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Abstract 

 

A vital ability for an animal is to filter the constant flow of sensory input from the 

environment to focus on the most important information. Attention is used to 

prioritize sensory input for adaptive responses. The role of attention in visual search 

has been studied extensively in human and non-human primates, but is much less 

studied in other animals. We looked at attentional mechanisms, especially selective 

and divided attention where animals focus on multiple cues at the same time, using a 

visual search paradigm. We targeted bumblebee and zebrafish as model species 

because they are widely used as tractable models of information processing in 

comparatively small brains. Bees were required to forage from target and distractor 

flowers in the presence of predators. We found that bees could selectively attend to 

certain dimension of the stimuli, and divide their attention to both visual foraging 

search and predator avoidance tasks simultaneously. Furthermore, bees showed 

consistent individual differences in foraging strategy; ‘careful’ and ‘impulsive’ 

strategies exist in individuals of the same colony. From the calculation of foraging 

rate, it is shown that the best strategy may depend on environmental conditions. We 

applied a similar behavioural paradigm to zebrafish and found speed-accuracy 

tradeoffs and consistent individual behavioural differences. We therefore continued to 

test how individuality influences group choices. In pairs of careful and impulsive fish, 

the consensus decision is close to the strategy of the careful individual. The present 

thesis provides implications for the study of animal attention, individuality differences 

based on attentional strategies, the influence of individuality on animal group choices 

and an exploration of the evolutionary pressures that favour stable individual 

differences.  
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Chapter 1 Introduction 

 

1.1 Overview 

The vital ability for animals to survive and reproduce is to access and analyse the 

information available in the environment, and respond appropriately to it. Animals are 

often faced with overwhelming amounts of environmental information which exceed 

the handling capacity of central processing in the brain (Marois and Ivanoff, 2005), 

however animals typically are able to focus on relevant stimuli without difficulty. 

Attentional mechanisms are the key processes to enable the brain to filter out 

irrelevant signals and focus on the most important information. Such mechanisms 

make it possible for animals to prioritize sensory input for adaptive responses and 

ignoring secondary cues. The experimental development of attention in humans has 

become fashionable since the 1950s and remained so ever since (Pashler, 1999). The 

work has largely relied on laboratory tests to decipher the mechanisms underpinning 

attentional processes in human subjects. However, attention is also of great 

importance in animals’ everyday life when they focus on and select external stimuli 

and respond to them.  

In the present study we aim to investigate (1) how animals prioritize visual stimuli 

and (2) their ability to attend to two visual stimuli at the same time, (3) consistent 

individual differences in visual attention tasks and (4) how these individual 

differences influence animal consensus decisions. We select bumblebees and zebrafish 

as model species because of their excellent visual systems and their wide usage in 

behavioural studies. Chapter 3 investigates selective attention in bees, where certain 

stimuli stand out from distractors but not others. Chapters 4 and 5 concern whether 

bees are able to divide their attention toward both foraging and predator avoidance 

tasks simultaneously. Chapter 6 discusses the constant individual behavioural 
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differences in visual attention tasks, where animals prioritize decision accuracy or 

speed. Chapter 7 further looks into how such attentional individual differences 

influence animal consensus decision-making, and is followed by a general discussion 

in Chapter 8.  

 

1.2 Selective attention 

What we perceive is not only what enters into our sensory systems, but by 

information that makes it through our attentional filters. For example, when in a noisy 

room full of people when many sounds enter our ears at once, how do we choose to 

listen to what we really want to hear? This is called the ‘cocktail party problem’ and 

has been of interest to scientists for a long time (Cherry, 1953, Broadbent, 1958). 

Classic experiments to study this problem used selective shadowing tasks, in which 

two messages were played to each ear of the listener simultaneously. Participants 

were instructed to repeat one message but not the other. Researchers found that clear 

differences such as distant positions or diverse tones are important for sufficient 

shadowing. Interestingly, participants show very low recipient ability towards the 

shadowed message, even when it is as loud and clear as the target voice (Broadbent, 

1958, Moray, 1959). Another example known as ‘inattentional blindness’, best known 

from Simons and Chabris’s (1999) study, in which observers attended to a 

ball-passing game with players wearing white or black shirts. Subjects were instructed 

to count the number of passes from the white players. However, while subjects 

attended keenly to the task as instructed, they failed to notice the presence of a person 

in a gorilla suit (dark colour) walking across the centre of the field. Selective attention 

has been well documented in a wide variety of tasks in human subjects (Pashler, 1998, 

Yantis, 2000, Driver, 2001); however, there are relatively few studies that explore the 
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biological relevance of attention in natural settings in humans as well as other 

animals.  

Traditional research on selective attention in animals other than humans has been 

focused on different dimensions in discriminative stimuli which are reinforced or 

non-rewarded (Zentall and Riley, 2000). In a classic experiment, rats (Rattus 

norvegicus) were trained to attend to one dimension (e.g., colour or spatial location) 

of the stimuli but not to any other, and researchers also investigated how they weight 

conditioned cues of different aspects (Krechevsky, 1932). In natural conditions, 

animals have to focus on stimuli with limited conspicuousness, such as cryptic food 

resources or predators. It is known that they can focus on selected features of the 

target which assists in their efficient location, by using so-called search images 

(Tinbergen, 1960, Rausher, 1978, Pietrewicz and Kamil, 1979). For example, when 

facing cryptic prey, predators are known to utilize a prey-specific search image. This 

strategy enables the predator to focus on the cryptic prey, even in the presence of 

distractors. Some debates have been held over the nature of a search image, such as 

whether animals learn the entire compound as a target signal (Endler and Greenwood, 

1988, Pietrewicz and Kamil, 1979), or if only certain elements of the stimuli can be 

useful for increasing searching efficiency (Dawkins, 1971). Several lines of evidence 

show that animals attend to selected features rather than to the total object (Reid and 

Shettleworth, 1992). For example, in pigeons (Columba livia), foraging for various 

types of grains, a change in colour but not shape of wheat grains reduces foraging 

detection, but in beans both colour and shape changes decrease accuracy (Langley et 

al., 1996). However, which parameter is involved in a search image may differ 

depending on situations, and this does not appear to be widely studied.  

 

1.3 Divided attention 
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Divided attention, where participants process two sensory tasks at the same time, 

is widely studied in humans but highly under-researched in other animals (Zentall, 

2005). However, in a natural environment, animals typically have to attend to more 

than one stimulus concurrently. For example, a foraging animal also has to be aware 

of potential predators at all times. Traditional explorations in animal divided attention 

mainly explore whether animals are able to process two elements of a compound 

stimulus, and whether the efficiency is the same as the existence of only one element. 

Not surprisingly, animals were better at processing single-element targets than 

compound samples (Maki Jr and Leuin, 1972, Maki Jr. and Leith, 1973). In more 

ecologically realistic designs, trade-offs between animals attending to foraging targets 

(cryptic food items, for example) and potential predators were studied. Dukas and 

Kamil (2000) found that blue jays engaged in a challenging foraging task for centrally 

located targets will often miss peripherally located targets (a secondary foraging task) 

and suggested that this would also cause blue jays to overlook predators in the 

periphery (not unlike similar research in humans (Joseph et al., 1997)). There may be 

trade-offs between decision time and the accuracy of stimuli processing and analysing, 

depending on task priority (Chittka et al., 2009). For example, when exposed to 

predation risk, animals tend to decrease foraging time and increase vigilance 

(Ydenberg and Houston, 1986, Metcalfe et al., 1987). When animals encounter more 

difficult foraging tasks, the probability of detecting predators decreases (Milinski, 

1984, Lawrence, 1985, Godin and Smith, 1988). The attentional processes found in 

animals so far are not fundamentally different from those that occur in humans. When 

encountering compound stimuli, animals show limited capacity to process information 

and either divide their attention or switch rapidly between tasks. However, a better 

understanding of the processes should be obtained to give a clue on how animals 

solve multiple tasks simultaneously.  
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1.4 Speed-accuracy tradeoff in attentional tasks 

Individual differences are common in animal decision-making (Dall et al., 2004, 

Thornton and Lukas, 2012). Here we aim to investigate animal behavioural 

individuality in attentional tasks. Past research on animal individuality focused on 

traits such as shyness-boldness, exploration-avoidance, activity, sociability and 

aggressiveness (Réale et al., 2007). In the present study we choose a different 

dimension, so called speed-accuracy tradeoffs, to investigate animal individual 

behavioural differences. Accurate decisions may require longer decision time, and 

impulsive choices can be faster but less discriminating. Speed-accuracy tradeoffs have 

long been of major concern in human psychology studies (Woodworth, 1899) such as 

impulsivity (Dickman and Meyer, 1988), extraversion and neuroticism (Sočan and 

Bucik, 1998), intelligence (Phillips and Rabbit, 1995) and information processing 

(Miller and Vernon, 1997). However, there are relatively few studies about other 

animals, despite the fact that animal studies allow us to investigate the biologically 

relevance of attention in natural settings. Such tradeoffs exist in animal decision 

making such as foraging (Chittka et al., 2003b), predator-prey interactions (Ings and 

Chittka, 2008, Burns and Rodd, 2008) and nest site selection (Franks et al., 2003). In 

many cases behavioural plasticity exists in speed-accuracy tradeoff decisions. For 

example when the task becomes difficult, subjects may be slower and make less 

accurate performance (Palmer et al., 2005), or when punishment exists they may trade 

speed for accuracy (Chittka et al., 2003). We focused on between group and within 

group speed-accuracy tradeoffs in animal colour discrimination tasks, using 

bumblebees and zebrafish as model species.  

 

1.5 Consistent individual differences in speed-accuracy tradeoffs 
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In human psychology studies, it has long been shown that different individuals 

under the same conditions can behave differently, and such differences can be 

constant over time. Individual personality differences can influence behaviour during 

attentional tasks (MacLean and Arnell, 2010), however despite the burgeoning interest 

in human personality studies, there are few studies on individual consistency of 

attentional performance in other animals. In Chapter 6 we looked into the consistent 

individual behavioural differences when bees solving attentional tasks. For 

non-human animals, inter-individual differences are often treated as noise data and 

averaged into group behaviour. Not until recently have researchers begun to estimate 

the impact of individuality in animal behaviour. The terminology in both human and 

animal individual behavioural differences studies remains unclear. The term 

‘personality’ has been used in humans and several other animals; however there is no 

unified definition (Nettle, 2006). Other phrases such as ‘behaviour syndrome’ (Sih et 

al., 2004a), ‘animal temperament’ (Réale et al., 2007) or ‘coping styles’ (Koolhaas et 

al., 1999) are also used in the literature (Gosling, 2001, Sih et al., 2004a). Since 

behavioural individuality is repeatable and predictable across a wide variety of animal 

groups, it appears to have ecological and evolutionary consequences and is hence 

favoured by selection. Within-colony diversity in social insects is shown to increase 

colony fitness (Mattila and Seeley, 2007) and is useful to cope with the rapidly 

changing environment (Burns and Dyer, 2008). The use of the term ‘personality’ 

implies, firstly, that variation between individuals is greater than within individuals. 

The same individual does not exhibit the whole spectrum of behaviours in the 

population. Secondly, the same type of behaviour is constant through time and context. 

Such consistency is not compared with a standard measurement but between the ranks 

in the population. Plasticity may also occur in individual animals where behaviour 
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changes with the situation encountered. However the rank of each individual within 

the population should remain stable (Lessells and Boag, 1987, Bell et al., 2009).  

Why do animals remain behaviourally consistency rather than change their 

strategies depending on situations? The answer is still largely unclear, however 

theoretical models indicate that variations in behaviour may enhance the evolution of 

cooperation when collaborating with stable partners (McNamara et al., 2004). 

Obtaining cutting-edge environmental information may be costly (McElreath and 

Strimling, 2006, Briffa et al., 2008) and can quickly be out of date when the 

environment changes rapidly. Physiological constraints such as metabolism and 

hormone regulation can also limit behavioural plasticity in animals (Cavigelli, 2005, 

Biro and Stamps, 2010). In social animals, predictable behaviour can reduce conflicts 

between group members and help towards establishing a stable hierarchy, thus 

enhancing collaboration (Dall et al., 2004, Bergmüller and Taborsky, 2010). When 

individuals have to constantly interact with other group members, maintaining the 

same strategy may help others to predict one’s behaviour and thus choose to 

participate. An untrustworthy individual may pay higher costs than trustworthy 

individual when the environment is stable (McNamara and Houston, 2002). However, 

individuality in animal groups may be the subject of other debates, which will be 

discussed in the following section.  

 

1.6 Constant individual behavioural differences and consensus decision-making 

Since individuality can benefit social groups, how animals compromise with each 

other and make consensus decisions has become an interesting topic. Living in social 

groups is a widespread phenomenon and can provide many ecological benefits for 

group members. Grouping may enhance anti-predator protection such as the 

traditional ‘many-eyes’ theory which allows the group to spot predators more easily 
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(Powell, 1974, Godin and Morgan, 1985). Large group members can also reduce the 

opportunity for predation or can confuse predators during predation (Hamilton, 1971, 

Krakauer, 1995). From both predator and prey’s point of view, grouping can provide 

benefits for both of them in foraging for food such as attacking in a team (Hector, 

1986, Packer and Ruttan, 1988), information sharing (Valone, 1989, Chittka and 

Leadbeater, 2005) and reducing plant defences (Denno and Benrey, 1997).  

Traditional investigations usually assume animals retain the same personality 

whether they operate singly or in a group (Camazine et al., 2003), however individual 

variations in traits and conditions appear in group members and can influence group 

structure. For example, hungry individuals are more likely to be located at the edge of 

the group (Romey, 1995), and in some species the individuals with higher position in 

the hierarchy often appear in central positions (Hemelrijk, 2000). A small difference 

in speed can influence the movement of the group (Gueron et al., 1996). Behavioural 

trait differences may be important factors shaping consensus decisions, and certain 

individuals are more dominant than others in the collective decision-making (Couzin 

et al., 2005, King et al., 2008, Stueckle and Zinner, 2008, Conradt et al., 2009). For 

example, bold individuals are more likely to take the lead in a group and have a 

greater effect on making choices (Harcourt et al., 2009, Kurvers et al., 2009). 

However, other behaviour traits are rarely considered and the effect on group 

decisions remains largely unknown. In Chapter 7 we aim to look at how individuals 

with different behavioural traits make consensus decisions. 

 

1.7 Structure of thesis 

Chapter 3 – Selective attention in bees: shape recognition of cryptic predators by 

bumblebees 
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This chapter investigates the selective attention in bumblebees. We exposed 

bumblebees to yellow flowers concealing cryptic robotic spiders, and then introduced 

them to a new patch of white flowers with white spiders or yellow circles on some of the 

flowers. Bees were able to avoid white spiders but not yellow circles. Bees disentangle 

shape from colour cues and thus can form a generalised search image for spider 

shapes, independent of colour. The innate selective attention in bees shows the focus 

toward the shape but not colour of the predators, which may have ecological benefit 

to colour-changing predators such as crab spiders.  

 

Chapter 4 – Divided attention in bees: can bees simultaneously engage in adaptive 

foraging behaviour and attend to cryptic predators? 

In this chapter, we ask whether bees are able to maintain efficient foraging in the 

presence of cryptic predators. Bees were tested with artificial flowers of similar 

appearance and different rewards. Predation risk was simulated by robotic spiders. We 

found that bees had no difficulty avoiding conspicuous spiders and still foraging 

adaptively, but they prioritized predator avoidance at the expense of efficient foraging 

when faced with detecting cryptic predators and a difficult colour discrimination task.  

 

Chapter 5 – Divided attention in bees: is the priority in predator avoidance due to 

attentional limitation? 

Following the previous chapter, we forced bees to attend to both flower choice and 

predation. Instead of rewarded in different levels, bees were required to forage from 

target and distractor flowers distinguished by similar colors but contain either sucrose 

reward or mild punishment via distasteful quinine solution to encourage color 

discrimination. Surprisingly, punishment with distasteful quinine motivated the bees 

to simultaneously avoid predation and make correct foraging choices. By 
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demonstrating the ability to divide attention between two challenging visual tasks, 

these results demonstrate a high level of cognitive sophistication in bumblebees. 

 

Chapter 6 –Individual consistency in bumblebee speed-accuracy tradeoff decisions 

when foraging under predation threat 

We tested individual consistency in bumblebee speed-accuracy tradeoffs faced 

with predation risks. Bumblebees showed individually repeatable strategies in 

foraging decisions when conspicuous predators were introduced in the meadow. We 

also calculated the foraging rate for different experimental design, and found that 

optimal strategy changes between experiments.  

 

Chapter 7 – Speed accuracy tradeoffs and decision making by individuals and dyads 

of zebrafish in colour discrimination tasks 

Here we investigated whether zebrafish show individual consistency in speed 

accuracy tradeoffs in colour discrimination tasks, and how pairs of fish with distinct 

‘personalities’ make consensus decisions. We found that zebrafish exhibit consistent 

between-individual differences in speed-accuracy tradeoffs. Some fish made ‘careful’ 

slow but accurate decisions, where others were more ‘impulsive’ and made swift but 

less accurate decisions. When tested in pairs of ‘careful’ and ‘impulsive’ individuals, 

the combined decisions were closer to those of careful individuals.  
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Chapter 2 Model systems and general methods 

 

2.1 Background of model systems 

Bumblebees and zebrafish make ideal models to investigate attention and 

behavioural individuality in vertebrate and invertebrate animals. Worker bees are 

proficient learners especially in the context of flower foraging, and have therefore 

been a popular model to study both the ecological implications of learning and 

memory, as well as their neural underpinnings (Menzel 1985, Menzel and Muller, 

1996, Chittka et al., 1999). They are able to associate food reward with colours, 

shapes, patterns, odours and landmarks (Chittka and Thomson, 2001), and will also 

learn to avoid stimuli that are associated with penalties (Ings and Chittka, 2008).  

Zebrafish have been one of the most popular model species in developmental  

biology for decades (Grunwald and Eisen, 2002, Sison et al., 2006), but more recent 

studies increasingly explore the molecular-genetic underpinnings of behaviour 

variation in this species. This concerns, for example, the genes associated with drug 

addiction (Darland and Dowling, 2001) or visual psychophysical measurements 

(Page-McCaw et al., 2004, Muto et al., 2005). However, many aspects of zebrafish 

behaviour remains largely unknown, especially insofar as the relevance of learning 

and memory in more naturalistic settings is concerned (Sison and Gerlai, 2010). In 

addition, zebrafish are shoaling fish species that swim in groups whether in their 

natural habitat or in artificial captivity, which makes them an excellent model for 

studying animal consensus decisions (Engeszer et al., 2007, Miller and Gerlai, 2007).  

 

The visual system and learning behaviour of bumblebees 

Like most hymenopterans, bumblebees show trichromatic colour vision with three 

types of photoreceptors with sensitivity peaks in the ultraviolet, blue and green region 
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(Peitsch et al., 1992). The compound eyes of bees consist of thousands of ommatidia 

each containing 6 green receptor cells with addition of one or two blue or UV 

receptors (Spaethe and Briscoe, 2005, Wakakuwa et al., 2005, Dyer et al., 2008). 

