The size of the

incomplete block in any centre i for both scenarios cannot be approximated by a discrete

uniform distribution. Therefore, the values for the sample covariance matrices in the

two scenarios are not close to the theoretical covariance matrices in (5.31) and (5.33).

In general, the discrete uniform approximation is quite good when n/N > K1.

As defined in (5.3) , ∆j the imbalance on a particular treatment j for j = 1, ..., K for

all centres is approximated by a normal distribution with mean 0 and variance (5.20), or

(5.21) if the size of the incomplete block has an approximate discrete uniform distribu-

tion. The results of the simulations support this. For both scenarios, we consider K = 4

treatments with block size K1 = 8. The values of ∆j for j = 1, .., 4 are calculated for

100, 000 simulations. Below are the histograms of the values of ∆j for each treatment

j = 1, ..., 4 for both scenarios.
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The curves for the empirical density functions of ∆j/
√

Var(∆j) for j = 1, ..., 4 are

also shown in the two figures below. It is clear that, in both scenarios, the curves for the

empirical density functions coincide with that for the density function of the standard

normal distribution.

Figure 5.3: Empirical density functions of ∆j/
√

Var(∆j) for j = 1, . . . , 4 for the first

scenario
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The yellow line represents the density function of the standard normal distribu-

tion. The red, blue, pink and green lines represent the values of ∆j/
√

Var(∆j) for

j = 1, 2, 3, 4, respectively.
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Figure 5.4: Empirical density functions of ∆j/
√

Var(∆j) for j = 1, . . . , 4 for the sec-

ond scenario
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The yellow line represents the density function of the standard normal distribu-

tion. The red, blue, pink and green lines represent the values of ∆j/
√

Var(∆j) for

j = 1, 2, 3, 4, respectively.

5.7 Power and sample size

Here, we will study the impact of imbalance on treatments on the power for centre-

stratified randomization. We will also see in the imbalanced case how an increase in

the sample size can compensate for the loss in power. This will be shown by numerical

results from simulation.

Let n be the total number of patients to be randomized to K > 2 treatments at N

clinical centres. Centre-stratified randomization has blocks of size K1. Let nj be the

number of patients randomized to treatment j for j = 1, ..., K and X̄j be the mean of the

patient responses on treatment j. Assume that the observations are independent normal

with unknown means mj for j = 1, ..., K and known variance σ2. Suppose that the first

group of patients receive the standard treatment and let this group be the control group.
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We will be carrying out K − 1 tests assuming no centre effect.

Consider testing the null hypothesis H0 : m1 = m2 = ... = mK = m for any non-

negative constant m against H1 : at least one mj −m1 = hj > 0 for any j = 2, ..., K.

The test statistics are

Sj =
X̄j − X̄1

σ
√

1/nj + 1/n1

for j = 2, ..., K. Under H0, the Sj are dependent standard normal random variables.

Given γ as the significance level of one test, let Φ be the standard normal distribution

function and let zγ satisfy 1 − Φ(zγ) = γ. We will reject H0 if, for at least one j with

j = 2, ..., K, Sj > zγ. Let the significance level of the overall test be γ∗. We can

represent the significance level as

P
{
∪K

j=2 (Sj > zγ) |H0

}
= γ∗.

Under H1, we will have

X̄j − X̄1

σ
√

1/nj + 1/n1

− hj

σ
√

1/nj + 1/n1

= Sj −
hj

σ
√

1/nj + 1/n1

as a standard normal random variable for each j = 2, ..., K. Let β∗ be the probability of

a type II error. The power is 1 − β∗. For a given level of significance γ, the power can

be written as

P

{
∪K

j=2

(
Sj −

hj

σ
√

1/nj + 1/n1

> zγ −
hj

σ
√

1/nj + 1/n1

)∣∣∣∣H1

}
= 1− β∗.

Now let

ηj =
X̄j − X̄1

σ
√

1/nj + 1/n1

− hj

σ
√

1/nj + 1/n1

=

√
nj(X̄j −mj)

σ

1
√

nj

√
1/nj + 1/n1

−
√

n1(X̄1 −m1)

σ

1
√

n1

√
1/nj + 1/n1
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for j = 2, ..., K. The power of the test can be written as

P

{
∪K

j=2

(
ηj > zγ −

hj

σ
√

1/nj + 1/n1

)∣∣∣∣H1

}

= 1− P

{
∩K

j=2

(
ηj ≤ zγ −

hj

σ
√

1/nj + 1/n1

)∣∣∣∣H1

}
= 1− β∗.

