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Abstract

Internal gravity waves are a common feature of stratified fluids. They facilitate

transport of momentum and energy – thus influencing the evolution of the fluid.

There is a large body of research addressing the behaviour of gravity waves in

the terrestrial atmosphere. This thesis builds and extends the research to giant

planets – in particular to close-in extrasolar giant planets and the solar system

giant planet, Jupiter. Because the atmospheres of close-in giant planets are

expected to be strongly stratified, knowledge of the behaviour of gravity waves

in such atmospheres is especially important.

Close-in giant planets are thought to have their rotations and orbital period

1:1 synchronised, i.e., they are “tidally locked”. Such planets do not exist in

the Solar System. However, many are known from observations of extrasolar

systems. Their synchronisation means that they have a permanent day-side

and night-side leading to interesting atmospheric dynamics. Modelling these

circulations with global circulation models (GCMs) and comparing these mod-

els with observations is an active research area. However, many GCMs filter

some or all gravity waves removing their effects. This thesis addresses this

by explicitly looking at the effects gravity waves can have on the circulation.

It is shown that gravity waves provide a mechanism for accelerating, deceler-

ating, and heating the flow. Further, horizontally propagating gravity waves

are shown to provide a possible means for coupling the day- and night-sides of

tidally locked planets.

As well as affecting the dynamics of the atmosphere, gravity wave behaviour is

affected by the dynamics of the atmosphere. Therefore, gravity waves can be

used to explore atmospheric properties. In this thesis gravity waves observed

in Jupiter’s atmosphere, by the Galileo probe, are used to identify features of

Jupiter’s atmosphere such as the altitude of the turbopause and the vertical

profile of zonal winds at the probe entry site.

1



Declaration

This thesis describes work done at the Astronomy Unit of the School of Physics

and Astronomy, at Queen Mary University of London, under the supervision

of Dr. James Y-K. Cho.

Parts of Chapters 2 and 3 contain material that has been published in a peer

reviewed journal in the following article:

� Watkins, C., and J. Y-K. Cho (2010), Gravity Waves on Hot Extrasolar

Planets. I. Propagation and Interaction with the Background, Ap. J.,

714, 904.

Part of Chapter 4 contains material that has been submitted for publication

in a peer reviewed journal in the following article:

� Watkins, C., and J. Y-K. Cho (2012), The Vertical Structure of Jupiters

Equatorial Zonal Wind, derived using Mesoscale Gravity Waves.

Parts of Chapters 3 and 4 contain material that is currently being prepared for

submission for publication in peer reviewed journals in the following articles:

� Watkins, C., and J. Y-K. Cho (2012), Gravity Waves on Hot Extrasolar

Planets. II. Dissipation in the Upper Atmosphere.

� Polichtchouk, I., J. Y-K. Cho, C. Watkins, H. Th. Thrastarson, O. M.

Umurhan and M. de la Torre-Juarez (2012), Intercomparison of General

Circulation Models for Hot Extrasolar Planets

I hereby declare that the work presented in this thesis is my own, unless oth-

erwise stated.

Christopher Watkins

20 July 2012

2



Acknowledgements

My thanks goes to my supervisor, James Cho, for all his support and encour-

agement during my period as his student. I have benefited enormously from

his knowledge, experience and guidance.

I also owe a debt of gratitude to the members of the Planetary Atmosphere

Dynamics Group (otherwise known as the “PAD Group”) for providing many

hours of interesting and stimulating discussions: Inna Polichtchouk, Heidar

Thrastarson, Orkan (Matt) Urmurhan, Tommi Koskinen, Ali Gülsen, Zoe
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Chapter 1

Introduction

Until the last decade of the twentieth century the only known giant planets

were those such as Jupiter in the Solar System. However, in 1995 the discovery

of a giant planet orbiting the star 51 Pegasi confirmed the existence of giant

planets beyond the Solar System (Mayor and Queloz, 1995). A few years

earlier planets had been discovered orbiting a pulsar (Wolszczan and Frail,

1992). However, these planets were not giant planets, having masses of only

about four times that of the Earth. Since these early discoveries, observations

using improved techniques and dedicated telescopes and spacecraft, have led

to a large increase in the number of planets known to exist beyond the Solar

System. As of December 2012, the number of confirmed planets stands at

over 850, of which more than 710 have masses greater than Uranus; hence, the

majority of planets known thus far may be thought of as giant planets. The

Kepler space mission has more than 2,000 additional “candidate” planets. It

is clear that the number of known extrasolar planets will continue to grow for

some time to come.

Even with this explosive growth in the number of known extrasolar planets,

there are still goals to be achieved in the discovery of new planets. This

includes the detection of an Earth-like planet in the so-called ”Goldilocks-

zone”; such a planet may be capable of supporting life. Research effort is now

also being focussed on increasing our understanding of those bodies already

known. For example, the proposed Exoplanet Characterisation Observatory

(EChO) space mission will allow investigation of the atmospheres of extrasolar

planets. Within the known extrasolar planets there are bodies that are very
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1.1. Close-In Extrasolar Planets

different from those in the Solar System, such as the “hot-Jupiters”. These

are Jupiter-sized planets that orbit very close (within ∼ 0.05 AU) to their

respective central stars. Understanding the characteristics and formation of

these new type of planets is currently an active research area. For example,

there is a fast-growing literature and increasing number of meetings dedicated

to the atmospheric dynamics of these planets.

1.1 Close-In Extrasolar Planets

The discovery of 51Pegasi b introduced the new science of hot-Jupiter astro-

physics. These planets, in orbits with very small semi-major axes (in com-

parison to the Solar System), proved to be a challenge to planetary formation

models. Currently, they are thought to form at a distance from the central

star, the “snow-line”, beyond which volatiles such as water and methane con-

dense. Through interactions with the proto-planetary disc, the formed planets

then migrate inwards towards the star, leading to the small orbits at which we

observe them today. The details of this process are still the focus of intensive

research.

The majority of close-in giant planets also have orbits with low eccentricity.

It is believed that giant planets in such orbits interact tidally with their stars,

causing their orbits to circularize (i.e., eccentricity goes to zero) and synchro-

nize their spin and orbit periods (Goldreich and Soter, 1966). Thus, such

planets have permanent day and night sides.

1.1.1 Observations

The main observational technique for extrasolar planets is the radial veloc-

ity method; the Extrasolar Planets Encyclopaedia (http://exoplanet.eu/) lists

61% of extrasolar planets as discovered using it. Indeed, it was with this

method that 51Pegasi b was discovered. The method takes advantage of the

fact that, in a planet-star system, both bodies orbit the barycentre of the

system. Thus, the star periodically moves toward and away from an observer.

This motion can be detected as a time-dependent doppler-shift in the spectrum

of the star and the presence of the planet deduced.
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1.1. Close-In Extrasolar Planets

Beyond the presence of the planet, the radial velocity technique provides the

period of the planet – and, from the mass of the star and Kepler’s third law,

the mass of the planet. As the inclination i of the perpendicular to the orbital

plane to the line of sight is unknown, the deduced mass is uncertain by a

factor of sin i. If the planet also passes across the line of sight of the observer

(i.e., transits the star), the variation of the redshift during the transit gives

information about the relative alignment of the planetary orbit axis and the

stellar spin axis: this is the Rossiter-McLaughlin effect (McLaughlin, 1924;

Rossiter, 1924).

The light curves of stars with transiting planets exhibit a regular, slight dim-

ming of the star, as the planet passes between the star on the observer. The

observer is in the plane of the planet’s orbit giving sin i ≈ 1. Therefore, when

combined with radial velocity observations, the planet’s mass can be obtained.

The shape of the curve can also reveal the size of the planet, which combined

with the mass gives the density of the planet – hence some insight into the

composition of the planet. Variations in the timing and duration of the tran-

sit can indicate the presence of other bodies, such as moons and additional

planets.

From their bulk density, the atmospheres of extrasolar giant planets (EGPs)

are thought to consist primarily of hydrogen with helium as the next most

abundant constituent, like Jupiter. Spectra obtained during a transit, com-

pared to spectra at other times, allow the composition of the atmosphere to

be deduced. This is accomplished by assuming that differences in the spec-

tra are due to the atmosphere. Indeed, it was spectroscopy that was used to

first show that atmospheres on extrasolar planets existed (Charbonneau et al.,

2002). The detailed composition of such atmospheres has become clearer with

the discovery of many species – such as atomic hydrogen (Vidal-Madjar et al.,

2003), water (Tinetti et al., 2007) and methane (Swain et al., 2010) – through

spectroscopy. As well as composition spectroscopy can give insight into other

properties, such as temperature. There has even been a claim to observe a

doppler shift in the transmission spectrum of HD209458 b, which has been

taken to be evidence of winds of approximately 2 km s−1 (Snellen et al., 2010).

The light curve of stars with transiting (and near transiting) planets contains

information on the variation of light radiated by the planet toward the ob-

server as it orbits the star. This shows the temperature distribution on the

12



1.1. Close-In Extrasolar Planets

“surface” of such planets. It may be arguable that on a tidally locked planet

that the hottest part would be the sub-stellar point, the point where the star

is permanently directly overhead. However, light-curves have shown that the

“hot-spot” can be displaced by a significant amount (Knutson et al., 2007) from

the sub-stellar point on the planet. The largest displacement so far deduced

from observation is 80◦; this places the “hot-spot” nearly at the terminator,

the boundary between the day-side and night-side (Crossfield et al., 2010).

As well as transiting the star such exoplanets are eclipsed by (i.e., pass be-

hind) the star. This gives access to the emission spectrum of the planet. In

general, the shape of spectra depends on the temperature of the atmosphere.

Hence, the dependence provides a means to diagnose a temperature profile,

via mathematical inversion. Some studies using this technique have identi-

fied “temperature inversions” in extrasolar planet atmospheres – that is, the

existence of a stratosphere (e.g., Knutson et al., 2008, 2009).

The transit method is well suited for large-scale surveys designed to detect

large numbers of extrasolar planets. The large number allows investigation of

the statistical properties of the planets. One such survey is the Kepler mis-

sion, a space-based telescope launched in 2009. The space telescope acquires

photometry of over 145,000 stars. The length of the mission allows planets

with longer orbital periods to be detected. As of December 2012 the mission

has announced 105 planets, with more than 2320 candidate planets.

Microlensing events, in which the brightness of background stars are tem-

porarily brightened by the gravitational effect of foreground planets, have also

been used to detect extrasolar planets (e.g. Bond et al., 2004). Additionally,

direct images of some exoplanets have now been obtained – for example, the

HR 8799 planetary system (Marois et al., 2008). For a more complete review of

the available observational techniques, including and assessment of prospects

for improvement, see, for example, part II of Seager (2010).

1.1.2 Atmospheric Dynamics Modelling

There have been a number of studies modelling the atmospheric dynamics of

hot-Jupiters using a range of mathematical models (equations and numerical

algorithms) and physical assumptions. The models include those based on
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1.2. Jupiter

one-layer equivalent barotropic equations, using the pseudospectral method

(e.g., Cho et al., 2003); hydrostatic primitive equations, using the finite vol-

ume method (e.g., Showman et al., 2008, 2009) and pseudospectral method

(e.g., Heng and Vogt, 2011; Rauscher and Menou, 2010; Thrastarson and Cho,

2010, 2011); and, the full Navier-Stokes equations, using the finite difference

method (e.g., Dobbs-Dixon, Cumming, and Lin, 2010; Koskinen et al., 2007).

These studies also take a varied approach to representing the forcing, including

relaxation schemes and one dimensional radiative transfer.

In general, the studies predict that general circulations of hot-Jupiters contain

a small number of jets. Many of the studies obtain a broad eastward equatorial

jet which, in some cases, is of a considerable speed (i.e., supersonic), flanked

by weaker westward jets (e.g., Showman et al., 2008). Moreover, hot-spots

which are displaced east from the substellar point and “stratospheres” have

also been produced by simulations (e.g., Showman et al., 2009). However,

much work remains to be carried out to investigate the robustness of these

findings: features such as zonally-symmetric eastward equatorial jets and mul-

tiple hot-spots, whose locations change with time, have also been produced in

simulations (e.g., Thrastarson and Cho, 2010).

Studies have been performed to understand how “dynamical cores” of GCMs

that are designed to model Earth’s atmospheric circulation behave in condi-

tions like extrasolar giant planet (EGP) atmospheres. The effects of the initial

conditions and the dissipation used have been investigated (Thrastarson and

Cho, 2010, 2011), and rigorous tests for the inter-comparison of “extraso-

lar planet GCMs” have been performed (Heng, Menou, and Phillipps, 2011;

Polichtchouk et al., 2012). To augment the GCMs and improve the solutions

that they produce, it is also important that parametrisation of key physical

processes that impact the circulation (e.g., modification of radiative forcing by

clouds and of drag by atmospheric gravity waves and tides) are either plausibly

adapted from existing treatments or created anew.

1.2 Jupiter

Jupiter was known to the ancients as it is an object that can be seen in the

night-sky with the naked eye. However, it was not until the invention of the
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telescope that exploration of the Jovian system truly began. This started when

Galileo described Jupiter’s four major moons in 1610 in his book, Sidereus

Nuncius. Twenty years later, the banded structure of Jupiter was reported by

Niccol Zucchi (Rogers, 1995). Over the following four centuries the atmosphere

of Jupiter has been of constant interest to both professional and amateur

astronomers.

The drive to understand transience in Jupiter’s atmosphere (e.g., the recent

disappearance and subsequent reappearance of the South Equatorial Belt),

alongside long-lived features (e.g., the Great Red Spot) has led to a substantial

literature dedicated to Jupiter’s atmosphere. Myriad images of the planet

have been obtained during fly-bys by space missions. The Galileo mission,

which orbited Jupiter for nearly eight years, was dedicated to the study of the

planet and included an atmospheric probe. Currently, the Juno spacecraft is

travelling to Jupiter and is due to enter orbit in 2016. This mission, among

other objectives, will investigate the convective interior of Jupiter and its links

to the planet’s atmospheric circulation.

1.2.1 Jupiter’s Atmosphere

Jupiter’s atmosphere is primarily composed of hydrogen (∼ 90% by volume),

with helium as the other major component (∼ 10% by volume). There are

small amounts of other species, such as methane and ammonia. The latter

forms the clouds that define the “surface” of the planet. Below this a layer of

water clouds is thought to exist.

Jupiter’s atmosphere has a troposphere below a roughly isothermal strato-

sphere. There is a thermosphere above the stratosphere. Unlike the Earth,

Jupiter does not have a mesosphere. The ammonia clouds form around the

level of the tropopause, where the troposphere and stratosphere meet. Within

the clouds a number of zonal bands (known as belts and zones) can be clearly

seen. The bands are correlated with prograde and retrograde jets. While the

horizontal extent of these jets can be easily seen from their effect on the clouds,

the vertical range they cover is unknown. The jets may be shallow in nature;

it has been shown that jets can emerge from turbulent flow in a shallow ro-

tating sphere (e.g., Cho and Polvani, 1996a,b). Such models, while successful

in many ways, did not produce strong prograde equatorial jets, as is observed
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1.3. Thesis Outline

on Jupiter. More recent work has shown models that include uniform ther-

mal dissipation remedies this, leading to prograde equatorial jets (Scott and

Polvani, 2008). Others argue that cloud features are surface manifestations

of rotating cylinders, formed deep in Jupiter in accordance with the Taylor-

Proudman theorem (Busse, 1976; Heimpel, Aurnou, and Wicht, 2005). These

models do produce strong prograde equatorial jets, but they also produce jets

with significant peak velocities in the high latitudes – in contradiction to the

observed meridional structure of the jets.

1.3 Thesis Outline

This thesis describes the behaviour of atmospheric gravity waves on giant plan-

ets, both extrasolar and Solar. Chapter 2 reviews the theory of linear grav-

ity waves and extends their governing equation to the pseudo-incompressible

case (Durran, 1989). The technique used to solve the equation is described,

along with parametrisations used to model non-linear processes such as wave-

breaking. Chapter 3 investigates how gravity waves behave on a typical EGP.

Both vertical and horizontal propagation are considered, along with saturation

and encounters with critical layers. Propagation of gravity waves in a dissi-

pative atmosphere is also considered. The effects such waves have in regions

where viscosity and thermal diffusivity dominate are described. The impli-

cations of these finding for general circulation models (GCMs) are discussed.

Chapter 4 considers gravity waves on and in Jupiter. Using a mathematical

inversion of the governing equation of gravity waves, the atmospheric proper-

ties that can be deduced from observations of mesoscale gravity waves in the

region from the upper troposphere to the lower thermosphere are investigated.

The role gravitational atmospheric tides may play in Jupiter’s circulation is

also briefly considered. Finally, in Chapter 5, a summary of the thesis is given

and avenues of future work stemming from the thesis work are outlined.
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Chapter 2

Theory of Atmospheric Gravity

Waves

A stably stratified atmosphere can support internal gravity or buoyancy waves,

also known as g-modes (e.g., Thompson, 2006). They are oscillations that arise

from the buoyancy of the fluid. They are readily excited by many processes,

such as flow over physical and thermal topography, convective overshoot, in-

stabilities and flow adjustment processes (see, e.g., Fritts and Alexander, 2003,

for a review of generation mechanisms). They propagate through atmospheres,

both horizontally and vertically. These waves are much studied in the ter-

restrial atmosphere and oceans (e.g., Gill, 1982; Gossard and Hooke, 1975;

Lindzen, 1990; Nappo, 2002). They have been observed in the atmospheres of

solar system bodies including Jupiter (e.g. Flasar and Gierasch, 1986; Reuter

et al., 2007; Young et al., 1997).

Gravity waves play an important role in the dynamics of atmospheres. They

can propagate vast distances through many layers of the atmosphere. Thus,

they provide a mechanism via which surface phenomena (such as topography)

may have significant effects far up in the atmosphere. Turbulence generated by

breaking gravity waves helps to keep the lower atmosphere well mixed. Above

this layer, gravity waves play a significant role in the dynamics of the middle

atmosphere (Andrews, Holton, and Leovy, 1987).

In this chapter the theory required to understand the behaviour of linear grav-

ity waves is derived. Although the waves are described in a linear treatment,
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2.1. Basic Concepts

parameterisations for handling the key non-linear processes of interactions with

critical layers (regions where the wave is not supported) and wave breaking

are given. This allows the role that the waves play in heating and accelerating

the atmosphere to be practically studied.

2.1 Basic Concepts

2.1.1 Potential Temperature

Stratified atmospheres have a positive vertical entropy gradient. In this thesis

this is represented by a positive gradient in the related concept of potential

temperature θ. This is defined as the temperature a parcel of air would attain

if it were moved adiabatically to a reference pressure pref (usually taken to be

1 bar). For an adiabatic process, according to the first law of thermodynamics,

dQ = cpdT − αdp = 0 . (2.1)

Here dQ is the heating, which is zero for an adiabatic process; dT is the

change in temperature; dp is the change in pressure; α is the specific volume,

the reciprocal of the density ρ; and, cp is the specific heat at constant pressure,

taken to be a constant. Assuming that the atmosphere can be well modelled

as an ideal gas, the equation of state is,

p = ρRT , (2.2)

where R is the gas constant. Substituting for α and integrating between pref

and p gives the potential temperature as

θ = T

(
pref
p

)κ

, (2.3)

where κ = R/cp.
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2.1. Basic Concepts

2.1.2 Hydrostatic Equilibrium

Hydrostatic equilibrium is the assumption that the weight of the atmosphere

is balanced by the pressure force pushing the atmosphere outward to space:

∂p

∂z
= −ρg , (2.4)

where g is the acceleration due to gravity. This is an approximation, but

an extremely good one. For example, if the balance were not met, a gravity

dominated atmosphere would collapse or, if pressure dominated, the atmo-

sphere would escape to space. The latter does happen to some extent, but

it is nowhere large enough to invalidate the use of the approximation in our

context. Indeed, in most cases it can be assumed that the atmosphere as a

whole, the background state, is hydrostatic with impunity.

2.1.3 Adiabatic Lapse Rate

Using Equation (2.4), to substitute for dp in Equation (2.1), gives the adiabatic

lapse rate,

Γ = −dT

dz
=

g

cp
. (2.5)

This is the rate at which an atmospheric parcel cools as it moves adiabatically

upward through the atmosphere.

