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Abstract

This thesis investigates the use of Bayesian Networks (BNs), augmented by the Dynamic Dis-

cretization Algorithm, to model a variety of clinical problems. In particular, the thesis demon-

strates four novel applications of BN and dynamic discretization to clinical problems.

Firstly, it demonstrates the flexibility of the Dynamic Discretization Algorithm in modeling

existing medical knowledge using appropriate statistical distributions. Many practical applications

of BNs use the relative frequency approach while translating existing medical knowledge to a prior

distribution in a BN model. This approach does not capture the full uncertainty surrounding the

prior knowledge.

Secondly, it demonstrates a novel use of the multinomial BN formulation in learning parame-

ters of categorical variables. The traditional approach requires fixed number of parameters during

the learning process but this framework allows an analyst to generate a multinomial BN model

based on the number of parameters required.

Thirdly, it presents a novel application of the multinomial BN formulation and dynamic dis-

cretization to learning causal relations between variables. The idea is to consider competing causal

relations between variables as hypotheses and use data to identify the best hypothesis. The result

shows that BN models can provide an alternative to the conventional causal learning techniques.

The fourth novel application is the use of Hierarchical Bayesian Network (HBN) models,

augmented by dynamic discretization technique, to meta-analysis of clinical data. The result shows

that BN models can provide an alternative to classical meta analysis techniques.

The thesis presents two clinical case studies to demonstrate these novel applications of BN

models. The first case study uses data from a multi-disciplinary team at the Royal London hospital

to demonstrate the flexibility of the multinomial BN framework in learning parameters of a clinical

model. The second case study demonstrates the use of BN and dynamic discretization to solving

decision problem. In summary, the combination of the Junction Tree Algorithm and Dynamic

Discretization Algorithm provide a unified modeling framework for solving interesting clinical

problems.
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Chapter 1

Introduction

In the past clinical decisions were based entirely on the opinion of medical experts and

based on the clinical experience of the expert, [81, 206]. Often, the most senior clinician

of a clinical group uses personal experience, clinical intuition and anecdotal evidence1 for

making decisions. This approach is based on the following assumptions, [81]:

1. The authority of an opinion is directly related to the volume of clinical experience;

2. Clinical experience and judgement enable clinicians to evaluate new tests and pro-

cedures.

Contingent on this, a patient’s involvement in the decision-making-process was re-

stricted to giving or withholding consent to a given diagnostic test or treatment.

Evidence-Based Medicine (EBM) emerged in the early 1990s and has since become

a major influence on many national health-care organizations, [81]. EBM advocates the

use of up-to-date scientific evidence from health care research in the process of making

medical decisions [201]. The popularity of EBM stems from the shortcomings of the

opinion-based approach, the most prominent being the wide variabilities and inconsis-

tencies of opinions between different experts on the same subject [81]. The following

sources of clinical information are recognized by the EBM:

• patient’s clinical state and circumstances.
1Evidence based on casual observations rather than scientific analysis
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• patient’s preferences and actions.

• research evidence.

A model describing evidence based decision-making process is presented in Figure 1.1

whereby different sources of information are recognized in the decision-making process.

Figure 1.1: Model for evidence based decisions making process adapted from [201].

Meta analysis 2 is often used to synthesise clinical evidence in order to generate knowl-

edge for clinical decisions. As indicated in Figure 1.1, clinicians combine relevant infor-

mation from different sources, in addition to their own expertise, in order to choose the

best clinical strategy for a given patient. Also, since patients may want to be actively

involved in the process of making a decision regarding their condition, [37], they need

to be well-informed about risks and benefits of the available clinical options. Clinical in-

formation will guide their perception of risks and benefits of various clinical alternatives.

Consequently, the role of clinicians is no longer restricted to administering treatment but

also communicating risk to their patients,[81] . This is particularly challenging because

clinicians deal with a great deal of unavoidable uncertainty, arising from a number of

sources. For example, clinical decisions about a diagnostic test, therapy, or prognosis

are made under uncertainty, [81, 198–200, 202]. Laboratory test results and various di-

agnostic tools such as imaging techniques help a clinician to determine the cause and

severity of an illness, predict its clinical course, and evaluate the patient’s response to

a treatment. However, these are themselves agents of uncertainty, [40], since tests are
2Meta-analysis is a technique for summarizing the findings of related studies in order to generate a

generalizable conclusion about a treatment effect from a larger pool of data [47].
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prone to systematic and random error, both in the conduct of the test and analysis of the

results [84, 105, 197, 198]. The practice of EBM requires practitioners to be aware of

how susceptible any source of information is to random and systematic error [40].

Although EBM criticizes other sources of clinical evidence such as non-controlled

observations, experience and experts’ opinions and also rejects practice standards based

on clinical intuition, [45, 81, 83, 84, 198–200, 202], clinicians frequently encounter sit-

uations where there is no relevant evidence from either basic or applied research [197].

Therefore a technique that allows the combination of clinical evidence and other sources

of information is central to clinical decision analysis. Bayesian Networks provide an

inference mechanism that combines experts’ opinion with available clinical evidence

thereby making EBN attractive to the sceptics.

Bayesian Networks (BN) and Influence Diagrams (IDs) have been used in several

studies,[1, 2, 8, 11, 23, 24, 35, 38, 41, 86, 86, 87, 87, 108, 112, 113, 115, 118, 128, 129,

137, 137, 138, 148, 151, 162, 169, 171, 183, 183, 204, 205, 233, 236, 238] for creating

models to support clinical decisions.

There have been numerous attempts to apply decision support tools in medicine and

despite the recent popularity and success in the use of Bayesian techniques a number of

barriers to their systematic and routine use are evident. Firstly, there is a clear split be-

tween those involved in Bayesian statistics, mainly used to learn parameters from data and

for prediction, and Bayesian network methods, where the emphasis has been on modelling

causal interdependencies, diagnosis and classification. Around these two approaches two

separate communities have evolved: a Bayesian statistics community mainly interested

in experimental trials, meta-analysis and population studies and a causal modelling com-

munity, focused on decision making about the individual, optimal treatment identification

and the use of causal explanations.

This thesis is part of a more general realignment of research efforts, most prominently

applied to the medical domain, to provide an approach that integrates both of these ap-

proaches. Buchan, Winn and Bishop [22] have termed this realignment the 4th paradigm

and emphasise the role of Bayesian methods, both statistical and causal, in unifying differ-

ent sources of information available to clinicians when they make decisions about patient

care and carry out research to identify optimal treatments. They, rightly, perceive both
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approaches as two sides to the same coin and have presented a vision of a future approach

where graphical models are the lingua franca for all stages in the decision support pro-

cess including prediction, hypothesis testing, inference and diagnosis. However, this 4th

paradigm lacks a unifying toolset, methodology or indeed a core algorithm for carrying

out the necessary computations needed to transform decision support in medicine.

This thesis attempts to provide some concrete support to the 4th paradigm approach,

starting by identifying a core computational algorithm that can be used for hybrid situ-

ations involving both causal reasoning and statistics. The algorithm is called dynamic

discretization (DD) and it results in a class of Bayesian models called hybrid Bayesian

Networks (HBNs), which can model the discrete variables, needed in casual modelling,

and the continuous variables, often used in Bayesian statistics together. By demonstrating

how DD is used we can show how it generalises and scales up to wider medical problems

irrespective of whether it involved medical trials or individual patient diagnosis.

Methodologically, there also is a need to provide more flexibility to incorporate do-

main knowledge into this 4th paradigm process and this need highlights two gaps in cur-

rent practice (though there may be more). Firstly, there is the perennial problem of prior

distributions. To date conjugate (informative or otherwise) have been favoured, whether

these are used for parameter learning in the diagnostic context (E.g. Dirichlet), or for

learning hyper-parameters in meta analysis. However the use of conjugate priors has

tended to be used irrespective of whether these conjugate priors actually match those that

experts might wish to assert. To some extent conjugacy is a by product of the limitations

of popular Bayesian statistical algorithms (and in particular Monte Carlo Markov Chain

(MCMC) and in closed form analysis), therefore the choice, in this thesis, has been on an

approach to prior formulation that makes no assumptions about what prior the expert can

express. The approach taken provides considerable flexibility. Higgins and Spiegelhal-

ter’s work on sceptical priors [94] is a good example where researchers seek out to test

differing strengths of priors, in this case for meta analysis, but all of the priors investigated

are conjugate.

The second problem we need to address is the, perhaps obvious with hindsight, prob-

lem of encoding real world deterministic constraints into a causal model in a way that

reflects expert choice, treatment protocols or some other non-probabilistic mechanism at



1.1. Research Hypotheses 22

work. This seems critical but has received scant attention in the literature. This issue,

combined with the inability of current algorithms to support non-conjugate expert priors

are both major barriers to the complete representation of expert knowledge in Bayesian

decision support in many application areas, and in the application to the medical domain

in particular. Antal et al [3, 4] and Lucas et al [184] are good examples where soft data is

used, either from literature or from experts, to inform the structure of a Bayesian model,

where deterministic constraints are not identified and so have been neglected. For in-

stance in [184] the decisions taken by clinicians are clearly not entirely probabilistic but

are treated as such.

In addition to the questions surrounding these computational and methodological bar-

riers to the use of the 4th paradigm this thesis has attempted to address a number of

subsidiary questions relating to how we can use knowledge gained, computationally us-

ing DD, from the Bayesian statistical domain into a Bayesian causal model. The thesis

focuses on using Bayesian statistical models, from clinical studies on populations, to gen-

erate probabilistic estimates for use within causal models at the individual patient level.

There was insufficient time and resources to do this systematically covering model gen-

eration, refinement and application implied by the 4th paradigm approach, so instead we

test some hypotheses relating to the use of DD for testing hypothetical causal relations

between variables, and to show how the methodological and computational approach can

be used to improve meta analysis. This is, of course, neither exhaustive nor the selection

of these particular problems, over others, completely scientific but gives some insight into

how the 4th paradigm might operate in practice.

1.1 Research Hypotheses

Dynamic discretization has been around for a few decades, however, it has not been ap-

plied to a number of important classes of problems described in this thesis. Specifically,

this thesis investigates applications of BN models augmented to explore the following

interesting hypotheses:

1. (H1): Can we use plausible statistical distribution to model prior medical knowl-

edge on a BN model with dynamic discretization? Modeling subjective prior is the

most controversial aspect of bayesian analysis. A great deal of research effort has
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been spent in developing techniques for formulating prior distributions. In the clin-

ical domain, it is common to have a situation whereby a clinician can make some

subjective assessments about some interesting parameters based on their clinical in-

tuition and experience. A commonly used approach for translating such subjective

assessment into a mathematical equivalence that can be used in the analysis is the

relative frequency approach. This approach assumes that the prior value of the pa-

rameter takes a fixed value on the parameter space. Modeling a subjective prior with

a plausible statistical distribution would allows the analyst to incorporate a degree

of uncertainty around the subjective value.

2. (H2): Can we use a multinomial BN augmented by dynamic discretization to learn

parameters of a BN model? Parameter learning is an important aspect of modeling

domain problems. Various parameter learning algorithms have been proposed over

the past three decades. Chapter 2 presents a literature review of learning algorithms.

In contrast to modeling the subjective opinion of an expert with statistical distri-

butions, parameter learning is the use of the available data to learn parameter in a

model. In the case, we use a subjective prior on the parameter and use the data to

revise the parameter. With the second hypothesis (H2), we want to explore the use

of the multinomial BN formulation in learning parameters of categorical variables.

This approach is very similar to the parameter learning algorithms implemented in

the Deal package. The Deal package, [20] requires equal number of parameters in

a node probability table and therefore cannot distinguish between zero observations

3and impossible observations 4. We interpret observation zeros resulting from vio-

lations of health-care policies as logically impossible and then dynamically adjust

the number of parameters to learn.

3. (H3): Can we use the BN framework coupled with the Dynamic Discretization Al-

gorithm to score hypotheses about causal relations between variables? Another im-

portant aspect of modeling with Bayesian network is the causal learning i.e. learning

the structure of the network using available data. Many algorithms have been devel-

oped for learning causal relations entirely from data. This thesis applies the multi-
3lack of data or missing record
4logically impossible observation that violates health-care policies
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nomial BN formulation and dynamic discretization to scoring different hypotheses

about causal relations between variables. Our approach is not a full fledged causal

discovery mechanism but a technique for scoring different causal hypotheses pro-

posed by domain experts. We consider competing causal relations between variables

as hypotheses and use data to identify the best hypothesis given the available data.

This approach however requires substantive knowledge of the domain to formulate

useful hypotheses.

4. (H4): Can we use BNs models and dynamic discretization to generate summary

estimates from meta-analysis based on fixed and random effect assumptions? Meta

analysis has gained a tremendous popularity in the clinical domain over the past few

decades. It is now the most widely used method of combining clinical evidence on

the same subject. A range of classical statistical techniques have been developed

for solving meta-analysis problems. In the recent times, meta-analysis has also

generated a tremendous interest in the bayesian community. Meta-analysis is gener-

ally adjudged as the strongest source of evidence for generating clinical knowledge

about some parameters. The fourth hypothesis (H4) explores the possibility of us-

ing the Bayesian network framework for solving meta-analysis problems. Solving

a meta-analysis problem with a BN model implies that the full posterior distribu-

tion of a summary estimate can be used as prior in clinical decision models. This

approach not only captures the full uncertainty surrounding the summary estimate

but also allows an analyst to check the sensitivity of a decision to the underlying

studies.

Two clinical case studies are described in chapter 6 to access the clinical useability of

the models we have develop in the cause of testing hypotheses H1-H4 listed above. The

first case study uses a BN model to evaluate the impact of multi-disciplinary team meet-

ings on treatment selection for patients with cancer. The second case study described

clinical decision models that recommend optimal screening strategies for the manage-

ment of patients with an unruptured intracranial aneurysm. In summary, we show that the

powerful combination of the Dynamic Discretization Algorithm and the Junction Algo-

rithm provides a unified modeling framework for creating clinical decision models that
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include meta-analysis, parameter learning and decision support models.

1.2 Structure of the Thesis

The rest of the thesis is organized as follows. Chapter 2 provides a background to

Bayes’probability theorem and decision analysis and its suitability in the clinical domain.

The chapter reviews the Bayesian Network framework and a popular inference algorithm

(the Junction Tree Algorithm) for performing inference on BN models with only dis-

crete variables. Chapter 3 reviews the Dynamic Discretization Algorithm. This algorithm

works seamlessly with the Junction Tree Algorithm thereby facilitating the use of BN

models in solving problems with both discrete and continuous variables. Chapter 4 de-

scribes novel applications of BN models, augmented by dynamic discretization, to three

important classes of problem. These include modeling subjective opinions from clini-

cal experts with plausible statistical distributions; learning parameters of a model using

multinomial BN models; and scoring different hypotheses about causal relations between

clinical variables. The chapter addresses hypotheses H1, H2 and H3. Chapter 5 describes

a novel application BN models to meta-analysis. This chapter addresses hypotheses H1

and H4. Finally, two clinical case studies are presented in chapter 6 to demonstrate these

novel applications of BN models. The first case study uses data from a multi-disciplinary

team at the Royal London hospital to demonstrate the flexibility of the multinomial BN

framework in learning parameters of a clinical model. The second case study describes

BN models to compare risks of two diagnostic techniques for intracranial aneurysms,

namely: the Magnetic resonance imaging test and Catheter Angiogram test. The sum-

mary of the thesis and conclusion is discussed in chapter 7.
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Chapter 2

Bayes and Decision Analysis

There are various sources of uncertainty in the process of making clinical decisions; these

include diagnostic and treatment uncertainties among others. The main techniques used in

this thesis for handling clinical uncertainty is the Bayesian Networks (BNs) framework.

This chapter reviews this technique and the associated theoretical and technical issues

relating to its development, uses and limitations.

2.1 Background

The origin of the term “Bayesian” goes back to 1763, when the work of Rev Thomas

Bayes was posthumously published, [10]. This work contained the first detailed descrip-

tion of Bayes’ theorem derived from elementary probability theory. Central to Bayes

theorem is the idea of “inverse probability” (where parameters are inferred from data).

During the first few decades of the twentieth century, an alternative approach, based on

Fisher’s work on statistical inference [65], was developed named as “frequentist” ap-

proach. The name “frequentist” suggests its interpretation of probability as the “long-run

expected frequency of occurrence. P(A) = n/N, where n is the number of times event

A occurs in N opportunities”. The method of hypothesis testing and confidence intervals

were later developed. These developments revolutionized both the theory and practice of

statistics and the application of frequentist methods quickly spread to diverse areas and

replaced inverse probability in the first half of the twentieth century [54].
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In the 1950s, there was a renewed interest in statistical decision theory that recognized

the role of subjective probability in scientific inference and decision-making. Despite the

computational challenges posed by the Bayesian approach, the application of Bayesian

statistics grew in the following decades as evidenced by the number of published papers.

The advent of Monte Carlo Markov Chain (MCMC) methods in the late 1980s made

Bayesian computations possible for realistic problems. Since then Bayesian methods

have been used in many different domains for reasoning under uncertainties.

2.1.1 Notation

In the rest of this chapter, we will use capital letters to denote random variables (e.g A,

B and C) and lower case letters for the realization or instance of a random variable (e.g

A= a). We will denote a set of variables (e.g V= {A,B,C}) by a bold capital letter and set

of realization e.g (e = {e1,e2,e3}) by a bold lower letter. Variable names are emphasized

in italics.

2.1.2 Bayes’ Theorem

Bayes’ theorem shows how one conditional probability (such as the probability of a hy-

pothesis given observed evidence) depends on its inverse (the probability of evidence

given the hypothesis). A good and intuitive explanation of Bayes’ theorem (taken from

the Economist article [46]) is given below:

“The essence of the Bayesian approach is to provide a mathematical rule ex-

plaining how you should change your existing beliefs in the light of new ev-

idence. In other words, it allows scientists to combine new data with their

existing knowledge or expertise. The canonical example is to imagine that a

precocious newborn observes his first sunset, and wonders whether the sun

will rise again or not. He assigns equal prior probabilities to both possible

outcomes, and represents this by placing one white and one black marble into

a bag. The following day, when the sun rises, the child places another white

marble in the bag. The probability that a marble plucked randomly from the

bag will be white (i.e., the child’s degree of belief in future sunrises) has thus

gone from a half to two-thirds. After sunrise the next day, the child adds an-
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other white marble, and the probability (and thus the degree of belief) goes

from two-thirds to three-quarters. And so on. Gradually, the initial belief that

the sun is just as likely as not to rise each morning is modified to become a

near certainty that the sun will always rise.”

Definition 2.1. Bayes’ theorem expresses the posterior probability p(H|E) of the hy-

pothesis after observing the evidence in terms of the prior probability p(H), probability

of the evidence p(E) and the conditional probability of the evidence given the hypothesis

p(E|H).

Formally, Bayes’ theorem is stated as:

p(H|E) = p(H,E)
p(E)

=
p(E|H)p(H)

p(E)
, p(E) 6= 0 (2.1)

The prior p(H) represents the prior belief about the hypothesis before observing any

evidence. The probability of observing the evidence given the hypothesis p(E|H) is called

the likelihood function. The numerator p(E) is called the marginal probability of evidence

(E). This is the probability of witnessing new evidence E under all possible hypotheses.

It can be calculated as:

p(E) = p(E|H)p(H)+ p(E|¬H)p(¬H) (2.2)

Where ¬H is the complement of H. In general, given n mutually exclusive and ex-

haustive hypotheses H1,H2 . . .Hn such that p(Hi) 6= 0 for i = 1,2 . . .n the Bayes’ theorem

is given as Equation 2.3.

p(Hi|E) =
p(E|Hi)p(Hi)

∑
n
j p(E|H j)p(H j)

(2.3)

We can also apply this theorem to problem involving continuous variable. Let θ rep-

resents a parameter of interest, measurable on a continuous scale. For example the prob-

ability of an adverse effect following a particular clinical intervention. We can express a

prior probability on this parameter as π(θ) and then apply the Bayes’ theorem (Equation

2.4) to revise this probability after observing y cases of adverse effect from N patients

who received this intervention.
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f (θ |y) = l(y|θ)π(θ)∫
l(y|θ)π(θ)dθ

(2.4)

In Equation 2.4, f (θ |) is the posterior density function of θ given y observations.

2.1.3 Bayesian & Frequentist approach to Data Analysis

As opposed to the point estimators, such as means and variances, used by frequentist

statistics (often referred to as the classical approach), Bayesian statistics is concerned

with the idea of generating a posterior distribution for the unknown parameter given both

the data and a prior density for the parameter. The Bayesian approach, therefore, pro-

vides a much more complete picture of the uncertainty surrounding the estimates of the

unknown parameters.

In the classical approach, parameters are treated as fixed variables while data are con-

sidered as random variables. Probabilities are expressed in terms of relative frequency

while inference is based on confidence interval techniques [66]. In contrast, the Bayesian

approach treats the parameters as random variables and allows subjective interpretation

of probability (i.e. the probability of an event is the degree to which you believe that the

event is true). Bayesian inference is based on Bayes’ theorem which allows inference

about the parameter given the observed data.

Suppose we are interested in estimating a clinical parameter θ from data y=(y1, ...,yn).

The classical approach proceeds by estimating θ with its best unbiased estimator and then

constructs a confidence interval for this unknown parameter. In the Bayesian approach, θ

cannot be determined exactly with a point estimator because of its inherent uncertainties.

These are expressed through probability statements and distributions. We can express the

prior knowledge, for example, as a normal distribution with mean 0 and variance 1 (i.e.

θ ∼ N(0,1)). This expresses a subjective belief and the uncertainty associated with it.

The frequentist approach for measuring uncertainty requires information about many

past instances of an event under identical condition (i.e. repeated trials). The subjective

approach, on the other hand, is based on the existing body of knowledge. This can be (for

example) experts’ subjective opinions about the parameter of interest. In reality, many

uncertain events of interest do not have sufficient historical data to satisfy the condition

for frequentist statistics. Therefore, the Bayesian approach is a feasible option for tackling
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many practical problems. For example, if we are interested in the probability that England

wins the next world cup, the identical assumption of the frequentist approach will break

down but the Bayesian approach can express subjective opinions regarding the chances of

the English team wining the next world cup [116].

2.1.4 Bayesian Inference

Conceptually, Bayesian inference can be thought of as a collection of basic ideas. Sup-

pose we are uncertain about a parameter θ but we can quantify this uncertainty using a

subjective probability p(θ). We can then express the conditional probability for the obser-

vations x given this parameter with the appropriate model (likelihood function) (p(x|θ)).

When data is available, we can then revise the prior probability to a new probability dis-

tribution (posterior distribution, p(θ |x)) using Bayes’ theorem, [64]. This enables us to

combine the prior distribution and the likelihood as previously described in Equations 2.3

and 2.4.

The popularity of Bayesian analysis (in the clinical domain) stems from the following

benefits.

• Prior Specification: Bayesian analysis provides a natural way of combining prior

information with data, within a solid decision-theoretical framework, [101]. We can

use the historical data to learn a prior parameter in the current analysis. When new

observations become available, the posterior distribution from the current analysis

can then be used as a new prior for the subsequent analysis. This temporal and

dynamic inference capability of Bayesian analysis makes it attractive for decision

analysis in the clinical domain. Clinical decision analysis often involves manage-

ment of a patient’s condition over time.

• Possibility of valid inference for a small sample.

• It also provides a convenient setting for a wide range of models including hierarchi-

cal models and missing data problems among others.

However, there are some challenges to Bayesian analysis. These challenges include

the following among others:
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• Bayesian analysis often requires skills to formulate a mathematically tractable prior

distribution from the subjective beliefs provided by an expert;

• The posterior distribution can be heavily influenced by the prior distribution espe-

cially where there is insufficient data;

• High computational cost may be incurred, especially in a model with a large number

of parameters.

Example 2.1. In a study presented by Casscells and Graboys [26], the following problem

was put to a number of students and staff at Harvard Medical School.

“One in a thousand people has a prevalence for a particular heart disease.

There is a test to detect this disease. The test is 100% accurate for people

who have the disease and is 95% accurate for those who don’t (i.e. 5% of

people who do not have the disease will be wrongly diagnosed as having it).

If a randomly selected person tests positive, what is the probability that the

person actually has the disease?”

About 50% of the respondents gave a posterior probability of 0.95, whereas, the pos-

terior probability of the heart disease given a positive test result is 0.0196 as shown below:

p(D|+ ve) =
p(+ve|D)p(D)

p(+ve|D)p(D)+ p(+ve|¬D)p(¬D)

=
(1)(0.001)

(1)(0.001)+(0.05)(0.999)
= 0.01962

When people give a high answer such as 0.95, they are falling victim to a very common

fallacy known as the ‘base-rate neglect’ fallacy, [62]. People often fail to take cognizance

of the low probability of having the disease. Also, the probability of a false positive test

is high (5% is the same as 50 in a thousand, whereas there is only a one in a thousand

chance of having the disease). There is much debate about why intelligent people can get

such important (and not too difficult) mathematical reasoning completely wrong and the

ramifications of it [62]. Fenton et al., [62] presented an informal but intuitive graphical

explanation to this problem which is easier to understand and appreciate but visible only

for a simple inference problem.
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Inference problems involving only two variables, such as the one in the above exam-

ple, is fairly simple. However, computation becomes much more complex when several

variables are involved with complex conditional dependencies between them. To address

this, various graphical models have been developed for complex probabilistic inference.

Indeed, the idea of using graphical models to represent uncertainty can be traced back to

the 1920’s when Sewal Wright, [245] developed a method for measuring the degree to

which an observed variation of a given effect is determined by the causes [135]. During

the 1960’s, there was a renewed interest in research around methods for representing and

reasoning with problems characterized by uncertainty. As research evolved, there was a

growing need for efficient mechanisms for representing, encoding, storing and manipu-

lating probabilistic problems. Consequently, graphical models such as Decision Trees,

Bayesian Networks and Influence Diagram emerged.

2.2 Decision Trees

Decision trees (DT) are expressive graphical models consisting of chance nodes repre-

senting random variables and decision nodes representing the decision to be made. The

decision is a set of mutually exclusive actions, alternatives or options that the decision

maker can take. For example, a clinical action could be ‘diagnose with Magnetic Res-

onance Angiography MRA’ for patients with a high risk of developing aneurysms. The

actions performed will lead to a set of possible uncertain outcomes (for instance an MRA

scan can result in a false negative). Decision trees can be used to quantify the potential

risks of an action in relation to possible costs or benefits, in the face of uncertainties. They

are useful in determining the most favorable outcome from the several alternatives [32].

Example 2.2. The needle-stick injury example, [32] shown in Figure 2.1 is a decision

problem involving a health officer. This health officer suffered a needle-stick injury while

administering a treatment to a potentially human immunideficiency virus (HIV) -positive

drug user. Suppose the prevalence of HIV within the population of drug users is 0.15 and

that 5 in every 1000 needle-stick injuries with HIV+ blood seroconverts 1 to HIV. To put

in another form, the conditional probability of developing HIV given an exposure to HIV
1The development of detectable antibodies in the blood directed against an infectious agent after an

exposure to the agent. Following seroconversion, a person tests positive in tests based on the presence of
antibodies [152].
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is 0.005. Let B denote the HIV status of the drug user such that B = b1 if the drug user is

HIV+ and B = b2 if not. Let also denote the rate of conversion into HIV by C i.e. C = c1

and C = c2 respectively for seroconversion and not seroconversion to HIV.

B

C

P(B2∩C2) = 0.85

C2

1

P(B2∩C1) = 0
C1

0

B2
0.85

C

P(B1∩C2) = 0.14925

C2
0.995

P(B1∩C1) = 0.00075
C1

0.005

B1

0.15

Figure 2.1: Decision tree representation for needle-stick injury example

The simple Decision tree in Figure 2.1 has four paths and the joint probability along

each part is shown at the end of the path. These joint probabilities are computed by simply

multiplying all the probabilities along a path. For instance, 0.00075 is the product of two

probabilities P(B = B1) and P(C =C1|B = B1). In order to compute the likelihood of an

outcome, say the likelihood of developing HIV P(C1), we will simply combine the joints

of all the branches of the tree involving C1. This can be formally expressed as given in

Equation 2.5.

P(C1) = P(B = B1)P(C =C1|B = B1)+P(B = B2)P(C =C1|B = B2) (2.5)

Therefore, P(C1) and P(C2) are respectively (0.15)(0.005)+(0.85)(0) = 0.00075 and

(0.15)(0.005)+ (0.85)(1) = 0.99925 from the tree. We can use the information on the

decision tree to compute the posterior probabilities of HIV status of the drug user if we

have a test result confirming the HIV status of the health user. We have assumed, in this

example, that the only way the health officer could have contracted HIV is through the

exposure resulting from the needle stick injury and the diagnostic test for detecting HIV
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is 100% accurate for detecting HIV and non HIV cases.

We can compute a posterior probability of HIV+ of the drug user having observed a

positive test result for the health officer i.e. P(B = B1|C =C1).

p(B = B1|C =C) =
p(B1,C1)

p(C1)
=

0.00075
0.00075

= 1

This posterior value has an intuitive explanation. A positive test result for the injured

health officer implies that the drug user is, certainly, HIV+. This is only possible when

there are no other means by which the health officer could have contracted HIV and the

diagnostic tool is 100% accurate. We may also want to compute the posterior probability

that the drug user is HIV+ having observed a negative test result for the health officer

p(B = B1|C =C2).

p(B = B1|C =C2) =
p(B1,C2)

p(C2)
=

0.14925
0.99925

= 0.149362

With a negative test result, the revised probability that the drug user is HIV+ is now

lower than the prevalence of HIV in the population of drug users.

Decision trees have traditionally been used in decision making to choose an optimal

decision from a finite set of choices. The value being optimized is the utility function

which is expressed for each outcome. However there are a number of problems with

decision trees, the main ones being:

1. The order of decision nodes in a tree is arbitrary regardless of the condition and

information relationships that exist in the real world (causal knowledge)

2. The number of state combinations grows in size exponentially as the number of

decisions and outcomes increase

Consequently, many practical decision problems are tackled by a more sophisticated

decision framework such as Bayesian networks.

2.3 Bayesian Networks

Similar to Decision trees, Bayesian networks (BNs) also provide a framework for reason-

ing, with graphical models, about problems involving uncertainty [179]. The Bayesian
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Networks formalism offers a natural way to represent the uncertainties in clinical deci-

sion. It helps us quantify the uncertainty in a clinical parameters such as diagnostic test

results, the prevalence of a disease etc, with prior distributions. It also allows us to spec-

ify an appropriate likelihood function for the observable variables, such as the number of

deaths resulting from a particular clinical procedure. The computational mechanism in

BNs is based on Bayes’ theorem, described earlier. This computational mechanism com-

putes posterior distributions for unobserved variables given observations on one or more

observable variables. The beauty of a BN stems from its capacity for intuitive represen-

tation and effective computation of the joint probability distribution over a set of random

variables [179].

Formally, a Bayesian Network (BN) is a graphical model Λ = {D,Φ} consisting of

qualitative part D and quantitative part Φ. The qualitative part is a directed acyclic graph

(DAG) with a set of nodes and edges. The nodes2 represent a random variable in the

domain of study. Clinical variables such as family history of aneurysm will be represented

as a node on the BNs. Edges are used to represent the relationship between nodes.