Under H1, for each j = 2, ..., K,

ζj =

√
nj(X̄j −mj)

σ

and

ζ1 =

√
n1(X̄1 −m1)

σ

are two independent standard normal random variables. So each ηj can be written as a

linear combination of two independent normal random variables, since

ηj = ζjcj1 − ζ1cj2, (5.34)

where cj1 and cj2 are scalars such that

cj1 =
1√

1 +
nj

n1

(5.35)

and

cj2 =
1√

1 + n1

nj

. (5.36)

The form in (5.34) for ηj can be used to simulate values for ηj and hence simulate

numerical values for the power of the test.

5.7.1 Impact of imbalance on power and sample size

Here, we will study the power of the test by simulation for four scenarios when

γ = 0.05 and γ = 0.05/(K − 1). First, consider the balanced case where we have the
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same number of patients on each of the treatments. We will simulate the test 100, 000

times to find n, the total number of patients to be recruited for each of the scenarios such

that the power is at least 0.95. In each simulation, we will generate nj patient responses

on treatment j from a normal distribution with mean mj and variance σ2 for j = 2, ..., K.

We take the values m1 = 0, m2 = 0.5, m3 = 0.55, m4 = 0.6, m5 = 0.65, m6 = 0.7,

m7 = 0.75 and m8 = 0.8 in each of the scenarios, and σ2 = 1. Then we can obtain the

sample mean of the responses X̄j and hence values of ζj for j = 1, ..., K. Finally, the

values for ηj are obtained from the linear combination of ζj and ζ1 for j = 2, ..., K. The

values for cj1 and cj2 can be calculated in the balanced case, since n1 = n2 = ... = nK .

By (5.35) and (5.36), cj1 = cj2 = 1/
√

2. If at least one of the ηj for j = 2, ..., K is

greater than zγ , we will reject H0 for this simulation. After 100, 000 simulations, the

proportion of rejections of H0 will be the estimated power of the test.

Let K be the total number of treatments involved in the study and let K1 be the size

of a complete block. In the balanced case, the number of patients on each treatment will

be n/K. We will find n for each scenario such that there are at least 95, 000 rejections

of H0 in a total of 100, 000 simulations.

Once n is known for each scenario, we can study the estimated power in the imbal-

anced case to see how much less it is compared to the balanced case and how many extra

patients we need to compensate for the loss. Under centre-stratified permuted-block

randomization when the patient recruitment process is modelled by the Poisson-gamma

model, the number of patients to be recruited in centre i, ni, may not be a multiple of the

block size K1. Incomplete blocks will be formed in centres and the numbers of patients

across treatments will not be equal. For simulation in the imbalanced case, for each sce-

nario, we will use the same n as in the balanced case. We will first model the patient

recruitment process by the Poisson-gamma model. Once the numbers of patients to be
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recruited in different centres are known, the numbers of patients on different treatments

for all centres are known. Then we will simulate again nj responses from a normal dis-

tribution with mean mj and variance σ2. The values for cj1, cj2, ζj and ζ1, and hence

ηj can be obtained. As in the balanced case, in each simulation for all j = 2, ..., K, it

will be checked if at least one of the ηj is greater than zγ . The whole process will be

simulated 100, 000 times and the proportion of rejections of H0 in these 100, 000 runs

will be the estimated power for the imbalanced case. We will also simulate imbalanced

cases when extra patients are added to the trial and study the numerical values of the

estimated power in these cases.