2.1.4 The Brunt–Väisälä Frequency

The behaviour of an air parcel with mass mp which is adiabatically displaced

vertically by a small displacement δz can now be investigated. Using Newton’s

second law and Equation (2.2), the acceleration of the parcel is given by,

d2 (δz)

dt2
= −g mp −ma

mp

= −g Ta − Tp
Ta

, (2.6)

where ma is the mass of the atmosphere displaced by the parcel and Ta and Tp

are the atmospheric and parcel temperatures, respectively. Expanding Ta and

Tp to first order about an equilibrium temperature T0, and noting that dTp/dz
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2.1. Basic Concepts

is the adiabatic lapse rate, gives

d2 (δz)

dt2
= − g

Ta

(
∂Ta
∂z

+
g

cp

)
δz . (2.7)

Taking the logarithmic derivative of Equation (2.3) with respect to z and using

Equations (2.4) and (2.2) to eliminate the pressure and density gives

1

θ

∂θ

∂z
=

1

Ta

(
∂Ta
∂z

+
g

cp

)
. (2.8)

Substituting this into Equation (2.7) gives

d2 (δz)

dt2
= −g

θ

∂θ

∂z
δz = −N2δz . (2.9)

This describes a simple harmonic oscillator with frequency,

N =

√
g

θ

∂θ

∂z
, (2.10)

the Brunt–Väisälä frequency. The solution to Equation (2.7) is

δz(t) = AeiNt +Be−iNt . (2.11)

From this solution we can see that when N is imaginary (i.e., ∂θ/∂z < 0),

the displacement grows exponentially. This is convective instability. On the

other hand, if N is real (that is, ∂θ/∂z > 0), the atmosphere is stably stratified

and the parcel oscillates about its equilibrium position with the Brunt–Väisälä

frequency.

2.1.5 Scale Heights

Using the ideal gas equation of state, Equation (2.2), to eliminate density from

Equation (2.4) and integrating gives the following expression for the pressure:

p(z) = ps exp

{
−
∫ z

zs

g

RT (ζ)
dζ

}
, (2.12)
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2.2. The Fluid Equations

where ps is the pressure at zs. For an isothermal atmosphere (i.e., when T (ζ)

is constant), and assuming g and R to be constant, taking zs = 0 gives,

p(z) = ps exp

{
− z

Hp

}
. (2.13)

Here Hp is the pressure scale height, the distance over which the pressure falls

by a factor of e, defined by

1

Hp

=
g

RT
= −1

p

∂p

∂z
=
γg

c2s
, (2.14)

where γ = cp/cv, cv is the specific heat at constant volume and cs =
√
γRT

is the speed of sound (Holton, 2004). Analogous e-folding distances can be

defined for the density and potential temperature, Hθ and Hρ, respectively:

1

Hρ

= −1

ρ

∂ρ

∂z
(2.15)

1

Hθ

=
1

θ

∂θ

∂z
. (2.16)

The three scale heights are related by

1

Hθ

=
1

Hρ

− 1

γHp

. (2.17)

An incompressible flow is equivalent to one where the sound speeds becomes

very large, tending to infinity. In such a flow Equation (2.14) shows that 1/Hp

becomes small, and then from Equation (2.17) it can be seen that the density

and potential temperature scale heights can be taken as equivalent.

2.2 The Fluid Equations

2.2.1 Rotation

The dynamics of linear gravity waves is described by the Taylor-Goldstein

Equation (T.G.E.). This equation is derived (see Section 2.3.1) from the full,

three-dimensional hydrodynamics equations (Batchelor, 1967). The rotation

of the planet is neglected. This is a valid approximation when the accelerations
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2.2. The Fluid Equations

due to the Coriolis forces are dominated by the advection of momentum:

u
∂u

∂x
> fv , (2.18)

where u is the zonal flow and v the meridional flow; f = 2Ω sinφ is the Coriolis

parameter, where Ω is the planet’s rate of rotation; and, φ the latitude. Taking

U as a typical flow speed for u, ∂u and v and taking Ω as a representative value

for f , as long as the scale of the motion is less than L such that

L <
U
Ω
, (2.19)

we can neglect rotation. However, for the larger scale motions associated with

the tides, discussed in Section 5.1.1, rotation cannot be neglected.

2.2.2 The Basic Equations

Only motions in an inviscid fluid in two dimensions, the horizontal and the

vertical, are considered in this derivation of the TGE. Given this set-up, the

relevant 2-D hydrodynamical equations are (see, for example, Vallis, 2006),

the momentum equation, the continuity equation and the energy equation:

Du

Dt
= −1

ρ
∇p+ g , (2.20a)

Dρ

Dt
= −ρ∇ · u , (2.20b)

Dθ

Dt
= 0 , (2.20c)

where u ≡ (u,w) is the flow in (x, z) and g ≡ (0,−g) is the acceleration due

to gravity. The operators are the material derivative, D/Dt ≡ (∂/∂t+ u · ∇),

and the two-dimensional gradient, ∇ ≡ (∂/∂x, ∂/∂z). These equations are

augmented with the ideal gas equation of state, Equation (2.2), and the def-

inition of potential temperature, Equation (2.3), which close the system.

The thermodynamic properties of the atmosphere are assumed to have a mean

background state, indicated by a subscript 0, that varies only with altitude.

Perturbations in space and time, indicated by a subscript 1, are superimposed
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2.2. The Fluid Equations

on the background:

ρ (x, z, t) = ρ0 (z) + ρ1 (x, z, t) , (2.21a)

p (x, z, t) = p0 (z) + p1 (x, z, t) , (2.21b)

θ (x, z, t) = θ0 (z) + θ1 (x, z, t) . (2.21c)

The background is taken to be in hydrostatic balance, which gives

dp0
dz

= −gρ0 . (2.22)

The perturbation quantities are small compared to the background quantities.

This allows the approximation,

(ξ0 + ξ1)
υ ≈ ξυ0

(
1 + υ

ξ1
ξ0

)
, (2.23)

to be used. The velocity fields are also decomposed into a background profile

with superimposed perturbations. Here there is no requirement for the per-

turbation to be small compared to the background. Indeed, all vertical flows

are treated as perturbations from a still background by taking w0 = 0. This

is reasonable as the background is assumed to be in hydrostatic balance. This

gives,

u (x, z, t) = u0 (z) + u1 (x, z, t) , (2.24a)

w (x, z, t) = w1 (x, z, t) . (2.24b)

Finally, it is assumed that terms which are products of perturbation quantities

(i.e., second order or higher perturbations) can be neglected.

2.2.3 Treatment of the Continuity Equation

The removal of sound waves from the possible solution set of the fluid equations

is beneficial. The effects of sound waves are, in general, physically unimportant

in atmospheric studies and their removal allows theoretical studies to concen-

trate on the physically relevant phenomena. Further, removing sound waves

allows numerical studies to use larger time steps whilst retaining numerical

stability (Durran, 1998).
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2.2. The Fluid Equations

There are several ways to filter sound-wave solutions. For example, requiring

the atmosphere to be hydrostatic filters all sound waves, except for horizontally-

propagating Lamb waves. This is the usual situation in GCMs that use tradi-

tional primitive equations (Holton, 2004). However, in the TGE sound waves

are filtered by approximating the continuity equation and the variation of the

thermodynamic variables. There several variations to the way the continu-

ity equation is treated. The effect of some of them on Equation (2.20) are

discussed below.

The Constant Density Approximation

The simplest approach is to assume that the density and potential temperature

profiles can be represented by some mean value. That is, in effect, to assume

that the fluid has constant density and potential temperature. The fluid is

therefore incompressible and the continuity equation can be reduced to

∇ · u = 0. (2.25)

The perturbations in the thermodynamic properties of the fluid must be small

compared to the mean values. Thus the inertia of the flow, related to the

product of density and velocity, is assumed to be little affected by density

perturbations. However, gravity is strong, thus it cannot be assumed that

the buoyancy, related to the product of gravity and density, is unaffected by

density perturbations. This allows terms that include the density perturbation

to be neglected as small except where involving gravity. As shown by Spiegel

and Veronis (1960) to be a valid approximation this requires the depth of the

fluid to be much less than the fluid’s scale height. The studies here presented

consider waves moving in atmospheres that are 10 or more scale heights in

depth so the constant density approximation is not appropriate for this work.

The Boussinesq Approximation

The Boussinesq flow is similar to a constant density flow giving the same equa-

tion set but one where the thermodynamic variables are allowed to vary signif-

icantly with height. Changes in density are ignored except when multiplied by

gravity. In this approximation the flow is again treated as incompressible and
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2.2. The Fluid Equations

so Equation (2.25) is used to approximate the continuity equation. As shown

in Batchelor (1967) to be valid this requires the Mach number of the flow to

be much less than 1 and the vertical scale of the motion to be small compared

to the fluid scale height. The former is generally valid in the Solar System;

for example the maximum observed flows on Jupiter are far below the speed

of sound (Ingersoll, 1990). However, this may not be the case on hot-Jupiter

planets where some modelling and observational studies have claimed to find

supersonic or near supersonic winds (Cooper and Showman, 2005). On the

Earth this regime may be appropriate for studying many aspects of gravity

wave theory (e.g. Nappo, 2002), however in Chapters 3 and 4 gravity waves

with wavelengths of the order of a scale height (∼ 27 km for Jupiter and

∼ 480 km for HD 209458 b) are considered. Therefore the TGE derived using

the Boussinesq approximation is not used in later chapters.

The Anelastic Approximation

There are several versions of the anelastic approximation. In all cases the

continuity equation is approximated as

∇ · (ρ0u) = 0 , (2.26)

and the vertical scale of the motion is allowed to be of the order of a scale

height. However, the wave speed must be much less than that of sound. This is

the case for the gravity waves studies in the following chapters. The equation

set proposed by Ogura and Phillips (1962) assumes a constant background

mean potential temperature from which there are small deviations. This set

of equations was extended in Wilhelmson and Ogura (1972) by allowing the

background potential temperature to vary with height, however, this results

in an equation set that does not conserve energy. The equations in Lipps and

Hemler (1982) assumes a slowly varying background potential temperature and

allows energy to be conserved. Interestingly, although there are differences

between the two equation sets in Ogura and Phillips (1962) and Lipps and

Hemler (1982) they both lead to the the same form of the TGE. However, in

the Ogura and Phillips (1962) version the Brunt–Väisälä frequency is constant.

The anelastic version of the TGE is used in this thesis.
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2.3. The Taylor-Goldstein Equation

The Pseudo-Incompressible Approximation

Durran (1989) proposed the pseudo-incompressible approximation. Here the

continuity equation is approximated by

∇ · (ρ0θ0u) = 0 , (2.27)

and energy is conserved. It is assumed that the effect that the pressure per-

turbation has on the density perturbation is negligible. In common with the

other approximations it requires that the speed of the motion is much smaller

than the sound speed, however it only requires that pressure perturbations

are small. This is a useful property but is not essential for this study as

when perturbations in θ become large non-linear phenomena become impor-

tant for gravity waves and they saturate, see Section 2.5.2 for details. A

pseudo-incompressible version of the TGE is, to my knowledge, derived for

the first time in Section 2.3.1.

2.3 The Taylor-Goldstein Equation

2.3.1 Derivation of the TGE

Combining the equation of state Equation (2.2) with Equation (2.3) and lin-

earising gives,
θ1
θ0

= −ρ1
ρ0

+
1

γ

p1
p0
. (2.28)

Applying the linearisation described above in Equations (2.21) and (2.24) along

with the various treatments of the continuity equation to Equation (2.20) then
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Equation set σ1 σ2 σ3

Constant Density 0 0 0
Boussinesq 1 0 0
Anelastic 0 1 0
Pseudo-incompressible 0 1 1

Table 2.1 – Approximations of the fluid equations

using Equation (2.28) gives the following set of switched equations

Du1
Dt

+ u′0w1 +
∂Φ1

∂x
= 0 , (2.29a)

σnh
Dw1

Dt
+
∂Φ1

∂z
− σ1

Φ1

Hθ

− gΘ1 = 0 , (2.29b)

∂u1
∂x

+
∂w1

∂z
− σ2

w1

Hρ

+ σ3
w1

Hθ

= 0 , (2.29c)

DΘ1

Dt
+
N2

g
w1 = 0 , (2.29d)

where the new variables Φ1 = p1/ρ0 and Θ1 = θ1/θ0, have been introduced.

Also note that here the operator D/Dt ≡ (∂/∂t+ u0∂/∂x) and a prime indi-

cates differentiation w.r.t. z. The switches indicate which terms are used to

derive each of the versions of the TGE using the various approximations of the

continuity equation discussed above and shown in Table 2.1. Note that switch

σnh when equal to 1 produces a non-hydrostatic version of the equation and a

hydrostatic version when equal to 0.

Now, it is assumed that the solutions in the perturbations are wavelike in the

horizontal and in time, so, new variables are introduced as follows:

u1(x, z, t) = w̃(z)eik(x−ct) , (2.30a)

w1(x, z, t) = ũ(z)eik(x−ct) , (2.30b)

Θ1(x, z, t) = Θ̃(z)eik(x−ct) , (2.30c)

Φ1(x, z, t) = Φ̃(z)eik(x−ct) , (2.30d)

where k is the horizontal wavenumber, c is the horizontal phase speed and it
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is understood that the real part is to be taken. Thus, the substitutions,

∂

∂x
7→ ik , (2.31a)

D

Dt
7→ −ik(c− u0) , (2.31b)

can be made to Equation (2.29) to give

−ik (c− u0) ũ+ u′0w̃ + ikΦ̃ = 0 , (2.32a)

−σnhik (c− u0) w̃ + Φ̃
′ − σ1

Hθ

Φ̃− gΘ̃ = 0 , (2.32b)

ikũ+ w̃′ −
(
σ2
Hρ

− σ3
Hθ

)
w̃ = 0 , (2.32c)

−ik (c− u0) Θ̃ +
N2

g
w̃ = 0 . (2.32d)

The quantity (c − u0) is known as the intrinsic phase speed. It is the phase

speed of the wave in the reference frame of the flow. It has an important role in

the behaviour of linear waves, especially in the breakdown of the linear theory

at critical layers, where it becomes zero and the TGE becomes singular, see

Section 2.5.2 for details. Eliminating ũ, Θ̃ and Φ̃ in Equation (2.32) gives a

second order differential equation in w̃,

w̃′′ − υ (z) w̃′ + ψ (z) w̃ = 0 , (2.33)

where

υ =
σ2
Hρ

+
σ1 − σ3
Hθ

, (2.34a)

ψ =
N2

(c− u0)
2 +

u′′0
(c− u0)

+

(
σ2
Hρ

− σ1 + σ3
Hθ

)
u′0

(c− u0)
+
σ2H

′
ρ

H2
ρ

− σ3H
′

θ

H2
θ

−σnhk2 .

(2.34b)

Finally, a new variable is introduced,

ŵ = w̃ exp(−χ(z)) , (2.35)
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where

χ(z) =
1

2

∫ z

zs

υ(ζ)dζ . (2.36)

Substituting Equation (2.35) into Equation (2.33) gives the canonical form of

the TGE,

ŵ′′ +m2(z)ŵ = 0 , (2.37)

where m is known as the index of refraction. The equation can be thought of

as a harmonic oscillator with m being the local vertical wavenumber given by,

m =

[
N2

(c− u0)
2 +

u′′0
(c− u0)

+

(
σ2
Hρ

− σ1 + σ3
Hθ

)
u′0

(c− u0)

−

{
σ2

(
1− 2H

′
ρ

4H2
ρ

)
+ (σ1 + σ3)

(
1 + 2H

′

θ

4H2
θ

)
− σ3

2HρHθ

}
− σnhk

2

]1/2
.

(2.38)

The index of refraction consists of five terms: the buoyancy term, curvature

term, shear term, scale height term and non-hydrostatic term. Note in cases

where the wave is a priori to be considered as hydrostatic—e.g., when N2 ≫
ω2 where ω is the wave frequency (Lindzen, 1990)—that the non-hydrostatic

switch should be set to zero, σnh = 0, and the hydrostatic term does not appear.

However, in general, the key contributors to m are the buoyancy and non-

hydrostatic terms. The other three terms contribute to the detailed behaviour

of the wave, but it is generally the buoyancy and non-hydrostatic terms that

control whether the wave propagates. This is because, in practice, the shear

and curvature of the flow is small and the scale height large. For waves with

large horizontal wavelengths, the non-hydrostatic term is small and the waves

can be taken to be hydrostatic; then, the buoyancy term dominates. In these

cases, as long as the atmosphere is stratified (i.e., N2 > 0) and c ̸= u0, the

wave will propagate vertically. However, for shorter, non-hydrostatic waves,

it is possible that k2 > [N/(c− u0)]
2. In these cases, m is imaginary and

the wave does not propagate vertically, even in a stratified atmosphere. This

situation is discussed in the context of extrasolar planets in Chapter 3.

For the constant density case the TGE takes the form,

ŵ′′ +

[
N2

(c− u0)
2 +

u′′0
(c− u0)

− σnk
2

]
ŵ = 0 . (2.39)
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Note that in this case, since υ(z) = 0, then w̃ = ŵ. This version with a

stationary atmosphere (u0 = u′′0 = 0) is discussed in Lindzen (1990).

In the Boussinesq case the flow is incompressible so that Hθ = Hρ, as discussed

in Section 2.1.5. This gives the TGE as,

ŵ′′ +

[
N2

(c− u0)
2 +

u′′0
(c− u0)

− u′0
Hρ (c− u0)

−
1 + 2H

′
ρ

4H2
ρ

− σnk
2

]
ŵ = 0 . (2.40)

The Boussinesq approximation is used in the derivation of the TGE in the

original papers by Taylor (1931) and Goldstein (1931). It has been used by

Umurhan and Heifetz (2007) in their exploration of Holmboe waves, and it

is the form used by Nappo (2002) – albeit with Hρ taken as constant; thus,

H
′
ρ = 0.

The anelastic TGE takes the form,

ŵ′′ +

[
N2

(c− u0)
2 +

u′′0
(c− u0)

+
u′0

Hρ (c− u0)
−

1− 2H
′
ρ

4H2
ρ

− σnk
2

]
ŵ = 0 . (2.41)

Note the sign changes from Equation (2.40). This version has been used to

study the stability of protoplanetary discs (Garaud and Lin, 2004) and, with

the assumption that Hρ is constant, in the review of gravity waves by Fritts

(1984). The anelastic form of the TGE is used in the remainder of this thesis,

due to the large vertical wavelengths of the waves considered.

The pseudo-incompressible version, after using Equation (2.17), takes the form,

ŵ′′ +

[
N2

(c− u0)
2 +

u′′0
(c− u0)

+
u′0

γHp (c− u0)
−

1− 2γH
′
p

4γ2H2
p

− σnk
2

]
ŵ = 0 .

(2.42)

This is, to my knowledge, the first time that a pseudo-incompressible version

of the TGE has been obtained.

2.3.2 Solution of the TGE

The full equation set, Equations (2.2), (2.3) and (2.20), can be solved us-

ing various numerical techniques such as the finite difference method and the

pseudo-spectral method (see e.g. Durran, 1989). However, such a solution
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admits waves, such as sound waves, which are not important for this study.

Further, as the gravity waves studied here are meso-scale phenomena the level

of resolution required for the solution would be computationally expensive.

Therefore, the gravity waves are studied by solving the TGE.

Constant Density Case

As already alluded to, the TGE is a harmonic oscillator and when m is real

and constant the solution ŵ is a simple sinusoid. The transformation described

in Equation (2.35) compensates for the fall in density with height. Thus, the

vertical velocity perturbation w̃ grows exponentially with height. Therefore, in

the constant density case the solution amplitude does not grow with altitude.

The Wentzel–Kramers–Brillouin (WKB) Solution

When the temperature and zonal flow varies with height, m is a function

of z and the solution of the TGE is less straightforward than when m is a

constant. If m varies slowly (that is, the change in m over a scale height is

small compared to m), the WKB approximation (Bender and Orszag, 1999)

can be used to obtain,

w̃(z) =
Aez/2Hρ

m1/2
exp{±i

∫ z

zb

m (ζ) dζ} . (2.43)

Here, A = w̃(zb) [m(zb)]
1/2. As in the constant m case, the vertical pertur-

bation velocity is wave-like with upwardly and downwardly propagating com-

ponents; the amplitude of the upward component grows with height and the

downward decays with depth. However, when the variation of m is not small

then the solution must be obtained numerically, as described below.

Boundary Conditions

In order to select the exact solution the boundary conditions of the prob-

lem need to be applied. This study uses a radiation condition, selecting the

upwardly propagating solution at the top boundary zt and the downwardly

propagating solution at the lower boundary zb. This is achieved using the
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2.3. The Taylor-Goldstein Equation

condition,

ŵ′ +

(
ism+

m′

2m

)
ŵ = 0 . (2.44)

Here, s = ±1 depends on the signs of the horizontal phase speed and intrinsic

phase speed as well as whether the condition is being applied at the top of

bottom boundary. Note that this condition depends on the WKB approxima-

tion solution, Equation (2.43), and so requires the WKB solution to be valid

at the boundaries. For example, the boundaries cannot be critical layers (see

Section 2.5.2) since in such regions (c−u0) → 0. Thus, m→ ∞ and the WKB

approximation ceases to be valid.