Behavioural tests also demonstrate that bees are able to identify colour out of different 

shades of greys, and are able to associate food rewards with colours even with the 

existence of similar colour distractors (Frisch, 1914, Daumer, 1956). With both 

pseudopupil and behavioural approaches, researchers find that larger worker bees 

exhibit better overall visual sensitivity and image resolution (Spaethe and Chittka, 

2003). For smaller workers, stimulation of seven or more ommatidia is needed for 

detecting a target, while larger bees only require one ommatidium for the same target 

(Spaethe and Chittka, 2003). In this case, visual learning paradigms are suitable for 

addressing the attention mechanisms and the individual behavioural differences 

between bees.  

 

The visual system and learning behaviour of zebrafish 

Zebrafish are diurnal fish originally from the Indian sub-continent, where they are 

typically in habitants in rich-vegetated silt-bottomed pools and rice paddy shallow 

water (Engeszer et al., 2007). Their fine visual ability may be driven by the 

slow-moving water and the complexity of the environment, and has become an 

important model for studying visual systems in animals (Bilotta and Saszik, 2001). 

Their retina contains four different morphological types of photoreceptors, including 

short-single cones (SSC), long-single cones (LSC), double cones (DC) and a rod 

(Risner et al., 2006). Electroretinogram data shows spectral sensitivity ranges from 

320 to 640 nm (Hughes et al. 1998), and the peak sensitivity for different opsins on 

single cones were measured (UV max = 360 - 361 nm, S max = 407 - 417 nm, M max = 

473 - 480 nm, L max = 556 - 564 nm) (Nawrocki et al., 1985, Robinson et al., 1993, 
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Cameron, 2002, Allison et al., 2004). Behavioural spectral sensitivity experiments 

with zebrafish provide evidence for colour discrimination, but the result cannot be 

predicted from photoreceptor spectral sensitivity in a straightforward manner, 

suggesting that visual processing may occur at a different level (Risner et al., 2006). 

An innate preference in blue is reported in zebrafish (Avdesh et al., 2012). 

Considering the complexity of manipulating odour and vibration cues underwater, 

visual discrimination has become the most popular behavioural paradigm in zebrafish 

(Colwill, 2005). Here we used two colour signals, one conditioned with food reward 

and another with punishment, to test individual and dyad decisions in zebrafish.  

 

2.2 General Methods 

Keeping of animals 

Bumblebees: bees (Bombus terrestris) were obtained from Syngenta Bioline Bees, 

The Netherlands. All bees were reared in a 23°C dark environment devoid of visual 

cues (colour and shape) prior to commencement of the experiments. Bee hive was put 

in a wooden box with a divider in the middle. There was a small hole on the divider 

so the worker bees can enter the other room but not the queen. Unlimited 50% (v/v) 

sucrose solution was provided daily and 10g of pollen (Syngenta Bioline Bees) was 

given twice per week. If fewer than three honey pots in the bee colony were full, 2 ml 

of 50% sucrose solution was added. After the experiment, individual bees were frozen 

in a -4°C freezer for one hour, and the body length, thorax width and weight were 

measured.  

Zebrafish: wild type zebrafish (Danio rerio) were used in all the fish experiments. 

Fishes were bred and kept in the breeding room under UK Home Office regulation. 

The breeding room was air conditioned at 26°C with a 14h:10h light:dark cycle, with 

lights going on at 8am. The fishes were fed with flake food and brine shrimp three 
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times per day. Two weeks before the experiment, the fish were moved to the 

experimental room and pair housed separately in 20 cm (l) × 11 cm (w) × 10 cm (h) 

tanks with non-transparent dividers in the middle. The temperature and light cycle for 

the experimental room remained the same as the breeding room. All tanks were 

connected to air-lines, and aquarium water (de-ionized water with added salts) was 

changed twice weekly. The body length and the weight of each fish were measured 

after the experiment.  

 

Experimental setup 

Bumblebees: In order to test how bees visually attend to colour signals and the 

individuality of the processes, we used an experimental setup in the lab with 

ecologically relevant tasks for bees to solve. In nature, foraging bees have to 

discriminate similar flowers with different rewards (or even no rewards), and 

simultaneously avoid cryptic predators on the flowers. Crab spiders are one of the 

most common sit-and wait predators on the flowers, thus we used ‘robotic’ spiders to 

mimic predation risk when foraging. All the bumblebee experiments were conducted 

in a wooden flight arena (l = 1 m, w = 0.72 m and h = 0.73 m) with a UV-transmitting 

Plexiglas lid. Two twin lamps (TMS 24 F with HF-B 236 TLD [4.3 kHz] ballasts, 

Philips, The Netherlands) fitted with Activa daylight fluorescent tubes (Osram, 

Germany) were suspended above the flight arena to provide controlled illumination. 

Artificial flowers (7×7 cm acrylic, 1 mm thick) were arranged in a four by four 

vertical grid on one of the walls of the arena on a grey background (Fig 1). The 

opposite wall contained an entrance hole through which the bees could enter the arena 

from the colony. Bees were able to access rewards (sucrose solution) through a hole 

which was 10 mm above a wooden landing platform (40×60 mm). Rewards were 

supplied to each flower and dispensed from the tips of 26G syringe needles (BD 
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Microlance Drogheda, Ireland; 0.45 × 13 mm) by syringe pumps (KD Scientific, 

KD200, Holliston, USA). A maximum droplet volume of 4.70 + 0.3 µl could be 

reached before it fell into a ‘waste pot’ which was not accessible to bees (thus 

mimicking a flower that had been emptied by a bee). Robotic ‘spider arms’ 

(custom-built by Liversidge & Atkinson, Romford, UK) covered with sponges were 

set up at the base of the flowers to simulate predation attempts. The trapping 

mechanism enabled us to capture bees without causing physical damage. ‘Dangerous 

flowers’ were fitted with life-sized crab spider (Misumena vatia) models (l = 12mm, 

made from Gedeo Crystal resin) placed on the flowers above the feeding hole.  

 

 

Fig 1 Experimental setup demonstrating the artificial meadow (a) containing artificial 

flowers (b). The positions of the flowers and spiders were randomly shuffled for each 

foraging bout.  

 

Zebrafish: We used a 40 cm (l) × 25 cm (w) × 15 cm (h) tank filled with 7 cm 

deep water which was identical to the raising water (Fig 2). Water temperature was 

kept at 26°C and measured in the beginning of each experiment. Each fish was first 
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allowed to explore and get used to the holding area of the tank for three minutes. After 

habituation, the experiment started by lifting up the barrier to let the fish swim freely 

in the tank. If a fish crossed the hole to the signal area, this was considered as decision. 

If the fish made a correct decision, the barrier between signal area and investigating 

zone was closed and the fish was given a small amount of brine shrimp (~0.5 ml, in 

average 140 individuals). After a fish had consumed the food, it was gradually moved 

back to the holding area, and the barrier was closed again. When an incorrect decision 

was made, we stirred the water for three seconds as punishment, as a further incentive 

for discrimination in difficult colour discrimination tasks (see below). When testing 

easily distinguishing colours, only food reward was given when fish chose the 

rewarding colour, and no punishment was given for incorrect choices.  
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Fig 2 Experimental setup for all the zebrafish experiments. The fish was habituated 

in the holding area for three minutes and left inspecting the tank. The colour signals 

were set on the wall of the signal area and can be seen from the tank. Once the fish 

crossed the hole to the signal area, it was considered as a choice. We gave 0.5ml of 

brine shrimp solution as reward when the fish made a correct choice, and stirred the 

water for three seconds as punishment. The fish was gradually moved back to the 

holding area after that. We tested the fish continuously for 20 trials in total. The 

time fish spent in the investigating zone were recorded.  

 

Tracking system 

The movements and positions of animals were recorded in real time during the 

experiment with three-dimensional coordinates of animal positions being calculated 

50 times per second using two video cameras connected to a computer running 

Trackit 3D software (BIOBSERVE GmbH, Bonn, Germany). Before releasing the 

animal, the background of the experimental setup was saved as reference, thus the 3D 

coordinates of anything different from the background after starting the software was 

recorded. The 3D position data was further analysed using R (v. 2.15.1) and Excel 
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2003. For experiments with dyads of fish, the videos were also analysed by 

Move-tr/2D (Library Co. Ltd., Tokyo). The software can break the videos into image 

frames and automatically track the differences in colour, luminance and pattern. In 

this case, we were able to calculate the two-dimensional position, speed, moving 

angle and the coordinate distance between two fish.  

 

2.3 Summary of experiments 

For testing selective attention in bumblebees, we design the experimental 

paradigm as follows which reported in Chapter 3 (Table 1): 

 

Table 1 Summary of experimental design, where Y = yellow, W = white, F= flowers, 

S = Spiders and C = Circles. The first experimental group tested the effect of the 

spiders of different colour, where the second group acted as a control group to test the 

effect of a novel object (circle) appeared on the flowers.  

Experimental 

group 

Number of 

bees 

Training (200 

trials) 

Avoidance assay (30 

trials) 

1: Naive 12 16 YF, no spider 16 WF, 4 with WS 

1: Experienced 12 16 YF, 4 with YS 16 WF, 4 with WS 

2: White spiders 12 16 YF, 4 with YS 16 WF, 4 with WS,  

4 with WC 

2: White circles 12 16 YF, 4 with YC 16 WF, 4 with WC 
 

 

To make sure the task in the ‘divided attention experiment’ is difficult enough for 

bumblebees, we firstly determined which colour pair is difficult, but possible, for bees 
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to discriminate. The design of the experiment is as follows (Table 2) and is provided 

in Chapter 4.  

 

Table 2 Summary of experimental design for colour discrimination pilot study. We 

aim to find a colour pair which was difficult, but possible for bee to distinguish. In 

this case we used both sucrose reward and quinine punishment to motivate the colour 

discrimination.  

Experimental 

group 

Number of 

bees 

Colour signals 

(200 trials) 

Distinct colours 5 8 yellow flowers 

(50 % sucrose), 8 

white flowers 

(0.12 % quinine) 

Similar colours 5 8 dark yellow 

flowers (50 % 

sucrose), 8 light 

yellow flowers 

(0.12 % quinine) 
 

 

To explore divided attention in bumblebees, we set up three experimental groups 

which are discussed in Chapter 4, 5 and 6 (Table 3). For Chapter 4, we described the 

first two experiments, which whether bees were able to solve two difficult tasks 

simultaneously. In Chapter 5, we added the third group to test the attentional 

limitation in bees. In Chapter 4 and 5, we examine the data at the group level, while in 

Chapter 6 we quantitatively evaluate individual differences between bees.  
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Table 3 Summary of experimental design in Chapter 4, 5 and 6. We aimed to test how 

bees focused on two difficult tasks (colour discrimination and predator avoidance) at 

the same time. In the first two experiments, we firstly trained the bees to two similar 

colour flowers with different rewarding levels, and added spiders of different 

detectability. In the last experiment, we would like to make sure the bees foraging in 

high effort thus exchange low reward to quinine punishment.  

Experimental 

group 

Number of 

bees 

Training (200 

trials) 

Testing (200 

trials) 

Chapter 

Rewarding 

flowers with 

conspicuous 

spiders 

17  

(2 stopped to 

forage) 

8 dark yellow 

flowers (50 % 

sucrose), 8 

light yellow 

flowers (20 % 

sucrose) 

8 dark yellow 

flowers while 2 of 

them contained 

white spiders (50 

% sucrose), 8 light 

yellow flowers (20 

% sucrose) 

4, 5 and 6 

Rewarding 

flowers with 

cryptic spiders 

17 (2 stopped 

to forage) 

8 dark yellow 

flowers (50 % 

sucrose), 8 

light yellow 

flowers (20 % 

sucrose) 

8 dark yellow 

flowers while 2 of 

them contained 

dark yellow spiders 

(50 % sucrose), 8 

light yellow 

flowers (20 % 

sucrose) 

4, 5 and 6 
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Rewarding 

and distasteful 

flowers with 

cryptic spiders 

10 8 dark yellow 

flowers (50 % 

sucrose), 8 

light yellow 

flowers (0.12 

% quinine 

solution) 

8 dark yellow 

flowers while 2 of 

them contained 

dark yellow spiders 

(50 % sucrose), 8 

light yellow 

flowers (0.12 % 

quinine solution) 

5 and 6 

 

 

Experiments using zebrafish (Chapter 7) are summarized in Table 4 and 5. In a 

pilot study we tested whether fish can learn a simple colour discrimination task (easily 

discriminating colours) with only food reward, or whether both reward and 

punishment were required. When only food reward was present, the fish chose two 

colours at random; thus in the following studies both reward and punishment were 

used.  
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Table 4 Pilot study in Chapter 7. We tested whether only conditioned colour signal 

with reward can motivate colour discrimination, or both reward and punishment were 

required.  

Experiment Number of 

fishes 

Colour signal Trials 

Condition colour 

with food reward 

5 Green (rewarded) 

and brown (no 

punishment) 

20 

Condition colour 

with food reward 

and punishment 

5 Green (rewarded) 

and brown 

(punishment) 

20 

 

 

In the zebrafish experiments, we aimed to answer three questions: (1) Do zebrafish 

show speed-accuracy tradeoffs between individuals, so that some individual have a 

slow and accurate strategy whereas others have a fast and ‘sloppy’ strategy? (2) If 

they show speed-accuracy tradeoffs among individuals, is individual behaviour 

consistent over time? (3) How do fish with different strategies make consensus 

decisions in dyads? To answer these questions, we designed three sets of experiments 

as follows. Results are described in detail in Chapter 7. To test whether fish showed 

speed-accuracy tradeoffs between individuals, we used colour discrimination test 

conditioned with both reward and punishment. We hypothesized there would be  a 

correlation between decision time and accuracy, which some fish would spend longer 

time making decisions and achieve higher accuracy, while others would be fast but 

more inaccurate. For the second set of the experiment, we continued using colour 



 35 

discrimination test and repeated three times with a 24 hours interval. We aimed to test 

whether the strategy of the fish was stable over time. For example, the careful fish 

was constantly careful on the second and the third day, and so as the impulsive fish. In 

the last set of the experiment, we tested how zebrafish make decision in dyads.  



 36 

 

Table 5 Summary of design for zebrafish experiments which described in Chapter 7. 

In the first set of the experiment, we tested whether fish showed between individual 

speed-accuracy tradeoffs in a colour discrimination test. Since the fish presented 

speed-accuracy tradeoffs, we design the second sets of the experiment to test whether 

this tradeoff was consistent over time. We tested the fish with the same colour 

discrimination task after 24 and 48 hours. The fish showed stable strategy over time 

thus we were able to test how they made decisions in dyads. In the last sets of the 

experiment, fish were tested individually in the first day in order to gain their 

reference behaviour, and paired in the second day for the colour discrimination 

experiment.     

Experiment Number of 

fishes 

Colour signal Trials 

Speed-accuracy 

tradeoffs in colour 

discrimination test 

30 Green (rewarded) 

and turquoise 

(punishment) 

20 

Repeatability test 15 Green (rewarded) 

and turquoise 

(punishment) 

20 trials for the 

first day, and 

another 20 trials 24 

& 48 hours after 

Consensus 

decision test 

30 Green (rewarded) 

and turquoise 

(punishment) 

Fishes were tested 

individually for 20 

trials for the first 

day, and tested in 

pairs after 24 hours 
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Chapter 3 Selective attention in bees: shape recognition of cryptic 

predators by bumblebees 

 

3.1 Abstract 

Predators hunting for cryptic prey use search images, but how do prey search for 

cryptic predators? We address this question using the interaction between bumblebees 

and the colour-changing crab spider Misumena vatia which can camouflage itself on 

some flowers. In laboratory experiments, we exposed bumblebees to an array of 

flowers concealing robotic predators (a trapping mechanism combined with a 3D 

life-sized model of a crab spider or a circle). Groups of bees were trained to avoid 

either cryptic yellow spiders or yellow circles (equal area to the spiders) or remained 

predator naive. The bees were then exposed to a new patch of white flowers 

containing some cryptic predators (either white spiders, white circles or a mixture of 

both). We monitored individual foraging choices and used a 3D video tracking system 

to quantify the bees’ flight behaviour. The bees trained to avoid cryptic spiders, chose 

40% fewer spider harbouring flowers than expected by chance, but were indifferent to 

cryptic circles. They also aborted a higher proportion of landings on flowers 

harbouring spiders, ultimately feeding from half as many ‘dangerous’ flowers as naive 

bees. Previous encounters with cryptic spiders also influenced the flight behaviour of 

bees in the new flower patch. Experienced bees spent longer time inspecting the 

flowers they chose to reject (both with and without concealed spiders) and scanned 

from side to side more in front of the f lowers to facilitate predator detection. We 

conclude that bees disentangle shape from colour cues and thus can form a 

generalised search image for spider shapes, independent of colour. 
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3.2 Introduction 

Animals are exposed to a constant flow of complex sensory input. A necessary 

ability for them to survive is to selectively process the target stimuli and ignore others. 

At the same time, foraging animals must balance predator vigilance with foraging 

efficiency (Lima, 1985). Thus, mechanisms which enhance predator detection should 

benefit foraging animals (Lima and Dill, 1990). Indeed many animals possess 

predator avoidance responses that can either be innate (Veen et al., 2000, Berejikian et 

al., 2003, Turner et al., 2006) or learnt (Ings and Chittka, 2008, Brown, 2003, Kelley 

and Magurran, 2003). Both innate and learned avoidance responses require an animal 

to recognise cues that indicate the presence of their predators. In many cases the cues 

that indicate predator presence are salient, e.g. passing shadows (Cooper, 2009) or 

chemical cues such as fish kairomones (reviewed in Wisenden, 2000). However, in 

the case of cryptic predators, especially ambush or sit-and-wait predators, such cues 

are likely to be much less salient to prey (Troscianko et al., 2009).  

When faced with cryptic prey, predators are known to utilise a prey specific search 

image (Tinbergen, 1960), defined as: “a transitory enhancement of detection ability 

for particular cryptic prey types or characteristics” (Ruxton et al., 2004). This 

strategy enables the predator to focus on the cryptic prey, even in the presence of 

distractors. But what strategies do prey use to recognise, and thus avoid, cryptic 

predators? Surprisingly, little attention has been given to this question. However, in a 

previous study (Ings and Chittka, 2008) researchers showed that bumblebees are able 

to learn to reliably detect cryptic predators. As the bees were unable to detect any 

colour contrast between spider models and their background researchers suggested 

that the bees must have been relying on shape-from-shading cues (Ramachandran, 

1988, Hershberger, 1970). We were particularly intrigued by the report that bees were 

able to rapidly learn to avoid spider models and that the avoidance response was 
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maintained for at least 24 hours. This led us to consider whether bees are developing a 

specific search image to enhance their detection of cryptic predators.  

While it is widely known that bees possess advanced cognitive capabilities and 

can be trained to recognise and associate complex patterns with rewards or 

punishments (Chittka and Niven, 2009, Stach et al., 2004, Roussel et al., 2009) in 

both appetitive (rewarding or distasteful food: Menzel, 1985) and predator avoidance 

contexts (Ings and Chittka, 2008, Ings and Chittka, 2009), little is known about their 

use of search images. By inference, it appears that honeybees can use search images 

as they are able to distinguish camouflaged shapes after training (Zhang and 

Srinivasan, 1994). Field observations also indicate that pollinators are able to 

recognise specific elements of a spider shape (the raptorial forelegs: Gonçalves-Souza 

et al., 2008). However, the spider models used in that study were not cryptic on the 

flowers and only wild pollinators were tested, so it was not possible to determine if 

avoidance was an innate or learned response.  