We will consider four scenarios, each with a different number of treatments. We have

N = 5 for the total number of centres. All the numerical results for the estimated overall

significance level and power are summarised in the two tables below.
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Table 5.1: Simulated overall significance levels and powers for four scenarios when

γ = 0.05

K = 4 K = 5 K = 6 K = 8

K1 = 8 K1 = 10 K1 = 12 K1 = 8

Balanced case

n 168 160 168 152

γ∗ 0.121 0.147 0.168 0.205

Power 0.957 0.952 0.961 0.956

Imbalanced case

n 168 160 168 152

γ∗ 0.118 0.143 0.166 0.207

Power 0.956 0.950 0.959 0.953

n 169 161 169 153

γ∗ 0.118 0.144 0.166 0.203

Power 0.956 0.951 0.959 0.956

n 170 162 170 154

γ∗ 0.118 0.144 0.166 0.202

Power 0.958 0.951 0.960 0.956

n 171 163 171 155

γ∗ 0.117 0.143 0.168 0.203

Power 0.958 0.952 0.961 0.957
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Table 5.2: Simulated overall significance levels and powers for four scenarios when

γ = 0.05/(K − 1)

K = 4 K = 5 K = 6 K = 8

K1 = 8 K1 = 10 K1 = 12 K1 = 8

Balanced case

n 232 250 264 280

γ∗ 0.045 0.042 0.041 0.039

Power 0.954 0.952 0.952 0.952

Imbalanced case

n 232 250 264 280

γ∗ 0.043 0.041 0.040 0.037

Power 0.953 0.950 0.951 0.952

n 233 251 265 281

γ∗ 0.044 0.042 0.039 0.038

Power 0.954 0.950 0.950 0.951

n 234 252 266 282

γ∗ 0.042 0.041 0.040 0.037

Power 0.954 0.950 0.952 0.953

n 235 253 267 283

γ∗ 0.043 0.042 0.040 0.037

Power 0.954 0.952 0.951 0.953

We can see from the tables that the test is anticonservative when γ = 0.05 and

slightly conservative when γ = 0.05/(K − 1), becoming more so as K increases, and

that there is a slight loss in power in the imbalanced case compared to the balanced case
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when n is the same. No more than three patients are needed in the imbalanced case in

order to achieve the same level of power as in the balanced case.

5.8 Conclusions

In this chapter, imbalances are defined for complete randomization and the permuted

block design for clinical trials with more than two treatments. Most of the literature

studied previously dealt with imbalance properties for different randomization schemes

for two treatment groups only. The overall imbalance for more than two treatments is

no longer the difference in the numbers of patients on two treatments, but a vector that

contains the imbalance for each treatment group from the expected number of patients

in the group.

The imbalance for each of the treatments is defined here within centres and for all

centres. The calculations of the expectations, variances and covariances of the imbal-

ances in a centre or for all centres are shown for the two randomization schemes. Two

cases are considered: the number of patients recruited in a centre is given and is known;

and the number of patients recruited in a centre follows the Poisson-gamma model of

Anisimov and Fedorov (2007). The overall imbalance is defined and asymptotically it

has a multivariate normal distribution. Furthermore, the variances of the two random-

ization schemes are compared. For trials with several treatments, in general, centre-

stratified permuted-block randomization performs better than complete randomization

in balancing the numbers of patients across treatment groups. In other words, complete

randomization provides more uncertainty in the numbers of patients in different treat-

ment groups. A test is also developed by comparing each treatment to the control group.

The numerical values for the power of the test are given in the balanced and imbalanced

cases. These suggest that we can compensate for the loss in power in the imbalanced
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case by adding no more than three patients.

In real clinical trials, it is common for pharmaceutical companies to have more than

two treatments under investigation at the same time in order to obtain more results for

comparison, and to reduce costs and time to recruit patients in a trial to expedite earlier

availability of an effective treatment to the general public. The imbalance properties for

the several treatments case are of particular importance as they will affect the power of

the test for treatment differences. The more serious the imbalance is in a trial, the less

power it will have to detect a genuine treatment difference. The loss in power due to the

imbalance can be compensated for by an increase in the sample size.
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Chapter 6

Discussion

6.1 Conclusions

In this thesis, we have studied three types of randomization schemes, restricted ran-

domization schemes, covariate-adaptive randomization schemes and the permuted-block

randomization scheme.

In Chapter 2, the treatment assignment rules under different restricted randomization

schemes are given. In addition, the asymptotic properties are stated under these ran-

domization schemes. The theoretical power of a test for a treatment effect is obtained

for both complete randomization and Efron’s biased coin design for normal and binary

responses. The parameters of interest are the population mean difference for normal re-

sponses and the population difference in probabilities of survival for binary responses.

The test is for a treatment effect represented by a larger value of the population mean

of patients’ responses in the treatment group than in the control group for normal re-

sponses. For binary responses, the test is for a treatment effect represented by a larger

value of the probability of surviving in the treatment group than in the control group.