Numerical Solution

Generally, in this thesis the TGE is solved numerically. The domain over

which the equation is to be solved is divided into n levels. Then the TGE, for

example Equation (2.41), can then be written in matrix form as

(D+M)w = F , (2.45)

where w is a n-entry column vector of ŵ at each level, D is an n × n matrix

representing the second order finite difference form of the second derivative

with the top and bottom rows modified to reflect the boundary conditions;

M is an n × n diagonal matrix with the value of m2 at each level and F is

the forcing at each level. Note that the representation of forcing is discussed

below. The solution w can be obtained by inverting Equation (2.45),

w = (D+M)−1 F . (2.46)

The inversion can be achieved by several methods (e.g., Lindzen and Kuo,

1969). This study uses the “mldivide” routine in the proprietary Matlab pack-

age. The number of levels used affects the accuracy of the calculation. It

was found that using 3000 levels provided an excellent level of accuracy and

there was little improvement in using 10000 levels. An example solution in

an isothermal atmosphere showing the exponential growth of w̃ is shown in

Figure 2.1.
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Figure 2.1 – A gravity wave propagating in an isothermal (T0 = 1350 K)
atmosphere with constant background flow (u0 = 350 m s−1). The horizontal
phase speed of the wave c is 100 m s−1 and the horizontal wavelength 2π/k is
2500 km. The vertical perturbation velocity w̃ (· · · ), horizontal perturbation
velocity ũ (—), vertical energy flux Fz (- - -) and wave stress τ (-·-) are shown.
The latter is the vertical transport of horizontal momentum. Wave amplitudes,
ũ and w̃, grow exponentially with height, but the wave stress is constant with
height, since there is no dissipation. The jump in τ and Fz at z/Hp = 1 is
caused by the forcing.
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2.3. The Taylor-Goldstein Equation

Forcing

Perhaps the most familiar gravity wave is that which forms in the lee of moun-

tains when winds blow over them. These are modelled by introducing the

mountain through the lower boundary condition (e.g. Nappo, 2002). On giant

planets mountain ranges do not exist, though convective plumes that well up

from the interior and overshoot into the atmosphere may have similar effects.

The forcing used here is thermal forcing, such as that from the release of latent

heat during cloud formation. The net diabatic heating rate, Q̇, is included in

the energy equation (2.20c) to give,

Dθ

Dt
=

θ

cpT
Q̇ . (2.47)

This leads to the forced TGE,

ŵ′′ +m2(z)ŵ =
κQ̇

Hp (c− u0)
2 e

−χ , (2.48)

the right-hand side of which is used to produce F in Equation (2.45). The

vertical structure of Q̇ is taken to be a modified Gaussian,

Q̇ =


Q̇peak

[
exp

(
−z − zf

zw

)2

− exp (−4)

]
, if |z − zf | < 2zw ,

0, otherwise ,

(2.49)

where Q̇peak is the amplitude of the forcing, zf is the centre of the forcing and zw

is the half-width. The vertical extent of the forcing compared to the horizontal

wavelength has an important influence on the amplitude of the emitted wave.

The amplitude of the emitted wave and its wave stress (see Section 2.4.2) grows

as the extent of the forcing grows until the half-width of the forcing reaches

roughly 1/4 of the vertical wavelength. Forcing of this nature is characterised

as “thin” forcing. This is illustrated by Figure 2.1, where zw is roughly 1/8 of

the vertical wavelength, and Figure 2.2, where zw is roughly 1/4 of the vertical

wavelength. In the latter the wave stress is larger. However, further increases

in the extent of the forcing lead to a fall in the size of the emitted wave, this

is known as “broad” forcing (Lindzen, 1990). This is illustrated in Figure 2.3,

where zw is rougly 1/2 of the vertical wavelength and the wave stress has fallen
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in magnitude.

2.4 Polarisation Relations and Fluxes

2.4.1 Polarisation Relations

As shown above, the solution to the TGE is a wave in the vertical velocity per-

turbation, w̃. This can be related to perturbations in the other key variable

by the polarisation equations (Hines, 1960). This is useful, as w̃ is not always

known: observations are often in other variables such as pressure or temper-

ature. The polarisation relations allow these observations to be tied into the

theory, an application of this is shown in Chapter 4. Further, understanding

these is essential for parametrising the saturation process that occurs in the

full non-linear situation, discussed below. The polarisation equations for the

anelastic TGE, derived from Equation (2.32), are:

ũ =
i

k

[
w̃′ − w̃

Hρ

]
, (2.50a)

Φ̃ =
i

k

[
(c− u0)

(
w̃′ − w̃

Hρ

)
+ u′0w̃

]
, (2.50b)

θ̃ = − i

k

[
θ0N

2

g (c− u0)

]
w̃ , (2.50c)

T̃ =
T0
θ0
θ̃ +

Φ̃

cp
. (2.50d)

The relationship between the vertical and horizontal perturbation velocities

Equation (2.50a) shows that the amplitude of ũ is generally greater than the

amplitude of w̃, as it is scaled by 1/kHρ with the horizontal wavelength being

greater than a scale height. Further, Φ̃ varies with the background flow via a

dependence on the the intrinsic phase speed as evidenced by Equation (2.50b).

The potential temperature perturbations are π/2 out of phase with w̃, whereas

the phase differences of ũ and Φ̃ vary locally.
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Figure 2.2 – As with Figure 2.1 except that the width of forcing is twice as
large, with zw = 150 km. This is approximately 1/4 of the vertical wavelength,
approximately the optimal size for maximising the size of the emitted wave. The
vertical perturbation velocity w̃ (· · · ), horizontal perturbation velocity ũ (—),
vertical energy flux Fz (- - -) and wave stress τ (-·-) are shown. Note that the
magnitudes of these quantities, especially τ , are larger than in Figure 2.1.
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Figure 2.3 – As with Figure 2.1 except that the width of forcing is four times
that used in Figure 2.1, i.e. zw = 300 km. The vertical perturbation velocity
w̃ (· · · ), horizontal perturbation velocity ũ (—), vertical energy flux Fz (- - -)
and wave stress τ (-·-) are shown. Note that the magnitudes of these quantities,
especially τ , are smaller than than in both Figure 2.1 and Figure 2.2. This is
because z w is now greater than 1/4 of the vertical wavelength and the forcing
is now broad.
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2.4.2 Wave Fluxes

Gravity waves are an efficient means of transporting both momentum and

energy. The (perturbation) momentum and energy fluxes are simply obtained

from the polarisation relations Equation (2.50):

τ = ρ0ũw̃ , (2.51a)

Fx = ρ0Φ̃ũ , (2.51b)

Fz = ρ0Φ̃w̃ . (2.51c)

Here, τ is the vertical flux of horizontal momentum (or, the wave stress); Fx

and Fz are, respectively, the horizontal and vertical fluxes of energy; and the

overbar indicates an average over a wavelength (or zonal average),

αβ =
1

2
ℜ (αβ∗) , (2.52)

where α and β are arbitrary complex functions and the asterisk denotes the

complex conjugate. Note that the energy fluxes depend on the background flow

through Φ̃. However, as can be seen in Figure 2.4, the wave stress remains

constant (i.e. τ ′ = 0) away from the forcing and damping regions—e.g. critical

layers and regions where the wave saturates. This is in accordance with the

second Eliassen-Palm theorem (Eliassen and Palm, 1960), which expresses

non-interaction of the disturbance in the absence of dissipation and forcing.

Upwardly propagating waves are defined as waves that have upwardly prop-

agating energy – i.e., Fz > 0. These are the waves considered in this thesis.

However, it must be remembered that downward propagating waves are also

generated; see, for example, the bottom of Figure 2.4, where Fz < 0. On a

giant planet without a solid surface, those waves may not be reflected or ab-

sorbed. They can continue to penetrate downward until they encounter a crit-

ical level or a convective region. Or, they are dissipated since the amplitudes

of the downwardly propagating waves decrease exponentially. Downwardly

propagating planetary scale gravity waves (i.e., thermally excited tides) are

considered by Gu and Ogilvie (2009).

The energy and momentum fluxes are linked by the first Eliassen-Palm theorem
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2.5. Saturation and Critical Layers

(Eliassen and Palm, 1960),

Fz = (c− u0) τ , (2.53)

which can be derived from Equation (2.50) and Equation (2.51). This shows

that Fz is not a good measure of the size of a wave as its magnitude depends

on the background. This is illustrated in Figure 2.4, where in an atmosphere

with wind shear τ is constant but Fz decreases with height.

2.5 Saturation and Critical Layers

2.5.1 Saturation

The theory so far presented describes inviscid, linear, monochromatic waves.

Such waves are infinite in extent and, in principle, can grow without limit

when they propagate upward. This is obviously not physical. In reality, such

waves become unstable and saturate. The saturation process can be treated by

introducing a correction to the solution in regions where the wave is identified

as saturating based on the convective instability. As discussed in Section 2.1.4,

an atmosphere is convectively unstable where the potential temperature gradi-

ent is negative. Although a wave propagates in a stable atmosphere, the wave

itself produces perturbations in the potential temperature field, as shown by

Equation (2.50c). As the wave propagates upwards these perturbations grow

in size. Eventually these perturbations become large enough that, locally, the

potential temperature gradient becomes negative; the atmosphere becomes lo-

cally convective. The wave is then unstable and breaks. The breaking balances

the amplitude growth so that the potential temperature gradient remains at

zero. This is analogous to ocean waves breaking as they run up a beach where

just the top of wave breaks (Nappo, 2002). Thus, a wave with a large enough

amplitude will induce the atmosphere to become locally unstable when

∂

∂z

(
θ0 + θ̃

)
< 0 . (2.54)

This criterion is used to identify regions where the wave is saturating. In these

regions θ̃ is adjusted so that the neutral stability is maintained. Then, via
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Figure 2.4 – A wave with c = 500 m s−1 and k = 2π/250 km−1 propagating in
a sheared isothermal atmosphere. The horizontal perturbation velocity ũ (—),
vertical energy flux Fz (- - -), wave stress τ (-·-) and the intrinsic phase speed
(c − u0) (· · · ) are shown. Note that the magnitude of Fz falls with altitude
due to the wind shear (in accordance with the first Eliassen-Palm theorem)
and τ remains steady away from the forcing (in accordance with the second
Eliassen-Palm theorem).
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the polarisation Equations (2.50) the values for the other fields are obtained.

Where the WKB approximation is valid, this process for handling saturation

condition acquires the simple form of putting

|ũ| = |c− u0| (2.55)

in the regions where the wave is saturating (Fritts, 1984).

2.5.2 Critical Layer

If the background flow contains shear, it is possible for the wave to encounter

a critical layer, where c = u0, at some height. In the region below the critical

layer the magnitude of the intrinsic phase speed falls to zero as z increases

to the altitude of the critical layer, see Figure 2.5 for an example. However,

the amplitude of the zonal velocity perturbations grow as the wave propagates

upward. So, at some point in the region, Equation (2.55) is satisfied and

the wave saturates. The wave dissipates as it propagates toward the critical

layer, as the intrinsic phase speed falls to zero, so that the atmosphere does

not become convective. The wave breaks turbulently and becomes attenuated,

see, for example, Sutherland (2010) for output from a laboratory experiment

that illustrates this process.

At a critical layer the TGE becomes singular. However, the equation can be

solved using the method of Frobenius (Bender and Orszag, 1999), from which

it is seen that the wave is, in general, drastically attenuated by the critical

layer (Booker and Bretherton, 1967). The amount of attenuation depends on

the Richardson number Ri of the flow,

Ri =
N2(
u

′
0

)2 . (2.56)

Figure 2.5 illustrates a wave encountering a critical layer. If the wave stress has

magnitude τ below the critical layer, then the magnitude after the encounter

with the critical layer is τ exp{−2π [Ri− (1/4)]1/2} (Booker and Bretherton,

1967). This can be a substantial level of attenuation even for modest values

of Ri, as shown in Table 2.2. For example, in the model atmosphere used

in Figure 2.5, Ri & 900; hence, the wave is essentially completely dissipated
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2.5. Saturation and Critical Layers

Richardson Number 0.5 1 5 10
Attenuation 6.8× 10−1 2.9× 10−2 2.7× 10−62 4.0× 10−260

Table 2.2 – Amount of attenuation at a critical layer for various values of
Richardson Number

at the critical layer, with the wave stress falling to practically zero and the

momentum deposited in the mean flow (as discussed in Section 2.5.3). Note

that, during its approach to the critical layer, a wave saturates over a finite

layer. However, as discussed above, the presence of a critical layer is not

required for saturation.

Critical layers are handled in the numerical scheme by lifting the phase speed

from the real axis by adding a small imaginary component: c = cr + ici where

|ci/cr| < 10−3. This introduces a small amount of linear damping and ensures

that the neglected non-linear terms do not dominate in the regions where

waves become steep and eventually break. Of course, adding damping causes

the wave stress to decrease with height and the second Eliassen-Palm theorem

to be invalid. However, this effect is small, as can be seen in Figure 2.5: the

wave stress falls negligibly between z/Hρ ≈ 1, where the forcing is placed, and

z/Hρ ≈ 6, where saturation begins.

2.5.3 Interaction with Mean Flow

In Figure 2.5, it is important to note that, where the waves stress is changing,

the wave is interacting with the background flow. This should be contrasted

with the behaviour illustrated in Figure 2.1, where the wave stress is not

changing. Changes in the wave stress cause accelerations to the mean flow.

Correspondingly, changes in the energy fluxes cause the temperature of the

region to change. The rates of these changes are given by

∂u0
∂t

= − 1

ρ0

∂τ

∂z
, (2.57a)

∂T0
∂t

= − 1

ρ0cp

∂Fz

∂z
. (2.57b)

For upwardly propagating waves the momentum deposited causes the flow

to change its velocity to be nearer the phase speed of the wave. Therefore,
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Figure 2.5 – Same as in Figure 2.4 but with stronger wind shear so that a
critical layer, where c = u0, exists at about z/Hp = 8. The horizontal perturba-
tion velocity ũ (—), vertical energy flux Fz (- - -), wave stress τ (-·-) and the
intrinsic phase speed (c − u0) (· · · ) are shown. Note that the magnitude of Fz

and τ fall rapidly once the wave begins to saturate below the critical layer.
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in Figure 2.5, in the saturation region below the critical layer, the flow is

accelerated.
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Chapter 3

Gravity Waves on Hot

Extrasolar Planets:

Propagation, Dissipation and

Interaction with the

Background

In this chapter the theory of gravity waves presented in chapter 2 is used to

demonstrate several properties of internal atmospheric gravity waves likely to

be important on a hot EGP. It is found that gravity waves can exhibit a

wide range of behaviours, even for a single atmospheric profile. The waves can

significantly accelerate and decelerate the background mean flow, depending on

the difference between the wave phase and mean flow speeds. In addition, the

waves can provide significant heating (∼ 50 to ∼ 103 K per planetary rotation),

especially to the region of the atmosphere above about 10 scale heights from

the excitation region. Furthermore, by propagating horizontally, gravity waves

provide a mechanism for transporting momentum and heat from the day-side

of a tidally locked planet to its night-side. Also discussed is the work that needs

to be undertaken to incorporate these effects in current atmosphere models of

extrasolar planets.

In the terrestrial atmosphere, a typical gravity wave has an energy flux of ap-

proximately 10−3 to 10−1 W m−2 (Gossard, 1962; Hines, 1960). This is small
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Parameter Symbol Value

Specific gas constant R 3523 J kg−1 K−1

Specific heat at constant pressure cp 12300 J kg−1 K−1

Acceleration due to gravity g 10 m s−1

Rotation rate Ω 2.08 × 10−5 s−1

Radius Rp 94,400 km

Table 3.1 – Parameters for HD 209458 b

compared to the total amount of absorbed solar flux, ∼ 237 W m−2 (based on

a solar constant of ∼ 1366 W m−2 and an albedo of ∼ 0.3). However, gravity

waves are responsible for significantly modifying – even dictating – large-scale

flow and temperature structures. Several well-known examples of this are the

quasi-biennial oscillation (QBO) (Baldwin et al., 2001), reversal of mean merid-

ional temperature gradient in the upper middle atmosphere (Holton, 1982),

and generation of turbulence (e.g. Andrews, Holton, and Leovy, 1987). We

expect similar effects to be present in the atmospheres of solar and extrasolar

giant planets. Moreover, due to the greater irradiation and scale heights on

hot extrasolar planets, the acceleration and heating effects of gravity waves

can be much stronger on them.

The planet HD209458 b is chosen as an exemplar of this class of planets, as

it is expected to be generic with respect to the properties discussed here.

The physical parameters that characterize the planet’s atmosphere are given

in Table 3.1. Note that g, R and cp are taken to be constant. In reality

these quantities will vary, but this restriction is not unrealistic and does not

mitigate the application of the theory presented in Chapter 2 to EGPs or its

implications described in this chapter.

3.1 Background Structure and Forcing

As discussed in Section 2.3, the governing equation for internal gravity waves

is the TGE. This chapter considers waves that have vertical wavelengths of

similar size to the scale height. Hence, the anelastic TGE, Equation (2.41),

is used to describe the wave dynamics. As can be seen from the index of

refraction, the wave’s horizontal phase speed as well as the structure of the
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3.1. Background Structure and Forcing

background and of the forcing play a crucial role in determining the detailed

structure of the wave. Here we discuss profiles of the latter two appropriate

to hot EGPs such as HD209458 b.

3.1.1 Background Structure

Figure 3.1 shows the mean flow and temperature profiles used to obtain much

of the results presented in this chapter. The lower part of both profiles—

approximately the 6 scale heights above the 1 bar level—is taken from global

circulation simulations of HD 209458 b by Thrastarson and Cho (2010), using

the NCAR Community Atmosphere Model (Collins et al., 2004). The pro-

file is from a location near the equator but away from the substellar point,

(70◦ E, 10◦ N), see Figure 3.2. It was chosen as it is within the the equatorial

jet. The Coriolis parameter f = 2Ω sinφ is not large, so rotation is not in-

cluded in the analysis. As discussed in Chapter 2, if the analysis is restricted

to waves with a horizontal scale L . U/Ω where U is the characteristic mean

flow speed and Ω is the planetary rotation rate (from Table 3.1) the effects of

rotation can be neglected. Such a scale is adequate for all gravity waves consid-

ered here, but not for large-scale phenomena such as atmospheric tides (which

have been considered by Gu and Ogilvie (2009)). For HD 209458 b, L ∼ 107 m

based on U in the hot extrasolar planet atmosphere simulations of Thrastar-

son and Cho (2010). All the waves considered in this chapter have horizontal

wavelengths less than this, thus generalisations of the results presented in this

chapter are applicable at other locations.

The temperature profile generally increases with height over the lowest four

scale heights and then becomes isothermal. This provides a loose validation

of the model in that the temperature profile is similar in structure to the

temperature profile observed by the Galileo probe on Jupiter through the same

pressure levels at a similar latitude (Seiff et al., 1998). The profile is extended

by keeping the atmosphere isothermal through the planet’s stratosphere and

beginning the thermosphere at between 13 and 14 scale heights at p0 ≈ 4 ×
10−6 bar. This profile, along with the mean flow profile described below, gives

a Richardson number, Equation (2.56), of at least 3.4 throughout the domain.

This value gives an attenuation of 1.4× 10−5. Hence, any critical layer can be

considered to fully dissipate the wave.
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Figure 3.1 – The model flow and temperature profiles for HD 209458 b. Sam-
ple atmospheric mean flow u0 (—), temperature T0 (- - -) and Brunt–Väisälä
frequency N (-·-) profiles of a typical hot extrasolar planet, HD 209458 b, used
in this chapter. The profile is representative of a region at approximately 70◦E,
10◦N, see Figure 3.2. The profiles are obtained from a 3D global circulation
model up to the ∼1 mbar level. Above that the profiles are simply extended.
The temperature is loosely based on the observed structure of Jupiter (Seiff
et al., 1998). The flow is smoothly brought back to a small value.
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Figure 3.2 – Temperature map of HD 209458 b at 360 mbar. The modelled
flow and temperature on HD 209458 b at about 1 scale height above the 1 bar
level. The longest zonal flow vectors are 533 m s−1. The sub-stellar point is at
the centre (0◦E,0◦N). The site of the study, within the equatorial eastward jet,
is indicated by the white dot.

The flow profile, also taken from Thrastarson and Cho (2010), has a minimum

at z/Hp ≈ 2 – i.e., p ≈ 200 mbar. This is similar to the flow profile of Jupiter;

see Chapter 4. It also has two local flow velocity maxima. The upper maximum

is extended into a jet with a peak at z/Hp ≈ 6 – i.e., p ≈ 1 mbar. Although

a peak has been observed in Jupiter’s flow at this pressure level (Flasar et

al., 2004) the jet in this profile is far deeper. Deep equatorial jets, covering

over 3 decades of pressure, have been a feature of some simulations of EGPs

(Showman et al., 2008, 2009). Above this jet the profile is extended to the

top of the domain without shear. Note, this is the same assumption used for

the lower boundary of the EGP thermospheric circulation model described in

Koskinen et al. (2007). The structure of this flow profile is somewhat different

to those of Showman et al. (2008, 2009), where there is just one jet with the

peak flow located at p ≈ 102 mbar level. The peak flow is also far greater in

those studies at 4 or 5 km s−1. It is important to note, however, that these

differences do not change qualitatively the basic points made in this chapter.

