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Abstract. In this work we study S-adic shifts generated by sequences
of morphisms that are constant-length. We call a sequence of constant-
length morphisms torsion-free if any prime divisor of one of the lengths
is a divisor of infinitely many of the lengths. We show that torsion-
free directive sequences generate shifts that enjoy the property of quasi-
recognizability which can be used as a substitute for recognizability. In-
deed quasi-recognizable directive sequences can be replaced by a rec-
ognizable directive sequence. With this, we give a finer description of
the spectrum of shifts generated by torsion-free sequences defined on a
sequence of alphabets of bounded size, in terms of extensions of the no-
tions of height and column number. We illustrate our results throughout
with examples that explain the subtleties that can arise.

1. Introduction

In [8], Dekking completed the works of Martin [21] and Kamae [18] to give
a description of the spectrum of constant-length substitution shifts. These
dynamical systems are defined by one substitution θ : A → A+ which is iter-
ated repeatedly to generate a language and so a shift space. If we move away
from this stationary setting, and instead iterate a given directive sequence
(θ(n)) of morphisms with θ(n) : An+1 → A+

n , we generate S-adic shifts; see
Section 2.1 for some background. In this article we study the spectrum
of S-adic shifts generated by a sequence of constant-length morphisms de-
fined on alphabets (An) of bounded size. We call the corresponding shifts
constant-length S-adic shifts. Note that families of these shifts have been
extensively studied. To begin with, they generalise constant-length substi-
tution shifts, for which a huge literature exists. Also, Toeplitz shifts [16,27]
are often S-adic shifts generated by constant-length directive sequences. Fi-
nally, the constant-length property is very useful in generating interesting
and tractable examples, such as in [11, Section 2] and [5, Example 4.3].
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S-adic shifts have been studied, in one guise or another, over the last
several decades. With various restrictions they can be interpreted as sym-
bolic versions of cutting-and-stacking transformations of the unit interval,
or Bratteli–Vershik dynamical systems. One important restriction is that of
recognizability (Definition 3.1), a property of the given directive sequence
which gives some geometric structure to the symbolic space on which the
dynamics operates. Although there are important families of recognizable
directive sequences, recognizability is a property that is generally difficult
to guarantee.

On studying the results in [8], it is interesting to note that in fact they
do not entirely depend on recognizability. Enough geometric structure is
obtained from the existence of a factor map onto a group rotation. To be
precise, this group rotation is accessible, and non-trivial, because constant-
length substitution shifts have an abundance of rational eigenvalues. This
property extends to our setting. We define the strictly weaker notion of
quasi-recognizability (Definition 3.2), which requires the existence of a fac-
tor map to a rotation defined by the lengths of the morphisms, and we show
that it is sufficient to deduce a good quantity of spectral information about
our dynamical system. If the morphisms we consider are injective on let-
ters, then a quasi-recognizable directive sequence is recognizable (Lemma
3.4), but Example 3.12 tells us that quasi-recognizable shifts are not always
recognizable. We will see below that this is not a serious obstacle. Next, we
identify the large family of torsion-free directive sequences (θ(n)), namely,
if p divides the length of some θ(k), then it must divide the length of θ(n)

infinitely often. We show in Theorem 3.6 that torsion-free sequences are
quasi-recognizable. We also include Remark 3.8, which indicates that our
results can be extended to a larger family of shifts that are defined on se-
quences of alphabets of non-bounded cardinality. The example in [5], of a
constant-length S-adic shift which is not recognizable, is not torsion-free;
see Example 3.10. We phrase many of our results for the class of torsion-free
directive sequences; however we note that they often hold for a larger class
of quasi-recognizable directive sequences.

In Theorem 4.1 we show that if a shift is a somewhere finite-to-one ex-
tension of an odometer, then its continuous eigenvalues must all be rational.
We apply this result in Corollary 4.6, to show that torsion-free S-adic shifts
only have rational eigenvalues, and we can quantify them quite precisely. In
addition to the natural eigenvalues that come from the lengths of the mor-
phisms, there is essentially one other eigenvalue. As in the substitutional
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case, we call this the height. In other words, the maximal equicontinuous
factor of a torsion-free S-adic shift is a group extension of the tiling factor by
a cyclic group, and furthermore we see in Theorem 4.9 that this finite cyclic
group is arithmetically orthogonal to the tile lengths in a strong sense. As
a result we have an S-adic version of Cobham’s theorem in Theorem 4.10,
where we show that a torsion-free S-adic shift cannot be generated by two
sequences of morphisms whose lengths are not compatible.

Of particular interest are torsion-free constant-length shifts whose max-
imal equicontinuous factor space is a torsion-free group: These are the
torsion-free shifts whose height is trivial. As for constant-length substitu-
tions, we show in Theorem 4.16 that a torsion-free constant-length shift has
a pure base, in that it is a constant height suspension over another constant-
length S-adic shift which has trivial height and which has the same sequence
of morphism lengths. Thus we see that the family of shifts generated by tor-
sion free S-adic shifts is quite robust; this robustness recurs in results we
describe below. Also, this family is easily seen to be closed under the taking
of factors (Corollary 3.9). However, quasi-recognizable shifts are not closed
under factoring; see Example 3.10.

Until this point, quasi-recognizability is sufficient for our needs. To com-
binatorially characterise the height, or to define the notion of a column
number, which gives us further spectral information, we need more than
quasi-recognizability. But it turns out that from quasi-recognizability we can
manufacture recognizability. Precisely, given a quasi-recognizable constant-
length shift (Xθ, σ), generated by the directive sequence θ, we can modify θ

to obtain a recognizable directive sequence θ̂ such that Xθ = Xθ̂ (Theorem
3.11). Here also, the sequence of morphism lengths is not changed. Therefore
whenever we need to, we can assume that a quasi-recognizable S-adic shift
is generated by a recognizable directive sequence.

Thus we can work with a recognizable representation of a torsion-free
shift, which is available to us by Theorem 3.11. Recall that the height of
a constant-length substitution can also be characterised combinatorially:
it is the largest number that is coprime to the length of the substitution,
and which divides the greatest common divisor of the return times to a
letter in the alphabet. We define in Section 5 a combinatorial height for
torsion-free directive sequences, and we show in Theorem 5.9 that it equals
the height. We also completely extend the notion of a column number. The
column number of an S-adic shift gives us important spectral information,
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in particular whether it is almost automorphic in Corollary 6.5, and whether
the shift has discrete or mixed spectrum in Propositions 7.3 and 7.7.

In Section 2, we set up notation and define background concepts. In
Section 3, we introduce the property of quasi-recognizability, relate it to
recognizability, and show that quasi-recognizability is enjoyed by a large
class of the S-adic shifts that we study, and also that they have a recog-
nizable representation. In Sections 4 and 5 we formulate equivalent notions
of height, and show that constant-length S-adic systems with non-trivial
height are suspensions over a pure base system with trivial height. In Sec-
tion 6, we define the notion of a column number, which then enables us to
give a finer description of the spectrum of a constant-length S-adic shift in
Section 7.

2. Preliminaries

Given a sequence (qn)n≥0 of natural numbers, we work with the product
of sets

Z(qn)
:=
∏

n

Z/qnZ,

which can be endowed with the group operation given by coordinate-wise
addition with carry. For a detailed exposition of equivalent definitions of
Z(qn)

, we refer the reader to [10]. We write elements (zn) of Z(qn)
as left-

infinite sequences · · · z2z1, where zn ∈ Z/qnZ, so that addition in Z(qn)
has

the carries propagating to the left as is usual in Z. If (qn) is the constant
sequence qn = q, then Z(qn)

= Zq is the classical ring of q-adic integers. We
can also define Z(qn)

as the inverse limit Z(qn)
= lim←−Z/pnZ of cyclic groups,

where p0 = 1 and pn := q0 · · · qn−1. The integers can be injected into Z(qn)
,

via 1 = (· · · , 0, 0, 1), and −1 = (· · · , q3 − 1, q2 − 1, q1 − 1). Note that if
almost all qn = 1, then Z(qn)

is finite. For this reason, in this article we will
assume that qn ≥ 2 infinitely often; given such a sequence we can always
multiply consecutive terms of the sequence to obtain qn ≥ 2 for each n.

Endowed with the product topology over the discrete topology on each
Z/qnZ, the group Z(qn)

is a compact metrisable topological group, where
the unit 1, as defined in the previous paragraph, is a topological generator.
This topology is metrisable: two points z, z′ ∈ Z(qn)

are within ε if they
agree on a large initial portion, i.e. zi = z′i for 1 ≤ i ≤ n, for n = n(ε).
With the above notation, an odometer is a dynamical system (Z,+1) where
Z = Z(qn)

for some sequence (qn).
Let A be a finite set of symbols, also called an alphabet, and let AZ

denote the set of two-sided infinite sequences over A. Similar to the topology
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we define on Z(qn)
, we equip AZ with the metrisable product topology. In

this work, we consider shift dynamical systems, or shifts (X, σ), where X

is a closed σ-invariant set of AZ and σ : AZ → AZ is the left shift map
(xn)n∈Z 7→ (xn+1)n∈Z. We use letters x, y, etc, to denote points in the two-
sided shift space AZ. In some cases we will discuss non-invertible, or one-
sided, shifts (X̃, σ), where X̃ ⊂ AN stands for the set of one-sided, or
right-infinite sequences over A. For L = N or Z, we use [w0 · · ·wn] to denote
the cylinder set {x ∈ AL : x0 · · ·xn = w0 · · ·wn}. A shift is minimal if it has
no non-trivial closed shift-invariant subsets. We say that x ∈ AL is periodic
if σk(x) = x for some k ≥ 1, aperiodic otherwise. The shift (X, σ) is said
to be aperiodic if each x ∈ X is aperiodic. For basics on continuous and
measurable dynamics see Walters [26].

Given a finite alphabet A, let A∗ be the free monoid of all (finite) words
over A under the operation of concatenation, and let A+ be the set of all
non-empty words over A. We let |w| denote the length of a finite word w and
let |A| denote the cardinality of the setA. A subword of a word or a sequence
x is a finite word x[i,j), i ≤ j, with x[i,j) := xixi+1 · · ·xj−1. A language is
a collection of words in A∗. The language Lx of x = (xn)n∈Z ∈ AZ is the
set of all its subwords. The language LX of a one- or two-sided shift (X, σ)

is the union of the languages of all x ∈ X; it is closed under the taking
of subwords and every word in LX is left- and right-extendable to a word
in LX . Conversely, a language L on A which is closed under the taking of
subwords and such that each word is both left- and right-extendable defines
a one- or two-sided shift (XL, σ), where XL consists of the set of points all of
whose subwords belong to L, so that LXL

= L. The two-sided shift defined
by L is the natural extension of the one-sided shift defined by L.

Let A and B be finite alphabets, and let θ : A → B+ be a map; it
extends to a morphism θ : A∗ → B∗, also called a substitution if A = B.
Note that we assume that the image of any letter is a non-empty word. Using
concatenation, we extend θ to act on A+, AN and AZ. If θ is a substitution,
then the finiteness of A guarantees that θ-periodic points, i.e., points x

such that θk(x) = x for some positive k, exist. The incidence matrix of the
morphism θ is the |B| × |A| matrix Mθ = (mij) with mij being the number
of occurrences of i in θ(j). A substitution is primitive if its incidence matrix
admits a power with positive entries. Given a substitution θ : A → A+, the
language Lθ defined by θ is

Lθ =
{
w ∈ A∗ : w is a subword of θn(a) for some a ∈ A and n ∈ N

}
.
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If θ is primitive then each word in Lθ is left- and right-extendable, and
Lθ is closed under the taking of subwords, so Xθ := XLθ

. We call (Xθ, σ)

a substitution shift. The substitution θ is aperiodic if (Xθ, σ) has no shift-
periodic points, and θ is a (constant-)length ℓ substitution if |θ(a)| = ℓ for
each a ∈ A.

2.1. S-adic shifts. We recall basic definitions concerning S-adic shifts.
They are obtained by replacing the iteration of a single substitution by
the iteration of a sequence of morphisms. In this article, we restrict to the
case of an S-adic shift defined over a sequence of alphabets An of bounded
cardinality, but see Remark 3.8 below.

Let θ = (θ(n))n≥0 be a sequence of morphisms with θ(n) : An+1 → A+
n ;

we call θ a directive sequence. In this article, we assume that we work
with a sequence of alphabets of bounded size, i.e., the sequence (|An|)n≥0 is
bounded. As proofs of results for directive sequences defined on a sequence
of alphabets of bounded size are a notational modification of proofs where
A = An for each n, we often work with a fixed alphabet, and we lose no
generality in our statements.

For N ≥ 1 and 0 ≤ n < N , let

θ[n,N) = θ(n) ◦ θ(n+1) ◦ · · · ◦ θ(N−1),

we shall call a word of the form θ[0,n)(a), for some a ∈ An, an n-supertile,
or an n-th order supertile. Note that every n-supertile is a concatenation of
pn
pm

m-supertiles whenever 1 ≤ m < n. Similarly, any element from Xθ may
be seen as an infinite concatenation of n-supertiles, up to a shift.

