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ABSTRACT

This thesis began with an introduction and literature review in

Chapter 1. In Chapter 2, I propose a new intertemporal asset-pricing

model based on heterogeneous beliefs to bring together the concur-

rent theories that could generate value and momentum e¤ects. In this

model, I assume that such behaviour occurs simply due to an agnostic

view of forecasting returns considering the dominant strategy in the

market. Given the endogenous price determination in the model, in-

dividuals were expected to adjust their own strategies to match the

dominant strategy to obtain higher pro�ts (from more accurate fore-

casts). The idea was to bridge the literature on intertemporal asset

allocation with the one on heterogeneous beliefs.

In Chapters 3 and 4, I consider the empirical problem of imple-

menting Markowitz (1952) mean-variance optimisation on a portfolio

of stocks. In particular, I focus on the out-of-sample performance of

the minimum-variance portfolio obtained from the use of asset group

information and regularisation methods to obtain more stable estimates

of the parameters in the model.

Speci�cally, in Chapter 3, I introduce the use of regularisation

methods to the portfolio selection problem and a literature review on
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the subject. In Chapter 4, I propose two alternative approaches for the

use of the group structure information and to obtain more stable and

regularised minimum-variance portfolios. I show that these procedures

produce signi�cantly better results in the portfolios compared with the

unconstrained minimum-variance portfolios estimated from the whole

data set in terms of portfolio variance and the Sharpe ratio.
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Chapter 1

Introduction

1.1 Outline

The subject of portfolio selection is considerably broad. In this thesis, I

concisely cover both theoretical and empirical issues due to space con-

cerns. In Chapter 2, which is the more theoretically oriented chapter,

I propose a new intertemporal asset-pricing model based on hetero-

geneous beliefs to bring together the concurrent theories that could

generate value and momentum e¤ects.

In this model, I assume that such behaviour occurs simply due to

an agnostic view of forecasting returns considering the dominant strat-

egy in the market. Given the endogenous price determination in the

model, individuals are expected to adjust his or her own strategies to

match the dominant strategy to obtain higher pro�ts (from more accu-
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rate forecasts). The idea was to bridge the literature on intertemporal

(strategic) asset allocation with the literature on heterogeneous beliefs.

In Chapters 3 and 41 , I consider the empirical problem of imple-

menting Markowitz (1952) mean-variance optimisation on a portfolio

of stocks. In particular, I focused on the out-of-sample performance

of the minimum-variance portfolio obtained from the use of its asset

group (class) information and regularisation methods to obtain more

stable estimates of the parameters in the model. Chapter 3 introduces

the discussion of regularisation methods applied to portfolio selection

problems and the motivation for the ideas in Chapter 4 is also intro-

duced.

In Chapter 4, I propose two regularization methods: �rst, I use

the group structure information from the data without explicitly reg-

ularising the solution. I apply a simple 2-step procedure: in the �rst

step, the assets are split into classes, and the within-class minimum-

variance portfolios are found. In the second step, I use the portfolios

obtained in the �rst step as assets for a second optimisation across

classes. I show that this procedure produces signi�cantly better results

in the portfolios than the unconstrained minimum-variance portfolios

that are estimated from the whole data set in terms of portfolio vari-

ance and the Sharpe ratios. Later, I show that the 2-step procedure

could be interpreted as a regularisation (or shrinkage) operation of the

1 Both Chapters 3 and 4 are based on collaborative work with Marcelo Fernandes
and Guilherme Rocha.
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covariance matrix of the returns.

For the second approach, I use a more sophisticated econometric

procedure to include asset-grouping information in an explicit regulari-

sation framework. With this approach, assets are assigned to a certain

group (economy sectors), and the obtained portfolios are regularised

towards portfolios with a reasonable record of out-of-sample perfor-

mance in the literature, such as the equally weighted portfolio, or to

the portfolio with constrained short sales. This approach entailed a

single step using the results that were originally applied to express the

group structure among Ordinary Least Square OLS regressors.

1.2 Motivation

Asset pricing and portfolio selection problems face a special challenge in

that data are not generated by experiments; instead, they are obtained

naturally. Therefore, researchers cannot control the amount, shocks,

or other features of the data. As stated by Campbell et al. (1997),

what distinguishes �nancial economics is the central role that uncer-

tainty plays in both �nancial theory and its empirical implementation.

Therefore, random �uctuations that require the use of statistical the-

ory to estimate and test �nancial models are intimately related to the

uncertainty upon which those models are based.

We start our discussion from the well-established paradigm based
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on no-arbitrage arguments. From a theoretical perspective, the par-

adigm can be summarised by a stochastic discount factor (SDF) that

prices all assets in the economy and all its consequences for asset-pricing

models. Among these consequences, the challenges in obtaining equilib-

rium asset-pricing models that conciliate the momentum and the value

e¤ects.

From an empirical perspective, the problem is related to imple-

menting the results from the theory to real data. In this �eld, how-

ever, problems start to appear at a much earlier stage, at the estima-

tion step. Implementing the mean-variance optimisation of Markowitz

(1952), which simply captures the relationship between risk-return and

the e¤ects of diversi�cation, is already problematic.

As previously mentioned, the two features are intrinsically related.

In the subsequent sections, we show that the frontier between econo-

metric and theoretical modelling could be very di¢ cult to de�ne, espe-

cially for implementing the optimisation method in Markowitz (1952).

We note, for instance, that restricting the weights of the Markowitz

(1952) portfolio improved its out-of-sample performance. We examine

this operation as an econometric procedure and attempted to obtain

better �nite sample properties for the estimations. However, interpret-

ing this as a new empirical model for portfolio selection would also be

possible.