By convention, BN nodes are represented as circles labeled by the names of the vari-

able they represent while the edges between nodes are represented by arrows connecting

them. The direction of an edge is from the parent to the child node. If there is a directed

arc from node Xi to node X j, then we say Xi is a parent of X j and, as stated earlier, the edge

encodes probabilistic dependencies between Xi and X j. We can denote the set of parent

nodes of Xi by pa(Xi).

The idea of “inverse probability” makes BNs versatile and able to carry out bi-directional

inference. This makes BNs ideal for modeling clinical decision problems where reasoning

is, sometimes, from causes to effects; in some other times, it could be backward reasoning

from effects to causes.

Example 2.3. Figure 2.2 shows three nodes, each of which represents a clinical variable.

There are also two directed edges encoding causal relationship between these variables.

The first directed edge between ‘family history of aneurysms (H)’ and ‘third nerve palsy

(TNP)’ encodes a dependence relation between them i.e. developing a third-nerve palsy

may be influenced by the family history of aneurysms node. This link only captures a
2We do not distinguish between a node and the variable represented, the two are used interchangeably.
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positive association between them and does not have a causal interpretation. The second

edge connecting ‘third nerve palsy’ with ‘Ptosis (P)’ (i.e. drooping of the upper eyelid)

encodes the causal relationship between them as ptosis is one of the clinical manifesta-

tions of third nerve palsy.

Figure 2.2: A simple Bayesian Network model

The causal relationship depicted in Figure 2.2 above is uncertain. For example, we

cannot say with certainty that having a third nerve palsy will always show ptosis symp-

tom. However, clinicians can use their expert knowledge to assign probabilities to the

relationship. For example they can use a probability to express the degree to which they

believe ptosis will manifest in a patient with a third nerve palsy. The quantitative part

Φ enables us to quantify the strength of these causal relationships by specifying the con-

ditional probabilities on each node given the configuration of the parent nodes. These

conditional probabilities are stored in Node probability Tables (NPT).

Example 2.4. Suppose we are studying a hypothetical population of aneurysms suscepti-

ble patients in which half of the population have a family history of aneurysm (h). Cases of

patients diagnosed with third nerve palsy (tnp) were recorded over a period of 48 months.

From the group with a family history of aneurysm, 20% cases were reported while only

(5%) were recorded in the group without family history. 90% of patients with tnp devel-

oped ptosis and 1% in the group without tnp also developed ptosis. We can summarize

the information provided into priors and conditional probabilities of the corresponding

variables. We will start by specifying the prior probability on family history of aneurysm

(h).

P(h) = 0.5
P(¬h) = 0.5

Then, we can specify the conditional probability of tnp given the family history of

aneurysm (h).
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P(tnp|h) = 0.2
P(tnp|¬h) = 0.05
P(¬tnp|h) = 0.8

P(¬tnp|¬h) = 0.95

Finally, we need to specify the conditional probability for ptosis given tnp as follows:

P(ptosis|tnp) = 0.9
P(ptosis|¬tnp) = 0.01
P(¬ptosis|tnp) = 0.1

P(¬ptosis|¬tnp) = 0.99

Thus, in order to specify the probability distribution of a BN, one must provide the

prior probabilities for all root nodes3 and conditional probabilities for all other nodes,

given all possible combinations of their parent nodes. Figure 2.3 shows both qualitative

and quantitative parts of a fully specified BN model for the problem.

Figure 2.3: A simple Bayesian Network model with node probability tables

This model facilitates making inference about the probable cause of ptosis and allows

analysts to predict the probability of ptosis.
3These are nodes with no parent parent nodes.
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2.3.1 Conditional Independence Assertion

The conditional independence assumption embedded in the BN framework makes BNs at-

tractive for probabilistic reasoning. The traditional approach, i.e. the chain rule, requires

a full specification of the probability distributions. This may introduce a high number of

probability entries that will be difficulty or impossible to encode in a node probability ta-

ble. In this traditional inference approach, a probabilistic model with n random variables,

each with a binary outcome, requires 2n entries for the largest probability table. For in-

stance, a probabilistic problem involving six variables {A,B,C,D,E and F}, the full joint

probability distribution is as follows (Equation 2.6):

P(A,B,C,D,E,F) = P(A).P(B|A).P(C|A,B).P(D|A,B,C).P(E|A,B,C,D).P(F |A,B,C,D,E) (2.6)

Let us now use a graphical model to represent this chained dependency structure. The

order of events follows the same order in which the variables appears in Equation 2.6.

That is, the event labeled A is known first, followed by event B. Therefore, event B only

depends event A. By the same reason, event C depends on both events A and B and so on

for other events (Figure 2.4).

Figure 2.4: Sample Graphical representation of probabilistic model with chain rule.

In this example, we need 64 entries to specify the probability table for the last event

(F). In contrast, a BN model exploits the independence between variables to specify

a more compact joint probability distribution. To illustrate this we can use the existing
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knowledge in the problem domain and specify dependence structures as appropriate. Sup-

pose we have the following knowledge about the problem domain; 1) variables B and A

are independent causal factors of variable C; 2) both variables D and E depend only on

variable C and 3) variables D and E are independent causal factors of variable F . Armed

with this piece of information, we can create another graphical model shown Figure 2.5.

This is a reduced version of the graphical model in Figure 2.4.

Figure 2.5: Sample BN representation of the problem

Note that the joint probability distribution for the BN model in Equation 2.7 is a re-

duced version of the full probability distribution presented earlier.

P(A,B,C,D,E,F) = P(A).P(B).P(C|A,B).P(D|C).P(E|C).P(F |D,E) (2.7)

As stated earlier, the largest probability table from the fully specified model requires

26 i.e. (64). In contrast, the largest table in the BN model, requires just 8 entries. Table

2.1 shows the size of conditional probability tables required for all the variables. The

model with the full joint probability distribution requires a total of 126 probability entries,

whereas the total entries required for the BN model is only 28 probabilities.

The full probability distribution approach is more complex and maybe counter intu-

itive to the heuristic governing human reasoning, [180] pp 78. People base probabilistic

judgements on a small number of relevant propositions, especially conditional statements

such as the likelihood of a disease given a set of symptoms, as opposed to using a complex
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Table 2.1: Reduction in NPT size based on BNs representation
Full Specification BNs Model

Variables Probability Size Probability Size
F P(F |A,B,C,D,E) 64 P(F |D,E) 8
E P(E|A,B,C,D) 32 P(E|C) 4
D P(D|A,B,C) 16 P(D|C) 4
C P(C|A,B) 8 P(C|A,B) 8
B P(B|A) 4 P(B) 2
A P(A) 2 P(A) 2

conjunction of all possible propositions, [135].

The conditional independence assumptions reduce the complexity inherent in the full

joint probability distribution by reducing the number of probabilities and the time com-

plexity of an inference. For example, a problem with n binary variables requires O(2n)

complexity for the fully specified model i.e. using the full joint probability distribution.

Whereas, the complexity of a BN model, for the same problem, is O(n2k), where k prep-

resents the maximum number of parent nodes in the model, [158].

2.3.2 Knowledge representation in BNs

The structure of a BN model can be composed from three primitive fragments, which

are called serial, diverging and converging connections (Figure 2.6). With these three

fragments, we can capture all the possible ways in which variables can become dependent

or independent given evidence. In the linear/serial fragment, node B is between nodes A

and C. The neighboring BN fragment (converging) shows both A and C as parents of B

and finally an example of diverging fragment with B as a parent node to both A and C.

The joint probability distribution for these connections are provided in Table 2.2

Table 2.2: Joint probability distribution from different Connections
Connection Type P(A,B,C)

Linear/Serial P(A).P(B|A).P(C|B)
Converging P(A).P(C).P(B|A,C)
Diverging P(B).P(A|B).P(C|B)

Definition 2.2. The path between any two nodes P and Q in a BN is d-connected with

respect to the evidence nodes E if every interior node N on the path between P and Q is

either

1. linear or diverging and not belong to E or
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Figure 2.6: The Three primitive Connection Types.

2. converging and either N or one of its descendants (if any) belong to E [57],

where E is a set of nodes with observations, this can be empty if there is no observation

on any node. N is a set of interior nodes linked on the path between P and Q. Therefore,

it is possible to know whether any two variables are dependent given evidence.

As shown in the example in Figure 2.7 there are 3 interior nodes i.e. N = {A,B,C} on

the “undirected path” 4 between R and Q. The connection is converging on A, diverging

on B and serial on C. Any evidence entered on R would not be propagated to B unless

there is evidence on A or its descendants (if any). That is, evidence supplied on A or its

descendants (if any) renders R and B d-connected. Evidence on B or C will block any

evidence coming from R, hence, R and Q are d-connected if A belongs to evidence node

E and B and C does not.

In a BN, a variable (A) is independent of another variable (B) given the evidence (e) if

there is no d-connecting path from A to B given e (where e is the instantiations of evidence

nodes E). Formally, A is independent of B given e if P(A|B,e) = P(A|e).

At this point, we can generalize the earlier joint probability distributions for n random

variables X1,X2,X3....Xn. Equation 2.8 shows the joint probability distribution model

using the chain rule.
4The undirected path is the graph obtained by dropping the direction of the arcs on a BN.
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Figure 2.7: BN combining the three primitive connection types in the undirected path between R
and Q

P(X1,X2, · · · ,Xn) = P(X1).P(X2|X1).P(X3|X1,X2) · · ·P(Xn|X1,X2 · · · ,Xn−1) (2.8)

Again, a BN specification reduces this joint probability distribution to Equation 2.9.

P(X1,X2, ....,Xn) =
n

∏
i=1

P(Xi|pa(Xi) (2.9)

In general, a BN variable is independent of its more remote ancestors given the values

of its immediate parents in the graph.

Example 2.5. The example considered here is the Chest Clinic BN model for medical

diagnosis of shortness of breath [125]. ‘Tuberculosis’ and ‘lung cancer’ cause an ‘abnor-

mality in the chest’ which can result in shortness of breath (‘dyspnea’). ‘Abnormality in

the chest’, when present can be diagnosed by a ‘positive X-ray result’. Another potential

cause of ‘dyspnea’ is ‘bronchitis’ which is common among smokers. ‘Smoking’ is consid-

ered a risk factor for both ‘lung cancer’ and ‘bronchitis’, while a ‘visit to Asia’ sometimes

increases the chance of contracting ‘tuberculosis’. The joint probability distribution for

the BN with variables V,S,T,L,B,A,X and D can be expressed as given in Equation 2.10.
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P(V,S, · · · ,D) = P(X |A).P(D|A,B).P(A|T,L).P(B|S).P(L|S).P(T |V ).P(V ).P(S) (2.10)

Figure 2.8 depicts causal relationships where each node on the graph represents a

random variable with two possible values {true or false}.

Figure 2.8: Chest clinic Bayesian Network model

The arc between the ‘bronchitis’ and ‘dsyspnea’ represents the dependencies between

them, that is to say, the former influences the later. On the other hand, lack of an arc be-

tween ‘smoking’ and ‘visit to Asia’ shows that there is no such direct dependency between

them. However, evidence on ‘abnormality in the chest’ or any of its descendants ‘positive

X-ray result’ and ‘dsyspnea’ d-connects ‘smoking’ and ‘visit to Asia’ provided there is no

evidence on ‘tuberculosis’ or ‘lung cancer’.

’Smoking’ increases the chance of developing ’lung cancer’ which in turn increases

the chance of ’abnormality in the chest’. Once we know that a patient has ‘lung can-

cer’, then we know the cause of the ‘abnormality in the chest’, any additional information

regarding the ‘smoking’ habit will no longer change the probability of developing ‘ab-

normality in the chest’. Therefore, evidence on ‘lung cancer’ d-separates ‘Smoking’ and

‘abnormality in the chest’.
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2.3.3 Constructing a BN

Having described the BN graphical language in the preceding sections, we will now de-

scribe the steps in constructing a BN model. The benefits of using BNs for modeling

problems characterized by uncertainty are well documented [106, 137, 179]. However,

constructing a BN model requires gathering complex domain specific information from

disparate sources into an intuitive, coherent and easy to understand form. This nontrivial

and time consuming task requires a structured approach for capturing relevant knowledge

for the qualitative and quantitative parts, [124].

In practice, it is common to use the expert’s knowledge while constructing a BN

model. It is also possible to use the existing data from the problem domain to construct a

BN. In both cases, domain experts must be involved in the construction of BNs models.

The role of domain experts is to supply the analyst with specialist domain knowledge.

This helps the analyst to synthesize domain knowledge and translates this information

into the BN components such as nodes, causal relations and probabilities. The process of

building a BN model has been classified into three sequential steps:

• Selection of variables.

• Creating the qualitative part (DAG) using expert’s knowledge or historical data.

• Assessing the conditional probabilities (quantitative part) using experts’ knowledge

or historical data.

In principle, these steps should be performed sequently. However, building a BN

requires a careful trade-off between accuracy and complexity. Therefore, these steps are

repeated until a desired BN model is achieved. Let us look at these three steps in turns.

2.3.4 Variable selection

The process of identifying variables is not always straightforward. Heckerman [91] sug-

gests the use of the following guidelines to identify variables:

• The objectives of the model must be identified (e.g. prediction, explanation or ex-

ploration).

• Possible observations that may be relevant to the problem must be identified.
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• Determine the subset of the identified observations that is worthwhile, considering

the complexity of the network.

• For each node, define a set of mutually exclusive states and collectively exhaustive

states.

The variables gathered from the problem domain are directly mapped onto nodes in a

BN model, [135]. Therefore, nodes and variables are used interchangeably as they refer

to the same phenomenon. A node on a BN can represent a continuous variable as well

as a discrete variable. A continuous variable takes any value between any two points on

a scale. These points may be finite or infinite. In contrast, a discrete variable only takes

a finite number of discrete values. An example of discrete node in a BN might be the

outcome of a test result. This node can take two values +ve for a positive result and -ve

for a negative result. Jensen [106] suggests three types of variables when building a BN

model.

• Hypothesis variables: These are the outcome variables that provide values of in-

terest. These nodes are often referred to as query or target nodes which are not

observable. Identifying these variables is the primary task in building a BN model.

• Information variables: Variables whose values are observable and relevant to the

hypothesis events. These are the so called evidence nodes whose state can be ob-

served.

• Mediating variables: These are introduced for a special purpose. For example, a

mediating variable can be introduced to simplify the conditional probabilities tables.

Figure 2.9 shows a BN model to illustrate roles played by each node with respect to

the suggestions, [91] above.

This simple BN model predicts the condition of the grass, wet or dry, given observa-

tions of the weather. The root node labeled “Weather” is a categorical node with three

possible values Sunny, Cloudy and Raining. This is an observation (evidence) node rep-

resenting the current observable weather.

There are two intermediate nodes “Sprinkler” and “Rain” and one query node “Wet

grass”. All these nodes are boolean nodes with values {On, Off}, {True, False} and {Wet,

Dry} respectively.
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Figure 2.9: A simple BN model to predict whether the grass is wet or not.

2.3.5 Types of variables commonly used in a BN model

A BN node can represent different data type such as binary and categorical. A binary

node can take on binary values. Categorical or multinomial nodes takes on more than

two values, for example, small, medium, large. A discrete integer node takes on possible

values between two finite integer values. For example, a node that represent the number

of days before treatment which normally takes between one and sixty days.

The values defined for a node should adequately represent the level of detail required

by the model, [135]. However, it is important to balance granularity with efficiency. The

values 5 of discrete variables must be mutually exclusive [23] and collectively exhaustive.

This means that there must not be overlapping of states and all states must account for

all possibilities. For example, let us consider a possible initial design to encode a query

node labeled “Treatment” representing different treatment options for cancer patients.

Let us consider four treatment options namely: Chemotherapy; Radiotherapy; Surgery

and Intervention Radiology. Suppose we use these four options as the possible states of

the treatment node. This initial modeling choice does not satisfy the exhaustive property

because other possible strategies such as watchful waiting are excluded. The exhaustive

condition can be satisfied by adding another state Other Treatment to encode all other

possible treatments. In some cases, cancer patients are given more than one treatment

strategy. For example, a patient with cancer of the Liver can be treated with a surgical
5Values and states are used interchangeably to represent possible configuration of a discrete or categor-

ical variable.
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intervention followed by chemotherapy. Hence, a patient who has received both surgery

and chemotherapy violates the exclusivity property. To address this, we might introduce a

further state (Combination therapy) to encode information about treatments combination.

2.3.6 Construct the DAG (qualitative part)

Once we have identified all the variables of a problem domain, the next stage is to de-

scribe the relationships between variables. One commonly used approach is the causal

relationship analysis [135] by the domain experts. The expert must identify variables that

cause another variable to take a value or prevent it from taking a given value. In addition

to using experts’ opinion, the dependency structure of a BN can be learnt for the historical

data.

2.3.7 Assess the conditional probabilities (quantitative part)

Finally, we define a node probability table (NPT) for each node. The NPT quantifies the

strength of the causal relations. This might be a discrete probability table for a discrete

node or a continuous probability distribution for a continuous node.

We can estimate NPT subjectively using experts’ opinion or from historical data. The

most common sources of information for probabilities are from the literature and domain

experts. In data-rich application domains, statistical data might be used to estimate prob-

abilities. However, there is scarcity of data in many application domains. Therefore,

the knowledge and experience of experts in the domain is the main source of probabilis-

tic information, [116]. A number of formal methods have been developed for estimat-

ing probabilities, the most commonly used being the structured interviews with experts,

[153, 189, 230]. However, given the extremely tight schedule of a domain expert, it might

be difficult, if not impossible, to apply this technique to a real-life problem [51].

2.4 Inference in Bayesian Networks

The main goal of constructing a BN is to perform inference about unobserved vari-

ables given the observed variables. The BN inference algorithm computes the posterior

marginal distributions for all unobserved nodes given the evidence nodes. The computa-

tional complexity of the inference depends on the structure of the BN model. The structure
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of a BN can be singly connected or multiply connected depending on the causal relations

between variables.

A singly connected network is one in which the underlying undirected graph has not

more than one path between any two nodes. A multiply connected network, on the other

hand, is a network with two or more paths between any two nodes in the underlying

undirected graph. Figure 2.10 shows an example of a singly connected BN (on the left)

and a multiply connected BN (on the right).

Figure 2.10: Singly connected and multiply connected BN

Several exact inference algorithms have been developed for performing inference on

singly-connected networks [117, 130, 177, 178, 208–210, 212, 250]. However, exact

inference in multiply connected network is known to be NP-hard6 [34, 42].

In the early 1980s, Pearl developed message propagation inference algorithm for a

singly connected network [117, 177, 178]. This is an exact algorithm which has poly-

nomial complexity in the number of nodes. Also in the 1980s, Shachter published an

arc-reversal algorithm,[208] for inference on a singly connected network. This algorithm

reverses the links using Bayes’ rule by applying a sequence of operators to the network.

Zhang and Poole developed a variable elimination algorithm that eliminates other vari-

ables one by one by summing them out [250]. In the 1990s, Lauritzen and Spiegelhalter

published the junction tree algorithm [125], also called the clique-tree propagation algo-

rithm or “clustering” algorithm. This is a very popular exact BNs inference algorithm.

Probabilistic inference on a BN is the process of computing the posterior marginal
6A problem that could not be solved in polynomial time.
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distribution given the evidence nodes.

p(X |E = e)

Therefore a version of Equation 2.9 that takes into account evidence E in the BN is

given in Equation 2.11.

P(X1,X2, .....,Xn|E) =
n

∏
i=1

P(Xi|pa(Xi),E) (2.11)

In many cases, clinical decisions are made under uncertainty, [81, 198–200, 202]. A

laboratory test result or an image from an imaging technique are normally used to deter-

mine the cause and severity of illness, predict its clinical course and evaluate the patient’s

response to a treatment. However, these are themselves agents of uncertainty, [40], since

diagnostic tests are prone to systematic and random error, both in the conduct of the test

and in the analysis of the results [84, 105, 197, 198]. More so, the technological advances,

over the years, means that the search space for such diagnostic tests or imaging techniques

or even treatment options has also increased. For example, aneurysm can now be treated

effectively by surgical clipping and embolization coiling, whereas the only available op-

tion was surgical clipping a few decades ago. The objective of a clinical decision is to

maximize the probability of the desired health outcomes. Clinical decision analysis is an

objective and explicit use of model to represent clinical decision problems [211]. The

CDA is the vehicle driving the application of evidence based medicine [100]. The CDA is

a mathematical approach for analyzing difficult decisions faced by clinicians, patients and

everyone involved in the clinical decision making process. This thesis proposes the use of

Bayesian Network technique as a unified framework for integrating clinical evidence and

also for analyzing clinical decisions. Medical knowledge is growing at an ever increas-

ing rate and so is the use of Bayesian network models in the medical domain. Bayesian

network models can assist clinicians in making decisions by integrating numerous proba-

bilities that may overwhelm the human mind.
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2.4.1 Junction Tree Algorithm

The Junction Tree Algorithm (JTA), proposed in [125] and refined by [107], translates

a given BN into another tree called a Join Tree (JT). This Join Tree organizes the joint

distribution so that computation of marginal distributions is handled efficiently. Similar

to the BNs, a Join Tree also has both quantitative and qualitative parts. At the qualitative

level, we have clusters of variables often refereed to as the cliques in the literature. A

clique on the Junction tree is represented by a circle. Unlike the BN graph, a connection

between any two cliques is established through their intersecting variables often called

sepsets. A sepset is conventionally drawn as a rectangle on the Join Tree. A Join Tree

must satisfy the following properties, [125]:

1. each variable must appear in at least one cluster involving all its parent;

2. if a variable appears in any two clusters, say V1 and V2, then it must also appear in

every cluster on a path between V1 and V2.

At the quantitative level, each clique on a Join tree has a corresponding potential

function (ψ). JTA determines the cliques membership and assigns a variable to the clique

containing its parents. The transformation of a BN into a joint tree follows a set carefully

defined procedures. These procedures are summarized into three steps.

• Moralization: This involves linking pairs of nodes that have a common child, and

converts a directed graph into an undirected graph.

• Triangulation: The moral graph is triangulated such that there are no cordless cycles

in the graph.

• Then construct a JT from the triangulated graph.

For a detailed discussion see [125, 178] or see [97] for a procedural guide. As an

illustration, suppose we have a BN model, shown on the left of Figure 2.11, with four

nodes A, B, C and D. The Node labeled C is the only parent node to D and nodes A and B

are the parents to C.

The joint probability distribution for this BN model is shown in Equation 2.12.

P(A,B,C,D) = P(A).P(B).P(C|A,B).P(D|C) (2.12)
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Figure 2.11: Simple Join Tree from BNs

From Figure 2.11, θA,θB,θABC and θCD represent the NPTs defined respectively over

A,B,C and D while δA,δB,δC and δD represent their respective evidence.

The resulting Join Tree from this BN is given on the right of Figure 2.11 with two

cliques drawn in circle and a sepset containing common variable C to both cliques. Let

us label these cliques as V1 for clique containing ABC and V2 for clique made of variables

C and D. The sepset is represented by V1
⋂

V2.

2.4.2 Potential function

Just like we defined a node probability table for each node on a BN, we need to define a

potential function on every node on a Join Tree. Let us denote the potentials on V1 and V2

as ΨABC and ΨCD respectively while ΨC denotes the potential function on the sepset C.

These potentials are initialized as follows:

ΨABC = θA.δA.θB.δB.θABC.δC (2.13)
ΨCD = θCD.δD (2.14)

ΨC = 1 (2.15)

2.4.3 Message Propagation on Junction Tree

The main goal of inference is to compute the posterior marginal distribution of some

query nodes given observations from some other nodes. Message passing is the process

through which the JT attains local consistency, that is a state such that the revised poten-

tial on each clique is the marginalization of the joint probability distribution to variables

in the domain of the clique. Messages are passed between two neighboring cliques via
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their intervening sepset, message passed from clique V1 = {A,B,C} to clique V2 = {C,D}

forces the intervening sepset V1
⋂

V2 to be consistent with V1. Global propagation induces

every cluster to pass a message to all its neighbors in such a way that each message pass

will preserve the consistency introduced by previous message passes. When global prop-

agation is completed, each cluster-sepset pair is consistent, and the Join Tree is locally

consistent [97]. From this point we will use the term “node” to represent a clique on the

junction tree just like it was used to represent a variable in the BNs.

There are two nodes in the Join Tree in Figure 2.11 represented by, V1 and V2. One of

these nodes is chosen as the root node, the choice of the root node is normally any node in

the JT whose members include the query variables in the underlying DAG. For instance

if we are interested in the posterior marginal distribution of node A in the underlying BN,

then V1 can be chosen as the root node. Message passing between two adjacent nodes

occurs in two steps (projection and absorption) [97]. Projection involves marginalizing

out variables that are not in the intervening sepset, (i.e. variables in the sending clique

that are not in the receiving clique). Projection ensures that the dimension of the incom-

ing message is the same as the dimension of potential table defined over the intervening

sepset. Absorption, on the other hand enables us to combine incoming message with the

table in the receiving clique. Following these steps, we can describe message passing on

the JT.

2.4.4 Projection of Message from V1→ V2

V1 computes its message by summing over local variables A,B (Equation 2.16).

Ψ
↓(C)
ABC = ∑

AB
ΨABC (2.16)

(2.17)

This message is assigned to the intervening sepset V1
⋂

V2. Borrowing the same notations

used by Huang and Darwiche [97] to denote the old and new table on the sepset, then

we can store the potential function for sepset C and assign a new function as given in

Equation 2.18 and Equation 2.19 respectively.

Ψ
old
C ←ΨC (2.18)
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Ψ
new
C ←Ψ

↓(C)
ABC (2.19)

2.4.5 Absorption of Message into V2

The second leg of the message passing is to combine the incoming message from V1 with

the potential (ψCD) of V2. This step updates the potential with the incoming message. A

new potential is assigned to V2 as given in Equation 2.21.

ψCD ← ψCD
ψnew

C

ψold
C

(2.20)

(2.21)

This is a simple example where the receiving clique has just one neighbor. However this same

process is merely repeated in cases involving more than one neighboring cliques. It is important

to note that once a receiving clique has received messages from all of its neighbors, the clique is

said to be locally consistent. Clique V 2 becomes locally consistent after receiving messages from

V1 and we can compute marginal distributions for C and D. However, if we are interested in the

marginal distributions for A and/or B which can only be computed from V1, we need to make V1

consistent by sending a message based on the revised potential for V2 back to V1 in the same way.

Once we have attained a local consistency state in all the cliques, we can compute the marginal

for any node in the network as follows. Assuming we are interested in the marginal for node B i.e.

p(B), we can compute this in the following steps:

• Identify a cluster (or sepset) that contains node B i.e. clique V1. The updated potential

function for V1 after receiving message from V2 is Ψ∗ABC.

• Compute p(B,e) by marginalizing Ψ∗ABC as shown in Equation 2.22.

p(B,e) = ∑
AC

ψ
∗
ABC (2.22)

Where Ψ∗ABC is the updated potential of V1 based on the message received from V2.

• Having computed P(B,e) where e represent the evidence entered into in the model, we can
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now compute P(B|e) by normalizing p(B,e) as shown in Equation 2.23:

p(B|e) = p(B,e)
p(e)

=

∑
AC

Ψ
∗
ABC

∑
B

p(B,e)
(2.23)

2.5 Learning parameters & structures of probabilistic Networks

So far we have been dealing with examples of BN models in which both the qualitative and quan-

titative parts are known or provided by experts. Indeed, we can come up with the parameter and

structure of a BN by using the knowledge gathered from domain experts. A number of techniques

has been developed to assist analyst in the elicitation of probabilities. Two well cited references in

this context are Good [78] and Winkler [239]. However, these techniques may be extremely time

consuming for a realistic clinical network involving many parameters [122]. Druzdzel and van der

Gaag [52] also offer an important technique for eliciting the parameters of a BN model from the

experts. Because of the very tight schedule of experts (especially clinicians), analysts often resort

to learning parameters or/and causal relations from the available data when data is available.

The most straightforward learning situation is to learn parameters of BN models with known

structures from the available data. In some cases, there could an adequate knowledge of the do-

main to define relations between variables. Thus the causal relations are taken as given and then

used to learn parameters in the network. However, some situations require the use of the data to

learn both the structure and then parameters. A wide range of techniques have been developed for

learning parameters of Bayesian networks. Heckerman et al. [91] described a method for learning

networks with only discrete variables while Geiger and Heckerman [71] described an approach for

learning parameters in Gaussian networks. Bttcher and Dethlefsen, [20] generalized these meth-

ods by describing a technique for learning the parameters and structure of a Bayesian network

with discrete and continuous variables. They defined the local probability distributions such that

the joint distribution over a set of random variables is a conditional Gaussian (CG) distribution.

Therefore discrete variables are not allowed to have continuous parents, so the network can fac-

torize into a discrete part and a mixed part [21]. Their technique has been implemented into a

free causal learning software (Deal [20]), written in R [99]. This software provides methods for

learning both parameter and structure of Bayesian networks. The package also includes proce-

dures for defining priors, calculating network scores, performing heuristic search and a procedure

for simulating data sets from a given dependency structure. One assumption common to all these
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techniques is the parameter independence assumption. This means that the parameters of a node

can be learned independently of the parameters of the other nodes [20].

A major limitation of these algorithms is that they require complete dataset. In particular, they

assume zero value for any missing observation and then perform the analysis as if zero observation

was observed. To address this limitation, a number of learning techniques have been described

[194–196] to deal with learning problems with incomplete dataset. A survey of various learning

techniques can be found in [122].

In a situation where the structure of a BN is unknown, we can learn both the structure and

parameters from data. Here we will stick with the use of structure as against causality because

data driven approach would require biological explanation to justify the use of the term causality,

especially in the clinical context. The Deal package deal [20] is an example of algorithm for

learning structure and parameters from data. The central goal of all structure learning algorithms

is to identify structure that provide the best approximation for the data. In other words, they tend

to identify a BN model that best fit the data. The problem is that the search space for all possible

structures is more than exponential. Hence exploring the entire search space for a large network is

an intractable problem.

The question now is, how do we identify the structure that provide the best fit? A widely used

general strategy is to combine the scoring criterion with a search algorithm. Conceptually, learn-

ing structures involves two ideas namely scoring and searching. A search algorithm determines

structures within the search space to be scored while the scoring algorithms provides an empiri-

cal score for each structure. Each of the structure identified can be considered as an hypothesis

competing with other hypotheses.

The Bayesian Dirichlet (BD) criterion is one scoring criteria commonly used for the cate-

gorical data. Madigan and Raferty [140] proposed a scoring metric that uses the idea of relative

posterior probability in conjunction with heuristics based on the principle of Occams Razor. Oth-

ers include the Akaike information criterion (AIC) [85], the Bayesian information criterion (BIC)

[69] and minimum description length [191].

2.6 Software Packages for Graphical Models

The JTA has been implemented in a number of popular commercial BNs software tools including

Hugin [98] and AgenaRisk [131] among others. The growing interest in Bayesian network re-

search, over the past few decades, has been accompanied by the proliferation of BN software tools
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developed to support research efforts and applications of BNs to a wide range of domains. There

are several commercial [36, 98, 131, 133, 136, 220] and noncommercial [14, 20, 33, 43, 44, 58, 79,

88, 110, 126, 134, 139, 149, 154, 155, 157, 159, 161, 175, 182, 186, 193, 207, 215, 217, 221, 227–

229, 240, 246] software tools for developing BN models. These tools provide a graphical editor

for building the BN and inference mechanism for evidence propagation.