For n ≥ 0, define L̄(n) = L̄(n)
θ as

L̄(n) =
{
w ∈ A∗

n : w is a subword of θ[n,N)(a) for some a ∈ AN , and N > n
}
.

Define

X(n) = X
(n)
θ := {x ∈ AZ

n : for each k ≤ ℓ, x[k,ℓ) ∈ L̄(n)
θ }

and note that L(n) := {w : w appears as some subword in some x ∈ X(n)}
is generally a proper subset of L̄(n). We call (L(n))n≥0 the languages asso-
ciated to θ. In some situations, see for example Proposition 2.2, it will be
more convenient to work with the one sided shift

X̃(n) = X̃
(n)
θ := {x ∈ AN

n : for each 0 ≤ k ≤ ℓ, x[k,ℓ) ∈ L̄(n)
θ }.

We say that θ is primitive if for each n ≥ 0 there is an N > n such
that the incidence matrix M[n,N) := M

θ
(n)M

θ
(n+1) · · ·M

θ
(N−1) of θ[n,N) is a

positive matrix. Under the assumption of primitivity for θ, each word in



TORSION-FREE S-ADIC SHIFTS AND THEIR SPECTRUM 7

L(n) is left- and right-extendable. If θ is primitive, then each (X(n), σ) is
minimal for all n [4, Lemma 5.2]. We only work with directive sequences
such that (X(n), σ) is minimal for all n in this article.

We set Xθ = X
(0)
θ and call (Xθ, σ) the S-adic shift generated by the

directive sequence θ.

Definition 2.1 (Constant-length directive sequences). Let θ = (θ(n))n≥0 be
a directive sequence. We say that θ is a constant-length directive sequence
on (An), if each θ(n) is a constant-length morphism. We say that θ has length
sequence (qn)n≥0 if for each n, θ(n) is of length qn.

Note that there are no constraints on the sequence (qn) and it is not
assumed constant or bounded.

2.2. Eigenvalues and equicontinuous factors. Let θ be a constant-
length directive sequence with shift (Xθ, σ). A complex number λ ∈ S1 is a
continuous eigenvalue if there exists a continuous function f : Xθ → C with
f ◦ σ = λf . We abuse terminology and say that λ is a rational eigenvalue if
λ = e2πip/q is a root of unity.

Let µ be a σ-invariant Borel probability measure on Xθ and consider the
Hilbert space L2(X,µ). We say that λ is a measurable eigenvalue if there
exists a non-zero f ∈ L2(X,µ) such that f ◦ σ = λf . In general, not all
measurable eigenvalues admit continuous eigenfunctions.

The following proposition, with a proof in [3], will be convenient for us,
sometimes allowing us to work with one-sided shifts where our arguments
have less cumbersome notation.

Proposition 2.2. Let (X̃, σ̃) be a one-sided minimal shift, and let (X, σ)

be its natural extension. Then λ is a continuous eigenvalue for (X̃, σ̃) if
and only if λ is a continuous eigenvalue for (X, σ). If µ̃ is a shift invariant
measure on (X̃, σ̃) and µ is the corresponding measure on (X, σ), then λ is a
measurable eigenvalue for (X̃, T, σ̃) if and only λ is a measurable eigenvalue
for (X, σ, µ).

A topological dynamical system (Z, S) is called equicontinuous if the
family {Sn : n ∈ Z} is equicontinuous. A minimal equicontinuous system
(Z, S) must be a rotation on a compact monothetic topological group, i.e.,
there exists an element g ∈ Z such that the subgroup generated by g is
dense, and the homeomorphism is S(z) = z + g. Such a group is always
abelian and we will write the group operation additively.
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If (Z,+g) is equicontinuous and there is a factor map π : (X, σ) →
(Z,+g), we say that (Z,+g) is an equicontinuous factor of (X, σ). Any Z-
action (X, σ) admits a maximal equicontinuous factor π : (X, σ)→ (Z,+g).
This equicontinuous factor must be maximal, i.e., any other equicontinuous
factor of (X, σ) factors through (Z,+g). The maximal equicontinuous factor
encodes all continuous eigenvalues of (X, σ). There are two ways to see this,
both of which we will use and both of which are described in [1]. First, the
maximal equicontinuous factor (Z,+g) encodes the continuous eigenvalues
of X in the sense that the Pontryagin dual Ẑ of Z may be interpreted as the
subgroup of S1 generated by all continuous eigenvalues of (X, σ). Second, we
can put an equivalence relation on X where x ∼ y if and only if f(x) = f(y)

for every continuous eigenfunction f . Then it can be shown that σ induces
an equicontinuous map on X/∼, and that each continuous eigenfunction on
X translates to an eigenfunction on X/∼. The shifts that we study in this
article only have rational continuous eigenvalues; see Corollary 4.6. In this
case the relation ∼ equals Λ :=

⋂
n≥1 Λn, where Λn is defined and used in

Section 3.

2.3. Limit words.

Definition 2.3 (Limit word). Let θ be a directive sequence. We say that
u = u(0) ∈ Xθ is a (two-sided) limit word if there exists a sequence (u(n))n≥0

with u(n) ∈ X(n), and θ(n)(u(n+1)) = u(n) for each n. Similarly, u = u(0) ∈ X̃θ

is a (one-sided) limit word if there exists a sequence (u(n))n≥0 with u(n) ∈
X̃(n), and θ(n)(u(n+1)) = u(n) for each n.

We say that a word w is essential for the directive sequence θ if it occurs
in L(n) for infinitely many n. An essential word is fully essential if it occurs
in L(n) for each n. Telescoping a directive sequence (θ(n))n≥0 means taking
a sequence (nk)k≥1 and considering instead the directive sequence (θ̃(k))

where θ̃(0) = θ[0,n1) and θ̃(k) = θ[nk,nk+1) for k ≥ 1. Telescoping a directive
sequence does not change the dynamics, i.e., Xθ = Xθ̃. However telescoping
can change the nature of the directive sequence, for example, a directive
sequence can be finitary, i.e., it is chosen from a finite set of morphisms,
but it has telescopings that are not finitary. This was a concern in [3],
where finitary directive sequences were studied. In this article, we do not
need to assume that our directive sequences are finitary, nor do we put any
constraints on the morphisms in θ, only that they are defined on alphabets
of bounded size. Therefore we can telescope freely, and if ab is essential, we
can assume that it is fully essential, i.e., that it appears in L(n) for each n.
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We link our definition of a limit word to that in [3]. There, a two-sided
limit word is defined as u := limk θ

[0,nk)(a) · θ[0,nk)(b) for some essential word
ab that belongs to L(nk) for each k. If the word ab is essential, then as we can
assume that ab is fully essential, we have u := limn θ

[0,n)(a) · θ[0,n)(b). Recall
that our directive sequence is defined on alphabets of bounded size. By
further telescoping if needed, we can assume that θ[0,n)(b) shares a common
prefix with θ[0,n+1)(b) of increasing length, and θ[0,n)(a) also shares a common
suffix with θ[0,n+1)(a) of increasing length. The sequence of finite words
(θ[0,n)(a) · θ[0,n)(b))k≥1 converges to a bi-infinite sequence u in Xθ, and for
each k, the sequence of finite words (θ[k,n)(a) · θ[k,n)(b))k≥1 converges to
u(k) ∈ L(k) and θ(k)(u(k+1)) = u(k). Thus a limit word in the sense of [3]
is a limit word as in Definition 2.3. Conversely, if we have a limit word as
in Definition 2.3, we take a sequence n such that (u

(n)
−1u

(n)
0 )n is a constant

sequence ab, and then limn θ
[0,n)(ab) converges to the limit word u.

3. Recognizability and quasi-recognizability

We first start with a notion which expresses the idea of performing a
“desubstitution”.

Definition 3.1 (Dynamic recognizability, θ-representations and recogniz-
able directive sequences). Let θ : A → B+ be a morphism and y ∈ BZ. If
y = σkθ(x) with x = (xn)n∈Z ∈ AZ, and 0 ≤ k < |θ(x0)|, then we say that
(k, x) is a (centred) θ-representation of y. For X ⊆ AZ, we say that the
θ-representation (k, x) is in X if x ∈ X.

Given X ⊆ AZ and θ : A → B+, we say that θ is recognizable in X if
each y ∈ BZ has at most one centered θ-representation in X. A directive
sequence θ is recognizable at level n if θ(n) is recognizable in X(n+1). The
sequence θ is recognizable if it is recognizable at level n for each n ≥ 0.

Note that the notion of recognizability of a shift is incompatible with the
existence of shift-periodic points in that shift [5].

Definition 3.2 (Quasi-recognizability). Let θ be a constant-length direc-
tive sequence with length sequence (qn), where each (X

(n)
θ , σ) is minimal. If

there is an equicontinuous factor map πtile : (Xθ, σ) → (Z(qn)
,+1) then we

say that θ is quasi-recognizable, and we call πtile the tiling factor map.

Remark 3.3. If π : (Xθ, σ)→ (Z(qn)
,+1) is an equicontinuous factor map,

then there exists a factor map πtile : (Xθ, σ) → (Z(qn)
,+1) which maps one

limit word to zero in Z(qn)
. Hence we will always assume that πtile maps

some limit word to 0.
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Recall that if θ is primitive, then each (X
(n)
θ , σ) is minimal. We remark

that the existence of a (surjective) factor map πtile : (Xθ, σ) → (Z(qn)
,+1)

forces (Xθ, σ) to be infinite. The assumption of minimality implies that if
(Xθ, σ) is quasi-recognizable then X

(0)
θ is aperiodic. Throughout this article,

we work with quasi-recognizable directive sequences. Hence, we implicitly
assume that our shifts contain no shift-periodic points.

In light of Proposition 2.2, as we have defined it, the property of being
quasi-recognizable is not sensitive to the one- or two-sided setting. In other
words, (Xθ, σ) is quasi-recognizable if and only if (X̃θ, σ̃) is quasi-recog-
nizable. This is contrary to recognizability, where there are shifts that are
two-sided but not one-sided recognizable [23].

Lemma 3.4. Let θ be a constant-length directive sequence with length se-
quence (qn), and such that each (X

(n)
θ , σ) is minimal. If θ is recognizable,

then it is quasi-recognizable. Conversely, if θ is quasi-recognizable and each
morphism θ(n) is injective on letters, then θ is recognizable.

Proof. Suppose θ is recognizable. This direction appears in [3, Remark 6.1]
but we include a proof here. For each n, consider the σpn-cyclic partition



σj


 ⋃

a∈An

[
θ[0,n)(a)

]

 , j = 0, · · · , pn − 1





of Xθ. This defines a σ-tower where we choose the base to be
⋃

a∈An

[
θ[0,n)(a)

]
.

Define πn : Xθ → Z/pnZ to be πn(x) = jn if and only if x belongs to
σjn
(⋃

a∈An

[
θ[0,n)(a)

])
. As jn+1 ≡ jn (mod pn), the maps (πn) define a fac-

tor map πtile : Xθ → Z(qn)
. Further the assumption on the base of each

partition implies that any limit word is mapped by πtile to 0.
Conversely, suppose that we have a factor πtile : Xθ → Z(qn)

. We can
assume, by rotation if needed, that it maps a limit word to 0; see Remark
3.3. Fix such a limit word u. Define, for n ∈ N and 0 ≤ j ≤ pn − 1,
Un,j := {x : πtile(x)n = j}. We have σk(u) ∈ Un,j if and only if k ≡ j

(mod pn), and σk(u) has an n-supertile θ[0,n)(a) with support [−j, pn−j−1].
By the assumption of minimality of Xθ, we also have x ∈ Un,j if and only
if x has an n-th order supertile with support [−j, pn − j − 1].
In other words, the existence of such a π implies that given x ∈ Xθ, we have
complete information about the indices at which an n-th order supertile
begins, for each n. The result follows. □
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It remains to give some general condition which guarantees that θ is
quasi-recognizable. Note that a constant-length S-adic shift is not neces-
sarily recognizable; see [5, Example 4.3]. However that example does not
satisfy the following definition.

Definition 3.5 (Torsion-free directive sequences). Let θ be a constant-
length directive sequence with length sequence (qn) where qn > 1 infinitely
often, where each (X

(n)
θ , σ) is minimal, and such that X

(0)
θ is aperiodic. If

each prime p which divides some qk divides qn infinitely often, then we say
that θ is torsion-free.

The following theorem tells us that the shift generated by a torsion-free
S-adic shift factors onto a torsion-free odometer. We will see in Corollary
4.6 that this odometer is not always the maximal equicontinuous factor, and
that the latter may have a torsion factor.

Theorem 3.6. Let θ be a torsion-free directive sequence, defined on a se-
quence of bounded alphabets. Then θ is quasi-recognizable.

To prove Theorem 3.6 we use the notation and a modified procedure
from [8]. The following notions originate in [17]. A non-empty closed σk-
invariant subset of X is σk-minimal if it contains no proper closed σk-
invariant sets. A cyclic partition {X1, X2, · · · , Xm} of size m of X is a
partition where σ(Xi) = X(i+1) mod m for each i. The cyclic partition of
size m is σn-minimal if each partition element is σn-minimal. Note that as
we work with Cantor spaces, elements of a σn-minimal partition must be
clopen. Define γ(n) to be the cardinality of a cyclic σn-minimal partition.
This partition is unique up to cyclic permutation, so we can define the
accompanying equivalence relation Λn on X where Λn(x) = Λn(y) if and
only if x, y belong to the same σn-minimal partition element. Let νp(n)

denote the p-adic valuation of n.