Therefore, the idea that portfolio optimisation is divided into two
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steps (i.e., in the �rst step, the investor learns about the generating

process of the returns, and in the second step, he or she uses this

information in choosing his or her portfolio) and that his or her research

is only "concerned with the second stage" in Markowitz (1952) may not

be completely accurate. This appears to be the case at least when the

same uncertainty in the data used to validate the model is also present

in the data used to generate the predictions, as is normally the case.

After understanding the fact that theory and practice are so inti-

mately related, especially in this �eld, we address both empirical and

theoretical questions in this work.

1.3 The general asset pricing theory

As previously mentioned, most of the recent research on asset pricing

can be cast into an SDF framework, as in Campbell (2000). The most

basic equation of asset pricing is written as:

Pit = Et[Mt+1Xt+1]; (1.3.1)

where Pit the price of asset i in time t; Et[:] is the expectation

operator, conditioned on the information available at time t, Xt+1 is

the realisation of the payo¤ of asset i in time t + 1; and Mt+1 is the

"stochastic discount factor" (SDF), a random variable that prices all

future payo¤s in current terms. Realisations of the SDF are always
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positive given that a set of positive state prices exist, which is a con-

dition ful�lled by no arbitrage. The SDF will be unique if markets are

complete.

The SDF is intrinsically related to uncertainty; in the absence of

uncertainty, the SDF is simply a constant that discounts values from

the future to the present. Because prices in time t are �xed, the SDF

also measures risk.

It is easier to understand the nature of the SDF if we consider the

optimisation problem of an agent with the time-separable utility. In

this case, the �rst-order condition of his or her utility maximisation

problem will give

U 0(Ct)Pit = �Et[U
0(Ct+1)Xi;t+1]; (1.3.2)

where the marginal cost of an extra unit of asset i is equal do the

expected marginal utility of the extra payo¤ in time t + 1: We can

rearrange the equation as:

Pit = Et[�
U 0(Ct+1)

U 0(Ct)
Xi;t+1]; (1.3.3)

such that the SDF is given by

Mt+1 = �
U 0(Ct+1)

U 0(Ct)
: (1.3.4)

This equation illustrates the fact that the SDF is a random variable

because Ct+1 is unknown in time t. It may be interesting to note that

the realisation of Ct+1 in this case is related to the return of the whole
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portfolio of the individual. Because this return is uncertain, Ct+1 and

Mt+1 are also uncertain. The volatility of the SDF in this case is related

to that of U 0(Ct+1).

Risk enters the equation because marginal utility is a decreasing

function. Therefore, assets that pay relatively high values when con-

sumption is high (i.e., assets that have a positive covariance with the

SDF) will have a lower price than assets with lower covariance with the

SDF (i.e., future consumption) for the same expected payo¤.

The SDF can also be represented in terms of returns. We can de�ne

(gross) returns as

(1 +Ri;t+1) =
Xi;t+1

Pit
; (1.3.5)

in this case, we can write

1 = Et[Mt+1(1 +Ri;t+1)]: (1.3.6)

Campbell (2000) lists some of the possible uses for the equation

above. For instance, it is possible to examine the implications of SDF

from the data on the mean, variance and predictability of asset returns.

Examining the properties of the returns results in the well known "eq-

uity premium puzzle" of Mehra and Prescott (1985), which basically

states that the variance of the SDF should be much larger than what

can be reasonably assumed for the model to correctly precify risky as-

sets.
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This simple case illustrates the situation with a representative agent.

Because all agents are equal, the SDF of each agent is also an SDF for

the entire (aggregate) economy. We relaxed this assumption in Chap-

ter 2, in which agents can di¤er in terms of beliefs (the expectation in

equation 1.3.3).

1.3.1 Equity premium puzzle

First, note that the implied mean of the SDF can be obtained from

equation (1.3.1) because it applies for all assets (including the risk-free

asset). Assuming that this risk-free asset pays one unit tomorrow, its

mean is

Pit = Et[Mt+1] =
1

1 +Rf;t+1

: (1.3.7)

Given that no truly risk-free asset exists in the economy (in real

terms because of in�ation risks), we can still use short-term treasury

bills as a proxy for a risk-free asset. In this case, the conditional ex-

pectation of the SDF is implied to be slightly lower than 1% pa (ap-

proximately 0.8% pa for the U.S. as reported in Campbell and Viceira

(1999)) and not very volatile (1.76% standard deviation in the same

paper).

A second important piece of information from the relationship above

is that the risk premium restricts the volatility of the SDF. This can be

shown below, where equation (1.3.6) is applied to the risky and risk-free
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assets to obtain

0 = Et[Mt+1(Ri;t+1 �Rf;t+1)] = (1.3.8)

EtMt+1Et(Ri;t+1 �Rf;t+1) + Covt(Mt+1; (Ri;t+1 �Rf;t+1));

which can be rearranged to:

Et(Ri;t+1 �Rf;t+1) =
�Covt(Mt+1; (Ri;t+1 �Rf;t+1))

EtMt+1

: (1.3.9)

Because the coe¢ cient of correlation must be larger than -1, the

negative covariance in the above equation must be smaller than the

product of the standard deviations of the excess return and the SDF.

This produces

�t(Mt+1)

EtMt+1

� Et(Ri;t+1 �Rf;t+1)

�t(Ri;t+1 �Rf;t+1)
; (1.3.10)

where the Sharpe ratio for asset on the right-hand side of the equa-

tion puts a lower bound on the volatility of the SDF. The largest lower

bound is found by the asset with the highest Sharpe ratio; therefore,

this bound is the most restrictive.

The equity premium puzzle arises when we consider assets that im-

ply a very large number for the left-hand side in equation (1.3.10). We

may consider the aggregate U.S. stock market as an example. Camp-

bell and Viceira (1999) showed that the annualised Sharpe ratio for a

value-weighted stock index is approximately 0.5, implying a minimum

of 50% annualised standard deviation on the SDF. This is a random
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variable that is always positive with a mean that is slightly lower than

1.