The Brunt–Väisälä frequency profile N(z) is also shown in figure 3.1. As can
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be seen from Equation (2.8), we can write

N (z) =

[
g

T

(
dT

dz
+
g

cp

)]1/2
. (3.1)

Since g and cp are taken as (and are in actuality very close to) constants in

the modelled height range, N depends only on the temperature profile T (z).

For isothermal regions, N is a constant. In general, the fractional change of

T with height is small compared to g/(Tcp) throughout the modelled region.

Hence, N is nearly constant in the entire domain with a value that is roughly

2.4 × 10−3 s−1. The maximum value is just 1.2 times the minimum value.

Therefore, N does not contribute much to the variation of the index of refrac-

tion m. The main contributor to the variation of m is the variation of the

intrinsic phase, which is derived from the variation of flow speed. This should

be compared to the analogous terrestrial situation, where the range of flow

speeds is much lower. This allows N to have a larger effect on the variation of

m on the Earth.

3.1.2 Forcing

As mentioned in Chapter 2, gravity waves can propagate in stratified atmo-

spheres. EGPs are expected to have a stratified (radiative) layer in their

atmospheres. Many mechanisms will readily generate gravity waves in such

atmospheres. Mechanisms such as absorption of stellar radiation, convec-

tive release of latent heat, storms, flows over topography, coherent localized

heat “islands” and convective overshoot, also impacts of asteroids and comets.

Here we consider small- and meso-scale thermally-excited waves, the horizon-

tal wavelengths of these waves are 2500 km or less. This is a reasonable range,

since it is well within the observed range of gravity waves on Jupiter (Hickey,

Walterscheid, and Schubert, 2000; Young et al., 1997). Although not unim-

portant we do not dwell on the precise nature of the source of the excitations.

The main focus of these investigations is the propagation and deposition of

momentum and energy.

The forcing used is simply represented as a Gaussian, modified so that it is

zero beyond two half-widths above and below the centre, see Equation (2.49).

The centre is located at z/Hp = 1 above the bottom of the domain. The
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3.2. Wave-Background Interaction

half-width is taken to be 75 km, or ∼0.15 Hp. The forcing location and width

are chosen so that the vertical scale of the forcing is less than the vertical

wavelength of the waves we present here. The effects of varying the location,

width and strength of forcing has been explored. This case is presented to

illustrate several important and general points. Not surprisingly, the dynamics

do depend on the chosen parameter values, but the dependence is broadly

predictable. For example, if the forcing scale is much larger than the vertical

wavelength, the forcing is broad (see Section 2.3.2) and only a very small

amplitude wave is emitted from the forcing region.

The peak heating rate, Q̇/cp, is set to 10−3 K s−1. This is a modest value,

corresponding to roughly 300 K per rotation of the planet. This is compared

to ∼ 100 K per rotation at the chosen location in the circulation model of

Thrastarson and Cho (2010). A forcing of ∼ 1000 K per rotation for a similar

latitude, longitude and altitude location on the planet is used in Showman

et al. (2008). The latter value implies that, in the absence of motion, that

location on the planet will cool completely in one rotation of the planet. It is

important to note that locally – i.e., at scales far below the grid scale of the

current set of GCMs used to model hot EGP atmospheres – the forcing could

actually be much stronger. The true value is, of course, presently uncertain

and likely to be spatially and temporally variable over the planet. To provide a

context, for the Earth the heating rate is ∼ 2 K per day (1 day = 0.29 rotations

of HD 209458 b) over large areas; but, locally at the tops of low clouds on the

Earth the rate can be up to ∼ 50 K per day (Wallace and Hobbs, 2006).

3.2 Wave-Background Interaction

In order to explore a range of wave-background interactions, the behaviour of

gravity waves with a variety of horizontal phase speeds is considered.

3.2.1 Critical Layer Encounter

Figure 3.3 shows a gravity wave encountering a critical level in the upper jet of

the model flow. The wave has a horizontal wavelength, 2π/k, of 2500 km and

c = 600 m s−1. Here, since c > u0 and the wave approaches the critical layer
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from below, the momentum deposited in the mean flow causes the mean flow

to accelerate. This acceleration peaks at over 250 m s−1 per rotation. This is

large enough to double the flow speed at this layer in roughly two rotations –

a significant effect. The effect is large enough to require its inclusion in any

simulation of the atmospheric circulation (Cho, 2008).

The waves encountering critical levels are dissipated. Therefore, a flow with a

range of flow speeds dissipates all gravity waves with phase speeds within this

range. That is, a spectrum of gravity waves is prevented from propagating high

into the atmosphere. There are other, secondary effects at the critical layer

that may also effect the mean flow. However, they are not modelled here.

For example, the deposition of energy into the flow at the critical layer may

well lead to the generation of new gravity waves, which then may propagate

further, partly mitigating the filtering effect.

3.2.2 Saturation

In general, it is possible that a wave may not encounter a critical level as

it propagates upward. However, such a wave, as described in Section 2.5.2,

will grow large and eventually break or suffer dissipation at higher altitudes.

Although both momentum and energy are deposited in this case the focus here

is on the effect on the temperature field. Figure 3.4 shows an example of a

gravity wave saturating in the atmosphere of Figure 3.1.

The wave launched in Figure 3.4 has c = −25 m s−1 (i.e. westward). The

horizontal wavelength remains at 2500 km, as in the critical layer example of

Figure 3.3. The vertical velocity perturbation grows with height. Therefore, so

does the zonal velocity perturbation ũ and the potential temperature pertur-

bation θ̃, as expected from the polarisation relations, Equation (2.50). In this

case the wave saturates near the top of the jet at the point where condition

(2.54) is exactly satisfied. Condition (2.55) is satisfied since the magnitude

of the zonal perturbation velocity and the intrinsic phase speed (cx − u0) are

both approximately 122 m s−1. The saturation deposits energy causing the

atmosphere there to heat up. The heating is significant, peaking at ∼75 K

per rotation—a 5% change in one orbit. In the absence of other effects, the

ambient temperature can be doubled in about 20 planetary rotations.
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Figure 3.3 – A critical layer encounter. A gravity wave, with c = 600 m s−1,
propagating in an atmosphere with profiles shown in Figure 3.1. The horizontal
perturbation velocity u (—), the vertical perturbation velocity w (· · · ), intrinsic
phase speed c−u0 (- - -), and the mean flow accelerations du0/dt (-·-) are shown.
The intrinsic phase speed becomes zero at z/Hp ≈ 5 and the wave encounters a
critical layer. In the layers just below the critical layer, the wave saturates and
sheds momentum into the mean flow, causing it to accelerate, peaking at a rate
of over 250 m s−1 rotation−1.
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Figure 3.4 – Saturating Gravity Wave. A gravity wave, with c = −30 m s−1,
propagating in an atmosphere described by the profiles in Figure 3.1. The
perturbation to the temperature field T (—) and the heating rate dT0/dt (-·-)
are shown. The wave saturates at just above z/Hp = 10, where the heating peaks
at about 70 K rotation−1. The peak energy flux for this wave is approximately
1 W m−2.

54



3.2. Wave-Background Interaction

A wave that has a phase speed greater than the maximum flow speed will not

encounter a critical layer. Those with phase speeds close to, but still above,

the maximum flow speed will, in general, saturate in the region just below the

maximum flow. This is because the intrinsic flow speed will be small in that

region. Similarly, waves with phase speeds just less than the minimum flow

will saturate as well. In this way the filtering effect discussed above is extended

beyond those waves with phase speeds equal to flow speeds. The main effect of

these filtered waves on the flow will be lower in the atmosphere. In the profile

given in Figure 3.1, where the waves emanate from the z/Hp = 1 level, this

means that the upper layers of the lower jet will be slowed by gravity waves

whereas the lower levels of the upper jet will be accelerated.

Those waves that do not dissipate will be able to propagate into the upper

atmosphere, causing momentum and heat to be deposited into the flow there

when they dissipate. This can lead to very large changes to the flow. For

example, the wave shown in Figure 3.4 causes a deceleration of up to 5 km s−1

per rotation as it saturates. This is clearly significant for the flow at this level.

A basic model of the structure of giant planets is that of a radiative (i.e., stably

stratified) atmosphere overlaying a convective interior (Hubbard, Burrows, and

Lunine, 2002). On Jupiter the boundary between these two layers lies just

below the cloud layer, though regions of static stability have been found down

to 20 bars in the data returned by the Galileo probe (Magalhães, Seiff, and

Young, 2002). However, for hot EGPs, models predict that the boundary

between the radiative and convective zones exists at much higher pressure

levels, up to 1000 bar (Burrows, Budaj, and Hubeny, 2008). Thus gravity

waves may be able to propagate from much deeper and denser regions on

EGPs. Moving the location of the wave origin lower in the atmosphere does not

change the basic behaviour in the qualitative sense. However, the amplitudes

are much larger, compared with the case when the wave originates higher up

in altitude. Thus, the possibility exists for stronger effects due to gravity wave

interaction with the background.

This is illustrated in Figures 3.5 and 3.6, which should be compared with Fig-

ures 3.1 and 3.4. Here, the profiles have been extended downward. The wave

is still launched at z/Hρ = 1, but this is now deeper in the atmosphere. The

wave has a phase speed of −40 m s−1, and the horizontal wavelength remains

at 2500 km. This wave also saturates near the top of the upper jet, where the
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Figure 3.5 – Deeper model flow and temperature profiles for HD 209458 b. The
same as in figure 3.1, but with the bottom of the domain extended down to 100
bars. Here u0 (—) is extended downward barotropically (no height dependence)
from the 1 bar level; the temperature T0 (- - -) is extended downward so that
the profile is similar to that of Figure 18 in Showman et al. (2009). The Brunt–
Väisälä frequency N (-·-) is also shown.
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energy deposition into the mean flow causes the atmosphere there to heat up.

Note, in Figure 3.6 that the region of heating is lower than when the wave orig-

inates higher up. The heating is significant, peaking at ∼ 3000 K per rotation.

The ambient temperature can be doubled in approximately half a planetary

rotation. In a more realistic scenario, dissipation – which is not included in

the model – will likely reduce the heating rate somewhat. Nonetheless, it can

be seen that gravity waves originating from deep within EGP atmospheres are

capable of significant heating.

3.2.3 Refraction

So far this chapter has focussed on the vertical transport of momentum and

energy by gravity waves. However, the waves can also transport momentum

and energy horizontally. Substituting c = ω/k into the expression for the index

of refraction, taken from Equation (2.41), and rearranging gives the dispersion

relation for anelastic gravity waves. This is shown at Equation (3.7). Here,

the case where u0 = 0 is considered. Cases where u0 ̸= 0 are examined in the

sections following this one.

When there is no background mean flow, the dispersion relation simplifies to

ω = ± Nk[
k2 +m2 +

(
1− 2H ′

ρ

)
/
(
4H2

ρ

)]1/2 . (3.2)

Then using the definitions

ug =
∂ω

∂k
(3.3a)

wg =
∂ω

∂m
(3.3b)

to obtain the group velocities gives

ug = ±
N
[
m2 +

(
1− 2H

′
ρ

)
/
(
4H2

ρ

)][
k2 +m2 +

(
1− 2H ′

ρ

)
/
(
4H2

ρ

)]3/2 (3.4a)

wg = ± Nkm[
k2 +m2 +

(
1− 2H ′

ρ

)
/
(
4H2

ρ

)]3/2 (3.4b)

Thus, for propagating waves (i.e., waves for which m is real – recall that
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Figure 3.6 – A gravity wave, with c = −30 m s−1, propagating in an atmosphere
described by the profiles in Figure 3.5. The perturbation to the temperature
field T (—) and the heating rate dT0/dt (-·-) are shown. the wave saturates
at just above z/Hp = 13, where the heating rate peaks at about 2700 K per
rotation. In terms of the pressure level, this location is actually lower than in
the case shown in Figure 3.4, and the magnitude of the peak is nearly 50 times
greater. The peak energy flux for this wave is nearly 200 W m−2. Thus, it can
be seen that having a source deeper in the planet can have a much greater effect.
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when m is imaginary the TGE has evanescent solutions) ug ̸= 0. Therefore,

gravity waves always propagate obliquely in the atmosphere considered here

and cannot propagate purely vertically when there is no background flow.

From equation (3.4) we see that β, the angle of energy propagation with respect

to the horizontal, is given by

tan β =
km

m2 +
(
1− 2H ′

ρ

)
/
(
4H2

ρ

) . (3.5)

Since Hρ is, in general, large (in the profile we are considering it is just under

500 km) and nearly constant tan β varies with 1/m. Thus, variation in m gives

rise to changes in the direction of propagation (i.e., refraction), and explains

why m is called the index of refraction. As a wave propagates into a region

of higher m the energy propagates more horizontally. Note that, as we are

here considering a region with no flow, increasing m is essentially equivalent

to increasing N . In general N increases in the lower thermosphere of giant

(and other) planets as is indicated in Figure 3.1 so the direction of energy

propagation in this region will bend toward the horizontal even though the

flow is small. Thus, waves that are not filtered, as described above, and reach

the thermosphere may well propagate horizontally far from their point of origin.

Any effects caused by such waves when they eventually dissipate would impact

the atmosphere away from the point of origin of the wave.

3.2.4 Trapped Waves

From Equation (2.43) we can see that in regions wherem is imaginary the wave

is evanescent: its amplitude decays toward zero in the vertical and therefore

it does not propagate vertically. As discussed in Chapter 2, this can occur

when N2 < 0 (i.e., when the atmosphere is convectively unstable). However,

as can be seen in Figures 3.1 and 3.5 in this study we have N2 > 0 throughout

the domain. But, for non-hydrostatic waves the non-hydrostatic term can

dominate the buoyancy, shear and curvature terms leading to a region where

the wave is evanescent even though the atmosphere is stably stratified.

In addition, when the index of refraction changes between layers, the wave is

reflected at the boundary. The amount of reflection is given by the magnitude
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of the coefficient of reflection |r|, where

r =
m1 −m2

m1 +m2

. (3.6)

Here, m1 and m2 are the indices of refraction in the two adjacent layers. When

m2 is imaginary, total reflection occurs and the wave is evanescent in that

region; its amplitude decays to zero. However, a region of propagation can exist

between two regions of evanescence. This readily occurs for jets, where the

intrinsic phase speed varies enough to allow the hydrostatic term to dominate

in some regions and not in others. Such a region can also occur through

variations of the Brunt–Väisälä frequency, though that is not the case in the

atmosphere considered in this chapter. In Figure 3.7, we see a wave that is

trapped in the relatively quiescent region between z/Hρ ≈ 1 and z/Hρ ≈ 4.

Outside this region, the value of ℜ(m) is small or zero. Trapped in this region

the wave is able to interact with itself and, under appropriate conditions,

resonate.

This is another mechanism via which waves may be filtered out by the flow,

and so not reach higher altitudes at which saturation can occur. However,

in this case, a trapped wave does not directly interact with a low altitude

flow that changes its characteristics. Indeed, between two reflection layers the

wave can propagate horizontally – even in the absence of any flow – using the

refractive mechanism described above. As long as the layers do not allow much

leakage, it is possible for a trapped wave to cover large horizontal distances –

transporting momentum and heat zonally.

3.2.5 Ducting

As well as being trapped in relatively quiescent regions, it is possible for waves

to be trapped in a jet. As alluded to above, it is possible for such a wave to

travel within the region of trapping which is known as a duct or waveguide.

In Figure 3.8 a non-hydrostatic wave is trapped within the jet (located at the

∼ 5 mbar level) in the model atmosphere (Figure 3.1). Note the small values

of ℜ(m) outside the jet.

In this case, the flows are significant. Therefore, we use the full dispersion
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Figure 3.7 – A trapped gravity wave, with c = 10 m s−1 and horizontal wave-
length 2π/k = 955 km, trapped in an atmosphere with the structure presented
in Figure 3.1. The vertical velocity perturbation w (—), mean flow u0 (- - -),
and the real part of the index of refraction m (- · -) are shown. The wave is
trapped in the relatively quiescent region between z/Hp ≈ 1.5 and z/Hp ≈ 3.5
and does not propagate vertically. The region of trapping corresponds to the
region where m is real. The wave is reflected at the boundaries of this region,
providing a possibility for resonance
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Figure 3.8 – This is the same as in Figure 3.7, but with c = 700 m s−1 and
horizontal wavelength 2π/k = 1410 km. The horizontal group speed ug (- - -),
vertical group speed wg (—), and the real part of the index of refraction m (-·-)
are shown. The wave (not shown) is trapped in the upper jet between z/Hp ≈ 3
and z/Hp ≈ 9, the region where m is real, and does not propagate vertically
above this region; it is however, able to propagate along the jet as the large
value of ug within the jet shows. The wave is reflected at the boundaries of this
region, providing a possibility for resonance.
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relation,

ω = ku0 +
k (u′0 +Hρu

′′
0)

2Hρ

(
k2 +m2 +

(
1− 2H ′

ρ

)
/4H2

ρ

)
±
Nk

[(
k2 +m2 +

(
1− 2H

′
ρ

)
/4H2

ρ

)
+ (u′0 +Hρu

′′
0)

2 /4N2H2
ρ

]1/2(
k2 +m2 +

(
1− 2H ′

ρ

)
/4H2

ρ

) ,

(3.7)

to develop expressions for the group velocities. Unfortunately, the expressions

obtained are rather large and unilluminating, obscuring the situation. How-

ever, the expressions can be simplified by assuming that u
′
0 and u

′′
0 are small,

which is a realistic assumption, as the shear is of the order of 10−3 s−1 and u
′′
0

is of the order 10−8 m−1 s−1 in the model atmosphere. This is small compared

with the other terms in the expressions. This then gives

ug = u0 ±
N
[
m2 +

(
1− 2H

′
ρ

)
/
(
4H2

ρ

)][
k2 +m2 +

(
1− 2H ′

ρ

)
/
(
4H2

ρ

)]3/2 (3.8a)

wg = ± Nkm[
k2 +m2 +

(
1− 2H ′

ρ

)
/
(
4H2

ρ

)]3/2 (3.8b)

From these expressions, we can see that, group speeds in this case are the same

as in the steady case in the frame moving with the flow, u0. Therefore, in the

model atmosphere, ug follows u0, as this is the larger term on the right-hand

side of Equation (3.8a). In Figure 3.8, the values of ug and wg are shown.

Note that in the centre of the duct wg is very small and ug is large, so that

energy is transported along the flow. At the top and bottom of the duct

the vertical group velocity increases, while the horizontal group velocity falls.

Therefore, propagation here is more vertical. In Figure 3.8, wg is shown as

positive; however, this is only for upward propagation of energy, at the top of

the duct the wave is reflected and the vertical component becomes negative.

This keeps the wave within the jet. The ray path followed by the wave is

shown in Figure 3.9.

The wave can travel large distances in this duct; but, eventually, the wave

will either escape the duct or be dissipated. For example, it may be that the

range of speeds in the duct changes so that a critical layer for the wave is

created. The wave will then be re-absorbed into the flow. Alternatively, if the
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Figure 3.9 – The path of propagation of the wave in Figure 3.8 assuming that
the properties of the duct do not change in the x-direction. The path shown
is the first crossing of the duct. At this point the wave will reflect and then
propagate downward in a mirror image of this path. Note that the wave travels
nearly one planetary radius before reflection. This means with six reflections the
wave will have nearly circumnavigated the planet. Of course in the real situation
the properties of the duct will change and the wave will probably either leak
out of the duct or dissipate before the circumnavigation is complete.
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flow or Brunt–Väisälä frequency outside the jet changes so that the buoyancy

term is no longer small and dominated by the non-hydrostatic term, then the

reflection is no longer total and the wave will leak out of the duct. This can

happen, for example, when the wave propagates into a colder region. As can

be seen from Equation (3.1), a fall in temperature with a constant lapse rate

will cause an increase in the Brunt–Väisälä frequency and thus an increase

in the buoyancy term. This may occur very far from the original region of

wave excitation. Indeed, in the example given, it is possible to envisage jets

ducting waves and so transporting energy from the day-side of a tidally locked

planet to the colder night-side where the waves escape the jet and propagate

away from the duct before dissipating. This would make a contribution to

homogenising the temperature of such a planet.

3.3 Implication for Circulation Models

The effects of gravity waves discussed in this chapter on the larger scale circu-

lation must be parametrised in global models because the spatial resolution –

both horizontal and vertical – required to model them is currently prohibitive.

The waves important to the large-scale extrasolar planet atmospheric circu-

lation have horizontal length scales ranging from approximately ∼ 105 m to

∼ 107 m and vertical wavelengths as small as 104 m. Waves with periods of

a few hours can carry significant momentum and energy fluxes vertically, but

the sources of these waves include processes that are not included or resolvable

in current circulation models.