Therefore, in this study we tested whether bees can form a generalised search 

image for cryptic predators, independent of colour. We utilised the interaction 

between bumblebees and the predatory crab spider Misumena vatia, which is able to 

reversibly change its colour between white and yellow and thus camouflage itself on 

white or yellow flowers respectively (Morse, 2007, Insausti and Casas, 2008). One 

hypothesis is that bees only learn to avoid predators of the colour they have been 

exposed to, or they are only vigilant for predators when they encounter flowers of the 

same colour as those where they have experienced predation threat. Alternatively, 

bees might form a generalised, colour independent search image and will thus avoid 

spider shapes irrespectively of spider or flower colour. 
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3.3 Materials and methods 

Two colonies of bumblebees (Bombus terrestris) were obtained from Syngenta 

Bioline Bees, The Netherlands. All bees were reared in a dark environment devoid of 

visual cues (colour and shape) prior to commencement of the experiments. The 

experiments were conducted in a wooden flight arena (l = 1 m, w = 0.72 m and h = 

0.73 m) with a UV-transmittent Plexiglas® lid and lit by two twin-lamps (TMS 24F 

with HF-B 236 TLD (4.3 KHz) ballasts, Philips, The Netherlands) fitted with Activa 

daylight fluorescent tubes (Osram, Germany). The arena contained an artificial 

‘meadow’ of 16 ‘flowers’ arranged in four evenly spaced rows on the end wall. Each 

flower consisted of a landing platform, where bees could land and extend their 

proboscises through a hole in the wall to feed on sucrose droplets (50% v/v) being 

formed at the end of syringe needles (BD MicrolanceTM Drogheda, Ireland, 3 26G 

0.45 x 13 mm, delivered at a rate 1µl min-1 by syringe pumps: KD Scientific, KD200, 

Holliston, USA), and a removable square (7x7cm) floral colour signal (for further 

details see Chapter 2).   

 

Experimental design 

To determine whether bees are able to form generalised, colour independent, 

search images of predators we carried out two sets of experiments (Table 6). Our 

initial focus (Experiment 1) was to determine whether bees that had learnt to avoid 

cryptic predators in one colour context (yellow spiders on yellow flowers) would also 

be able to avoid cryptic predators in a different colour context (white spiders on 

yellow flowers). In the second experiment (Experiment 2), we used another colony of 

bees to test whether the transference of avoidance responses between colour contexts 

represents the use of shape specific search images.  
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Table 6 Summary of experimental design, where Y = yellow, W = white, F= 

flowers, S = Spiders and C = Circles 

Colony Experimental group Training Avoidance assay 

A 1: Naive 16 YF, no spider 16 WF, 4 with WS 

A 1: Experienced 16 YF, 4 with YS 16 WF, 4 with WS 

B 2: White spiders 16 YF, 4 with YS 16 WF, 4 with WS,  

4 with WC 

B 2: White circles 16 YF, 4 with YC 16 WF, 4 with WC 
 

 

Experiment 1 

Pre-training 

Prior to training, individually marked bees foraged freely in the arena. Once 

motivated foragers were identified (i.e. they filled their crops and returned to the nest 

repeatedly) they were individually pre-trained on yellow flowers (a 7x7cm flat yellow 

floral signal was placed flush with the wall at each feeding position). Pre-training 

lasted for a minimum of 100 flower visits (134.4 ± 4.4), to ensure bees had learned to 

associate yellow flowers with a sucrose reward (Ings and Chittka, 2008). 

Subsequently, bees were allocated into two treatment groups for training (Naïve and 

Experienced).  

 

Training 

During training both groups of bees foraged individually within the experimental 

meadow of yellow flowers. Their foraging behaviour was observed and scored into 

four categories: 1) Choices - where bees chose to land on flowers; 2) Acceptances - 

where the bees remained and extended their proboscises to feed; 3) Aborts - where 
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bees landed but rapidly left without attempting to feed; and 4) Rejections - where bees 

inspected flowers (by entering a defined zone [h = 9cm, w = 9 cm, d = 7 cm] in front 

of the floral display; Fig. 3a) but rejected them without landing. In addition, the flight 

paths of all bees were recorded using a 3D tracking system (Trackit, Biobserve, 

Germany; for further information please see Chapter 2). Before training ceased, bees 

were required to make a minimum of 200 flower choices after which they were 

allowed to continue foraging and return to the nest under their own volition (thus the 

total number of choices varied among bees: Naïve = 240.4 ± 7.9, Experienced = 227.0 

± 8.0). This ensured that Experienced bees received sufficient (5.9 ± 1.0) simulated 

predation attempts to learn about predation risk from camouflaged spiders (Ings and 

Chittka, 2008). 

 

 

Fig. 3 Analysis of turning points. Panel a shows a dangerous flowers and the flower 

inspection zone (dashed cube) surrounding the flower. The bold line shows the 3D 

flight path of the bee as it inspects the flower. In panel b this path is translated to 

show horizontal (y) displacement relative to the platform against time to detect 

turning points (changes of direction > 5mm) which are indicated by the arrows.  
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Fig. 4 Sample of numbers and the distances travelled of turning points in 100 flower 

choices. We selected 5mm as cutting point because it contains over 68% of the 

turning points, and also it contains 1.4 times more turning points than previous 

category. Turning points which moved small distances may be noise data which bees 

zigzag during their flight.  

 

For the Naïve bees group (n=12), the artificial meadow remained the same as the 

pre-training phase and was free from predation risk. Bees in the Experienced group 

(n=12) were exposed to the same meadow of yellow flowers as Naïve bees, but there 

was a 25% risk of being attacked by a predator. Four randomly selected ‘dangerous’ 

flowers (out of 16) harboured cryptic ‘predators’. Bees received a simulated predation 

attempt by a ‘crab spider’ whenever they landed on one of these flowers (see Chapter 

2 for further information). Predators consisted of a 3D life-size model of the crab 

spider Misumena vatia (placed above the feeding hole) and a trapping mechanism that 

grasped bees between two foam coated pincers for 2 seconds. The pincers, which 

projected from the arena wall either side of the landing platform, were operated by a 

remotely controlled solenoid. During training, yellow spider models (painted the same 

yellow as the floral display) that were cryptic to bumblebees were used. To avoid bees 
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learning the location of the spiders, their positions were randomly redistributed 

between foraging bouts when bees returned to the hive.  

 

Avoidance assays 

Directly after training, bees from both groups were tested in a new ‘meadow’ 

containing 16 white flowers. Four randomly chosen flowers harboured cryptic spiders 

(painted the same white as the floral displays), although bees landing on these flowers 

were not attacked. The behaviour and flight paths of bees in this new meadow were 

monitored until a minimum of 30 flower choices had been made. The majority of bees 

(22 out of 24) reached this criterion within their first foraging bout, only two bees, 

both in the Naïve group, required two foraging bouts.  

 

Experiment 2 

All 24 bees were pre-trained using the same procedure as Experiment 1 and 

subdivided into two treatment groups. The first group of bees were trained to avoid 

cryptic yellow spiders in the same was as the Experienced bees in Experiment 1. 

However, in the avoidance assay they were exposed to a meadow containing 16 white 

flowers where four randomly positioned flowers harboured cryptic white spiders and 

an additional four flowers harboured white circles. These circles were of similar area 

(323.7 mm2) to the spiders (322.6 ± 6.5 mm2) and protruded from the flower surface 

(they were made from 1mm thick plastic). Thus, the general appearance of the 

dangerous flowers (flat white with a 3D shape by the feeding hole) remained the same 

as those bearing spiders. As before, the behaviour of bees was monitored until they 

had made a minimum of 30 choices. A second group of bees from the same colony 

acted as a control group to ensure that bees are able to detect and learn to avoid circles. 

Therefore, the training and avoidance assays were carried out in the same manner as 
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for the Experienced group in Experiment 1 with the exception that the four spiders 

were replaced with four circles in both training and avoidance assay phases (Table 6). 

 

Statistical analysis  

As we were interested in how bees’ past experience of spiders, not current risk (i.e. 

spiders were present but the trapping mechanisms were inactive during tests), 

influenced their responses to the presence of cryptic spiders during the avoidance 

assay, only the behaviour and flight paths associated with first 30 flower choices were 

included in the analyses. One-sample t-tests were used to determine if the number of 

‘dangerous’ flowers chosen during the avoidance assays differed from chance levels 

(7.5 flower visits). Where necessary, appropriate transformations were carried out to 

meet the assumptions of the statistical tests: for rejections of safe flowers and aborts 

of dangerous flowers the log(x+1) transformation was used. It was not possible to 

normalise the proportion of dangerous flowers accepted by transformations so these 

data were analysed using a Generalised Linear Model (GLM) using a binomial error 

distribution.  

For the analysis of the flight paths the duration, distance travelled, the number of 

turning points and the average speed of inspection flights within the zone in front of 

the floral displays (Fig. 3a) were compared between treatment groups using t-tests.  

In the case of acceptances and aborts, the inspection flights were taken as the 

approach flight prior to a bee landing to feed. However, for rejections, the inspection 

flight was taken as the total flight path in front of the flower. All inspection flights of 

less that 0.1s duration were excluded from the analyses to prevent the inclusion of 

instances where bees passed through the inspection zone on their way to another 

flower. To quantify scanning behaviour when bees inspected and rejected flowers 

harbouring spiders, we plotted their flight paths in the horizontal x-y plane (Fig. 3b). 
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A turning point was counted when the bees’ trajectory changed direction along the y 

axis (parallel to the flower display), and involved a displacement of at least 5mm (Fig. 

1b). Statistical analyses were carried out in SPSS for Windows 11.5 and using the R 

statistical platform (R Development Core Team, 2004). All tests were two tailed with 

significance level set at 0.05.  

 

3.4 Results 

Experiment 1 

By the end of training, experienced bees had learnt to avoid flowers harbouring 

cryptic yellow spiders: visitation rates (0.03 ± 0.01 visits per choice) to dangerous 

flowers during the last 30 choices were significantly below that expected (0.25) if the 

bees were choosing flowers at random (one sample t-test: t (11) = 16.455, p < 0.001). 

During the avoidance assay, all bees (n=24) foraged successfully in the new patch of 

white flowers. There was no significant difference between groups of bees in the 

number of flowers chosen during their first foraging bouts (Experienced, n = 55.5 ± 

4.9; Naïve = 56.1 ± 5.7; t (22) = -0.078, p = 0.939). Although the total number of 

flowers rejected during the first 30 choices (Experienced = 9.1 ± 1.7; Naïve = 17.0  ± 

5.7; t (22) = -1.340, p = 0.197) did not differ significantly between experienced and 

naïve bees, naïve bees did reject more ‘safe’ (no spiders) flowers (Experienced = 2.6 

± 1.0; Naïve = 11.8 ± 4.8; [log transformed] t (22) = 3.183, p=0.004), but not 

‘dangerous’ flowers (Experienced = 4.3 ± 0.9; Naïve = 4.6 ± 1.2; t (22) = -0.168, p = 

0.868) than experienced bees during this period. The latency to forage was variable 

among bees and, although experienced bees showed a non-significant trend to start 

foraging sooner (Experienced = 13.8 ± 3.2s and Naïve = 40.8 ± 12.5s) than naïve bees, 

([log transformed] t (22) = -2.055, p = 0.052).  
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Bees that had experienced attacks by cryptic yellow spiders (on yellow flowers) 

chose (landed on) 40% fewer white flowers harbouring cryptic (white) spiders than 

expected by chance during the avoidance assay (Fig. 5a; one sample t test: t (11) = 

-4.413, p = 0.001). This was evident from the first flowers visited and the magnitude 

of the effect increased gradually as bees visited more flowers (Fig. 5a). In contrast, the 

total number of dangerous flowers chosen by bees with no prior experience of cryptic 

spiders did not deviate from that expected by chance (Fig. 5a; one-sample t-test: t (11) 

= -1.239, p = 0.241) although there is a suggestion that it fell as bees visited more 

flowers. Furthermore, while naïve bees accepted almost all of the dangerous flowers 

they chose to land on (93.1 ± 3.0 %), experienced bees aborted many landings and 

only accepted fewer than 2/3 (60.9 ± 12.0 %) of the dangerous flowers they chose to 

land on (Fig. 5b; GLM [binomial error]: F(1,21)= 9.228, p = 0.006). Thus, experienced 

bees ultimately fed from only half (2.9 ± 0.8) as many dangerous flowers as naïve 

bees (5.9 ± 0.8).  
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Fig. 5 Cumulative foraging choices made by bees during the first 30 flower choices 

of the avoidance assay. (a) The mean (±95% CI) number of dangerous flowers 

(harbouring cryptic white spiders) chosen by bees that had previously Experienced 

spiders (black circles) and spider Naïve bees (grey diamonds). The line in the panel 

represents the expected number of dangerous flowers chosen if bees showed no 

avoidance response to spiders. (b) The proportion of dangerous flowers chosen that 

were subsequently accepted, i.e. the bees continued to feed.  

 

Prior experience of cryptic spiders also influenced bees’ flight behaviour.  

Experienced bees spent 1.4 times longer than naïve bees inspecting safe flowers (Fig. 
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6a; t (19) = 3.862, p = 0.001) and 1.5 times longer inspecting dangerous flowers (Fig. 

6a; t (20) = 2.556, p = 0.019) that they rejected. Furthermore, when rejecting flowers, 

experienced bees spent longer inspecting dangerous flowers than safe flowers (Fig. 6a, 

paired t-test: t (7) = -4.703, p = 0.002), whereas there were no differences for naïve 

bees (Fig. 6a, paired t-test: t (10) = -1.706, p = 0.119). Bees also altered the distance 

they travelled whilst inspecting flowers that they rejected (Fig. 6b). The flight paths of 

experienced bees were longer than those of naïve bees when they were rejecting both 

safe (2.9 ± 1.3 cm longer; t (19) = 2.279, p = 0.034) and dangerous (5.0 ± 0.2 cm longer; 

t (20) = 2.258, p = 0.020) flowers. Experienced bees also increased the length of their 

inspection flights for dangerous flowers relative to safe flowers (Fig. 6b, 4.7 ± 1.2 cm 

longer; paired t-test: t (7) = -4.007, p = 0.005), but no change was observed for naïve 

bees (Fig. 6b; paired t-test: t (10) = -1.201, p = 0.258). There were no differences in the 

length of inspection flights between treatment groups or flower types for flowers that 

were accepted (Fig. 6b).   

 

 

Fig. 6 Characteristics of inspection flights during the avoidance assay. (a) The mean 

(±95% CI) duration (seconds) of inspection flights and (b) the mean distance (cm) 

travelled in front of the flowers. Black circles represent bees that had Experienced 

spiders and grey diamonds represent spider Naïve bees.  
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The differences in the duration and length of inspection flights for rejected flowers 

corresponded to changes in the scanning behaviour of bees (Fig. 7). Experienced bees 

doubled the number of side-to-side scans (Figs 7, 8) when they inspected and rejected 

dangerous flowers (paired t-test: t (7) = -7.029, p < 0.001), whereas the number of 

scans by naïve bees showed a slight, but non-significant, increase when they rejected 

dangerous flowers (paired t-test: t (10) = -1.884, p = 0.089).  

 

 

Fig. 7 The mean (±95% CI) number of turning points during left-right scanning of 

safe and dangerous flowers that were subsequently rejected. Black circles represent 

bees that had Experienced spiders and grey diamonds represent spider Naïve bees.  
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Fig. 8 An example of side-to-side scanning behaviour in front of a flower for a 

typical bee from the experienced treatment group: a) inspecting and rejecting a safe 

flower and b) a dangerous flower. Panels to the left show the 3D flight path within 

the flower zone relative to the base of the landing platforms (0,0,0). The bold lines 

are the actual trajectories and the grey lines are projections of the trajectories onto 

the three horizontal and vertical planes. Panels to the right show the turning points 

(direction changes of >5mm) of the horizontal component of the bees’ inspection 

flight for safe (a) and dangerous (b) flowers.  
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Experiment 2 

By the end of training, bees exposed to dangerous flowers harbouring yellow 

cryptic spiders (expected probability = 0.25, observed = 0.14 ± 0.03 , one sampled 

t-test: t (11) = -4.238, p = 0.001), or yellow cryptic circles (expected probability = 0.25, 

observed = 0.12 ± 0.02 , one sampled t-test: t (11) = -6.434, p < 0.001), chose 

significantly fewer dangerous flowers than expected by chance, i.e. they had learnt to 

avoid cryptic yellow spiders and circles. When the colour context changed (to white 

flowers and white spiders/circles), bees in the spider group chose less than half the 

number of spider harbouring flowers than expected if they were unable to recognise 

danger (Fig. 9: one sampled t-test: t (11) = -12.113, p < 0.001). However, the same bees 

were indifferent to the presence of cryptic white circles on flowers: visitation rates to 

these flowers did not differ from chance levels. (Fig. 9: one sampled t-test: t (11) = 

-0.238, p = 0.816). Even so, bees in the circle group (that had been trained to avoid 

cryptic yellow circles) also chose fewer flowers bearing cryptic white circles in the 

avoidance assay than would have been expected if they were unable to recognise 

danger (white circles: expected probability = 0.25, observed = 0.14 ± 0.02, one 

sampled t-test: t (11) = -6.240, p < 0.001).  
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Fig. 9 The mean (± 95% CI) proportion of flowers harbouring either spiders (left 

circle) or circles (right circle) chosen by bees in the spider group during their first 

30 choices during the avoidance assay. The dashed line represents the expected 

proportion of spider/circle flowers bees would choose if they showed no avoidance 

response to the shapes. Note that the shades used for the spider and circle flowers 

depicted were chosen for clarity and do not accurately represent the colours used in 

the experiments.  

 

3.5 Discussion 

We found the innate selective attention toward spider shape but not colour in 

bumblebees. Bees formed a colour-independent search image of cryptic predators 

which subsequently influenced their foraging behaviour when they were exposed to a 

new patch of flowers containing differently coloured cryptic predators. This ability is 

particularly important in the context of bumblebee-crab spider interactions where 
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some species of spider, such as M. vatia, are able to reversibly change their colour 

(Morse, 2007, Insausti and Casas, 2008). Thus, rather than learning to detect just the 

cryptic yellow forms of the spiders, the bees appear to be learning complex shape 

cues that can be generalised (Stach et al., 2004) to other colour forms of the spider. 

Previous work has shown that honeybees are able to use prior experience to 

enhance their ability to detect camouflaged shapes. Zhang and Srinivasan (1994) 

found that whilst naïve bees were unable to detect camouflaged shapes, detection was 

possible if they had previously been trained to discriminate the shapes in a simpler 

context – i.e. they had developed a search image for the shapes. We have now tested 

whether bees’ search image of a predator consists of the shape memorised together 

with its colour, or whether bees are able to recognise the predator’s shape 

irrespectively of its colour, requiring them to disentangle shape from colour features 

(Skorupski and Chittka, 2011). This is a non-trivial task because when both shape and 

colour cues are present, as is the case with the yellow spiders, bees tend to focus more 

on colour cues (Lehrer and Campan, 2004).  