These extreme values only worsen when we use equilibrium models

to derive the SDF while looking at marginal utilities as in equation

(1.3.3). ). In a representative agent model with power utility, the

coe¢ cient of relative risk aversion must be on the order of 50 to match

the volatility of the SDF, whereas typical values are less than 5. The

key problem in this case is that variations in the SDF are driven by

changes in aggregate consumption, which is rather stable over time.

To conciliate these two facts, investors would need to be extremely

risk-averse.

Several other tentative explanations for this phenomenon also exist.

For instance, one of them is the uncertainty in the moments that enter

equation (1.3.10).Another one is the existence of "Peso problems", i.e.,

some catastrophic event that is rationally re�ected in stock prices or

even the use of U.S. stock market, given the selection bias of a case that

"worked". In Chapter 2, we propose that these changes were actually

driven by consumption and changes in beliefs. This added another

source of variation to the SDF and helps to conciliate high returns, low

consumption volatility and the typical levels of risk aversion.

The long-documented predictability of returns increases the equity

premium puzzle. This happens because this predictability it allows the

creation of a managed portfolio with a Sharpe ratio higher than that
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of the market and increases the lower bound of the SDF volatility. For

instance, Campbell (2000) noted that an extensive amount of the litera-

ture documents the predictability of aggregate stock returns from past

information. This information includes the following: lagged returns

(Fama and French (1988b), Poterba Lawrence and James (1988)), the

dividend-to-price ratio (Campbell and Shiller (1988a), Fama and French

(1988a)), the earnings-to-price ratio (Campbell and Shiller (1988b)),

the book-to-market ratio (Lewellen (1999)), the dividend payout ratio

(Lamont (1998)), the share of equity in new �nance (Baker andWurgler

(2000)), yield spreads between long-term and short-term interest rates

and between low- and high-quality bond yields (Campbell (1987), Fama

and Kenneth (1989), Keim and Stambaugh (1986)), recent changes in

short-term interest rates (Campbell (1987), Hodrick (1992)), and the

level of consumption relative to income and wealth (Ludvigson and

Lettau (1999)). Many of these variables are related to the stage of the

business cycle and predict countercyclical variation in stock returns

(Fama and Kenneth (1989),Ludvigson and Lettau (1999)).

1.3.2 Factor models and the cross-sectional of re-

turns: Value, size and momentum e¤ects

Multi-factor models, such as the ones used in Chapter 2, can also be

cast into the SDF framework. The general idea was to model the SDF
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as a linear function of K factors; then, the risk premium will be the

sum of the asset�s loads on those factors multiplied by the risk prices

of the factors.

Considering a mean-variance optimisation, for instance, the single

period optimisation consumption equals wealth; with quadratic utility,

the marginal utility is linear. In this case, the SDF must be a linear

function of future wealth, i.e., it should be linear in the market port-

folio return. If there are K common shocks and there is completely

diversi�able risk, then the SDF can depend only on the K common

shocks.

Factor models can also be used to describe the behaviour of as-

set returns atheoretically while choosing factors to �t the empirical

evidence. The three-factor model of Fama and French (1993) is an ex-

ample of such approach, while Carhart (1997) extends it to account for

a momentum factor.The following three e¤ects are the most commonly

documented: the size e¤ect, by which �rms with small market value

tend to have higher returns than what is predicted by the CAPM; the

value e¤ect, by which fundamentalist ratios are capable of forecasting

future returns (also associated with the mean reversion of De Bondt

and Thaler (1985), where stocks with previous bad performances in

the last three to �ve years tend to outperform in the future)); and the

momentum e¤ect of Jegadeesh and Titman (1993), where stocks with

high returns over the last three to twelve months tend to outperform
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in the future.

Assuming that these anomalies are not the result of mispeci�ed

tests, there are some tentative explanations for the above e¤ects . How-

ever, none of these explanations is conclusive. Fama and French (1993)

and Fama and French (1996), for instance, interpret their factor model

as evidence of a "distress factor" without explaining why this occurs

in the �rst place. In fact, models with time-varying discount rates will

be successful in generating the value e¤ect by a simple fact: stocks

with high discount rates will have lower prices and higher future re-

turns regardless of the reason why these discount rates are high in the

�rst place. The momentum e¤ect, on the other hand, is much harder

to generate. Fama and French (1996), for instance, claimed that it

might be the result of data mining and did not attempt to model it.

Even behavioural models had di¢ culties explaining this e¤ect because

momentum is consistent with the slow reaction to news but is di¢ cult

to reconciliate with the subsequent over reaction that leads the value

e¤ect.

In Chapter 2, we assume that investors use factor models to predict

returns. Fundamentalist strategies are then based on fundamentalist

factors2 while chartist (i.e., momentum) strategies are based on past

returns.

2 In the empirical section, we used the dividend-price ratio as a return forecaster,
but any other fundamentalist ratio could be used in practice.
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1.3.3 Strategic asset allocation: Consumption and

portfolio choice for long-term investors

Before addressing the intertemporal case, we consider the one-period

optimisation. Assume that an investor lives o¤ �nancial wealth alone

and only for one period. If the investor derives increasing utility from

consumption, the investor�s future consumption will be the payo¤ of

his portfolio: Ct+1 = Xt+1. From equation (1.3.4), setting �t = � 1
U 0(Ct)

;

which is known at time t, then

Mt+1 = �tU
0(Ct+1) = �tU

0(Xt+1): (1.3.11)

which implies

Xt+1 = U 0
�1
(Mt+1=�t): (1.3.12)

The Markowitz (1952) mean variance portfolio can be obtained,

allowing U(:) to be quadratic. In this case U 0(:) is linear, and the

result is a linear trade-o¤between mean and variance of returns. In the

particular case whereMt+1 is linear in the returns of a market portfolio

(as is the case in a CAPM framework), this investor holds a portfolio

that consists of the risk-free asset and the market portfolio. It is also

possible to examine the equity premium puzzle from this perspective: if

Mt+1 is highly volatile, then Xt+1 also needs to be highly volatile unless

the investor is very risk-averse, meaning that U(:) is very concave, with

U 00(:) being very negative and U 0(:) declining very rapidly.
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The problem is that this "myopic" and intuitive solution does not

necessarily correspond to optimality for the intertemporal case. In fact,

only a few very restrictive situations exist in which the solution for both

problems will be the same. As Merton (1969) and Merton (1971) show,

investors do not only care not only about wealth but also about shocks

to these investment opportunities (i.e., the productivity of wealth) in

a long horizon framework with time-varying investment opportunities.