The difficulty with representing gravity waves in GCMs exists even for GCMs

of the Earth. For example, the parametrisation for convection is not aimed at

producing realistic gravity waves (Collins et al., 2004). However, not repre-

senting gravity waves can affect the accuracy of the GCMs. The lack of gravity

wave drag can lead to the over-estimation of wind speeds, resulting in faster

and narrower jets than observed (McLandress, 1998). Further, the waves close

off the jets in the mesosphere (Hamilton, 1996). Also, gravity waves introduce

turbulence with subsequent mixing and thermal transport (Fritts and Alexan-

der, 2003). This leads to greater homogenisation of the atmosphere with a

reduction in, for example, temperature gradients. Gravity waves also inter-
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act with planetary waves, playing a role in important transient phenomena,

such as sudden stratospheric warming. In the absence of gravity waves these

phenomena are not accurately modelled (Richter, Sassi, and Garcia, 2010).

There are many parametrisation schemes currently incorporated or proposed

for general circulation modelling (McLandress, 1998; Nappo, 2002). In all of

the schemes, the basic components are (1) specification of the characteristics of

the waves at the source level, (2) wave propagation and evolution as a function

of altitude and (3) effects on and by the atmosphere. All of them are essen-

tially linear and one-dimensional, in that waves only propagate vertically and

that only vertical variation in the background influences the propagation. As

seen in this chapter, linear theory still requires information such as the wave’s

horizontal phase speed c and wavenumber k. A more complete theory would

need spatial and temporal spectral information. This is especially important

on EGPs, where the sources of gravity waves move and change over short

timescales, in contrast to the Earth where topography is a major generator of

gravity waves. Also, on spin-orbit synchronised planets parametrisations that

treat propagation as purely vertical would be inadequate as they would not

take into account the zonal inhomegeneity of such planets. Intermittency is

another crucial feature that would need to be taken into account. The pri-

mary differences in various schemes pertain to the treatment of non-linearity

and specificity of wave dissipation mechanisms.

Currently, all global circulation models of hot-Jupiters suggest the presence

of a low number of zonal jets (e.g Cho et al., 2008; Rauscher and Menou,

2010; Showman et al., 2008, 2009; Thrastarson and Cho, 2010). However, all

the models do not have the resolution required to adequately resolve gravity

waves and are subject to all of the limitations described above. This issue has

been previously raised by Cho (2008), in which they advocate caution against

quantitative interpretation of current model results. For example, without the

inclusion of the wave effects discussed in this work, high speed jets and precise

eastward shift of putative “hot spots” can be questioned (e.g. Knutson et al.,

2007; Langton and Laughlin, 2007).
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3.4 Viscosity and Thermal Diffusivity

The dissipation of the gravity waves considered so far has been either through

encounters with critical layers or via wave saturation. The fluid itself has been

taken to be non-dissipative. This is reasonable where eddy diffusivity domi-

nates. However, this will not be the case throughout the whole atmosphere.

All fluids have some viscosity due to the molecular properties of the fluid. This

can be simply observed by the relative ease one travels through air compared

to water. However, even in a relatively homogeneous fluid the viscosity will

vary with density. Therefore, as a gravity wave propagates upwards and the

density of the atmosphere, through which it travels, falls, it will eventually,

barring dissipation from other mechanisms, encounter a region where viscos-

ity comes to dominate. The modelling of the wave propagation in this region

needs to take this into account.

In this section gravity wave propagation in the upper atmosphere of extrasolar

planets, where viscosity is significant will be considered. Sample calculations

show the location of these regions on a typical close-in giant planet. It consid-

ers how the waves propagate through such tenuous regions and the effects that

wave dissipation has on the background. These effects are discussed and con-

trasted to those in Section 3.2, where dissipation was not treated as significant

in general.

3.4.1 Background Structure and Viscosity

The mechanisms by which gravity waves interact with the background that

have been considered, such as saturation and critical layers, depend on the

mean flow having shear, that is changing with height. Even refraction, trapping

and ducting depended upon the vertical wind shear. Here, where dissipation

via viscosity is considered, wind shear is not included in order that its effects

do not obscure the role of viscosity. This is done by treating the background

flow as uniform in the z direction. The vertical profiles of temperature and

zonal wind are shown in Figure 3.10. Whilst the background flow is taken as

constant, the profiles for the temperature (and therefore the Brunt–Väisälä

frequency which is not shown) are the same as that used in the non-viscous

discussion above. Other relevant parameters are the same as those given in
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Parameter Value

µH2 2.0715× 10−7

βH2 0.716
µHe 4.3338× 10−7

βHe 0.670

Table 3.2 – Viscosity Calculation Parameters The units of µH2T
βH2 and

µHeT
βHe are kg m−1 s−1 where T is the temperature in K.

Table 3.1.

Viscosity

In addition to the temperature and flow, in order to model the situation,

the vertical profile of viscosity µ(z) is required. The dynamic viscosity of a

fluid depends upon its composition and the physical properties of the fluid –

specifically the density, mean free path and mean molecular velocity. As the

gas becomes more tenuous its density falls, but the mean free path increases.

Hence, these effects have little impact; overall the viscosity changes little. The

viscosity profile is produced using the model from the Jovian Ionospheric Model

(Achilleos et al., 1998),

µ = aH2µH2T
βH2 + aHeµHeT

βHe , (3.9)

where aH2 and aHe are the number fractions of molecular Hydrogen and He-

lium, respectively. The parameters, µH2 , βH2 , µHe and βHe, are given in Ta-

ble 3.2. This model has previously been used to model the atmospheres of

extrasolar giant planets (Koskinen et al., 2007). We take aH2 = 0.83 and

aHe = 0.17 which corresponds to the specific gas constant R = 3523 given in

Table 3.1. The resulting viscosity profile is shown in Figure 3.10. As can be

seen the dynamic viscosity varies little with height – as expected.

However, it is the kinematic viscosity, ν = µ/ρ, which controls the size of

the damping induced by the viscosity. As the density falls exponentially with

altitude, the kinematic viscosity becomes large as shown in Figure 3.11. The

effect of viscosity on the flow is included via the momentum equation.
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Figure 3.10 – Example atmospheric temperature T0 (- - -), mean flow u0 (—)
and dynamic viscosity µ (-·-) profiles used in this section. As can be seen the
dynamic viscosity varies little with height, the flow is taken as constant so that
the effects of wind shear, discussed previously, do not obscure the effects of
dissipation.
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Figure 3.11 – The variation of kinematic viscosity, ν = µ/ρ0, with height. As
can be seen the kinematic viscosity remains small throughout the region of the
atmosphere considered previously. The level of dissipation is indicated by the
ratio of the imaginary to real parts of the intrinsic frequency of the wave. This
ratio can be seen to grow from around ∼ 15 Hp. The effects of dissipation will
begin to be noticeable at this level.
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Thermal Diffusivity

As well as viscosity acting to damp the wave, through the removal of momen-

tum, the removal of heat also acts to dissipate the wave. Heat diffuses more

rapidly through materials with larger thermal diffusivity thus damping thermal

perturbations more quickly. This effect is included via the energy equation.

The thermal diffusivity is modelled using the Prandtl number Pr, which is

the ratio of kinematic viscosity to thermal diffusivity. In principle, if the pro-

files of kinematic viscosity and Prandtl number are known then the thermal

diffusivity profile is known. Although Prandtl numbers for Hydrogen/Helium

mixtures are not available at the temperatures and pressures appropriate for

the upper region of the model atmosphere Prandtl numbers for the similar

region on Jupiter lie in the range 0.68-0.71 (Matcheva and Strobel, 1999). In

this study the Prandtl number is taken as constant at 0.7. Variation of the

number from 0.5 to 1 has been found not to qualitatively vary the findings of

this section.

3.4.2 The Anelastic Equations with Dissipation

To illustrate how dissipation affects gravity waves in a typical exoplanet at-

mosphere we consider waves with wavelengths of 2500 km with phase speed of

±135 m s−1. For such waves c2k2 < N2 and they can be treated as hydrostatic.

Further, as discussed above in Section 2.4.1, the magnitude of the zonal flow

perturbation is larger than the vertical flow perturbation so the viscosity is

included in the zonal momentum equation. Also, as m > k the derivatives

in the vertical are larger than those in the horizontal and so dissipation is

taken using the vertical derivatives of temperature and velocity. The energy

equation, Equation (2.20c), can be written as (e.g., Nappo, 2002),

cv
DT

Dt
+RT∇ · u = 0 , (3.10)
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thus allowing the linearised anelastic equations, with disspation, to be written

in terms of T as

Du1
Dt

+
∂Φ1

∂x
=

1

ρ0

∂

∂z
µ
∂u1
∂z

, (3.11a)

∂Φ1

∂z
− g

T1
T0

= 0 , (3.11b)

∂u1
∂x

+
∂w1

∂z
− w1

Hρ

= 0 , (3.11c)

DT1
Dt

+
T0N

2

g
w1 =

1

ρ0Pr

∂

∂z
µ
∂T1
∂z

, (3.11d)

where µ is the molecular viscosity and Pr is the Prandtl number. Then, assum-

ing wave-like perturbations, of the form in Equation (2.30), for all varaibles

including T1, allows the use of the substitutions given in Equation (2.31). Fur-

ther, the observation that the dynamic viscosity changes slowly (see discussion

in Section 3.4.1) gives the following set of differential equations,

−ik (c− u0) ũ+ ikΦ̃ =
µ

ρ0
ũ

′′
, (3.12a)

Φ̃
′
= g

T̃

T0
, (3.12b)

ikũ = −w̃′
+

w̃

Hρ

, (3.12c)

−ik (c− u0) T̃ +
T0N

2

g
w̃ =

µ

ρ0Pr

T̃
′′
, (3.12d)

where a prime indicates differentiation with respect to z. These can then be

manipulated, with the introduction of a new variable to compensate for the

fall in density with altitude, using Equation 2.35, to obtain a modified form of

the TGE, (see Matcheva and Strobel, 1999)

ŵ′′ +m2
d(z)ŵ = 0 , (3.13)

wheremd is the index of refraction modified to include the effects of dissipation

given by

md =

[
k2N2

ω̂ (ω̂ + iβ)
−

1− 2H ′
ρ

4H2
ρ

]1/2
. (3.14)

Here,

ω̂ = ωr + iωi , (3.15)
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where ωr and ωi are defined by

ωr = k (c− u0) + 2ℜ (md) ν

(
1

2Hρ

−ℑ (md)

)
(3.16)

and

ωi = ν

[
ℜ (md)

2 −
(

1

2Hρ

−ℑ (md)

)2
]

(3.17)

and

β =

(
1− Pr

Pr

)
ν

[
ℜ (md)

2 −
(

1

2Hρ

−ℑ (md)

)2
]
. (3.18)

In the absence of viscosity, ν = 0, and Equation (3.13) is the same as the

anelastic version of Equation (2.37) for hydrostatic waves in an atmosphere

without wind shear. Equations (3.13) to (3.18) are used iteratively to obtain

md(z). This profile then gives M, which is used to obtain a numerical solution

for ŵ(z) using Equation (2.45).

3.4.3 Regions where Dissipation is Important

In the discussion of critical layers in Section 2.5.2, it was stated that damping is

manifested as an imaginary part within the intrinsic phase speed or the related

intrinsic frequency. An indication of the level of damping can, therefore, be

obtained by considering the ratio ωi/ωr. This ratio is shown in Figure 3.11.

It is virtually zero throughout the stratosphere and below. It is clear that

damping is not significant in the lower atmosphere. Thus, the results derived

in Section 3.2 using the inviscid fluid equations are appropriate for that region

but it would not be appropriate to extend the results into the thermosphere

without including the effects of dissipation.

3.4.4 Waves in a Dissipative Atmosphere

The waves considered here, as those in previous sections, are thermally forced.

Again, the profile of the forcing takes the form of a modified Gaussian centred

at 1 scale height above the 1 bar level. As seen in Section 3.2.2, the waves

– if they grow large enough – will saturate before reaching the thermosphere.

This is illustrated by Table 3.3, which gives the level at which a sample wave
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u0 = 35 m s−1 u0 = 350 m s−1

A (K s−1) Saturation Level Saturation Level

10−3 6Hp ∼ 7Hp 9Hp ∼ 10Hp

10−4 10Hp ∼ 11Hp 13Hp ∼ 14Hp

10−5 14Hp ∼ 15Hp 17Hp ∼ 18Hp

10−6 19Hp ∼ 20Hp > 20Hp

Table 3.3 – Height of wave saturation for a wave with c = 140 m s−1 in two
non-sheared flows with u0 = 35 m s−1 and u0 = 350 m s−1 for various forcing
amplitudes.

with k = 2π/2500 km and c = 140 m s−1 saturates in the atmosphere of

Figure 3.10 (central column labelled u0 = 35 m s−1) and one with 10 times

the flow (right hand column labelled u0 = 350 m s−1). The table shows that

waves need to have a forcing peak amplitude of around 10−5 K s−1 or lower in

order to reach the thermosphere. This is just one percent of the value used in

the earlier analysis, equivalent to about 3 K per rotation of the planet. This

ensures that the waves do not saturate before encountering the upper region of

the model atmosphere. As before the boundary conditions select for upwardly

propagating waves and are based on the WKB solution.

In Figure 3.12 the behaviour of a sample wave dissipating in the lower thermo-

sphere is shown. The dissipation dominates the wave growth above z/Hp ≈ 16

leading to deposition of momentum into the mean flow, which peaks at z/Hp ≈
17. This accelerates the flow, at the peak, by about 500 m s−1 per rotation.

Even though the wave has a much smaller amount of forcing the magnitude

of acceleration is on a par with that seen at the critical layer illustrated in

Figure 3.3. This is because of the lower density at this higher region of the

atmosphere.

In Figure 3.13 the behaviour of another sample wave, this time with c =

−140 m s−1, again dissipating in the thermosphere, is shown. The dissipation

dominates the wave growth above z/Hp ≈ 18, which is higher than in the

previous example. Further, as in this case c < u0 the deposition of momentum

into the mean flow decelerates the flow. The peak deceleration is at z/Hp ≈
19. This peak deceleration is about 2 km s−1 per rotation. This is a large

deceleration, the large magnitude again being due to the lower density at this

higher region of the atmosphere.
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Figure 3.12 – A gravity wave propagating in the atmosphere of Figure 3.10.
The horizontal phase speed of the wave c is 140 m s−1 and the horizontal wave-
length 2π/k is 2500 km. The vertical perturbation velocity w̃ (-·-), horizontal
perturbation velocity ũ (—), wave stress τ (- - -) and mean flow acceleration
du0/dt (- - -) are shown. As can be seen the wave stops growing above z/Hp

= 16. The wave stress starts to fall below this level, depositing momentum,
causing an acceleration of the mean flow.
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Figure 3.13 – A gravity wave propagating in the atmosphere of Figure 3.10.
The horizontal phase speed of the wave c is -140 m s−1 (i.e. westward, thus the
wave stress is negative) and the horizontal wavelength 2π/k is 2500 km. The
vertical perturbation velocity w̃ (-·-), horizontal perturbation velocity ũ (—),
wave stress τ (- - -) and mean flow acceleration du0/dt (- - -) are shown. As
can be seen, the wave starts to dissipate above z/Hp ≈ 16. The wave stress falls,
depositing momentum, thus, causing a mean flow deceleration which peaks at
z/Hp ≈ 19.
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These two examples demonstrate the large changes to the flow in the thermo-

sphere of hot EGPs that can be caused by small, and presumably, common

gravity waves. However, the net effect on the thermosphere will depend on

the spectrum of waves that manage to reach that region. The types of waves

filtered by the lower parts of the atmosphere will vary over time and location.

As can be seen in Figure 3.2, there is a prograde equatorial jet. This will tend

to filter out waves with positive phase speed. However, at the mid latitudes

the flow is mainly retrograde; thus, an entirely different spectrum of waves

will be filtered at these latitudes. Any parametrisation of the effects of gravity

waves in EGP thermospheres would need to take this into account.

3.5 Conclusion

Gravity wave propagation and the deposition of momentum and energy are

complicated by the environment in which the wave propagates. For example,

spatial variability of the background winds causes the wave to be refracted,

reflected, focussed and ducted. Additionally, temporal variability of the back-

ground winds causes the wave to alter its phase speed. Still further complica-

tions arise due to the waves’s ability to generate turbulence, which can modify

the source or serve as a secondary source, and the interaction between the wave

and the vortical (rotational) mode of the atmosphere. Many of these issues

are, as yet, not well understood and are areas of active research.

This chapter has emphasised only some of these issues. It has shown that grav-

ity waves propagate and transport momentum and heat in the atmospheres

of hot tidally-locked extrasolar planets and that gravity waves play an impor-

tant role in those atmospheres. They modify the circulation through exerting

accelerations on the mean flow whenever the wave encounters a critical level,

saturates or dissipates. They also transport heat to the upper stratosphere and

thermosphere, causing significant heating in these regions. Moreover, through

ducting, they also provide a mechanism for transporting heat from the day-side

of tidally synchronised planets.

Waves with different characteristics act at different altitudes in the atmosphere.

Perhaps counter-intuitively, waves with stronger forcing have impacts in the

stratosphere via critical layers and saturation, whereas waves with smaller
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forcing are able to penetrate higher into the thermosphere, where they can

give rise to significant accelerations and decelerations in the mean zonal flow.

Before relying on GCMs for quantitative descriptions of hot extrasolar planet

atmospheric circulations, further work needs to be performed to ensure that

the effects of important sub-scale phenomena, such as gravity waves, discussed

here, are accurately parametrised and included in the GCMs.
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Chapter 4

Gravity Waves on Jupiter

Gravity waves have been observed in the atmospheres of bodies throughout

the Solar System: on giant planets, such as Saturn (e.g., Harrington, French,

and Matcheva, 2010); on rocky planets, such as Mars (e.g., Creasey, Forbes,

and Keating, 2006); and moons, such as Titan (e.g., Friedson, 1994). The

behaviour of these waves, as has been shown previously, is controlled by inter-

actions with the atmosphere. Thus, the properties of gravity waves allow the

properties of the atmosphere to be deduced. This chapter describes a study

using gravity waves observed in Jupiter’s atmosphere by the Galileo probe

to deduce properties, such at the vertical profile of zonal winds, of Jupiter’s

atmosphere at the probe entry site.

4.1 The Vertical Structure of Jupiter’s Zonal

Winds Using Gravity Waves

The vertical structure of Jupiter’s winds is not well known—especially away

from the visible cloud deck and the equatorial region. Presented in this chapter

is an analysis of the properties of mesoscale gravity waves whose signature are

found in the Galileo probe data, collected during the probe’s descent into

Jupiter’s atmosphere. This analysis allows the derivation of a vertical profile

of the zonal wind from the ∼ 0.5 bar level (the upper troposphere) to the

∼0.1µbar level (the lower thermosphere) at the probe entry site. The profile

shows high speed winds of approximately ∼150 m s−1. Further the location of
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the turbopause, where the power spectrum of the waves is broad presumably

due to wave breakdown, is identified. The profile suggests a jet, previously

identified as related to the quasi-quadrennial oscillation in the stratosphere

(so called as the oscillation has a period of four Earth years), oscillates across

the equator.

Jupiter’s atmospheric circulation is zonal in character. That is the major

winds are east-west in direction, alternating between prograde and retrograde

regions. This is associated with a banded structure in the clouds on Jupiter.

The motion of features in the visible cloud deck have been tracked in images

of Jupiter, giving measurements of the flow speed within the bands. This has

provided a detailed picture of the meridional structure of the zonal winds (e.g.,

Ingersoll, 1990; Vasavada and Showman, 2005). However, the vertical structure

is much less well known. Measurement by the Galileo probe’s Doppler Wind

Experiment (DWE) provided a profile at the probe entry site between the

565 mbar and 22 bar levels (Atkinson, Pollack, and Seiff, 1998). The thermal

wind balance,
∂u

∂ ln p
= −R

f

(
∂T

∂y

)
p

, (4.1)

relates the horizontal temperature gradient, ∂T/∂y, to the vertical shear in

the horizontal geostrophic wind, ∂u/∂ ln p (Holton, 2004). Using this balance,

analyses of temperature measurements of Jupiter’s atmosphere obtained by

the Voyager and Cassini spacecraft have given profiles between the 500 mbar

and 0.5 mbar levels (Flasar et al., 2004; Simon-Miller et al., 2006). However,

the balance is not valid near the equator as f becomes small; therefore, the

profiles are not available for the band within about 5◦ of the equator. Finally,

the zonal motions of deeper regions (2 bar level) have been tracked via the

hotspots, which are gaps in the main cloud deck (Li et al., 2006). However,

no zonal wind speed profile for the region above 0.5 mbar (the highest layer

reported in the above studies) is available.