In particular, for normal responses, we studied the cases where the variances of the pa-
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tients’ responses in the two treatment groups are different when they are either known

or unknown. Efron’s biased coin design is more efficient at balancing the numbers of

patient on the two treatments than complete randomization. We see that the numerical

values obtained for the power are higher for Efron’s biased coin design than for complete

randomization in all cases. Simulation results for the power under the adjustable biased

coin design and Efron’s biased coin design for normal responses are also given, which

show that the adjustable biased coin design is as good as Efron’s biased coin design in

balancing the numbers of patients on the two treatments. Finally, numerical values for

the power obtained by a normal approximation are compared with the exact values un-

der complete randomization and Efron’s biased coin design. For all cases, the power

obtained by the normal approximation is higher than the actual power.

In Chapter 3, covariate-adaptive randomization schemes are introduced. They are

covariate-adaptive simple random sampling, the covariate-adaptive biased coin design

and the covariate-adaptive adjustable biased coin design. A normal linear model for pa-

tients’ responses involving covariates is considered. This model takes into account the

values of the covariates and their interactions. Then the methodologies for global and

marginal balancing the numbers of patients grouped by their prognostic factors are given

for different covariate-adaptive randomization schemes. Next, we detail the theoretical

calculations for the analysis of covariance t test under the fixed-effects linear model. In

addition, normal approximations to the power are given for the two-sample t test and the

analysis of covariance t test when the covariates are considered to be random variables.

Numerical values for the power obtained by normal approximations with one covariate

in the model are compared with the corresponding values obtained by simulation for the

two-sample t test and the analysis of covariance t test. In both tests, the powers obtained

by normal approximations are higher than the simulated values. Furthermore, the nor-
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mal approximation to the power for more than two covariates is given theoretically. We

also simulated the power under the fixed-effects model for either global or marginal bal-

ancing when interactions between the two covariates are both present and absent. They

show that global balancing is better than marginal balancing when there is an interaction

between the covariates under the three covariate-adaptive randomization schemes. When

there is no interaction between the covariates, global balancing is as good as marginal

balancing.

In Chapter 4, restricted randomization schemes for more than two treatments are

considered. The assignment rules under complete randomization, Efron’s biased coin

design, the DA-optimum biased coin design, Wei’s class of biased coin design and a

new class of designs, the adjustable biased coin design, are given. In addition, their

asymptotic properties are provided. In this chapter, the overall imbalance is defined as

a vector which contains the imbalances in the numbers of patients on all treatments.

The properties of the overall imbalance have been studied under different randomization

schemes by simulation. The distributional properties of the imbalances represented by

plots and the values for the quartiles of the imbalances under different designs are also

given for two scenarios. The simulated results show that, except for Efron’s biased coin

design, the overall imbalance has an asymptotically multivariate normal distribution. For

Efron’s bised coin design, the overall imbalance tends to the zero vector in probability

asymptotically. Furthermore, we have studied the simulated power of these randomiza-

tion schemes for the analysis of variance F test. Numerical values for the power are

given for two scenarios. The results showed that, for all schemes, the power increases

when we consider more treatments in the trial. Efron’s biased coin design gives the high-

est power when the design is very deterministic with p = 11/12 and 10/12. Other than

these two situations, the adjustable biased coin design achieves the highest power in all
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cases in the two scenarios.

In Chapter 5, we consider situations for multi-centre trials for more than two treat-

ments. The model for patient recruitment introduced by Anisimov and Fedorov (2007)

is used. The recruitment process is described by a Poisson process with rate following a

gamma distribution. By using this patient recruitment model, the number of patients to

be recruited in each centre follows a beta-binomial distribution. The imbalance on each

treatment is defined both within centres and for all centres under complete randomization

and centre-stratified permuted-block randomization. We studied the imbalance of each

treatment within centres and for all centres when the number of patients recruited in each

centre is fixed or has a beta-binomial distribution. The expectations and the variances

of the imbalances are given theoretically under the two schemes for the two situations.