The term "strategic asset allocation" from Brennan et al. (1997) de-

scribes the long-term investors�hedging against these shocks.

However, intertemporal models are very di¢ cult to solve analyti-

cally. Very few special cases have closed-form solutions, and the re-

maining ones rely on either numerical methods or approximate solu-

tions from perturbations of known exact solutions as the ones used in

Chapter 2.

Another important decision involves which utility function should

be used to describe the investor�s preferences. Many utility functions,

such as the quadratic function, have implications that go against em-

pirically stylised facts. Conciliating constant risk premia and interest

rates with the upward trend in consumption observed in the last cen-

tury in the U.S. is one of these problems. One example of a utility

with good empirical features is the generalisation of the power utility

proposed by Epstein and Zin (1989), Epstein and Zin (1991) and Weil

(1989) which are discussed in detail in Chapter 2. The main advan-
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tage of this utility function over the power utility is that it separates

the coe¢ cient of relative risk aversion, which is meaningful even in an

atemporal framework, from the elasticity of intertemporal substitution

of consumption, which is meaningful even in the absence of risk.

Investment opportunities can vary in time because real interest

rates vary, in which case the present value of the portfolio also varies,

and because risk premia vary. There is evidence of both in the litera-

ture , increasing the di¤erence between the myopic and intertemporal

solutions.

For instance, it is often argued that stocks are safer for long-term

investors. However, this cannot be true if asset returns are IID because

it means that the means and variances of all assets increase with time.

This situation can only be supported if stock returns are predictable

and that the variance of stock returns increases less than the variance

would proportionally increase with time. This is normally called mean

reversion, and it implies that investment opportunities vary in time.

One important problem to reconcile time-varying opportunities and

a representative agent framework is the following: investors are sup-

posed to time the market, altering their allocations of stocks as condi-

tions change. However, this cannot happen in a representative agent

framework that is in general equilibrium because not all investors can

buy or sell stocks at the same time given a �xed supply of stocks. As

we see in Chapter 2, this is not a problem in a heterogeneous agent
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framework.

1.3.4 Equilibriummodels with a representative agent

In an equilibrium model with a representative agent, it is possible to

obtain the corresponding SDF from the speci�ed utility function and

stream of consumption. In Lucas (1978) it is assumed that the econ-

omy could be described by a representative agent with a standard utility

function that consumes aggregate consumption. In this case, the SDF

could be obtained from the �rst-order condition in the utility maximi-

sation problem. However, this approach resulted in three puzzles.

The �rst and most important one is the equity premium puzzle dis-

cussed above, which arose because consumption growth is very smooth

over time. Thus, the covariance could never be large regardless of how

highly correlated it is with the assets�returns.

The second puzzle is that the volatility of stock returns was too

great to be explained by traditional models. This was because stock

returns are driven by shocks on consumption growth via the SDF, which

a¤ects the expected future dividends and discount rates. However,

unexpected consumption growth is, once again, too small to justify the

volatility of stock returns (i.e., the volatility of the discount rate/SDF).

The third puzzle is the risk-free rate puzzle that occurs if a power

utility function is used. This puzzle occurrs because the increased risk-

aversion coe¢ cient required to solve the equity premium puzzle made
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the elasticity of intertemporal substitution (its inverse) very small. This

implied a preference for a constant (or close to constant) stream of con-

sumption. The only way to conciliate this preference for constant con-

sumption with the empirical evidence of historical upward consumption

would be to use a very low or even negative rate of time preference or

a very high real interest rate, which does not occur in reality.

The last puzzle could be solved with the help of Epstein-Zin utility

functions. However, the other two puzzles could not be easily solved.

For the equity premium, the best that could be done was to assume that

risk aversion is actually much higher than what is normally accepted.

The volatility puzzle is driven by an actual change in the equity pre-

mium over time because real interest rates (the other possible source

for this variation) are too stable to explain those swings.

One tentative method that could be used to generate time-varying

risk premia is to model the utility itself and explain that changes in

the equity premium occur because of certain features of the utility

function. For instance, the utility in some habit-formation models is

dependent on time or, more precisely, on consumption history. The

present increase in consumption makes agents more willing to consume

in the future (for habit formation), increasing the marginal utility of

future consumption. This change is enough to generate the �uctuations

in the real interest rate when it is applied to a representative agent,

which solves the volatility puzzle. However, it does not solve the equity
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premium puzzle because large risk aversion is still required to explain

the excess returns of stocks.

1.3.5 Equilibriummodels with heterogeneous agents

In an attempt to explain the puzzles listed in the previous section,

one alternative is to use models with heterogeneous agents. A type of

heterogeneity is on the constraints to which agents are subject. The

idea is that not all investors participate in the stock market; therefore,

the relevant consumption is not the aggregate consumption but only

part of it. Consumption by constrained agents (that do not participate

in the stock market) is irrelevant. Evidence (e.g., Brav et al. (2002))

also shows that consumption by stockholders is more volatile than that

by non-stockholders. The relevant consumption becomes unobservable

if one wants to employ a representative agent formulation.