In this thesis, all BN models are built using the AgenaRisk toolset [131] and the posterior

distributions, in some cases, are compared with those from either Hugin [98] or Winbugs [217].

Table 2.3, adapted from the work of Kelvin Murphy [160], compares features of these three soft-

ware packages and their suitability to this research work. For comparison with other Bayesian

software package, see [160].
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Table 2.3: Comparing features of AgenaRisk, Hugin Expert and Winbugs packages
Features AgenaRisk Hugin Expert Winbugs
Availability of Source
Code

Yes, Java source code avail-
able to research students.

No No

Application Program-
ming interface

Java Java, C, C++ C# (.Net)
Visual Basic

No API

Handling of Continu-
ous variables

By Dynamic discretization
and inference calculation
with Junction Tree. A wide
range of built-in statistical
distributions and expressions
for constructing NPTs.

Restricts distribution on
the continuous variables
to conditional Gaussian
distribution

simulation
using Gibbs
sampling

Allows parameter
learning

Yes Yes Yes

Support for Utility
node

No Yes No

Supports for Dynamic
BN models (DBN)

uses the concept of Object
oriented BN models.

DBN by creating different
BN forests

Yes

Structure learning No By conditional indepen-
dence test

No

Allows discrete child
of continuous parent

Yes No No

We cannot consider anyone of these three Bayesian tools as the overall best, each of them

has some strengths over the remaining two softwares. Therefore, a single software tool may not

provide all the functionalities required, so it is common to use a combination of software tools in

research projects. A crucial consideration in the choice of a tool for this project is the availability

of the source code. With the source code, a researcher can implement any functionality that are

not available in the official release of a software. For example, one of the hypotheses of the thesis

is to confirm wether the combination of the Junction tree and dynamic discretization can be used

for scoring causal relations. This functionality is not available in the official release of AgenaRisk

software but was implemented for the purpose of the research using the source code. To this end,

we will use the AgenaRisk software in this work and wherever possible, we will compare the result

with those obtained using Winbugs or HuginExpert.

2.7 Application of BN models to clinical decision making

Bayesian Networks models have been widely used in the medical domain since algorithmic break-

throughs in the late 1980s [125, 178]. This meant that large-scale BN models could be effi-

ciently calculated. Clinical decision-support systems based on BNs were first developed in the

late 1980s [11, 92]. Since then hundreds of BN papers have been published within the medical do-
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main. For example, Bayesian network models have been developed for the diagnosis of diseases,

[1, 2, 41, 87, 112, 113, 115, 137, 138, 151, 169, 236, 238]. For example, Bayesian network models

have been developed for diagnosing pyloric stenosis [2], breast cancer [236] and pneumonia [5].

Also, a BN model for the diagnosis and procedure selection for patients suspected to have gall-

bladder disease was described in [86]. Kline et al.,[118] also applied a Bayesian network model to

predict the pretest probability of venous thromboembolism. Lukas et al [183] described a decision-

theoretic model for the management of gastric non Hodgkin lymphoma (NHL). BN models have

also been used in predicting the risk of diseases [24, 118, 204, 205] and the risk of specific medical

outcomes [75, 95, 114, 203, 234]. Other clinical applications of BN include models for monitor-

ing patients in intensive care [11], radiology [23], therapeutics [171] and biomedical informatics

[233] and clinical models for improved medical procedures [8, 86, 108, 128, 129, 148].

General guidelines on using BNs in medical applications can be found in [141, 156, 170],

while comparisons of BNs with alternative approaches in the medical context can be found in

[5, 49].

Despite the headway that has been made in the application of BNs in the medical domain they

have yet to become mainstream. Whilst it is outside of the scope of this thesis to offer definitive

explanations for this a number of factors seem to be at play, each of which might limit the extent

to which technology transfer has been and might be successful in future. Of course, these factors

are just as relevant to this thesis as it is to past research.

In addition to purely economic considerations there appear to be three broadly intertwined rea-

sons for successful technology transfer: organisational, cultural and technological. Bayesian mod-

elling, like all mathematical disciplines, is a craft industry where each model is designed around

the domain and context, hand in hand with domain experts. This leads to the production of be-

spoke models most useful in the particular context they were designed for. If the context changes,

or is difficult to generalise, or even communicate to those outside of the immediate situation any

benefits of the model, as they appear to others, may seem limited. Also, although Bayesian ideas

have been around for a long time, the gestation period for a new technology, to move from labora-

tory into the field can be lengthy. Frequentist statistics took decades to move into the mainstream

and their use is relatively pain-free, in terms of up front time investment, compared to Bayesian

methods (but with less gain). Lastly, the issue of incentives looms large in determining whether a

successful BN model is used beyond the domain within which it was developed: researchers can

have little vested interest in technology transfer since it does not involve the generation of new
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knowledge, similarly, but perhaps much less so, for clinicians sheer pressure of work means that

technology transfer takes time and is subject to changing priorities. Having discussed this with my

supervisors we agreed that any attempt to tackle the point in more detail would extend the scope

of the thesis beyond that defined and constrained by the hypotheses. There are many reasons for

the lack of any technology to “cross the chasm” into routine use, amongst these organisational,

cultural and resource constraints.

What this thesis does is explicitly recognised the issue, the constraints in time etc that prevents

it being systematically addressed as part of my research and the limitations that naturally flow

from this.

2.7.1 Bayesian classification model

A Bayesian classification, which is a form of Bayesian network, is a commonly used model in the

clinical domain. Just like other classification techniques, a BN classification model can classify an

object into one of the c mutually exclusive classes. The simplest form of classification is a situation

with two possible classes (c= 2) such as “Yes” or “No” indicating absence or presence of a disease.

For example a clinician can use such model to classify a patient’s case as benign or malignant

given the clinical observations on the patient. Bayesian classifiers have been used in different

areas in the clinical domain. For example, Jian et al., [109] used Bayesian classifier to develop a

computer-aided diagnosis of Cerebral Aneurysm. They process the cerebral vessel image and used

the geometrical shape characteristics extracted from a suspected lesion area to construct feature

vector. Burnside et al [23] also used a Bayesian classifier model to predict breast cancer. In the

work of Yueyi et al [247], they apply bayesian classification model to differentiate benign versus

malignant thyroid Nodules using sonographic Features. They included all sonographic features

known to be predictors of malignancy in their model. Also included are variables that significantly

influence the probability of a nodule being malignant such as age and gender. They discretized

age into two crude states i.e. < 50 (which accounts for 75% of the population) and >= 50 (25%

of the population). Figure 2.12 shows the resulting BN model described by Yueyi et al [247].

Although, discretizing age in this way reduces the number of parameters required in their

model but this simplicity comes at the expense of accuracy of the result. Any observation entered

on node age is not precise. The model treats a 20 years old patient and a 49 years old patient alike

and makes no distinction between a 50 year old patient and 89 year old patient.



2.7. Application of BN models to clinical decision making 60

Figure 2.12: A Bayesian classifier for thyroid nodules [247]

2.7.2 A BN model to support clinical decision for diagnosing pyloric stenosis

This section reviews a BN model to support decision for diagnosing pyloric stenosis. When eval-

uating an infant with suspected pyloric stenosis, a clinician uses available information to estimate

the likelihood of the disease. This likelihood is updated as additional information is obtained. So-

nia et al., [2] conducted a study to evaluate the feasibility of using a Bayesian network to improve

the accuracy of diagnosing pyloric stenosis. The potential factors of pyloric stenosis identified

include age, sex, race, family history of pyloric stenosis, number of days of vomiting, projectile

vomiting, increasing vomiting, diarrhea, weight loss while laboratory tests include (sodium, chlo-

ride, potassium, serum bicarbonate, and total bilirubin),[174, 213, 231].

Figure 2.13 shows their BN model with the node for pyloric stenosis dependent on risk factors

and the nodes for the clinical features such as symptoms and laboratory findings dependent on the

node for pyloric stenosis.

In this analysis, two continuous variables were manually discretized. The node age was dis-

cretized with a 2-week age intervals until age 16 weeks after which all ages were grouped together.

For the node representing the number of days of vomiting, 1-day increments were used until 1 week

and 1-week intervals until 7 weeks after which all time intervals were grouped. Clearly, the an-

alysts knew a priori the high density region in the number of days of vomiting variable. The first

week is partitioned into days with 7 partitions whereas other weeks, from week 2 to week 7, were

grouped together. In essence, we can say that pyloric stenosis may last for several weeks but ma-



2.8. Summary 61

Figure 2.13: A Bayesian decision network for diagnosing pyloric stenosis, [2]

jority of the affected children may recover after one week. The static discretization approach relies

on the expert to know the high density region before the analysis.

2.8 Summary

In this chapter, we have described the core concepts of Bayesian networks and Bayes’ theorem.

The chapter presented a basic overview of the BN framework and described the steps in construct-

ing a BN model. The suitability of the BN approach to model clinical problems was emphasized

by drawing the reader’s attention to two important features of the BN framework. These are the

compact representation of probabilistic problems for efficient probabilistic inference and capa-

bility for forward and backward reasoning. This chapter also provided a brief description of the

Junction Tree Algorithm and message passing procedure on the Join Tree. A detailed description

can be found in Huang and Darwiche [97].

The chapter also described two BN models applied to solving problems in the clinical domain.
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These models show the approach used in tackling BN models with continuous variables. Although

the approach is convenient but the simplicity comes at a cost of sacrificing accuracy of the result.

In the next chapter, we will review an existing technique for discretizing continuous variables

within the BN framework.
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Chapter 3

Dynamic Discretization Algorithm

The Junction Tree Algorithm described in the previous chapter performs inference on

BNs with discrete nodes. This chapter reviews the concept of Hybrid Bayesian Network

and also describes an algorithm for approximating continuous distribution functions (the

Dynamic Discretization Algorithm).

3.1 Introduction

So far, we have described the concept of Bayesian Network and the Junction Tree Al-

gorithm for solving inference problems. Often, analysts resort to the static discretization

approach in handling BN models with both discrete and continuous variables. For ex-

ample, an analyst may decide on using three partitions say [0 - 36.1], [36.1 - 37.5] and

[37.5 - 43] to model the body temperature. Suppose this analyst later realizes that three

values does not adequately model this situation, and then decides on five values or seven

values or even more. The greater the number of partitions, the slower the processing

time. Even worse, the analyst cannot say apriori which range of temperature would be the

high-density region given some evidence. Therefore, the analyst might consider treating

the temperature as a continuous variable. We will now describe a Bayesian network with

both discrete and continuous variables.



3.2. Hybrid Bayesian Networks (HBNs) 64

3.2 Hybrid Bayesian Networks (HBNs)

Hybrid Bayesian Networks (HBNs) contains both discrete and continuous variables. The-

oretically the Junction Tree Algorithm is extendable to provide solutions to HBNs by

merely replacing summation with integration when computing marginal distributions.

However performing multidimensional integration is computationally expensive. Hence

actual implementations of algorithms for HBNs perform some kind of approximations to

the continuous probability density functions which cannot be integrated in closed form

[31]. Some of the techniques for approximating continuous functions include stochastic

simulation known as Markov Chain Monte Carlo (MCMC) [74, 77], Dynamic Discretiza-

tion Algorithm (DDA) [120, 168] and Mixture of Truncated Exponential (MTE) [188]

among others. Indeed analysts can manually discretize continuous variables and then

treat as a discrete model using static discretization.

3.3 Analytical Solutions

The concept of “conjugate prior” applies to a prior distribution p(θ) that yields a posterior

distribution p(θ |x) from the same distribution family as the prior probability distribution

p(θ). In this case, the prior p(θ) is a conjugate prior for the likelihood f (x|θ). Ta-

ble 3.3 shows the analytical posterior distributions for normal, binomial and multinomial

likelihood distributions.



3.3. Analytical Solutions 65

Ta
bl

e
3.

1:
C

on
ju

ga
te

pr
io

rd
is

tr
ib

ut
io

n
an

d
an

al
yt

ic
al

ex
pr

es
si

on
fo

rp
os

te
ri

or
in

fe
re

nc
e

C
on

ju
ga

te
fa

m
ily

Pr
io

r
L

ik
el

ih
oo

d
Po

st
er

io
r

B
et

a
di

st
ri

bu
tio

n
θ
∼

B
et

a(
α
,β

)
y
∼

B
in

om
ia

l(
n,

θ
)

(θ
|y
)
∼

B
et

a(
α
+

y,
β
+

n
−

y)
f(

θ
|α
,β

)
∝

θ
α
−

1 (
1
−

θ
)β
−

1
f(

y|
θ
)
∝

θ
y (

1
−

θ
)n−

y
f(

θ
|y
)
∝

θ
α
+

y−
1 (

1
−

θ
)β

+
n−

y−
1

E
(θ

)
=

α

α
+

β
;V

(θ
)
=

E
(θ

)(
1−

E
(θ

))
α
+

β
+

1
E
(y
)
=

nθ
;V

(y
)
=

nθ
(1
−

θ
)

E
(θ
|y
)
=

α
+

y
α
+

β
+

n
;V

(θ
|y
)
=

E
(θ
|y
)(

1−
E
(θ
|y
))

α
+

β
+

n+
1

D
ir

ic
hl

et
di

st
ri

bu
tio

n
p(

θ
i)
∼

D
ir

ch
le

t(
α

a )
y
∼

B
in

om
ia

l(
n,

θ
)

(θ
|y,

n)
∼

D
ir

ch
le

t(
α
∗b
)

f(
θ
|α
)
=

Γ
(α

1+
···
+

α
K
)

Γ
(α

1)
···

Γ
(α

k)
θ

α
1−

1
1

··
·θ

α
k−

1
k

f(
y|

n,
θ
)
=

n!
y 1

!.
···

.y
k!

θ
y 1 1
.·
··
.θ

y k k
f(

θ
|n
,y
)
∝

θ
α

1+
y 1
−

1
1

··
·θ

α
k+

y k
−

1
k

E
(θ

j)
=

α
j

∑
k i(

α
i+

x i
)
;V

(θ
j)
=

θ
j(

∑
k i(

α
i+

x i
)−

θ
j)

[ ∑
k i(

α
i+

x i
)]

2
E
(y
)
=

nθ
j;

V
(y
)
=

nθ
j(

1
−

θ
j)

E
(θ

j|y
,n
)
=

α
j+

y j
∑

k i(
α

i+
y i
)
;V

(θ
j)
=

α
j(

∑
k i

α
i−

α
j)

[ ∑
k i

α
i]

2 (
∑

k i
α

i+
1)

N
or

m
al

di
st

ri
bu

tio
n

θ
∼

N
or

m
al
(µ

0,
τ

2 0
)

y|
θ
∼

N
or

m
al
(θ

,σ
2 )

c
θ
|y
∼

N
or

m
al
(µ

1,
τ

2 1
)d

f(
θ
)
∝

e−
1 2τ
2 0
(θ
−

µ
0)

2

f(
y|

θ
)
∝

e−
1

2σ
2
(y
−

θ
)2

f(
θ
|y
)
∝

e−
1 2
{(

y−
θ
)2

σ
2

+
(θ
−

µ
0)

2

τ
2 0
}

E
(θ

)
=

µ
0;

V
(θ

)
=

τ
2 0

E
(y
|θ
)
=

θ
;V

(y
|θ
)
=

σ
2

E
(θ
|y
)
=

µ
1;

V
(θ

)
=

τ
2 1

se
e

no
te

c

a α
=

α
1.
··
·α

k
b α
∗
=

α
1
+

y 1
.·
··

α
k
+

y k
c V

ar
ia

nc
e

σ
2

is
kn

ow
n

d
µ

1
=
(

1 τ
2 0
µ

0
+

1 σ
2
y)
/(

1 τ
2 0
+

1 σ
2
)

an
d

1 τ
2 1
=

1 τ
2 0
+

1 σ
2



3.4. Static Uniform Discretization 66

The use of a conjugate prior is computationally convenient as the posterior distribution

can be expressed (analytically) in a closed-form thereby eliminating the challenge of diffi-

cult numerical integrations. The next two sections review two approximation techniques,

static and dynamic discretization, to calculate posterior distributions in models with non

conjugate priors.

3.4 Static Uniform Discretization

Static discretization is a relatively easy approximation approach, it is obtained by subdi-

viding an interval into sub-intervals such that the density for each of these sub-intervals

can be approximated by a piecewise constant distribution. We can select a point, in each

sub-interval, and assign a constant probability mass to this point. The combination of

the selected points and the assigned probabilities provide the approximation for a discrete

distribution. Two widely used methods of static discretization are the extended Pearson-

Tukey method [50] and the bracket median method [30].

The extended PearsonTukey method is a three-point approximation of a continuous

distribution in which a continuous distribution is approximated by a discrete distribution

with probabilities 0.185, 0.63, and 0.185 assigned to the 0.05 , 0.5, and 0.95 fractiles of

the continuous distribution. The fractile is similar to percentile, except that it is expressed

as a fraction rather than a percentage thus a 0.05 fractile is the same as 5th percentile.

In the bracket median method, a continuous distribution is discretized into n equally

likely intervals. The median of each interval is used as the value representing the interval

and each point is assigned a probability 1
n .

The static discretization approach is flawed for two reasons. Firstly, it requires that

an analyst understands the posterior high density region of a continuous distribution and

must guess the state ranges before performing inference, thus presupposing that they know

the resulting probability distribution of the results beforehand. This may be quite easy, in

simple cases, but it would be difficult to guess the posterior density region of a continuous

node with several observable child nodes. Secondly, evidence on a poorly discretized

node would be less precise. Consequently, unreliable summary statistics may result from

a poor discretization of continuous distributions.
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3.5 Dynamic Discretization

In contrast to the uniform discretization, the dynamic discretization technique discretizes

a continuous density function such that the region whereby the density is changing rapidly

(conditional on the evidence) are discretized more than other regions. This thesis focuses

on the application of the Dynamic Discretization Algorithm (DDA) for approximating

continuous distribution functions. The technique was proposed by Kozlov and Koller

[121] for the purpose of supporting inference in HBNs described in section 3.2. Kozlov

and Koller [121] described an iterative scheme for partitioning multivariate continuous

functions in a non-uniform way. Their approach used the relative entropy or Kullback-

Leibler (KL) distance [123] as a metric for measuring the error introduced by discretiz-

ing continuous density functions. Formally, let f (x) be a continuous probability density

function and g(x) be an approximation to f (x), the KL distance measures the divergence

between f (x) and g(x) and is given in equation 3.1

D( f (X)||g(X) =
∫
( f (x)log

f (x)
g(x)

)dx) (3.1)

Since exact computation of the relative entropy error is computationally expensive

for a general function, they proposed a bound on the KL distance between the continuous

function f (x) and its discretization g(x) based on the function mean f̄ , function maximum

fmax and function minimum fmin in the given subregion w j.

∫
w j

f log(
f
f̄
)dΩ ≤ { fmax− f̄

fmax− fmin
fmin log

fmin

f̄
+

f̄ − fmin

fmax− fmin
fmax log

fmax

f̄
}|w j|

where |w j| denotes the volume of a discretization subregion w j and Ω denotes the

entire region. Influenced by their work, Neil et al [168] describe a univariate discretization

approach that works seamlessly with the Junction Tree Algorithm, [125]. The algorithm

presented in Neil et al [168] for discretizing continuous function is presented below:
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Algorithm 1 Dynamic Discretization
Require: BNs model with continuous variable V =V1, . . .Vn

Error threshold for each continuous variable ξ1 . . .ξn

Maximum iteration maxit
Error threshold for the model ξ υ

initialize partition on V to W = w1, . . .wn

for i = 1 to maxit do
for k = 1 to n do

Calculate NPTk given wk
Compute posterior marginal distributions given current discretization wk and evidence
Query the BN to get posterior marginal distribution
Compute Ek from Equation 3.2 Ek⇐ ∑

|wk|
j=1 E j

if Ek > ξk then
Create a new discretization w

′
k for the node by splitting interval with highest entropy

error
wk⇐ w

′
k

end if
Compute global error ξ υ

i = ∑
n
k Ek

end for
if ξ υ

i ≤ ξ υ then
stop

end if
end for

Several Hybrid BN models have been constructed using the univariate Dynamic Dis-

cretization Algorithm. These include reliability modeling [147, 166, 167], BN models for

solving dynamic fault trees problems [145, 146], operational risk models [164, 165], BN

models for predicting software defects [59–61] and BN models for software project risk

assessment [63, 90].

3.6 Beta-Binomial formulation

Section 3.3 describes an analytical expression for the posterior distribution of a parameter

(θ ) in a beta-binomial model. The Beta distribution is a conjugate prior distribution to the

binomial likelihood. Therefore, the posterior distribution of (θ ) can be expressed as given

by Equation 3.2. This section shows the use of the Dynamic Discretization Algorithm

to approximate the posterior marginal distribution of parameter θ in a beta-binomial BN

model.

Example 3.1. To illustrate the strength of the Dynamic Discretization Algorithm, let us

consider a simple inference problem involving two random variables x and θ . Variable y

denotes the number of Heads from n repeated tosses of a coin and variable θ represents
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the parameter i.e. probability of a Head from a single toss of the coin. We can proceed by

assuming that these repeated tosses are exchangeable i.e the probability of a head (θ) is

constant throughout the experiment. A convenient formulation of this problem is the beta-

binomial formulation i.e. a beta distribution for the parameter θ and binomial distribution

for the random variable y. Therefore, the posterior distribution for θ after observing y can

be expressed analytically using the Bayes’ Theorem as follows:

p(θ |x)∝ θ
α+x−1(1−θ)β+n−x−1 (3.2)

with mean and variance given as Equations 3.3 and 3.4 respectively.

E(θ |x) = α + x
α +β +n

and variance given as (3.3)

V (θ |x) = (α + x)(β +n− x)
(α +β +n)2(α +β +n+1)

=
E(θ |x)[1−E(θ |x)]

α +β +n+1
(3.4)

Figure 3.1 shows a Bayesian Network representation of a Beta-binomial problem.

Figure 3.1: A Beta-Binomial BN model

In Figure 3.1, the parameter of interest (θ), is represented by a node labeled “theta”

and the observable variable x, representing the number of “Heads” from n exchangeable

tosses, is represented by a node labeled x. We also introduce an additional node labeled

“compliment of theta” i.e. (1− θ). This is achieved by ensuring that the sum of the
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two posterior distributions add up to one i.e. p(Head)+ p(Tail) = 1. The sum of these

posterior probabilities is stored as another BN node “theta plus compliment”. We then

enter hard evidence 1 on the “theta plus compliment” node to constrain the sum of two

posterior distributions to one. Also we need to specify appropriate distributions for pa-

rameter θ and observation x. We can use both conjugate and non conjugate prior but here

we will stick with the conjugate so that we can compare the result obtained from dynamic

discretization with those from the analytical solution. We can assume the following prior

for parameter θ :

θ ∼ Beta(1,1) (3.5)

This Beta distribution in Equation 3.5 is a non informative prior and a special case of

the uniform distribution. The second stage is to specify a Binomial distribution for the

observable data x.

x∼ Bin(n,θ) (3.6)

If after 100 tosses we observe 1 head then we can obtain a posterior mean and variance

for parameter θ using Equations 3.3 and 3.4 as 0.01961 and 0.00019 respectively.

Figure 3.2 presents the posterior densities obtained using dynamic discretization with

25 iterations and those from static discretization with 25 uniform intervals.

Figure 3.2: Posterior Densities of θ from dynamic discretization with 25 iteration and static dis-
cretization with 25 uniform intervals
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We can repeat this calculation with 100 iterations for the model with dynamic dis-

cretization and 100 uniform partitions for the model with static discretization. Table 3.2

shows the posterior summary statistics, mean and variance, from static discretization with

25 and 100 uniform partitions and dynamic discretization based on 25 and 100 iterations.

Table 3.2: Summary of posterior distributions from static and dynamic discretization
25 iterations 100 iteration

Parameters Analytical Static Dynamic Static Dynamic
Mean 0.01961 0.034499 0.01987 0.034499 0.019634
Variance 0.00019 0.0005 0.00021 0.00062 0.000194

Clearly, dynamic discretization achieves better accuracy than a static uniform dis-

cretization. More so, discretization can be adjusted any time in response to new evidence

and achieve greater accuracy.

3.7 Multinomial formulation

The multinomial distribution is a generalization of the binomial distribution. The bi-

nomial distribution gives the probability of “successes” and “failures” in n independent

trials of a two-outcome process. The probability of “success” and “failure” in any one

trial is given by the fixed probabilities θ and 1− θ respectively. The multinomial dis-

tribution gives the probability of each combination of outcomes in n independent trials

of a k-outcome process. The probability of each outcome in any one trial is given by

the fixed probabilities θ1, · · · ,θk. The probability density function (pdf) of a multinomial

distribution is given by Equation 3.7.

p(x|n,θ) = n!
x1!. · · · .xk!

θ
x1
1 . · · · .θ xk

k (3.7)

where x = (x1, · · · ,xk) gives the number of each of k outcomes in n trials of a process

with fixed probabilities θ = (θ1, · · · ,θk). The vector x has non-negative integer compo-

nents and ∑
k
i xi = n. Where 0≤ θi ≤ 1, i = 1, · · ·k and ∑

k
i θi = 1. The expected value and

variance of outcome i are nθi and nθi(1−θi) respectively. We can treat parameters θ as a

random parameter vector drawn from Dirichlet distributions i.e. θ ∼Dirichlet(α), where

α = (α1, · · · ,αk) is a vector of hyper parameters. The pdf for a Dirichlet distribution is

given by Equation 3.8.
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p(θ |α) =
Γ(α1 + · · ·+αK)

Γ(α1) · · ·Γ(αk)
θ

α1−1
1 · · ·θ αk−1

k (3.8)

The Dirichlet distribution is a conjugate prior distribution for a multinomial distri-

bution therefore the posterior distribution of p(θ |x) can also be computed analytically.

Equation 3.9 shows the analytical expression for the posterior distribution p(θ |n,x) .

p(θ |n,x)∝ θ
α1+x1−1
1 · · ·θ αk+xk−1

k (3.9)

The posterior mean E(θ j|x) and variance V (θ j|x) are given by the Equations 3.10 and

3.11

E(θ j) =
α j + x j

∑
k
i (αi + xi)

(3.10)

V (θ j) =
α j(∑

k
i αi−α j)

[∑k
i αi]2(∑

k
i αi +1)

(3.11)

A multinomial problem with just three parameters can be solved by merely extend-

ing the Beta-Binomial model. However, with several parameters, it will be impossible

to use a node to sum all the parameters because the clique size will become so large

that the computation becomes infeasible. For example, seven parameters implies that the

summation node would have seven dynamically discretizable parents. The Dynamic Dis-

cretization Algorithm might consume too much computer resources or even break down

completely when a node has many discretizable parents. To address this problem, Neil

et al., [163] proposed a binary factorization approach for optimizing the calculation of

conditional probability tables in Hybrid Bayesian Networks. For example, let us consider

a multinomial BN with seven parameters. The node that sums these parameters will have

seven parents as shown in Figure 3.3.
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Figure 3.3: A BN fragment for summing seven parameter nodes

We can borrow the idea of binary factorization to reduce the complexity of the calcu-

lation. Rather than summing up all the parameters at once, we can recursively sum the

parameters as shown in Figure 3.4.

Figure 3.4: A BN fragment for summing seven parameter nodes with binary factorization approach

In Figure 3.4, the ‘summation’ node has been replaced by six nodes (V1, · · ·V6). These

Vis nodes recursively sum the parameters as shown below:

V1 = θ1 +θ2

V2 = θ1 +θ2 +θ3

V3 = θ1 +θ2 +θ3 +θ4

V4 = θ1 +θ2 +θ3 +θ4 +θ5

V5 = θ1 +θ2 +θ3 +θ4 +θ5 +θ6

V6 = θ1 +θ2 +θ3 +θ4 +θ5 +θ6 +θ7
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Although the node V6 has two parents, the node actually represents the sum of all the

parameter nodes.

3.8 Multinomial BN models

This section describes the steps for creating a multinomial BN model. The observed data

x = (x1, · · · ,xk) can be treated as random variables from a multinomial distribution i.e.

x∼ multi(θ ,n).

The marginal distribution of single xi is binomial. We can simulate a multivariate draw

for the ith configuration in AgenaRisk by using a sequence of binomial draws as discussed

in [73], page 583. This is as follows:

• Draw x1 from a Binomial(n,θ1) distribution.

• Then draw x2, . . .xk−1 in order as follows. For j = 2, . . . ,k−1, draw x j using Equa-

tion 3.12.

Bin(n−
j−1

∑
i=1

xi,
θ j

∑
k
i= j θi)

) (3.12)

If at any time during the simulation the binomial sample size equals zero, we can

use the convention that a Bin(0,θ) variable is identically zero, [73].

• Finally, set xk = n−∑
k−1
i=1 xi

Unlike the beta-binomial formulation, constructing a multinomial BN model is not

straightforward. The following steps are taken while constructing a multinomial BN

model with k parameters.

• Create a set of k continuous nodes for all parameters θ1, · · · ,θk. Define any distri-

bution on each parameter θi. This can be informative or non informative, conjugate

or non conjugate. Here we stick with the Dirichlet distribution.

• Introduce k−1 continuous nodes (v1, · · · ,vk−1) to perform pairwise summations of

parameter nodes as follows:
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v1 = θk +θk−1

v2 = v1 +θk−2

:
:

vk−1 = vk−2 +θ1

• Create an integer node to represent the total number of independent draws n and

also introduce a set of k− 1 integer nodes (n1, · · · ,nk−1) for sample size. Define

arithmetic expression on the k−1 nodes as follows:

n1 = n− x1

n2 = n− (x1 + x2)

:
:

nk−1 = n−
k−2

∑
i=1

xi

• Create a set of k integer nodes for observation x. Define NPT for these nodes using

statistical expressions as follows:

x1 ∼ Bin(n,θ1)

x2 ∼ Bin(n1,
θ2

Vk−2
)

:
:

xk−1 ∼ Bin(nk−2,
θ

V1
)

xk ∼ Bin(n−
k−1

∑
i=1

xi,1)

An example of a multinomial BN model with three parameters is shown in Figure 3.5.
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Figure 3.5: Hierarchical BN model

3.9 Hierarchical Bayesian Network (HRBNs)

Apart from being able to incorporate both discrete and continuous variables in a BN

model, many practical applications of BNs require more than a simple structure of prior,

likelihood and posterior distributions [73]. Hierarchical models allow us to represent com-

plex problems by assuming appropriate parametric distributions for uncertain parameters

in the model. Hierarchical Bayesian Networks (HRBNs) can be regarded as Bayesian

Networks which consist of parameters and hyper parameters. The HRBNs are very useful

in learning parameters from data. An example of Hierarchical Bayesian model is of the

form

p(y|θ)∼ Bin(n,θ)
p(θ)∼ Beta(α,β )

Where α and β are the hyper-parameters and θ is an uncertain parameter. In general,

hierarchical models are characterized by parameter θ and hyper parameters (φ) which is

a vector consisting of {α , β} in the model above.

An HRBN model to represent this example is shown in Figure 3.6.

One challenge in hierarchical modeling is choosing an appropriate prior distributions

for the hyper parameters. This task requires substantive knowledge about the parameters,
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Figure 3.6: Hierarchical BN model

at least sufficient to be able to confine them into a finite region, [73]. In many cases

the information required to specify these prior distributions precisely is not available.

Consequently, non-informative prior (diffuse prior) distributions are often used for the

hyper parameters.