Lemma 3.7. Let (X, σ) be a minimal shift. Then

(1) 1 ≤ γ(n) ≤ n and γ(n) | n,
(2) Λγ(n) = Λn and γ(γ(n)) = γ(n),
(3) if m | n then Λn ⊂ Λm, and if γ(n) = n then γ(m) = m,
(4) if γ(n) > 1 then there exists m | n such that γ(m) = m,
(5) if (m,n) = 1 then Λmn = Λm ∩ Λn and γ(mn) = γ(m)γ(n), and
(6) if p is prime, γ(p) < p and (pn) is a sequence such that νp(pn) ↑ ∞

then γ(pn)/pn → 0.
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Proof. The statements (1)-(5) are in [8, Lem. 3]. We prove only the last
statement. Write pn = pknsn where (p, sn) = 1. By Statement (5), we have
γ(pn) = γ(pkn)γ(sn). We claim that γ(pa) < p for each a ∈ N. For suppose
that γ(pa) = pb with 1 ≤ b ≤ a. Then γ(pb) = γ2(pa) = γ(pa) = pb by
(2). Now γ(pb) = pb and (3) implies that γ(p) = p, a contradiction to our
assumption. Thus, since νp(pn) ↑ ∞,

γ(pn)

pn
=

γ(pkn)γ(sn)

pknsn
≤ γ(pkn)

pkn
<

p

pkn
→ 0.

□

Proof of Theorem 3.6. We will prove the theorem in the case where the
directive sequence is defined on a single alphabet A, to ease notation. The
proof is the same if θ is defined on a sequence of alphabets, as long as their
size remains bounded.

Let u = u(0) ∈ Xθ be a limit word, i.e., there is a sequence (u(n))n≥0

with u(n) ∈ X(n) and u(n) = θ(n)(u(n+1)). Let (qn) be the length sequence of
θ. We claim that there are at most |A| + |A|2(γ(pn)− 1) distinct words of
length pn in u and therefore in the language of Xθ.

Let Xn = θ[0,n)(X(n)); then minimality of X(n) implies that Xn is a
σpn-minimal set in Xθ. Since u = θ[0,n)(u(n)), we have u ∈ Xn. Therefore
σkγ(pn)u ∈ Xn ⊂

⋃
a∈A

[
θ[0,n)(a)

]
for each k ∈ Z. Thus u is composed of

overlapping words of the form θ[0,n)(a), of length pn, spaced at intervals
γ(pn). Since there are at most |A| words of the form θ[0,n)(a) and at most
|A|2 words of the form θ[0,n)(ab), we have proved our claim, as any word w of
length pn in u is either an n-supertile or overlaps two adjacent n-supertiles;
in the second case the first n-supertile may appear at most γ(pn)−1 positions
before w in u.

If γ(pn) < pn for some n, then by Lemma 3.7, limn γ(pn)/pn = 0. We can
therefore find an n such that |A|+ |A|2(γ(pn)− 1) < pn. But then there are
fewer than pn words of length pn in u, and so u is periodic, a contradiction
to the hypothesis that X

(0)
θ is aperiodic.

Therefore γ(pn) = pn for each n and we can construct πtile : Xθ → Z(qn)
.

Namely, each relation Λpn
defines a cyclic tower of height pn so we have a

map πn : X → Z/pnZ, and we can choose a cyclic permutation of the tower
so that its base Bn contains u. In this way π(u) = 0, and also πn+1(x) mod

pn = πn(x) (here we are implicitly using the inverse-limit form of Z(qn)
).

Also, σjpn(u) ∈ Bn for each j, and these are the only shifts of u that belong
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to Bn. Finally by minimality, x ∈ Bn if and only if

x = lim
ℓ→∞

σjℓpn(u) = lim
ℓ→∞

σjℓpnθ[0,n)(u(n)) = lim
ℓ→∞

θ[0,n)(σjℓu(n)),

so that Bn = θ[0,n)(X(n)). Similarly, σj(Bn) = σj(θ[0,n)(X(n))) for 0 < j <

pn.
Note that we can take πtile(u) = 0 whenever u is a limit word as follows.

Each Λpn
defines a tower of height pn which is unique up to cyclic rotation

and we have taken the base to contain each limit word u. By minimality,
x belongs to the base only if x ∈ θ[0,n+1)(X(n+1)). This also means that
πtile(x) = 0 only if x ∈ ⋂n≥0 θ

[0,n)(X(n)), i.e. if x is a limit word. □

Remark 3.8. Note that the requirement that we work with a sequence of
bounded alphabets is used in exactly one place. Let pn = q0q1 . . . qn−1. The
torsion-free assumption on the directive sequence gives us limn γ(pn)/pn = 0.
The boundedness of alphabet cardinalities allows us to find an n such that
|An|+ |An|2(γ(pn)− 1) < pn. Therefore, given a sequence (pn) we can relax
the condition on the alphabet sizes, requiring only that limn

|An|
pn

= 0. With
this condition, we can generalise the statement of Theorem 3.6. Namely,
suppose that θ(n) : An+1 → Aqn

n , and that θ = (θ(n)) is torsion free. If

lim
n

|An|
q0 . . . qn−1

= 0,

then θ is quasi-recognizable. We state this as a remark as the emphasis in
this paper is on bounded alphabet sequences of morphisms; but this implies
that many of our results in this paper that hold for torsion-free sequences
on bounded alphabets extends to this family.

Suppose that θ is torsion-free and τ : Xθ → Y is a radius-0 sliding block
map, i.e., a code, onto an infinite shift space Y . Then, by considering the
directive sequence θ′ := (τ ◦ θ(0), θ(1), . . . ), we see that θ′ is a torsion-free
directive sequence whenever Xθ

′ is infinite.
Next, suppose that τ : Xθ → Y has left radius l and right radius r. We

modify the directive sequence (θ(n)), replacing each θ(n) by its l + r + 1-
sliding block presentation of Xθ as follows. Given a length-ℓ substitution, θ,
we define η on the alphabet consisting of words of length l+r+1 that belong
to Lθ. Now if (a1, . . . , al+r+1) ∈ Lθ, and θ(a1, . . . , al+r+1) = b1 . . . b(l+r+1)ℓ,
define

η((a1, . . . , al+r+1)) := (b1, . . . , bℓ)(b2, . . . , bℓ+1) . . . (bℓ, . . . , b2ℓ−1);

it is straightforward to show that (Xθ, σ) and (Xη, σ) are topologically con-
jugate; see for example [25, Section 5.4]. In the S-adic setting, we can follow
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a similar procedure. Namely if we replace the sequence (θ(n)) with (η(n)),
defining η(n) on the alphabet of legal words from L(n+1) of length l+ r + 1,
then as we have not modified the substitution lengths, the new directive se-
quence η is also torsion-free, and defined on a bounded sequence of alphabets
if θ is. One can also show that (Xθ, σ) is topologically conjugate to (Xη, σ).
Furthermore the sliding block code τ can be transferred to τη : Xη → Y ,
where τη is a code and τ(Xθ) = τη(Xη). In other words, τ(Xθ) is generated
by the directive sequence (τ ◦ η(0), η(1), . . . ).

Thus we can assume that any topological factor (Y, σ) of (Xθ, σ), with
θ torsion-free, can be given by such a code, and we have the following.
Note that it is a far easier result to prove than the corresponding result for
automatic sequences in [24].

Corollary 3.9. Let θ be a torsion-free directive sequence, defined on a se-
quence of bounded alphabets. Then any infinite factor of (Xθ, σ) is a torsion-
free S-adic shift.

Let θ = (θ(j))j≥0 and η = (η(j))j≥0 be two directive sequences sharing the
same length sequence (qj)j⩾0. If the shift spaces Xθ and Xη are conjugate,
we can see by composing the conjugacy map with the relevant tiling factor
map, if it exists, that quasi-recognizability is a conjugacy invariant for S-adic
shifts. A natural follow-up question is thus whether a factor map between
two S-adic shifts preserves quasi-recognizability. Below we see that this is
not the case.

Example 3.10. Consider the two substitutions α and β given by

α : A 7→ 00 β : A 7→ ACABA

B 7→ 01 B 7→ ACAAA

C 7→ 10 C 7→ AAABA

and the directive sequence α = (α, β, β, β, . . .). This is a known example [5]
of a non-recognizable directive sequence, as each x ∈ Xα can be written
in two ways as α(y) or σ ◦ α(z) for some y, z ∈ Xβ. It cannot be quasi-
recognizable either. For, as both α and β are injective, quasi-recognizability
would imply recognizability by Lemma 3.4.
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However, we can easily convert this directive sequence into another that
engenders a recognizable shift, by replacing α with the following substitu-
tion:

ᾱ : A 7→ 00

B 7→ 01

C 7→ 1̄0

The new directive sequence ᾱ = (ᾱ, β, β, β, . . .) is easily seen to be rec-
ognizable. Indeed, any point x ∈ Xᾱ must contain a 1̄ somewhere, which
necessarily is the start of a supertile 1̄0; thus, the parity of the index j

where the symbol 1̄ is found determines whether x is of the form ᾱ(y) or
σ ◦ ᾱ(y), for some y ∈ Xβ. By injectivity of ᾱ, this y is uniquely determined
(and is thus a desubstitution of x). As Xβ is substitutive, recognizability is
guaranteed from then on.

The radius-0 code f whose local function is given by 0 7→ 0 and 1, 1̄ 7→ 1

is a natural factor map Xᾱ → Xα. This provides an example of a S-adic
shift with a recognizable directive sequence and with a factor that is not
even quasi-recognizable.

We end this section with a key result which will be useful later, in Sec-
tions 5 and 6. It tells us that we can turn a non-injective, quasi-recognizable
directive sequence into a recognizable directive sequence, while keeping the
top S-adic shift X(0) fixed. In other words, if we need recognizability, then
we can manufacture it, provided that we have quasi-recognizability.

Theorem 3.11. Let θ be a quasi-recognizable directive sequence defined on
a sequence of bounded alphabets. Then there exists a recognizable directive
sequence θ̂, defined on a sequence of bounded alphabets, such that Xθ = Xθ̂.

Proof. For ease of notation we assume that the original directive sequence
θ is defined on the alphabet A. We construct the sequence θ̂ one morphism
at a time.

If θ(0) is injective on letters, then we set θ̂(0) = θ(0). Otherwise, we in-
troduce an equivalence relation on A where a ∼ a′ if θ(0)(a) = θ(0)(a′). By
assumption there are k < |A| equivalence classes for ∼. Define τ1 : A → B1
where |B1| = k and where τ1(a) = τ1(a

′) if and only if a ∼ a′. Now define
θ̂(0) : B1 → Aq0 by θ̂(0)(b) = θ(0)(a) for any a ∈ τ−1

1 (b); θ̂(0) is well defined and
injective on letters. Set η(1) := τ1 ◦ θ(1), then η(1) : A → B(q1)

1 . Note that by
construction, |θ̂(0)| = q0 and η(1) = q1, and the tiling map πtile : X

(0) → Z(qn)

does not change. Also, X(0)
θ = X

(0)

(θ̂
(0)

,η
(1)

,θ
(2)

,... )
.
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We can thus replace θ with the directive sequence (θ̂(0), η(1), θ(2), . . .);
it still generates X

(0)
θ . If η(1) is injective on letters, we set θ̂(1) := η(1).

Otherwise define τ2 : A → B2 by τ2(a) = τ2(a
′) if and only if η(1)(a) =

η(1)(a′), and define θ̂(1) : B2 → B(q1)
1 as θ̂(1)(c) = η(1)(a) for any a ∈ τ−1

2 (c);
as before θ̂(1) is well defined and injective on letters. Define η(2) := τ2 ◦ θ(2);
then η(2) is a morphism A → B(q2)

2 . Now replace the directive sequence
(θ̂(0), η(1), θ(2), . . . ) with (θ̂(0), θ̂(1), η(2), θ(3), . . . ); as before the sequence of
lengths remains the same, as does the tiling map πtile : X

(0) → Z(qn)
, and

X
(0)
θ = X

(0)

(θ̂
(0)

, θ̂
(1)

, η
(2)

, θ
(3)

,... )
.

· · · θ
(3)

// X(3) θ
(2)

//

τ3

��

η
(2)

!!

X(2) θ
(1)

//

τ2

��

η
(1)

!!

X(1) θ
(0)

//

τ1

��

X(0)

· · · θ̂
(3)

// X̂(3) θ̂
(2)

// X̂(2) θ̂
(1)

// X̂(1) θ̂
(0)

// X̂(0)

1

Figure 1. How to obtain an injective sequence of morphisms
θ̂ from the original directive sequence θ.