Many animals possess innate avoidance responses to major predators (e.g. birds, 

molluscs and fish: Veen et al., 2000, Turner et al., 2006, Dixson et al., 2010), but the 

possibility that bees possess an innate avoidance response to spiders has not been 

tested to date, although it is often alluded to (Dukas, 2001, Gonçalves-Souza et al., 

2008, Reader et al., 2006). In the current study, naïve bees did not avoid flowers 

harbouring cryptic white spiders (Fig. 2a), which supports my previous observations 

(Ings and Chittka, 2008) that bumblebees do not appear to have a strong innate 

avoidance response to spider shapes. However, bees that had experienced attacks by 

cryptic yellow crab spiders, and learned to avoid such spiders, also avoided cryptic 

white crab spiders in a new patch of white flowers. They chose (landed on) 40% 

fewer spider harbouring flowers than expected by chance. Avoidance of flowers with 
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spiders was evident right from the first few flower choices (Fig. 2a) and strengthened 

with increased exposure to more spider harbouring flowers. Furthermore, while naïve 

bees accepted nearly all of the dangerous flowers that they initially chose to land on, 

experienced bees aborted landings on many dangerous flowers without feeding (Fig. 

2b). This suggests that bees only recognised ‘danger’ once they had briefly landed in 

front of the spider model – an effect already demonstrated for encounters with cryptic 

spiders (Ings and Chittka, 2008). Clearly, experiencing predation attempts by cryptic 

spiders influences the foraging behaviour of bees in a new patch of flowers, but are 

bees using colour-independent search images of predators? 

One potential explanation for the apparent avoidance of flowers harbouring 

cryptic white spiders by experienced bees is that they were generally more ‘cautious’ 

as a result of being attacked during training (e.g. increased vigilance with higher 

predation risk: Lendrem, 1983, Hunter and Skinner, 1998, Winnie and Creel, 2007).  

However, evidence from my experiments rules out indiscriminate ‘cautiousness’. The 

appearance of both flowers and predators was different in the new patch and the 

predators were highly cryptic. Therefore, if experienced bees were more cautious 

overall than naïve bees, as a result of experiencing simulated spider attacks, we would 

have expected them to take longer to start foraging in the patch with new flowers and 

also to reject more safe flowers (Ings and Chittka, 2008). Yet, there was no clear 

evidence for an overall change in behaviour of experienced bees compared to naïve 

bees. In particular, there was no difference in the total number of flowers both groups 

of bees chose to land on during the avoidance assay and naïve bees rejected more safe 

flowers than experienced bees. Furthermore, bees that had experienced attacks from 

camouflaged spiders on yellow flowers, if anything, started foraging on the new white 

flowers sooner (though not significantly so) than bees that had no experience of 

spiders. This behaviour does suggest that, having been attacked on yellow flowers, 
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experienced bees find white flowers more attractive (e.g. see Ings and Chittka, 2009) 

than naïve bees. However, overall, we argue that the reluctance of experienced bees to 

feed on flowers with cryptic white spiders is not a general response to being attacked 

by spiders, but is a specific response to their recognising the shape of the spiders 

which they associate with danger. 

A potentially simpler explanation for the behaviour of experienced bees during the 

avoidance assay is that they were responding to the general appearance of the 

dangerous flowers relative to safe flowers rather than spider shapes specifically. In 

other words, even though the colour of the flowers changed between training and the 

avoidance assay, bees may have associated flowers that had a 3D object attached to 

the floral display with danger. However, evidence from experiment 2 rules out this 

possibility. If bees were indeed learning to avoid flowers that differed in general 

appearance to those that were safe in the training phase they should have avoided both 

flowers bearing spiders and those bearing circles. Although, having been trained to 

avoid cryptic yellow spiders they only avoided cryptic white spiders and were 

indifferent to white circles in the avoidance assay (Fig. 6). One can also rule out the 

possibility that indifference to cryptic circles occurred because bees were unable to 

detect them because bees in the circle group readily learnt to avoid cryptic yellow 

circles during training and also avoided cryptic white circles during the avoidance 

assay. Therefore, we argue that bees in experiment 1 and 2 had developed a search 

image for crab spider shapes.  

Further support for the use of colour-independent spider search images by 

experienced bees in experiment 1 is provided by the analysis of their 3D flight paths. 

Experienced bees spent longer than naïve bees inspecting flowers (both with and 

without spiders) that they rejected (Fig 4a). More importantly, in the context of 

predator search images, experienced bees spent 30% longer inspecting the dangerous 
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flowers that they rejected when compared to safe flowers. As neither group of bees 

had previously encountered white flowers before, these differences cannot be 

attributed to experienced bees associating white flowers with danger. A plausible 

explanation is that experienced bees invested more time into predator detection than 

naïve bees in response to their recent exposure to high predation risk (Lima and 

Bednekoff, 1999). However, there was no evidence for an overall increase in 

vigilance as experienced bees did not spend longer inspecting flowers that they chose 

to accept (Fig. 3a). This suggests that bees modulate vigilance, and potentially employ 

predator search-images, in response to a high ‘perceived’ predation threat over short 

time scales (Lima and Bednekoff, 1999) - even between flower visits. As bees moved 

rapidly from flower to flower in the meadow (mean interflower time was only 1.6 ± 

0.3 seconds and the mean approach speed was 0.22 ± 0.01 ms-1), the probability of 

detection errors (not perceiving a potential predator) is likely to be relatively high 

(Ings and Chittka, 2008). We therefore argue that experienced bees only shift their 

attention towards predator detection (i.e. used their predator search image) when they 

detected flowers whose appearance subtly differed (the presence of the 3D cryptic 

spider) from safe flowers, or after they had recently detected a threat on a nearby 

flower.   

Evidence for this switch to predator detection upon perceiving a potential threat is 

provided by closer scrutiny of the bees’ flight paths. Experienced bees also travelled 

further when they were inspecting dangerous flowers (Fig. 3b). More importantly, the 

greater distance travelled was a result of increased side to side scanning of the flowers 

(Figs 4 & 5). Although we were not able to track the relative position of bumblebees’ 

heads and thoraxes, their scanning movements were similar to the peering flight 

manoeuvres recently described in honeybees (Boeddeker and Hemmi, 2010). These 

repeated side-to-side movements would improve edge detection by amplifying the 
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weak spider shape signal through integration over time. For example, scanning may 

allow bees to use relative motion cues (Zhang and Srinivasan, 1994), i.e. changes in 

the appearance of shadows cast by the 3D spider models, to facilitate shape detection.  

The results demonstrate that search images are important in the context of 

predator avoidance, when prey have to be vigilant for cryptic predators. More 

importantly, we found that bees are able to develop search images that do not tightly 

link colour and shape. Rather than search for ‘yellow spiders’, bees were able to 

search for ‘spider shapes’ but not other yellow material. This ability to respond to 

shape irrespectively of colour has only recently been recognised in hymenoptera 

(Lehrer and Campan, 2005, Lehrer and Campan, 2004). Here we have shown how this 

ability to disentangle shape from colour can enhance detection of colour changing, 

cryptic predators.  
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Chapter 4 Divided attention in bees: can bees simultaneously engage 

in adaptive foraging behaviour and attend to cryptic predators? 

 

4.1 Abstract 

Foraging animals need to balance efficient foraging against predator avoidance. 

Bees foraging for nectar often have to discriminate between flowers with similar 

appearance but different nectar rewards. At the same time they must be vigilant for 

ambush predators, such as crab spiders, which can camouflage themselves on flowers. 

Here we examined bees with a task where they had to discriminate between flowers 

with high target-distractor similarity that differ in reward level and concurrently 

detected predation risk from conspicuous or cryptic predators. Robotic spiders were 

used to simulate predation risk. We found that bees prioritized predator avoidance at 

the expense of efficient foraging when faced with detecting cryptic predators and a 

difficult colour discrimination task. Bees that encountered conspicuous spiders were 

able to discriminate between low and high reward flowers of similar appearance and 

avoid predators. When the task of discrimination became difficult, bees prioritized the 

avoidance of predation, but gave up priotising the identification of highly rewarding 

flowers.  

 

4.2 Introduction 

Animals are exposed to a constant flow of complex sensory input. Foragers, 

for example, must prioritize information relevant to important tasks, such as locating 

the most rewarding food items or detecting predators (Milinski, 1984, Godin and 

Smith, 1988, Clark and Dukas, 2003). Foraging and visual search often require a 

trade-off between attending to the foraging target (e.g. flowers) and focusing on 

potential danger in the environment (e.g. sit-and-wait predators on flowers). A 
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foraging bee will spend most of its time choosing between visual targets (flowers) that 

vary in colour, shape, and pattern – and is under constant pressure to select the most 

rewarding flowers while minimizing predation risk and energetic costs (Chittka and 

Menzel, 1992). The task can be challenging and highly dynamic since there are 

distractor flowers, i.e. other plant species with different traits (Schaefer and Ruxton, 

2009) and camouflaged predators in the field (Morse, 2007). Many plant species, such 

as those in the orchid family, have flowers which resemble the appearance or odour of 

co-occurring, rewarding species to attract pollinators (Dafni, 1984, Roy and Widmer, 

1999). Moreover, predators can use the attractiveness of flowers to lure their prey. For 

example, crab spiders (Araneae: Thomisidae) are sit-and-wait predators that ambush 

pollinators, such as bees, on flowers (Chittka, 2001, Insausti and Casas, 2008). Some 

species of crab spiders can reversibly change their body colour to match that of the 

flower they are hunting on (Morse, 1986). They even preferentially hunt on high 

quality flowers (Morse, 1986), which are also preferred by foraging bees (Menzel et 

al., 1993). These upper level consumers can have huge impact on the entire food 

chain not only by directly consuming their prey, but also through non-consumptive 

effects such as the existence of predation threat (Luttbeg and Kerby, 2005, Preisser et 

al., 2005, Schmitz et al., 2008). The prey can alter their behaviour strategies with the 

presence of the predator and may proceed to influence their own prey and resources. 

Previous studies found that the existence of the predator which alters prey’s traits has 

the same effect as when the predators actually consume the prey (Presser et al., 2005). 

We therefore tested how prey responded to the existence of predators in difficult 

foraging conditions in order to give a better understanding of how traits of both 

predators and prey influenced the dynamics of the ecosystems.  

 We have a good understanding of the individual problems facing foraging bees: 

how they choose between different flowers (Giurfa and Lehrer, 2001, Shafir et al., 
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2003, Chittka and Raine, 2006) and how they interact with predators (Heiling and 

Herberstein, 2004, Dukas, 2005, Reader et al., 2006). Bees can associate food rewards 

with specific floral traits, such as colour, and can successfully discriminate between 

even subtle differences in traits (colour) to maximise foraging efficiency (Dyer and 

Chittka, 2004a). Furthermore, bees are known to be able to learn to avoid both 

individual flowers harbouring predators and sets of flowers of a given type (colour) 

associated with predation risk (Ings and Chittka, 2008, Ings and Chittka, 2009, Jones 

and Dornhaus, 2011). However, as far as we are aware, no study has considered how 

bees perform when exposed to both flower colour discrimination and predator 

avoidance tasks simultaneously, a situation which bees must naturally face. Evidence 

from field studies suggests that bees may choose to avoid a patch harbouring 

predatory crab spiders (Dukas and Morse, 2003), and laboratory studies indicate that 

bees may also choose to switch to a less risky flower species (Ings and Chittka, 2009, 

Jones and Dornhaus, 2011). Therefore, we ask whether bees have the perceptual 

processing power to carry out such tasks simultaneously at all.  

In this study we ask whether bumblebees are able to maximise energy gains by 

solving a difficult colour discrimination task whilst simultaneously exposed to 

predation threat from camouflaged or conspicuous predators. We expose bees to an 

ecologically relevant scenario where they forage in an artificial meadow with two 

visually similar flower types differing in reward quality. Visiting the highly rewarding 

flower type is risky because 25% of flowers harbour predatory crab spider models. If 

bees are able to simultaneously solve colour discrimination and predator avoidance 

tasks we predict that they will visit the highly rewarding species but avoid individual 

flowers that are risky. The null hypothesis is that bees are unable to attend to two 

difficult tasks simultaneously and that i) bees will prioritise predator detection and 
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avoidance when predators are camouflaged and ii) they will continue to maximise 

energy gains when predators are highly conspicuous.  

 

4.3 Materials and methods 

Study Animals 

Three colonies of bumblebees (Bombus terrestris Dalla Torre 1882) from a 

commercial supplier (Syngenta Bioline Bees, Weert, Netherlands) were used in the 

experiment. All the bees were individually tagged with number tags (Christian Graze 

KG, Weinstadt-Endersbach, Germany). Colonies were kept at room temperature 

(~23°C) and subjected to a 12 hr light/dark cycle (light on at 8am). Sucrose solution 

(50%, v/v) and pollen was provided ad libitum. A total of 44 foragers were used in the 

experiments, including 10 bees used in the colour targeting pilot study.  

 

Experimental Apparatus 

All experiments were conducted in a wooden flight arena (1.0 × 0.72 × 0.73 m) 

with a UV-transmitting Plexiglas lid. Artificial flowers (7×7 cm acrylic, 1 mm thick) 

were arranged in a four by four vertical grid on one end wall of the arena on a grey 

background. Bees were able to access rewards (sucrose solution) through a hole 

which was 10 mm above a wooden landing platform (40×60 mm). Rewards were 

supplied to each flower and dispensed from the tips of 26G syringe needles (BD 

Microlance Drogheda, Ireland; 0.45 × 13 mm) by syringe pumps (KD Scientific, 

KD200, Holliston, USA). A maximum droplet volume of 4.70 + 0.3 µl could be 

reached before it fell into a ‘waste pot’ which was not accessible to bees (thus 

mimicking a flower that had been emptied by a bee). Robotic ‘spider arms’ 

(custom-built by Liversidge & Atkinson, Romford, UK) covered with sponges were 

set up at the base of the flowers to simulate predation attempts. The trapping 
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mechanism enabled us to capture bees without causing physical damage. ‘Dangerous 

flowers’ were fitted with life-sized crab spider (Misumena vatia) models (l = 12mm, 

made from Gedeo Crystal resin) placed on the flowers above the feeding hole. The 

flight behaviour and position of bees were recorded during the experiment with three 

dimensional coordinates of bee positions being calculated 50 times per second using 

two video cameras connected to a computer running Trackit 3D software 

(BIOBSERVE GmbH, Bonn, Germany). The details of the setup were described in 

Chapter 2.  

 

Targeting colour for experimental use 

The aim of the test was to find two colours which are possible, but difficult for 

bees to distinguish. We chose two different shades of yellow (dark yellow & light 

yellow) whose distance in the colour hexagon was 0.03 units. In a previous study, it 

was easy for bees to discriminate two colours with a distance of 0.152 hexagon units, 

and bees were unable to discriminate two colours that were 0.01 hexagon units apart 

(Dyer and Chittka, 2004a). Thus the two colours used here should be difficult, but 

possible, for bees to discriminate (see Fig 10 & 11). Another group of bees from the 

same colony foraged on dark yellow and white flowers as a control group (this is a 

simple discrimination for bees). Two groups of bumblebee foragers (five bees in each) 

randomly selected from a single colony were tested individually for 200 choices in 

this test. Bees that foraged on dark yellow flowers were rewarded with 50% sucrose 

solution while bees that visited the light yellow/white flowers were punished with 

0.12% quinine hemisulfate salt solution.  

 



 64 

Fig 10 (a) Appearance of yellow flowers (circles: light grey for light yellow and dark 

grey for dark yellow) and spiders (stars: white for conspicuous spiders and dark grey 

for cryptic spiders) in bee colour space (calculated using Bombus terrestris colour 

receptor sensitivity functions in Skorupski et al. 2007) relative to the grey background 

colour (centre of the hexagon). Positions of the colour loci in the hexagon indicate 

excitation differences of the three bee colour receptors. The corners of the hexagon 

labelled UV, Blue and Green correspond to hypothetical maximum excitation of one 

receptor combined with zero excitation in the two others. The angular position in the 

hexagon (as measured from the centre) is indicative of bee subjective hue. Loci that 

are close together appear similar to bees and loci that are far apart appear different. (b) 

Spectral reflectance curves of artificial flowers, spiders and the grey background of 

the meadow. The dashed lines represent spiders (dark grey = dark yellow spiders and 

light grey = white spiders), solid lines flowers (dark grey = dark yellow flowers and 

light grey = light yellow flowers) and the dotted line represents the grey meadow 

background.  

 

The learning curve (Fig 11) demonstrates that bees’ last 30 choices seem to be 

stable, so we chose to compare the first and last 30 choices for the colour 
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discrimination test. The percentage of bees choosing rewarding flowers in the average 

of the last 30 choices was significantly higher than the first 30 choices (first 30 

choices: mean = 60.7, sd = 17.1; last 30 choices: mean = 87.3, sd = 111.4; pair t test, t 

(4) = 2.906, p = 0.020, Cohen’s d = 1.838). This confirmed that bees were able to learn 

to distinguish the two colours despite their high degree of similarity. The average 

percentage of correct choices during the last 30 choices was significantly higher for 

the easily distinguishable colours (white and dark yellow flowers) than for the more 

similar coloured (dark and light yellow) flowers (easily distinguishing colours: mesn 

= 100, sd = 0; hardly distinguishing colours: mean = 87.3, sd = 11.4; t test, t (8) = 

2.484, p = 0.038, Cohen’s d = 1.571). The results showed that bees were able to 

discriminate the two similar shades of yellow, but with greater difficulty compared to 

the easy condition. This makes the highly similar flowers (dark and light yellow) 

suitable for the experimental conditions in which both colour discrimination and 

predator detection tasks were difficult enough for bees to solve, in order to discover 

how the bees learn to attend to the presence of the risks and rewards provided in the 

following experiments.  
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Fig 11 Discrimination test for similar and distinct colours. The black line is the 

average percentage of bees choosing rewarding flowers between easily 

distinguishable colours (white v. s. dark yellow), and the grey line is between hardly 

distinguishable colours (dark yellow v. s. light yellow). Each data point represents 10 

choices +/- SE. Dark yellow flowers contained 50% (v/v) sucrose solution while 

white and light yellow flowers contained 0.12% quinine solution. Bees were able to 

identify the rewarding colour eventually in both colour combinations, but the average 

correct choices for last 30 choices between white and yellow flowers was 

significantly higher than dark and light yellow flowers. The two shades of yellow 

were distinguishable, but with more difficulty. 

 

Pre-training 

All bees were allowed to fly in the flight arena in groups without any presentation 

of floral signals for at least one day before the experiment. A constant flow (1.85 + 0.3 

µl per minute) of 50% (v/v) sucrose solution was given as a food reward. Only bees 

that left the colony and fed on the flowers consistently for at least three consecutive 

foraging bouts were used in the experiments.  
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Experimental Design  

In this experiment we asked whether bees exposed to an ecologically relevant 

scenario were able to simultaneously solve a colour discrimination task to maximise 

energy gains whilst avoiding conspicuous or camouflaged predators. Bees could 

choose between two types of flowers that were similar shades of yellow but provided 

food rewards of different quality - the flower colours were chosen so that bees could 

distinguish between them, but only with significant difficulty (see Materials and 

Methods section for the pilot study). The high quality flowers carried a risk of 

predation (25%) from either conspicuous or cryptic ‘robotic spiders’ (Ings & Chittka 

2008). Individual bees (N = 34 randomly selected from 2 colonies) were initially 

trained to distinguish between the shades of yellow (colour discrimination training), 

with the darker flowers (D50) containing high quality rewards (50% v/v sucrose) and 

the lighter flowers (L20) providing low quality rewards (20% v/v sucrose; see Fig 12). 