3.10 Hierarchical Bayesian Network: Beta-Binomial

Here we will use a hierarchical model to analyze the Beta-binomial example described

in Example 3.1. The prior distribution assumed for the parameter (θ) was a simple prior

distribution i.e. θ ∼ Beta(1,1). We can assume a complex structure so that the parameter

(θ) depends on hyper parameters α and β as given by Equation 3.13.

θ ∼ Beta(α,β ) (3.13)

We can specify uniform distributions on the hyper parameters (Equation 3.14).

α,β ∼U(0,1) (3.14)

A hierarchical BN model showing the posterior marginal distributions for parameter

θ and hyper parameters α and β is shown in Figure 3.7. This is based on the realization
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of 105 “Heads” from the 200 repeated tosses of the coin.

Figure 3.7: Hierarchical BN model

These result in shown in Table 3.3.

Table 3.3: Summary statistics for the parameters (θ ) and Tail (1−θ ) from a hierarchical BN model
Summary Statistics

Parameters Mean Median Lower quartile Upper quartile
θ : Head 0.52493 0.52479 0.50007 0.54635
θ
′
: Tail 0.47469 0.47515 0.45162 0.49977

3.11 Summary

This chapter reviewed the concept of Hybrid Bayesian Network and also described the

Dynamic Discretization Algorithm. This version of the Dynamic Discretization Algo-

rithm works seamlessly with the Junction Tree Algorithm, [125]. Also, the chapter de-

scribed the beta-binomial and multinomial BN formulations. A simple Beta-binomial

BN model was introduced to compare the result obtained from dynamic discretization
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with those from static discretization. The chapter demonstrated the potential of the Junc-

tion Tree Algorithm and dynamic discretization in performing general inference using a

Bayesian Network model. This powerful combination facilitates the use of a BN model to

solve other interesting modeling problems such as learning parameters and summarizing

clinical evidence in meta-analysis.
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Chapter 4

Clinical applications of Multinomial BN models

This chapter presents three novel applications of Bayesian Networks augmented by dy-

namic discretization to solve some important modeling problems in the clinical domain.

These classes of problems are frequently encountered in the clinical domain. These are:

• modeling subjective opinion from clinical experts with statistical distributions;

• learning parameters of a model using multinomial BN models; and

• scoring different hypotheses about causal relations between clinical variables.

This chapter describes the approach to solve these problems using the concept of Hy-

brid Bayesian Networks.

4.1 Modeling Subjective opinions with statistical distributions

One attractive feature of Bayesian analysis is the ability to incorporate subjective knowl-

edge in the analysis. In a real life application of BN models, domain experts are normally

involved in the analysis to provide subjective opinion about some interesting clinical pa-

rameters. Gelman et. al [73] provided two intuitive interpretations of the prior informa-

tion. These are population interpretation and subjective interpretation. From the popula-

tion interpretation point of view, a prior distribution represents a population of possible

parameter values within which the parameter of interest has been drawn. The subjective
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interpretation, on the other hand, represents our knowledge about the parameter of inter-

est and the degree of uncertainty associated with it. Whichever interpretation we assume,

the prior distribution should cover all plausible values of the parameter but needs not to

be concentrated around the true value [73]. Different types of prior distributions has been

proposed by different authors. Gelman et. al [73] decribed three categories of prior in-

formation namely: noninformative; highly informative and moderately informative [18]

hierarchical prior distributions. The use of noninformative prior distribution is common

when there is not information about the parameter of interest. The use of non-informative

prior distributions has been addressed by a number of authors. For example see Bernardo

and Smith [12], Carlin [25] and Gelman et. al [73] for full discussions on the theoreti-

cal principles for prior distributions. Gelman discussed the hierarchical prior distribution

for the Physiological pharmacokinetic analysis in [72]. A commonly used approach for

representing a informative prior in a BN model is to assume that the parameter takes a

specific value in the parameter space. This is by far the most convenient approach which

is compatible with many inference algorithms. However this approach fails to encode

uncertainty about the subjective information given by the experts.

Using informative prior distributions allows the incorporation of information gathered

from clinicians in light of their experience. However, this may lead to problems because

of the subjective nature of the information provided by the experts [67]. Once an expert

has provide the subjective values about a parameter, a Bayesian analyst needs to translate

the information into a mathematical form that can be incorporated into the analysis. An

important question therefore is how should analysts incorporate subjective information

in the model? Should the analyst take this subjective value as the only possible value or

as a candidate prior from a pool of potential values? In practice, two experts can give

two different subjective values about the same parameter. Therefore, it is important to

introduce uncertainty in the subjective value. For example Fenton et al., [62] reported a

case study where two clinicians disagreed on the sensitivity of the Magnetic Resonance

Angiogram technique.

In this work, rather than using this relative frequency approach,1, we will borrow

the idea used in Spiegelhalter, et al. [216] to model subjective values received from the
1This approach normally assume that the parameter of interest takes a specific value on the parameter

space, i.e. The prior value of the parameter is set to the subjective estimate provided by the experts.
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expert. Spiegelhalter, et al. [216] recommended a set of prior families that can be used

to specify prior belief about a treatment effect, these are: the reference prior; Sceptical

prior; and enthusiastic prior.

The reference prior is the least subjective which represents a minimal prior informa-

tion. An analysis based on this prior can be used as a baseline against which to compare

analysis using other priors. We can specify this prior with a uniform distribution or use a

conjugate parametric family that includes the uniform distribution as a special case. This

specification implies that we do not have any confidence in the value we received from

the expert. This may be applicable when there is no substantive knowledge from domain

experts. In this case we can define a prior that assume equal probability to every value on

the parameter space.

In the context of this work, we can use the skeptical prior to model the degree to which

we believe the parameter is likely to take other values on the parameter space from the

value specified by the expert. For example an expert may say that the sensitivity of a test

is about 90% and then we may want to specify a prior distribution on this parameter that

assigns a very low probability to the proposition that the sensitivity is not equal to the

value specified by the expert. To specify this prior, we will use a statistical distribution

that assigns probability to all possible values in the parameter space. For a parameter with

a bounded space, we can use the Triangle distribution, Truncated Normal distribution and

Beta distribution to specify the Sceptical prior.

In contrast to the Sceptical prior, we may rather want to use a prior distribution that

assign a very high probability to a proposition that the parameter is within an interval

containing the subjective value specified by the expert. We can use the enthusiastic prior

to model the degree to which we believe in the subjective value provided by the domain

experts. To specify the enthusiastic prior, we will use appropriate statistical distributions

and also introduce constraints on the parameter. We will use the constraints to assign a

probability (φ) to a proposition that the parameter is within a range ([a,b]) on the pa-

rameter space i.e. p(θ ∈ [a,b] = φ). For example if a clinician says there is 5-10% risk

of complication (θ ) from a clinical procedure, analysts can use the enthusiastic prior to

encode a degree of belief (φ ) in this proposition, that is p(θ ∈ [0.05,0.1] = φ).

Let us start with an example of the sensitivity of a diagnostic procedure for intracranial



4.1. Modeling Subjective opinions with statistical distributions 83

aneurysm. Suppose a clinician says that the sensitivity of this procedure is 92%. There-

fore we can assume a prior mean of 0.92 for a parameter, θ , representing the propensity

of this procedure to detect cases with intracranial aneurysms. It is a common practice to

use a summary value, such as the mean, to represent the prior probability. This represen-

tation implies that the parameter takes a specific value on the parameter space as shown

in Figure 4.1.

Figure 4.1: Parameter taking a fixed value on the parameter space.

Figure 4.2 shows a Boolean node representing the prior distribution for parameter θ .

Figure 4.2: Representing prior information with a discrete node

Representing prior information in this way is very convenient and easy to achieve but

it does not incorporate the uncertainty associated with θ . In order to treat θ as a random

parameter, we can use statistical distributions to model our subjective belief about θ .

Since sensitivity takes values between 0 and 100, the parameter space for θ is bounded to

a range of values between 0 and 100 i.e. [0,100]. We can use the Triangle distribution to

model θ by specifying the lower, middle and upper values for θ . In this example the lower

value is 0 , upper is 100 and the middle value is 92. Figure 4.3 shows the prior marginal

distribution for θ using the Triangle distribution. The second node labeled “p(theta >

92)” represents the probability that θ is higher than 92 i.e. p(θ > 92).

The prior marginal distribution of θ shows that all values, in the the parameter space,
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Figure 4.3: Representing prior information about the sensitivity of a test with Triangle distribution.

are likely but the region around the middle value (i.e. 92%) have higher probability. The

mean and median of θ , based on the Triangle distribution (Figure 4.3), are 63.998 and

67.822 respectively. The prior marginal distribution for the discrete node “p(theta > 92)”

shows a probability 8% for “True” and 92% for “False”. This means that there is 0.08

probability that the sensitivity of this screening procedure is higher than 92%. In addition

to the Triangle distribution, we can also model this prior knowledge using other statistical

distributions shown in Table 4.1.

Table 4.1: Statistical distributions to model prior knowledge about the sensitivity of a diagnostic
procedure.

Prior Mathematical formulation
Uniform U(0,100)
Truncated Normal N(92,0.01,0,100)
Beta Beta(92,8)

Figure 4.4 shows three representations of the medical knowledge using statistical dis-

tributions in Table 4.1.

Unlike the Triangle distribution the prior distribution for θ based on the Uniform

distribution shows that all values in the parameter space are equally likely with mean

and median equal 50. Also, this model gives 0.08 probability that the sensitivity of this

screening procedure is higher than 92%. Unlike the duo (Triangle and Uniform), mod-

eling the prior with the Truncated Normal and Beta distributions concentrate around the

subjective value 92%. Some ranges of values in the parameter space, for example [0 -

90] and [93 - 100] have zero probability. The mean and median of θ from the Truncated

Normal and Beta distributions are approximately 92. These models give 0.55 probability

that the sensitivity of this screening procedure is higher than 92%.
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(a) Uniform (b) Truncated Normal (c) Beta

Figure 4.4: Representing prior information about the sensitivity of a test with a) Uniform b) Trun-
cated Normal and c) Beta distributions.

So far we have used the Uniform distribution to specify a reference prior and we have

also used the Beta, Truncated Normal and Triangle distribution to specify a Sceptical

prior. We can say that the degree of skepticism is higher in the Triangle distribution than

using a Truncated Normal distribution with a low variance. We can change the parameters

of each of these distributions to reflect the degree of our skepticism about the existing

medical knowledge. Let us now specify enthusiastic priors on parameter θ . To do this,

let us assume that a clinician says that the sensitivity of this diagnostic test is between

92% and 98%. The intention is to model this prior information so that we can assign a

probability to a proposition that θ ∈ [87,98].

Figure 4.5: Representing enthusiastic prior information using dynamic discretization.

To achieve this with dynamic discretization, we will introduce three Boolean nodes in

addition to the parameter node as shown in Figure 4.6.

For the parameter node, we can use an appropriate statistical distribution. Let us use

the priors defined in Table 4.1 for θ . For each of these distributions, we will constrain θ

so that we will have 90% probability that the prior distribution for θ is defined between
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Figure 4.6: Representing enthusiastic prior information using dynamic discretization.

92 and 98. We will define comparative expressions in the NPT for nodes labeled “theta

>87” and “theta <98”. For “theta >87” we define a comparative expression {if(θ >

87,“True”,“False”)} and {if(θ < 98,“True”,“False”)} for the second node “theta >98”.

These expressions calculate the percentages of the areas specified relative to the whole

distribution. For instance the node “theta > 87” calculates the percentage of the prior

distribution of θ that is greater than 87. Lastly, we define the NPT for the third Boolean

node “theta <87 and <98” as given in Table 4.2.

Table 4.2: NPT to constrain a parameter space to a range between 92 and 98.
“theta > 87 and < 98”

“theta > 87” “theta < 98” True False
True True 1 0
True False 0 1
False True 0 1
False False 0 1

Figure 4.7 shows the prior marginal distributions for θ and nodes used to enforce the

constraint. This shows that about 17.96% of the distribution of θ is greater than 87 and

99.5% of the distribution of θ is below 98. The percentage in the region 87 to 98 is

17.46%.

Using the Uniform distribution shows that 11% of distribution of θ falls in the interval

[87,98] with 13% higher than 87 and 98% below 98 (Figure 4.8).

For the Truncated normal distribution, the entire distribution of θ falls in the interval

[87,98] as shown in Figure 4.9.
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Figure 4.7: Enthusiastic prior specified with the Triangle distribution.

Figure 4.8: Enthusiastic prior specified with the Uniform distribution.

Finally Figure 4.10 shows the prior marginal distribution obtained by using the Beta

distribution. In this model, about 95% of the distribution of θ falls in the interval [87,98].

Even without entering evidence on the node “theta >87 and <98”, more than 95% of

the distribution of θ is already within the interval [87,98] for the models specified with

the Truncated Normal and Beta distributions. Hence we can use the Truncated Normal

distribution with a low variance to model our ‘enthusiasm’ about a hypothesis i.e. H :

E(θ) ∈ [a,b].

The discussion here has focused on the mechanics of using a number of priors to re-

flect different expert opinions about the parameters of interest and labels, such as sceptical
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Figure 4.9: Enthusiastic prior specified with the Truncated Normal distribution.

Figure 4.10: Enthusiastic prior specified with the Beta distribution.

or optimistic, have been used to characterise these opinions as priors, mostly for conve-

nience. However we must realise that this is simply the most visible manifestation of

Bayesian scientific methodology insofar as the opinions/positions being formulated and

evaluated using the data can be considered hypotheses to be tested. Therefore, it would

be a mistake to take Spiegelhalter’s, or anyone else’s, labelled priors as simple opinions

when, in fact, they are hypotheses in the sense that they express predictions about real

phenomena that we can test with real evidence (as an aside this Bayesian approach to the

scientific method is similar to Popper’s notion of falsification and provides a rich vein of
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research in philosophy of science). Of course in practice we face a multitude of possi-

ble hypotheses that could describe the situation at hand but to formulate and test all of

these might be infeasible given resource constraints. Given this we should realise that

the choice of labels for the priors, and indeed the number of prior hypotheses, used here

is used so for illustration only. It is not meant to be exhaustive but rather to reveal an

underlying continuous spectrum and select points on the spectrum where expert opinion

might gravitate and used these points, in a dispassionate and objective way, as our hy-

potheses. Of course there is danger here: we are not advocating the use of a standard

3-point (reference, sceptical or enthusiastic) or 5-point scheme for priors. Neither are

we saying that the prior formulation, as expressed on the parameters, must follow some

dogma: users of Bayesian methodology should instead give careful thought to the number

of priors and be careful to use as many as appears right to capture differences in opinion

but be realistic about the cost benefit trade off incurred by doing so. Spiegelhalter’s prior

labelling scheme therefore provides a useful touchstone when applying hypothesis testing

but provides nothing more.

4.2 Model Specification

This section demonstrates, with examples, the influence of prior distribution on the poste-

rior inference. BN models can differ in terms of the prior, sampling distributions, causal

relations or even in terms of variables included in the DAG, [73]. Because the posterior

distribution of a parameter may change with respect to the prior distribution, it is a good

practice to consider more than one candidate model in the analysis in order to analyze

the impact of the priors on the posterior inference. This helps to check (for example) if

making a convenient distributional assumption has an impact on the posterior inference

of parameters.

Example 4.1. In a hypothetical experiment involving 980 (n) rape victims, 437 (y) were

tested positive for HIV six months after the incident. The sensitivity and specificity of the

diagnostic test used are 100%, i.e. the test will accurately identify cases of HIV infection

or non infection with certainty. Suppose 50% of convicted rapists are HIV positive, we can

then assume a prior probability for the parameter θ representing the prevalence of HIV

in the population of convicted rapist. We can approach this problem with the following
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beta-binomial model:

y ∼ Bin(n,θ)
θ ∼ Beta(α,β )

α,β ∼ U(1,1000)

In order to complete a model’s formulation, we need to translate the prior information

into a mathematical equivalence that we can easily incorporate in the analysis. In a beta-

binomial formulation, the expected value of the parameter θ is given by the mean of the

beta distribution E(θ) = α

α+β
. The historical sample size (α +β ) represents the value of

the prior information. The higher the value, the more we believe in the historical data.

We can vary the values of α + β to arrive at different models for this problem. Table

4.1 shows eight candidate models (Mi) differing in the degree of belief in the historical

information.

Table 4.3: Different Beta-binomial models for the hypothetical rape victim data
Models (Mi) E(θ) α +β

1 0.5 2
2 0.5 50
3 0.5 100
4 0.5 200
5 0.5 500
6 0.5 1000
7 0.5 10000
8 0.5 100000

The posterior means and variances for θ , from different models, are presented in Fig-

ure 4.11

Figures 4.11(a) & 4.11(b) depict the posterior mean and variance for parameter θ

from different models. Two crucial observations are obvious from these Figures. 1) The

posterior mean lies between sampling proportion and the prior. 2) The variance of the

posterior distribution decreases with increasing values of α + β . Models with a small

α +β value have the posterior distribution concentrated around the sampling proportion

y/n thereby suggesting that the analysis was driven mainly by the likelihood. In particular,

model (M1) with α + β = 2 is a special case equivalent to specifying a uniform prior

distribution for θ . However, the posterior means move towards the prior (with increasing
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(a) Posterior mean of θ

(b) Posterior variance of θ

Figure 4.11: Prior mean =0.5, sample proportion y/n = 0.446 and posterior statistics for different
models (α +β values)

precision) as α +β increases. In essence, we can encode a subjective judgement and also

use the value of α +β to express the degree of belief in this view.

4.2.1 Binomial Likelihood

In Section 4.2 we used the conjugate prior for a binomial likelihood. Let us now analyze

Example 4.1 (Binomial likelihood) with three different, non conjugate prior distributions

as shown in Table 4.4.

Table 4.4: Three mathematical representations of prior information
Prior Mathematical formulation
Enthusiastic N(0.92,0.01,0,1)
Sceptical Triangle(0,1,0.92)
Reference U(0,1)

In order to incorporate these three prior distributions in a single BN model, we intro-

duce an additional node labeled “Priors” as a parent node to the parameter node (“theta”).

This node is a categorical node with three states {Reference, Sceptical, Enthusiastic}.

The probability table for this node is vacuous i.e. the three prior distributions are equally

likely.
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p(Re f erence) = 1/3
p(Sceptical) = 1/3

p(Enthusiastic) = 1/3

The conditional table for the parameter node (“theta”) can then be specified using the

following expressions.

θ ∼


N(0.92,0.01,0,1) if Enthusiastic

Triangle(0,1,0.92) if Sceptical

U(0,1) if Reference

Figure 4.12 shows the marginal prior distributions of “theta” and “Priors” before ob-

serving evidence.

Figure 4.12: Prior marginal distributions of the Beta-Binomial Example after incorporating sub-
jective information

It is obvious from Figure 4.12 that before observing any data, the three prior dis-

tributions are equally likely. At this point we do not know if any of these three prior

distributions is better than others, given the observed data. After entering evidence the

posterior distribution of the node “Prior” shows that the Sceptical prior is more consistent

with observed data than the reference and enthusiastic priors. The enthusiastic prior is the

least consistent with observed data (Figure 4.13).

In fact we can visually inspect posterior distributions of the parameter node (θ ) result-

ing from these three prior distributions (Figure 4.14).
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Figure 4.13: Posterior marginal distributions of the Beta-Binomial Example after incorporating
subjective information

Figure 4.14: Posterior marginal distributions of parameter θ using the reference, Sceptical and
enthusiastic priors.

Clearly as shown in Figure 4.14, the posterior inference about θ is different for the

enthusiastic prior. This is because we have expressed ‘enthusiasm’ about a hypothesis,

H : E(θ) = 0.92, which is inconsistent with the observed data.
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4.2.2 Normal Likelihood

Let us now consider a normal likelihood for a variable x representing the age of patients

with a particular condition:

xi ∼ Normal(µ,τ2) (4.1)

The parameter of interest is the µ representing the average age of this population and

we intend to use the BN approach to estimate this parameter from data. Just like before,

we will specify three prior distributions on µ to encode the existing knowledge about the

parameter. Suppose a clinician believes that the average age of patients is 80 years and that

the age of the youngest and oldest patients ever admitted are 30 and 120 years respectively.

Therefore we can translate this information into a mathematical representation as follows:

µ ∼


N(80,100,30,120) if enthusiastic

Triangle(30,80,120) if Sceptical

U(30,120) if reference

For the second parameter (τ) in Equation 4.1, we can use a non informative prior dis-

tribution i.e. τ ∼U(0,1000). Table 4.5 presents the ages (xi) of twelve patients randomly

selected from this population.

Table 4.5: Table showing ages of twelve patients from a hypothetical population
index (i) Age (xi)
1 89
2 31
3 49
4 83
5 77
6 77
7 80
8 90
9 40
10 89
11 70
12 81

Figure 4.15 shows a BN representation of this problem. The observations in Table

4.5 are represented by nodes labeled x1, · · · ,x12 in addition to parameter nodes “mu” and

“Tau”. We can assume a vacuous probability distribution for the node “Prior” and define
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NPT for the observation nodes as follows:

xi ∼ T Normal(µ,τ,0,120)

The prior marginal distribution (without observation) shows that the three priors are

equally likely as shown in Figure 4.15.

Figure 4.15: BN representation of the Normal likelihood example

However, as shown in Figure 4.16, the three priors specified are now having different

distributions. The enthusiastic prior is the most consistent with the observed data while

the Sceptical prior is the least consistent. The posterior probability distribution for these

three priors are 0.544 for the enthusiastic, 0.176 for reference and 0.280 for sceptical

priors.

Figure 4.17 shows a plot of the posterior distributions of µ based on the reference,

Sceptical and enthusiastic priors.

We have used conjugate and non conjugate prior distributions in a BN model and pre-

sented the posterior distribution based on the dynamic discretization. We have shown

how analyst can incorporate a degree of uncertainty about the prior information. It must

be noted however that the choice of prior distributions may affect the posterior distri-

butions of parameters of interest. In the worse case scenario, a poorly formulated prior

distribution may lead to an improper posterior distribution, 2 thus raising a question about
2An improper prior distribution may lead to improper posterior distribution in which case, the posterior

distribution is infinite for some observable values.
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Figure 4.16: BN representation of the Normal likelihood example

Figure 4.17: BN representation of the Normal likelihood example

the reliability of the result obtained from bayesian analysis. A commonly used approach

to access the stability of the posterior distributions to the choice of prior distributions is

the sensitivity analysis. Many author have partly addressed the problems of using non

informative priors in bayesian analysis. Jeffreys [104] and Hartigan [89] discuss invari-

ance principle for non informative prior distributions. Box and Tiao [19] presented a
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straight-forward discussion and practical applications of non informative prior distribu-

tions. Jaynes [103] discusses the idea of objectively constructing prior distributions based

on invariance principle and maximum entropy. Indeed, this is still an active research area

in the bayesian community.

At this point it is worth reminding ourselves of a key criticism of standard Bayesian

statistical methodology: this is that the expert is only allowed to express their expertise

in the form of conjugate priors (and these mainly for mathematical convenience). The

preceding discussion and examples should hopefully have illustrated that the approach

taken using DD is much more flexible, allowing expertise to be specified on sub-ranges

of parameters, using non-conjugate priors and using mixtures of prior distributions - one

for each expert/hypothesis. This provides great flexibility but there is some cost involved

in this. Firstly, the meaning and effect of a prior on the prediction can be difficult to

foresee, so some experimentation is often needed. If this was challenging in a constrained

setup, as is the case with conjugate priors, the challenges are doubled with non-conjugate

priors and more responsibility is placed on the expert to formulate these (rightly so, but

this may be unwelcome all the same). However, as we show the flexibility in terms of the

hypotheses representation in choice is wider than before and thus enhances our ability to

properly represent a decision maker’s prior choices and the effect of these on posterior

results and predictions.

4.3 Parameter Learning using dynamic discretization

Parameter learning is a crucial step in modeling real life problems. In both classical and

bayesian analysis, parameter values are used either to predict or to explain some real

life phenomenons. In modeling clinical problems, analysts can use the available data to

estimate the value of some clinical parameters. In the previous section we have described

how we can model a subjective value from analyst, now we can use the same framework

to estimate parameters based on empirical values from the literatures or from various

experts.

In this section, we will use the dynamic discretization approach to learn parameters of

BN nodes. Indeed, the analysis in sections 4.2.1 and 4.2.2 are parameter learning models.

Section 4.2.1 presents a parameter learning model with the binomial likelihood. In this
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case, we specify three prior distributions and use dynamic discretization to calculate the

posterior distributions. Section 4.2.2 is a normal likelihood example to learn average age

of a population. Let us now consider an example of learning parameter of a categorical

variable using the multinomial BN formulation.

Example 4.2. Let us assume that three treatment options (surgery, chemotherapy and

radiotherapy) are available for curing a clinical condition and from a retrospective study

of 287 exchangeable patients3 50 were treated with surgery, 200 with chemotherapy and

the remaining 37 with radiotherapy. We can assume three parameters θ1, θ2 and θ3 as

the chance process for surgery, chemotherapy and radiotherapy respectively. In practice,

these three options may not be mutually exclusive i.e. a patient may receive more than one

treatments. For the purpose of this illustration, let us assume that these three treatment

options are mutually exclusive such that ∑
3
i=1 θi = 1. For these parameters, we can specify

a non informative prior distribution is given by Equation 4.2.

p(θi)∼ Dirchlet(1,1,1) (4.2)

The observation variables are x1, x2 and x3 respectively for the number of observed

patients treated with surgery, chemotherapy and radiotherapy. Equation 4.3 shows the

multinomial likelihood function for the observed number of patients in each treatment

category.

p(xi|θi)∼Multinomial(θi) (4.3)

Figure 4.18 is a multinomial BN model showing the posterior marginal distributions

for the parameters θ1, θ2 and θ3.

The analytical posterior means for these three parameters along with the approximate

results from the Dynamic Discretization Algorithm with 25 iterations are shown in Table

4.6.

This relatively simple learning approach provides a desirable benefit to learning clini-

cal parameters subject to some clinical guidelines. Since the learning procedure is based
3That is we do not have any information a priori to distinguish one patient from another based on their

responses to these treatment options.
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Figure 4.18: A Multinomial BN model

Table 4.6: Summary means for the parameters θ1, θ2 and θ3
Parameters Analytical Dynamic discretisation
θ1: Surgery 0.1762 0.17501
θ2: Chemotherapy 0.6931 0.69485
θ3: Radiotherapy 0.1307 0.13028

on the Bayesian Network formulation, it is easy to introduce constraints on some parame-

ters during the learning process. The idea is to use these constraints to implement clinical

guidelines during the learning process. In other words, we can learn the parameters sub-

ject to the specified constraints. We will return to a practical application of this technique

in chapter 6 where medical policies are incorporated in the learning process.

Antal et al [3, 4] and Lucas et al [184] are good examples where soft data is used,

either from literature or from experts, to inform the structure of a Bayesian model, where

deterministic constraints are not identified and so have been neglected. For instance in

[184] the decisions taken by clinicians are clearly not entirely probabilistic but are treated

as such. In these studies [3, 4, 184] Dirichlet style learning for multinomial distributions

was done without any consideration of the existence of deterministic constraints between

subsets of states. Similarly the Deal software package [20] and others assume that all

relationships are probabilistic. Indeed there is no mention in any of the Bayesian literature

surveyed of the possibility of such constraints existing in theory or practice and as a result
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standard statistical methodology runs the risk of being applied blindly. By using the

techniques described in Chapter 2 we can overcome this impediment whilst also learning

parameters in the multinomial case.

4.4 Scoring causal relations between variables using dynamic discretization

Similar to the parameter learning, another interesting and widely researched area in Bayesian

analysis is the causal discovery. In Chapter 2, we have presented a literature review of

state of the art techniques for learning causal models. A well known problem about these

techniques is the search space for candidate models which is more than exponential in the

number of variables. As such, a number of heuristics search algorithms have been devel-

oped to handle problems with large scale BN models. Our approach here is to use the

BN framework to score different causal hypotheses and choose the one with the highest

score. We consider competing models as some forms of hypotheses about a problems and

each hypothesis corresponds to a causal explanation of the problem and our approach is

to use the available data to score each of these hypotheses. A major distinction between

our approach and those described in chapter 2 is that we impose a restriction on the search

space before the analysis. In other words, we assume that the search space for competing

causal explanations is known a priori. This may not be entirely correct, but we consider

this as a crucial step in building realistic clinical models based on clinical knowledge. The

problem of gathering the knowledge to impose this restriction on the search space is still

an open research question.

We can consider competing causal explanations between variables as a form of hy-

pothesis testing and then assign probabilities or scores to hypotheses Hi, based on the

available data, x, using Bayes Theorem:

p(Hi|x)∝ p(x|Hi)p(Hi)

We can refer to each of the causal explanations as a candidate model and proceed by

fitting the parameters (θi) of a model using the available data by Bayes Theorem:

p(θi|x) =
(p(x|θi,Hi)p(θi|Hi))

p(x|Hi)
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Our idea of causal learning is to determine the hypothesis that best fits the data. In

essence, we need to estimate how well a hypothesis explains the data, in competition with

other hypotheses. To do this we need to compute the probability of the observed data

given the hypothesis and parameters to get a Bayesian score:

p(x|Hi,θ) = ∑
θi

p(x|θi,Hi)p(θi|Hi)

Suppose we want to learn a causal relation between two variables “Year (Y)” and “Sex

(S)” using the data presented in Table 4.7.

Table 4.7: Frequency distributions of patients treated between 2005 and 2009
Sex

Year Female (xi) Total (Ni)
2005 177 374
2006 88 183
2007 209 399
2008 222 470
2009 296 619
Total 992 2045

There are three possible relations between these two variables. Firstly, they can be

independent as shown in Figure 4.19(a). We can treat this as the first hypothesis (H1: Sex

is independent on Year). Secondly, Figure 4.19(b) shows a dependency of variable “Sex”

on the other variable (“Year”). This hypothetical link does not have a causal interpretation

as one cannot argue that changes in the variable “Sex” is ‘caused’ by changes ‘Year’.

However, we may have reasons to believe that there are changes in the distribution of

“Sex” over the years. In this case, the “Year” can be thought of as a surrogate for other

(unknown) variables that might have truly caused the changes in the distribution of “Sex”.

To this end, we can add this link as the second hypothesis i.e. H2: Sex is dependent on the

Year. Finally in Figure 4.19(c) we have a hypothesis that reverses the link in the second

hypothesis (H2). This link does not make sense as variable “Sex” cannot influence “Year”.

As a result, the search space for the causal explanations consists of hypotheses H1 and

H2. In other words, we have two hypothetical BN models and we can now take them

in turns and compute a score for each model. The model with higher score gives better

explanation of the data.
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(a) (b) (c)

Figure 4.19: Three competing causal relations between variables “Sex” and “Year”: a) Sex and
Year are independent; b) Sex is dependent on Year and c) Year is dependent on Sex

H1: Sex is independent on Year

To proceed, let us denote the proportion of females by θ and treat the number of female

(x) in Table 4.7 as binomial distribution,

xi ∼ Bin(θ ,Ni)

Using a uniform prior on the parameter θ , we can then apply Bayes Theorem as stated

earlier to obtain a posterior distribution θ |x. Considering the first hypothesis (correspond-

ing to BN structure in Figure 4.19(a)), we can create a BN model based on the assumption

that the proportion of females is constant over the period i.e. the parameter θ is constant.

The BN model showing the posterior marginal distribution θ (based on H1) is presented

in Figure 4.20.