We continue recursively in this way: see Figure 1. It is straightforward to
see now that the directive sequence θ̂ = (θ̂(0), θ̂(1), θ̂(2), . . . ) has the desired
properties. □

Example 3.12. In this example, we show that there exist quasi-recognizable
directive sequences which are not recognizable. Consider the substitutions
θ, ϑ and ϱ given by

θ : 0 7→ 011 ϑ : 0 7→ 01̄1 ϱ : 0 7→ 011

1 7→ 001 1 7→ 00̄1 1 7→ 001,

0̄ 7→ 0̄11̄ 0̄ 7→ 011

1̄ 7→ 0̄01̄, 1̄ 7→ 001,

and consider the directive sequence α = (ϱ, ϑ, ϑ, ϑ, . . . ). By definition, this
is a torsion-free sequence on A = {0, 1}, and we can see that the shift Xα

can be written as:

Xα = ϱ(Xϑ) ∪ σ ◦ ϱ(Xϑ) ∪ σ2 ◦ ϱ(Xϑ),

where Xϑ is the corresponding substitutive subshift.
The net effect of applying ϱ on a fixed point of ϑ is just the removal of the

bars above the symbols. Therefore Xα = Xθ, and α is quasi-recognizable.
However, 1.0̄ and 1̄.0 are valid seeds for distinct fixed points x(1) = ϑ∞(1.0̄)

and y(1) = ϑ∞(1̄.0) of Xϑ = X(1), which satisfy ϱ(x(1)) = ϱ(y(1)), and thus
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the fixed point θ∞(1.0) ∈ Xθ = X(0) has two possible desubstitutions in
X(1). Hence, α is not recognizable.

Applying Theorem 3.11 to the sequence α, we note that ϱ = θ ◦ τ , where
τ is defined by 0, 0̄ 7→ 0 and 1, 1̄ 7→ 1; hence, α̂(0) = θ, with the second
substitution α(1) = ϑ being replaced by η(1) = τ ◦ ϑ = ϱ. Thus, we obtain
α̂ = (θ, θ, θ, . . . ) as the injectivisation of α, which is consistent with the
observation that Xα = Xθ. Also, α̂ is recognizable [23].

4. Height and the pure base

If a minimal shift (X, σ) is a somewhere one-to-one extension of an
equicontinuous system, then that system must be the maximal equicontin-
uous factor of (X, σ) [10,27]. This is no longer true if (X, σ) is a somewhere
finite-to-one extension of an odometer; see Example 4.5. However its max-
imal equicontinuous factor remains an odometer, as follows. We note that
Bastián Espinoza has obtained a similar result via a different method [12].

Theorem 4.1. Let (X, σ) be a minimal shift. If (X, σ) is a somewhere finite-
to-one extension of an odometer (Z(qn)

,+1), then the maximal equicontin-
uous factor of (X, σ) must be an odometer which is a rotation on a group
extension of Z(qn)

by a finite cyclic group Z/hZ.

We can actually obtain Theorem 4.1 as a consequence of a more general
result, without the need for substantial modifications of the proof. Indeed,
we can prove that:

Theorem 4.2. Let (X,T ) be a minimal topological dynamical system and
suppose that (X,T ) factors onto a group rotation Rα defined over a mono-
thetic group G, where the cyclic subgroup generated by α ∈ G is dense in G.
If the factor map πG : (X,T )→ (G,Rα) is somewhere finite-to-one, then the
maximal equicontinuous factor of (X,T ) is a group rotation (Z,Rβ) over a
monothetic group Z which is a finite extension of G.

Proof. Let the finite c be such that (X,T ) is a somewhere c-to-one extension
of (G,Rα). Suppose (Z,Rβ) is the maximal equicontinuous factor of (X,T ).
Due to the maximality of Z, we have the following commutative diagram
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of factor maps and group actions:

X
σ

//

πG

����

πMEF

    