4.1.1 The Galileo Probe’s Observations

In December 1995 the Galileo probe entered Jupiter’s atmosphere near the

equator, at 6◦ N. It is, to date, the only probe to enter Jupiter’s atmosphere

so the data it provided are the only in-situ measurements of Jupiter’s atmo-
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sphere. During the probe’s entry the Atmospheric Structure Instrument (ASI)

on board collected the accelerations suffered by the probe. Two accelerom-

eters, az1 and az2, collected acceleration information along the direction of

travel every 0.625 s. This acceleration data is shown in Figure 4.1. Note that

there is a small oscillation in the acceleration data, this is most easily seen

early in the profile. This oscillation is spurious and Seiff et al. (1998) apply

smoothing to remove its effects in their calculations. This data is publicly

available in NASA’s Planetary Data System (at http://pds.nasa.gov). These

accelerations were measured for about 4 minutes before the probe entered the

descent phase—that is, before the probe deployed its parachute. During this

time the probe traversed a layer approximately 1000 km thick between about

1 nbar and 350 mbar. A fuller description of the probe and the ASI is available

in Seiff et al. (1998).

Seiff et al. (1998) describes how the temperature profile of the atmosphere

traversed during the entry phase can be derived from the accelerations. Firstly,

the density of the atmosphere can be recovered from the accelerations, if the

aerodynamics of the probe are known, using

ρ =
2maz
CDAV 2

r

, (4.2)

where m is the mass of the probe, az is the acceleration measured by the ac-

celerometers az1 and az2, CD is the probe’s drag coefficient, A is the probe’s

cross-sectional area and Vr is the probe’s velocity. Values for all these proper-

ties, as functions of time, can be obtained from Seiff et al. (1998). The density

profile recovered is shown in Figure 4.2. Then assuming that the atmosphere

is in hydrostatic balance and integrating,∫ ptop

p

dp = −
∫ ztop

z

ρgdz , (4.3)

gives the pressure

p = ptop +

∫ ztop

z

ρgdz . (4.4)

There is a difficulty in evaluating this as the constant of integration, ptop, the

pressure at the start of the measurement, is unknown. The range of plausible

values gives a wide variation in temperatures, ∼ 700 K to ∼ 1200 K at the

top of the profile. However, as shown in Seiff et al. (1998), these profiles
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Figure 4.1 – The accelerations felt by the Galileo probe during its entry into
Jupiter’s atmosphere are shown in this figure. Note the spurious oscillation
clearly visible in the early part of the profile. The cause of this oscillation is
unknown, though currents induced by Jupiter’s magnetic fields is a possibility
(Seiff et al., 1998). However, these oscillations are small and soon swamped
by the true signal; so, no attempt to smooth them is made in the analysis.
Later in the data is a single rogue point with a spuriously large value. This
was caused by a reading being taken as the same time as the accelerometer
was changing measurement range. These activities were not synchronised. This
point is excluded from the analysis. In the last region of the profile the probe
is travelling sub-sonically, this increases unsteadiness in the wake of the probe
and so in its drag coefficient leading to the noise in this part of the profile.
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converge to a single profile below about 500 km above the 1 bar level. The

analysis presented here is restricted to the region below this altitude, thus

avoiding any difficulty due to the unknown initial value. Finally, by assuming

that the atmosphere is an ideal gas the temperature can be obtained from

the pressure and density profiles. Profiles for required quantities, such as the

accelerations due to gravity g and the specific gas constant R, are available in

Seiff et al. (1998). The calculation presented here closely follows Seiff et al.

(1998). The main difference is that the spurious oscillation in the acceleration

measurement is not removed through smoothing the data. This means that

large oscillations appear in the upper part of the recovered temperature profile.

These oscillations can be clearly seen in the upper part of Figure 4.3. However,

the analysis performed in the following sections applies only to the region below

500 km where the oscillation is insignificant, so smoothing is not required.

After the parachute was released the probe slowly descended for about an

hour through a further 150 km of the atmosphere, down to the 22 bar level.

During this phase it collected temperature and pressure data directly with

sensors. The probe then stopped transmitting. The temperature profile for

the region traversed by the probe is shown in Figure 4.3.

Analyses of a smoothed thermospheric temperature profile (Young et al., 1997)

and of the stratospheric profile (Young et al., 2005) have identified discernible

temperature perturbations, which have been interpreted as manifestations of

atmospheric gravity waves. Such observations are not unique to the temper-

ature profile gathered by Galileo. Vertical temperature profiles for Jupiter’s

atmosphere have also been obtained from studies of occulted stars and space-

craft. Stellar occultation studies have a long history going back to the study

by Baum and Code (1953). The attenuation of the starlight as the planetary

atmosphere occults the star is mainly caused by refraction rather than molec-

ular scattering. The index of refraction depends on the atmospheric density so

the photometry of the occultation can provide a vertical temperature profile

(see Elliot and Olkin, 1996, for a review of the technique). A number of these

profiles contain temperature oscillations that have also been characterised as

manifestations of vertically propagating gravity waves (French and Gierasch,

1974; Hubbard et al., 1995; Lindal, 1992; Raynaud et al., 2003; Raynaud et al.,

2004).
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Figure 4.2 – The figure shows the density of Jupiter’s atmosphere, recovered
from the Galileo probe’s ASI acceleration data using Equation (4.2), as described
in Seiff et al. (1998). The shaded area, which is hardly wider than the line itself,
shows the uncertainty in the value due to the resolution of the sensors. At the
top of the profile there are fluctuations in the density. These arise from the
spurious oscillation in the acceleration data as shown in Figure 4.1. The break
in the profile just above the 1 bar level is where the probe’s parachute was
deployed.
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Figure 4.3 – The figure shows the temperature of Jupiter’s atmosphere, re-
covered from the Galileo probe’s ASI acceleration data via Equations (4.2),
(4.4) and (2.2), as described in Seiff et al. (1998). The shaded area shows the
uncertainty in the value due to the resolution of the sensors. Note that this
uncertainty is plotted for all altitudes but is so small as to not be visible for al-
titudes below about 500 km. At the top of the profile there are large fluctuations
in the temperature. These are not real but arise from the spurious oscillation
in the acceleration data as shown in Figure 4.1. Note that these oscillations
become insignificant below 500 km. To avoid these problems and the issue of an
unknown initial pressure value, as discussed in the main text, the analysis of the
temperature data is restricted to the 500km thick layer above the 1 bar level.
The break in the profile just above the 1 bar level is where the probe deployed
its parachute.
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Figure 4.4 – The figure shows the temperature of Jupiter’s atmosphere, at the
Galileo probe entry site, that is considered in this analysis. The region shown
covers the upper troposphere (where the temperature decreases with altitude),
stratosphere (which is roughly isothermal) and the lower thermosphere (where
the temperature increases with height). Within these three regions wave-like
structures with vertical wavelengths of a few tens of kilometres can be seen,
especially in the stratosphere. Note the the very small wavelength oscillations
in the region from 2 km to 50 km above 1 bar are due to the noise in the data
caused by the subsonic travel of the probe during this part of its entry phase,
as shown in Figure 4.1.
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4.1.2 Gravity Waves in Jupiter’s Atmosphere

As discussed in Chapter 2 gravity waves are oscillations of fluid parcels about

their altitudes of neutral buoyancy and are a common feature of stably strati-

fied atmospheres. They have been captured in images of Jupiter’s clouds as a

collection of lines (presumably phase lines) imposed on the background cloud

layer. Figure 4.5 shows an example. Flasar and Gierasch (1986) surveyed

dozens of waves captured in images taken by the Voyager spacecraft during

their flybys of Jupiter in 1979. This allowed general features of these waves to

be derived. They found that the waves predominantly occur in the equatorial

region and that the majority (∼ 80%) of waves have wavefronts aligned within

10◦ of north-south. Typically the waves have wavelengths of 300 km. Gravity

waves have also been identified in the images from the Galileo orbiter (Arregi

et al., 2009). A sequence of images from the New Horizons spacecraft taken

during its flyby of Jupiter in 2007 has allowed wave and cloud features to be

tracked giving a value for the wave phase speed relative to wind speed, the

wave’s intrinsic phase speed. The wave phase travels about 100 m s−1 faster

than the clouds. (Reuter et al., 2007).

As discussed in Section 2.2.1 the effects of rotation can be neglected when

the inertial terms dominate the Coriolis terms. In this case, that is when the

horizontal scale of the waves is less than U/f , where U is the characteristic flow

speed taken as ∼ 100 m s−1 for the probe entry site and f = 2Ωsinφ = 3.68×
10−5 s−1. Thus for waves with horizontal wavelengths less than ∼ 2720 km

rotation can be ignored. As shown above typical horizontal wavelengths are

an order of magnitude smaller than this so rotation can be safely neglected in

this study. Therefore, the dynamics of these gravity waves is described by the

Taylor–Goldstein equation,

d2w

dz2
+m2(z)w = F (z) . (4.5)

Here w is the perturbation in the vertical velocity, adjusted for the amplitude

growth and assumed to be oscillatory in the horizontal direction and time;

F is a forcing function, which represents the source of waves; and, m is the

vertical wavenumber, which depends on the physical properties of the medium
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4.1. The Vertical Structure of Jupiter’s Zonal Winds

Figure 4.5 – The image shows a gravity wave in Jupiter’s atmosphere in an
extract from Voyager image 16316.34. The wave’s location is indicated by the
arrow. The wave fronts can be see as an alternating series of darker and lighter
lines in cloud deck. This wave is propagating horizontally in the troposphere.
Many such waves are captured in the Voyager images (Flasar and Gierasch,
1986). Here, the image contrast has been enhanced to improve the visibility of
the wave. The wave is located just south (1.4◦) of the equator and has a wave
length of 323 km. The dark segment of a circle in the bottom left is part of the
shadow of one of Jupiter’s moons. Image courtesy NASA/JPL-Caltech.
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Parameter Symbol Value

Specific gas constant R 4000 ∼ 3600 J kg−1 K−1

Ratio of specific heats γ = cp/cv 1.4 ∼ 1.5
Acceleration due to gravity g ∼ 23 m s−1

Rotation rate Ω 1.76 × 10−4 s−1

Probe entry location (6◦N, 5◦E)

Table 4.1 – Parameters for the Galileo Probe Entry Site

in which the waves propagate. We use the anelastic TGE so,

m(z) =

[
N2

I2
− 1

I

d2I

dz2
− 1

HρI

dI

dz
− 1

4H2
ρ

(
1− 2

dHρ

dz

)
− k2

]1/2
, (4.6)

where N is the Brunt–Väisälä (buoyancy) frequency; I is the intrinsic phase

speed, c−u0; Hρ is the density scale height; and, k is the horizontal wavenum-

ber. In general, all of the variables depend on altitude z. Crucially, the zonal

wind profile u0(z) can be obtained by solving for I = I(H, k,N,m) in (4.6),

which leads to the non-linear second order differential equation,

I
d2I

dz2
+

I

Hρ

dI

dz
+

[
1

4H2
ρ

(
1− 2

dHρ

dz

)
+ k2 +m2

]
I2 −N2 = 0 . (4.7)

This inversion this allows a profile for the zonal wind to be derived that spans

a much larger range of altitude above the 1 bar level (∼500 km) than the past

analyses described above.

Hρ(z) is computed from the density profile derived using Equation (4.2) and

the definition of the density scale height (2.15). The horizontal wavenumber is

taken from the analysis of Flasar and Gierasch (1986); that is k = 2π/300 km−1

using the average wavelength they obtained.

To obtain N a background profile for the potential temperature, θ̄, is re-

quired. This potential temperature profile, θ, is calculated using the definition

of potential temperature, Equation (2.3), the pressure profile derived from the

density profile and the temperature profile shown in Figure 4.4. The reference

pressure is set as pref = 1 bar. The profile of κ = R/cp, with R the specific gas

constant and cp the specific heat at constant pressure, can be derived from data

supplied in Seiff et al. (1998). The vertical profile of θ is shown in Figure 4.6A.
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Figure 4.6 – The figure shows potential temperature, relative potential tem-
perature perturbation and Brunt–Väisälä (buoyancy) frequency profiles for
Jupiter’s atmosphere at the probe entry site. All altitudes are relative to the
1 bar pressure level. A) The vertical profile of potential temperature, θ, is
shown as a solid line (—). Also shown is the background potential temperature,
θ̄ shown as a dashed line (- - -). B) The vertical profile of potential temperature
perturbations, ∆θ, scaled by the background value, θ̄. The perturbations show
wavelike oscillations throughout the stratosphere and lower thermosphere. Note
that the short wavelength oscillations in the layer between 25 km and 50 km
are due to accelerations caused by buffeting of the probe as its velocity became
subsonic. C) The vertical profile of the Brunt–Väisälä frequency, which shows
the stability of the atmosphere against convective stability.
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The profile for θ is decomposed into a mean background θ̄ profile and a small

perturbation ∆θ profile taken about the mean. This perturbation is presumed

to be due to the mesoscale gravity waves whose properties are to be stud-

ied. Such a decomposition of temperature is standard in gravity wave studies

(Lindzen, 1990; Nappo, 2002; Young et al., 1997) and is reasonable here given

that the spatial scales of the background and waves are well separated. Further,

the horizontal distance travelled by the probe in the region studied, 3300 km, is

small compared to Jupiter’s circumference; hence, zonal (east-west) variation

in the background over this distance is not expected to be significant.

The background value for each point is identified by fitting a cubic to the

potential temperature data in a smoothing window centred on the point. A

cubic, having two turning points, can fit up to 1 wavelength of fluctuation in

the field. Thus fluctuations with wavelengths of the order of the smoothing

window and larger can be fitted to the cubic and identified as a change in

the background. The background value is taken to be the value of the cubic

at the centre of the window. This is illustrated in Figure 4.7. Smaller scale

fluctuations cannot be fitted to the cubic and so are not smoothed, they are

identified as the mesoscale fluctuations required for the analysis. This acts

as a low-wavenumber-pass filter, thus giving a profile of the background as

the background varies on large scales compared to the mesoscale waves. The

exact profile obtained varies a little with the size of smoothing window used. To

allow for this the complete analysis was repeated for several windows varying

in size from 55 km to 85 km. This technique for obtaining a background

temperature profile has been used in a previous study of data obtained via the

Galileo probe investigating the stability of Jupiter’s troposphere (Magalhães,

Seiff, and Young, 2002). The vertical profile of θ̄, using a 75 km-deep moving

window is shown in Figure 4.6A as a dashed line. The perturbation is recovered

using,

∆θ = θ − θ̄ . (4.8)

This analysis works with the relative perturbation ∆θ/θ̄ as this directly related

to the perturbation in the vertical velocity, w, as shown by polarization relation

(2.50c). This profile is presented in Figure 4.6B.

The Brunt–Väisälä frequency is derived from θ̄ using Equation (2.10). This is

shown in Figure 4.6C. Note that N is much smaller in the region below ∼20 km
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Figure 4.7 – The background profile is obtained by smoothing the profile. The
smoothed value for a given point is the value of a cubic, fitted to the data in a
given window, as illustrated in the figure. Here the point at z = 382 km is being
smoothed. The data points are shown as circles, the upper and lower limits of
the 75 km window are shown as solid lines (—) and the fitted cubic as a dashed
line (- - -). The smoothed value for the point is the value of the cubic at 382 km
and is indicated by the red cross.
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than that above, in the stratosphere. This represents a possible ducting region,

a source for the waves in the probe data. Such a region was hypothesised by

Flasar and Gierasch (1986) as the location of the mesoscale waves observed in

the Voyager images such as the one shown in Figure 4.5.

Although w information was not collected by the probe, as mentioned above

from the polarisation relations it is clear that w and ∆θ/θ̄ are directly related,

that is waves in the two quantities have the same wavenumbers. As can be

seen in Figure 4.6B there are wave-like oscillations in the potential temperature

perturbation. Therefore,m(z) can be obtained by identifying the wavenumbers

of these features.

To identify the profile of the wavenumbers a series of Lomb-Scargle peri-

odograms (Scargle, 1982) of the ∆θ/θ̄ data were generated. The original read-

ings by the probe were uniformly spaced in time; so, as the probe’s velocity

changed during its entry, the data are non-uniformly spaced in z. This non-

uniform spacing renders analysis by standard fast Fourier or wavelet transforms

unsuitable. However, the Lomb-Scargle periodogram provides the means for

simply analysing unevenly spaced data. In a process analogous to the short-

term Fourier transform a periodogram at each z is generated using the data

points in a given window. Figure 4.8 shows an example of this process where

the window is 60 km in extent and centred on the point at z = 298 km. This

gives the spectral energy density as a function of wavenumber for the chosen

altitude. We have also verified that the obtained result varies little between

different sized periodogram windows. All the periodograms are subsequently

combined to produce a two-dimensional map of the spectral energy density as a

function of wavenumber and altitude, E = E(m∗, z), shown in Figure 4.9; here

m∗ is the vertical wavenumber m prior to an adjustment for wave propagation

geometry.

Three features which are apparent in the E map. First, regions with higher

values of spectral energy density (shown in the figure as red and yellow) are

common, especially below about 400 km, indicating that gravity waves are a

common feature of this region of the atmosphere. Gravity waves that have been

identified previously (Young et al., 2005) are recovered (labelled as W1 and W2

in the map). This agreement gives confidence in the procedure used to identify

the properties of the gravity waves in the data. However, in addition to those

waves, several new comparable gravity waves are identified in the analysed
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Figure 4.8 – An example of the Lomb-Scargle periodogram. A) The variation
of ∆θ/θ̄ with z as shown in Figure 4.6B with a 60 km periodogram window
indicated in red centred on the point at z = 298 km. B) Shown here is the
Lomb-Scargle periodogram for the points in the window shown in A. This shows
a peak at a wavenumber of about 0.13 km−1. This process is repeated for each
point and the resulting periodograms combined to create a map like the one in
Figure 4.9.
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Figure 4.9 – Shown here is a moving Lomb-Scargle periodogram of the potential
temperature perturbation from Figure 4.6B. Regions of high spectral energy
are in red and low energy is in blue. The variation of the observed vertical
wavenumber m∗ is shown (white line). The line is produced by identifying local
energy maxima and constructing a line joining them, avoiding local minima.
Note that there are other waves that can be identified within the periodogram.
One such wave, the region of high energy at m∗ ≈ 0.61 km−1 between 180 km
and 210 km altitude (labelled W1) has been previously identified as a saturating
gravity wave (Young et al., 2005). Another region (labelled W2) has also been
previously identified (Young et al., 2005). The region at an altitude of around
400 km shows a broadening of the range of wavenumbers with increased spectral
energy. This is indicative of the turbopause, the region where waves break and
the atmosphere begins to become heterogeneous.
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domain. In particular, note the high energy density (dark red) regions near

the 50 km, 300 km and 400 km altitudes.

Second, the analysis identifies a region consistent with a turbopause centred

at ∼400 km altitude. This is the region where the width of the sub-spectrum

containing significant energy increases markedly. In this region, molecular dif-

fusion becomes comparable to eddy diffusion and gravity waves, growing in

amplitude, as they propagate upward break, transferring energy into higher

wavenumbers. Above this region, energy is lower across the entire spectrum

and the spectrum itself is much steeper than that for the turbopause region.

Above the turbopause region, the atmosphere becomes inhomogeneous, sep-

arating out into layers of different molecular species. Knowing the level at

which Jupiter’s atmosphere becomes inhomogeneous is important, for exam-

ple, in the interpretation of stellar occultations as the change of composition

leads to changes in the index of refraction of the atmosphere. Past studies,

based on observations, have placed Jupiter’s turbopause at the ∼ 5 µbar (Fes-

tou et al., 1981) and ∼ 0.5 µbar (Yelle et al., 1996) levels. This analysis

supports the latter location.

Third, as mentioned previously, in the lower part of the analysed domain there

appears to be a ducting region, a region with a sharp jump in N . Such a region

can serve as a source of gravity waves. Horizontally propagating gravity waves

in this region have previously been observed (see, e.g., Figure 4.5), which have

been suggested as waves trapped in a “leaky” duct. The ducted wave travels

horizontally by undergoing internal reflections at the boundaries; however, part

of the wave escapes the duct to propagate vertically. Because the wavenumber

with maximum energy in the E map can be traced down to the ducting region,

it is likely that the waves have come from there. Note that above this region

the number of local peaks in the spectrum generally reduces with altitude.

Also, the magnitude of the peak energy in the low wavenumber (white line

in Figure 4.9) is high at first ,below about 125 km, then decreases, and then

increases again,above about 225 km, along the white line, until the topside of

the turbopause region at ∼ 425 km above the 1 bar level. This is indicative

of wave saturation (or encounters with a critical layer, where I = 0 locally)

for this wave as it propagated upward. There are regions where there are

multiple peaks in the energy density at ∼ 200 km and ∼ 300 km above the

1 bar level, these multiple peaks may be due to wave breaking and secondary
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wave generation from breaking layers.

4.1.3 The Zonal Wind Profile

As alluded to earlier, m∗ differs from the required wavenumberm. The latter is

the wavenumber that would be observed by a probe travelling in a vertical di-

rection. However, throughout most of its entry phase, the probe had a shallow

angle of attack (∼ 6◦ below the horizontal), which changes the wavenumber

observed by the probe during its passage in the upper part of the analyzed

domain. The situation is sketched in Figure 4.10. The geometry of the probe’s

path is used to obtain the true vertical wavenumber,

m =

(
tan γ tan β

1− tan γ tan β

)
m∗, (4.9)

where γ is the angle of attack and β is the angle the wavevector makes with the

horizontal. We make no correction for the relative motion of the probe with

respect to the wave since the probe’s velocity is supersonic (indeed, hypersonic,

with up to Mach 51) for much of the entry phase. Gravity wave phase speeds

are subsonic.