The overall imbalance which is defined as a vector which contains the imbalance on

each treatment for all centres has a multivariate normal distribution when the number

of centres involved is large. Hence, we have the vectors of expectations and the covari-

ance matrices of these overall imbalances for the two situations. The variances of the

imbalance on a treatment within centres are compared for complete randomization and

centre-stratified permuted-block randomization. We showed that, under centre-stratified

permuted-block randomization, the imbalance is less variable. Furthermore, we studied

the power under centre-stratified permuted-block randomization. We have a test for at

least one treatment difference when we compare the treatment groups with the control

group. We found the sample size for a balanced trial in each scenario for which a certain

level of power is achieved. Then we studied the change in the power in the imbalanced

case when the patient recruitment model is used. The results showed that the loss of

power in the imbalanced case can be compensated for by an increase of no more than

three patients for each scenario.
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6.2 Future work

The results presented in this thesis provide a basis for further study and possible

extensions. Some of the ideas for further work are mentioned throughout the thesis.

In Chapter 2, the theoretical power function is given for binary responses for com-

plete randomization and Efron’s biased coin design. The critical value used to reject

the null hypothesis is chosen so that the significance level is less than or equal to the

assumed level α = 0.05. This is due to the discrete distribution of the test statistics.

Further research can be carried out so that we obtain the critical value corresponding to

the assumed significance level of the test. One possibility is a randomized test.

In Chapter 3, covariate-adaptive randomization schemes are studied. When the co-

variates are considered to be random variables, an expression is given for the normal

approximation to the power when there is more than one covariate. Simulated values for

the power can be compared with numerical values obtained using the normal approxima-

tion in this case. These results can also be compared with those obtained in Section 3.6.2,

when there is only one covariate. Furthermore, under the fixed-effects model, numerical

values for the power are shown by simulation for global and marginal balance with two

covariates when interactions between the covariates are both present and absent. Further

work may be possible for more than two covariates.

In Chapter 4, a new class of designs called the adjustable biased coin design for

more than two treatments has been introduced. The treatment assignment probabilities

under this design are obtained based on all of the current imbalances on the treatments.

Using simulation, the imbalance properties and the power are obtained under this design.

These suggest that this design is as good as Efron’s biased coin design and the DA-

optimum biased coin design in balancing the numbers of patients across treatments.

Further research can be pursued on the asymptotic properties of the adjustable biased
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coin design. In particular, the theoretical power of the test for treatment differences for

Efron’s biased coin design and the adjustable biased coin design is of interest.

In Chapter 5, we studied the imbalance properties of centre-stratified permuted-block

randomization in the case of more than two treatments. We assumed that, within a block,

the number of patients to be allocated to each of the treatments is the same. Thus, we

aim for a balance in the numbers of patients across treatments to maximize the power of

the test for treatment differences. However, it may be more powerful in some cases to

have unequal numbers of patients on the treatments. Therefore, further research in this

direction is possible. Moreover, the test for comparing each of the treatments with the

control does not have the same significance level for all situations. Further work can be

carried out on different tests for treatment differences with a chosen significance level,

and hence the power of these tests. We have only considered the test when the variances

of the patients’ responses are known and are the same. This can be extended to cases

where the variances are different and unknown.
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Appendix A

Supplementary information for

Chapter 3

A.1 Uncorrelated µ̂∗ and β̂

We know that  µ̂∗

β̂

 =

 WTW WT RWZ

ZT RWW ZT RWZ


−1 WTY

ZT RWY

 .

It follows that

Cov(µ̂∗, β̂) = (WTW)−1Cov
(
WTY,ZT RWY

)
(ZT RWZ)−1

= (WTW)−1WT Var(Y)RWZ(ZT RWZ)−1,

where Var(Y) is the n × n covariance matrix of the patients’ responses with σ2
ε as the

diagonal elements and zeros elsewhere, denoted by σ2
ε In. Thus, we have

Cov(µ̂∗, β̂) = σ2
ε (W

TW)−1WT RWZ(ZT RWZ)−1.

Since WT RWZ gives a null matrix, the covariance of µ̂∗ and β̂ is the zero matrix.