A second alternative is to model heterogeneous income constraints.

The idea is that, in an incomplete market, individuals may have very

di¤erent consumption paths. Any individual consumption growth would

generate a valid SDF, but the same may not be true regarding aggre-

gate consumption. In addition, these models also have problems in

solving the asset-pricing puzzles. For instance, in the Constantinides

and Du¢ e (1996) model, heterogeneity should be very large to have

signi�cant e¤ects on the SDF.

It is also possible to model heterogeneity in preferences. Di¤erent
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degrees of risk aversion or time preferences among investors may lead to

time-varying risk price. For instance, risk-tolerant investors hold more

risky assets and control a larger share of wealth in good states than

in bad states. This makes aggregate risk aversion increase during bad

times, just as in habit-formation models.

A �nal source of heterogeneity is the heterogeneity of beliefs. In

these models, agents model future returns based on di¤erent strategies.

One alternative is to assume that the agents choose these strategies

based on their previous performance (�tness). Each agent type has a

di¤erent SDF implied by the strategy used. The equilibrium asset price

(and aggregate SDF) is given endogenously. Heterogeneity contributes

to the volatility of the aggregate SDF because it is a¤ected by the

(changing) proportion of agents in the economy. Even if the higher

Sharpe ratio obtained using this managed portfolio increases the lower

bound of the SDF volatility, it would not be a problem because this

volatility and the change in beliefs are linked. This di¤ers from the

representative agent approach, in which the only source of variation in

the SDF comes from changes in aggregate consumption. We presented

and discussed a model of this type in Chapter 2.
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1.4 The mean-variance optimization

As discussed earlier, the mean-variance portfolio can be cast into an

SDF framework by assuming that an investor with quadratic utility

function lives o¤ �nancial wealth alone and only for one period. These

strong and restrictive assumptions give rise to the extensions described

before. However, the mean-variance optimisation in Markowitz (1952)

is still by far the best-known formulation of portfolio choice problems.

Its closed-form solution and intuitive results have features attractive to

both academics and practitioners. The most important feature of this

model is that the model captures the e¤ect of diversi�cation and the

positive association between risk and expected returns. The model in-

trinsically describes a short-term condition because it relies on a single-

period optimisation.

1.4.1 Clari�cation on notation

From one period to the next, investors need to choose how to allocate

their wealth among the N risky assets in the economy. We stacked

these N assets�returns between time t and t + 1 in the N � 1 vector

Rt+1: Expected returns that are conditional on the information in time

t; are given by

Et [Rt+1] = �t; (1.4.1)
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while the conditional covariance matrix is given by

Et [(Rt+1 � �t)(Rt+1 � �t)0] = �t: (1.4.2)

The goal was to �nd a N � 1 vector of portfolio weights x; where

each element in x was the proportion of wealth allocated to each of the

N available assets. If the investor�s wealth must be fully invested, then

x0� = 1; (1.4.3)

where � is a N � 1 vector of ones. The return of the portfolio is

then given by

Rp;t+1 = x0Rt+1

and we obtain the conditional expected return and covariance ma-

trix of the portfolio respectively:

Et [Rp;t+1] = x0�t; (1.4.4)

and

V art[Rp;t+1] = x0�tx: (1.4.5)
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1.4.2 The optimization problem

In the formulation developed by Markowitz (1952), investors associate

a positive utility to expected returns and a negative one to expected

variance. Thus, the optimization problem could be solved in two ways:

either choosing a portfolio that minimises the variance for a given level

of expected return or maximises the expected utility incorporating the

trade-o¤ between expected returns and variance given by the investor�s

attitude towards risk. The �rst formulation is very useful when we

do not want to make any assumption on how investors trade variance

and expected returns because we can map any combination of risk and

return that is available to the investor.

In this framework, we set the minimal expected return to, for in-

stance, ��; and �nd the portfolio that produces this return: Rp;t+1 =

x0Rt+1; with the smallest variance. As di¤erent values for �� are se-

lected, all of the optimal combinations of risk and return (the so-called

e¢ cient frontier of available securities) are recovered.

The problem, in this case, becomes

x�M(��;�t; �t) = argmin
x

xT�tx

s.t. xT�t = ��

xT � = 1:

(1.4.6)

When Rt+1 represents a vector of excess returns of the form Rt+1 =

Rf;t+1 + �; the �rst order conditions obtained using the Lagrangian
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produces the optimal portfolio weights:

x� = �1 + �2��; (1.4.7)

with

�1 = 1
D
[B
�
��1t �

�
� A(��1t �)];

�2 = 1
D
[C
�
��1t �

�
� A(��1t �)];

(1.4.8)

and

A = �T��1t �;

B = �T��1t �;

C = �T��1t �; and

D = BC � A2:

The minimized variance is V ar[R�p;t+1] = x�0�tx
�:

In this step, we see the two key features of the model. Diversi�-

cation plays a central role because it is possible to obtain lower port-

folio variances that combine assets with less-than-perfectly-correlated

returns for a given level of expected return. The other feature, the

risk-return trade-o¤ notes that x� is linear in ��: Therefore, higher ex-

pected returns could only be obtained through riskier (more extreme)

allocations.

1.4.3 The minimum-variance portfolio

The problem of �nding the minimum-variance portfolio is equivalent to

the previous problem but without the restriction of expected returns.
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When an investor is looking for the minimum-variance portfolio in the

absence of any constraints, the problem is to �nd

x�MINU(�t) = argmin
x

xT�tx

s.t. xT � = 1:

(1.4.9)

where x 2 RN is the vector of portfolio weights, �t 2 RN�N is

the estimated covariance matrix and � 2 RN is a vector of ones. The

constraint assured that the portfolio weights added up to one.