Although γ is known from the probe’s trajectory (Seiff et al., 1998), β is not.

To estimate this quantity, it is assumed that the probe’s trajectory is vertical

in the period just before parachute deployment. This is not far from the actual

situation since the probe’s angle of attack was 83◦ just before the parachute

was deployed (Seiff et al., 1998). In this region, m∗ ≈ m; and, since

β = arccos

(
k√

k2 +m2

)
, (4.10)

we have β ≈ 85◦. Now, all the parameters required to recover I have been

obtained, and a vertical profile for I can be estimated by solving (4.6). The

equation is solved using two numerical techniques; a variable order Adams-

Bashforth-Moulton predictor-corrector solver and a 7th order Runge-Kutta

solver. No difference was seen between the two solutions.

Finally, to obtain u0 from I, a value for the horizontal phase speed c is required.

Unfortunately, this is unknown for the wave encountered by the probe. How-

ever, as described previously equatorial gravity waves with a phase speed of

97



4.1. The Vertical Structure of Jupiter’s Zonal Winds

Figure 4.10 – A sketch of the geometry of the wave and probe. As discussed
in the main text the waves are assumed to be propagating upwards from the
ducting region—that is, the energy flux is positive, Fz > 0. We take the wave
phase speed to be greater than the wind speed, I > 0, as has been observed in
equatorial gravity waves on Jupiter (Reuter et al., 2007). So, the wave fronts
(shown as solid and broken thin blue lines) move downward, as indicated by
the wave vector, the thick blue arrow (Nappo, 2002). The angle made by the
wave vector with the horizontal is β. The probe’s trajectory, at an angle γ to
the horizontal, is shown as the green arrow. It can be seen that the vertical
wavelength observed by the probe, λz,obs, is different to the actual value λz.
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about 100 m s−1 greater than the winds have been seen in images of Jupiter’s

clouds returned by New Horizons (Reuter et al., 2007). This value is taken as

a typical value and therefore c = 180 m s−1. This is consistent with the hy-

pothesis that the waves are driven by convective overshoot in the region below

the clouds. In this region the zonal winds have been measured by the DWE

on board the probe to be near this speed, ∼ 170 m s−1 (Atkinson, Pollack,

and Seiff, 1998), so a phase speed of this size is plausible. Any variation of

c with altitude would be expected to be small, increasing the uncertainty to

some degree but not fundamentally changing the profile. This gives the profile

for u0(z) shown in Figure 4.11. The standard deviation shown indicates the

variation in the profile given by the various smoothing window sizes considered

in constructing E .

The upper part of the DWE profile is shown in red in Figure 4.11. The wind

speed at the bottom of the profile derived from the properties of the gravity

waves agrees well with that at the top of the DWE profile. The profile shows

increasing zonal wind speed with altitude (up to ∼ 100 km above the 1 bar

level). This implies that the wind speed is a minimum near the cloud-top

level. This is similar to what has been observed from studies using the thermal

wind equation (Flasar et al., 2004; Simon-Miller et al., 2006). However, in this

profile, the high speed wind is not a jet as the zonal wind velocity remains near

this level throughout the stratosphere. There are some fluctuations of the order

of 20 m s−1 in the wind speed in the thermosphere. The Richardson number,

given by (2.56), is greater than 1/4 for the entire profile which indicates the

flow is stable with respect to the Kelvin-Helmholtz instability.

4.1.4 Implications

Temporal variations in the temperature profile of Jupiter’s equatorial strato-

sphere have been observed to have a period of 4 to 5 years and are therefore

known as the quasi-quadrennial oscillation (QQO) (Friedson, 1999; Leovy,

Friedson, and Orton, 1991). These oscillations have been linked to variations

in the zonal wind observed via cloud-tracking on Jupiter (Simon-Miller et al.,

2007). Further, a jet derived using the thermal wind equation applied to data

gathered by the Cassini spacecraft in December 2000 and January 2001 and

located just north of the equator has also been linked to the QQO (Flasar
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Figure 4.11 – The vertical profile of the background zonal wind speed u0. The
zonal wind is shown (—) with the average standard deviation of the variation
across smoothing and periodogram windows indicated. The zonal speed pro-
file found by the Doppler Wind Experiment is shown at the bottom (—) for
comparison.
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4.1. The Vertical Structure of Jupiter’s Zonal Winds

et al., 2004). No such jet is present in the profile presented here. However,

a jet of similar magnitude, just south of the equator, has been observed in

observations gathered in 1979 (Simon-Miller et al., 2006), suggesting this jet

may be oscillating about the equator. The lack of a jet in the profile presented

in Figure 4.11 is consistent with such an oscillation, as the jet would be located

south of the equator at the time the Galileo probe entered the atmosphere.

The circulation of Jupiter’s stratosphere is important for understanding the

planet’s circulation as a whole. The location of the turbopause is essential for

understanding the coupling between Jupiter’s upper atmosphere and the circu-

lation in the lower atmosphere. The Juno mission will explore the troposphere

of Jupiter to depths of 100 bar or more. This will provide better insight to the

source and behaviour of gravity waves in the troposphere, possibly allowing

better limits to be derived for the wave-vector angle β in our analysis and

the mechanisms for gravity wave generation. The planned Jupiter Icy Moon

Explorer (JUICE) mission (Dougherty et al., 2011) will study gravity wave

activity and zonal winds in the stratosphere of Jupiter providing a context for

these results. These measurements will be taken over an extended period en-

abling the evolution of this profile to be observed, in addition to improving our

understanding of the overall circulation and specific features (e.g., the QQO

and any oscillation of its associated jet about the equator).
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Chapter 5

Further Work and Conclusion

The study of extrasolar planets has rapidly grown into a mainstream research

area over the last decade and a half, since the discovery of 51Pegasi b. There

are many topics within the discipline with thriving communities of researchers.

The study of the atmospheric dynamics of these planets is just one of these

topics. It is, however, of crucial importance to the discipline as a whole, as the

atmospheric dynamics influences the radiation emitted by these planets and

are, therefore, crucial to the interpretation of the observations. This thesis has

investigated one aspect of these dynamics – internal atmospheric gravity waves.

The results of this investigation are summarised below along with an overview

of future work to build and extend the results that have been presented in this

thesis.

Gravity waves are also a feature of planetary atmospheres within the Solar

System. These waves provide a probe to explore the atmospheres within which

they propagate, an example of which is described in this thesis. There are other

opportunities for similar techniques to be applied, and these are discussed

below.

But first some preliminary work on modelling gravitational tides on Jupiter is

presented. Planet-scale gravity waves, atmospheric tides, can also affect the

circulation of a planet or moon, for example atmospheric tides raised on Ti-

tan by Saturn are thought to have a major effect on the moon’s tropospheric

and stratospheric circulation (Tokano and Neubauer, 2002). In the follow-

ing section a brief summary of gravitational atmospheric tides on Jupiter is
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5.1. Gravitational Tides on Jupiter

presented. Also presented is a short review of the performance of the GCM,

MITgcm which has been used to simulate the atmospheric tide. It is important

to understand the performance of GCMs that have been developed to model

conditions found in the Solar System when used to model the very different

conditions found on hot EGPs. Without such an understanding it is possible

that phenomena that are purely artefacts of the GCM may be presented as

physical. A brief discussion of how the modelling of atmospheric tides could

be extended to extrasolar planets is included in the review of future work.

5.1 Gravitational Tides on Jupiter

Gravity waves that are of a planetary scale and periodically excited – for ex-

ample, by the gravitational pull of a satellite – are known as atmospheric tides.

In addition to gravitational tides, there are tides that are excited thermally by

heating from the parent star. Both mechanisms are present on the Earth, with

the solar thermal tide dominating. The effect of the solar tide can be seen in

regular variations of the surface atmospheric pressure, especially in the tropics

(Chapman and Lindzen, 1970).

The Solar System’s giant planets are much further from the Sun than the

Earth. Jupiter has a semi-major axis of roughly 5.2 AU, and so thermal

forcing plays a much smaller role in generating tides. However, as discussed

below, the gravitational potential due to the main satellites of these planets is

many times larger than that of the Moon and so gravitational tides may have

a significant effect.

In this section we survey the classical (linear) tidal theory, as applied to Jupiter

and its satellite Io. The aim of this section is to simulate the tides using a

three dimensional GCM. The model used, MITgcm, is described along with a

brief summary of the behaviour of MITgcm when simulating test cases from

a comparison of GCMs. This work is due to be published in the near future

(Polichtchouk et al., in preparation). Finally, the effects of the tides as shown

by the simulations are given and possible implications for Jupiter’s circulation

discussed.

103



5.1. Gravitational Tides on Jupiter

5.1.1 The Classical Theory of Atmospheric Tides Ap-

plied to Jupiter

As tides are planetary-scale phenomena the fluid equations used in Chapter 2

to derive the TGE need modification. Specifically, Equations (2.20) are ex-

tended to three dimensions and to take account of the rotation of the planet.

To simplify the equations obtained, a number of approximations are used,

which vary depending on the application. For example, in the terrestrial case

the atmosphere is assumed to be thin and the atmosphere is taken to be in

hydrostatic balance (Chapman and Lindzen, 1970). However, since Jupiter is

a gas planet with no solid surface, these assumptions are not made when de-

veloping the tidal equations for the Jupiter–Io system (Ioannou and Lindzen,

1993a). The traditional approximation, which neglects certain Coriolis and

metric terms is used. Ioannou and Lindzen (1993b) argue that this is reason-

able as the tidal action is largely in the outer part of the planet. Further, the

linearisation approximates the atmosphere as static. This is not unreasonable

as the tide travels around the planet’s equator at approximately 9.6 km s−1,

far in excess of Jupiter’s maximum wind speed. Indeed, this is hypersonic as

the speed of sound in Jupiter’s atmosphere is just 0.8 km s−1.

This gives the relevant linearised equations as,

∂v1
∂t

+ 2ωu1 sinφ+
1

r

∂P1

∂φ
= 0 , (5.1a)

∂u1
∂t

− 2ωv1 sinφ+
1

r cosφ

∂P1

∂ϑ
= 0 , (5.1b)

ρ0
∂w1

∂t
+
∂p1
∂r

+ ρ0
∂Ω

∂r
− g0ρ1 = 0 , (5.1c)

∂ρ1
∂t

+ w1
dρ0
dr

+ ρ0χ = 0 , (5.1d)

∂p1
∂t

− c2
∂ρ1
∂t

+ ρ0
c2

g0
N2w1 = 0 , (5.1e)

where φ is the latitude; ϑ is the longitude; r is the radial distance; u1, v1 and

w1 are the perturbation velocities in the zonal, meridional and radial directions

respectively; P1 = (p1/ρ0)+Ω is the reduced pressure and Ω is the gravitational

potential due to Io, given below; χ = ∇ · v is the velocity divergence which in
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5.1. Gravitational Tides on Jupiter

this coordinate system is

χ =
1

r cosφ

∂u1
∂ϑ

+
1

r cosφ

∂

∂φ
(v1 cosφ) +

1

r2
∂(r2w1)

∂r
; (5.2)

and c2 = γp0/ρ0 is the speed of sound.

These equations can be combined, eliminating the horizontal velocities, to give,

χ =
1

r2
∂(r2w)

∂r
+

iσ

4ω2r2
F (P1) , (5.3)

where F is the Laplace tidal operator,

F ≡ 1

cosφ

∂

∂φ

(
cosφ

f 2 − sin2 φ

∂

∂φ

)
− 1

f 2 − sin2 φ

(
s

f

f 2 + sin2 φ

f 2 − sin2 φ
+

s2

cos2 φ

)
,

(5.4)

where s is the zonal wavenumber and f = σ/(2ω), where ω is the rotational

angular velocity of Jupiter and σ is the tidal angular velocity given by 2(ω −
ωIo), where ωIo is the orbital angular velocity of Io; the orbital angular velocity

of Jupiter is neglected as it is small (Ioannou and Lindzen, 1993a). This

equation is separable, giving an equation for the meridional structure. This is

the eigenproblem,

F (Θn) =
4r2ω2

ghn
Θn (5.5)

where the eigenfunctions Θn are Hough modes and hn is known as the equiv-

alent depth. Hough modes are sums of associated Legendre polynomials Pm,s,

Θn =
∞∑

m=s

Cn,mPm,s (cosφ) , (5.6)

where the coefficients Cn,m are obtained from recurrence relations derived by

substituting Equation 5.6 into Equation 5.5 (see Chapman and Lindzen, 1970,

for details). Selected Hough modes for the Jupiter–Io system are given in

Figure 5.1. It is clear from Figure 5.1 that the latitude of 50◦ has a special role

in the Hough modes of this system. This is the critical latitude, the latitude

where the period of the forcing is equal to the inertial period. It is given by

the angle arcsin f . Note that modes with negative equivalent depth contribute

poleward of the critical latitude and modes with positive equivalent depth

contribute equatorward of the critical latitude.
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5.1. Gravitational Tides on Jupiter

Figure 5.1 – Example Hough modes from the Jupiter–Io system. Note that
Hough modes with negative indices – i.e., those with negative equivalent depths,
are evanescent equatorward of the critical latitude of 49.9◦, whereas those with
positive equivalent depths are evanescent poleward of the critical latitude. The
potential as given by equation (5.7) with r = a and λ = 0 is shown in the
bottom left subfigure; and, for comparison, in the bottom right subfigure is the
potential obtained by summing Hough modes with indices from -20 to 28.
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5.1. Gravitational Tides on Jupiter

Figure 5.2 – A sketch of the geometry of the Jupiter and Io system. The tidal
potential at point P can be calculated using 5.7. Here D is the distance between
the centres of Io and Jupiter, r is the radial distance of P , λ is the difference
between the longitude of P and the longitude of the sub-Io point and φ is the
latitude of P .

The geometry of the Jupiter–Io system (f = 0.766) is sketched in Figure 5.2.

Here it is assumed that the orbit of Io lies in the plane of Jupiter’s equator. This

is a very good approximation, as Io’s inclination is just 0.05◦. It is also assumed

that Jupiter is a spherical planet, which is not as good an approximation, as

Jupiter is an oblate spheroid with a flattening of approximately 0.06. This

geometry gives the potential as,

Ω (λ, φ, r) = −3

2

GMIor
2

D3

(
1

3
− cos2 λ cos2 φ

)
, (5.7)

where λ is the difference between the longitude of the sub-Io point and the

longitude of P , G is the gravitational constant, MIo is the mass of Io and r is

the radial distance of P from the centre of the planet. The potential Ω(0, φ, a)

is shown in the bottom left subfigure of Figure 5.1. However, in order to use

the potential with the vertical structure equation, described below, it has to

be decomposed into its components given by,

Ω (0, φ, r) =
r2

a2

∞∑
−∞

ΩnΘn . (5.8)
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5.1. Gravitational Tides on Jupiter

This sum for −20 ≤ n ≤ 28 (the same as used in Ioannou and Lindzen (1993a)

for ease of comparison) with r = a is shown in the bottom right subfigure of

Figure 5.1. The values of Ωn are based on Ioannou and Lindzen (1993a), but

note that the values given there are a factor of 2 too small. The calculations

given here have corrected for that. The potential at the surface of Jupiter is

shown in Figure 5.3. The semidiurnal nature of the potential and, thus, the

tide can be seen. The potential gives rise to forcing that drives the tide as can

be seen in the vertical structure equation,

ξn =
1

σ2 −N2

(
dPn

dr
− N2

g0
Pn +

N2r2

g0a2
Ωn

)
, (5.9a)

1

r2
d

dr

(
r2ξn

)
+

(
1

c2
− a2

ghnr2

)
Pn −

g0
c2
ξn =

r2

c2a2
Ωn , (5.9b)

where ξn = wn/iσ is the radial displacement. Solving the vertical structure

equation gives the variation of radial displacement with radial distance and

latitude. As with small scale gravity waves the stratification of the fluid is

important in determining the behaviour of the tide. Stratification is required

for Hough modes with positive equivalent depth to propagate. So, we see

in Figure 5.4, where the fluid is modelled as neutrally buoyant (i.e., N =

0), the radial displacement due to the tide is generally small. However, in

models where the Brunt–Väisälä frequency is positive, such as that shown in

Figure 5.5, the tide propagates causing large radial displacements. But, as can

be clearly seen in these figures, stratification is not the only factor affecting

the behaviour of the tide. In the outer shell of the planet, where N > σ, the

tide only propagates equatorward of the critical latitude. Conversely, in the

inner region where N < σ the tide propagates poleward of the critical latitude.

5.1.2 MITgcm

The tidal simulation was implemented using MITgcm. This GCM is described

in Adcroft et al. (2011), but a brief summary is given here. The GCM uses

a finite-volume approach to solve the primitive equations. It is a very flexible

model allowing the relaxation of many of the usual assumptions (such as a thin

atmosphere and hydrostatic balance). It also allows horizontal discretisations

beyond the usual geographical (latitude/longitude) grid. Specifically it allows

108



5.1. Gravitational Tides on Jupiter

Figure 5.3 – The gravitational tidal potential due to Io at Jupiter’s cloud
layer. Note that the potential is symmetric, with identical structure on the
hemisphere toward Io and the hemisphere facing away. This leads to the tides
being semidiurnal.

the use of a cubed-sphere grid as shown in Figure 5.6. There is can be seen

that the grid consists of a cube, where each face has been gridded, conformally

mapped onto a sphere. The advantages this brings includes the elimination of

the problem of meridians, and therefore grid-points, becoming physically close

in the high latitudes near the pole; thus a polar filter is not required. Also

fewer grid points are required to cover the sphere for a given resolution than

is required by a geographical grid.

However, the corners do introduce some issues. This has been demonstrated

in the findings of a recent GCM comparison study (Polichtchouk et al., in

preparation). The exercise ran three idealised test cases with parameters rele-

vant to a close-in tidally locked giant planet; a balanced mid-latitude jet, the

same jet but with a small temperature perturbation and an initially at rest

atmosphere forced with a Newtonian thermal relaxation. A cross-section of

the initial conditions of the mid-latitude jet case, based on a similar test case

using terrestrial parameters described in Polvani, Scott, and Thomas (2004), is

shown in Figure 5.7. Detailed analysis of these cases and cross-GCM compar-

isons were carried out using norms described in Jablonowski and Williamson
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5.1. Gravitational Tides on Jupiter

Figure 5.4 – This shows the tides on a Jupiter where the interior is neutral –
i.e, the Brunt–Väisälä frequency is zero. The colour shows the amount of radial
displacement due to the tide. The amplitude of the tide is generally much smaller
than that for the case, where the interior is stratified, shown in Figure 5.5. Note
that the waves that can be seen poleward of the critical latitude are inertial
waves. However, as the calculation uses the traditional approximation, which
neglects part of the Coriolis force, these waves are unphysical.
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5.1. Gravitational Tides on Jupiter

Figure 5.5 – This shows the tides on a Jupiter where the interior is stratified
– i.e., the Brunt–Väisälä frequency is greater than zero but decreases as r, the
radial distance, decreases. The profile is based on Ioannou and Lindzen (1993b)
and illustrates the structure of the tide on a giant planet with stratified interior.
The colour shows the amount of radial displacement due to the tide. Note that
the amplitude of the tide is generally much larger than that for the case where
the interior is neutral, as shown in Figure 5.4. Further, the tide has six zones.
There is an outer region, where r/a & 0.85. Here the Brunt–Väisälä frequency
is greater than the forcing frequency σ. This region is further divided into the
two areas poleward of the critical latitude (where the tide is minimal) and the
equatorward region (where the tide propagates). Interestingly, in the interior
region, where r/a . 0.85, the reverse occurs with the tide propagating in the
two poleward regions but evanescent in the equatorward region.
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5.1. Gravitational Tides on Jupiter

Figure 5.6 – This is an example cubed sphere grid for use with MITgcm. It
improves upon the more standard latitude longitude grid in not requiring a
polar filter to counteract the effect of meridians becoming physically closer near
to the poles, it also uses less grid point to cover the grid for a roughly equivalent
resolution. However, as discussed in the text the sphere’s “corners” do introduce
artefacts that make this grid unsuitable for some work. See Figure 5.8 for an
example.
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5.1. Gravitational Tides on Jupiter

(2006).

However, to illustrate the issues with the cubed-sphere grid, it is only necessary

to view the output of the first two simulations. These are shown in Figure 5.8,

which shows the temperature field at the 975 mb level for the northern hemi-

sphere. The unperturbed balanced jet should remain unchanged as it is a

solution of the fluid equations. To test the GCM the unperturbed balanced jet

simulation is undertaken without dissipation and the deviation from the initial

condition that developed over time measured. Little or no change would be

expected. This can be seen in Figures 5.8 (a) and (b) which are the outputs

from a simulation using a geographical grid.