X

πG

����

πMEF

~~~~

Z
+β
//

πind~~~~

Z

πind     

G
+α

// G

where the somewhere c-to-one map πG : X → G is πG = πind ◦πMEF. Hence,
the following relationship holds:

π−1
G ({g}) =

⋃

z∈π−1
ind({g})

π−1
MEF({z}),

where the union is disjoint. Since there exists a g ∈ G with |π−1
G ({g})| = c,

then we must have |π−1
MEF({z})| ≤ c for every z ∈ π−1

ind({g}), with equality
if, and only if, g has a single preimage in Z.

We note that f(z) = πind(z)−πind(0Z) is a group homomorphism. Indeed,
as πind is a factor map that commutes the Z-actions, one must have:

πind(g + β) = πind(g) + α =⇒ f(g + β) = f(g) + α, for every g ∈ Z,

where β and α generate dense cyclic subgroups of Z and G, respectively. We
identify these subgroups with Z in both cases. Since f(0Z) = 0G, it follows
that f(n · β) = n · α for each n ∈ N.

For any h ∈ Z, there is a sequence of integers {hn}n∈N with hn · β → h.
As πind, and so f , are continuous then:

f(g + h) = lim
n→∞

f(g + hn · β)

= lim
n→∞

f(g) + hn · α

= f(g) + lim
n→∞

f(hn · β)

= f(g) + f(h).

As f is a group homomorphism, f(g) = f(h) ⇐⇒ g − h ∈ ker(f). Thus:

g ∈ π−1
ind ({πind(h)}) ⇐⇒ πind(g) = πind(h)

⇐⇒ f(g) = f(h)

⇐⇒ g − h ∈ ker(f)

⇐⇒ g ∈ h+ ker(f).

As πind is surjective, every g ∈ G is of the form πind(h) for some h ∈ Z. Hence
every fibre of πind is a coset of ker(f) and thus has cardinality r = |ker(f)|.
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Since πtile is somewhere finite-to-one, we may take some g ∈ G such that
|π−1

tile({g})| = c. The decomposition of π−1
G ({g}) into fibres of πMEF shown

above allows us to see that this set is a finite, disjoint union of r non-empty
fibres π−1

MEF({z}), and thus r ≤ c; in particular, r must be finite. By the first
isomorphism theorem, Z/ ker(f) ∼= G, and the result follows. □

Remark 4.3. The proof above is mostly group-theoretic in nature, with the
key dynamical property used being that the group rotation Rα is minimal
in G and thus the latter group is monothetic, as the orbit of 0 is a dense
cyclic subgroup. This same argument, with minor modifications, applies
to more general group actions T : H × X → X (where H is a sufficiently
well-behaved group, such as Zd) where there exists a finite-to-one factor
map π : (Z, T,H)→ (G, (Rh)h∈H , H) onto a topological group G for which
there is a monomorphism ι : H ↪→ G such that ι(H) is dense in G and
Rh(g) = g + ι(h) for all h ∈ H, that is, G is a topological completion of H
in the same way as in which a monothetic group is a topological completion
of Z.

Thus most of Theorem 4.1 is a direct consequence of Theorem 4.2; all
that remains is the observation that ker(f) is a finite cyclic group Z/hZ for
some h. This is a consequence of the interpretation of the Pontryagin dual
of Z as the subgroup of S1 generated by all continuous eigenvalues of the
shift space (X, σ), see Remark 4.4, however, it may also be derived from the
density of the orbit of β in Z, using the fact that for every k ∈ ker(f) there
is some Nk ∈ N such that Nk · β is arbitrarily close to k, and obtaining a
single generator for ker(f) via arithmetic on the Nk’s and equicontinuity.

Remark 4.4. As discussed in Section 2.2, the Pontryagin dual Ẑ of the
maximal equicontinuous factor may be interpreted as the subgroup of S1

generated by eigenvalues of (Xθ, σ). Pontryagin duality and the proof above
thus imply that Ẑ(qn)

= ⟨{e2πi/qn : n ≥ 0}⟩ is an index h = |ker(f)| < ∞
subgroup of Ẑ, and thus, for any continuous eigenvalue λ, we must have λh ∈
Ẑ(qn)

, i.e. any continuous eigenvalue is an h-th root of some eigenvalue in the
dual of the known odometer, including the case where the new eigenvalue
is just an h-th root of unity.

Also, by this interpretation, we see that if h > 1 then h is forced to
be coprime to all but finitely many to the qn’s: if p was a common prime
factor between h and infinitely many of the qn’s, then the group Ẑ(qn)

would
be closed under taking p-th roots, meaning that any continuous eigenvalue
λ ∈ Ẑ is an (h/p)-th root of some eigenvalue in Ẑ(qn)

, and in particular Ẑ(qn)
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could be at most an index h/p subgroup of Ẑ, a contradiction. In particular,
if the odometer Z(qn)

is torsion-free, then h will be coprime to all qn and
thus Z = Z(qn)

× Z/hZ.

Example 4.5. Consider the following two substitutions:

θ : a 7→ abaca τ : a 7→ ab

b 7→ babac b 7→ bc

c 7→ cabab c 7→ ac,

and the directive sequence ϑ = (τ, θ, θ, . . . ), so that Xϑ = τ(Xθ)∪σ◦τ(Xθ).
As θ is primitive and aperiodic, and τ is injective on letters, this decom-
position ensures that Xϑ is infinite and aperiodic. Note that although ϑ is
not torsion-free, it is quasi-recognizable. To see this, first, as θ is aperiodic
and thus recognizable, there exists a factor map πtile : X

(1) → Z5. Also, we
only see the letter a at the start of a τ -tile, so there must exist a factor
π2 : X

(0) → Z/2Z, which is determined by the position of the instance of
a closest to the origin. Since τ is injective on letters, any x ∈ X(0) has a
unique preimage x(1) ∈ X(1), so we may define π : X(0) → Z5 × Z/2Z by:

π(x) =
(
πtile(x

(1)), π2(x)
)
.

Thus, π : X(0) → Z5 × Z/2Z is a factor map. Also, the substitution
θ has height 2, so −1 is an eigenvalue of Xθ = X(1), with one associated
eigenfunction f : X(1) → S1 being given by:

f(x) =




1 if x0 = a,

−1 otherwise.

This f induces an eigenfunction f̃ : X(0) = Xϑ → S1, which is given by:

f̃(x) =




f(y) if x = τ(y),

eπi/2 · f(y) if x = σ(τ(y)).

The injectivity of τ and the equality τ ◦ σ = σ2 ◦ τ ensure that f̃ is well-
defined and an eigenfunction for Xϑ, with eigenvalue eπi/2. We can use this
to verify that the maximal equicontinuous factor of Xϑ equals Z5 × Z/4Z,
which is a finite extension of the tiling factor Z5×Z/2Z by Z/2Z (consistent
with Theorem 4.1) but is not isomorphic to (Z5 × Z/2Z) × Z/2Z, so it is
not a product of the odometer Z(qn)

with the identified cyclic group. Note
also that this is an example of a shift that is a 2-to-1 extension of the
(equicontinuous) odometer (Z5 × Z/2Z,+(1, 1)), but the latter does not
equal the former’s maximal equicontinuous factor.
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Corollary 4.6. Let θ be a torsion-free directive sequence defined on a se-
quence of bounded alphabets. Then the maximal equicontinuous factor of
(Xθ, σ) is Z(qn)

× Z/hZ for some h coprime to each qn. In particular each
continuous eigenvalue for (Xθ, σ) is rational.

Proof. Let θ have length sequence (qn). Since θ is torsion-free, then by
Theorem 3.6 we have an equicontinuous factor map πtile : Xθ → Z(qn)

which
maps limit words to 0. The assumption that qn ≥ 2 infinitely often (by
definition) tells us that q0 · · · qn → ∞, so by [5, Lemma 5.13], there are
finitely many limit words. Therefore the fibre π−1

tile(0) is finite and we can
apply Theorem 4.1 to obtain the desired result. □

Remark 4.7. We have stated Corollary 4.6 for torsion-free directive se-
quences, but we could also have stated it for a larger class of quasi-recogniz-
able directive sequences. For example, given a quasi-recognizable constant-
length directive sequence with length sequence (qn), if there exists N such
that (qn)n≥N is torsion-free, then the maximal equicontinuous factor of
(Xθ, σ) is Z(qn)n≥N

× Z/HZ for some H coprime to each qn, n ≥ N, where
the h of Theorem 4.1 divides H.

Similarly, while we give the following definition for torsion-free directive
sequences, we can naturally extend it to the appropriate family of quasi-
recognizable sequences.

Definition 4.8 (Height). Let θ be a torsion-free directive sequence defined
on a sequence of bounded alphabets. We call the h = h(θ) guaranteed by
Corollary 4.6 the height of θ. If h = 1, we say that θ has trivial height.

Note that this definition is consistent with [3, Definition 6.7]. Note also
that if h is the height, then γ(h) = h, where γ is defined before Lemma 3.7.
To avoid confusion, we remark that if θ is torsion-free, then its maximal
equicontinuous factor is torsion-free only if h = 1.

4.1. Connection between height and coboundaries. We connect our
work to previous recent work [3, Section 6], where we associate to a con-
tinuous eigenvalue a coboundary. As this commentary is simply to connect
our work here to there, we do not include definitions, referring the reader to
the aforementioned article for terminology. In that article, as the directive
sequences were assumed finitary, telescoping was not always permitted, and
there assumptions had to be made about the existence of a word of length 2
that belong to all languages L(n). As here we do not constrain the lengths of
the morphisms to belong to a finite set, we may always telescope to obtain
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such words. Also, there the results concerned straight directive sequences.
But straightness can be obtained by telescoping, and here also, as we can
telescope arbitrarily, we can assume, without loss of generality, that our
directive sequences are straight. Consequently, we can restate [3, Theorem
6.6] as

Theorem 4.9. Let θ = (θ(n))n≥0 be a torsion-free directive sequence defined
on a sequence of bounded alphabets, with length sequence (qn)n≥0. If θ has
height h, then λ is a continuous eigenvalue of (Xθ, σ) if and only if

(4.1) lim
n→∞

λq0···qn

exists and is a constant coboundary which, if nontrivial, equals e2πi/h̃ with
h̃ | h. Furthermore h divides qn − 1 for all n large.

Proof. The proof that the limit (4.1) exists and defines a coboundary follows
the same lines as the proof in [3, Theorem 6.6]. By Theorem 4.1 we have
that the limit in (4.1) must either equal 1, or e2πi/h̃ where h̃ | h. To see the
last statement, from existence of (4.1) we conclude that

lim
n→∞

e2πiq0···qn(qn+1−1)/h = 1,

and since h is coprime to each qn, the result follows. □

From Theorem 4.9 we can extend [3, Theorem 6.9] to obtain a strength-
ened version of Cobham’s theorem.

Corollary 4.10. Let θ = (θ(n))n≥0 and τ = (τ (n))n≥0 be two torsion-free
constant-length directive sequences, defined on a sequence of bounded alpha-
bets, with length sequences (qn)n≥0 and (q̃n)n≥0. If there is a prime factor of
some q ∈ {qn : n ≥ 0} that is not a prime factor of any q̃ ∈ {q̃n : n ≥ 0},
then (Xθ, σ) cannot be a topological factor of (Xτ , σ).

Example 4.11. Let θ = (θ(j))j≥0 be any directive sequence with lengths
given by qj = (j+2)! and such that X(0)

θ is aperiodic; for instance, one may
take the directive sequence given by:

θ(j) : 0 7→ 0(j+2)!−11

1 7→ 1(j+2)!−10,

where qj = (j + 2)!. It is easy to see that this is a torsion-free directive
sequence, as p | qj implies p | qj′ for any j′ > j.

The odometer Z(qn)
given by the length sequence (qn) is isomorphic to

the product Ω :=
∏

p prime Zp of every p-adic odometer, for prime p; this is
often called the universal odometer [10], as any odometer is a factor of Ω.



TORSION-FREE S-ADIC SHIFTS AND THEIR SPECTRUM 23

The maximal equicontinuous factor of (Xθ, σ) is then necessarily at most a
finite extension of Ω by a group of order h, the dynamical height.

As observed in Remark 4.4, h must be coprime to all numbers (n+ 2)!,
which is only possible if h = 1. Thus, Ω is the maximal equicontinuous
factor of Xθ. An alternative interpretation is that every rational in [0, 1)

is already an additive eigenvalue of the system, so we cannot add any new
eigenvalue.

Example 4.12. Consider the substitutions S = {θ, τ} with

θ : a 7→ acb τ : a 7→ abc

b 7→ bab b 7→ acb

c 7→ cbc c 7→ aac.

These two substitutions were defined by Durand in [11], where he took a
specific directive sequence on {θ, τ} to produce a finitary strongly primitive
constant-length directive sequence whose associated shift is minimal, but
not linearly recurrent. Here we consider any directive sequence taking values
from {θ, τ}. As shown in [3, Example 1], any directive sequence is recogniz-
able and hence X

(0)
θ is aperiodic; (alternatively, it is injective and torsion

free, so recognizable). It can also be verified that it is primitive. Thus by
Corollary 4.6 we conclude that for each directive sequence the maximal
equicontinuous factor of the corresponding shift is (Z(qn)

×Z/hZ, (+1,+1))

where h may depend on θ. We argue that h always equals 1. One can show
that no matter the selected directive sequence, one can telescope so that
there is a word αα ∈ L(n) for each n. If e2πi/h is an eigenvalue, then the
existence of this word allows us to conclude that e2πipn/h → 1. Since h is
coprime to each pn, this forces h = 1.

Example 4.13. This is a modification of [3, Example 6.10]. Take any finite
set Q of odd numbers, and let S be any set of constant-length substitutions
on A = {a, b, c, d} where

(1) for each α ∈ {a, b} and each θ ∈ S, θ(α) starts with a letter in {a, b}
and similarly for each α ∈ {c, d}, θ(α) starts with a letter in {c, d},

(2) for each θ ∈ S, any occurrence of a letter in {a, b} in the image of
letter by a substitution is always followed by a letter in {c, d}, and
any occurrence of a letter in {c, d} is always followed by a letter
{a, b}, and

(3) each substitution in S has length belonging to Q.



24 Á. BUSTOS-GAJARDO, N. MAÑIBO, AND R. YASSAWI

Then we claim that −1 is a continuous eigenvalue for any primitive directive
sequence where any substitution in S that appears in θ appears infinitely
often, and where X

(0)
θ is aperiodic. The previous assumptions imply that

θ is torsion-free, so that Corollary 4.6 applies. Also, the three conditions
above ensure that −1 is an eigenvalue, as

P = {[a] ∪ [b], [c] ∪ [d]}

is then a clopen partition which forms a Rokhlin tower of height 2, so that
2 | h. Note that Corollary 5.5 tells us that this kind of example is essentially
the only way that height can manifest.

4.2. The pure base of a torsion-free directive sequence. In this sec-
tion we assume that the constant-length directive sequence is defined on a