Preference for the high quality dark flowers was assessed after bees had made 200 

flower choices (if this occurred half way through a foraging bout they were left to 

complete the bout to avoid undue disturbance). After initial colour discrimination 

training (training phase), bees were randomly assigned to one of two groups exposed 

to predation risk on high quality flowers (25% of flowers harboured robotic spiders) 

by either conspicuous (white spider model on dark yellow flower) or cryptic (dark 

yellow spider model on dark yellow flower) spiders (N = 17 in each group). Predator 

avoidance training (testing phase) lasted for a further 200 flower choices and every 

time a bee landed on a high reward flower with a spider (dangerous flower) it 

received a simulated predation attempt whereby the bee was held by the arms of a 

robotic crab spider for two seconds. This emulates natural spider attacks on 



 68 

bumblebees, where bees are grasped by the raptorial forelegs of the spider but manage 

to escape, avoiding immobilization by the spider’s bite. 

 

 

Fig 12 Experimental design for testing how bees solve difficult colour discrimination 

and predator avoidance tasks. In the training phase both experimental groups faced 

the same setup, with two similar flowers containing different reward level. In the 

testing phase 25 % of the highly rewarding flowers contained predators (either 

conspicuous or cryptic). When the bees chose the dangerous flowers they were 

captured for two seconds to simulate the predation threat. Two bees in each group 

stopped foraging (not moving for more than two hours) and were excluded from the 

analysis.  

 

Data Analysis  

Individual bees’ preferences for dark yellow (D50) flowers were separated into 

four (first 100 foraging trials and last 100 trials in both training and testing phase) and 

compared with a one-way ANOVA test in both experiments. The effect size 

(Eta-square) was calculated by between subjects sum of squares divided by total sum 

of squares. The last preferences were then used as the baseline to compare 
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performance during the predator avoidance training phase, where bees were exposed 

to predation risk. For example, under the null hypothesis of no spider avoidance, a bee 

reaching 80% correct choices at the end of the colour discrimination training phase 

would have a probability of choosing safe highly rewarding flowers (6 safe flowers 

out of 8 highly rewarding flowers) of 0.8 × 0.75 = 0.6. The last 30 choices in the 

testing phase were compared with hypothesized choices with a paired t test. Effect 

size (Cohen’s d) is provided for the paired t test. Dangerous flowers chosen by bees 

were also compared with predicted choices (last 30 choices in the training phase 

multiplied by 0.25, which was the percentage of the dangerous flowers). The data 

were not normally distributed; thus a Wilcoxon test was used. Effect size is given as r 

= Z/ √n.  

The time bees spent investigating and feeding on flowers was calculated from 

time and position data recorded using Trackit 3D software. Investigating zones were 7 

cm (length) by 9 cm (width) by 9 cm (height) from landing platforms, and the feeding 

zones were 4.5 cm by 1 cm by 1 cm from the feeding hole. Investigating zones were 

set based on the visual angles of bumblebees (2.7 degree) where bees were able to 

detect both flower signals and predators using colour contrast (Spaethe et al. 2001) 

and feeding zones were based on observation of the position bees take whilst feeding 

at the flowers. Only instances when bees landed and fed on the flowers were 

considered as choices. Investigation duration was quantified as the time spent in the 

investigation zone before landing on a flower, or choosing to depart (when bees 

rejected the flowers without landing). The time bees spent investigating in front of the 

flowers was analysed with General linear models (GLM). The investigating time was 

set as a response variable included testing phase (with or without spiders) as 

covariates and the detectability of spiders as a fix factor. Interactions between 

covariate and fix factors were also explored. Rejection of flowers was compared by t 
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test between conspicuous and cryptic spider group. For paired or unpaired t tests 

Cohen’s d was given as effect size. Data were analysed using R (v. 2.15.1) and JMP (v. 

7, SAS Institute). Four bees (two from each experiment) stopped foraging during 

training and were excluded from the analyses.  

 

4.4 Results 

There was no significant difference of highly rewarding (D50) flowers visited by 

bees before and after conspicuous spiders were added to the meadow (ANOVA, F (3, 56) 

= 0.843, p = 0.476, η2 = 0.043; Fig 13). However, when the spiders were cryptic, the 

effect of spiders was significant (ANOVA, F (3, 56) = 7.849, p < 0.001, η2 = 0.296; Fig 

13). When comparing only safe highly rewarding flowers visited by bees (excluded 

ones with spiders), we calculated the hypothesized choices based on the last 30 

choices in the training phase (170 – 200 choices, no spiders), because after spiders 

were added the number of safe highly rewarding flowers decreased. The last 30 

choices in the testing phase (370 – 400 choices, with spiders) were significantly lower 

than hypothesized choices (hypothesized choices: mean = 45.7, sd = 8.7; last 30 

choices: mean = 38.4, sd = 10.1; paired t test: t (14) = 3.092, p = 0.008, Cohen’s d = 

0.768; Fig 14), but when spiders were conspicuous the effect was not significant 

(hypothesized choices: mean = 44.3, sd = 7.1; last 30 choices: mean = 54.0, sd = 17.2; 

paired t test: t (14) = 3.092, p = 0.063, Cohen’s d = -0.737; Fig 14).  

In both groups bees were able to avoid dangerous flowers in the end of testing 

phase (conspicuous spider group: hypothesized mean = 14.8, sd = 2.4, last 30 visits to 

dangerous flowers mean = 1.6, sd = 2.8, Wilcoxon test Z = -4.718, n = 15, p < 0.001, 

effect size calculated by r = Z /√n = -0.629; cryptic spider group: hypothesized mean 

= 15.2, sd = 2.9, last 30 visits to dangerous flowers mean = 1.8, sd = 2.5, Wilcoxon 

test Z = -4.722, n = 15, p < 0.001, effect size r = -0.630, Fig 14).  
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Fig 13 Percentages of rewarding flowers (D50) chosen by bees in both (a) 

conspicuous spiders group and (b) cryptic spiders group before the spiders were 

added (training phase, 0 – 200 choices) and after the spiders were added (testing 

phase, 201 – 400 choices). There is no significant difference before and after the 

spiders were added when the spiders were easy to detect (a), but when the spiders 

were cryptic, the percentages of correct choices significantly dropped (b). The 

symbols represent the groups in the Tukey’s HSD post hoc test.  
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Fig 14 No matter whether the spiders were conspicuous or cryptic, bees were able to 

avoid the dangerous flowers (visited significantly fewer dangerous flowers than 

predicted value). When the spiders were easy to detect, bees maintained the choices 

to the safe highly rewarding flowers (no significantly difference from predicted 

choices) while bees encountered cryptic spiders decreased their performance (chose 

significantly lower safe highly rewarding flowers than predicted).  

 

There was no significant difference in the time bees spent in front of the flowers 

in either before or after spiders were added or in different experimental groups (GLM, 
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F (3,56) = 0.516, p = 0.673). Bees in the cryptic spiders group rejected (investigated but 

did not land) significantly more high and low rewarding flowers (highly rewarding 

flowers rejected: conspicuous spider group mean = 12.0, sd = 7.6, cryptic spider 

group mean = 31.9, sd = 28.1, t (28) = 2.601, p = 0.015, Cohen’s d = -0.950; low 

reward flowers rejected: conspicuous spider group mean = 8.5, sd = 6.3, cryptic spider 

group mean = 17.3, sd = 11.1, t (28) = 2.648, p = 0.013, Cohen’s d = -0.970). However, 

there was no significant difference in the number of dangerous flowers rejected 

(conspicuous spider group mean = 15.3, sd = 6.6, cryptic spider group mean = 18.3, 

sd = 7.5, t (28) = 1.168, p = 0.252, Cohen’s d = -0.427). Overall, bees were unable to 

simultaneously avoid predators and discriminate between highly similar flowers 

colours associated with different rewards.  

 

4.5 Discussion 

In this chapter we have presented bees with two ecologically relevant tasks that 

potentially lead to attentional competition. The first task was to maximise energy 

gains by using flower colour to differentiate between reward qualities. The second 

was to detect and avoid predators that were either conspicuous or cryptic. We found 

that when predator detection was difficult, that is predators were cryptic rather than 

conspicuous, bees prioritised predator avoidance over floral colour discrimination.  

During the training phase, bees from both experimental groups learned to perform 

a difficult colour discrimination task in order to maximise energy gain from flowers. 

By the end of the training they had learnt to avoid distractor flowers containing low 

rewards (20% v/v sucrose solution) and focussed their foraging efforts on the most 

rewarding (50% v/v sucrose) flower type. While the error rate was relatively high 

(~40% visits to poorly rewarding flowers), it has been demonstrated in humans that 

increased task difficulty decreases attention to even highly conspicuous distractors. 
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This implies that bees employ a degree of attentional modulation depending upon the 

balance of risks and rewards (Giurfa, 2013). Further support for this is given by bees’ 

responses to the introduction of predation risk from either conspicuous or cryptic 

spiders during the colour discrimination task. 

All bees rapidly responded to the presence of predators and were able to avoid 

risky flowers by the end of the experiment, irrespective of the detectability of the 

spiders. However, avoidance of spiders affected bees’ ability to discriminate between 

high and low rewarding flowers differently depending on the detectability of spiders. 

When spiders were conspicuous, bees were able to avoid dangerous flowers and still 

maintain their preference for the highly rewarding flowers. In contrast, when spiders 

were highly cryptic, bees avoided the spiders but did not discriminate between the 

remaining safe flowers.  

It has recently been suggested (Morawetz and Spaethe, 2012) that bumblebees 

may carry out restricted parallel visual search – i.e. where the whole visual field is 

processed simultaneously and the targets “pop out” from distractors. Assuming this is 

true, bees in our study could be assessing the meadow every time they approach the 

meadow wall and focusing their attention on flowers that match their search image 

(i.e. dark yellow flowers = highest reward). In the case of bees exposed to 

conspicuous predators, flowers with spiders will sufficiently alter the appearance of 

the dark yellow flowers (i.e. a large central white area on the dark yellow background) 

so that they are processed as distractors and hence avoided. However, when spiders 

are cryptic, and thus do not create sufficient colour contrast against the floral display 

to alter the appearance of the flower relative to the bees’ search image for high reward 

flowers, we would expect bees to initially choose mostly dark yellow flowers. This is 

exactly what we observed during the first few choices made by bees in the cryptic 

spider group. Experience of predation attempts at flowers with spiders would thus 
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lead bees to develop a new search image for dangerous flowers (Ings et al., 2012). 

Maintaining two very similar search images with opposing values (i.e. dark yellow 

flower = high food reward whilst dark yellow flower with dark yellow spider = 

predation risk) is likely to be cognitively demanding. Indeed, in this experiment, bees 

encountering cryptic spiders did prioritise predator avoidance at the expense of 

discriminating floral reward quality of the remaining safe flowers. 

Bees do not simultaneously attend to difficult colour discrimination and predator 

avoidance tasks. Alternatively, focusing on predator avoidance may be an efficient 

strategy employed by bees rather than evidence of sensory processing limitations. The 

costs of attending to both tasks simultaneously may outweigh the benefits of choosing 

highly rewarding over low rewarding flowers. Even in the absence of spiders, the 

difficulty of the colour discrimination task meant that bees only chose 10% more high 

rewarding flowers than they would have if choosing flowers at random. Thus, because 

making an error in terms of avoiding a predator is potentially more costly under 

natural conditions (injury or death) it was more efficient for bees to focus on predator 

avoidance. In this chapter we ask whether bees can maintain efficient foraging in the 

presence of cryptic predators, finding that bees had no difficulty avoiding conspicuous 

spiders while still foraging adaptively. However, they prioritised predator avoidance at 

the expense of maximising energy intake when faced with detecting cryptic predators 

and a difficult colour discrimination task. 

We found that when flowers were rewarded in different levels, bees failed to solve 

both flower discrimination and predator avoidance tasks. The bees chose to 

concentrate on predator avoidance and ignoring the reward variation. It is possible 

that the reward disparity influenced bee’s choices. In previous studies, researchers 

demonstrated that when two flowers were rewarding at the same level, and one 

species harboured spiders, bees would switch to the flower species which did not 
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contain spiders (Ings and Chittka, 2008, 2009). In the current study we selected 50% 

and 20% (v/v) sucrose reward because they are ecologically realistic and can be found 

frequently in nature (Tamm and Clifton, 1986). When the reward level was too low or 

no reward was present, bees would not have motivation to visit the flower.  

In the present experiment we analyse the data at the level of bee groups exposed 

to different treatments. When the predator avoidance task became difficult (spiders 

were difficult to detect), bees’ colour discrimination decreased, while they maintained 

the same investigating time. However, we recorded individual behavioural differences 

within groups of bees. There were different strategies used by different individuals, so 

that some foragers were ‘careful’ (spending a longer time and receiving higher 

accuracy) and others were ‘impulsive’ (investigating flowers more briefly and visiting 

them at random). We will discuss this in Chapter 6.  
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Chapter 5 Divided attention in bees: is the priority in predator 

avoidance due to attentional limitation? 

 

5.1 Abstract 

Foraging animals need to engage in efficient foraging whilst simultaneously 

avoiding predators. Bees foraging for nectar often have to discriminate between 

flowers with similar appearance but different nectar rewards. At the same time, they 

must be vigilant for ambush predators, such as crab spiders, which can camouflage 

themselves on flowers. Here we ask whether bees can maintain efficient foraging in 

the presence of cryptic predators. Bees were individually tested in a tightly controlled 

laboratory experiment using artificial flowers whose nectar supplies were 

administered with precision pumps. Predation risk was simulated by automated crab 

spider ‘robots’ that captured bees for a limited duration without injuring them. Bees’ 

behaviour was monitored by a 3D video tracking system. We experimented both with 

cryptic and conspicuous spiders, finding that bees had no difficulty avoiding 

conspicuous spiders while still foraging adaptively. However, they prioritised 

predator avoidance at the expense of maximising energy intake when faced with 

detecting cryptic predators and a difficult colour discrimination task. This was not due 

to attentional constraints or limited sensory processing ability as bees were able to 

discriminate between similar flower types under predation risk and when choosing the 

safe flower type incurred a gustatory punishment in the form of bitter quinine solution. 

However, this resulted in bees incurring substantially higher costs in terms of floral 

inspection times. We conclude that bees have the capacity to attend to difficult flower 

foraging tasks while simultaneously avoiding cryptic predators, but only do so when 

avoidance of gustatory punishment justifies the increased costs. 
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5.2 Introduction 

A vital ability for an animal is filtering the tremendous sensory input from the 

environment to focus on the most important objects and locations. In humans (and 

other animals) there are extensive capacity limitations in perceptual processing 

(Kahneman, 1973). Attention is used to prioritize sensory input for adaptive responses. 

The role of attention in visual search has been studied extensively in human and 

non-human primates using behavioral (Treisman and Gelade, 1980) and 

neuroscientific (Gottlieb et al., 1998) approaches. Much research, particularly in 

humans, has revealed the significant costs of divided attention for performing the 

precise discrimination of more than one stimulus dimension (Pashler, 1998). Even 

with the enormous processing capacity of a large-brained animal, such as a human, 

there are severe consequences when one must divide attention for two forms of visual 

input as simple as shape and orientation (Joseph et al., 1997). Such capacity 

limitations might be all the more important in much smaller animals with concomitant 

smaller neural systems, such as bumblebees, which have long been a model system 

for exploring the functional significance of cognition in the economy of nature.  

When animals move about their environment, they generally have to divide 

attention between tasks such as the search for food and the detection of potential 

danger in the environment. When exposed to predation threat, animals usually reduce 

foraging time and increase vigilance (Ydenberg and Houston, 1986), but the 

probability of detecting predators decreases when they encounter more difficult 

foraging tasks (Godin and Smith, 1988). The existence of predation risk may also 

change their fighting (Brick, 1998), playing and courtship behavior (Taylor et al., 

2005). Dukas and Kamil (2000) found that blue jays engaged in a challenging 

foraging task for centrally located targets will often miss peripherally located targets 

(a secondary foraging task) and suggested that this would also result in blue jays 
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overlooking predators in the periphery (not unlike similar research in humans (Joseph 

et al., 1997)). Here we developed a dual task experiment for bees, an ideal model 

organism for studying visual search because they are natural visual experts for which 

search plays a crucial role in foraging, and thus they provide an ecologically 

intriguing model system to study divided attention in visual search (Spaethe et al., 

2006). Recent work in bees led to the development of a realistic foraging scenario 

with simulated predation rather than additional targets presented as a proxy for 

predators (Chittka et al., 2003), and we extend that method here to the question of 

divided attention. 

Although previous research has established that bees can attend to either 

discrimination of similar flower types (Dyer and Chittka, 2004a) or predation (Jones 

and Dornhaus, 2011, Ings et al., 2012), there has not yet been an investigation of 

whether bees can do both simultaneously. We tested here that whether bees can 

simultaneously attend to multiple, complex visual search tasks from different contexts, 

risks, and rewards. As discussed in the previous chapter, bees were encouraged to 

discriminate highly similar target and distractor colors by receiving sucrose rewards 

for target selection contrasted with the risk of mild punishment via distasteful quinine 

for distractor selection, similar to how value can influence attentional prioritization in 

humans (Anderson et al., 2011). After learning the task, bees were exposed to 

predation risk by the addition of camouflaged robotic crab spiders (see Figure 9), to 

examine whether bees could maintain visual search foraging strategies even in the 

presence of predators.  
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Fig 15 Protocol for the experimental design. Based on the previous chapter (Group 1 

& 2), we further tested the mechanisms of attention in bees (Group 3). Bees were 

trained with two similar shades of yellow artificial flowers with either different 

quality of sucrose reward (20 vs. 50%) or reward (50% sucrose) and quinine 

punishment. After 200 choices, conspicuous or cryptic spiders were added to 25% of 

the low or highly rewarding flowers. Bees were captured by the robotic arms for two 

seconds when they visited dangerous flowers. 

 

5.3 Materials and methods 

Based on the previous chapter, we further tested how bees discriminate gustatory 

punishment and reward under predation risk. The details of the housing condition, 

pre-training and experimental setup were described in Chapter 2. To determine 

whether the apparent inability of bees to solve colour discrimination and predator 

avoidance tasks simultaneously was due to limitations in sensory processing or 
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attention we conducted a second experiment where the balance of risk and reward was 

adjusted beyond that naturally encountered. In this experiment, a third group of bees 

(n = 10 from a new colony) was forced to discriminate between the shades of yellow 

flower by replacing the low rewards with a form a gustatory punishment, a distasteful 

quinine solution that bees rapidly learn to avoid (Chittka et al., 2003). Thus, bees were 

initially trained to distinguish between dark yellow rewarding flowers (D50) 

containing 50% v/v sucrose solution and light yellow distasteful flowers (LQ) 

containing 0.12% quinine solution. After colour discrimination training for 200 flower 

choices bees were then exposed to predation risk (25%) from cryptic spiders (Fig 15).  

 

Statistical analysis 

Individual bees’ preferences for dark yellow (D50) flowers were separated into 

four (first 100 foraging trials and last 100 trials in both training and testing phase) and 

compared with ANOVA. The effect size (Eta-square) was calculated by between 

subjects sum of squares divided by total sum of squares. The last performance in the 

training phase was used as baseline for the hypothesized choices and compared with 

percentages of safe highly rewarding flowers (paired t test) or dangerous flowers 

chosen (Wilcoxon test, since data were not normally distributed) in the end of testing 

phase. For paired or unpaired t tests Cohen’s d was provided as effect size, while for 

Wilcoxon test r = Z/ √n was provided as effect size. Investigating time and the number 

of flowers rejected were analysed with ANOVA followed with Tukey’s HSD post hoc 

test.  