Apart from the issues of optimality under broader conditions, as

described earlier, the theory up to this point has not often been chal-

lenged . However, there are still problems in connecting the theoret-

ical solution to the data even assuming that all of the conditions for

the optimality of this solution would hold (e.g., one-period investment

horizon, quadratic utility and only �nancial wealth). The tentatives

of obtaining mean variance e¢ cient portfolios often end up generating

highly concentrated portfolios that perform poorly out of sample. This

problem is due to the �nite sample error in estimating the parameters

of the model that is associated with the sensitivity of the solution to

these parameters. The optimization problem is often referred to as ill-

posed (or ill-conditioned) given that the obtained parameters depend

extremely heavily on the sample used to estimate them.

In Chapter 3, we discuss some of the econometric procedures used

to realistically implement the model and work our way around the is-
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sues mentioned before. We pay close attention to the �nite sample

properties of these estimators and propose regularisation methods to

improve the estimates. The general idea of these methods is that, in

�nite samples, it is possible to improve the performance of estimators

(e.g., in terms of mean squared errors) by averaging them with a con-

stant. This is obtained by introducing some bias into the result (given

by the constant) but reducing the �nal variance of the estimate.



Chapter 2

Strategic asset allocation with

heterogeneous beliefs

In this chapter, I show how the presence of agents with heterogeneous

beliefs generates the price trends observed in the �nancial markets.

I develop an asset pricing model in which agents have long horizon

objectives, based on a stream of consumption. Each agent chooses

a forecasting model and maximises a recursive utility function. The

choice of the forecasting model in each period determines the agent

type. However their types change over time according to the relative

performance of the forecasting models. This happens because agents

have an incentive to adopt the forecasting model with the best perfor-

mance in the previous period to coordinate with the market. I estimate

the asset pricing model using data on the international stock markets.
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The exercise shows that especially for very risk averse individuals, the

accounting for the intertemporal hedging demand is crucial.

2.1 Introduction

This paper bridges the literatures on intertemporal asset allocation

and on heterogeneous beliefs. From the intertemporal asset allocation

framework, the asset pricing model inherits the ability to reproduce

the behaviour of consumption-based utility maximizing investors with

long horizon objective functions. I solve the intertemporal asset alloca-

tion problem introduced by Merton (1969) and Samuelson (1969) using

the approximate solution of Campbell et al. (2003). I use the class of

preferences in Epstein and Zin (1989, 1991) and Weil (1989) in order

to individuate the agent�s risk aversion and elasticity of intertemporal

substitution. This framework is convenient because it allows to solve

the portfolio selection problem in the presence of multiple risky assets.

This is in contrast with the usual myopic mean-variance framework

with a single risky asset in the literature on heterogeneous beliefs (e.g.,

Brock and Hommes (1997, 1998) or Boswijk et al. (2007)), providing

an alternative to the multiple risky assets formulation of Wenzelburger

(2004).

By assuming heterogeneous beliefs I am able to better describe the

individual and market behaviours and, as such, reproduce the stylized
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facts of asset returns. There are many attempts in the literature to

reproduce these e¤ects. Nevertheless, none of them is able to fully

solve all the puzzles and explain the momentum and value e¤ects at

the same time. The biggest challenges in most cases are solving the

equity premium puzzle and generating the momentum e¤ect. Models

with adaptive heterogeneous beliefs are able to conciliate momentum

and value e¤ects as well as to generate higher volatility in returns.

These are achieved because the agents change beliefs (i.e., forecasting

models) over time.

Heterogeneous beliefs models alleviate the equity premium puzzle.

Abel (1989) notes that heterogeneity per se does not necessarily in-

validate the representative agent approach, but heterogeneity in beliefs

does. This happens because the cross-sectional distribution of expecta-

tions cannot be summarized by a single su¢ cient statistics. Abel (1989)

also shows that introducing heterogeneity in beliefs can substantially

increase the equity premium (see also Basak (2005) and Kurz and Bel-

tratti (1996))

The formulation matches several theoretical and empirical evidence

of heterogeneity of expectations. It also matches the evidence of vari-

ability over time in the choice of forecasting models as in Frankel and

Froot (1987) for instance. In addition, the assumption of heteroge-

neous agents avoids a no-trade equilibrium that arises as a consequence

of theorems such as those in Milgrom and Stokey (1982).
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Kandel and Pearson (1995) and Bamber et al. (1999) provide ev-

idence of heterogeneity in analyst expectations for stocks regarding

earnings around announcements. Analysing bubbles, Shiller (2002)

provides evidence of heterogeneity in the expectations of the future

performance of the market. Finally, Patton and Timmermann (2010)

study the sources of disagreement about forecasts of macroeconomic

variables and �nd that they are persistent and indicate that they stem

from heterogeneity in priors or models, not di¤erent information sets.

Frankel and Froot (1987) and Taylor and Allen (1992) report sur-

vey evidence of heterogeneity in expectations. In particular, Frankel

and Froot (1987) �nd that forecasting companies use di¤erent models

to project returns, and that the number of companies using di¤erent

classes of models changes over time. Surveying exchange rate expecta-

tions of �nancial specialists, Menkho¤ (1997) shows that investors tend

to use di¤erent trading strategies. Their strategy choice depends on

the investment horizon they are trying to forecast. They basically use

chartist strategies in the short run, and keep fundamentalist strategies

for long horizons.

In this paper, I use the approximate solution of Campbell et al.

(2003) to calculate the demands for assets of each agent type, and

apply the framework of Brock and Hommes (1997, 1998) and Boswijk

et al. (2007) to model the evolution of types. Modelling the evolution

of types corresponds to describing how the proportions of agents using
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a given return forecasting model evolve over time. Therefore, I extend

the models of Brock and Hommes (1997, 1998) and Boswijk et al. (2007)

to consider also long term investors.