sequence of bounded alphabets, but for ease of notation we will give proofs
for the case when θ is defined on A. We assume that it is torsion-free, so
that it is quasi-recognizable by Theorem 3.6. If θ has height h > 1 we would
like to define a pure base in a manner analogous to that defined by Dekking
for constant-length substitutions; let us recall how to define the pure base of
a length-ℓ substitution. Given a primitive length-ℓ substitution θ : A → Aℓ,
a fixed point u, and some h ∈ N, consider the set of words

W := {ukh · · ·u(k+1)h−1 : k ∈ N};

it is finite with cardinality c. Define an alphabet B := {b1, . . . bc} such that
each letter in B codes a distinct word in the above set. Let τ̄ : B → W
be the natural map which assigns to a letter in B the word in W which it
codes. Conversely, let τ : W → B be the inverse of τ̄ . The map τ extends
by concatenation to words on W . Define θ̄ : B → Bℓ as

(4.2) θ̄(b) = τ(θ(τ̄(b)));

θ̄ gives what is known as a h-th higher power shift presentation of Xθ, and
it is called a pure base of θ. In fact, as shown in [8, Remark 9, Lemmas 17
and 19], (Xθ, σ) is conjugate to a constant height suspension over (Xθ̄, σ).
If the height of the stationary directive sequence (θ, θ, . . . ) is h, then this
suspension has height h.

We continue with the notation above, namely the maps τ and τ̄ .

Definition 4.14 (Pure base). Let θ be a constant-length (qn) directive
sequence on A. Let (u(k))k≥0 be such that θ(k)(u(k+1)) = u(k) for each k,
and let W(n) be the set of words of length h that appears at the indices
{kh : k ≥ 0} in u(n). CodeW(n) with an alphabet B(n) of cardinality |W(n)|.
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Let τ̄n : B(n) → Ah be the natural map which associates to a letter in B(n)

its representative in W(n). Conversely, if w ∈ W(n), let τn : W(n) → B(n)

be the inverse of τ̄n. The map τn extends to concatenations of words over
W(n), and similarly the map τ̄n extends to concatenations of letters. Define
θ̄(n) : B(n+1) → (B(n))qn as

(4.3) θ̄(n)(b) = τn(θ
(n)(τ̄n+1(b))).

Then we call the directive sequence θ̄ = (θ̄(n))n≥0 the pure base of θ.

We shall see in Theorem 4.16 that if θ has height h > 1, this construction
will give a h-th higher power shift of (Xθ, σ).

Lemma 4.15. If θ is a constant-length directive sequence on A such that
each (X

(n)
θ , σ) is minimal and X

(0)
θ is aperiodic, then each (X

(n)

θ̄
, σ̄) is min-

imal.

Proof. We show that the one-sided shift (X̃
(n)

θ̄
, σ̃) is minimal; this implies

that the two-sided shift (X
(n)

θ̄
, σ̄) is minimal. Suppose that the limit word

sequence (u(n))n≥0 is used to define θ̄. To show that each (X̃
(n)

θ̄
, σ̃) is minimal

we first construct a sequence (ū(n))n≥0 such that τ̄n(ū
(n)) = u(n). Define ū =

ū(0) as the unique sequence such that τ̄0(ū
(0)) = u. Next, given n ≥ 0 and

knowledge of u(n)
0 · · ·u(n)

qn(k+1)h−1, define the unique word ū
(n+1)
0 · · · ū(n+1)

k ∈
L(n+1)

θ̄
which satisfies

θ(n)τ̄n+1(ū
(n+1)
0 · · · ū(n+1)

k ) = u
(n)
0 · · ·u(n)

qn(k+1)h−1.

Then for each n, the sequence of nested words (ū(n)
0 · · · ū(n)

k )k≥0 converges to
a sequence ū(n) and

θ̄(n)(ū(n+1)) = θ̄(n)( lim
k→∞

ū
(n+1)
0 · · · ū(n+1)

k ) = τnθ
(n)τ̄n+1( lim

k→∞
ū
(n+1)
0 · · · ū(n+1)

k )

= τn

(
lim
k→∞

u
(n)
0 · · ·u(n)

qn(k+1)h−1

)
= ū(n),

where the last step follows by an inductive argument. See Figure 2. Now
minimality implies that for each n, if u(n) contains a word, then this word
appears uniformly recurrently in u(n). Furthermore, as the cyclic σh-minimal
partition consists of clopen sets, then if a word is long enough, it only
appears at indices that are congruent to a fixed i mod h. Therefore, if w

is a sufficiently long word which occurs at an index congruent to a fixed
i mod h, then it occurs uniformly recurrently at an index congruent to a
fixed i mod h, and its image under τn occurs uniformly recurrently in ū(n).
Thus any word that appears in ū(n) must also appear uniformly recurrently.
The result follows. □
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· · · θ̄
(n+1)

// ū(n+1)

τ̄n+1

��

θ̄
(n)

// ū(n) θ̄
(n−1)

//

τ̄n

��

· · · θ̄
(1)

// ū(1)

τ̄1

��

θ̄
(0)

// ū(0) = ū

τ̄0

��

· · · θ
(n+1)

// u(n+1) θ
(n)

//

τn+1

KK

u(n) θ
(n−1)

//

τn

KK

· · · θ
(1)

// u(1) θ
(0)

//

τ1

KK

u(0) = u

τ0

KK

1

Figure 2. Using the maps (τn) and (τ̄n) to transfer a θ-limit
word to a θ̄-limit word

Theorem 4.16. If θ is a torsion free directive sequence defined on A, of
height h, then the pure base θ̄ is torsion-free and has trivial height, and
(Xθ, σ) ∼= (Xθ̄ × {0, . . . , h− 1}, T ) where

T (x, i) :=




(x, i+ 1) if 0 ≤ i < h− 1

(σ̄(x), 0) if i = h− 1

Proof. Fix the sequence (u(n))n≥0, such that θ(n)(u(n+1)) = u(n) and u =

u(0) ∈ Xθ, that defines the directive sequence θ̄. By definition, the length
sequence of θ̄ is also (qn), the length sequence of θ. By Lemma 4.15, each
shift (X

(n)

θ̄
, σ̄) is minimal, and also it cannot be periodic, as Xθ is not

periodic. Hence θ̄ is torsion free. Note that θ̄(n) is defined on (Bn) where each
|Bn| ≤ |A|h. Thus by Theorem 3.6, each of θ and θ̄ is quasi-recognizable. As
γθ(h) = h, there exists a σh-minimal set X0 ⊂ Xθ containing u. We claim
that the map τ̄0 : Xθ̄ → Xθ is a bijection between Xθ̄ and X0. Let ū be the
unique sequence such that τ̄0(ū) = u, i.e., τ0(u) = ū. As Xθ̄ is minimal by
Lemma 4.15, for any x ∈ Xθ̄ we can write, for some (nk),

τ̄0(x) = τ̄0

(
lim
k

σ̄nkτ0(u)
)
= τ̄0

(
lim
k

τ0σ
nkh(u)

)
= lim

k
σnkh(u),

and since u ∈ X0 and X0 is σh-invariant, therefore τ̄0(x) ∈ X0. Also,

τ̄0σ̄(x) = τ̄0σ̄(lim
k

σ̄nk(ū)) = τ̄0σ̄(lim
k

σ̄nkτ0(u)) = τ̄0(τ0 lim
k

σ(nk+1)h(u))

= σh lim
k

σnkh(u) = σhτ̄0

(
lim
k

σ̄nk(ū)
)
= σhτ̄0(x)

so that τ̄0 is a conjugacy between (Xθ̄, σ̄) and (X0, σ
h), and the second

statement follows.
Next we show that θ̄ has trivial height. Suppose h̄ is coprime to (qn) and

that Y0 ⊂ Xθ̄ is σh̄-minimal and defines a σ̄h̄-cyclic partition {σ̄iY0 : 0 ≤ i ≤
h̄−1} of Xθ̄. Then τ̄0(Y0) is σhh̄-minimal in Xθ and {σiτ̄0(Y0), 0 ≤ i ≤ hh̄−1}
is a hh̄-cyclic partition of Xθ. But the definition of h as being maximal forces
h̄ = 1. □
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5. Combinatorial interpretations of height

In Definition 4.8, we defined the height of a directive sequence as the
maximal h such that γ(h) = h and h is co-prime to the length sequence
(qn)n≥0. In this section we give a combinatorial characterisation of height in
terms of return times, as was done in [8] for substitutions.

Recall that for a primitive substitution of length ℓ with fixed point u =

u0, u1 . . . , an equivalent definition of the height is

h(θ) := max{n ≥ 1 : gcd(n, ℓ) = 1, n | gcd{k : uk = u0}} .

In this section we find an equivalent combinatorial definition of the height
for the directive sequence θ. By Proposition 2.2, since the height gives rise
to a continuous eigenvalue, we can work in the one-sided setting.

Remark 5.1. For some technical reasons, e.g., see Lemma 5.3 and Exam-
ple 5.7 below, we will sometimes need to work with an injective directive
sequence. Theorem 3.11 tells us that we may always replace a directive
sequence θ, by a recognizable θ̂, such that Xθ = Xθ̂, and where every mor-
phism in θ̂ is injective on letters. In light of this, we will define a sequence
of combinatorial heights (h(n)) using the level-n shifts of the injectivisation
θ̂, and for the remainder of this section we work with directive sequences
that are injective on letters.

Let θ be an injective directive sequence. Let u(0) be a limit word for θ, so
that there is a sequence (u(n))n≥0 satisfying u(n) ∈ X(n) and θ(n)(u(n+1)) =

u(n), i.e., θ[0,n)(u(n)) = u(0) for each n. We write gcd(m, (qn)) = 1 if m is
coprime to qn for each n. Define

h(n)(θ) = h(n) := max{d ≥ 1 : gcd(d, (qN)N≥n) = 1, d | gcd{k : u
(n)
k = u

(n)
0 }}.

If θ is not injective, we define

h(n)(θ) := h(n)(θ̂)

where θ̂ is the injectivisation of θ given by by Theorem 3.11.

Example 5.2. Consider the substitutions S = {θ, τ} with

θ : a 7→ aba τ : a 7→ aab

b 7→ bac b 7→ abc

c 7→ bab c 7→ aac

and consider the directive sequence (τ, θ, θ, θ, . . . ); then h(n) = 2 for n ≥ 1,
but h(0) = 1.
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The previous example tells us that the sequence of combinatorial heights
(h(n)) can fluctuate. Nevertheless, if some h(n) > 1, injectivity forces the
existence of eigenvalues for (X(m), σ) for m ≤ n.

Lemma 5.3. Let θ be an injective torsion-free directive sequence defined
on a sequence of bounded alphabets. If h(n) ≥ 2, then (X(m), σ) has a cyclic
h(n)-minimal partition for 0 ≤ m ≤ n.

Proof. Suppose that h := h(n) ≥ 2. We first show that (X(n), σ) has a
cyclic σh-minimal partition. Since (X(n), σ) is minimal, there is an ℓ such
that any word of length ℓ contains at least one occurrence of the letter
u
(n)
0 . Let Qi be the set of such words w where we see the first occurrence

of u
(n)
0 at a location congruent to i mod h. Taking Ci :=

⋃
w∈Qi

[w], we
obtain that {C0, . . . , Ch−1} is a cyclic h-minimal partition; the distance
between two instances of the letter u

(n)
0 is a multiple of h(n) by definition

(and minimality), ensuring that the definition of this partition is consistent.
Next, we claim that for any m ≤ n, we can create a cyclic h-minimal

partition for (X(m), σ). To do this we will proceed inductively, showing that
we can build a cyclic h-minimal partition for X(m−1) from one such partition
in X(m) whenever θ(m−1) is injective on letters.

Let {C(m)
0 , . . . , C

(m)
h−1} be a cyclic σh-minimal partition for X(m). Consider

the following collection of sets:

C
(m−1)
j,k := σj(θ(m−1)(C

(m)
k )), 0 ≤ j < qm−1, 0 ≤ k < h.

By definition, σ(C(m−1)
j,k ) = C

(m−1)
j+1,k whenever 0 ≤ j < qm−1 − 1; note that

the identity σqm−1 ◦ θ(m−1) = θ(m−1) ◦ σ ensures that σ(C(m−1)
qm−1−1,k) = C

(m−1)
0,k+1 ,

where the second index is taken modulo h. Thus, if we define

C
(m−1)
k :=

⋃

0≤ℓ<h
j·qm−1+ℓ≡k (mod h)

C
(m−1),
j,ℓ

then we must have that σ(C(m−1)
k ) = C

(m−1)
k+1 (mod h). Since θ(m−1) is injective on

letters, and since θ is torsion-free and hence recognizable, θ(m−1) is injective
as a function X(m) → θ(m−1)(X(m−1)). Thus, the hqm−1 sets C

(m−1)
j,k are all

disjoint, ensuring that the sets {C(m−1)
0 , . . . C

(m−1)
h−1 } form a partition. We

conclude by induction. □

We now study how the eigenfunctions at different levels X(n) are related,
and the combinatorial interpretation of this relationship. We start with the
following simple observation. To avoid confusion with what will follow we
temporarily call the height of Definition 4.8 the dynamical height.
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Lemma 5.4. Let θ be a torsion-free directive sequence with dynamical
height h. Then for each n ≥ 1, λ = e2πi/h is an eigenvalue for (X(n), σ).

Proof. Let f0 : X
(0) → S1 be an eigenfunction associated to λ, and define

f1 : X
(1) → S1 given by f1(x) := (f0 ◦ θ(0)(x))r0 , where r0 is an inverse

modulo h of q0, i.e., q0r0 ≡ 1 (mod h). Then we have

f1 ◦ σ(x) = (f0 ◦ θ(0) ◦ σ(x))r0

= (f0 ◦ σq0 ◦ θ(0)(x))r0

= (λq0 · f0 ◦ θ(0)(x))r0

= λq0r0 · (f0 ◦ θ(0)(x))r0

= λ · f1(x),

Thus f1 is a continuous eigenfunction for X(1) with associated eigenvalue
λ. Inductively, given an eigenfunction fn : X

(n) → S1, we define an eigen-
function fn+1 : X

(n+1) → S1 by fn+1(x) := (fn ◦ θ(n)(x))rn , where qnrn ≡ 1

(mod h); such rn always exists as h is coprime to every qn. □

Corollary 5.5. Let θ be a torsion-free directive sequence defined on a
sequence of bounded alphabets (An), and with dynamical height h. Then
there exists some n∗ ∈ N such that for every n ≥ n∗, there is a partition
{A(n)

0 , . . . ,A(n)
h−1} of An into h sets, such that for any ab ∈ L(n), if a ∈ A(n)

j ,
then b ∈ A(n)

j+1 (mod h).

Proof. We work with the one-sided shifts. Let (fn) be the eigenfunctions
in the proof of Lemma 5.4, associated to the eigenvalue e2πi/h. Since f0 is
continuous, there exists a value N0 ≥ 1 such that x|[0,N0)

= y|[0,N0)
=⇒

f0(x) = f0(y). Since |θ(0)(w)| = q0 · |w| for any word w, we have that if
N1 =

⌈
N0

q0

⌉
, then for each x(1), y(1) ∈ X(1):

x(1)|[0,N1)
= y(1)|[0,N1)

=⇒ θ(0)(x(1))|[0,N0)
= θ(0)(y(1))|[0,N0)

=⇒ f1(x
(1)) = f0(θ

(0)(x(1))) = f0(θ
(0)(y(1))) = f1(y

(1)),

Similarly, if we define inductively Nj+1 =
⌈Nj

qj

⌉
, we see that fj(x

(j)) is en-

tirely determined by x(j)|[0,Nj)
. Since infinitely many of the qj are greater

than 1, there exists n∗ such that if n ≥ n∗ then Nn = 1, so that fn is
determined entirely by the letter at the origin, i.e., there exists a function
f̄n : A → S1 such that fn(x

(n)) = f̄n(x
(n)
0 ). Defining A(n)

j = f̄−1
n ({λj}), 0 ≤

j < h, we obtain a partition of A into h non-empty sets, where the series of
equalities

f̄n(x
(n)
1 ) = fn ◦ σ(x(n)) = λ · fn(x(n)) = λ · f̄n(x(n)

0 )
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imply that for any x(n) ∈ X(n), if x(n)
0 ∈ A(n)

j then x
(n)
1 ∈ A(n)

j+1, as desired.
□

Corollary 5.6. Let θ be a torsion-free directive sequence which is injective
on letters and defined on a sequence of bounded alphabets. Then the sequence
(h(n)) is bounded.

Proof. If the sequence (h(n)) is not bounded, then by Lemma 5.3 we obtain
that (X(0), σ) has a cyclic σjn-minimal partition for arbitrarily large jn,
equivalently, that e2πi/jn is a continuous eigenvalue of the shift. But this
contradicts Corollary 4.6, since any jn coprime to (qj)j≥0 must be a divisor
of the dynamical height h. Therefore the sequence (h(n)) is bounded. □

Thus we can define the combinatorial height for θ as

(5.1) hcomb(θ) := max{h(n) : n ≥ 0}

We will show, in Theorem 5.9, that the combinatorial height given by
(5.1) equals the (dynamical) height given in Definition 4.8. Before we do
that we give an example to show why we need to define the sequence h(n)

in terms of the injectivisation θ̂ of θ.

Example 5.7. To see how combinatorial height may fail to reflect the