Hence, µ̂∗ and β̂ are uncorrelated.
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A.2 The independence of Z and β̂ when the covariates

are random variables

Since β̂ is the least squares estimator of β, we have

β̂ = (ZT RWZ)−1ZT RWY,

where RW = In − W(WTW)−1WT . If Z and β̂ are independent, then E(Zβ̂) =

E(Z)E(β̂). Now, we have

E(Zβ̂) = E
(
Z
[
ZT
{
In −W(WTW)−1WT

}
Z
]−1

× ZT
{
In −W(WTW)−1WT

}
(Wµ + Zβ + ε)

)
Expanding gives

E(Zβ̂) = E

[
Z
{
ZTZ− ZTW

(
WTW

)−1
WTZ

}−1 {
ZTWµ + ZTZβ + ZT ε

− ZTWµ− ZTW(WTW)−1WTZβ − ZTW(WTW)−1WT ε
}]

,

which reduces to

E(Zβ̂) = E
[
Z
{
ZTZ− ZTW(WTW)−1WTZ

}−1

×
{
ZTZ− ZTW(WTW)−1WTZ

}{
β + ZT (ZZT )−1ε

}]
.

Finally, we obtain

E(Zβ̂) = E
{
Z
(
β + ZT (ZZT )−1ε

)}
= E(Zβ) = E(Z)β.

Hence, we have E(Zβ̂) = E(Z)β = E(Z)E(β̂).
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A.3 Normal approximation for the power when there

are more than two randomly distributed covariates

From the Appendix of Shao, Yu and Zhong (2010), we know that

nj

n
− 1

2
= op(n

−1/2)

for j = 1, 2 conditionally on Z . Further, (∆ik, εi1, εi2) are conditionally independent of

I given Z , E(εij|Z) = 0, E(2Ii−1|Z) = 0 and E(∆ik|Z) = E(∆ik|D(Zik)) = 0. The

asymptotic mean of Ȳ2− Ȳ1 is calculated by taking the expectation of Ȳ2− Ȳ1 given Z . It

is also known that E(Zik|D(Zik)), E(Z2
ik|D(Zik)) and E(ZikZim|D(Zik)) are discrete,

and that
∑n

i=1(2Ii − 1) = op(n
−1/2). When n →∞, E(Ȳ2 − Ȳ1|Z) = µ2 − µ1.

Now, we can write

Ȳ2 − Ȳ1 = µ2 − µ1 +
2

n
(A + B + C + D + E + F + G) + op(n

−1/2),

where A, B, C, D, E,F and G are the terms in order in (3.11). We need the variance

of Ȳ2 − Ȳ1 given Z . From above, this will be a sum of the variances of all the terms

involved and all the covariances of any two different terms. The term G is expressed in

terms of the random errors εij . Since (∆ik, εi1, εi2) are independent of I given Z and the

expectation of εij given Z is zero, the covariance of any term with G will be equal to
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zero. Also, µ2 − µ1 is a constant, so that Var(µ2 − µ1|Z) = 0. Thus, we have

Var(Ȳ2 − Ȳ1|Z) =
4

n2
{Var(A|Z) + Var(B|Z) + Var(C|Z) + Var(D|Z)

+ Var(E|Z) + Var(F |Z) + Var(G|Z) + 2Cov(A, B|Z)

+ 2Cov(A, C|Z) + 2Cov(A, D|Z) + 2Cov(A, E|Z)

+ 2Cov(A, F |Z) + 2Cov(B, C|Z) + 2Cov(B, D|Z)

+ 2Cov(B, E|Z) + 2Cov(B, F |Z) + 2Cov(C, D|Z)

+ 2Cov(C, E|Z) + 2Cov(C, F |Z) + 2Cov(D, E|Z)

+ 2Cov(D, F |Z) + 2Cov(E, F |Z)}+ op(n
−1).

Note that (2Ii − 1)2 = 4I2
i − 4Ii + 1 = 1, because I2

i = Ii

We can split the above expression into two parts. We have one part that contains all

the variance terms and one that contains all covariance terms. Consider the first part. As

an example, we take Var(A|Z), which is equal to

Var

{
n∑

i=1

p∑
k=1

(2Ii − 1)bk∆ik|D(Zik)

}
=

p∑
k=1

n∑
i=1

b2
kVar {∆ik|D(Zik)}

+

p∑
k,l=1,
l 6=k

n∑
i=1

bkblE{∆ik∆il|D(Zik)}.

We have similar results for Var(C|Z) and Var(D|Z). For Var(G|Z), we have nσ2
ε .