The agents adjust their forecasts trying to match what they be-

lieve to be the dominant forecasting strategy in the market. I assume

that the market is populated by many agents choosing among di¤erent

forecasting models. These agents are aware that other agents are also

choosing their models in the same way. Therefore, they know that the

most accurate forecast is the one given by the strategy chosen by the

majority of them. This happens regardless of the theoretical support

that a given model may enjoy. They make this choice in each period

and this determines their types. However, they do not receive perfect

information regarding the performance of the strategies.

In the empirical section, I assume the perspective of an investor in

the U.S.A. who would like to diversify his/her portfolio using the in-

ternational stock markets. For simplicity, I assume that there are only

two agent types in each market: fundamentalists and chartists. Funda-

mentalists use value strategies and chartists use momentum strategies.

I estimate the model using stock market data from the U.S., the U.K.,

Japan, and Hong Kong. I start by estimating a simple dividend-price

factor model and a simple momentum factor model for each of these

four markets. Next, I use these factor models as the fundamental-

ist and chartist strategies and examine the resulting dynamics. Given
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these forecasting models, I obtain the demand for assets of each agent

type. I use these demands to compute the relative performances of

their strategies and this determines the fraction of agents using each

strategy.

I show that myopic and long-term investors have di¤erent demands

for assets and, therefore, di¤erent performances. I also show that the

investment horizon has di¤erent e¤ects on the demand for assets of

fundamentalists and chartists. The component of the demand for assets

that is ignored in a myopic framework can be signi�cantly large and

impact the estimation of the proportions of agents. This is especially

true when agents are very risk averse. In fact, in this case the omitted

term in the myopic framework can be the dominant one in certain

markets. Therefore, the agent�s decision of using a fundamentalist or

chartist forecast in these markets will often depend on whether he/she

believes that agents are myopic or not. In addition, I show that the

level of noise in the observed performances also has di¤erent impacts

on the model results whether we consider the complete intertemporal

demand for assets or only its myopic component.

The paper is organised in three sections following this introduction.

In Section 1, I derive the asset-pricing model and discuss its theoreti-

cal results. In Section 2, I estimate the model and analyse the results

focusing on the di¤erences between the intertemporal solution and the

myopic solution previously obtained in the literature. Section 3 con-
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cludes.

2.2 The model

There is an in�nite number of long-term investors of H di¤erent types.

The trading strategy used to forecast returns determines the agent type

h: In most of the paper, I restrict the analysis to H = 2 (i.e. funda-

mentalist or chartist types), but I develop the model for the general

case with a given number of types H. Agents extract information from

prices: they switch between trading strategies (change their types) as

they respond to the previous performance of the strategies. However,

they do not receive perfect information regarding the performance of

the strategies. They all have access to the same information set but

use di¤erent return forecasting models. Therefore, I model di¤erences

in opinions (i.e., forecasting models), and not di¤erences in information

sets.

2.2.1 The investor�s maximization problem

Time is discrete, and investors that live in�nitely maximise the recur-

sive preferences de�ned over a stream of consumption, as described by

Epstein and Zin (1989, 1991) and Weil (1989).1 There are n risky assets

1 The power utility is a special case of the Epstein-Zin function. We can obtain
it by letting 
 =  �1 (and hence � = 1). In addition, the log utility is a special case
of the power utility, it can be easily obtained by adding the restriction 
 = 1 =  �1.
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in the economy, and investors allocate their wealth among these assets

and consumption. The investor�s problem is to choose the portfolio

allocation, ��h;t; and consumption, C
�
h;t; that maximises his/her utility

at every time t given his/her type. Each investor is, however, restricted

by a budget constraint.2 So, their problem is given by:

(��h;t; C
�
h;t) =

arg max
�h;t2Rn;Ch;t2R

Ut(Ct; Et[Ut+1]) =
h
(1� �)C

1�

�

t + �(Et(U
1�

t+1 ))

1
�

i �
1��

s.t. Wt+1 = (Wt � Ct)(1 +Rp;t+1);

Rp;t+1 =
Pn

i=2 �h;i;t(Ri;t+1 �R1;t+1) +R1;t+1:

(2.2.1)

where Ct is the agent�s consumption and Et(:) is the agent�s condi-

tional expectation operator at time t. The agent�s relative risk aversion

coe¢ cient is 
 > 0,  > 0 is the agent�s elasticity of intertemporal sub-

stitution coe¢ cient, 0 < � < 1 is the agent�s time discount factor and

� � (1 � 
)=(1 �  �1). In the consumption-based budget constraint,

Wt is wealth at time t; and Rp;t+1 is the portfolio return on the next

period. Finally, �h;i;t is the portfolio weight on asset i at time t and

Ri;t+1 is the return on the next period. The �rst asset (i = 1) is proxy

for a risk free asset with a real return of R1;t+1:

With time varying investment opportunities, this condition generates the myopic
portfolio allocation. However, as Giovannini and Weil (1989) showed, 
 = 1 or
 �1 = 1 alone are not su¢ cient for this result.

2 Because the maximisation problem is the same for every agent type, I do not
write the subscripts here to simplify the notation.
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Epstein-Zin preferences and agent-based models

The class of utility functions in Epstein and Zin (1989, 1991) and

Weil (1989) represent intertemporal preferences. The utility at time t;

Ut(Ct; Et[Ut+1]); depends on consumption at time t; Ct; and also on the

expected utility in time t+1, given by Et[Ut+1]: Recursively substitut-

ing future expected utilities highlights the intertemporal characteristics

of this class of preferences.