 

5.4 Results 

When failure to choose the correct shade of yellow flower incurred a gustatory 

punishment (distasteful quinine), rather than a lower quality reward, bees were able to 
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simultaneously solve the colour discrimination task and avoid cryptic predators on the 

rewarding flower type (Fig 16 & 17). There was significant difference between the 

beginning and the end of training phase (ANOVA F3, 36 = 15.609, p < 0.001, η2 = 

1.300, Tukey’s HSD < 0.001, Fig 17), and the performance was maintained until the 

end of the testing phase. At the end of the testing phase, bees chose safe highly 

rewarding flowers no different from predicted choices (last 30 choices mean = 81.0, 

sd = 15.5, predicted mean = 70.8, sd = 10.8, t (9) = 1.705, p = 0.105, Cohen’s d = 

-0.823, Fig. 16). Although bees initially visited dangerous flowers at random (Fig. 16), 

they rapidly learnt to avoid cryptic spiders after experiencing simulated predation 

attempts (last 30 choices mean = 2.2, sd = 2.3, predicted mean = 15.8, sd = 3.2, t (9) = 

15.058, p < 0.001, Cohen’s d = 6.734, Fig. 16).  
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Fig 16 Percentages of safe highly rewarding flowers and dangerous flowers chosen by 

bees from all three experimental groups. All bees were able to avoid predation risk 

(chose significantly fewer dangerous flowers than hypothesized). When the spiders 

were easy to detect bees were able to visited more highly rewarding flowers, however 

when spider detection became difficult bees decreased their performance. When low 

rewarding flowers were replaced with distasteful solution bees increased their 

performance even when the spiders were cryptic.  

 

 

Fig 17 Learning curves of the three experimental groups. Bees maintain the 

performance when the spiders were conspicuous, while in cryptic spider group they 

gave up discriminating highly rewarding flowers and forage at random. When forcing 

bees to discriminate flowers with quinine punishment, bees were able to choose more 

high reward flowers even when the spiders were cryptic.  
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Once exposed to predation threat, bees spent 28% more time inspecting flowers 

before making their choices than they did before learning about predation risk (paired 

t test, t (9) = 7.442, p < 0.001, Cohen’s d = 4.961). This increase in investigation time 

was also significantly greater than observed for bees exposed to conspicuous spiders 

in the reward quality experiment (investigating time in the last 30 choices after adding 

spiders minus the last 30 choices during the training session with no spiders; one-way 

ANOVA: F2, 34 = 3.395, p = 0.045, effect size r = 0.029; Tukey’s HSD post hoc 

analysis: p = 0.013, Fig 18). This substantial increase in temporal costs is presumably 

the reason why bees do not solve the difficult colour discrimination task and cryptic 

predator avoidance task simultaneously, unless they have to because of the 

introduction of quinine penalties.  

When presented with rewarding and distasteful flowers, bees investigated and 

rejected significantly more dangerous flowers than bees in experiment 1, where only 

sucrose rewarded flowers were encountered (average number of rejections in 

dangerous flowers: Group 1: 15.2 + 5.5, Group 2: 17.9 + 5.8, Group 3: 27.4 + 12.6; 

one-way ANOVA, F(2, 32) = 4.47, p = 0.019, effect size r = 5.730; Tukey’s HSD post 

hoc analysis between Group 1 & 3: p = 0.006, between Group 2 & 3: p = 0.031).  
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Fig 18 Difference in investigating time between training and after adding cryptic or 

conspicuous spiders (investigating time after adding spiders minus before adding 

spiders). The investigating time in the rewarding/distasteful flowers with cryptic 

spiders group significantly increased after adding spiders, and is significantly higher 

than rewarding flowers with conspicuous spiders group. There is no significant 

difference between either rewarding flowers or rewarding and distasteful flowers with 

cryptic spiders. Letters indicate the significant differences based on Tukey’s post hoc 

test. Bees increased investigating time when forced to make color discrimination by 

using both sucrose reward and quinine punishment.  

 

5.5 Discussion 

In this chapter, the use of quinine punishment to aid in discrimination of the target 

(dark yellow) and distractor flowers (light yellow) resulted in a different performance 

profile to that seen in the previous chapter, where reward quality differed. When one 

flower colour was associated with a positive value (sucrose reward) and the other with 

a negative value (quinine), bees were able to maintain two value-defined categories 

for the task (light yellow = punishment, dark yellow = reward). As a result, 
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discrimination between high and low reward flowers was higher (~80% visits to 

rewarding flowers) than observed in the previous chapter (60% visits to highly 

rewarding flowers). In the previous chapter, both flower types could be classified as 

rewarding, motivationally salient, but of high similarity in value decision space, and 

therefore require persistent attentional resources for discrimination. 

Upon their first exposure to predation risk from cryptic spiders, bees in the 

quinine punishment group attended primarily to colour discrimination and thus failed 

to detect the predators. They maintained their strong preference for dark yellow 

rewarding flowers, but initially chose significantly more dangerous flowers than bees 

in the cryptic spider group when both flower types were rewarding. This observation 

supports the notion that dangerous flowers with cryptic spiders would initially be 

processed as target flowers, assuming that bumblebees use restricted parallel visual 

search (Spaethe et al., 2006, Morawetz and Spaethe, 2012). 

 After experiencing several attacks from spiders, bees in the quinine punishment 

group rapidly learnt to avoid dangerous flowers harbouring cryptic spiders whilst 

simultaneously maintaining high levels of accuracy in the colour discrimination task. 

This result is surprising given that, for foraging animals, the probability of detecting 

predators tends to decrease when they encounter more difficult foraging tasks (Godin 

and Smith, 1988). Furthermore, it implies that bees are simultaneously maintaining a 

search image for high reward flowers (positive value) with one for dangerous flowers 

(negative value). Support for this is given by the fact that bees here inspected and 

rejected more than twice as many light yellow flowers (distasteful) and over 1.5 times 

as many dangerous flowers as bees in the previous chapter, where light yellow 

flowers contained low quality rewards. These results lead to the conclusion that 

bumblebees are able to divide their attention between two distinct visual tasks.  
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An alternative explanation is that bees are categorising flowers into “good” or 

“bad”, irrespective of context. Light yellow flowers, which all contain quinine, could 

be classed as poor foraging options, as could dark yellow flowers harbouring cryptic 

spiders. Dark yellow flowers without spiders could be classed as desirable foraging 

options. Thus, a bee only needs to follow a simple rule – i.e. if the flower matches the 

search image for good then visit, otherwise avoid. Although this is perhaps more 

parsimonious than an explanation based on divided attention, it would still require 

advanced cognitive abilities with up to three search images being employed 

simultaneously. Such a strategy might also imply serial visual search, whereby each 

individual flower is assessed sequentially (Spaethe et al., 2006).  

We chose the colours that were difficult to discriminate for bees (dark and light 

yellow) and the different reward levels (20% and 50% v/v sucrose) based on pilot 

experiments and previous studies (Ings and Chittka, 2008, 2009). However, it is 

possible that dynamic results appear if we modify the colour signals and the reward 

levels to different level. For example, if we increase the difference between reward 

levels (for example, 10 % or even no reward vs 50 % sucrose solution), bees may be 

more willing to discriminate between similar colours. In this study we chose 

ecologically realistic reward levels (Castellanos et al., 2002) which we can find 

commonly in nature. It is possible to have low rewarding flowers which mimicking 

the appearance of high rewarding ones to steal their benefit, however they should not 

appear too frequently, otherwise the mimetic pattern may not work anymore. In 

previous studies researchers use the same reward level for flowers of different colours, 

and the bees are able to shift to only one flower colour (Ings and Chittka 2008, 2009).  

This study clearly shows that bumblebees are able to simultaneously discriminate 

floral rewards based upon subtle visual differences (colour) and avoid predators, but 

will only do so when the benefits outweigh the costs. When colour discrimination was 
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incentivised by gustatory punishment, bees had to inspect and reject more flowers 

than bees that chose not to discriminate between similar flower colours whilst 

avoiding predators. Rejection of flowers is costly to bees because inspection of 

flowers is carried out in flight (Ings et al., 2012), which is an energetically demanding 

activity (Kacelnik et al., 1986, Hedenström et al., 2001). Therefore, although we 

showed that bees can attend to both colour discrimination and predator avoidance, the 

costs associated with such cognitively demanding tasks imply that cryptic predators 

can have strong trait-mediated effects on plants and may benefit mimic plant species 

that produce little or no floral rewards.  
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Chapter 6 Individual consistency in bumblebee speed-accuracy 

tradeoff decisions when foraging under predation threat 

 

6.1 Abstract 

Animal ‘personality’ has been described as the consistency of behaviour through 

time across contexts. Such constant individual differences have been investigated in 

many animals, but the formation and the ecological significance of the syndrome is 

still highly underestimated. We tested individual consistency in bumblebee 

speed-accuracy tradeoff faced with predation risks. Bumblebees showed individually 

repeatable strategies with respect to foraging decisions when conspicuous predators 

were introduced in the meadow. Some bees made persistently careful choices, while 

others had shorter decision times and achieved less accurate choices. When we 

increased the task difficulty by adding conspicuous spiders, careful bees tended to 

become more careful and impulsive bees turned even more impulsive. We calculated 

the foraging rate (energy intake / foraging time) for each experiment and found that 

the optimal strategy changed with different experimental designs. The modelling 

showed that when flowers were rewarding at different levels, a slow-and-careful 

strategy was beneficial; however, when the penalty of making erroneous choices 

increased, an impulsive strategy led to higher net nectar gains. Despite these predicted 

differences, bees maintained constant strategies instead of displaying behavioural 

plasticity depending on the environment.  

 

6.2 Introduction 

Many animals show repeatable individual behavioural differences over time or 

across situations. Such consistent differences between individuals are also variously 

referred to as animal personality (Gosling and John, 1999), behaviour syndromes (Sih 
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et al., 2004a), animal temperament (Réale et al., 2007) or coping styles (Koolhaas et 

al., 1999), comparable with human personalities (see (Gosling, 2001, Sih et al., 2004a) 

for review). In eusocial animals such as bees, diversity of personalities can enhance 

colony fitness (Mattila and Seeley, 2007). Such differences within a colony may be 

helpful for colonies to cope with rapidly changing environments, where the optimal 

strategy shifts with conditions (Burns and Dyer, 2008).  

In this chapter we explore individual consistency in speed-accuracy tradeoffs in 

bumblebees faced with predation risk from crab-spiders, which are sit-and-wait 

predators that lurk on flowers to capture pollinators. For pollinators screening flowers 

for such predators, accurate decisions may require longer decision time, while 

impulsive choices can be faster but less discriminating. Speed-accuracy tradeoffs have 

long been a major focus in human psychology studies (Woodworth, 1899) as has been 

their relationship to impulsivity (Dickman and Meyer, 1988) and information 

processing (Miller and Vernon, 1997). Past research found such tradeoffs exist in 

animal decision making such as foraging (Chittka et al., 2003), predator-prey 

interactions (Ings and Chittka, 2008, Burns and Rodd, 2008) and nest site selection 

(Franks et al., 2003). In many cases behavioural plasticity exists in speed-accuracy 

tradeoff decisions. For example when the task becomes difficult, subjects may be 

slower and display less accurate performance (Palmer et al., 2005), or when 

punishment exists they may trade speed for accuracy (Chittka et al., 2003). In natural 

conditions, situations exist where accuracy is strongly favoured over speed, such as 

predator detection where the fitness costs of errors can be high. Time for detecting 

possible predators may be substantial especially when predators are cryptic or adapt 

behavioural tactics to catch prey. On the other hand, animals making foraging choices 

may prefer shorter investigating time since the error penalties may simply be lower 

rewarding levels (Burns, 2005). Consistent individual differences have been found in 
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both speed and accuracy when animals face different conditions such as varied 

target-distractor ratios (Burns and Dyer, 2008), however so far there is no study looks 

at how individuals react to both foraging and predator detection tasks.  

In this chapter, we have investigated how different situations change both between 

and within individual behaviour in the speed-accuracy tradeoff paradigm, and the 

efficiency for each strategy. When animals move about their environment, they 

generally have to divide attention between tasks. We selected biologically realistic 

plant-pollinator and pollinator-predator systems as models to examine pollinator 

decision making and its consistency. These are important challenges for pollinators 

since there are flowers of different species, which differ in profitability and existence 

of camouflaged predators in the field. Many plant species, such as many of those in 

the orchid family have flowers which resemble the appearance of co-occurring, 

rewarding species to attract pollinators (Dafni, 1984, Roy and Widmer, 1999). 

Moreover, many predators use the attractiveness of flowers to lure their prey. For 

example, crab spiders (Araneae: Thomisidae) are sit-and-wait predators that ambush 

pollinators such as bees on flowers (Chittka, 2001, Insausti and Casas, 2008). Some 

species of crab spiders can even change their body colour to fit the flower they sit on 

or select the high quality flowers (Morse, 1986). How pollinators choose between 

flowers and how they avoid predators has been well studied, but few take both tasks 

into account.  

We selected bumblebees as a model to address the issue of individual consistency 

and its relationship to speed-accuracy tradeoffs when bees must make economic 

flower choices while also detecting predators. The bees were trained to visit artificial 

flowers with ‘robotic’ spiders in different detectability and rewarding levels to 

investigate their choices in contrary environments. We predicted that between-group 

and within-group speed-accuracy tradeoffs exist in bumblebee foraging: bees may 
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trade accuracy or speed in exchange for another when encountering flowers and 

spiders of different detectability. Within experimental groups, we hypothesised that 

diversity exists in foraging strategy, where a correlation between decision speed and 

accuracy can be found. Also, if consistent individual differences exist, bees would use 

the same strategy after predators were introduced in the meadow.  

 

6.3 Materials and methods 

Experimental design 

The experimental apparatus and design are identical to Chapters 4 & 5 and were 

described in Chapter 2. Bees from three colonies were assigned to three experimental 

groups. In Group 1 bees were trained with artificial flowers of two shades of yellow 

containing different reward levels (dark yellow: 50 % (v/v) sucrose solution, light 

yellow: 20 %) for 200 choices. Then conspicuous (white) spiders were added 

randomly on two of the highly rewarding flowers. Bees were captured for two 

seconds when landed on the dangerous flowers. Group 2 was identical to Group 1 

except spiders were cryptic (dark yellow). In the training phase of Group 3, low 

rewarding sucrose was replaced by quinine solution, and the spiders remained cryptic. 

Positions of the flowers and spiders were changed randomly for every foraging bout.  

 

Data analysis 

Decision speed and accuracy were analyzed using General Linear Models (GLM) 

compared across experimental groups and before/after spiders were added. The 

decision speed and accuracy of bees in all three experimental groups were tested with 

likelihood-ratio tests for normality. Since all the data were randomly distributed 

(Shapiro-Wilk test, rewarding flowers & conspicuous spider group: speed: W = 0.926, 

p = 0.386, accuracy: W = 0.915, p = 0.202; rewarding flowers & cryptic spider group: 
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speed: W = 0.980, p = 0.290, accuracy: W = 0.978, p = 0.779; rewarding and 

distasteful flowers & cryptic spider group: speed: W = 0.967, p = 0.694, accuracy: W 

= 0.923, p = 0.112), speed and accuracy before and after spiders were added were 

analyzed by paired t test. Cohen’s d was given as effect size.  

Repeatability (Lessells and Boag, 1987, Nakagawa and Schielzeth, 2010) of 

investigating time, accuracy and inverse efficiency (IE, investigating time divided by 

correct choices rate (Murphy and Klein, 1998)) were calculated for each individual 

bee before and after spiders were added. Repeatability, or intraclass correlation 

coefficient, details that the proportion of variance within individuals is greater than 

between group variance. It can be calculated from a one-way ANOVA, where 

repeatability r = SA
2 / (S2 + SA

2). SA
2 is the among-group variance and S2 is the 

within-group variance. The variances are calculated from the mean square in the 

ANOVA: S2 = MSW and SA
2 = (MSA - MSW) / n (Lessells and Boag, 1987). Data were 

analysed using R (v. 2.15.1; repeatability calculated from the rptR package) and JMP 

(v. 7, SAS Institute).  

Within the experimental group where flowers were rewarded in different levels 

and spiders were easy to detect (Group 1), bees showed different strategies when 

foraging. We classify their strategies by Two Step Cluster Analysis. Five variables 

were used for classification (decision time and accuracy before and after spiders were 

added, and to which dimension bees moved in the speed-accuracy tradeoff plot). The 

cluster data were further used as baseline classification in Groups 2 & 3 to target the 

‘careful’ and ‘impulsive’ bees. Discriminant analysis was used to classify bees of 

different groups in Group 2 & 3 using SPSS 22.0.  

 

Foraging rate 

We calculated the foraging rate for each bee:  
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where c is the percentage of correct choices (safe and highly rewarding flowers 

chosen by bees); E is the energy intake/output (E1 = 4.7 µl (nectar volume per flower) 

of 50% v/v sucrose solution = 50 Joule; E2 = 4.7 µl 20% v/v sucrose solution = 17 J; 

E3 = 0.052 Joule, which represents the energy budget during per second flight 

(Heinrich, 1975, Pyke, 1980); E3 = 0.007 Joule, which is the energetic cost for 

nonflight activity per second (Kammer and Heinrich, 1974, Pyke, 1980)); n is the 

number of choices (200 in training phase and 200 in testing phase); i is the 

investigating time individual bees spent in front of the flowers, and h  is the handling 

time (7.4 seconds, the average handling time in all three groups); r is the interflower 

flight interval excluding bee investigating time. We found no significant difference in 

the interflower flight intervals of different experimental groups (ANOVA, F (2, 32) = 

1.953, p = 0.160) and between bees that chose ‘careful’ or ‘impulsive’ strategies after 

spiders were added (t (11) = -0.501, p = 0.633), so we used the average 3.79 seconds.  

We calculated the foraging rate for careful and impulsive bees classified by cluster 

analysis (Group 1) and discriminant analysis (Groups 2 & 3) in both the training and 

testing phase. The foraging rates were compared with a t test to determine which 

strategy was better. Effect size were given for the t test as Cohen’s d.  

 

6.4 Results 

Bees showed both between group and within group speed-accuracy tradeoffs 
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 We compared decision speed and accuracy under different experimental groups 

and before/after spiders were added. The decision time of bees did not differ between 

experimental groups (GLM: F (2, 73) = 2.653, p = 0.077). The decision time of bees can 

be significantly explained by speed (GLM: F (1, 73) = 15.252, p < 0.001, Fig 19), which 

suggested bees showed within group speed-accuracy tradeoffs. Whether the spiders 

were added or not also has a significant influence on bee decision time (GLM: F (1, 73) 

= 8.518, p = 0.005). There was no interaction between different experimental groups 

and whether the spiders were added (GLM: F (2, 73) = 2.580, p = 0.083).  