Figure 4.20: Beta Binomial model to calculate the probability of the observed data (xi) given H1

On the left of Figure 4.20, we have five “data nodes”, one each for the observed

number of females in each year. For example, the node labeled “nf 2005” is the observed
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number of females in 2005, “nf 2006” is the observation in 2006 and so on. The node

at the center is the parameter node (θ ). The nodes on the right are used to compute the

probability of the observed data using the posterior marginal distribution of parameter (θ ).

We refer to these nodes as ‘prediction’ nodes. To compute the probability of the data, we

ensure that the partitions of each of the ‘prediction’ nodes contains a point representing

the observed data. The posterior marginal distribution of this point is the probability of

the observed data.

For example, we are interested in the probability of observing 177 out of 374 females

in 2005. To compute this probability, we use three static partitions (0-176, 177, 178-2049)

for the node, “2005 p(177 in374)”. The probability of observing 177 females out of 374

is 0.034641. Hence, the probabilities of the observed data pi(xi|H1,θ) (i = 1, · · · ,5) are

given below;

p1(177 in 374) = 0.035
p2(88 in 183) = 0.056

p3(209 in 399) = 0.014
p4(222 in 470) = 0.029
p5(296 in 619) = 0.029

Therefore,

S1 =
5

∏
i=1

pi(xi|H1) = 2.05109E−08

Where S1 is the score of the BN model based on hypothesis H1. We can now repeat

this process for the second hypothesis (H2).

H2: Sex is dependent on Year

For this hypothesis, there is a link connecting the node labeled “Year” to the second node

“Sex”. Therefore the parameter θ is no longer constant for each year i.e. each year has

different proportions (θi) of females. Figure 4.21 shows the posterior distributions of

parameters (θi) for each year.

We can estimate the probabilities of the observed data using the posterior distributions

(θi|xi,H2). The probabilities pi(xi|H2,θi) (i = 1, · · · ,5) are given below;
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Figure 4.21: Beta Binomial model to calculate the probability of the observed data (xi) given H2

p1(177 in 374) = 0.02891
p2(88 in 183) = 0.04148

p3(209 in 399) = 0.028048
p4(222 in 470) = 0.02567
p5(296 in 619) = 0.022404

Therefore,

S2 =
5

∏
i=1

pi(xi|H2) = 1.93437E−08

In this example, the score for the hypothesis H1 is slightly higher than the score for

H2, therefore, the observed data supports hypothesis H1 better than H2. Hence, variables

“Sex” and “Year” are independent.
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4.5 Summary

In practical applications of BN models, analysts often resort to using experts’ opinion in

order to generate knowledge about a clinical variable. This chapter demonstrates the flex-

ibility of dynamic discretization in modeling subjective information using different sta-

tistical distributions. Three ways of specifying prior knowledge were considered namely:

the reference, Sceptical and enthusiastic priors. The chapter described the use of the uni-

form distribution to model reference priors, Triangle distributions for skeptical priors and

the Truncated normal distribution to specify enthusiastic priors. We showed how the Dy-

namic discretization algorithm makes it possible to specify conjugate and non conjugate

prior distributions.

The chapter also demonstrated a novel use of the multinomial BN formulation in learn-

ing parameters of a clinical model. In this case, rather than modeling a subjective prior

from an experts, we can accumulate data from the literature or from many experts about a

clinical parameter. The bayesian approach to learning parameter produced a full posterior

distribution of parameters within the BN framework. In theory, these full posterior distri-

butions obtained for the parameters of interest can be used within the bayesian network

but the approach to actualize this is still an active research area.

We have also described a simple approach for learning causal relation based on data

and existing knowledge of the domain. We use the Bayesian network framework to as-

signs scores to candidate models based on the knowledge of the domain and recommend

the model with the highest scores. We argue that building a very large model requires

substantive knowledge of the domain in order to considerably reduce the search space.

Here we have fixed the search space for possible causal models to those with possible

clinical explanations. In essence, we only consider candidate models that can be justified

using knowledge of the domain. However gathering such information to reduce the search

space is, on its own, an interesting research topic that require further investigation.

The analysis so far presented have shown the potential of the use of BN model sub-

jective prior information, parameter learning and causal learning data and existing knowl-

edge of the domain. We apply these technique to clinical case studies in chapter 6.
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Chapter 5

Meta Analysis of clinical data

This chapter describes a novel application of Bayesian networks in solving meta-analysis

problems. Three meta-analysis problems from the literature are analyzed using the Bayesian

Network framework. These are:

• The beta-blockers clinical trial;

• The magnesium trials in myocardial infarction; and

• The prevalence of intracranial aneurysms.

Ideally when comparing new methods against established techniques one should con-

duct the comparative analysis in as systematic and objective a way as possible. There

are thousands of meta analyses published every year and unfortunately, due to time and

resource constraints it has not been possible to provide an exhaustive review of meta anal-

ysis in the clinical domain as one would have liked. Instead a snap shot is provided along

with caveats and limitations on what might be learned from this alone. This restriction is

also, partly, influenced by availability of data and the clarity of reported analysis needed

to enable replication. Fortunately, for the studies reported data was available and a com-

plete description of the modelling approach was available to enable the analysis to be

done using DD and HBNs.
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5.1 Introduction

In the medical domain it is common to find several studies designed to answer simi-

lar questions about the effectiveness of a clinical intervention. These disparate studies

provide evidence about clinical effectiveness but the scope of their designs may be too

limited to come to a generalizable conclusion. The idea of pooling results from disparate

studies can be traced back to the work of Karl Pearson in 1904, [181]. In his account

on the preventive effect of serum inoculations against enteric fever, Pearson reported the

use of formal techniques to combine data from different samples. The same reasoning

that motivated Pearson for pooling studies is still one of the main rationales for conduct-

ing meta-analysis today: “Many of the groups are far too small to allow of any definite

opinion being formed at all, having regard to the size of the probable error involved.”

[181].

Meta analysis, often called evidence synthesis, is a technique for summarizing and in-

tegrating findings of related studies in order to generate a generalizable conclusion about

the effectiveness of a clinical strategy from a larger pool of data [47]. The most commonly

used clinical effects in meta-analysis include the odds ratios, risk ratios and risk differ-

ences among others. Over the past few decades, there has been a tremendous increase in

the use of meta-analysis for summarizing clinical evidence. In the light of this pervasive

use, meta analysis has now become a hallmark of evidence-based medicine [47]. Figure

5.1 shows a plot of the number of published studies on meta analysis. We searched three

publicly available databases (Pubmed, web of knowledge and Zetoc) to access the number

studies on meta analysis published by year since 1980 up till 2010 at an interval of five

years i.e. published studies in 1980, 1985 . . . 2010. These databases are the official repos-

itories for published medical studies. Figure 5.1 shows a plot of the number of published

meta analysis studies retrieved from each of these three databases by year.

Clearly, the number of papers published work on meta-analysis in the medical domain

has increased sharply in the past 30 years. More and more meta analysis studies are

published to summarize different medical effects. The benefits of meta-analysis have

been well recognized [150]:

1. Meta-analysis allows for a more objective appraisal of the clinical evidence which
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Figure 5.1: Plot showing the number of published meta-analysis studies since 1980

may reduce the uncertainty about a clinical effect;

2. Meta-analysis may reduce the probability of false negative or false positive results,

thus preventing undue delays in the introduction of effective treatments into clinical

practice;

3. Meta-analysis allows testing (a priori) of hypotheses regarding treatment effects in

the study population or subgroups thereof;

4. Meta-allows allows us to explore heterogeneity between study results which are, in

some cases, explainable;

5. In meta-analysis, promising research questions that can be addressed in future stud-

ies may be generated.

Recently, meta-analysis has also gained an increasing popularity in the Bayesian com-

munity. Many authors have addressed meta-analysis problems from the Bayesian perspec-

tive. Examples of Bayesian meta-analyses include modeling the effectiveness of statins

in preventing death after an initial myocardial Infarction [9], summarizing the incremen-

tal benefit of histamine dihydrochloride when added to interleukin-2 in treating acute

myeloid leukemia [13], modeling random effects in a meta-analysis in urinary tract infec-

tions [214], modeling heterogeneity in relation to underlying risk [226] and incorporating

external evidence on heterogeneity in a trial in cirrhosis [93].

Often the Bayesian approach to meta-analysis incorporates prior distributions which

represent subjective opinion about a treatment effect [93]. Ashby described a list of ques-

tions researchers may wish to frame that can help in the process of formulating prior
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distributions, these include [7]: “What do we think about the relative benefits of the treat-

ments before knowing the results from this trial?”; “What information can be gained from

the results of this trial?” and “Considering the results of this trial in the light of previous

understanding, what do we now think about the relative benefits of the treatments?” In

contrast, Higgins and Whitehead [93] described an approach to incorporate real data from

previous studies using Bayesian techniques. Their approach demonstrate the readiness of

the Bayesian approach for creating dynamic meta analysis models1. The work of Higgins

and Whitehead [93] has set a very good foundation for the work presented in this chapter.

This chapter demonstrates how hierarchical BNs, augmented by dynamic discretiza-

tion can bridge the methodological gaps between meta-analysis and decision analysis. It

is a common practice to use a summary estimate from a meta-analysis as an input in a

decision analytical model. Indeed, Ashby and Smith [6] argue that the cardinal focus of

evidence-based medicine is about making decisions and that the Bayesian approach is the

natural framework to adopt. Using the BN framework to solve meta-analysis problems

facilitates the use of a posterior distribution of a “summary effect” obtained from a previ-

ous meta analysis as a prior distribution in a subsequent meta analysis. More importantly,

the posterior distribution from a meta-analysis can serve as an input (prior) in a decision-

model. In addition, the chapter also describe how a meta-analysis can be conducted with

a constraint on the posterior distribution of the heterogeneity parameter thereby allowing

analysts to make a probabilistic statement about the heterogeneity parameter. Essentially,

this approach will recognize the presence of heterogeneity between studies but analyst

can decide a priori on the magnitude of the heterogeneity to be allowed in the analysis.

Dichotomous data

This section section reviews the concepts of Dichotomous data used in this chapter. Di-

chotomous data are normally presented in a 2-by-2 table where each cell contains the

number of patients in treatment or control categories (Table 5.1). Observation yT and yC

are the number of events (for instance number of deaths following a clinical interven-

tion) recorded in the treatment and the control group respectively while y
′
T and y

′
C are the

1By dynamic meta-analysis models we mean meta-analysis models that will continue to adapt by updat-
ing the summary effect when data from a new meta-analysis on the same subject arrives.
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number of non events recorded in the two groups.

Table 5.1: 2-by-2 Presentation of dichotomous data
Treatment Control

Event yT yC

No Event y
′
T y

′
C

Total nT nC

y
′
T = nT − yT , y

′
C = nC− yC

Risk ratio (RR), odd ratio (OR) and risk difference (RD)

Risk ratio (RR), odd ratio (OR) and risk difference (RD) are clinical effects commonly

used in practice to summarize the effectiveness of clinical intervention from dichotomous

data. For example, if we denote the risk and the odds of a clinical strategy by θ and

φ respectively, then the risks in the treatment and control groups are given by Equation

5.1 and Equation 5.2 respectively while the odds are respectively given by Equation 5.3

and Equation 5.4. The risk in this context may be the probability of an adverse outcome

accompanying a clinical intervention.

θT =
yT

nT
(5.1)

θC =
yC

nC
(5.2)

φT =
yT

y′T
(5.3)

φC =
yC

y′C
(5.4)

Risk ratio (RR) is simply the ratio of risk in the treatment group divided by the risk in

the control group (Equation 5.5).
θT

θC
(5.5)

The odds ratio (OR) is the odds of an event in the treatment group divided by the odds in

the control group expressed formally in Equation 5.6.

φT

φC
(5.6)

Both odds ratio and risk ratio are based on relative comparison of risks. On the other

hand, risk difference (RD) differs by comparing risks in absolute terms. This is the risk
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in the treatment group subtracted from the risk in the control group (Equation 5.7).

θT −θC (5.7)

In the clinical domain, relative risk (rather than the odds ratio) is often the parameter

of greatest interest [173]. The odds ratio, however, has interesting properties such as

symmetry and the asymptotic normality of its natural logarithm [173]. Both odd ratio and

risk ratio give the same result for a rare event [173]. A rare event is characterized by a

very low prevalence. However the odds ratio can overestimate relative risk when dealing

with a common event with high prevalence [173, 192, 235, 249].

5.2 Conventional approach to Meta Analysis

The idea of meta-analysis is to generate a combined effect by polling effects from differ-

ent studies and calculating a weighted average of the selected studies. Suppose all studies

included in a meta-analysis are equally precise then we could simply compute the average

of the effect size. However, if we believe that some studies are more precise than others

then we would assign more weight to those studies that carry more information. Vari-

ous classical statistical techniques have been developed for computing weighted means.

We can broadly categorize these techniques into two classes based on the underlying as-

sumption about the treatment effect. Two different assumptions are made in meta-analysis

giving rise to classes of models namely: fixed and random effect models.

In a fixed effect model, we assume that all studies are estimating the same effect size

and so we want to assign a weight to each of these studies based entirely on the amount

of information captured by the study. In this case, a large study would be given a higher

weight than a small study. Under this assumption, a large study may dominate the analysis

so much so that the relative impact of a small study is almost ignored [17]. By contrast the

random effects model allows the true effect to vary from study to study. In other words,

the random effect model allows the true effect size, in each study, to have a distribution

and the combined effect represents the mean of the population of true effects [17].

Theoretically, meta-analytic models are special cases of the general linear mixed-

effects model [242]. Let Si (i = 1 . . .k), be k independent studies on the same subject
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with empirical evidence yi about a treatment effect. For a fixed effect model, these obser-

vations yi are determined by the common effect µ plus the within-study error ξi. Formally,

for any observed effect yi,

yi = µ +ξi

In the fixed-effect meta-analysis, the fitted model provides an estimate of the weighted

average of the true effects in the set of k studies as follows:

∑
k
i=1 wiẏi

∑
k
i=1 wi

where

wi =
1

σ2
i

where σ2
i is the variability within studies and the variance of the combined effect

is 1
wi

. The computation of the weighted average under the fixed effect assumption is

straightforward but the challenge is how to compute the weights. Classical techniques for

fixed effect meta-analyses include the Mantel-Haenszel method [142], the Peto method

[248], general variance based methods [241] and the confidence interval methods [80,

187].

Under the random effect analysis, we can denote the true treatment effect from each

study by µi. Unlike the fixed effect model, the observations yi are determined by the study

specific effect µi plus the within-study error ξi.

yi = µi +ξi

µi = µ + ei

Therefore

yi = µ +ξi + ei

Note that the total error in the random effect model has two components, variability

within studies (σ2
i ) and variability between studies2 (τ2). Just like the fixed effect model,

the interest is also to compute a weighted mean such that the weight (w∗i ) for each study

2The value τ2 is often referred to as the “amount of heterogeneity” in the population of studies or simply
heterogeneity parameter. Hence we will use these terms interchangeably in the rest of the thesis.
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is a function of these two error components.

∑
k
i=1 w∗i ẏi

∑
k
i=1 w∗i

where

w∗i =
1

σ2
i + τ2

The question is how do we estimate the heterogeneity parameter, DerSimonian and

Laird [48] proposed a simple, non-iterative method to estimate the inter-study variance of

treatment effects.

In general, methods based on the fixed effect or random effect will yield the same

result if the studies are homogenous i.e. the variability between studies is very low (close

to zero). However, the choice of the most plausible model is challenging while dealing

with non homogenous studies. In an extreme non homogeneous situation, methods based

on the fixed effect assumption can lead to conflicting results in comparison to analysis

based on the random effect assumption on the same data [185].

Since the classical techniques make use of test statistics they require a large number to

justify the asymptotic assumption. Generally, they are not suitable for meta-analysis with

very few studies. In the clinical domain, it is very common to have meta-analyses with

less than ten studies summarizing treatment effects of interest. The validity of a result

from such meta analysis, based on the classical techniques is questionable and should be

interpreted with caution. This limitation has generated interest in the use of Bayesian

meta analysis. The next section describes the Bayesian approach to meta-analyses.

5.3 Bayesian approach to Meta Analysis

Meta-analysis is closely connected to the hierarchical Bayesian Networks described in

the preceding chapter. In essence, observations from each study are considered to be a

“unit” of analysis within a hierarchical structure. Let us revisit a BN representation of

the hierarchical model presented in Figure 3.6. To represent a meta-analysis problem in

the BN framework, we represent the observed effects yi and associated parameters θi by

nodes in a BN model. Suppose we are summarizing an effect reported as the log of odds

ratio, we can specify a normal likelihood for the effect nodes f (yi|θi) ∼ Normal(θi,s2
i )
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where s is the standard error. The basic idea in meta-analysis is the computation of a

summary estimate θ which is a weighted sum θi.

In a meta-analysis with random effect assumptions, we can treat the effect (θi) from

each study as a random quantity drawn from a population distribution with some pa-

rameters. This is based on the assumption that the underlying studies are exchangeable

[216]. It is common to assume a Gaussian distribution with parameter µ and τ for this

population. In this case, the posterior values of µ and τ are respectively the “summary

effect” and heterogeneity parameter. The heterogeneity parameter captures the variability

between the underlying studies. If the underlying studies are homogeneous, the posterior

distribution of τ should concentrate around zero. Technically, setting the posterior of τ to

zero or constraining it to peak around zero would yield a summary estimate (µ) similar to

the estimate from a model with fixed effect assumptions.

Although modeling yi with a Gaussian distribution is computationally convenient, it

may be inappropriate when summarizing outcomes that are not normally distributed. The

approach described in this thesis allows us to specify any reasonable distribution for the

summary effect. We can also model the likelihood function by using any plausible sta-

tistical distribution. Indeed, this framework supports a wider range of prior distributions

i.e. both conjugate and non conjugate prior distributions. This novel modeling approach

to meta-analysis makes use of Bayesian network models augmented by the dynamic dis-

cretization algorithm (described in chapter 3) to compute posterior marginal distributions

for the treatment effect. We apply BN models to tackle various meta-analysis problems

and demonstrate how the benefits of the Bayesian approach [219] are realized. Sutton et

al [219] summarizes these benefits as follow:

1. Unified modeling. One of the challenges in meta-analysis is the model assumption

(fixed effect or random effect). The statistical methods used to combine the study

results vary according to the model assumptions [185]. The Bayesian approach pro-

vides a unified modeling framework that allows us to model the variability between

and within trials. The posterior distribution of the τ (described earlier) in the ran-

dom effect analysis can be fixed or constrained to achieve an estimate based on a

fixed effect assumption.
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2. Borrowing strength. The exchangeability3 assumption leads to weaker studies

(such as studies that recruited too few patients in the trial) to borrow information

from the other stronger studies (such as clinical trials with many patients), leading

to a shrinkage of the estimate towards the overall mean, and a reduction in the width

of the interval estimate. However, the degree of pooling depends on the empirical

similarity of the estimates from the individual studies.

3. Allowing for parameter uncertainty. The parameters in a model may depend on

other parameters called hyper parameters. In Figure 3.6, an unobservable param-

eter θ governing the likelihood of an estimate y was treated as a random variable

depending on another parameters µ and τ .

4. Allowing for other sources of evidence. One attractive feature of the Bayesian

framework is the incorporation of prior information in the analysis. This prior can

be based on previous research or a subjective opinion of an expert. This framework

allows the use of a current meta-analysis result as prior information in a future study.

5.3.1 Empirical justification for the exchangeability assumption

The underlying assumption in Bayesian data analysis is the exchangeability assumption.

Gelman [73] declared that this assumption may be inappropriate in the face of extreme

heterogeneity. In reality, clinical studies differ at several fundamental levels including

population, measurement error and design methods among others. These are potential

sources of heterogeneity in meta-analysis data. In this study, we first explore the data for

outlying observations. This is done by plotting the graph of the posterior density of the

unknown parameter given the observations i.e. estimates of the treatment effect from each

study. Let X be the posterior density of the unknown treatment effect given the observa-

tion from a hypothetical study x and Y be the posterior density given observation from

another hypothetical study y. We have provided two possible graphs showing proximity

of the two posterior densities.

Figures 5.2(a) & 5.2(b) above show the likelihood densities of two hypothetical studies

estimating the same effect and the posterior density of the true effect. In the Figure 5.2(a),
3The term exchangeability is used to express the lack of information to distinguish the true effect of one

study from another. Although these true effect are not identical but they are not so different that it makes
sense to combine them.
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(a)

(b)

Figure 5.2: Graphs showing the likelihood densities of two hypothetical studies (X ,Y ) and the
posterior density of the combined effect

the likelihood densities of the two studies are very close but these are wide apart in Figure

5.2(b). The fundamental question here is how far apart can we allow these two densities

to be before concluding that the exchangeability assumption is questionable.

The method of probability calculation carried out in AgenaRisk aims at making the

overall risk model consistent with the assumptions made and the observations entered. If

the observations entered on two different nodes result in a very small joint probability of

occurring together (< 10−38), then we treat these observations as inconsistent with each

other [132].

Suppose we have observations xi, the estimates of a treatment effect θ , from n ex-

changeable studies. Let the posterior densities p(θ |xi) and p(θ |x j) be f (θ) and g(θ)

respectively. The Kullback-Leibler (KL) distance between these two posterior densities

is given by Equation 5.8:

D( f (θ)||g(θ)) =
∫

p(θ |xi)log
p(θ |xi)

g(θ |x j)
dθ ≥ 0 (5.8)

The KL distance between the two posterior densities p(θ |xi) and p(θ |x j) will be low
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if observations xi and x j are consistent estimates of θ . A very low KL value provides

an empirical justification for the exchangeability assumption. The KL metric will be

used later in this chapter to explore data on the prevalence of aneurysm for inconsistent

observations.

5.3.2 Application of HRBN to meta analysis

This section builds on the methodological steps described earlier and applies a hierarchi-

cal BN model to a meta-analysis problem. Let us extend Table 5.1 so that it allows entries

for more than one study. These entries can be indexed by i = 1, . . .n (i.e. the index of the

studies that produced them). For each study i, the observation yTi and yCi are the number

of events recorded in the treatment and the control group respectively while y
′
Ti and y

′
Ci

represent the number of non events recorded in the two groups. Hence the OR for the ith

study is given by Equation 5.9.

ORi =
θTi(1−θCi)

θCi(1−θTi)
(5.9)

Suppose y1 and y2 are two observations about a treatment effect from two exchange-

able studies S1 and S2. Let us assume that y1 and y2 are normally distributed random

variables. The Bayesian model for meta-analysis, as described by DuMouchel, [53] is of

the form yi ∼ Normal(µ, [σ2
i + τ2]), where σ2

i is the estimate of the variance of the ith

study and τ is a measure of variabilities between studies. The fixed effect meta-analysis

assumes that τ = 0. The posterior mean (E(µ|y1,y2)), based on the fixed effect assump-

tion is given as Equation 5.10 with variance given as Equation 5.11.

E(µ|y1,y2) =
σ2

2
(σ2

1 +σ2
2 )

y1 +
σ2

1
(σ2

1 +σ2
2 )

y2 (5.10)

σ
2
µ =

σ2
1 σ2

2
σ2

1 +σ2
2

(5.11)

On the other hand, the random effect analysis provides an estimate for τ and used this

value in estimating a posterior distribution of µ and study specific treatment effect θi. The

posterior mean E(µ|y1,y2,τ), based on the random effect is given as Equation 5.12 with

variance given as Equation 5.13.
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E(µ|y1,y2,τ) =
τ2 +σ2

2
(τ2 +σ2

1 )+(τ2 +σ2
2 )

y1 +
τ2 +σ2

1
(τ2 +σ2

1 )+(τ2 +σ2
2 )

y2 (5.12)

σ
2
µ|τ =

(τ2 +σ2
1 )(τ

2 +σ2
2 )

(τ2 +σ2
1 )+(τ2 +σ2

2 )
(5.13)

Let y1 = 10 and y2 = 60 with sampling variances σ2
1 = 20 and σ2

2 = 40. If we assume

that τ = 0, then from Equations 5.10 and 5.11, the posterior mean and variance based on

the fixed effect assumption can be calculated analytically as 27 and σ2
µ = 13. Suppose we

use τ = 10, then the posterior mean and variance based on the random effect assumption

can be computed from Equations 5.12 and 5.13 as 33 and 70 respectively. Using the

Dynamic discretization algorithm makes it possible to solve this problem with a Bayesian

network model. Figure 5.3 shows the posterior distributions of the summary effect µ

based on the fixed and random effect assumptions. The posterior mean and variance

obtained from the BN based on the fixed effect assumption are respectively E(µ|y1,y2) =

27 and σ2
µ = 15. From the BN model based on the random effect assumption, we obtained

a posterior mean E(µ|y1,y2,τ = 10) = 33 and variance σ2
µ|τ = 65.

Figure 5.3: Posterior densities of the combined treatment effect based on fixed effect (µ|y1,y2)
and random effect (µ|y1,y2,τ = 10)
.

The rest of this chapter presents different applications of this new approach to practical

meta-analysis problems. Each of the meta-analysis problems serves a specific purpose.
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The Beta-blocker clinical example is intended to compare the results the BN approach

with those from a previous analysis using MCMC simulation. The goals of the second

example (Magnesium trial) is to show that the BN approach allows us to do something

that the conventional approaches cannot do. The BN approach allows us to constrain

the posterior distribution of the heterogeneity parameter τ and then perform inference,

subject to this constraint. The third example demonstrates the use of a BN model to

summarize data from a non-experimental design. The prevalence of aneurysm data shows

wide variability, therefore we use the KL metric, describe earlier, to explore the data for

extreme heterogeneity.

5.4 Beta-blockers clinical trials

Heart failure is one of the conditions that carry a high burden of mortality and morbidity

[143]. A great deal of research effort has been devoted into developing potent and effec-

tive drugs to alleviate the problem of heart failure condition, and is still an active research

area. The beta-blockers4 treatment was introduced a few decades ago for heart failure

and since then several randomized trials have been conducted of their effectiveness. One

systematic review conducted by Marcelo et al. [143] identified 22 randomized controlled

trials with a total of 10480 patients and an average of 11 months of treatment. They ex-

cluded studies with severe heart failure and used the classical fixed effect and random

effect model to summarize the effectiveness of beta-blockers.

In this section, we will describe HRBN models to summarize the effectiveness of the

beta-blockers treatment based on the same data [143]. Hence, the scope of this work does

not cover the systematic approach employed by Marcelo et al. [143] to select the studies.

The focus is to use a BN model to summarize data from existing meta-analysis study

and compare our result, based on the dynamic discretization algorithm, with estimates

produced using Gibbs sampling technique.

5.4.1 Data from a meta-analysis on Beta-Blocker conducted by Marcelo et al. [143]

The meta-analysis study conducted by Marcelo et al. [143] synthesized evidence from 22

studies. The empirical evidence on mortality after myocardia infarction (heart attack) in
4 A family of drugs that affect the central nervous system and can relax the heart muscle
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these 22 exchangeable trials is presented in Table 5.2. In each trial, heart attack patients

were randomly allocated to receive (treatment group) or not receive (control group) the

beta-blockers treatment. The raw data from the study are yTi, nTi, yCi nCi, where nCi and

nTi are respectively number of subjects in the control and treatment groups giving rise to

yCi and yTi deaths respectively for the ith study.

Table 5.2: Effects of beta-blockers from 22 clinical Trials, extracted from Table 5.4 of [73]
Study i nCi yCi nTi yTi

1 39 3 38 3
2 116 14 114 7
3 93 11 69 5
4 1520 127 1533 102
5 365 27 355 28
6 52 6 59 4
7 939 152 945 98
8 471 48 632 60
9 282 37 278 25

10 1921 188 1916 138
11 583 52 873 64
12 266 47 263 45
13 293 16 291 9
14 883 45 858 57
15 147 31 154 25
16 213 38 207 33
17 122 12 251 28
18 154 6 151 8
19 134 3 174 6
20 218 40 209 32
21 364 43 391 27
22 674 39 680 22

Suppose we are interested in summarizing the log odd ratio ÔRi of the treatment effect.

Various methods have been described for estimating the odds ratio from data (see [172] for

a detailed discussion). In this example, we can use the method based on the empirical logit

to compute a point estimate and standard error for ÔRi. For each study i, one can estimate

ÔRi by its point estimator yi given in Equation 5.14 and variance given by Equation 5.15.

yi = log(yTi)+ log(y
′
Ti)− log(y

′
Ci)− log(yCi) (5.14)

σ
2
i =

1
yTi

+
1

y′Ti
+

1
yCi

+
1

y′Ci
(5.15)
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Table 5.3 shows the estimate (yi) and variance σ2
i for the 22 studies.

Table 5.3: Effects of beta-blockers from 22 clinical Trials, extracted from Table 5.4 of [73]
Study i Effect yi sd (σi) var (σ2

i )
1 0.028 0.850 0.723
2 -0.741 0.483 0.233
3 -0.541 0.565 0.319
4 -0.246 0.138 0.019
5 0.069 0.281 0.079
6 -0.584 0.676 0.457
7 -0.512 0.139 0.019
8 -0.079 0.204 0.042
9 -0.424 0.274 0.075

10 -0.335 0.117 0.014
11 -0.213 0.195 0.038
12 -0.039 0.229 0.052
13 -0.593 0.425 0.181
14 0.282 0.205 0.042
15 -0.321 0.298 0.089
16 -0.135 0.261 0.068
17 0.141 0.364 0.132
18 0.322 0.553 0.306
19 0.444 0.717 0.514
20 -0.218 0.260 0.068
21 -0.591 0.257 0.066
22 -0.608 0.272 0.074

The estimates yi are treated as normally distributed observations with mean ÔRi and

variances (σ2
i ). The values for yi and σ2

i are indicated in Table 5.3. The normal likelihood

models for the observations yi is given by Equation 5.16. This is the “observation level”

of a hierarchical model.

y j|ÔRi,σ
2
i ∼ N(ÔRi,σ

2
i ) (5.16)

At the second level of the hierarchy, we can specify an exchangeable normal prior dis-

tribution with mean µ and variance τ for ÔRi. Therefore, µ and τ are the hyper parameters

in the hierarchical model (Equation 5.17).

ÔRi ∼ N(µ,τ) (5.17)

Let us consider two set of non-informative priors. Firstly, we can specify a uniform

distribution for the hyperparameters i.e. µ ∼U(−10,10) and τ ∼U(0,1000). The HRBN
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model in Figure 5.4, obtained from the AgenaRisk software [131] is based dynamic dis-

cretization with 50 iterations.
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Figure 5.4: Hierachical BN model for Beta-Blocker Trial

Table 5.4 shows the summary statistics for the posterior distributions of the com-

bined effect (µ) , heterogeneity parameter (τ) and a predicted effect of a future study

(y23|y1, . . .y22). These results compare favorably with those achieved using Gibbs Sam-



5.4. Beta-blockers clinical trials 124

pling approximation in [73] (estimates produced using Gibbs sampling in parenthesis).