actual height of the shift in the absence of injectivity, consider the three
morphisms θ, ϑ, ϱ from Example 3.12 and the same directive sequence α =

(ϱ, ϑ, ϑ, ϑ, . . . ).
As noted in the previous example, we have X(0) = Xθ, and X(n) = Xϑ

for any n ≥ 1. We can easily verify that Xϑ has (dynamical) height 2,
as its alphabet partitions into {{0, 1}, {0̄, 1̄}}, where a barred symbol is
always followed by an unbarred symbol, and vice versa. Hence, the directive
sequence α has an alphabet partition into two sets at every level from 1

onwards.
If we ignore the the injectivity hypothesis for a moment, we could com-

pute h(n) by definition for the sequence α, obtaining h(0) = 1, h(n) = 2

for n ≥ 1 due to the presence of the aforementioned alphabet partition. We
could be tempted to conclude that Xα has dynamical height at least 2; how-
ever, as 11 is in the language of the substitutive shift Xθ = Xα, the latter
must be pure (i.e. the odometer Z3 is already its maximal equicontinuous
factor), and thus have height 1.

The following result is a generalisation of [8, Lem. 11(ii)].
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Lemma 5.8. Let θ be a torsion-free directive sequence defined on a sequence
of bounded alphabets (An), with length-sequence (qn). Let e2πi/m be a con-
tinuous eigenvalue for (Xθ, σ) with (m, qn) = 1 for each n. Then m | h(n)

for all n large.

Proof. Theorem 3.11 tells us that if θ is not injective, we can equally work
with its injectivisation θ̂. Henceforth we assume that θ is injective. We know
from Corollary 5.5 that for any sufficiently large n we can find a partition of
the alphabet into h disjoint sets {A(n)

0 , . . . ,A(n)
h−1} such that in every point

of X(n), whenever we see a symbol from A(n)
j , it is followed by a symbol

from A(n)
j+1. In particular, the next symbol from A(n)

j we see appears exactly
h positions away. Thus, if u(n) is a fixed point, we have that the symbol u(n)

0

may reappear only in positions u(n)
kh (note that, in general, in these positions

we can see any element of the set A(n)
j which contains u

(n)
0 , so usually not

all symbols u
(n)
kh equal u(n)

0 ).
Hence, the set {k : u

(n)
k = u

(n)
0 } contains only multiples of h; by the

definition of h(n), this, in turn, implies that h | h(n). If λ = e2πi/m is a
continuous eigenvalue of Xθ which is coprime to all qn’s, we must have that
λ = e2πir/h for some r, by the maximality of h, and thus m must divide h.
This implies that m | h(n). □

The following result is the generalisation of [8, Lem. 10]. Let h(θ) be the
height given in Definition 4.8, and let hcomb(θ) denote the combinatorial
height defined in Eq. (5.1).

Theorem 5.9. Let θ be a torsion-free directive sequence defined on a se-
quence of bounded alphabets, with length-sequence (qn). Then

hcomb(θ) = h(θ).

Proof. As discussed in the proof of Lemma 5.8, we can assume that θ is
injective. If hcomb(θ) = h(k), then Lemma 5.3 tells us that X(0) has a σh

(k)

-
cyclic partition into h(k) sets, that is, γ(h(k)) = h(k). Thus for any n, h(n)

divides h(θ); in particular, hcomb(θ) | h(θ).
As θ is torsion-free, e2πi/h(θ) is a continuous eigenvalue satisfying the

hypothesis of Lemma 5.8; thus, for all sufficiently large n, we must have
h(θ) | h(n). Hence, h(θ) ≤ hcomb(θ). Together with the previous observation,
this gives the desired equality. □
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6. The column number of a constant-length directive
sequence

We propose a candidate for the column number c(θ) of a constant-length
directive sequence, which generalises the definition of the column number
for constant-length substitutions. It also develops preliminary notions of a
directive sequence having a coincidence that were discussed in [3, Section
6]. If θ has length sequence (qn), and provided that our directive sequence
is quasi-recognizable, we prove that the chosen definition ensures that the
maximal equicontinuous factor map is at least c(θ)-to-1 and that the fibre
cardinality is exactly c(θ) for at least one orbit. As an application we use
the column number to make statements about the nature of the maximal
spectral type of these systems in Section 7.

We work with quasi-recognizable directive sequences. To define the col-
umn number c(θ), we first work with the tiling factor map πtile : Xθ → Z(qn)

that quasi-recognizability guarantees. As Corollary 4.6 tells us, the tiling
factor map is not necessarily a maximal equicontinuous factor map, but
with it we can define a naïve column number. This is an intermediate step
which already gives us the column number for directive sequences with
trivial height. We then show, in Theorem 6.6, that the correct notion of
column number of θ is simply that of its pure base as defined in Section
4.2, and which has trivial height by Theorem 4.16.

As in Section 5, we will need recognizability. Given a shift space Xθ gen-
erated by a quasi-recognizable directive sequence, we use the recognizable
directive sequence θ̂ such that Xθ = Xθ̂, guaranteed by Theorem 3.11. In
what follows we shall make use of this assumption whenever it is convenient
to do so.

If θ : A → B+ has length ℓ, one can describe it using ℓ maps θi : A → B,
0 ≤ i ≤ ℓ− 1, where

(6.1) θ(a) = θ0(a) · · · θℓ−1(a)

for each a ∈ A. We call each θj a column of θ.
Let θ be a constant-length injective directive sequence on a sequence

of alphabets (An)n≥0 of bounded size, with length sequence (qn)n≥0. For
m ≥ 0, and using the notion of the columns in (6.1), we define

c(θ,m) := inf
n>m

{
|(θ[m,n))j(An)| : 0 ≤ j <

pn
pm

}
.
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Definition 6.1 (Column number). Noting that (c(θ,m))m≥0 is an increas-
ing and bounded sequence, we define the naïve column number c̄(θ) to be

c̄(θ) := lim
m→∞

c(θ,m) = max
m≥0

c(θ,m),

that is, the least cardinality of a column that appears in θ[m,n) for some n >

m, as n tends to infinity. For a non-injective directive sequence, we define
c̄(θ) := c̄(θ̂), that is, the column number of its corresponding injectivisation
as given by Theorem 3.11. Let θ̄ be the pure base of θ. We define the (real)
column number of the directive sequence θ, c(θ), to be the naïve column
number of its pure base θ̄.

If θ = (θ, θ, . . . ) is a stationary directive sequence, then the definition of
c(θ,m) does not depend on m, as θ[m,n) = θn−m. Also, it equals the definition
of the column number for a single substitution, as the least cardinality that
appears in some column upon iteration of the pure base θ̄. This shows that
the column number c(θ) is a direct generalisation of the original notion. Note
that the additional injectivity hypothesis does not make a difference in this
particular context, as every primitive substitutive subshift is conjugate to
one given by an injective substitution, and c(θ) is a conjugacy invariant, as
it only depends on the maximal equicontinuous factor.

The naïve column number c̄(θ) is finite and bounded by maxn≥0|An| <
∞, as every column in θ[m,n) cannot have more than |An| different symbols.
A similar bound immediately follows for c(θ). The column number can be
equally defined for constant-length directive sequences defined on a sequence
(An) of alphabets of unbounded size, but in this case, it may not be bounded.
As column cardinalities are integers, then for a fixed value of m, there is an
n and j such that (θ[m,n))j has cardinality c(θ,m), and this cardinality is
achieved as a column cardinality of θ[m,n

′
) for all n′ > n. As c̄(θ) = c(θ,m0)

for a sufficiently large m0, we have:

(1) for any sufficiently large n, the morphism θ[m0,n) has at least one
column with cardinality c̄(θ) and all columns have cardinality at
least c̄(θ), and

(2) for any m > m0 we may find some n such that θ[m,n) has a column
with cardinality c̄(θ).

Let θ be quasi-recognizable with πtile : Xθ → Z(qn)
its associated tiling

factor map; note that, since we are assuming that θ is injective, this implies
recognisability. A πtile-fibre π−1

tile(z) is called regular if it has minimal car-
dinality. We will prove that the regular fibres of the factor map πtile have
cardinality exactly c(θ). We split the proof into three small lemmas.
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Lemma 6.2. Let θ be a quasi-recognizable directive sequence with length
sequence (qn), defined on a sequence of bounded alphabets. Suppose that its
naïve column number is given by c̄(θ) = c(θ, 0). Then, there is some element
z ∈ Z(qn)

such that π−1
tile(z) has exactly c̄(θ) elements.

Proof. For any n ≥ 1, any point x ∈ Xθ is a concatenation of n0-th order
supertiles θ[0,n0)(a) for some a ∈ An0

[5, Lemma 4.2]. Fix n0. As c̄(θ) =

c(θ, 0) ≤ c(θ, n0) ≤ c̄(θ), there must be some n1 > n0 such that θ[n0,n1)

has a column with cardinality c̄(θ); by taking a larger n1 if needed, we can
ensure that such a column is neither the first nor the last column of the
morphism θ[n0,n1). Let 0 < j1 <

(
pn1

/pn0

)
− 1 be the index of this column.

The n1-supertiles are concatenations of
(
pn1

/pn0

)
n0-supertiles. This im-

plies that the j1-st of these n0-supertiles equals θ[0,n0)(a) with a ∈ M ⊆
A0, |M | = c̄(θ). Furthermore, as no column of θ[0,n0) can have cardinality
less than c̄(θ), the restriction of θ[0,n0) to M is injective. That is, any point
x ∈ Xθ such that πtile(x) ≡ pn0

j1 (mod pn1
) has exactly one of c̄(θ) different

supertiles with support [0, pn0
)

We can iterate this process, and find some n2 > n1 such that θ[n1,n2) has
a column, with index j2, such that it has cardinality c̄(θ); this is possible as
a consequence of property (2) stated above. Once again we may assume that
0 < j2 <

(
pn2

/pn1

)
−1, i.e. this is neither the first nor the last column. Thus,

every point in Xθ is a concatenation of n2-supertiles θ[0,n2)(a), each of which
is a concatenation of n1-supertiles. Also, the j2-th of these n1-supertiles is
of the form θ[0,n1)(a) for some a ∈ M ′ ⊆ An1

, with M ′ of cardinality c(θ)

by the same argument as above.
Thus, if we have some x ∈ Xθ such that πtile(x) ≡ pn1

j2+pn0
j1 (mod pn2

),
the n1-th order supertile of x passing through the origin is one of c̄(θ) pos-
sible options, and its j1-th component n0-supertile is one of c̄(θ) different
possible options as well. As no columns with cardinality less than c̄(θ) ap-
pear, there is a bijection, induced by the j1-th column of the morphism
θ[n0,n1), between the c̄(θ) possible options for the n0-th order supertile of x
at [0, pn0

) and the c̄(θ) possible options for the n1-th order supertile of x
that passes through the origin. Note that the support of this n1-th order
supertile contains both positive and negative integers, and after future iter-
ations of the same process, the support of the nk-supertile obtained by this
process grows to (−∞,∞) as k →∞.

We iterate the above procedure, converging to an infinite sum z :=∑
i pni

ji+1 ∈ Z(qn)
. The above argument shows, in summary, that:
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• there exists a sequence of supertiles w1, w2, . . . of increasing size such
that each supertile wk is one of the component supertiles of wk+1,
and wk determines wk+1 uniquely,
• there are c̄(θ) possible options for w1, and thus there exist exactly
c̄(θ) possible sequences,
• if πtile(x) = z, the supertile of corresponding size that passes through

the origin is forced to be one of the wk, and
• by the choice of z, the support of wk in x grows to infinity in both

directions as k →∞.

Thus, each of the c̄(θ) choices for w1 determines x entirely, hence there are
only c̄(θ) possible elements of Xθ for which πtile(x) = z, as desired. □

Lemma 6.3. Let θ be a quasi-recognizable directive sequence with constant-
length sequence (qn), defined on a sequence of bounded alphabets. Then any
fibre π−1

tile(z) of the tiling factor map has at least c(θ, 0) elements.

Proof. Given z ∈ Z(qn)
, there is a sequence of integers (Zj) such that Zj+1 ≡

Zj (mod pj) and Zj → z. Given a ∈ Aj+1, let x(a,j) be some element of
Xθ such that x(a,j)|[−Zj ,pj−Zj−1] = θ[0,j+1)(a), that is, such that its central
supertile is θ[0,j+1)(a) and the Zj-th column of this supertile is at the origin.
By the definition of c(θ, 0), the set Uj = {x(a,j) : a ∈ Aj+1} contains at
least c(θ, 0) different elements, which differ pairwise in their 0-th coordinate.
Thus, we may partition Uj into c(θ, 0) or more disjoint sets Uj,b with b ∈ A0,
given by x ∈ Uj,b if x0 = b.

By the fact that Zj+1 ≡ Zj (mod pj), if Uj,b is non-empty, then Uk,b ̸= ∅
for any k < j as well. Thus, there exists some set B ⊆ A0 with |B| ≥ c(θ, 0)

such that Uj,b is non-empty for every value of j and every b ∈ B. For every
b ∈ B, we may find an accumulation point x(b) of some sequence y(j) ∈ Xθ

with y(j) ∈ Uj,b; and x
(b)
0 = b so that the x(b)’s are all distinct and there are

at least c(θ, 0) of them.
Also, by the choice of Zj and the condition Zj ≡ Zj+1 (mod pj), each

x(b) is guaranteed to have a j-th order supertile with support [−Zj, pj −
Zj − 1]. Hence, πtile(x

(b)) ≡ Zj (mod pj), by choice; this naturally implies
that πtile(x

(b)) = z, and since we have |B| ≥ c(θ, 1) different elements whose
image is z, the desired conclusion holds. □

Thus, if the naïve column number c̄(θ) equals c(θ, 0), we can guarantee
that the tiling factor map πtile : Xθ → Z(qn)

is somewhere c̄(θ)-to-1 and c̄(θ)

is the smallest possible value of k for which πtile is k-to-1. The following
simple result generalises this to a large collection of directive sequences:
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Theorem 6.4. Let θ be an injective quasi-recognizable directive sequence
with constant-length sequence (qn), defined on a sequence of bounded alpha-
bets. Then the tiling factor map πtile : Xθ → Z(qn)n≥0

is somewhere c̄(θ)-to-1,
and it is not k-to-1 anywhere for any k < c̄(θ).

Proof. Let n be the smallest integer such that c̄(θ) = c(θ, n), and consider