In the group presented with rewarding flowers one quarter of which harboured 

conspicuous spiders, there were no significant differences between time or accuracy 

before and after adding spiders (speed: before spiders were added mean = 0.6, sd = 

0.1, after spiders were added mean = 0.6, sd = 0.2, paired t test (two tailed), t (14) = 

0.520, p = 0.611, Cohen’s d = 0 ; accuracy: before spiders were added mean = 0.6, sd 

= 0.2, after spiders were added mean = 0.6, sd = 0.2, paired t test (two tailed), t (14) = 

0.494, p = 0.061, Cohen’s d = 0). In the rewarding flowers with cryptic spiders group, 

the accuracy of bees in the testing phase (after adding cryptic spiders) was 

significantly lower than in the training phase (before spiders were added mean = 0.6, 

sd = 0.1, after spiders were added mean = 0.4, sd = 0.1, paired t test (two tailed), t (14) 

= 9.636, p < 0.001, Cohen’s d = 2.000), but the time bees spent investigating the 

flowers was not significantly different (before spiders were added mean = 0.6, sd = 

0.2, after spiders were added mean = 0.6, sd = 0.3, paired t test (two tailed), t (14) = 

-1.47, p = 0.163, Cohen’s d = 0). In the group presented with the two types of flowers 

which were either rewarding or distasteful flowers, and which were also faced with 

cryptic spiders, the accuracy did not differ with the existence of spiders (before 

spiders were added mean = 0.8, sd = 0.1, after spiders were added mean = 0.8, sd = 
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0.2, paired t test (two tailed), t (9) = 0.899, p = 0.392, Cohen’s d = 0), while the time 

bees spent investigating the flowers was not significantly different (before spiders 

were added mean = 0.6, sd = 0.1, after spiders were added mean = 0.7, sd = 0.1, 

paired t test (two tailed), t (9) = -2.784, p = 0.021, Cohen’s d = -1.000). Bees traded off 

accuracy to maintain the same foraging speed when cryptic spiders were introduced, 

but traded off speed for accuracy when using both rewarding and distasteful flowers.  
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Fig 19 Speed-accuracy tradeoff plots for all three bumblebee experimental groups 

described in Chapter 2. Each point represents the mean decision speed and accuracy 

of single bee, the error bar represents ± 1 standard error mean. When the spiders were 

easy to detect, bees did not modify their performance. When the spiders were cryptic, 

bees maintained same investigating time but decreased accuracy. When flowers were 

either rewarding or distasteful while the spiders were cryptic, bees kept the accuracy 

but increased the decision time.  

 

Bees showed consistent strategies when presented with rewarding flowers, but not 

when encountering distasteful flowers 

When the flowers were rewarded in different levels, bees showed individually 

repeatable behaviours before and after conspicuous spiders were added to 25% of the 

rewarding flowers, no matter the detectability of the spiders. Which means, the within 

bee variance was smaller than between bee variance (repeatability test, investigating 

time: within bee variance S2 = 0.003, between bee variance SA
2 = 0.006, R = 0.671, p 

= 0.002; accuracy: S2 = 0.002, SA
2 = 0.003, R = 0.635, p = 0.003; IE (inverse 

efficiency): S2 = 0.008, SA
2 = 0.009, R = 0.542, p = 0.013). In the group presented 

with rewarding flowers with cryptic spiders, the investigating time and accuracy was 

significantly repeatable after spiders were added in the meadow (repeatability test 

with correction, investigating time: S2 = 0.030, SA
2 = 0.037, R = 0.493, p = 0.024; 

accuracy: S2 = 0.001, SA
2 = 0.002, R = 0.679, p = 0.001) but not the IE scores (S2 = 

0.855, SA
2 = -0.026, R = -0.297, p = 0.864). In the experimental group which was 

presented with rewarding and distasteful flowers with cryptic spiders, the behaviour 

displayed by the bees was not repeatable in speed, accuracy or IE scores after cryptic 
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spiders were introduced (investigating time: S2 = 0.015, SA
2 = -0.007, R = -0.308, p = 

0.824; accuracy: S2 = 0.013, SA
2 = 0.001, R = 0.348, p = 0.137; IE: S2 = 0.079, SA

2 = 

0.002, R = 0.096, p = 0.381).  

 

Bees performed different strategies (careful and impulsive) when foraging 

From a group point of view, bees from rewarding flowers with conspicuous 

spiders group retained the same strategy before and after spiders were added (Fig 19, 

decision time and accuracy were not significantly different). But when the individual 

performance was evaluated, different bees used different strategies after the addition 

of conspicuous spiders. Cluster analysis classified the bees into two clusters with a 

good cluster quality (Average Silhouette = 0.6). There was no swamping variable and 

the importance of each variable did not dramatically differ (accuracy after spiders 

added = 1.0, dimension bees moved after spiders added = 0.89, speed after spiders 

added = 0.69, accuracy before spiders added = 0.37, speed before spiders added = 

0.21). The six bees which clustered into a group chose either ‘careful’ strategy 

(increased investigating time and accuracy, five individuals) or ‘super’ strategy 

(decreased investigating time but increased accuracy, one individual). The nine bees 

in the other group all chose the ‘impulsive’ strategy (decreased investigating time and 

accuracy).   

The accuracy of bees that chose a careful strategy before adding spiders was 

significantly higher than that of bees that chose an impulsive strategy (t (13) = -1.841, p 

= 0.040, Cohen’s d = -0.36), but the investigating time was not significantly different 

(t (13) = -0.973, p = 0.183, Cohen’s d = 0.334). The bees that made more accurate 

choices before adding spiders were more likely to choose the careful strategy after 

adding conspicuous spiders. There was no significant correlation between bumblebee 
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individual accuracy and predator avoidance speed (Spearman's rank correlation: r = 

0.259, n = 15, p = 0.351). Careful bees did not avoid spiders more efficiently 

(Wilcoxon test, Z = 0.429, p = 0.671) and did not learn faster in the colour 

discrimination task (t test, t (13) = 1.295, p = 0.113, Cohen’s d = 1.300).  

 

 

Fig 20 Individual foraging strategies of bees before and after conspicuous spiders 

(Group 1) were added to the ‘meadow’. Bees increased both decision time and 

accuracy (‘careful’ strategy) and decreased investigating time but increased accuracy 

(‘super’ strategy) after spiders were added were classified in the same group by 

cluster analysis. Bees which chose an ‘impulsive’ strategy (decreased investigating 

time and accuracy) were classified as another cluster. Bees which chose the careful 

strategy in the beginning were more likely to be ‘careful’ when the choices became 

difficult, so did the more ‘impulsive’ bees. 

 

Better strategy changes with experimental groups 

Since the bees displayed a constant strategy when the tasks became more difficult 

(spiders were added to the meadow), we calculated the foraging rate (energy intake 

divided by time ×  energetic cost) for bees choosing different strategies. We used the 
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two groups classified by cluster analysis in Group 1 as a baseline to discriminate the 

bees which were ‘careful’ or ‘impulsive’ in Groups 2 & 3. 78.3% of the original group 

cases were correctly classified. Three of the five variables had high explanatory power. 

After targeting the strategies of the bees, we calculated the foraging rate of bees in 

different strategies from all three experimental groups. In Group 1 (rewarding flowers 

with conspicuous spiders), there was no better strategy before spiders were added (t 

test, careful bees foraging rates mean = 165.9, sd = 10.1, impulsive bees foraging 

rates mean = 155.4, sd = 13.2, t (13) = -1.738, p = 0.107, Cohen’s d = 0.893). After 

spiders were added, the careful strategy became more efficient (t test, careful bees 

foraging rates mean = 137.5, sd = 6.1, impulsive bees foraging rates mean = 112.6, sd 

= 14.7, t (13) = -4.517, p < 0.001, Cohen’s d = 2.213). In Group 2 (rewarding flowers 

with cryptic spiders) the careful strategy was better before spiders were added (t test, 

careful bees foraging rates mean = 139.7, sd = 11.9, impulsive bees foraging rates 

mean = 124.1, sd = 7.3, t (13) = -3.118, p = 0.009, Cohen’s d = 1.580). After spiders 

were added there was no better strategy (t test, careful bees foraging rates mean = 

103.8, sd = 14.9, impulsive bees foraging rates mean = 101.7, sd = 5.1, t (13) = -0.383, 

p = 0.711, Cohen’s d = 0.189). Before spiders were added in Group 3 (rewarding and 

distasteful flowers with cryptic spiders) the impulsive strategy was superior (t test, 

careful bees foraging rates mean = 148.9, sd = 13.6, impulsive bees foraging rates 

mean = 169.5, sd = 8.0, t (13) = 2.924, p = 0.024, Cohen’s d = -1.846). After spiders 

were added there was no better strategy (t test, careful bees foraging rates mean = 

139.4, sd = 19.7, impulsive bees foraging rates mean = 162.4, sd = 10.2, t (13) = 2.311, 

p = 0.060, Cohen’s d = -1.466). The better strategy was different depend on the 

experimental design, however, the bees maintained the same strategy instead of shift 

to the optimal strategy.  
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6.5 Discussion 

The experiment presented bees with two challenges, colour discrimination and 

predator avoidance tasks of different difficulties, to assess the intra- and inter-task 

speed-accuracy tradeoffs in bumblebees. Bees showed consistent decision making 

strategies, where some bees made rapid but inaccurate choices while others were 

more careful but required longer decision time. There was a positive correlation 

between decision speed and accuracy when bees faced only rewarding flowers, which 

is consistent with the findings in Chittka et al. (2003). We also found that 

speed-accuracy tradeoffs occurred at the group level. When flowers were rewarded in 

different levels, bees traded off foraging accuracy for speed and visited safe flowers at 

random. As the penalties for incorrect choices became more significant, bees shifted 

to spend longer decision time for retaining the same accuracy. When a certain strategy 

is preferred, such as predator avoidance for which the cost of failure may be huge, 

bees changed their foraging behaviour and gave up colour discrimination. The results 

showed that, like in humans and other animals (Zenger and Fahle, 1997, Franks et al., 

2003), bees showed dynamic decision making where foraging behaviour changed 

depending on the context of the tasks to minimize the possible cost.  

While we showed there was behavioural plasticity in bumblebees depending on 

the nature and difficulty of the task, there were also constant individual differences 

between tasks observed in the same group. Individual bees showed consistent 

individual strategies when the task became difficult (spiders added in the meadow) 

where careful bees remain careful, and impulsive bees constantly choose the 

impulsive strategy. What is interesting is that when careful bees encountered a more 

difficult situation, they tended to spend even longer decision time to gain higher 

accuracy, while impulsive bees became more impulsive with the presence of spiders. 

Even when a ‘careful’ strategy should result in a higher nectar intake, the ‘impulsive’ 
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individuals still maintained their strategy. After introducing quinine penalties, both 

speed and accuracy were not repeatable in individual bees. When bees were forced to 

solve both tasks at the same time, and a certain level of accuracy had to be retained, 

they did not show constant decisions in both speed and accuracy. When bees had to 

use most of their efforts to reach a certain percentage of accuracy, they all sacrificed 

foraging speed and the individual differences were no longer significant. Bees also 

showed no correlation between the speed and accuracy of learning distinguishing 

colours and avoiding predators, indicating that the same individual did not use the 

same careful-impulsive dimension in different behavioural paradigms. Individual bees 

which were fast in learning colour discrimination tasks did not necessarily learn 

rapidly to avoid predators. Some studies define animal ‘personality’ as the same 

personality traits appearing constantly across behavioural contexts (also called 

‘behavioural syndromes’ (Johnson and Sih, 2007, Logue et al., 2009)). However the 

same trait may not necessarily appear in different context. For example an individual 

that is careful in food searching may not necessarily be careful when facing predation 

threat.  

The foraging rates showed that the superior strategy changed depending on the 

experimental context. When the flowers were rewarding at different levels, being 

careful was the better strategy for bees. But when one flower type did not contain 

reward and instead contained bitter quinine penalties, an impulsive strategy was more 

efficient. The optimal strategy changes with different experimental setups, and there is 

no single strategy which is efficient in all situations. This might be a possible 

explanation of why stable behavioural variability is maintained in bee colonies. The 

individuality in foraging behaviour may decrease variation in resource acquisition 

from different environments at the colony level. The flowering species may shift 

rapidly over time, thus the environment an individual bee encounters is constantly 
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changing. Searching for the optimal strategy may be energy and time consuming, and 

information may be quickly out of date when the environment changes swiftly. In this 

study we demonstrated consistent behavioural individuality in bumblebee 

speed-accuracy tradeoff decisions, and the efficiencies of different foraging strategies. 

We also showed that the optimal strategy changes with different experimental 

conditions. 
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Chapter 7 Speed accuracy tradeoffs and decision making by 

individuals and dyads of zebrafish in colour discrimination tasks 

 

7.1 Abstract 

Speed accuracy tradeoffs are well studied in human decision making, but we are 

only beginning to understand how such tradeoffs affect animal decision making in 

biologically realistic settings. Here we investigated whether zebrafish show individual 

consistency (‘personality’) in speed accuracy tradeoffs in colour discrimination tasks 

and how pairs of fish with distinct ‘personalities’ make consensus decisions. We used 

state of the art 3D video tracking to evaluate the fishes’ individual choice strategies. 

We found that zebrafish exhibit consistent between-individual differences in 

speed-accuracy tradeoffs. Some fish made ‘careful’ slow but accurate decisions, while 

others were more ‘impulsive’ and made swift but less accurate decisions. When tested 

in pairs of ‘careful’ and ‘impulsive’ individuals, the combined decisions were closer to 

those of careful individuals.  

 

7.2 Introduction 

Repeatable individual behavioural differences have been found in many animal 

groups (Chittka and Thomson, 2001, Gosling, 2001, Sih et al., 2004b). Diverse terms 

such as animal personality (Gosling and John, 1999), behaviour syndromes (Sih et al., 

2004a), animal temperament (Réale et al., 2007), or coping styles (Koolhaas et al., 

1999) were used to describe such findings. Here, we tested the most general definition, 

which was whether the behavioural differences between individuals are constant over 

time and contexts. We tested consistency in the speed-accuracy tradeoff to address the 

questions of whether constant individual differences exist in zebrafish, and how they 

compromise with each other when foraging in pairs. When animals make decisions, 
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tradeoffs may exist between speed and accuracy, where accurate decisions require 

longer manipulation time and vice versa. This has long been considered in human 

perceptual studies (Woodworth, 1899); however, ethological research has mainly 

focused on discrimination accuracy but rarely on the handling time. In this study, we 

used colour discrimination tasks, which have been analysed for zebrafish in previous 

research (Bilotta et al., 2005, Colwill et al., 2005, Spence and Smith, 2008, Sison and 

Gerlai, 2010), to test the between-individual and pairwise speed-accuracy tradeoffs in 

zebrafish.  

The zebrafish has been one of the most popular model species in developmental 

and genetic biology for decades (Grunwald and Eisen, 2002, Sison et al., 2006). Here, 

we selected zebrafish to address three levels of questions: (1) do within-group and 

between-group speed-accuracy tradeoffs exist in zebrafish colour discrimination tasks? 

(2) if speed-accuracy tradeoffs exist in zebrafish foraging decisions, is it consistent 

over time and contexts; and (3) how do fish in pairs compromise with each other 

when they have different strategies? The goal of the present paper is to investigate 

whether constant individual differences exist in zebrafish decision making, and how 

the differences influence consensus decisions. 

 

7.3 Materials and methods 

Study animals and pre-training 

A total of 85 adult AB wild-type zebrafish were tested in three sets of experiments. 

Prior to the experiment fish were housed individually at 28°C (room temperature) 

with a 14h:10h light:dark cycle. Fish were fed with brine shrimp twice per day or 

during experiment/pre-training. One day before the experiment, fish were pre-trained 

in an apparatus that was identical to the actual experimental setup (Fig 21) but without 

colour signals for 20 discrete trials. Each fish was first allowed to explore and get 
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used to the holding area of the tank for three minutes. After habituation, the barrier of 

the holding area was lifted up and fish were able to make decisions. A fish crossing 

the hole to the signal area was considered as a decision. The barrier was closed and 

the fish were given a small amount of brine shrimp (~0.5 ml). When fish showed no 

interest in food they were gradually moved back into the holding area with a barrier. 

The choices and the investigating time of the fish were recorded. When a fish showed 

an innate preference for a certain position (visited the same chamber for more than 

seven trials, which would be significantly different from random choice), or did not 

enter the chamber for more than two hours, it was removed from the experiment. The 

positions of the fish were recorded with three-dimensional coordinates calculated 50 

times per second using two video cameras connected to a computer running Trackit 

3D software (BIOBSERVE GmbH, Bonn, Germany). The tracking software provided 

live time tracking which allowed us to identify the two fish. The experiments were 

also recorded by video camera so we were able to analyse the video as well. The 

videos were analysed by Move-tr/2D (Library Co. Ltd., Tokyo). The software can 

calculate the two-dimensional position, speed, moving angle and the coordinate 

distance between the two fish. There were no two fish that looked exactly the same 

and we were able to tell them apart by the appearances with the naked eye (Fig 22a), 

but with the tracking software we could discriminate the dyads of fish more easily 

(Fig 22b).  
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Fig 21 Experimental apparatus for all three experiments. Fish were habituated to the 

holding area for three minutes, and allowed to explore the tank. When the fish 

passed the hole to the signal area, this was considered as a decision. Fish were held 

in the signal area and given food reward when making correct choices, while 

punishment (stirring the water) was applied when fish chose the wrong colour. 

Investigating time was considered as the time spent by fish in the investigating 

zones and when fish were facing the colour signals.  
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Fig 22 (a) A sample of two fish used in the pair experiment. The appearances of the 

fish were different and we could tell them apart by visual inspection. (b) The 

real-time tracking system allowed us to discriminate the fish more easily. During the 

experiment, we can check how tracking system track the fish on a computer screen 

as shown in (b). Sometimes when fish crossed over the tracking system might track 

the wrong fish, in this case we could manually adjust the target. We also recorded all 

the experiments by video camera and analysed the video by Move2D software and 

carefully checked every crossed over.  
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In a pilot experiment, we tested whether punishment was necessary for fish colour 

discrimination test. We used two distinct colours (green and brown) to decrease the 

difficulty of discrimination. When choosing one colour is rewarding and no 

punishment was given for incorrect choices, fish chose the colours at random (green = 

rewarded, one sample t test, random = 50, mean = 51.0, sd = 6.6, t (4) = 0.343, p = 

0.749). Only when punishment was introduced, the fish chose significantly more of 

the rewarded colour (green = rewarded, brown = punishment, one sample t test, 

random = 50, mean = 63.333, sd = 5.700, t (4) = 5.099, p = 0.007). Thus we used both 

reward and punishment for the following experiments.  

 

Experiment 1: individual speed accuracy tradeoffs in colour discrimination 

To test within-group speed-accuracy tradeoffs in colour discrimination, fish were 

trained to associate the colour green with reward and to distinguish a similar hue, 

turquoise, from the rewarding target. Thirty fish were tested for 20 discrete trials. In 

addition to receiving a food reward for a correct choice, fish received punishment for 

an incorrect choice (stirring the water in the signal area for three seconds with a net). 

The positions of the colour signals were randomised in each trial. The choices and 

decision time of the fish were recorded.  