Table 5.4: Summary of posterior inference of beta-blockers
Posterior quantiles

Parameter 2.5% 25% Median 75% 97.5%

Mean (µ)
−0.38 −0.29 −0.24 −0.20 −0.10

(−0.37) (−0.29) (−0.25) (−0.20) (−0.11)

Variance (τ)
0.002 0.015 0.001 0.053 0.134

(4x10−4) (6.4x10−3) (0.0169) (0.0324) (0.0961)

Predicted Effect
−0.68 −0.36 −0.25 −0.13 0.20

(−0.58) (−0.34) (−0.25) (−0.17) (0.11)

The second non-informative prior distribution assumes truncated normal distributions

for the hyper parameters. Both µ and τ have truncated normal distributions with mean

0 and variance (109). Formally, µ ∼ N(0,109) and τ ∼ N(0,109) where µ and τ are

bounded by the intervals (µ ∈ [−10,10] and τ ∈ [0,10]). The posterior distributions

for all parameters are identical to those obtained using the uniform distributions (non-

informative).

In this analysis, we have also identified a significant effect (odds ratio) for the beta-

blocker treatment suggesting that the treatment was effective. That is, the rate of mortality

following heart failure condition was higher in the control group than those who received

the beta-blocker treatment. The good thing in this analysis is that we are able to express

different prior beliefs on the treatment effect even before the analysis, these can be subjec-

tive or empirical. We have demonstrated this with two theoretical non-informative prior

distributions for lack of information. Also, the result from this analysis can be used to

formulate an informative prior distribution in a future meta-analysis study to summarize

the effect of beta-blocker treatment.

In terms of comparing our approach, using HBNs and DD, against Gibb’s sampling

this analysis has shown confirmation that, when the same prior distributions are used

very similar results for parameter distributions are provided by both analyses. Thus our

new method is as reliable as the Gibb’s sampling method. Furthermore the flexibility

of changing the priors to non-conjugate values has been illustrated, something that the

Gibb’s approach cannot accommodate. However one weakness of our technique is that

the variances on the estimates appear to be larger under our approach than Gibb’s: whether

this is a systematic or a local issue needs further investigation.
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5.5 Magnesium trials in myocardial infarction

The relevance of magnesium to both the incidence and the management of ischaemic

heart disease has been well studied [76, 127, 224, 243]. A study of the geographical

comparisons of some regions in South Africa conducted by Leary et al showed that death

rates from ischaemic heart disease tend to be higher where magnesium concentrations in

soil and water are low [127]. Also a case-control study showed that the concentration of

magnesium tends to be lower in those who die of ischaemic heart disease than in those

who die of other causes [55]. A research has shown that several actions of the magnesium

ion could contribute towards some cardioprotective effects [243]. In a study conducted

by Chang et al [27], magnesium has been shown to limit infarct size in dogs. Ghani and

Rabah [76] showed that an infusion of magnesium in animal increases the threshold for

electrical excitation of myocardial cells, thereby reducing the likelihood that a current

will create a damage near the ischaemic or infarcted tissue [224].

There has been a debate in the literature regarding the benefits of magnesium in pa-

tients with acute myocardial infarctions. This is due to the conflicting results from meta-

analysis and mega trial to investigate the benefit of magnesium after myocardial infarc-

tion. While the initial meta-analysis conducted by Teo et al [224] reported a significant

treatment effect on the use of magnesium following myocardial infarctions, a multi-center

mega trial conducted by ISIS-4 collaborative Group [82] reported a non significant result.

Our interest is not to join or extend this debate but to use a Bayesian network model for

summarizing treatment of magnesium on patients with myocardial infarctions.

This analysis was motivated by the work of Higgins and Spiegelhalter [94] on the same

subject. Higgins and Spiegelhalter [94] used the Bayesian approach to summarize data

[218] from 15 randomized trials of intravenous magnesium for acute myocardial infarc-

tion conducted. They show how scepticism can be formally incorporated into an analysis

as a Bayesian prior distribution. They also show how Bayesian meta-analysis models al-

low appropriate exploration of different hypotheses about the treatment. In particular they

explore an hypothesis that a treatment effect depends on the size of the trial or on the risk

in the control group.

Our main goal is to investigate how Bayesian network can be used to summarize

treatment effects of intravenous magnesium for acute myocardial infarction. In particular
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we want to address a question “how might a BN model for meta-analysis be used to make

a probabilistic statement about the distribution of heterogeneity parameter τ?”

5.5.1 Summary of data on magnesium trials in myocardial infarction

The section presents data (Table 5.5) from 15 randomized trials of intravenous magne-

sium for acute myocardial infarction. This data consists of published evidence selected in

two meta-analysis studies and data from two mega-trial. The first seven studies in Table

5.5 are those included in the meta-analysis conducted by Teo et al [224] in 1991. This

meta-analysis reported a 55% reduction in odds of mortality. The second Leicester Intra-

venous Magnesium Intervention Trial (LIMIT-2) [244] is a large trial conducted in 1992

which also reported a 24% reduction in mortality. An updated meta-analysis conducted

in 1995 by Teo et al [224] identified five additional studies on this subject in addition to a

mega-trial conducted by ISIS-4 [82]. However, this mega-trial reported a non significant

treatment effect for intravenous magnesium following myocardial infarction.

Table 5.5: Summary data from 15 randomized trials of intravenous magnesium for acute myocar-
dial infarction (data from Sterne et al. [218])

treatment Control Estimate from Data
Study identifier nTi yTi nCi yCi yi σ2

i
Morton (1) 40 1 36 2 -0.8303 1.5551
Rasmussen (2) 145 9 135 23 -1.1324 0.1709
Smith (3) 200 2 200 7 -1.2783 0.6531
Abraham (4) 48 1 46 1 -0.0435 2.0435
Feldstedt (5) 150 10 148 8 0.22311 0.2393
Shechter 1990 (6) 59 1 56 9 -2.4075 1.1496
Ceremuzynski (7) 25 1 23 3 -1.2809 1.425
LIMIT-2 (8) 1159 90 1157 118 -0.2993 0.0215
Bertschat (9) 22 1 21 2 -0.7932 1.6003
Singh (10) 76 6 75 11 -0.6957 0.2875
Pereira (11) 27 1 27 7 -2.2083 1.2313
Golf (12) 23 5 33 13 -0.8502 0.3825
Thogersen (13) 130 4 122 8 -0.7932 0.3917
Shechter 1995 (14) 107 4 108 17 -1.5708 0.3295
ISIS-4 (15) 29011 2216 29039 2103 0.05761 0.0012

The observations nTi, yTi , nCi , yCi and the estimates yi and σ2
i are as described in

the previous section. Unlike the Beta-blockers clinical trial example where there is no

study with substantially higher number of patients than others, both LIMIT-2 and ISIS-4

have considerably higher number of patients than the rest. Therefore, it is reasonable to
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explore the data for the validity of the exchangeability assumption. We will now follow

our methodological steps described earlier to explore the data and empirically assess if all

the observations are indeed combinable.

In this example, we will use the plots of likelihood densities to check if observations

from a study is inconsistent with those from other studies. A normal likelihood density

was assumed for the estimate y j|ÔRi,σ
2
i ∼N(ÔRi,σ

2
i ) and uniform prior for the treatment

effect (log odd ratio) ÔRi ∼ N(−10,10). We consider visualizing the posterior density of

the true effect of each group. For each study i, we obtained the density f (ÔRi|yi) as shown

in the Figure 5.5.

(a) All studies included the meta analysis

(b) excluding ISIS-4 and LIMIT-2

(c) Two large studies (ISIS-4 and LIMIT-2)

Figure 5.5: Exploratory analysis of the data from the Magnesium trial.
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The likelihood graphs of the treatment effect, for all studies, concentrate on the left

of 1 with many of them overlapping with each other. However, the densities of the two

large studies have slightly different shapes compared to the rest of the studies. Therefore,

it is not surprising that [94] found evidence of dependence of treatment effect on the size

of the study. Let us now proceed by using the fixed effect assumption to summarize the

effect of intravenous magnesium for acute myocardial infarction.

5.5.2 Fixed effect Model

The fixed effect model corresponds to the assumption that all underlying treatment effects

are identical such that σ2
i = σ2 [94]. That is, a common odds ratio underlies each and

every trial. We can use the usual normal likelihood function for the estimate yi and a

uniform prior distribution for the common effect as given below:

y j ∼ N(ÔR,σ2
i )

ÔR∼U(−10,10)

The BN model showing the posterior distribution for the combined effect based on the

fixed effect assumption is presented in Figure 5.6.

We compare our result with the Peto method [248], a conventional fixed effect ap-

proach. Table 5.6 shows the result obtained from the BN model and those from the Peto’s

method. The BN Result presented here was based on the dynamic discretization algorithm

with 40 iterations.

Table 5.6: Summary of the Combined effects based on Fixed effect
Estimand Peto Method BN Result
ÔR (log scale) 0.02 0.02
var(ÔR) (log scale) 0.031 0.035
expÔR 1.02 1.02

In practice, prior information may be available (for instance) from previous analysis

or even subjective views of experts. It is reasonable to incorporate the existing knowledge

in the analysis (if available). Let us now revisit the magnesium trials example by incorpo-

rating prior information by grouping the data into two subgroups similar to the grouping

made by Higgins and Spiegelhalter [94]. The first group consists of the first eight trials
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Figure 5.6: Posterior distribution of the common effect (Fixed effect model)

in Table 5.5 corresponding to seven studies included in the 1991 meta-analysis conducted

by Teo et al. [224] and the LIMIT-2 trial [244]. The remaining seven trials consisting of

six additional studies that were identified in the updated meta-analysis and the result of

the ISIS-4 mega trial. We can summarize the data in each of these groups using the BN

modeling approach. Also, we can leverage on the capability of the BN framework to use

the posterior distribution of the 1991 meta analysis as a prior distribution in the 1995 meta

analysis. The posterior distributions of the summary effect from these three analyses are

shown in Figure 5.7.

Clearly, the posterior distributions of the summary effect for these subgroup lead to

conflicting conclusions. The posterior density of the summary effect for the first group

concentrates on the left of “1” (odd ratio) thereby suggesting a significant treatment effect.

Whereas, the posterior distribution of the summary effect for the second group includes

“1” (odd ratio) suggesting a non significant treatment effect. More so, using the posterior

distribution of the first group as the prior in the second group does not affect the conclu-

sion i.e. a non significant treatment effect. Table 5.7 shows the posterior means for each

group.



5.5. Magnesium trials in myocardial infarction 130

Figure 5.7: Posterior distributions of true effect based on a) 1991 data analysis b) additional data
found in 1995 and c) additional data found in 1995 with result of 1991 analysis as the prior

Table 5.7: Statistics of true effect based on data 1991 and 1995
Estimand Group 1 (1991) Group 2 (1995) Group 2 (1991 Prior)
ÔR 0.662 1.04 1.02
var(ÔR) 0.0081 0.0015 0.0012

5.5.3 Random effect Model

Unlike the fixed effect model, the random effect assumption incorporates study specific

variance of the treatment effect, i.e. a treatment effect can vary between the studies. The

model is formalized as follows:

y j ∼ N(ÔRi,σ
2
i )

ÔRi ∼ N(µ,τ2)

µ ∼ U(−100,100)

We considered two set of non informative prior distributions for parameter τ . We

can assume a uniform prior distribution on τ (τ2 ∼U(0,100000)), this is similar to the

approach adopted in Julian et al. [94]. Also, we can use the inverse gamma distribution

(i.e. the conjugate prior) to express the prior τ2 ∼ invGamma(0.001,1000). The HRBN

models for this problem is shown in Figure 5.8.
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Figure 5.8: Posterior distribution of the common effect (Random effect model)

Table 5.8 shows the posterior means of summary effect based on the two prior as-

sumptions.

Table 5.8: Summary of the Combined effects based on Random effect
Prior Distribution

Estimand Uniform Inverse Gamma
µ 0.48 0.52
τ 0.227 0.056

With the random effect assumption, the posterior distribution of the summary effect

suggest a non significant treatment effect. This conclusion conflicts with the result ob-

tained in Section 5.5.2. This is a classical example of meta-analysis problem that echoes

the dichotomy between the two opposing philosophies of meta-analysis. Thus, a compro-
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mise has to be made in the analysis. What if we are able to adjust the level of variabilities

that we are willing to accommodate in our analysis? The BN modeling approach allows

an analyst to carry out an inference with a constrained parameter. We will repeat this

analysis in the next section with different constraints on the heterogeneity parameter (τ).

5.5.4 Analysis with a constrained τ

Although the summary effect in meta-analysis is often the parameter of interest, the reli-

ability of such an estimate depends on the posterior value of the heterogeneity parameter

(τ). While summarizing clinical evidence, analysts might decide a-priori on a thresh-

old γ for τ . Such analysis would be a true compromise between the fixed effect that

assumes homogeneity of studies and the random effect that recognizes heterogeneity in

data. Analyzing meta-analysis with a constraint on the heterogeneity parameter implies

that analyst can make a probabilistic statement such as “there is 0.5% probability that

τ < γ i.e. p(τ < γ) = 0.005”. Therefore, the computation of the summary estimate is

then conditional on such constraints. This section describes how we can achieve this in

the BN framework.

Using the HBNs and dynamic discretization we can, very easily, introduce a constraint

on the posterior density of the heterogeneity parameter. Theoretically, setting the value of

τ = 0 implies that the treatment effect is constant between studies i.e. a fixed effect. The

random effect, on the other hand allows τ to assume any positive value. With a low value

of τ , studies can “borrow strength” from each other thereby shifting the posterior means

of all the studies towards the posterior mean of the parameter. DuMouchel [53] suggested

computation of the posterior means of the summary effect conditional on τ , and plot them

as functions of τ , for τ varying in (0; 2). However, constraining the posterior distribution

of τ and performing conditional inference is a more plausible assumption. Let us now

revisit the random effect analysis of the magnesium trial in Section 5.5.3 by specifying

the constraints in Table 5.9 on the heterogeneity parameter.

Figures 5.9(a) and 5.9(b) respectively show the graph of posterior statistics (Mean,

Median, Lower and Upper quartile) of densities p(µ|y1, . . .yn,τ) and p(µ
′|y1, . . .yn,τ)

obtained with τ ≤ γ for different values of γ as shown in Table 5.9.
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Table 5.9: Constraints introduced on the heterogeneity parameter
Index (i) γ

1 0.00005
2 0.0005
3 0.005
4 0.05
5 0.5
6 1
7 1.5
8 2
9 2.5
10 3
11 3.5
12 50
13 500
14 1000
15 5000

(a) µ(logOR)

(b) µ
′
(OR)

Figure 5.9: Posterior means conditional on the constraints on τ

It is obvious from Figure 5.9 that setting a very low value for τ gives a nonsignificant

result whereas higher values of τ will lead to a significant result. Analysts can decide
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before the analysis on the size of heterogeneity to be allowed in the analysis and used the

value as a cutoff threshold forτ . The resulting posterior distribution for summary effect,

conditional on this cutoff point can be taken as the summary effect. Similar to a prior

probability, the choice of the cutoff can be a subject point or an empirical estimate from a

previous analysis.

5.6 The prevalence of intracranial saccular aneurysms

Intracranial saccular aneurysms is a cerebrovascular disorder in which weakness in the

wall of a cerebral artery or vein causes a localized dilation of the blood vessel. It is

sometimes referred to as cerebral or brain aneurysms. Research has shown that between

3.6 to 6% of the population harbour an unruptured intracranial aneurysm, [237] and many

people with brain aneurysms are usually unaware of their presence. The risk factors for

the formation of brain aneurysms include a family history of aneurysm and inherited

disorders, age greater than 50 years, female gender, behavioral factors such as smoking

and cocaine use [29].

Rinkel, et al’s. [190] conducted a systematic review of data on the prevalence of in-

tracranial aneurysms. They classified the data according to study design, diagnostic meth-

ods and study. This review includes studies involving two different diagnostic techniques

(Autopsy or angiography techniques) and different designs (retrospectively or prospec-

tively). This section describes different BN models to summarize the prevalence of intra-

cranial using the data for a systematic review conducted by Rinkel, et al’s. [190] (Table

5.10).

5.7 Data from a meta-analysis on the prevalence of intracranial

saccular aneurysms [190]

So far we have been summarizing treatment effects reported in 2-by-2 tables. In practice,

it often the case to have meta analysis data without the control group. Table 5.10 shows

the data from the systematic review of prevalence of intracranial saccular aneurysm.
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Table 5.10: Prevalence of aneurysms (Rinkel, et al’s. [190])
Studies Method Design nTi yTi

Housepian-1958 À R 8663 14
McCormick-1965 À R 13058 26
Romy-1973 À R 11696 67
Inagawa-1990 À R 10259 84
Cohen-1955 À P 580 9
Chason-1958 À P 2731 80
Stehbens-1963 À P 1013 43
McCormick-1970 À P 1619 82
du Boulay-1965 Á R 161 0
Jakubowski-1978 Á R 183 11
Wakai-1979 Á R 95 7
Atkinson-1989 Á R 278 3
Ujile-1993 Á R 1612 44
Sugai-1994 Á R 605 43
Wakabayeshi-1983 Á P 17 7
Iwata-1991 Á P 72 4
Chapman-1992 Á P 92 4
Nagashima-1993 Á P 2540 127
Nakagawa-1994 Á P 400 26
Ruggieri-1994 Á P 93 10
Leblanc-1995 Á P 41 1
Ronkainen-1995 Á P 396 37
Griffifths-1996 Á P 100 9

aMethod: Á=Angiographic Study and À= Autopsy study
bDesign: R=retrospective and P for prospective design.
cnTi=Total number of patients investigated in the ith study;
dyTi=number of patients with aneurysms in the ith study

5.7.1 Exploring the data for heterogeneity

Rinkel, et al[190] identified various sources of heterogeneity in data on the prevalence

of aneurysm . Specifically, variation exists between data from autopsy studies and those

from angiographies studies. Likewise, data obtained from prospective study vary from

those obtained retrospectively. With all these sources of heterogeneity, it is important to

examine the degree of variations between these studies before combining them.

Assuming a binomial likelihood function for the observed number of patients with

aneurysm (yTi) from the nTi patients in the ith study. We can use each of these studies

to provide a partial inference about the summary estimate of the prevalence of aneurysm

θ . A plot of the posterior densities of (θ |yi) and (θ |y j) shows the level of consistency

expected by combining observations yi and y j. We can visually inspect the degree to

which these densities (θ |yi) and (θ |y j) overlap with each other. For instance Figure
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5.10(a) shows the posterior densities of Jakubowski 1978 & that of Nakagawa 1994.

(a) Jakubowski 1978 & Nakagawa 1994 (b) Jakubowski 1978 & Romy 1973

Figure 5.10: Visual display showing the degree of overlap between two posterior densities

In Figure 5.10(a), the posterior density of Jakubowski 1978 overlaps greatly with Nak-

agawa 1994 but poorly with the posterior density of Romy 1973. Also, the study from du

Boulay 1965 does not to overlap with 7 other studies as shown in Figure 5.11.

(a) Wakai 1979 (b) Ujije 1993 (c) Sugai 1994 (d) Nakagawa 1994

(e) Rugeri 1994 (f) Ronkainen 1995 (g) Wakabayeshi 1983

Figure 5.11: Posterior densities from du Boulay 1965 and other studies.

Clearly, the data from the study conducted by Wakabayeshi 1983 is the least consistent

with those from du Boulay 1965. Figure 5.12 compares the data from Jakubowski 1978

with nine least consistent studies.

The study from Housepain 1958 has a relatively higher number of patients (13058)

than other studies. The data from this study appears to be inconsistent with empirical

observations from 16 other studies.

Although the density plots reveal potentially inconsistent studies, they do not quan-
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(a) Cohen 1955 (b) McCormick 1965 (c) Atkinson 1989 (d) ujije 1993

(e) Romy 1973 (f) Inagawa 1990 (g) Nagashima 1993 (h) Housepain 1958

(i) Wakabayeshi 1983

Figure 5.12: Posterior densities from du Jakubowski 1978 and other studies.

tify the degree of inconsistency between any two densities. We propose the use of the

KL-distance (KL( f (x)||g(x))) to measure the degree of inconsistency between any two

studies. We consider f (x) as a partial inference about θ given observation from study

i (θ |yi) and g(x) as another posterior inference about θ given observation from another

study j. We then compute the KL-distance between these two partial posterior distribu-

tions of θ i.e. θ |yi and θ |y j as shown in Table 5.11.
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From Table 5.11, it is obvious that both Housepain 1958 and McCormick 1965 seem to

be inconsistent with many other studies because they consistently have higher KL-values

with other studies. Although discarding a study on the account of heterogeneity is not

a good practice in meta-analysis, however, the joint probability approaches zero with an

inconsistent observation (yi). The AgenaRisk software adopts a lower limit of (≤ 10−38)

for the joint probability and so any observation that results in a joint probability below

this threshold is flagged as an inconsistent evidence.

5.7.2 Summary Estimate of the prevalence of Aneurysms: Fixed effect assumption

The summary estimate in this analysis is the prevalence of aneurysm in the population

using a hierarchical model that follows.

yTi ∼ Bin(nTi,θ)

θ ∼ Beta(α,β )

α ∼ U(1,9999999)
β ∼ U(1,9999999)

A BN representation of this model is presented in Figure 5.13 with observation yTi

represented as evidence nodes.
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Figure 5.13: Fixed effect model for prevalence of intra-cranial aneurysms

The computation mechanism in AgenaRisk flags the observations from Housepain

1958 and McCormick 1965 as inconsistent observations, therefore, these two observations

were not entered as evidence on their corresponding nodes.

Table 5.12 shows the summary statistics for parameters θ and a future study yn+1|y1, · · ·yn.

Table 5.12: Summary result of prevalence of intracranial aneurysm based on fixed effect assump-
tion (excluding evidence from Housepain 1958 and McCormick 1965)

Parameter mean sd 5% 95%
α 127 46 42 192
β 6665 2356 2231 8659
θ 0.019 5.90E-4 0.018 0.020
postpred (yn+1|y1 · · ·yn,θ) 0.018798 0.005485 0.01439 0.02348

Since we cannot discard data from a study on the basis of extreme heterogeneity and

the current implementation of the dynamic discretization algorithm in AgenaRisk could

not sample a posterior distribution when the joint probability is lower than 10−38, there-

fore, we repeat the analysis using the MCMC approximation technique. The MCMC
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Table 5.13: Summary result of prevalence of intracranial aneurysm based on fixed effect assump-
tion

Parameter mean sd 5% 95%
θ 0.0202 7.56E-4 0.019 0.021
postpred 0.0204 0.002864 0.016 0.025

technique is able to accommodate data from all the studies including empirical data from

Housepain 1958 and McCormick 1965 that were discarded in the previous analysis. In

essence, there is a need for future works on the algorithm so that the dynamic discretiza-

tion can be robust enough to handle cases when the joint probability of the parameter and

the data is less than 10−38. The posterior density of the parameters and their correspond-

ing trace plot after 100,000 iteration with 50,000 burn-in sample are presented in Figure

5.14.

(a) Posterior density of θ

(b) Posterior Predicted

Figure 5.14: Fixed Effect Model parameter from Winbugs

Table 5.13 shows the summary statistics of the summary effect based on the fixed

effect assumption.

5.7.3 Summary Estimate of the prevalence of Aneurysms: Random effect assumption

The basic sampling model is assumed to have the following form:
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yTi ∼ Bin(nTi,θi)

Two different models corresponding to different assumptions about the distribution of

θi are considered. In the first analysis, we assume that θi ∼ Normal(µ,τ)[0,1]. This is a

truncated normal distribution whose value is defined in the range [0,1].

The second model treats θi as a random variable from beta distribution with parame-

ters α and β i.e. θi ∼ Beta(α,β ). In both cases, the posterior distribution of the hyper

parameter can be used for prediction. Therefore, we can predict a hypothetical future

study yn+1 labeled “PostPred”. The posterior distributions of the “Posterior Prediction”

based on these two models are overlayed in Figure 5.15.

Figure 5.15: Posterior predictive effect from the two models a) θi is assumed to be normally
distributed and b) θi is assumed to have beta distribution

Table 5.14 presents the estimate of the posterior distribution of “PostPred” obtained

from these two models.

Table 5.14: Posterior prediction of prevalence
Model Mean Median Variance 5% 95%
Normal 0.055047 0.046552 0.0017626 0.0046765 0.13444
Beta 0.049360 0.033605 0.0026786 0.0025509 0.14775

In this analysis, using two different prior distributions for the hyper-parameters does

not drastically change posterior predictive results. But this may not always the case as
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the choice of the prior can affect the posterior result. A good practice is to conduct a

sensitivity analysis of the posterior results to the prior assumptions.

In the analysis with the random effect assumption, the estimates of study specific

parameters shrink towards the estimate of the “combined effect”. This is because hierar-

chical BN models allow parameters to borrow strength from each other [219]. Therefore,

the random effect analysis is able to incorporate the observations from Housepain 1958

and McCormick 1965 which were rejected in the fixed effect model. Table 5.15 shows

the posterior summary statistics of study specific parameters.

Table 5.15: Posterior Summary of study specific prevalence
Studies Mean Median 5% 95%
Housepian-1958 0.0017 0.0017 0.0011 0.0025
McCormick-1965 0.0021 0.0020 0.0015 0.0028
Romy-1973 0.0058 0.0058 0.0047 0.0070
Inagawa-1990 0.0083 0.0083 0.0069 0.0098
Cohen-1955 0.0172 0.0167 0.0094 0.0269
Chason-1958 0.0296 0.0295 0.0244 0.0352
Stehbens-1963 0.0430 0.0427 0.0331 0.0539
McCormick-1970 0.0509 0.0507 0.0422 0.0601
du Boulay-1965 0.0074 0.0056 0.0005 0.0207
Jakubowski-1978 0.0604 0.0592 0.0360 0.0894
Wakai-1979 0.0704 0.0683 0.0373 0.1106
Atkinson-1989 0.0131 0.0119 0.0034 0.0268
Ujile-1993 0.0278 0.0276 0.0214 0.0349
Sugai-1994 0.0706 0.0702 0.0546 0.0881
Wakabayeshi-1983 0.1516 0.1459 0.0826 0.2398
Iwata-1991 0.0572 0.0545 0.0244 0.0989
Chapman-1992 0.0478 0.0454 0.0201 0.0835
Nagashima-1993 0.0502 0.0501 0.0432 0.0575
Nakagawa-1994 0.0648 0.0642 0.0465 0.0854
Ruggieri-1994 0.0937 0.0917 0.0557 0.1386
Leblanc-1995 0.0381 0.0338 0.0079 0.0832
Ronkainen-1995 0.0906 0.0900 0.0690 0.1143
Griffifths-1996 0.0823 0.0803 0.0473 0.1239

Let us now visualize these posterior means by plotting the mean and the credible

intervals shown in Figure 5.16.

Figure 5.16 shows that the credible interval for the treatment effects based on nor-

mal and beta prior distributions cover the credible interval for the study specific treat-

ment effects. Some studies have wider credible interval than others because they involve

relatively smaller number of patients. In particular, the credible interval for the study,

Wakabayeshi-1983 is wider than the rest and is not fully enclosed within the 95% credi-
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Figure 5.16: Posterior means and lower and upper quartiles.

ble interval of the summary effects.

5.7.4 Fixed parameters for retrospective and prospective studies

Rather than assuming different parameters for all studies, we can assume a fixed param-

eter for all studies with identical experimental design. In essence, the studies conducted

retrospectively have a fixed parameter say θ1 while those conducted prospectively have a

different fixed parameter (θ2). Then, θ1 and θ2 are exchangeable. The study designs are

indexed by i = 1 . . .2 retrospective and prospective studies. Let the number of patients

xi j with aneurysm in the jth study and ith design follow a binomial distribution with pa-

rameter Ni and θi. Formally, xi j ∼ Bin(Ni j,θi) where i = 1,2 and j = 1 . . .ni, ni being

the number of studies in the ith design. The random part of this model treats the param-

eters θi as random parameters from a beta population with parameters α and β such that

θi) ∼ Beta(α,β ). The hyper parameters α and β are then assigned a non informative

prior with uniform distribution α,β ∼U(1,9999). The resulting HRBN model obtained

in AgenaRisk with 40 iterations is presented figure 5.17

5.7.5 Fixed parameters for autopsy and angiography

By slightly modifying the model presented earlier, we can now assume new parameters θ
′
i

and θ
′
1 representing respectively the prevalence of aneurysm in autopsy and angiography

studies. The sampling distribution for observations xi j is also binomial and we can use the

uniform prior distribution on the hyper parameter. We again run this model in AgenaRisk

with 40 iterations and the resulting BNs is presented figure 5.18.
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Figure 5.17: Hierarchical BN model for summarizing the prevalence of aneurysms by study de-
signs.

Table 5.16 summarizes the result obtained from the two BN models (Figure 5.18 and

5.18).

Table 5.16: Lower and Upper posterior percentiles of prevalence of aneurysm per 1000 patients
in each study design

Parameters 5th−95th Mean Variance
θ1 3−6 5 1.1951E−6

θ2 41−48 45 5.3391E−6

θ
′
1 4−6 5 3.2107E−7

θ
′
2 45−54 49 7.9353E−6

The summary in Table 5.16 shows that studies with retrospective design produced

lower prevalence than prospective studies while angiography technique yielded higher

estimate than autopsy studies. The posterior predicted prevalence from the combined

analysis of retrospective and prospective studies is 3−8/1000 while the combined anal-

ysis of autopsy and angiography studies is (2− 8/1000). This result is consistent with
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Figure 5.18: Hierarchical BN model for summarizing the prevalence of aneurysms by diagnostic
techniques.

the work of Rinkel, et al’s. [190] on the data who found the estimates for prevalence of

aneurysm to vary widely between 2 and 90 per 1000 [190]. They attributed this wide vari-

ability to methodological differences between studies, diagnostic tools used, differences

in the study populations and discrepancies in the inclusion criteria.

Clearly, the summary estimates of the prevalence based on fixed effect assumptions

does not represent all the underlying studies. We found the prevalence of aneurysm to

vary between 19 and 21 per 1000 in the fixed effect analysis. The prediction based on

this model gave a prevalence of between 16 and 25 intracranial aneurysm per 1000 in

the population. Neither of these can be used to represent the empirical information in

the underlying studies. In contrast, the estimates from the analysis based on the random

effect assumption better represent the underlying data. the result with the analysis with a

Normal prior distribution on the hyper parameter gave an estimate of the prevalence to be

4 and 130 per 1000 whereas using a beta distribution to formulate a non informative prior
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on the hyper parameter gave a 95% credible interval that correspond to 3 - 148 cases per

1000.

From the modeling point of view, these summary estimates can be used as existing

knowledge in a clinical decision model.

5.8 Summary

This chapter described a novel approach for solving meta analysis problems using the

Bayesian Network framework augmented by dynamic discretization. Three Meta anal-

ysis problems were analyzed in the chapter. The first is the data from a meta-analysis

to summarize the treatment effect of Beta-blocker in patient with heart failure condi-

tion. The summary effect shows a significant treatment effect (odd ratio) indicating a

significant reduction in the mortality rate for those who received the treatment compared

to those who received a placebo. The second clinical example is the meta-analysis to

summarize the effect of magnesium on patients with myocardia infarction. This analy-

sis demonstrated a desirable feature of the BN framework by constraining the posterior

distribution of the heterogeneity parameter τ and then performing inference conditional

on the constraint. Thus, analysts can make a probabilistic statement about the degree of

variability between studies in the analysis. The third model is on the prevalence of in-

tracranial aneurysms. This analysis demonstrated the use of a BN model to summarize

data from a non-experimental design. We also used the KL-metric to explore data for

inconsistent observations.

In summary this chapter demonstrated the modeling strength of the Hierarchical Bayesian

Network and its use in summarizing treatment effects from meta analysis data. Nonethe-

less, meta-analyses are fundamentally limited by the quality of the underlying studies.