As E{Zik|D(Zik)} , E{Z2
ik|D(Zik)} and E{ZikZim|D(Zik)} are constants given Z , the
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variance of the above three terms equals 0. So first part of the variance of Ȳ2 − Ȳ1 is

4

n

p∑
k=1

b2
k

1

n

n∑
i=1

Var{∆ik|D(Zik)}+
4

n

p∑
k,l=1,
l 6=k

bkbl
1

n

n∑
i=1

E{∆ik∆il|D(Zik)}

+
4

n

p∑
k=1

c2
k

1

n

n∑
i=1

Var{∆2
ik|D(Zik)}+

4

n

p∑
k,l=1,
l 6=k

ckcl
1

n

n∑
i=1

Var{∆ik∆il|D(Zik)}

+
4

n

p∑
k,m=1,
k<m

d2
km

1

n

n∑
i=1

Var{∆ik∆im|D(Zik)}

+
4

n

p∑
k,m,s,r=1,
k<m<s<r

dkmdsr
1

n

n∑
i=1

E{∆ik∆im∆is∆ir|D(Zik)}

+
4

n

p∑
k,m,s=1,
k<m<s

dkmdms
1

n

n∑
i=1

E{∆ik∆
2
im∆is|D(Zik)}

+
4

n

p∑
k,m,s=1,
k<m<s

dkmdks
1

n

n∑
i=1

E{∆2
ik∆im∆is|D(Zik)}

+
4

n

p∑
k,m,s=1,
k<m<s

dksdms
1

n

n∑
i=1

E{∆ik∆im∆2
is|D(Zik)}+

4σ2
ε

n
(A.1)

For the second part involving the covariances, we take Cov(A, B|Z) and Cov(A, C|Z)

as examples. Now, E(AB|Z) = BE(A|Z) and E{A|D(Zik)} = 0, so we have

Cov(A, B|Z) = 0.

Since E{A|D(Zik)} = 0, we have Cov(A, C|Z) = E{AC|D(Zik)}. It follows that

2Cov(A, C|Z) =
8

n

p∑
k=1

bkck
1

n

n∑
i=1

E{∆3
ik|D(Zik)}

+
8

n

p∑
k,l=1,
l 6=k

bkcl
1

n

n∑
i=1

E{∆ik∆
2
il|D(Zik)}. (A.2)

208



The rest of the second part of the variance of Ȳ2 − Ȳ1 can be written as

8

n

p∑
k,m=1,
k<m

bkdkm
1

n

n∑
i=1

E{∆2
ik∆im|D(Zik)}

+
8

n

p∑
k=1

bkck
1

n

n∑
i=1

Var{∆ik|D(Zik)}E{Zik|D(Zik)}

+
8

n

p∑
k,m=1,
k<m

bkdkm
1

n

n∑
i=1

E{Zik|D(Zik)}E{∆ik∆im|D(Zik)}

+
8

n

p∑
k=1

c2
k

1

n

n∑
i=1

Var{Zik|D(Zik)}Var{∆ik|D(Zik}

+
8

n

p∑
k,m=1,
k<m

ckdkm
1

n

n∑
i=1

E{∆3
ik∆im|D(Zik)}

+
8

n

p∑
k,m=1,
k<m

ckdkm
1

n

n∑
i=1

Var{Zik|D(Zik)}E{∆ik∆im|D(Zik)}

+
8

n

p∑
k,m,s=1,
k<m<s

bkdms
1

n

n∑
i=1

E{∆ik∆im∆is|D(Zik)}

+
8

n

p∑
k,l=1,
k 6=l

bkcl
1

n

n∑
i=1

E{Zik|D(Zik)}Var{∆il|D(Zik)}

+
8

n

p∑
k,m,s=1,
k<m<s

bkdms
1

n

n∑
i=1

E{Zik|D(Zik)}E{∆im∆is|D(Zik)}

+
8

n

p∑
k,l=1,
k 6=l

ckcl
1

n

n∑
i=1

Var{Zil|D(Zik)}Var{∆ik|D(Zik)}

+
8

n

p∑
k,m,s=1,
k<m<s

ckdms
1

n

n∑
i=1

E{∆2
ik∆im∆is|D(Zik)}

+
8

n

p∑
k,m,s=1
k<m<s

ckdms
1

n

n∑
i=1

Var{Zik|D(Zik)}E{∆im∆is|D(Zik)}. (A.3)

The variance of Ȳ2 − Ȳ1 can be written as the sum of (A.1), (A.2), (A.3) and op(n
−1).