However, the jet is an unstable solution of the equations and a small perturba-

tion will trigger the baroclinic instability, leading to a wave in the temperature

field. When using the cubed-sphere grid, as shown in Figures 5.8 (c) and (d),

this wave appears with wavenumber four. This demonstrates that the cubed-

sphere grid introduces perturbations. The output is noisy due to the lack of

dissipation in the test case.

Where the initial set-up includes a small perturbation in the temperature field,

a baroclinic wave is excited which can be seen in the temperature field. This

can be seen when using the geographical grid as shown in Figures 5.8 (e) and

(f). When using the cubed-sphere grid, the baroclinic wave is still excited, it is

superimposed on the wavenumber four disturbance coming from the corners.

This is shown in Figures 5.8 (g) and (h). The figure here is much less noisy as

dissipation is included in this test-case.

5.1.3 Jupiter’s Circulation

As discussed in Chapter 4 the circulation on Jupiter is broadly zonal. There is

a series of retrograde and prograde jets that is associated with Jupiter’s cloud

deck and its banded appearance. The origin of this character is an area of active

academic debate. There are two categories of proposed mechanisms. The first

set of mechanisms can be characterised as “deep” models (Busse, 1976; Heim-

pel, Aurnou, and Wicht, 2005, e.g.,). These depend on the Taylor-Proudman

effect (e.g., Vallis, 2006), which states that in a fast rotating barotropic fluid

the flow is constant in cylinders centred on the axis of rotation. Simply put,
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Figure 5.7 – The figure shows the initial conditions for the balanced mid-
latitude jet test case. The solid black lines (—) shows the zonal wind. The
dashed red line (- - -) shows the potential temperature.

these theories hold that Jupiter consists of a series of rotating cylinders and

the jets are the manifestation of these cylinders at the planet’s surface. These

models generally give a broad prograde jet at the equator but a smaller num-

ber of jets than observed. The other category of models are “shallow”. Here,

the jets form in the weather layer. An initially turbulent layer modelled using

the shallow-water equations will evolve into a series of jets (Cho and Polvani,

1996a,b). However, “shallow” models have failed to produce a prograde jet

at the equator. A more recent “shallow” model has demonstrated the ability

to produce a prograde equatorial jet, by including radiative relaxation in the

model (Scott and Polvani, 2008).

A third approach has been proposed where the tides, excited by the satellites,

break in the atmosphere depositing momentum into the flow (Ioannou and

Lindzen, 1993a, 1994). The meridional pattern of this deposition at the cloud

level is somewhat suggestive of the banded structure of Jupiter’s clouds, with

alternating regions of prograde and retrograde momentum deposition. How-

ever, the largest accelerations are produced away from the equator at latitudes

of approximately 15◦, 25◦ and 40◦. This, perhaps, would mean no jet at the

equator via this method. A further issue is that for the tides to have this
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Figure 5.8 – Comparison of balanced jet test case simulations using both the
geographical grid (G-grid) and cubed-sphere grid (CS-grid) available in MIT-
gcm. Each subfigure shows the temperature field at 975 mb. The left column
shows the initial state, the right column shows the situation after 10 rotations of
the planet. In the lower four subfigures a small perturbation in the temperature
field has been used to trigger a baroclinic instability. In subfigures (a) and (b)
there is no visible change, as expected. However, in subfigures (c) and (d) the
field does evolve with a wavenumber 4 pattern. This shows how perturbations
from the CS-grid corners have driven the setup away from balance triggering the
instability. The figure is noisy as the setup for this text case specifies that no
dissipation should be used. In sub-figures (e) and (f) a small perturbation in the
temperature field at the prime meridian has triggered a wave via the baroclinic
instability. Sub-figures (g) and (h) show how the instability grows when using
the CS-grid. While this evolution is clearly different to that in subfigure (d)
there are still spurious features with a wavenumber of 4.

115



5.1. Gravitational Tides on Jupiter

effect the interior of Jupiter would need to be stratified. Whilst some evidence

for regions of stratification exists in the region explored by the Galileo probe

(Magalhães, Seiff, and Young, 2002) this is is still very shallow compared to

the depths that stratification is assumed in Ioannou and Lindzen (1993a).

5.1.4 Simulation of Atmospheric Tides on Jupiter

In preparation for future simulation of gravitational tides on close-in giant

planets, discussed in more detail in Chapter 5, a simulation using MITgcm of

gravitational tides in Jupiter’s atmosphere was undertaken. MITgcm was used

as it has built in to the code the ability to solve the fluid equations without

assuming hydrostatic balance or assume that the fluid is of negligible thickness

compared with the radius of the planet. However, as this simulation is of tides

in Jupiter’s atmosphere, the simulation discussed here does not relax these

approximations.

The tide is simulated taking the gradient of the potential in the longitudinal

and latitudinal directions and using these accelerations to force the zonal and

meridional momentum equations. The fluid is discretised into 5 layers above

the 1 bar level. A zonal filter is used poleward of 45◦ to compensate for the

reduction in separation of the meridians that occurs there. Further, an order

16 Shapiro filter (Shapiro, 1970) is used to remove grid scale noise. The fluid

begins at rest. The timestep used is 67 s and the simulation runs for 2000

semidiurnal tides – that is, 1000 times the period it takes for Io to return to

the same position in Jupiter’s sky; a total of 46632000 s (approximately 1300

rotations of Jupiter).

Figure 5.9 shows the zonal velocity field after 1000 and 2000 tides. The semid-

iurnal character of the tide can be seen. The pattern of the flow is seen to be

the same at both times showing that the simulation has converged. Instanta-

neous zonal flows of less than 1 m s−1 are excited by the tide. Figure 5.10

shows the zonally averaged zonal wind after 2000 tides (i.e., the zonal average

of the tide shown in Figure 5.9 (b). Figure 5.11 shows the average acceleration

of the flow over the period between Figure 5.9 (a) and Figure 5.9 (b). The flow

generated is slow at just 0.03 m s−1, and the accelerations are very small at

just a few microns per second per rotation, it is unlikely that these will have

any effect on Jupiter’s circulation.
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Figure 5.9 – The zonal velocity field after (a) 1000 tides and (b) 2000 tides.
The similarity of the two fields shows that the solution has converged.
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Figure 5.10 – The mean zonal velocity at the 500 mb level after 2000 tides.
As can be seen, the effect of the tide is to cause a mean retrograde flow in the
mid-latitudes.
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Figure 5.11 – The mean zonal acceleration at the 500 mb level. As can be
seen, the accelerations are very small, a change in the flow velocity of just a few
microns per second per rotation. Such accelerations are insignificant compared
to accelerations from other sources.
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5.2 Summary

Although the details of the atmospheric circulation on EGPs are still much

debated, some basic features (such as a low number of jets) are becoming

accepted. The work here, whilst using atmospheric profiles based on what is

believed to be a typical EGP circulation, does not depend on a knowledge of

the exact circulation. For example, should future observations identify planets

with strong retrograde equatorial jets, the results regarding ducting in a jet

would still be applicable.

In Chapter 3 it was demonstrated that gravity waves with relatively modest

forcing, for a close-in highly irradiated planet, can have major effects on the

mean flow in the lower to middle atmosphere. In the presence of a jet waves

with a phase speed that is less than the maximum flow speed of the jet will

eventually encounter a critical layer. The wave will dissipate at such an en-

counter leading to momentum and heat being deposited into the flow. This

can lead to an acceleration of the flow such that, over the period of a rotation,

the flow speed can be significantly changed.

Even in the absence of critical layers waves still deposit momentum and heat

via saturation. Here the wave grows so large that locally the wave becomes

convectively unstable and thus deposits momentum into the flow. Again, large

accelerations and heating can result from this. The waves grow with altitude,

due to the decreasing density. The stratified region of the atmosphere on hot

EGPs is expected to be deeper than those seen on giant planets in the Solar

System. Thus, waves can be excited deeper within the atmosphere allowing

them to grow large and saturate at quite modest altitudes. Thus, significant

gravity wave induced accelerations and heating can occur at quite high pres-

sures.

These processes, however, act as a filter ensuring that such waves do not reach

the thermosphere or higher regions of the atmosphere. For waves excited

at 1-scale height above the 1 bar level, only waves with smaller forcing –

equivalent to terrestrial heating rates – can penetrate high into the atmosphere.

Here, rather than saturating they are dissipated by viscosity, which becomes

important in the thermosphere. Again, this leads to significant accelerations

in the flow.
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Via this vertical propagation, gravity waves provide a mechanism for coupling

vertically separated layers of the atmosphere. However, in addition to this,

gravity waves provide a means for the horizontal coupling of regions. This is

an important function on tidally locked EGPs, as they are not zonally symmet-

ric. Thus, any means of reducing the inhomogeneity between the day and night

sides may play a significant role in the atmospheric dynamics. Parametrisa-

tions of gravity wave effects generally assume vertical propagation. Therefore,

new parametrisations need to be developed for use in GCM simulations of

close-in EGPs.

In Chapter 4 the theory of gravity waves is used to interpret data obtained

by the Galileo probe during its entry and descent into Jupiter’s atmosphere.

The data gathered provided temperature profiles from Jupiter’s thermosphere,

through the stratosphere and into the troposphere. The profiles, through wave-

like perturbations superimposed on a more slowly changing background, in-

dicate that gravity waves, of many different wavelengths, propagate through

the atmosphere, especially through the stratosphere. The energy density map,

derived from these perturbations, recovers waves that have been previously

identified and identifies further waves in the region analysed. However, the

energy density in shorter wave-length waves grows in the lower thermosphere

and then falls to a low level. This indicates the existence of a turbopause at

around 400 km above the 1-bar level.

The number and energy density of the longer wavelength waves varies with

height, indicating that the waves are suffering dissipation and regrowth as

they propagate upwards. This is evidence of saturation, even perhaps of en-

counters with critical layers. Crucially, it is possible to identify the variation

of vertical wavenumber with altitude. As the vertical wavenumber variation

depends upon the properties of the atmosphere, especially the Brunt–Väisälä

frequency and intrinsic phase speed, knowing the properties of the atmosphere

it is possible to deduce the vertical profile of the zonal wind.

The analysis presented here shows that the zonal flow throughout the strato-

sphere is fast, at about 150 m s−1, at the probe entry site. There is a minimum

of about 100 m s−1 below the 50 km level. The Jupiter Icy Moon Explorer

(JUICE) mission was recently selected by ESA to be part of of its Cosmic

Vision programme and will launch in 2022. Despite its name the mission will,

alongside Jupiter’s moons, study Jupiter’s atmosphere providing conformation
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of these fast equatorial stratospheric winds.

5.3 Future Work

The exploration of the behaviour of gravity waves on hot EGPs presented

here is not complete. The mechanisms for dissipation need to be extended to

include, for example, ion drag. High energy irradiation of EGPs by extreme

ultraviolet from the planet’s star can peak at around the 10−6mbar level and

be quite extensive stretching across around 15 Hp. This may be even lower

for stars that radiate X-rays strongly (Koskinen et al., 2010). In these regions

ionisation will be important and its effects on the flow, via ion-drag, need to

be included.

The mechanisms via which gravity waves are excited also need to be explored

further. As discussed above, this thesis has assumed thermal forcing; but, this

is not the only mechanism that can be reasonably imagined. Convective over-

shoot from the interior of the planet can be continually agitating the bottom

of the radiative envelope, causing waves to be produced. In order to model this

an understanding of the likely behaviour of the planet’s interior is required.

As this is still a topic of debate for Jupiter it is likely to be some time before

a consensus is reached.

In Chapter 4 gravity waves identified in archived data were used to analyse

the atmosphere of Jupiter. A similar analysis of the temperature data the

Huygens probe gathered while it descended through Titan’s atmosphere may

well provide extra insight and supplement the wind profile obtained through

the probe’s DWE.

Atmospheric tides on EGPs will also prove to be a fertile research area. For

unsynchronised planets thermal and gravitational tides will be present. Ther-

mal tides have been explored (Gu and Ogilvie, 2009). A similar exploration of

gravitational tides would be useful. Such studies of tides should be extended

by including the mean flow of the planet’s atmosphere. In the classical the-

ory the mean flow is assumed to be negligible; but, on extrasolar planets,

some studies have found very fast flows. Therefore, this assumption may not

be appropriate. Such tides can be explored using a GCM. However, due to

the large depth of the radiative envelope on such planets, the GCM will need
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to be capable of solving equations that do not assume hydrostasy or a thin

atmosphere.
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Abbreviations and Acronyms

ASI Atmospheric Structure Instrument

DWE Doppler Wind Experiment

EGP extrasolar giant planet

GCM general circulation model

QBO quasi-biennial oscillation

QQO quasi-quadrennial oscillation

TGE Taylor-Goldstein equation

WKB Wentzel–Kramers–Brillouin
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Magalhães, J. A., A. Seiff, and R. E. Young (2002), “The Stratification of

Jupiter’s Troposphere at the Galileo Probe Entry Site”, Icarus 158, pp. 410–

433.

Marois, C., B. Macintosh, T. Barman, B. Zuckerman, I. Song, J. Patience,

D. Lafrenière, and R. Doyon (2008), “Direct Imaging of Multiple Planets

Orbiting the Star HR 8799.”, Science 322, pp. 1348–1352.

130



BIBLIOGRAPHY

Matcheva, K. and D. F. Strobel (1999), “Heating of Jupiter’s Thermosphere

by Dissipation of Gravity Waves Due to Molecular Viscosity and Heat

Conduction”, Icarus 140, pp. 328–340.

Mayor, M. and D. Queloz (1995), “A Jupiter-mass Companion to a Solar-type

Star”, Nature 378, pp. 355–359.

McLandress, C. (1998), “On the Importance of Gravity Waves in the Middle

Atmosphere and their Parameterization in General Circulation Models”,

Journal of Atmospheric and Solar-Terrestrial Physics 60, pp. 1357–1383.

McLaughlin, D. B (1924), “Some Results of a Spectrographic Study of the

Algol System”, The Astrophysical Journal 60, pp. 22–31.

Nappo, C. J. (2002), An Introduction to Atmospheric Gravity Waves, Elsevier

Academic Press.

Ogura, Y. and N. A. Phillips (1962), “Scale Analysis of Deep and Shallow

Convection in the Atmosphere”, Journal of the Atmospheric Sciences 19,

pp. 173–179.

Polichtchouk, I., J. Y-K. Cho, C. Watkins, H. Th. Thrastarson, O. M. Umurhan,

and M. de la Torre-Juarez (2012), “Intercomparison of General Circulation

Models for Hot Extrasolar Planets”, In Preparation.

Polvani, L. M., R. K. Scott, and S. J. Thomas (2004), “Numerically Converged

Solutions of the Global Primitive Equations for Testing the Dynamical Core

of Atmospheric GCMs”, Monthly Weather Review 132, pp. 335–337.

Rauscher, E. and K. Menou (2010), “Three-Dimensional Modeling of Hot

Jupiter Atmospheric Flows”, The Astrophysical Journal 714, pp. 1334–

1342.

Raynaud, E et al. (2003), “The 10 October 1999 HIP 9369 Occultation by the

Northern Polar Region of Jupiter: Ingress and Egress Lightcurves Analy-

sis”, Icarus 162, pp. 344–361.

Raynaud, E., K. Matcheva, P. Drossart, F. Roques, and B. Sicardy (2004),

“A Re-analysis of the 1971 Beta Scorpii Occultation by Jupiter: Study of

Temperature Fluctuations and Detection of Wave Activity”, Icarus 168,

pp. 324–335.

Reuter, D. C. et al. (2007), “Jupiter Cloud Composition, Stratification, Con-

vection, and Wave Motion: A View from New Horizons”, Science (New

York, N.Y.) 318, pp. 223–225.

131



BIBLIOGRAPHY

Richter, J. H., F. Sassi, and R. R. Garcia (2010), “Toward a Physically Based

Gravity Wave Source Parameterization in a General Circulation Model”,

Journal of the Atmospheric Sciences 67, pp. 136–156.

Rogers, J. H. (1995), The Giant Planet Jupiter, Cambridge Univeristy Press.

Rossiter, R. A. (1924), “On the Detection of an Effect of Rotation during

Eclipse in the Velocity of the Brighter Component of Beta Lyrae, and on

the Constancy of Velocity of this System”, The Astrophysical Journal 60,

pp. 15–21.

Scargle, J. D. (1982), “Studies in Astronomical Time Series Analysis. II. Sta-

tistical Aspects of Spectral Analysis of Unevenly Spaced Data”, The As-

trophysical Journal 263, pp. 835–853.

Scott, R. K. and L. M. Polvani (2008), “Equatorial Superrotation in Shallow

Atmospheres”, Geophysical Research Letters 35, pp. 1–5.

Seager, S., ed. (2010), Exoplanets, The University of Arizona Press.

Seiff, A., D. B. Kirk, T. C. D. Knight, R. E. Young, J. D. Mihalov, L. A.

Young, F. S. Milos, G. Schubert, R. C. Blanchard, and D. Atkinson (1998),

“Thermal Structure of Jupiter’s Atmosphere Near the Edge of a 5-µm Hot

Spot in the North Equatorial Belt”, Journal of Geophysical Research 103,

pp. 22857–22889.

Shapiro, R. (1970), “Smoothing, filtering, and boundary effects”, Reviews of

Geophysics 8, pp. 359–387.

Showman, A. P., C. S. Cooper, J. J. Fortney, and M. S Marley (2008), “Atmo-

spheric Circulation of Hot Jupiters: Three-Dimensional Circulation Models

of HD 209458b and HD 189733b with Simplified Forcing”, The Astrophys-

ical Journal 682, pp. 559–576.

Showman, A. P., J. J. Fortney, Y. Lian, M. S. Marley, R. S. Freedman, H. A.

Knutson, and D. Charbonneau (2009), “Atmospheric Circulation of Hot

Jupiters: Coupled Radiative-Dynamical General Circulation Model Simu-

lations of HD 189733b and HD 209458b”, The Astrophysical Journal 699,

pp. 564–584.

Simon-Miller, A. A., B. J. Conrath, P. J. Gierasch, G. S. Orton, R. K. Achter-

berg, F. M. Flasar, and B. M. Fisher (2006), “Jupiter’s Atmospheric Tem-

peratures: From Voyager IRIS to Cassini CIRS”, Icarus 180, pp. 98–112.

Simon-Miller, A. A., B. W. Poston, G. S. Orton, and B. Fisher (2007), “Wind

Variations in Jupiter’s Equatorial Atmosphere: A QQO Counterpart?”,

Icarus 186, pp. 192–203.

132



BIBLIOGRAPHY

Snellen, I. A. G., R. J. de Kok, E. J. W. de Mooij, and S. Albrecht (2010), “The

Orbital Motion, Absolute Mass and High-altitude Winds of Exoplanet HD

209458b”, Nature 465, pp. 1049–1051.

Spiegel, E. A. and G. Veronis (1960), “On the Boussinesq Approximation for

a Compressible Fluid.”, The Astrophysical Journal 131, pp. 442–447.

Sutherland, Bruce R. (2010), Internal Gravity Waves, Cambridge: Cambridge

University Press, pp. i–xvi, 1–377.

Swain, M. R et al. (2010), “A Ground-based Near-infrared Emission Spectrum

of the Exoplanet HD 189733b.”, Nature 463, pp. 637–639.

Taylor, G. I. (1931), “Effect of Variation in Density on the Stability of Super-

posed Streams of Fluid”, Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences 132, pp. 499–523.

Thompson, M. J. (2006), An Introduction to Astrophysical Fluid Dynamics,

London: Imperial College Press.

Thrastarson, H. Th. and J. Y-K. Cho (2010), “Effects of Initial Flow on

Close-in Planet Atmospheric Circulation”, The Astrophysical Journal 716,

pp. 144–153.

Thrastarson, H. Th. and J. Y-K. Cho (2011), “Relaxation Time and Dissipa-

tion Interaction in Hot Planet Atmospheric Flow Simulations”, The Astro-

physical Journal 729, pp. 117–127.

Tinetti, G. et al. (2007), “Water Vapour in the Atmosphere of a Transiting

Extrasolar Planet”, Nature 448, pp. 169–171.

Tokano, Tetsuya and Fritz M. Neubauer (2002), “Tidal Winds on Titan Caused

by Saturn”, Icarus 158, pp. 499–515.

Umurhan, O. M. and E. Heifetz (2007), “Holmboe Modes Revisited”, Physics

of Fluids 19, pp. 064102–1–064102–15.

Vallis, G. K. (2006), Atmospheric and Oceanic Fluid Dynamics, Cambridge

University Press.

Vasavada, A. R. and A. P. Showman (2005), “Jovian Atmospheric Dynamics:

An Update after Galileo and Cassini”, Reports on Progress in Physics 68,

pp. 1935–1996.

Vidal-Madjar, A., A. Lecavelier des Etangs, J. M. Désert, G. E. Ballester, R.
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