The quality of the result depends on the quality of the systematic review that produced

the data. Hence, the context within which we have discussed the results from the chapter

is to demonstrate the potential use of BN model in solving meta-analysis problems. We

envisage a future where both meta-analysis and decision analysis model can be developed

within the BN framework.

We can not conclude this chapter without drawing readers attention to the limitations

of this approach. As mentioned earlier in the chapter, using the current implementation of
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the dynamic discretization algorithm flags an inconsistency error when the posterior joint

distribution of the parameter and the data is lower that a threshold. To make this approach

suitable for a wider class of meta-analysis problems, we recommend changes in the im-

plementation of the dynamic discretization algorithm in AgenaRisk so that the probability

threshold can accommodate empirical data from extremely heterogenous studies. Also,

we like to state that the three clinical meta-analysis problems used in the chapter are ar-

bitrarily chosen from the literature. Other types of clinical effects such as risk ratio, risk

difference, correlation, etc have not been summarized with the BN technique. We have

described a prototype for solving meta-analysis problems with a BN model but there are

still more to be done before we can conclude that the BN approach is generally applicable

to solving meta-analysis problems. Hence we recommend more work in summarizing

other clinical effects with BN models.

The approach adopted here was pragmatic and focused on choosing those papers that

used popular methods of analysis (hence using MCMC as a comparator) where data was

available in the research paper itself and also where sufficient detail was provided to

enable the model to be reconstructed and then configured and tested. Doing this for

the three studies presented here took considerable time and effort, but is not the result

of a scientific survey. We do not therefore claim that the analysis neither is free from

selection bias nor is comprehensive, however it does show how one can use HBNS and

DD for meta-analysis in a flexible way and offers some support to the research hypotheses

pursued within this thesis.
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Chapter 6

BN Decision Making Models

In the previous chapters we have described the application BN models to parameter learn-

ing and meta-analysis problems. This chapter presents two clinical case studies and

demonstrates the use of the BN framework to 1) evaluate the impact of a multidisciplinary

team meeting on treatment selection for patients with cancer and 2) compare the risk of

Magnetic Resonance Imagine and Catheter Angiogram in diagnosing patients with a third

nerve palsy.

6.1 Introduction

This chapter applies the techniques described in the preceding chapters to two clinical

problems. The main motivation is to use the technique to generate some answers to imme-

diate clinical questions begging for answers. On each of these case studies, our research

team has worked in collaboration with clinician with a view of providing answers to some

clinical questions.

The first is based on data collected by a multi-disciplinary team (MDT), HepatoPan-

creaticoBiliary (HPB), based at Barts and the London HPB Centre. The Multidisciplinary

Team (MDT) approach has become increasingly important in the decision-making regard-

ing the treatment plan and management of cancer patients [144]. In spite of the increasing

popularity of the multidisciplinary approach, there are only few studies on the empirical

evaluation of its impact on the treatments and outcomes thereof. Forrest et al. [68] exam-
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ined the impact of the introduction of a multidisciplinary team on survival of patients with

inoperable Non-small-cell lung cancer (NSCLC) and concluded that the introduction of a

multidisciplinary team was associated with a change in the treatment of patients with in-

operable NSCLC. In particular, they found that more patients now receive chemotherapy

and fewer patients received palliative care only.

Whilst multi-disciplinary team meetings (MDTs) are seen as attractive additions to the

management process by various stake-holders, there is little evidence or understanding of

their utility in rationalising decision-making in complex medical cases. Similarly, MDTs

confer a significant resource cost (clinician time, administrative support, governance ar-

rangements) yet their contribution to patient care is poorly understood. The research

question worthy of study is to better understand the changes in treatment recommenda-

tion for each condition that have arisen as the MDT process has matured (expressed as

a function of time since inception). We use the Bayesian Network framework to address

this problem.

This particular area is a particularly test of the methodology because it is “messy” in

the sense that there are lots of uncertain dependencies, there is a mixture of probabilistic

and deterministic reasoning underlying the clinical decision making process and there is a

mixture of continuous and discrete data demanding both inference about uncertain causal

mechanisms and prediction of effects. Tackling this sort of problem is very difficult for

other classical methods because it requires an understanding of the underlying clinical

care process and the complexities and constraints therein. This does not mean to say that

the analysis performed here is definitive since there are some features of the problem that

make MDTs particularly tricky, including the role of counter factual evidence, confound-

ing variables and, ultimately, data quality. For instance the complex healthcare supply

chain means that the causal factors that drive some variables might be outside of the clini-

cian’s control, such as GP referrals. Likewise, treatments are recommended on the basis of

what is best for the patient and so any evaluation needs to account for the counter factual

nature of this intervention. Finally continuing changes and improvements to the process,

both in terms of operational and treatment efficiency, means the data reflects a moving

target. All of these make application of frequentist simulation based modelling near im-

possible and are challenges for Bayesian analysis, where even if a small contribution can
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be made this should be judged a success.

The second case study is based on the work of Fenton et al., [62]. In their work, Fenton

et al.,[62] used Bayesian arguments to compare the risks of a catheter angiography with

the risk of rupture resulting from a false negative result of a magnetic resonance imaging

technique. Their objective was to establish if the marginal positive predictive power of the

CA technique compensates the attendant risk of complication. This model was presented

as experts’ witness in the case involving a diabetic woman who suffered a permanent

stroke after receiving an invasive diagnostic test.

Section 6.2 applies the multinomial BN formulation to learn some parameters in the

model to evaluate the impact of muti-disciplinary team meetings on treatment selection

for patients suspected to have cancer. In section 6.3, we apply Bayesian network models to

compare the risk of stroke from the CA procedure with the risk of death from undetected

aneurysms.

6.2 Evaluating the impact of multidisciplinary team meetings on

treatment selection

Multidisciplinary Team (MDT) meetings have become increasingly popular and have be-

come standard decision-making forum for oncology [144]. The idea is to combine ex-

pertise from each field in order to generate a comprehensive and coordinated care plan

for cancer patients. Previous research has demonstrated that patients, whose care is man-

aged by such meetings have better survival outcomes [15], shorter waiting times [70] and

the benefit of more robust treatment decision-making processes [28] compared to those

managed without formal multidisciplinary discussions.

Patients are referred by their general practitioners (GPs) to one of the twelve district

general hospitals on suspicion of cancer. Further tests are performed at the district hospi-

tals and cases that require further investigation are referred to the Royal London Hospital

for MDT discussion and treatment. On the basis of the diagnosis and findings, appropri-

ate treatment pathways are recommended to patients which may include one or more of

chemotherapy, palliative care and surgery among others.
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6.2.1 Description of Data

The data was collected by the HPB team based in Barts and the London HPB Centre be-

tween 2005 and 2009. The team meets weekly to consider possible cancer cases, these

include cancer of the liver, pancreas, bile duct and gall bladder. The HPB team con-

sists of surgeons and physicians, oncologists, pathologists, palliative care specialists and

radiologists.

In total, 1988 complete records of ‘possible cancerous cases were discussed between

2005 and 2009 by the team. Essential details such as the affected organ, type of a lesion,

diagnosis and treatment recommendation were recorded during the period. Figure 6.1

shows a BN fragment of the model presented in Kocher et al. [119].

Figure 6.1: BN modeling of treatment recommendations at a multi-disciplinary setting

This fragment consist of three variables, these are: “Year of discussion (Y )”; “Di-

agnosis (D)” and “MDT treatment recommendations (R)”. We will now take them in

turns.

Year of discussion (Year)

This variable is the year a case was discussed by the Multi-Disciplinary Team. This

is denoted by a node Y with five possible states {2005, 2006, 2007, 2008 and 2009}.

This variable is intended to capture changes that might have occurred over the years.

We can think of this variable as a surrogate for (unknown) possible confounders such as

the technological advances over the years that might have influenced diagnosis or even

treatment recommendations.
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Diagnosis

This variable stores all possible diagnoses. Initially, there were 49 possible diagnoses in

the data but after due consultations with an expert from the domain, the diagnosis was

grouped into eight non overlapping cases as shown in Table 6.1.

Table 6.1: Descriptions of possible diagnosis options
State Description
BP For all benign diagnosis of the Pancreas
BL For all benign diagnosis of the Liver
BGB For all benign diagnosis of of either the Gall bladder or Bile duct (not both)
M/BP Malignant or borderline diagnosis of the Pancreas
M/BL Malignant or borderline diagnosis of the Liver
M/BGB Malignant or borderline diagnosis of Gall bladder or Bile duct (not both)
Unknown For unknown diagnosis
Multiple For multiple diagnoses

The “Multiple” diagnosis represents cases with more than one diagnoses. The diag-

nosis variable is denoted by D. This node has one parent node “Year”. The link from

node “Year” to “Diagnosis” was introduced to capture trends in the diagnosis over the

five years period.

MDT recommendations

The variable “MDT recommendation” represents treatment options recommended for pa-

tients. The options are not mutually exclusive as a patient can have one or more treatment

recommendations. It is also possible that a patient is placed on close surveillance or

discharged without receiving a treatment. In order to attain mutual exclusivity for this

variable, we created a new state labeled “Combination” for cases with more than one

treatment option. All cases with more than one treatment strategies are classified as com-

bination treatment. Therefore, the variable “MDT recommendations” has seven states as

shown in Table 6.2.

This node has two incoming links from nodes “Year” and “Diagnosis”. Just like the

link between “Year” and “Diagnosis”, the link connecting node “Year” to “MDT rec-

ommendation” was introduced to capture trends in treatment recommendation over the

period. These links do not have causal interpretations. The second link connecting “Di-

agnosis” to “MDT recommendation” implies that treatment option is determined on the

basis of the diagnosis. Indeed some treatment options are forbidden for some diagnoses.
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Table 6.2: Descriptions of possible treatment options
State Description
Chemotherapy Treated with Chemotherapy only
Combination Treated with one or more options, e.g surgery followed by chemotherapy
None No Treatment Recommendation.
Palliative palliative care recommendation only
Surgery Surgery only
Intervention Radiology intervention radiology only
Watchful Waiting Patients on surveillance

Other factors such as age of the patient and stage of the lesion might have also influenced

treatment recommendation but for simplicity, we assume that the information about the

diagnosis suffice for treatment recommendation.

For the categories of cancer treated by this multi-disciplinary team, the radiotherapy

treatment option is never considered in isolation. It is always performed in addition to

other treatments. Therefore the radiotherapy option is not included as a state for the

variable.

6.2.2 Summary of the MDT Data

Table 6.3 summarizes the number of cases recorded for each diagnosis. Multiple diag-

noses is not very common as only 76 cases were recorded. On the other hand, there are

588 recorded cases of malignant or borderline diagnosis of the Liver.

Table 6.3: Number of cases per Diagnosis
Diagnosis Number of cases
BP 211
BL 176
BGB 90
M/BP 457
M/BL 588
M/BGB 207
Multiple 76
Unknown 183

Table 6.4 presents the diagnosis data for each year of discussion.

Table 6.5 shows the frequency distribution of treatment recommendations by the multi-

disciplinary team. The summary shows that Intervention Radiology is the least recom-

mended option with 94 cases whereas surgery seems to be more frequently recommended

than any other treatments.
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Table 6.4: Number of cases per Diagnosis by Year of discussion
Year

Diagnosis 2005 2006 2007 2008 2009
BP 31 23 34 53 70
BL 32 16 19 39 70
BGB 17 11 15 20 27
M/BP 87 37 95 96 142
M/BL 101 58 136 108 185
M/BGB 36 17 43 49 62
Multiple 14 4 18 38 2
Unknown 44 13 31 56 39

Table 6.5: Treatment recommendation by diagnosis
Treatment Number of cases
Chemotherapy 219
Combination 194
None 534
Palliative 358
Surgery 403
Intervention Radiology 94
Watchful Waiting 186

Some of these treatments are logically impossible for some diagnoses as a result of

health-care policies. For instance, chemotherapy is never administered on benign diag-

nosis of the pancreas or liver. Table 6.6 shows treatment recommendations by diagnoses.

All the recommendation with zero entries in Table 6.6 are logically impossible data.

Table 6.6: Treatment recommendation by diagnosis
Diagnosis

Treatement BP BL BGB M/BP M/BL M/BGB Multiple Unknown
Chemotherapy 0 0 0 74 111 33 0 1
Combination 0 0 0 71 82 39 0 2
None 101 114 36 56 68 14 16 129
Palliative 0 0 0 124 160 62 2 10
Surgery 27 17 38 112 107 54 37 11
Intervention Radiology 19 10 0 3 55 5 0 2
Watchful Waiting 64 35 16 17 5 0 21 28

We can explore this treatment further by summarizing the frequency of the treatment

by diagnoses for each year (Table 6.7).



6.2. Evaluating the impact of multidisciplinary team meetings on treatment selection 156

Table 6.7: Treatment recommendations by diagnoses for the five years period
Diagnosis

Year Treatement BP BL BGB M/BP M/BL M/BGB Multiple Unknown
2005 Chemotherapy 0 0 0 8 10 3 0 0

Combination 0 0 0 35 31 10 0 1
None 15 21 6 7 12 7 3 30
Palliative 0 0 0 25 35 13 0 3
Surgery 4 6 9 9 9 3 7 5
Int. Radiology 3 2 0 2 4 0 0 0
Watchful Waiting 9 3 2 1 0 0 4 5

2006 Chemotherapy 0 0 0 0 5 0 0 0
Combination 0 0 0 6 17 7 0 0
None 10 12 1 3 7 0 0 10
Palliative 0 0 0 19 21 7 0 1
Surgery 4 0 9 8 6 3 3 0
Int. Radiology 1 1 0 0 2 0 0 0
Watchful Waiting 8 3 1 1 0 0 1 2

2007 Chemotherapy 0 0 0 8 20 4 0 1
Combination 0 0 0 18 18 4 0 0
None 10 9 7 16 19 2 6 21
Palliative 0 0 0 29 44 21 1 1
Surgery 5 3 4 20 28 11 8 3
Int. Radiology 3 2 0 0 6 1 0 0
Watchful Waiting 16 5 4 4 1 0 3 5

2008 Chemotherapy 0 0 0 7 15 2 0 0
Combination 0 0 0 11 13 16 0 1
None 26 22 11 15 18 2 6 40
Palliative 0 0 0 28 37 14 1 3
Surgery 4 6 3 32 15 14 19 3
Int. Radiology 2 4 0 0 8 1 0 1
Watchful Waiting 21 7 6 3 2 0 12 8

2009 Chemotherapy 0 0 0 51 61 24 0 0
Combination 0 0 0 1 3 2 0 0
None 40 50 11 15 12 3 1 28
Palliative 0 0 0 23 23 7 0 2
Surgery 10 2 13 43 49 23 0 0
Int. Radiology 10 1 0 1 35 3 0 1
Watchful Waiting 10 17 3 8 2 0 1 8

6.2.3 Estimating Conditional probabilities from data

The joint probability distribution for the BN fragment in Figure 6.1 is

p(Y,D,R) = p(R|Y,D).p(D|Y ).p(Y ).

Let us assume a noninformative prior for the “Year”. Then we need to estimate two

conditional probabilities p(D|Y ) and p(R|Y,D). For the conditional probability p(D|Y ),
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we need to estimate eight parameters in Table 6.8 for each year using the data presented

in Table 6.4.

Table 6.8: Parameters of the conditional probability p(D|Y ) for “Diagnoses”
Parameter Description
p1 p(BP|Y )
p2 p(BL|Y )
p3 p(BGB|Y )
p4 p(M/BP|Y )
p5 p(M/BL|Y )
p6 p(M/BGB|Y )
p7 p(Unknown|Y )
p8 p(Multiple|Y )

We will use the approach described in section 3.8 to create a multinomial BN model

for learning these eight parameters for the conditional Table p(D|Y ). Figure 6.2 shows the

parameters (pi) and observation nodes (xi) in addition to the samples (ni) and the nodes

for summing parameters (vi).
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Figure 6.2: Multinomial BN model for learning parameters in Conditional table of “MDT Recom-
mendation”

Suppose we do not have any prior information regarding these parameters then we can

define noninformative prior as follows:

pi ∼ Dirichlet(1,1,1,1,1,1,1,1) (6.1)

Also we need to introduce a constraint on the parameters such that ∑
8
i pi = 1. We do

this by entering hard evidence “1” on the node labeled “v1” which represents the sum of
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pi nodes. After entering the data in Table 6.4 as hard evidence on xi we obtain posterior

means E(pi|x) summarized in Table 6.9.

Table 6.9: Posterior mean for each parameters pi in conditional Table p(D|Y )
p′s 2005 2006 2007 2008 2009
p1 0.0854 0.1266 0.0849 0.1133 0.1151
p2 0.0881 0.0901 0.0493 0.0844 0.1154
p3 0.0483 0.0638 0.0392 0.0444 0.0458
p4 0.2359 0.2020 0.2364 0.2054 0.2337
p5 0.2733 0.3142 0.3396 0.2329 0.3033
p6 0.1019 0.0976 0.1140 0.1093 0.1072
p7 0.0433 0.0287 0.0525 0.0865 0.0063
p8 0.1238 0.0770 0.0841 0.1239 0.0732

We can now repeat the process to estimate the parameters described in Table 6.10 for

the conditional p(R|Y,D).

Table 6.10: Parameters of the conditional probability for “MDT recommendation”, p(R|Y,D).
Parameter Description
p1 p(Chemotherapy|Y,D)
p2 p(Combination|Y,D)
p3 p(None|Y,D)
p4 p(Palliative Care|Y,D)
p5 p(Surgery|Y,D)
p6 p(Intervention Radiology|Y,D)
p7 p(Watchful Waiting|Y,D)

In this analysis the number of parameter to learn varies by diagnoses because some

treatment options are not available for some diagnoses. The conventional techniques for

learning parameters such as the deal package in R, [20] requires equal number of param-

eters in the node probability table and therefore cannot distinguish between zero record

and logically impossible observations. Recall that the zeros in Table 6.7 does not imply

‘zero’ observations but rather they encode impossible treatment-diagnosis combinations.

In other words, the conventional techniques will compute posterior distributions for these

parameters even when they are impossible. In this analysis, we can treat the number pa-

rameters kd by diagnoses as unequal. For example, there are four possible treatments

available for Benign Pancreas (BP) implying four parameters. Table 6.11 shows the num-

ber of parameters to learn for each diagnosis.
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Table 6.11: Number of Parameters in table p(R|Y,D) by diagnosis.
Diagnosis kd

BP 4
BL 4
BGB 3
M/BP 7
M/BL 7
M/BGB 6
Multiple 4
Unknown 7

The number of parameters in Table 6.11 were used to create multinomial BN models

dynamically and we enter observations from Table 6.7 as evidence. The posterior means

for these parameters are summarized in Table 6.12.
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Table 6.12: Posterior mean for each parameters pi in conditional Table p(R|Y,D)
Year p’s BP BL BGB M/BP M/BL M/BGB Multiple Unknown
05 p1 - - - 0.0946 0.09895 0.09435 - 0.0207

p2 - - - 0.3763 0.2852 0.2591 - 0.0340
p3 0.4532 0.6029 0.3469 0.0845 0.1182 0.1894 0.2212 0.5686
p4 - - - 0.2750 0.3230 0.3315 0.0558 0.0847
p5 0.1437 0.1965 0.4974 0.1088 0.0970 0.0997 0.4432 0.1290
p6 0.1162 0.0863 - 0.0354 0.0596 0.0260 - 0.0239
p7 0.2869 0.1143 0.1557 0.0254 0.0180 - 0.2798 0.1331

06 p1 - - - 0.0225 0.0915 0.0433 - 0.0498
p2 - - - 0.1578 0.2740 0.3445 - 0.0508
p3 0.4033 0.6310 0.1427 0.0905 0.1226 0.0438 0.1241 0.5384
p4 - - - - 0.33635 0.3461 0.1247 0.1017
p5 0.1861 0.0530 0.7081 0.2052 0.1091 0.1768 0.4966 0.0518
p6 0.0754 0.1075 - 0.0246 0.0492 0.0454 - 0.0527
p7 0.3352 0.2086 0.1492 0.0496 0.0172 - 0.2546 0.1547

07 p1 - - - 0.0871 0.1451 0.1020 - 0.0517
p2 - - - 0.1837 0.1317 0.1018 - 0.0266
p3 0.2879 0.4302 0.4405 0.1645 0.1390 0.0614 0.3157 0.5702
p4 - - - 0.2917 0.3125 0.4446 0.0912 0.0536
p5 0.1583 0.1748 0.2789 0.2069 0.2024 0.2448 0.4079 0.1078
p6 0.1060 0.1324 - 0.0123 0.0522 0.0454 - 0.0277
p7 0.4478 0.2626 0.2806 0.0537 0.0171 - 0.1852 0.1624

08 p1 - - - 0.0770 0.1368 0.0547 - 0.0160
p2 - - - 0.1154 0.1203 0.3068 - 0.0318
p3 0.4706 0.5291 0.5177 0.1541 0.1630 0.0548 0.1661 0.6361
p4 - - - 0.2797 0.3279 0.2724 0.0478 0.0656
p5 0.0885 0.1645 0.1752 0.3184 0.1408 0.2711 0.4750 0.0665
p6 0.0534 0.1186 - 0.0118 0.0817 0.0403 - 0.0342
p7 0.3875 0.1878 0.3071 0.0436 0.0295 - 0.3111 0.1497

09 p1 - - - 0.3390 0.3189 0.3612 - 0.0216
p2 - - - 0.0134 0.0209 0.0441 - 0.0219
p3 0.5458 0.6835 0.3949 0.1064 0.0677 0.0589 0.3303 0.6159
p4 - - - 0.1617 0.1260 0.1181 0.1662 0.0676
p5 0.1510 0.0415 0.4656 0.2939 0.2605 0.3527 0.1667 0.0239
p6 0.1519 0.0286 - 0.0187 0.1873 0.0649 - 0.0473
p7 0.1512 0.2463 0.1395 0.0670 0.0185 - 0.3369 0.2017

We can now use these parameters in the NPT of the underlying nodes i.e. “Diagnoses”

and “MDT recommendation”. Figure 6.3 shows the prior marginal distribution obtained

after entering the values in Table 6.9 to populate the NPT for “Diagnoses” and Table 6.12

to populate NPT for “MDT recommendation”.
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Figure 6.3: BN fragment with two categorical nodes: Parameters were learnt with multinomial
BN models

6.2.4 Summary of results

This section uses the BN model in Figure 6.3 to answer some questions about possi-

ble trend in treatment recommendations since the commencement of the HPB multi-

disciplinary team. Figure 6.3 shows the posterior means for each of the treatment rec-

ommendations without a hard evidence on nodes “Year” and “Diagnoses”. We refer to

this as a baseline result, to which we can compare the posterior means of treatment rec-

ommendation after a hard evidence had been entered. From the baseline analysis, about a

quarter of patients received no treatment. This is the proportion of cases with no treatment

recommendation either because they are non cancerous cases or cases that have reached

an advanced stage such that administering a treatment is hopeless. As shown in Figure

6.4, over 20% of cases discussed each year were not given any treatment. Unfortunately,

we do not have the information to distinguish non cancerous cases from those in the ad-

vanced stages. This information would been useful to access the quality of the referral

process to the HPB multidisciplinary team.

From the year 2006 up to 2009, both palliative care option and combination therapy

have consistently declined whereas surgery option seems to be gaining popularity within

this multi-disciplinary team. It is not clear whether surgery treatment is always preferred
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Figure 6.4: Treatment recommendations made by the HPB multi-disciplinary team from 2005 to
2009.

for any diagnosis that could have been offered an alternative treatment recommendation

such as chemotherapy or a combination of treatments. One possible reason for this trend

could be the technological advances, over this period, that reduced the level of uncertainty

confronting the team. For instance, with a high resolution image from a Magnetic reso-

nance Angiography, the team would better understand the location of lesions and make

better judgements about their suitability for surgery option much more than before.
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(a) Benign diagnosis of pancreas

(b) Benign diagnosis of liver

(c) Benign diagnosis of bile duct or gall bladder

Figure 6.5: A graph showing the posterior means of treatment recommendation for benign diag-
noses.

Clearly, the majority of the benign diagnoses are either discharged without a treat-

ment or placed under close surveillance (watchful waiting). From Figure 6.6, there is an

apparent dependence between organ and surgery recommendation for benign diagnoses.

Surgery is more frequent for benign cases of cancer in the bile duct or gall bladder than

those in liver or pancreas. This is really not surprising because the liver and pancreas are

physiologically more important than bile duct or gall bladder.
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(a) Malignant diagnosis of pancreas

(b) Malignant diagnosis of liver

(c) Malignant diagnosis of bile duct or gall bladder

Figure 6.6: A graph showing the posterior means of treatment recommendation for benign diag-
noses.

Also worthy of note in Figure 6.4 and Figure 6.6 is a surge in the recommendation of

chemotherapy option in 2009. Figure 6.4 shows that more than 20% received chemother-

apy treatment in 2009 compared to less than 10% in the remaining years. This pattern is

visible for cases with malignant diagnoses of the pancreas, liver, bile duct or gall blad-

der. There no empirical or clinical justification, in the literature, to support this sudden

enthusiasm for chemotherapy option in 2009. Has chemotherapy suddenly become more
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effective in 2009 than in 2008 for treating cancer? Therefore, further analysis to establish

the cause of this sudden interest in chemotherapy option will be useful.

6.2.5 Direction of future work on the MDT analysis

Some questions arose from our findings presented in the previous section that require

further investigations on the MDT. For example, we classified every case into one of the

eight diagnoses (see Section 6.2.1) based on the organ and the severity of a condition.

Therefore, the model fragment does not include nodes for the affected organ and the level

of severity of the condition. Thus, we have assumed that the Diagnosis node provides

information about organ and the level of severity. However this assumption may not be

entirely plausible as Figure 6.6 shows that surgery is more frequent in benign cancer

cases affecting bile duct or gallbladder than liver or pancreas. Future work to investigate

the dependence of treatment recommendation on the affected organ would be a useful

addition to the existing body of knowledge.

We also assume in our analysis that the parameters of treatment recommendation are

independent. Again, this may not be entirely correct as some of these recommendations

may be correlated. Some cases in the data were discussed more than once either due

to lack of information or insufficient information to come up with a recommendation.

In such cases, the diagnosis would be set to “unknown” in the first discussion and a

new treatment option may be recommended in the subsequent discussion (in the light of

new evidence). This may also be the case for those who were initially placed on a close

surveillance in the first discussion but later receive treatments. The available data does not

capture this possible switching (in treatment recommendation) for cases discussed more

than once. As a temporary measure to strengthen our result, cases that were discussed

more than once are exclude in the analysis.

It is also interesting to know the proportion of these treatment recommendations that

were eventually carried out on the patients. Blazeby et al [16] found that following mul-

tidisciplinary meetings, about 15.1% of the decisions reached at the MDT were not im-

plemented. The reasons for these changes in treatment plan included patient choice and

other clinical information which were not considered during the review process. There-

fore, a future research can combine MDT data with post MDT information from patient
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electronic record in order to establish the proportion of the MDT recommendations that

are implemented.

6.3 Comparing the risk of Magnetic Resonance Imagine and Catheter Angiogram

A clinical decision about a diagnostic test requires a careful consideration of the risks

and benefits of the test since some diagnostic techniques carry potential risks of compli-

cations. Nevertheless a test result normally provide a useful insight into the subsequent

clinical decisions. A typical scenario involves a clinician making an observation based

on a patient’s condition to determine the cause of the symptoms and then deciding on the

diagnostic tests best suited to the patient. The tests results would then guide the clinician

in deciding on the appropriate treatment option(s).

This section describes a clinical BN model adapted from the work of Fenton et al.,

[62] to compare the risks of two diagnostic procedures (the Magnetic Resonance Imagine

and Catheter Angiogram) for intracranial aneurysms.

6.3.1 Medical Background

Intracranial aneurysms are bulbous expansions of the intracranial vessels. These vessels

may rupture leading to a potentially lethal subarachnoid haemorrhage (SAH). We refer to

a ruptured intracranial aneurysm as an episode of subarachnoid haemorrhage (SAH) and

both terms will be used interchangeably throughout the rest of the chapter. An intracranial

aneurysm is mostly asymptomatic and in many cases, an episode of subarachnoid haem-

orrhage is the first clinical manifestation of an intracranial aneurysm. However, the mass

effect of an expanding aneurysm may lead to a third nerve palsy. In such cases, the pupil

will be dilated and this is observable by a clinician. In most cases, decisions to diagnose

a patient for intracranial aneurysm are taken under a clinical emergency condition [237].

Nevertheless, the risks of complication must be weighed appropriately with the associated

benefit in order to come up with an optimal decision for the patient [237].

The two widely used diagnostic procedures are the minimally invasive catheter an-

giogram and the non-invasive magnetic resonance imaging technique. In catheter an-

giography (CA), a thin plastic tube (catheter) is inserted into an artery through a small

incision in the skin. The catheter is then guided to the area being examined. Once the
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catheter has reached the area, a contrast material is injected and images are captured us-

ing a small dose of x-rays. Generally, the CA test is used to examine blood vessels in

key areas of the body, including the brain. On the other hand, the magnetic resonance

angiography (MRA) technique involves the use of a powerful magnetic field, radio waves

and a computer to produce the detailed images. Magnetic resonance angiography does

not use ionizing radiation (x-rays) and may be performed with or without contrast mate-

rial. The benefits and risks of both catheter angiogram and magnetic resonance imaging

techniques are described in the radiology information resource for patients, [176]. The

benefit of performing a catheter angiogram includes:

1. Angiography may eliminate the need for surgery and if surgery remains necessary,

it can be performed more accurately.

2. The CA technique presents a very detailed, clear and accurate picture of the blood

vessels. This may be helpful when a surgical procedure is being considered.

3. The use of a catheter makes it possible to combine diagnosis and treatment in a

single procedure, [102]. For example, finding an area of severe arterial narrowing

during a CA procedure can be followed by angioplasty1 and placement of a stent2.

However, the catheter angiogram procedure has a number of risks that may result in

complications. These are:

1. There is a slight chance of cancer formation as a result of radiation. However, the

potential benefit of an accurate diagnosis from the CA far outweighs the risk.

2. The CA technique may not be suitable for patients with histories of allergy to x-ray

contrast material.

3. There is a potential risk of skin damage if a large amount of x-ray contrast material

leaks out under the skin where the Intravenous cannula (IV) is placed.

4. There is also a rare risk of serious allergic reactions to a contrast material that con-

tains iodine.
1A surgical procedure to repair a blood vessel by inserting a special catheter (balloon-tipped) to unblock

the blood vessel.
2A slender catheter inserted into a blood vessel to provide support for the blood vessel.
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5. There is a small risk of blood forming a clot around the tip of the catheter.

6. The technique is not suitable for patients with diabetes.

7. Other risks of CA include contrast nephrotoxicity and the risks associated with the

general anaesthetic that is required to perform CA.

The MRA technique has the following benefits:

1. The MRA procedure is a noninvasive imaging technique that does not expose pa-

tients to ionizing radiation.

2. There is no risk of damaging an artery because detailed images of a blood vessel

and blood can be obtained without using a catheter.

3. The MRA procedure takes a shorter time requires no recovery period.

4. MRA is a good option for patients prone to allergic reactions because it can provide

good quality images without using a contrast material.