We now look at its asymptotic properties as n →∞. We know that

Var{∆ik|D(Zik)} = E{∆2
ik|D(Zik)} − [E{∆ik|D(Zik)}]2 = E{∆2

ik|D(Zik)}.
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As n →∞, by the law of large numbers,

1

n

n∑
i=1

E{Zik|D(Zik)} → E[E{Zk|D(Zk)}] = E(Zk)

for k = 1, ..., p. Similarly, as n →∞,

1

n

n∑
i=1

E(∆2
ik|D(Zik)) → E(E(∆2

k|D(Zk))) = E(∆2
k).

for k = 1, .., p.
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Appendix B

Supplementary information for

Chapter 4

B.1 Plots of imbalances under different randomization

schemes for both scenario

First, the plots of the imbalances on treatments 2 and 3 under each of the randomiza-

tion schemes will be given when K = 3. Then we have the plots of the imbalances in

treatments 2, 3 and 4 when K = 4.
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B.2 Tables of quartiles of imbalance

We have the numerical values of the quartiles of the imbalances for all schemes by

simulation when K = 3 for treatments 2 and 3 and when K = 4 for treatments 2, 3 and

4. T2, T3 and T4 represent treatments 2, 3 and 4, respectively.
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Appendix C

Supplementary information for

Chapter 5

C.1 Proof of Lemma 5.3.1

For a multivariate hypergeometric distribution, the joint probability distribution is

P[ξ1(r) = s1, . . . , ξK(r) = sK ] =

∏K
i=1

(
ki

si

)(
K1

r

)
for si = 0, 1, . . . , min(ki, r) and i = 1, . . . , K. As all marginal distributions of the

multivariate hypergeometric distribution are hypergeometric, it is sufficient to consider

the bivariate hypergeometric distribution to obtain the covariance of ξj(r) and ξm(r).

The probability distribution of a bivariate hypergeometric distribution can be written as

P[ξj(r) = s1, ξm(r) = s2] =

(
kj

s1

)(
km

s2

)(
K1

r

)
for s1 = 0, 1, . . . , min(kj, r) and s2 = 0, 1, . . . , min(km, r).

We have

E[ξj(r)ξm(r)] =

min(r,kj)∑
s1=0

min(r,km)∑
s2=0

s1s2

(
kj

s1

)(
km

s2

)(
K1

r

) .
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Using the equalities

x

(
z

x

)
= z

(
z − 1

x− 1

)
and (

z

x

)
=

z

x

(
z − 1

x− 1

)
,

we obtain

E[ξj(r)ξm(r)] =

min(r,kj)∑
s1=1

min(r,km)∑
s2=1

kjkm

(
kj−1
s1−1

)(
km−1
s2−1

)(
K1

r

)
= kjkm

min(r,kj)∑
s1=2

min(r,km)∑
s2=2

(
kj−1
s1−1

)(
km−1
s2−1

)
K1(K1−1)

r(r−1)

(
K1−2
r−2

)
=

kjkmr(r − 1)

K1(K1 − 1)

min(r,kj)∑
s1=2

min(r,km)∑
s2=2

(
kj−1
s1−1

)(
km−1
s2−1

)(
K1−2
r−2

)
=

kjkmr(r − 1)

K1(K1 − 1)
.

Here,
min(r,kj)∑

s1=2

min(r,km)∑
s2=2

(
kj−1
s1−1

)(
km−1
s2−1

)(
K1−2
r−2

) = 1,

since this is the sum of all the probabilities for a bivariate hypergeometric distribution.

The covariance of ξj(r) and ξm(r) is then

Cov[ξj(r), ξm(r)] =
kjkmr(r − 1)

K1(K1 − 1)
− kjkmr2

K2
1

= −kjkmr(K1 − r)

K2
1(K1 − 1)

.

Finally, the covariance of ∆ij and ∆im is

Cov(∆ij, ∆im) = −r2kjkm

K2
1

− kjkmr(K1 − r)

K2
1(K1 − 1)

+
r2kjkm

K2
1

= −rkjkm(K1 − r)

K2
1(K1 − 1)

,

so that

Cov[ξj(r), ξm(r)] = Cov(∆ij, ∆im).
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