the directive sequence ϑ = (θ(n), θ(n+1), . . . ) obtained from θ by removing
the first n morphisms. Then c̄(ϑ) = c(ϑ, 0) and ϑ is quasi-recognizable,
so the factor map π′ : Xϑ → Z(qj)j≥n

cannot be less than c̄(ϑ)-to-1 by
Lemma 6.3, and the existence of a fibre with cardinality c̄(ϑ) is guaran-
teed by Lemma 6.2. As c(θ,m + n) = c(ϑ,m) and the sequence c(θ, k) is
increasing, it is not hard to see that c̄(θ) = c̄(ϑ).

Note that every point x in X(n) gives birth to q0 · · · qn−1 points in Xθ,
namely σjθ[0,n)(x), 0 ≤ j ≤ pn−1 − 1, which are all distinct since θ[0,n)

is injective. Let π̄ : X(n) → Z(qj)j≥n
and let πtile : Xθ → Z(qj)j≥0

be the
respective factor maps. If π̄(x) = z, then πtile(σ

jθ[0,n)(x)) = zwj where wj

is the expansion of j with respect to the base (pn)n≥0. If |π̄−1(z)| = c,
injectivity of θ[0,n) implies that |π−1

tile(z0
n)| = |π̄−1(z)| = c, i.e. that all fibres

have cardinality at least c̄(θ). □

As the naïve column number c̄(θ) is defined in terms of the injectivisation
of θ, the following is an immediate consequence:

Corollary 6.5. Let θ be a torsion-free directive sequence defined on a se-
quence of bounded alphabets. Then its tiling factor map is somewhere c̄(θ)-
to-1, and it is not k-to-1 anywhere for any k < c̄(θ).

As noted above, all the above results relate the naïve column number c̄(θ)
with the fibres of the tiling factor map over the odometer Z(qn)

determined
by the lengths of the morphisms in the directive sequence θ. Despite the
fact that the naïve column number does not necessarily convey information
about the fibres of πMEF, in what follows we show that the “true” column
number c(θ) = c̄(θ̄) has the same relationship with the cardinality of the
fibres of πMEF as the tiling factor map onto Z(qn)

fibres with the naïve column
number c̄(θ).

Corollary 6.6. Let θ be a torsion-free directive sequence defined on a se-
quence of bounded alphabets, and let πMEF : Xθ → Z(qn)n≥0

× Z/hZ be its
maximal equicontinuous factor map, where h is the height of the directive
sequence θ. Then πMEF is somewhere c(θ)-to-1, and it is not k-to-1 any-
where for any k < c(θ).
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Proof. If θ has trivial height, this follows from Corollaries 4.6 and 6.5. More
generally, we can write an explicit form for the maximal equicontinuous
factor map πMEF : Xθ → Z(qn)

× Z/hZ in terms of the tiling factor map
of its pure base, that is, the pure base’s MEF map π̄MEF : Xθ̄ → Z(qn)

, as
follows. Recall the map φ : Xθ → Xθ̄×Z/hZ that is the conjugacy between
(Xθ, σ) and the suspension (Xθ, T ), given by Theorem 4.16. Then we can
take

πMEF(x) = (h · π̄MEF(x̄) +mx,mx) , where φ(x) = (x̄,mx).

We are implicitly using the fact that h is coprime to all qn’s, as the above
definition relies on the equality h ·Z(qn)

= Z(qn)
, which is true as the integer

h has a multiplicative inverse in Z(qn)
. Then the preimage of (z,m) ∈ Z(qn)

×
Z/hZ under πMEF as defined above is given by:

x = φ(x̄,mx) ∈ π−1
MEF(z,m) ⇐⇒ h · π̄MEF(x̄) +mx = z and m = mx

⇐⇒ π̄MEF(x̄) =
z −m

h
.

We see that m determines mx entirely, so the set of possible x is in a
1-1 correspondence with the set of possible x̄, which belong in the fibre
π̄−1
MEF((z −m)/h). By Corollary 6.5, this fibre cannot have less than c̄(θ̄) =

c(θ) elements, so the same holds for the fibres of πMEF. Also, there exists
some z∗ ∈ Z(qn)

such that |π̄−1
MEF(z

∗)| = c(θ); choosing an arbitrary m and
taking z = h ·z∗+m gives (z,m) as an element of Z(qn)

×Z/hZ with exactly
c(θ) preimages under πMEF, as desired. □

Remark 6.7. In the proofs of Lemmas 6.2 and 6.3, the injectivity hypoth-
esis in the definition of c̄(θ) is not used at all, and the proof of Theorem 6.4
only uses injectivity up to level n. This allows us to give an estimate on fibre
cardinalities from any directive sequence, not necessarily injective. However,
the injectivity property in the definition of both the naïve and true column
numbers is essential to get sharp bounds as in Corollaries 6.5 and 6.6; as
the following example shows.

Example 6.8. Consider the directive sequence α = (ϱ, ϑ, ϑ, . . . ) from Ex-
amples 3.12 and 5.7. It is not hard to verify that c(α,m) = 2 for any m ≥ 1,
which is a consequence of the fact that Xϑ has height 2; thus, if we ignore the
injectivity hypothesis in the definition, we could say that its naïve column
number equals c̄(α) = 2.

However, as Xα = Xθ has a coincidence (and thus has column number
1 in the classical sense, being an almost 1-1 extension of the underlying
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odometer), the lower bound from Theorem 6.4 does not apply in this situ-
ation. The bounds given by Lemmas 6.2 and 6.3 still apply to the directive
sequence α, and moving from α to its injectivisation α̂ = (θ, θ, . . . ) gives
us the correct result as in Corollary 6.5.

We end this section with the question: Does the height h(θ) always divide
the naïve column number c̄(θ)? In the case where θ is stationary, Lemańczyk
and Müllner showed that this is true [19, Lemma 2.3]. An investigation
of their proof suggests that this seems to be the case, at least when the
corresponding S-adic shift is uniquely ergodic.

7. Mixed spectrum and discontinuous eigenvalues

In this section, we use the concept of a column number that we in-
troduced in Section 6 to identify finer properties of the spectrum of the
measure-theoretic dynamical system (Xθ, σ, µ), where µ is a σ-invariant
measure on Xθ. Consider the Hilbert space L2(X,µ). Let Hd ⊆ L2(X,µ)

be the closure of the span of all measurable eigenfunctions. We say that
(Xθ, σ, µ) has discrete spectrum (pure point spectrum) if L2(X,µ) = Hd.
Otherwise, we say that (Xθ, σ, µ) has mixed spectrum, i.e., the unitary op-
erator Uσ : f 7→ f ◦ σ admits both discrete and continuous spectral compo-
nents.

We begin by recalling Dekking’s result relating continuous spectrum and
the column number of a constant-length substitution. Recall that aperiodic
primitive substitutions are uniquely ergodic [22]. As in Section 6, θ here
corresponds to the stationary directive sequence θ = (θ, θ, . . .) and c(θ) =

c(θ).

Theorem 7.1 ([8, Theorem 7]). Let θ be an aperiodic primitive constant-
length substitution. Then (Xθ, σ, µ) has discrete spectrum if and only if
c(θ) = 1. Otherwise, it has mixed spectrum.

Discrete spectrum, which is a measure-theoretic property, is connected
to the notion of mean equicontinuity for topological dynamical systems;
see [1, 14]. Let (X, σ) be a topological dynamical system, where X is a
compact metric space and σ a homeomorphism, so that it defines a Z-action
on X. The Weyl metric dW is defined on X as

dW(x, y) := lim sup
n−m→∞

1

n−m

n−1∑

i=m

d(σix, σiy)

where d is the metric on X. The system is (X, σ) is called Weyl mean
equicontinous or just mean equicontinuous if for every ε > 0, there exists a
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δ > 0 such that d(x, y) < δ implies dW(x, y) < ε. This is a generalisation of
the notion of equicontinuity mentioned in Section 2.2.

Let (X,G) and (Y,G) be topological dynamical systems. Let π : X →
Y be a factor map and, for a G-invariant measure µ on X, let π(µ) be
the corresponding pushforward measure on Y . We call (X,G) a regular
extension of (Y,G) if

(7.1) π(µ)
({

y ∈ π(X) : |π−1(y)| = 1
})

= 1

for any G-invariant measure µ on X. Otherwise, (X,G) is called an irregular
extension of (Y,G).

Recall that two points x, x̄ are proximal if there is a sequence (gk) of group
elements such that d(gk(x), gk(x̄))→ 0 as k →∞. Otherwise they are distal.
Define the minimal rank (mr) of a dynamical system to be the minimum
cardinality of elements in a fibre over the MEF, and the coincidence rank
(cr) to be the maximal number of mutually distal points in a fibre. A fibre
is distal if any two points in the fibre are distal. If the dynamical system is
minimal, then it can be seen that the cr is constant over different fibres, so
that cr ≤ mr. The following result, due to Barge and Kellendonk, relates
discrete spectrum to mr and cr as follows. (see [1, Theorem 4.12] and [2,
Theorem 2.25]).

Theorem 7.2. Let (X,G) be a minimal system with finite coincidence rank.
Suppose that the set of distal fibres over the MEF has full Haar measure. Let
µ be an ergodic probability measure on X. Then the following are equivalent:

• cr = 1.
• The system is an almost 1-1 extension of its maximal equicontinuous

factor.
• The continuous eigenfunctions generate L2(X,µ).

Moreover, if one of these conditions hold, then (X,G) is uniquely ergodic.

It follows from Corollary 6.6 that for a torsion-free S-adic directive se-
quence θ on a sequence of bounded alphabets, if c(θ) = 1, then cr = mr =

c(θ). Moreover, the condition on the distal fibres having full Haar measure
is equivalent to Eq. (7.1). We then get the following sufficient condition for
discrete spectrum for torsion free S-adic sequences, which is a consequence
of Theorem 7.2 and Corollary 6.6.

Proposition 7.3. Let θ be a torsion-free directive sequence defined on a
sequence of bounded alphabets. Let µ be an ergodic invariant measure on
(Xθ, σ). Suppose Eq. (7.1) holds and that c(θ) = 1. Then
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• (Xθ, σ) is uniquely ergodic, and
• (Xθ, σ, µ) has discrete spectrum with continuous eigenfunctions.

The equivalences in Theorem 7.2 are related to mean equicontinuity. In
the minimal case, we have the following result due to Fuhrmann, Gröger
and Lenz; see [14]. Here, G is a general (sigma-compact, amenable) group
acting continuously on X. In our setting, G = Z. We also refer the reader
to [15, 20] for weaker notions which are equivalent to discrete spectrum
(without necessarily requiring all eigenfunctions to be continuous).

Theorem 7.4 ([14, Cor. 1.6]). Let (X,G) be minimal. Then (X,G) is mean
equicontinuous if and only if it is uniquely ergodic and has discrete spectrum
with continuous eigenfunctions.

Remark 7.5. Unlike in the case of substitutions, the primitivity of a di-
rective sequence is not sufficient to guarantee unique ergodicity. In [13],
a condition for unique ergodicity was given for a minimal constant-length
directive sequence θ = (θ(0), θ(1), . . .) in the case where the substitution

matrix Mi of θ(i) is the symmetric matrix Mi =

(
1 ni

ni 1

)
, where ni ∈ N.

The authors show that the shift (Xθ, σ) is uniquely ergodic if and only if∑
i

1
ni

= ∞; see [13, Prop. 3.1] and more generally [6, Example 5.5]. Both
these references work with Bratteli-Vershik systems, but as substitutions on
a two letter alphabet are recognizable, (Xθ, σ) is almost-conjugate to the
corresponding Bratteli-Vershik system [5, Theorems 4.6 and 6.5].

A Toeplitz shift is a shift (X, σ), X ⊂ AZ withA finite, which is an almost
automorphic extension of an odometer and hence minimal. A Toeplitz shift
always has a representation as a quasi-recognizable S-adic shift [16, The-
orem 8]. Note that they always have column number 1, by Lemma 6.3.
We also briefly remark that the Toeplitz shifts which satisfy the regularity
condition in Eq. 7.1 coincide with the family of regular Toeplitz shifts, as
presented in [27] and [9].

In certain instances, e.g., when the system does not admit a fibre of
infinite cardinality over the MEF, the failure of mean equicontinuity can be
traced back to Eq. (7.1).

Theorem 7.6 ([14, Cor. 7.7]). Suppose that (X,G) is an irregular extension
of (Y,G) via the factor map π : X → Y and suppose that (X,G) and (Y,G)

have the same maximal equicontinuous factor. If the fibres of π are finite
then (X,G) cannot be mean equicontinuous.
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The results above give us the following partial generalisation of Dekking’s
result for when c(θ) > 1.

Proposition 7.7. Let θ be a torsion-free directive sequence defined on a se-
quence of bounded alphabets. Suppose (Xθ, σ) is uniquely ergodic with unique
σ-invariant measure µ and that c(θ) > 1. Then either

• (Xθ, σ, µ) has mixed spectrum, or
• (Xθ, σ, µ) has discrete spectrum but admits discontinuous eigenfunc-

tions.

Proof. Let h be the height of θ. In order to use Theorem 7.6, set (X,G) :=

(Xθ, σ) and (Y,G) := (Z(qn)
×Z/hZ,+(1, 1)), where G = Z for both dynam-

ical systems. Here, the factor map π := πMEF is the same as in Theorems 3.6
and 4.16, where we work with a recognizable representation of θ, as guar-
anteed by Theorem 3.11. Suppose c(θ) > 1. From Corollary 6.6, we know
that πMEF is at least c(θ)-to-1 everywhere over Z(qn)

× Z/hZ. This means
that the set

{
(z,m) ∈ Z(qn)

× Z/hZ : |π−1((z,m))| = 1
}

is empty, and hence is always of zero πMEF(µ) measure, where µ the unique
shift-invariant measure on Xθ. This immediately implies that (Xθ, σ) is an
irregular extension of (Z(qn)

×Z/hZ,+(1, 1)). Moreover, since maxn≥0|An| <
∞, we also have that |π−1((z,m))| < ∞ for all z ∈ Z(qn)

× Z/hZ. It then
follows from Theorem 7.6 that (Xθ, σ) cannot be mean equicontinuous. The
minimality of (Xθ, σ) follows by the definition of torsion-freeness. Theo-
rem 7.4 now implies that (Xθ, σ, µ) either has mixed spectrum or has pure
discrete spectrum but has eigenfunctions which are discontinuous. □

We note that in the case of a stationary directive sequence, the second
case does not occur, as all measurable eigenvalues are continuous [8]. This
is no longer true in the S-adic setting; see [9] and [7, Sec. 7]. An example
of a non-uniquely ergodic Toeplitz shift with discrete spectrum and which
admits a discontinuous rational eigenvalue can be found in [7, Sec. 7]. Also,
in [9], the authors construct irregular extensions of odometers which are
strictly ergodic and have discrete spectrum, including irrational eigenval-
ues. In light of the evidence, i.e., Proposition 7.7 and Proposition 7.3, we
conjecture that if c(θ) > 1 then it must have mixed spectrum.

In future work we will investigate measurable eigenvalues of constant-
length S-adic shifts.
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