The MRA examination poses almost no major risk to the average patient when ap-

propriate safety guidelines are followed [176]. Some minor risks of performing an MRA

techniques include the following:

1. Although the MRA technique does not expose patients to ionizing radiation, but the

strong magnetic field may cause malfunctioning of implanted medical devices that

contain metal.

2. There is also a slight risk of allergic reactions if a contrast material is injected.

3. Unlike the CA technique, MRA is not able to capture images of calcium deposits

and small vessels, especially those in obscured locations.

Yoshimoto et al.,[222] reported that due to the increasing use of the non-invasive mag-

netic resonance imaging technique, brain screening for aneurysm in Japan has become

more popular especially among those with an increased risk of developing aneurysms.

Consequently, more un-ruptured intracranial aneurysms are now being detected earlier

than before [222].
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6.3.2 Background to a clinical negligence case study

Fenton et. al, [62] described a BN model to determine whether the diagnostic procedure

offered a patient (Mrs. B) was sub-optimal. This model was used for expert’s analysis and

witness in a clinical negligence case brought by Mrs. B - a 55-year-old insulin-dependent

diabetic woman who was admitted to hospital suffering from headaches and vomiting.

She also had a pupil-sparing third Nerve Palsy. She had previously suffered two similar

ischaemic 3 episodes from which she had fully recovered without treatment. Pupil-sparing

third Nerve Palsy caused by transient ischaemic condition is normally temporary and

harmless. In a small percentage of cases, the cause of a pupil-sparing third nerve palsy

can be due to expanding aneurysms which may rupture and become fatal if undetected

and in these circumstances urgent diagnosis and treatment is required.

The clinician in charge of the patient recommended that a passive Magnetic Reso-

nance Angiography (MRA) scan be performed urgently. This is a non-invasive test that

is reasonably accurate for detecting expanding aneurysms. Being a Friday evening, the

hospital could not offer such a test until the following Monday morning, causing 48 hour

delay before treatment. Consequently, the patient was transferred to a specialist hospital

that had the equipment to carry out the test immediately. However, the clinicians at the

specialist hospital decided to perform a catheter angiogram (CA), an alternative invasive

test, contrary to the recommendation of the first clinician. This test is an invasive test

known to be more accurate than the MRA for diagnosing aneurysms but carries a known

1% risk of causing a permanent stroke in diabetic patients. The patient suffered a per-

manent stroke after the CA test and the cause of the third nerve palsy was subsequently

found to be ischaemic.

6.3.3 BN model for comparing risk of two screening procedures for intracranial aneurysm

This section describes a BN model to compare these two diagnostic techniques with a

view to evaluating the impact of their usage in a patient with a pupil-sparing third nerve

palsy. This BN model was reported in Fenton et al. The BN model for comparing the

risks of CA and MRA screening procedures is presented in Figure 6.7. This model is

particularly interesting because intracranial aneurysm is an excellent field to explore in
3An ischaemic condition is caused by a restriction in blood supply due to factors in the blood vessels,

with resultant damage or dysfunction of tissue,[225].
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terms of uncertainty, competing strategies, and potentially clinically significant events

consequent upon poor selection of technique.

Figure 6.7: A clinical model for accessing risks of two screening procedures for intracranial
aneurysms.

This model identifies five variables. These variables and their respective states are

listed in Table 6.13.

Table 6.13: Variables in the model
Variable States
Cause Ischaemic (Isc)

small aneurysm (SA)
large aneurysm (LA)
cavernous sinus pathology (CSP)

Test performed MRA
CA

Test correctly identifies cause Yes
No

Death within 48 hours Yes
No

Stroke and not death Yes
No

In the following sections some of the variables listed in Table 6.13 are used exactly

as they appear in the BN model presented in Figure 6.7. That is, the same conditional

independence and conditional probabilities assumptions are made. However, some of the

variable are modified by adding additional states as required or by replacing them with

a new variable. Section 6.3.4 describes these variables in turn and presents another BN

model adapted from the BN model in Figure 6.7.
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6.3.4 Screening for intracranial aneurysms

This model is very similar to the model presented in Figure 6.7 in the sense that it com-

pares the risks of the CA and MRA diagnostic procedures. However, this model considers

a situation whereby a patient is not screened at all. The similarities and differences be-

tween this model and the one presented earlier are emphasized in the descriptions of the

variables. Let us examine these variables in turns.

Cause

This node represents causes of a third nerve palsy. A pupil sparing third nerve palsy could

be due to an ischaemic condition; an expanding aneurysm or a cavernous sinus pathology

(CSP) 4 [56, 62].

These causes are modeled by a node “cause”. This node has four mutually exclusive

causes of third nerve palsy. Hence, the node cause can take any of these four possible

values “Ischaemic (Isc)”; “small aneurysm (SA)”; “large aneurysm (LA)” and “CSP”. s

Test Performed

Having identified possible causes of third nerve palsy, we can now describe a node that

models the two diagnostic procedures for a third nerve palsy. We assume that a clinician

can prescribe one of these two procedures at a time. In other words, the two procedures

are never performed together on a patient. We model the information by a decision node

labeled “Test performed (tp)”. The MRA and CA are two commonly used techniques for

the screening procedures for detecting unruptured intracranial aneurysms and other causes

of a third nerve palsy. Of fundamental importance, in the decision to perform a CA test, is

the likelihood of diabetes mellitus. If diabete mellitus is present, then CA is not advisable

because it increases the risk of permanent stroke, [62]. However, if diabete mellitus is

absent, the CA procedure offers better accuracy in detecting intracranial aneurysms and

CSP compared to the MRA technique.

In addition to these two diagnostic options, we consider a situation whereby neither of

these two tests is used. Therefore, we add an additional option “No Test (NT)” to capture
4The cavernous sinus syndrome is defined by its resultant signs and symptoms. For example, it can

show signs of ophthalmoplegia. This is a paralysis of one or more of the muscles that control the movement
of the eye. The condition can be caused by any neurologic disorders.
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a decision to place a patient on watchful waiting rather than performing either of these

two conventional procedures. Hence, there are three states in this node (“CA”, “MRA”,

“NT”).

Test correctly identifies cause

This variable, represented by a node labeled (Test correctly identifies cause), summa-

rizes the accuracies of each of the diagnostic tests. The node has three states namely

(“Yes”,“No”, “No Test”). The state “Yes”, on one hand, indicates the potential of a

treatment option to identify a cause of third nerve palsy. The second state “No”, on the

other hand encodes the probability that a test would fail to identify a cause of third nerve

palsy. The last state “No Test” option is only relevant when a patient is placed on watchful

waiting.

Stroke?

This is a a binary node with values “True” or “False” to capture potential complications

of each of the diagnostic procedures given clinical circumstances of a patient.

Death within 48 hours

This variable represents the potential risk of death resulting from a rupture of an ex-

panded aneurysm. Fenton et al [62] assumed that a ruptured intracranial aneurysm would

certainly lead to death within 48 hours. In this thesis, I have assumed that an undetected

intracranial aneurysm may rupture within 48 hours but we can treat the event “death”

i.e. death from a ruptured intracranial aneurysm as an uncertain event with a probability

distribution. Therefore we split the variable into two nodes. These are:

1. Rupture: This variable captures the risk of rupture of aneurysms within 48 hours.

This is based on the assumption that an expanded aneurysm (undetected) may rup-

ture within 48 hours. This risk is represented by a binary node “Rupture” with two

possible values “True” or “False”. The state “True” is used to capture the probabil-

ity of rupture within 48 hours and “False” to capture the probability of no rupture

within 48 hours;
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2. Outcome: This is represented by a node labeled Outcome. The node captures po-

tential risk of death resulting from a ruptured intracranial aneurysm. There are four

mutually exclusive and collectively exhaustive possibilities (states) namely “Well”,

“Stroke”, “Survive SAH” and “Dead”. The “Well” represents the state of wellbe-

ing i.e. no complication whatsoever either due to a complication from a screening

procedure or due to rupture of intracranial aneurysms. The second state is “Stroke”,

this may be as a result of the initial complication of diagnostic procedures or due to

rupture of an undetected aneurysm. Next, we have a state labeled ‘Survive SAH”

representing the state of good recovery following an episode of SAH without any

neurological deficiency. Finally, for the mortality associated with aneurysmal rup-

ture (SAH) we introduce a state labeled “Dead”.

A BN model describing the independence assumptions between these variables is pre-

sented in Figure 6.8.

Figure 6.8: BN model to compare risk of the MRA and CA techniques, Adapted from Fenton et.
al’s model, [62].

We have, so far, described the qualitative part of the model, we now need to quantify

the strength of each causal link. To do this, we need to describe the node probability table

(NPT) for all nodes. We will now describe the NPT in turns.

Cause

The conditional probability table for this node was taken from Fenton et. al’s model. A

third never palsy is largely caused by an ischemic condition (98%) whereas other causes

put together only accounted for 2% of cases of third nerve palsy.
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p(Isc) = 0.98
p(SA) = 1.0E−4

p(LA) = 0.0099
p(CSP) = 0.01

Test Preformed

This node has a vacuous probability distribution as shown below:

p(CA) = 0.3333333
p(MRA) = 0.3333333

p(NT ) = 0.3333333

In essence, we are assuming that the three screening options are equally likely. This

is a widely used assumption in practice. All decision alternatives are normally taken to

be equally likely because a decision maker doesn’t know a priori which decision option

is better than the other.

Stroke?

We have described the conditional probability table for the screening techniques i.e. “Test

Performed”. We can now describe our assumption regarding the potential risk of harmful

effect resulting from each of these screening options. The risk of complication from a

screening option is represented by stroke?. The risk of complication for the screening

options is as follow:

Table 6.14: The conditional probability distribution p(Stroke|t p)
Stroke?

tp False True
MRA 0.99 0.01
CA 1.0 0.0
NT 1.0 0.0

The conditional probability presented in Table 6.16 is based on the assumption that a

diabetic patient stands 1% risk of complication from a screening with CA test.
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Accuracy of the Screening procedures

The CA technique is believed to be more accurate than a MRA option in detecting aneurysms

especially small aneurysm and those located in the posterior communication arteries. In

some cases a MRA test is followed by a CA in order to confirm or rule out aneurysms.

However, we only consider a situation whereby only one or none of these techniques is

performed. The node probability table for each configuration of parent nodes is as given

in Table 6.15.

Table 6.15: The conditional probability distribution p(ta|t p,cause)
Test Accuracy

tp cause No Yes No Test
MRA ISC 0.0 1.0 0.0
MRA SA 0.5 0.5 0.0
MRA LA 0.05 0.95 0.0
MRA CSP 0.5 0.5 0.0
CA ISC 0.0 1.0 0.0
CA SA 0.05 0.95 0.0
CA LA 0.01 0.99 0.0
CA CSP 0.1 0.9 0.0
NT isc 0.0 0.0 1.0
NT SA 0.0 0.0 1.0
NT LA 0.0 0.0 1.0
NT CSP 0.0 0.0 1.0

Where ta and tp stand for nodes Test correctly identifies cause and Test Preformed

respectively.

Rupture

The information about rupture is relevant if aneurysm is present. This thesis focuses

on cases involving aneurysms rather than considering all causes of third-nerve palsy. The

probability values of rupture is set to zero for other causes i.e. p(Rupture=Yes|ta,cause=

ISC) = 0 and p(Rupture = Yes|ta,cause = CSP) = 0. Two large studies before 1998,

[111, 190] reported annual rupture rates of 1.4 to 1.9 percent for intracranial aneurysms.

Aneurysmal rupture rates are normally higher in a population with aneurysms larger than

10 mm in diameter, symptomatic, or located in the posterior circulation [29]. Francesca

et al.,[39] reported a rate with lower and narrower interval (0.4% and 1.5%). Therefore,

we assume a rupture rate of 0.4% for small aneurysms and 1.9% for large aneurysms.
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Outcome within 48 hours

As stated earlier, an episode of SAH may have catastrophic consequence. Full recovery is

unlikely in patients with severe SAH. Unruptured Intracranial aneurysm is a fairly com-

mon condition that is often asymptomatic until the time of rupture [29]. Subarachnoid

hemorrhage (SAH) associated with aneurysmal rupture is a potentially lethal event with

more than 50% mortality rate and more than 50% permanent disability among those who

survived the initial haemorrhage [96]. Therefore, we can derive probability entries for the

node Outcome within 48 hours (outcome). These values are given below:

Table 6.16: The conditional probability distribution p(Outcome|Rupture,Stroke?)
Outcome

Rupture Stroke? Well Stroke Survive SAH Dead
False False 1.0 0.0 0.0 0.0
False True 0.0 1.0 0.00 0.00
True False 0.0 0.25 0.25 0.50
True True 0.0 0.25 0.25 0.50

We now have a fully specified BN model that we can use to answer questions on

some hypothetical clinical scenarios. To proceed, let us take a snapshot of prior marginal

distributions for all nodes in the model (Figure 6.9). The prior marginal distribution for

node Outcome in 48 hours shows a very high probability 99.66% for the well state and

very small probabilities for other states. The prior marginal distribution for states stroke,

Survive SAH and Dead are respectively 0.335%, 0.00167% and 0.00333%. Although

these probabilities are very low but if we reason in term of an hypothetical cohort of

1 million patients then the number of patients who would be dead in 48 hours without

screening and treatment is roughly 33.

To make inference about outcomes in 48 hours given different screening scenarios, we

can consider three different screening scenarios for a patient with a third-nerve palsy. At

the point of making the decision about diagnostic option to choose, the cause of the third

nerve palsy is unknown to the clinician, so we need not to enter a hard evidence on the

node “causes” in our scenarios. We can analyze the impact of each of the three decision

options on the outcome in 48 hours. In Figure 6.10 - 6.12, we have posterior marginal

distributions for the outcome node for each decision option.

For the first scenario, we enter MRA as hard evidence on the decision node Test per-
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Figure 6.9: The prior Marginal distributions for all nodes

formed. The interest is to assess how the evidence will affect the posterior marginal

distribution of the outcome node i.e. Outcome in 48 hours. Figure 6.10 shows a posterior

marginal distribution given MRA. Here we are making inference about what would have

happened if a MRA screening option was performed on a patient with a third nerve palsy.

Figure 6.10: The posterior Marginal distributions of BN nodes given MRA test and large aneurysm
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Our interest in the second scenario is to assess the impact of preforming a CA test on

this patient. That is, we want to access the impact of performing a CA test on a patient

with a third nerve palsy. The posterior marginal distribution for this scenario is shown in

Figure 6.11.

Figure 6.11: The posterior Marginal distributions of BN nodes given CA test and large aneurysm

We consider a third scenario to access what would have happened if neither of the

two diagnostic procedures was performed. The posterior marginal distribution for this

scenario is presented in Figure 6.12. Although the No test scenario would rarely occur

in practice. However, we can use the model to simulate what would have happened if a

patient with a third nerve palsy is placed on watchful waiting.

The posterior distributions for the outcome node from these scenarios and the prior

marginal distribution are presented in Table 6.17.

Table 6.17: Posterior distributions of outcome for different scenarios
Outcomes Baseline MRA option CA option No treatment
Well 99.66 99.999 98.99981 99.98115
Stroke 0.335 2.4012E−4 1.00005 0.00471
Survive SAH 0.00167 2.4012E−4 4.7525E−5 0.00471
Dead 0.00333 4.8025E−4 9.505E−7 0.00942

From Table 6.17 the CA test reduces the risk of death but also increases the risk of

stroke. This bring us back to the initial question asked at the beginning of the chapter. That

is, whether the marginal predictive accuracy of a CA technique compensates the attendant
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Figure 6.12: The posterior Marginal distributions of BN nodes given (No test) and large aneurysm

risk of complication. Supposing the risk of stroke and the risk of death are valued equally,

then we can use the posterior marginal distribution in Table 6.17 to access the impact

of each of the two screening options. The risk of stroke and death following an episode

of SAH from an undetected aneurysm by a MRA test are both 2.4012E−4%. Therefore

from a hypothetical cohort of 1 million patients with a third nerve palsy, screened with an

MRA technique, the expected number of patients that would possibly develop neurologi-

cal deficiency is 24 and about 48 are expected to die following an episode of SAH. On the

other hand, by subjecting this population to a CA screening, only 1 patient would possi-

bly die from an episode of SAH but with about 10,000 patients developing neurological

deficiency from screening complication or from an episode of SAH.

The model showed that the risk of the CA test is greater than that of the MRA test. We

can run the model with different prior probability assumptions for the screening procedure

as well as the complication node “stroke”. If we stick to the current assumptions about

the sensitivity and specificity of the two diagnostic techniques, then the risk in the CA

pathway is greater, unless the risk of complication from the CA technique is considerably

lower than the 1% that was assumed. We must recall that the risk of complication is only

available for diabetic patients. Hence we must stress that the hypothetical population of 1

million patients used as an illustration above is a population of insulin dependent diabetic
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patients with third nerve palsy.

This model has demonstrated that we can make use of probabilities, from experts and

from meta analyses and other sources, to inform the construction of a BN that models

key elements of clinical reality and the risks within. It illustrates how a clinician can use

a model like this to select the optimum treatment, on average, for a population and as a

basis for making decisions for individuals. A key element in the approach is its ability to

highlight the key states and probability estimates such that sensitivity to assumptions, in

the form of priors, can be tested. Indeed this model can be considered the accumulation

of elements central to Buchan, Winn and Bishop’s 4th paradigm approach [22].

Even with this success there are a number of weaknesses in the study carried out here

and corresponding opportunities for improvement. Firstly, there was some hope that we

could conjoin the models for the statistical parameter inference about aneurysms with

the diagnostic and predictive modelling offered here. At its simplest this would involve

passing probabilities, as parameters from a meta-analysis model to this one. However the

overall aim, which was not fully realised, was to consider the full distribution of param-

eter uncertainty derived from the meta-analysis into account here as a form of sensitivity

analysis. This would allow the clinician to test the sensitivity of the risks in this model

the uncertainty of the underlying probability estimates based on clinical data. Doing so

would complement the work done by Fenton and Neil [62] where they performed sensi-

tivity analysis by investigating the effect on results of changing expert provided priors.

The second weakness is that there was insufficient time to develop a means of formally

“folding in” the continuous variable distributions into a discrete decision support model,

in such a way that the second order uncertainties about every discrete probability are

accounted for, rather than treated as definitive point estimates. Indeed this is a contin-

uing and substantial research challenge that should be taken up by others, but remains

somewhat unrecognised by the Bayesian research community. Its implications are quite

profound since it suggests that the quantitative estimates produced using discrete BNs are

over confident.

Finally, dynamic time-based models are clearly the way forward in this sort of analysis

where each clinical stage can be modelled as a discrete time slice in the model using

Dynamic Bayesian Networks (DBNs). This would enable an object oriented style of
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modelling and help account for confounding processes as well as offering a powerful

explicit representation of the complexity of the clinical process as a whole.

6.4 Summary

We have so far described different tasks involved in developing clinical decision prob-

lems. Two clinical case studies have also been introduced to demonstrate the modeling

techniques described in the thesis. These case studies are not by any means exhaustive

on the applications of the modeling techniques described in the preceding chapters but

as prototypes on how we can use a BN model to learn parameters as well quantifying

risks of two competing techniques. We envisage a future where doctors will have access

to BN-based decision-support toolboxes that can automatically extract useful information

from the literature; use the information to update parameters of clinical models and au-

tomatically quantify risks of choosing alternative diagnostic test pathways for any type

of condition. Indeed, such decision-support systems will be able to present the results

in an intuitive manner such that it is easily understandable to both the patients and doc-

tors. Ultimately, the decision about the suitable clinical pathway to take still rests with the

patient and doctors and not with the model, but we believe a dynamic BN model would

provide a quantitative framework to balance the risks and benefit of different pathways.

Such a framework would guide the patient on their perception of risks of different clinical

options available to them.

The journey towards the realization of such dynamic models has only just begun.

There are still more to be done in order to achieve this. Essentially, the way we trans-

late the posterior distributions from meta-analysis into useful priors in decision model

requires more work. We have only shown that this is potentially possible with a BN

model as we have succeeded in using BN models for both meta-analysis and decision

models.
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Chapter 7

Summary and Conclusions

7.1 Summary

The BN framework is ideal for modeling clinical problems because it compactly repre-

sents probabilistic problems for efficient inference and also allows forward and backward

reasoning. This framework has been widely used in the clinical domain to model prob-

lems with discrete variables. Many practical applications of BNs either manually dis-

cretized continuous variables or restrict their distributions to the conditional linear Gaus-

sian (CLG), [107, 125]. The assumption of the linear Gaussian distribution may be too

restrictive for a realistic clinical problem and this has limited the scope of the application

of BN models.

Buchan, Winn and Bishop [22] have championed the realignment of Bayesian ideas

for medical decision support as the 4th paradigm. However, this 4th paradigm lacks a

unifying toolset, methodology or indeed a core algorithm for carrying out the necessary

computations needed to transform decision support in medicine. This thesis has gone

some way to testing four hypotheses implied by this 4th paradigm approach, specifically

centred on the use of a unifying approach to computation, using DD and HBNs, and by

illustrating, via case studies, how this approach can be used in practice.

In the following subsections we discuss the contribution of the thesis in helping ad-

dress each hypothesis.
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7.1.1 Modeling existing medical knowledge with plausible statistical distributions (H1)

One attractive feature of Bayesian analysis is the ability to incorporate subjective knowl-

edge. In a real life application of BN models, domain experts are normally involved in

the analysis to provide subjective opinion. Once this has been done, a Bayesian analyst

needs to translate the prior information into a mathematical form that can be incorporated

into the analysis. For example a clinician might say that the sensitivity of a procedure

is 92%. Often analysts use the relative frequency approach to translate existing medical

knowledge into a prior distribution in a BN model. This representation implies that the

parameter takes a specific value on the parameter space. Using dynamic discretization

it is possible to use statistical distribution to model existing medical knowledge. The

framework also allows analysts to give a probability that the prior for a medical param-

eter will be within a range of values in the parameter space. In this thesis, we have

demonstrated the flexibility of the Dynamic Discretization Algorithm in modeling exist-

ing medical knowledge using appropriate statistical distributions.

A key criticism of standard Bayesian statistical methodology is that the expert is only

allowed to express their expertise in the form of conjugate priors (and these mainly for

mathematical convenience). This thesis has illustrated that the approach taken using DD

is much more flexible, allowing expertise to be specified on sub-ranges of parameters,

using non-conjugate priors and using mixtures of prior distributions. This provides great

flexibility but there is some cost involved in this. The meaning and effect of a prior on

the prediction can be difficult to foresee, so experimentation is needed. However now the

choice of priors is wider than before and thus enhances our ability to properly represent a

decision maker’s prior choices and the effect of these to posterior results and predictions.

7.1.2 Parameter learning with multinomial BN models (H2)

Another issue related to expertise about the domain concerns situations where determin-

istic constraints exist but are neglected by conventional methodology. We have identified

some research studies where the decisions taken by clinicians are clearly not entirely

probabilistic but are treated as such. Particular attention has been paid to Dirichlet style

learning for multinomial distributions and we have shown that standard approaches, em-

bedded in software packages, cannot model this situation correctly. This thesis suggests
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remedies to this problem.

We described the use of the multinomial BN formulation in learning parameters of cat-

egorical variables. Several parameter learning techniques have been proposed to address

the challenges of tackling real life problems with Bayesian Network. In this work, we use

the dynamic the BN framework and dynamic discretization to learn parameter of a clin-

ical model to evaluate the impact of multi-disciplinary team meetings on the treatment

selection for patients with a diagnosis of cancers. In the clinical guideline used by the

multi-disciplinary, some treatments are never recommended for some diagnoses. For ex-

ample, benign diagnoses of the pancreas are never treated with chemotherapy, therefore,

it is logically impossible to have any record of a benign diagnosis of pancreas treated with

chemotherapy. We encode these logically impossible observations by zero but the conven-

tional technique could not distinguish between logically impossible observations and zero

observations. In particular, the Deal package, [20] requires equal number of parameters

and treats cases with no record as zero observed values. In other words, the conventional

techniques will compute posterior distributions for these parameters even when they are

encoded as logically impossible. The approach described in the thesis allows analysts to

dynamically create a multinomial model based on the number parameters required.

7.1.3 Causal learning with BN models (H3)

This thesis also demonstrated the application of the multinomial BN formulation and dy-

namic discretization to score causal relations between variables. This score allows us

to select a more plausible model (given the data) from a pool competing models. This

approach requires domain knowledge to formulate a list of hypotheses about a problem.

This is not a full-fledged causal learning approach but it has some desirable benefits over

the current causal learning techniques. For example, learning causal relations in a prob-

lem with logically impossible observations requires learning only the relevant parameters.

The Deal package [20] allows analysts to specify a starting BN model into the learning

process; it also allows analysts to incorporate existing medical knowledge through a ban-

list1 but it cannot handle unequal number of parameters. We extended the use of the

multinomial formulation to scoring causal relations. The result our experiments showed
1A list of impossible arcs between variables
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that, using dynamic discretization, we can learn causal relations with BN models. Al-

though this has not been achieved in this thesis but we have been able to show that this is

potentially possible.

A key aspect of the 4th paradigm is the mediation of model construction between ex-

pert and machine. This thesis takes a hypothesis driven approach by using the expert’s

views to reduce the a priori search space of possible causal conjectures and then testing

these using available data. This stands in contrast to existing machine learning method-

ology where greedy search is used to determine causal connection. Whilst it cannot be

claimed that this will guarantee success, nor is it claimed that the analysis done here is

comprehensive, we can claim that it shows potential and is worthy of further investigation.

7.1.4 Solving meta analysis with BN models (H4)

Another contribution of the thesis is the application of the Hierarchical Bayesian Network

(HBN) models (augmented by dynamic discretization technique) to solving meta-analysis

problems. Solving meta-analysis with a BN model implies that the full posterior distribu-

tion of a summary estimate can be used as prior in clinical decision models. This approach

captures the full uncertainty surrounding the summary estimate and also allows analysts

to check the sensitivity of a decision to the underlying studies.

Three meta analysis problems were analyzed in the thesis to demonstrate the use of

BN in solving meta-analysis problems. Our approach does not cover the system review

that produced the data so any inherent deficiencies in the data would affect the reliability

of the summary estimates therefore, we have only used these meta-analysis problems to

demonstrate how to perform meta-analysis using the BN framework.

The Beta-blocker clinical example showed that the result from the BN approach is

comparable with those obtained using the classical technique based on the fixed effect as-

sumption. The second example on the magnesium trial demonstrated a desirable feature

of a BN model that allows us to perform inference subject to a constrained parameter.

The BN approach allows us to constrain the posterior distribution of the heterogeneity pa-

rameter and then perform inference, subject to this constraint. DuMouchel, [53] pointed

out that the use of a significance test for homogeneity of the data is questionable, espe-

cially when the number of studies in a meta analysis is less than 20. However there are
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meta-analysis problems,[53, 223, 232] with less than 10 studies. The Bayesian approach

is suitable for meta-analysis with few studies as it does not requires a significant test

for homogeneity but rather it incorporates the full posterior distribution of heterogeneity

parameter in the analysis. Bayesian methodology has been described as a compromise

between the two opposing philosophies of meta-analysis [53, 232]; the philosophy of a

fixed effect who believe that τ is near 0 and those who believe that τ is large and “bor-

rowing strength” is hopeless in most cases. The BN approach allows us to specify a prior

distribution that supports these two philosophies. The third example on the prevalence

of intracranial aneurysms demonstrated the use of a BN model to summarize data from

a non-experimental design. This example also demonstrated the use of the KL-metric to

explore data for inconsistent observations. The conventional approach to meta-analysis

of proportions such as the prevalence of intracranial aneurysms uses a normal distribution

for the logit transformation of the true proportion, [223]. In this study we assume a beta

distribution for the true proportion and binomial likelihood for the observed data. The use

of dynamic discretization allows us to model data directly with appropriate distributions.

Ideally when comparing new methods against established techniques one should con-

duct the comparative analysis in as systematic and objective a way as possible. There

are thousands of meta-analyses published every year and unfortunately, due to time and

resource constraints it has not been possible to provide an exhaustive review of meta-

analysis in the clinical domain as one would have liked. Instead a snap shot has been

provided along with caveats and limitations on what might be learned from this alone.

The approach adopted here was pragmatic and focused on choosing those papers that

used popular methods of analysis (hence using MCMC as a comparator) where data was

available in the research paper itself and also where sufficient detail was provided to

enable the model to be reconstructed and then configured and tested. This study does not

claim that the analysis neither is free from selection bias nor is comprehensive, however it

does show how one can use HBNS and DD for meta-analysis in a flexible way and offers

some support to the research hypothesis.
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7.2 Conclusions

Four hypotheses were introduced at the beginning of the thesis in chapter 1. Various ex-

periments were conducted to answer these questions. The findings and conclusion based

on these experiment are described here, in turns.

Firstly, the thesis is intended to find out whether we can use any plausible statistical

distribution to model subjective priors in a BN models. This hypothesis was addressed in

chapter 4. Using the Dynamic discretization algorithm, it is possible to use conjugate and

non-conjugate priors in a BN model without compromising basic principles of Bayesian

inference. Indeed, we can specify subjective prior directly on a parameter or even treat

the parameter as a random variable drawn from some distributions. More so, the use

of dynamic discretization enables us to specify any plausible distribution for the hyper

parameters.

Secondly, the thesis is also intended to establish whether Bayesian Network models

can be used for parameter learning. This hypothesis was also addressed in chapter 4. The

Multinomial BN formulations was used to learn parameter of a clinical model in chapter

6.

To address the third hypothesis, we extended the use of the multinomial BN formu-

lation to learn causal relations. This hypothesis was address in chapter 4. Parameters

learning is an important part of modeling. A great deal of research effort has been de-

voted into developing parameter learning algorithms and here we have shown that it is

potentially possible to use the dynamic discretization algorithm for this purpose.

Finally, chapter 5 addressed the fourth hypothesis i.e. whether it is possible to use

BNs models to generate summary estimates from meta-analysis based on fixed and ran-

dom effect assumptions. The result showed that, using dynamic discretization, the BN

framework provides an alternative to the conventional techniques.

7.3 Future work

As we have emphasized at different sections of the thesis, our goal is to develop a unified

modeling approach to clinical decision problems. In particular, we want to use the BN

models for learning parameters, meta-analysis and for scoring hypotheses about causal

relations between variables. We argued that a posterior distribution from a parameter
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learning model could be used as an input into a decision making model. While this is

conceptually simple and theoretically possible, it has not been implemented in this thesis.

The thesis has also shown that we can use various statistical distributions to specify

a subjective prior provided by a medical expert about a parameter. Essentially, different

ways to specify subjective prior distributions were described using the reference, enthu-

siastic and sceptical priors. However, only the summary statistics of the posterior distri-

butions were used as inputs in the decision models. A future study to investigate how to

use the full posterior distributions would be an interesting addition to the existing body of

knowledge.

Some of the results presented in the thesis were compared with the MCMC (Gibbs

Sampling) approach to check the accuracy the dynamic discretization algorithm. While

MCMC simulation is by far the most widely used technique for approximate inference, it

might also be interesting to compare the results with other approximating techniques such

as mixture of truncated exponential, mixture of Gaussian and expectation propagation.

Furthermore, only three meta analysis problems were described in the thesis. Using

this technique to summarize other treatment effects would be a valuable contribution to

this work. So far, we have demonstrated the use of the technique to summarize, the odds

ratio and probability. Other clinical effects such as, risk ratio, risk difference, correlation

etc have not been summarized using the BN approach.
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