 

Experiment 2: individual repeatability in discrimination of similar colours 

In order to investigate whether fish showed a stable strategy over time, we tested 

15 fish with the same colours after 24 and 48 hours, using a method which was 

identical to experiment 1. Fish were tested for 20 trials for three consecutive days.   
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Experiment 3: decision making in pairs 

Following the previous experiments, we aimed to determine how fish made 

decisions in a pair when they presented different strategies. Thirty fish were tested 

individually with the same procedures as in experiment 1 for 20 trials to gain the 

references for their strategies. After the experiment, they were paired randomly and 

housed in the separate area of the same tank with a barrier in the middle. After 24 

hours, fish were tested in pairs using the same experimental conditions with similar 

colours for 20 trials. We avoided the first two hours after the lights were switched on 

in order to avoid the possible sexual-oriented behaviour.  

 

Data analysis 

Based on the time and position data recorded by the Trackit 3D software, we 

calculated the investigating time that fish spent in front of the colours. Investigating 

zones were 12 cm (length) by 10 cm (width) by 7 cm (height) in front of the colour 

signals. Only when fish were moving toward the colour targets were they considered 

in the analysis. Since the data were not normally distributed, we performed 

Spearman's rank correlation to test whether speed was correlated with accuracy. 

Repeatability was calculated following Lessells & Boag (1987) as described in detail 

in the previous chapter. For fish consensus decision making, we used a one-way 

ANOVA with Tukey’s HSD to test the differences between decision speed and 

accuracy of careful, impulsive individual and dyads of zebrafish. Eta-square η2 was 

provided as effect size for ANOVA. Data were analysed using R (v.2.15.1; 

repeatability calculated from the rptR package) and JMP (v.7, SAS Institute). Two fish 

in the pre-training phase had innate preferences to the left (visited the same side for 

seven trials consistently, which is significantly different from random choices), and 
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four fish in the similar colour pair lost motivation (did not move to the chamber for 

more than two hours) during the experiment and were excluded from the analysis.  

 

7.4 Results 

Experiment 1: fish showed speed-accuracy tradeoffs in discrimination of similar 

colours  

Between individual fish, there were strong correlations between decision time and 

accuracy (Spearman's rank correlation: r = 0.563, n = 30, p = 0.001, Fig 23). The 

more time that a single fish spent in front of the colour signals, the more accurate was 

the decision made. When the fish was more impulsive and made fast decisions, the 

number of incorrect choices was higher.  

 

 

Fig 23 In the similar colour pair, fish showed speed accuracy tradeoffs, while there 

were significant correlations between investigating time and accuracy. The black 

dots represent individual fish, and error bars show +- 1 SEM for both decision time 

and speed.  

 

Experiment 2: individual fish showed a consistent strategy over 24 & 48 hours 
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The previous experiment showed that individual fish presented a speed-accuracy 

tradeoff, where some fish were more careful and some more impulsive. We further 

tested whether the strategy was constant over time using the same pair of similar 

colours as Experiment 1. The fish presented significant repeatability with 

investigating time and accuracy (repeatability test, speed: R = 6.482, n = 15, p = 0.003; 

accuracy: R = 0.433, n = 15, p = 0.043, Fig 24) after 24 & 48 hours.  

 

 

Fig 24 Fish also showed significant repeatability when encountering similar colours. 

The careful fish made more accurate choices but spent longer decision time remained 

careful after 24 & 48 hours, and the impulsive individuals also kept their strategy.  

 

Experiment 3: fish foraging in pairs followed the decision of the careful one 

We found a within-group speed-accuracy tradeoff in zebrafish, and the strategy 

was constant within a day for individual fish. We therefore tested how fish with 

different strategies (careful and impulsive) made decisions together. Zebrafish show 

shoaling behaviour, and typically forage close to conspecifics. When foraging in pairs, 

fish also showed significant correlation between speed and accuracy 
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(Spearman's rank correlation, r = 0.707, n = 30, p = 0.003). Since we wanted to make 

sure the fish maintained the same strategy, we tested the same fish after 24 hours. We 

tried to pair a careful fish with an impulsive fish base on their reference performance 

24 hours before, and the average group performance based on the previous two sets of 

experiments. However, due to the limited number of fish we could test per day, we 

could not pair the fish based on the group performance. The strategy of the fish 

(careful or impulsive) was determined within a pair, not based on the group. This 

means the careful fish was only more careful than its partner, but might not be 

‘careful’ from the group point of view. The decision speed and accuracy, when fish 

were foraging together, were significantly different from the impulsive individuals, 

but not from the careful individuals (speed: ANOVA, F (2, 39) = 8.457, p < 0.001, 

Tukey HSD post hoc test p = 0.004, η2 = 0.237, Fig 25a; accuracy: ANOVA, F (2, 39) = 

4.0698, p = 0.025, Tukey HSD post hoc test p = 0.013, η2 = 0.083, Fig 25b). Decision 

making in a dyad was thus apparently determined by the careful individual.    
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Fig 25 When foraging in pairs, the group decisions were more close to the careful 

individual in both investigating time (a) and decision accuracy (b).  
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Fig 26 Individual behaviour in each pair for both (a) decision time and (b) accuracy 

is shown. We tested the fish individually on the first day and tested in pairs on the 

second day. Each point shows individual fish performance, or performance of a dyad 

of fish. The line links fish in a pair. The red lines indicate the fish increased speed or 

accuracy when in a pair, and the blue lines show decreased speed or accuracy.  
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7.5 Discussion 

In the present study, we showed that speed-accuracy tradeoffs exist both between 

individuals as well as between pairs of zebrafish, using a colour discrimination 

paradigm. The individual speed-accuracy tradeoff is consistent over time in zebrafish, 

which is constant with a key criterion of animal ‘personality’ (Gosling, 2001, Sih et 

al., 2004a). In the similar colour pair, we found significant correlations between 

decision time and accuracy in fish foraging choices. Zebrafish demonstrated constant 

individual differences in behavioural traits, as some fish made more accurate 

decisions but took longer to make the decision, while others were more impulsive and 

spent a shorter time investigating. Such a tradeoff has been investigated in humans for 

a long time, but it was not until recently that reports have been presented for other 

animals (Chittka et al., 2009). Behavioural polymorphisms within a species have been 

identified in eusocial (Oster and Wilson, 1979) and nonsocial animals (Sokolowski, 

1980, Benus et al., 1991, De Bono and Bargmann, 1998), and individual variation 

plays a key role in animal evolution.  

The reason why animals maintain the same strategy over time is still unclear. 

Theoretical models indicate that variations in behaviour may enhance the evolution of 

cooperation (McNamara et al., 2004), and studies in eusocial animals show that 

differences in colonies may enhance group fitness (Mattila and Seeley, 2007). Such 

differences may be essential for colony extension to cope with rapidly changing 

environments, where the optimal strategy shifts according to conditions (Burns and 

Dyer, 2008). Flexibility in strategies can be energetically costly and quickly out of 

date when the environment changes again. In the previous chapter we showed that 

animals do not necessarily choose the optimal strategy; however, the more beneficial 

options change over time. This may explain why animals maintain constant individual 

differences over time. However, further experiments are needed to explore the 
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evolutionary basis of animal ‘personality’, and the genetic and neural basis underlying 

constant individual variation.  

Constant individual variation can influence animal consensus decisions. When 

fish were put in pairs during the colour discrimination task, the group decision was 

closer to that of the careful individual who made more accurate choices but took 

longer to do so. However when looking at individual pairs, we can see that there were 

many careful individuals also increasing the decision time and accuracy. Thus the 

result that the group decision was closer to the careful individual may not be caused 

by the impulsive individual following the careful individual, but by increases of 

decision time and accuracy in a dyad.   

We demonstrated how animals with different consistent individual behaviour traits 

make judgments together. Accurate estimations and decisions are essential for animals, 

and group-living species are able to balance personal and social information received 

from other group members (Dall et al., 2005). Individual variation can affect social 

interactions and even benefit the group (Pike et al., 2008, Krause et al., 2010), and 

average judgements of the social group can be more ideal compared with individual 

opinions (Surowiecki, 2005). In the present study, zebrafish in pairs did not exhibit 

‘better’ strategies (for example, decreased investigating time but with higher 

accuracy). It may be that in the current experimental setup the careful strategy was 

better for zebrafish. Another explanation may be that the impulsive individual 

hesitated to make a rapid decision in exchange for remaining in the pair. The energetic 

gain may be similar between ‘impulsive-careful’ axes. In such cases when slowing 

down investigations, making more accurate choices may balance their strategy 

efficiency.  

Here, we demonstrated for the first time that zebrafish showed constant 

speed-accuracy tradeoff with regard to foraging strategy, and how individuals with 
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diverse strategies make consensus decisions. During the colour discrimination task, 

some fish made constant ‘careful’ decisions while others were always ‘impulsive’. 

When pairing ‘careful’ and ‘impulsive’ fish together, they made joint ‘careful’ 

decisions with higher accuracy but longer decision time. Pairs of fish are the starting 

point of investigating zebrafish consensus decision making and how individual 

differences affect social groups. The zebrafish model also provides a powerful tool to 

examine the neurological and genetic basis underlying animal consistent individual 

behavioural differences in animals and their impact on the social world.  
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Chapter 8 Discussions and contributions 

 

8.1 Selective and divided attentions in bumblebees 

In this thesis, we have explored the ability of bees to disentangle shape from 

colour in bumblebees in the context of predator detection, and their ability to divide 

attention between foraging and predator detection tasks. We found that when 

bumblebees were attacked by yellow spiders, they formed a search image of spider 

shape, but disregarded the spider’s colour. The bees formed a colour-independent 

search image of their predators, and they also changed their foraging behaviour to 

minimise exposure to predation threat. This ability has significant ecological benefit 

since some species of crab spiders, such as Misumena vatia, are able to change their 

body colour depending on the environment (Chittka, 2001, Morse, 2007, Insausti and 

Casas, 2008). The bees were able to learn complex shape cues that can be generalised 

to other colour forms of the spider (Stach et al., 2004). Many animals possess innate 

predator avoidance responses, but in the current study, naïve bees did not avoid 

flowers harbouring cryptic spiders. This finding supports previous observations (Ings 

and Chittka, 2008) that bumblebees do not appear to have a strong innate avoidance 

response to spider shapes.  

We also demonstrated that bees were able to divide their attention to attend 

simultaneously to two discrimination tasks. We presented bees with food searching 

and predator avoidance tasks, which they had to solve simultaneously when foraging. 

The bees had to discriminate between two similar flower types and they had to avoid 

camouflaged robotic spider predators. The bees were able to solve both tasks 

concurrently, but when the cost of making an error was rather low, they chose to 

prioritize predator avoidance. The reason that the bees prioritised their attention to 

predation risk is not because of attentional limitation; rather, it serves to maximise 
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foraging rate. In addition, even when they were able to divide their attention between 

two tasks simultaneously, that behaviour came with some consequences such as a 

lower ability to attend to predator detection. These results are consistent with research 

on humans, which has found that the value of visual information can influence 

attentional priority (Anderson et al., 2011). Divided attention in visual search has been 

studied extensively in human and non-human primates (Treisman and Gelade, 1980), 

but there is limited research on other animals (Dukas, 2002), especially for 

invertebrates. We have shown that the bees were able to divide their attention, in a 

manner similar to what has been found in humans (Pashler, 1999). When encountering 

stimuli which were difficult to handle, the bees showed limited capacity to process 

information and divide their attention between tasks.  

 

8.2 Speed-accuracy tradeoffs in bumblebees and zebrafish 

I tested the within group speed-accuracy tradeoffs in both bumblebees and 

zebrafish. Both species showed significant correlations between speed (decision time) 

and accuracy, which means that some individuals spent more time investigating and 

made more accurate choices, while others decided rapidly but were more error-prone. 

In animal studies testing stimulus discrimination, the researchers were usually only 

concerned about investigating the accuracy but not the speed of making decisions 

(Chittka et al., 2003); however, an evaluation of decision accuracy needs to be put in 

the context of the time allowed to make the decision. In humans, there is a long 

history of considering both parameters (Woodworth, 1899) and speed accuracy 

tradeoffs have been considered in the context of factors but have been little studied in 

other animals. It is clear, however, that such tradeoffs also exist in animal decision 

making, and indeed in various behavioural contexts, such as foraging (Chittka et al., 
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2003), predator-prey interactions (Ings and Chittka, 2008, Burns and Rodd, 2008) and 

nest site selection (Franks et al., 2003).  

Moreover, speed-accuracy tradeoffs can occurs at multiple levels. When 

conditions change, the animals may sacrifice speed or accuracy in favour of the 

respective other dimension depending on the situation (Chittka et al., 2003, Palmer et 

al., 2005). For example, when the task becomes difficult, the subject may be slower 

and a less accurate performance might result (Palmer et al., 2005), or when 

punishment exists, they may trade speed for accuracy (Chittka et al., 2003). In 

bumblebees, we found that when the discrimination task became more difficult, the 

animals traded accuracy for maintaining the same decision making time. It is 

interesting that they chose to sacrifice accuracy but not decision making time. Perhaps 

this was because in my study design there was no strict punishment when bees chose 

the wrong colour. The bees gave more serious consideration to the surveying time 

than they did to making highly accurate decisions. When the task is difficult for the 

animal, and the costs of making errors are affordable, lowering accuracy or even 

making choices at random may become the preferred solution (Burns, 2005). As can 

be seen in humans and other animals (Zenger and Fahle, 1997, Franks et al., 2003), 

bees are able to survey the environment and change their emphasis on either speed or 

accuracy depending on diverse conditions.  

 

8.3 Consistent individual behavioural differences 

In the present set of studies (chapter 6 and 7), we found that both bumblebees and 

zebrafish exhibit consistent individuality in their speed-accuracy tradeoffs. We tested 

target animals with colour discrimination tasks and looked at the within-group 

speed-accuracy tradeoffs. The animals exhibited diversity in foraging strategies, 

where some individual were more ‘careful’ (made more accurate decisions, but 
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required longer decision making time) while others were more ‘impulsive’ (faster 

choices but less discriminating). In addition, such individuality was stable over time. 

The repeatable individual behavioural differences over time have been described in 

many animal species (Gosling, 2001, Sih et al., 2004a) This suggests that the 

ecological and evolutionary consequences of constant individuality are favoured by 

selection. Even though this topic has interested a large number of researchers, the 

formation, ecology and evolutionary basis of behavioural polymorphism is still 

unclear. Flexibility in strategies can be energetically costly if the animal has to 

manipulate signals from the habitat and make correct decisions, and when the 

environment is changing rapidly the judgement may become out of date quickly. 

Diversity can enhance group fitness in animals (Mattila and Seeley, 2007). Such 

differences within a group may be essential for the group’s ability to cope with rapidly 

changing environment, where the optimal strategy shifts with the conditions (Burns 

and Dyer, 2008).  

 

8.4 Behavioural diversity and consensus decisions 

In chapter 7, we demonstrated how dyads of zebrafish with distinct behavioural 

traits made decisions together. We found that zebrafish exhibited consistent 

between-individual differences in speed-accuracy tradeoffs, wherein some individuals 

were more ‘careful’ and others were more ‘impulsive’. Therefore, we paired the 

‘careful’ and ‘impulsive’ individuals and made them discriminate between two similar 

colours. The combined decisions were closer to the decisions made by the careful 

individuals. Using pairs of animals is the simplest way to begin a study of animal 

group decisions. Living in social groups is a widespread phenomenon in the animal 

kingdom and provides many ecological benefits for group members (Alexander, 1974, 

Krause and Ruxton, 2002). Staying close to each other may provide useful social 
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information, such as foraging, mating and vigilance cues (Brown, 1986, Westneat et 

al., 2000, Elgar, 2008), or yield benefits with respect to conserving energy or heat 

(Weimerskirch et al., 2001, Gilbert et al., 2009). Unlike solitary individuals, animals 

living in groups have to integrate information collected by group members and make 

their decisions jointly. Within a group, individual behavioural, morphological and 

sensibility individual differences may exist among group members, and individuals 

can also gather different personal information during the investigation of resources 

and the environment. Integrating the personal information and judgements made by 

individuals can shape the movement of the group. In many studies, certain 

behavioural trait differences are known to be important factors shaping consensus 

decisions, and certain individuals are more dominant than others in the collective 

decision making process (Couzin et al., 2005, King et al., 2008, Stueckle and Zinner, 

2008, Conradt et al., 2009). For example, bold individuals are more likely to take the 

lead in a group and have a larger impact on making choices (Harcourt et al., 2009, 

Kurvers et al., 2009). Personal differences within a group can benefit group members. 

Diversity between individuals may enhance colony fitness in eusocial insects (Mattila 

and Seeley, 2007, Oldroyd and Fewell, 2007) or increase mating or foraging 

efficiency (Sih and Watters, 2005, Dussutour et al., 2008, Nicolis et al., 2008). 

Nevertheless, few studies have looked into how individual personality traits motivate 

social networks, especially for animals other than human beings. In the present study, 

we looked at how a pair of animals with diverse behavioural strategies made choices 

together. This provides a starting point for investigating zebrafish consensus decision 

making and how individual differences affect social groups. 

 

8.5 Future work 
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In the present thesis, we showed consistent individuality in bumblebee foraging 

behaviour from bees within the same colony. The mechanisms behind behavioural 

diversity are fascinating future research directions. Testing individuality with other 

social bee species with different colony formations may provide a better picture with 

regard to the ecological benefit of constant behavioural diversity. Modelling colony 

fitness and how group members cope with different environments over time may 

provide a clue for the origin and formation of stable individuality. The interaction 

between individuals of different strategies within the colony is another interesting 

research issue. Is the percentage of the careful-impulsive individuals the same within 

and between colonies? If we remove careful or impulsive individuals, will the 

remaining bees in the colony change their strategy?  

Zebrafish have been one of the most popular model species in developmental and 

molecular biology for decades (Grunwald and Eisen, 2002, Sison et al., 2006). The 

zebrafish model also provides a powerful tool to examine the neurological and genetic 

basis underlying consistent individual behavioural differences in animals and their 

impact on the social world. Since the genes that regulate behavioural characteristics 

are largely unknown, identifying the genetic polymorphism that influences animal 

‘personality’ and how the individual differences alter group choices can be a possible 

future topic.  

 

8.6 Key contributions 

This study makes the following key contributions to the current body of literature: 

a. We showed that bumblebees can disentangle the shape of a predator from its colour. 

The bees were able to form a colour-independent search image of the shape of the 

predator they encountered.  
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b. We demonstrated that divided attention exists in bumblebees. The bees were able to 

divide their attention between foraging and predator avoidance tasks at the same 

time. 

c. We found that plasticity in speed-accuracy tradeoffs exists in bee foraging strategies. 

When the predator on the flower was cryptic, the bees traded accuracy for 

maintaining the investigating time. When punishment appears for errors in a 

colour discrimination task, bees trade speed to sustain the same foraging 

accuracy.  

e. We demonstrated between-individual speed-accuracy tradeoffs in both bumblebees 

and zebrafish. Some individuals perform more ‘careful’ choices than others, where 

they made more highly accurate choices but spent a longer time investigating 

those choices. Other individuals were more ‘impulsive’ and spent less time 

investigating but they were more error-prone.  

f. We showed that ‘personality’ exists in both bumblebees and zebrafish. Animals 

showed consistency in speed-accuracy tradeoff strategies tested with colour 

discrimination tasks.  

g. We tested the speed-accuracy tradeoff by examining dyads of zebrafish engaged in 

colour discrimination tasks. When tested in pairs of ‘careful’ and ‘impulsive’ fish, 

the combined decisions were closer to those of careful individuals.  
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