In order to gain intuition, we can look at the following equations:

Ut(Ct; Et[Ut+1]) =
h
(1� �)C

1�

�

t + �(Et(U
1�

t+1 ))

1
�

i �
1��

; (2.2.2)

Ut+1(Ct+1; Et+1[Ut+2]) =
h
(1� �)C

1�

�

t+1 + �(Et+1(U
1�

t+2 ))

1
�

i �
1��

: (2.2.3)

The extended form of equation (2.2.2) is obtained by simply sub-

stituting equation (2.2.3) into equation (2.2.2):

Ut(Ct; Et[Ut+1]) =

26664
(1� �)C

1�

�

t +

�(Et

(h
(1� �)C

1�

�

t+1 + �(Et+1(U
1�

t+2 ))

1
�

i �
1��

)1�

)
1
�

37775
�

1��

;

(2.2.4)

where the part inside the curly brackets is the utility at time t + 1,

Ut+1(Ct+1; Et+1[Ut+2]): The equation shows that the utility in time t

depends on consumption in time t and also in time t+1: Continuing with
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the recursive substitution, it is possible to show that the utility being

maximised in fact depends on an in�nity stream of consumption. This is

what is responsible for the intertemporal maximization characteristics

of the model.

The use of Epstein and Zin (1989, 1991) and Weil (1989) prefer-

ences, together with the usual constraints, brings new insights to the

literature on heterogeneous beliefs models because it addresses a multi-

period optimization with intermediate consumption. This is in line

with the models of Merton (1969) and Samuelson (1969). The most

important characteristics of this utility function is that it disentangles

the elasticity of intertemporal substitution, that is relevant even in the

absence of risk, from the coe¢ cient of relative risk aversion, that is

meaningful even in an atemporal formulation.

As given in the formulation of the problem, each agent solves an in-

�nity intertemporal optimization. Therefore, all agents in the economy

have long investment horizons, and maximize a stream of consumption.

This is particularly new with respect to heterogeneous beliefs models

with evolutionary selection of expectations such as those introduced in

Brock and Hommes (1997, 1998). In these models, agents are either

assumed to be myopic or to maximise their utility at a given point in

the future.

The intertemporal optimization contrasts, therefore, with the my-

opic one (in one or multiple periods). Examples are the heterogeneous
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CAPM of Chiarella et al. (2006), the overlapping generations (OLG)

model with heterogeneous beliefs in Böhm and Chiarella (2005) or the

mean-variance investors in Horst and Wenzelburger (2008) or Wen-

zelburger (2004), that can also be seen as an extension of Brock and

Hommes (1997, 1998) with multiple types of agents and risky assets.

The intertemporal optimization with intermediate consumption using

the Epstein and Zin (1989, 1991) and Weil (1989) preferences also con-

trasts with multi-period �nal wealth optimizations obtained, for in-

stance, in the extension of Hillebrand and Wenzelburger (2006). This

happens because the two formulations generate di¤erent demands for

assets at every point in time.

One of the most important characteristics of the intertemporal for-

mulation is the possibility of comparing myopic and long-term investors.

This happens because the demand for assets is separable into a myopic

and an intertemporal hedging demand terms. In the empirical section I

extensively compare the estimated results considering one or the other

investment horizon.

First order conditions and approximate solution (Chan et al.

(2003))

Epstein and Zin (1989, 1991), as noted by Chan et al. (2003), �nd that

solving the problem in (2.2.1) for a single agent results in the Euler

equation:
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Et

24(��Ct+1
Ct

�� 1
 

)�

(1 +Rp;t+1)
�(1��)(1 +Ri;t+1)

35 = 1 (2.2.5)

that must hold for any asset i, (including the portfolio p) along the

optimum consumption path. The equation shows the relationship be-

tween portfolio allocation, consumption and expectations (or beliefs).

It highlights the importance of the forecasting model used by the agent.

The forecasting model impacts both on the planned growth in consump-

tion and also on the asset allocation through the expectation operator.

In general there is no closed form solution to this problem. I, thus,

apply the same approximate solution of Campbell et al. (2003) to obtain

an expression for the asset�s demand of each agent type. I describe the

procedure in details in the following subsections. It begins by postulat-

ing that agents describe the dynamics of the relevant state variables as

a �rst-order vector auto-regressive process V AR(1). Campbell and Vi-

ceira (1999) shows that the approximate solution exists if the elasticity

of intertemporal substitution is close to 1. We then log-linearize the

portfolio return and budget constraints in (2.2.1) as well as the Euler

equation in (2.2.5) close to this value. This step produces an expression

for the expected excess return of each asset. Next, we write everything

in terms of the state variables in the VAR. Solving for the consumption

and portfolio rules, we �nally obtain the optimal asset demand for each

investor type. See Appendix A for a basic derivation of excess returns

using a stochastic discount factor framework.
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Dynamics of returns

Formally, I de�ne

xt+1 =

266666666664

r2;t+1 � r1;t+1

r3;t+1 � r1;t+1

:::

rn;t+1 � r1;t+1

377777777775
; (2.2.6)

where ri;t+1 = ln(1 + Ri;t+1) 8 i, and xt+1 is a vector of excess

returns. I also include other state variables st+1, such as the price-

earnings ratio, realised returns or other return forecasters, stacking

r1;t+1, xt+1 and st+1 into an m� 1 vector zt+1:

zt+1 =

26666664
r1;t+1

xt+1

st+1

37777775 : (2.2.7)

A fundamentalist agent will model the market dynamics by consid-

ering fundamentalist predictors. Chartists will decide based exclusively

on past returns. The di¤erence between them is in the coe¢ cients of

the VAR:

zh;t+1 = �h;0 + �h;1zt + vh;t+1: (2.2.8)

The trading strategy that agent h is actually using determines the
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coe¢ cients �h;0; the m � 1 vector of intercepts, and �h;1, the m � m

matrix of slope, with shocks vh;t+1 that satisfy

vh;t+1 � i:i:d: N(0;�h;v); (2.2.9)

�h;v � V art(vh;t+1) =

26666664
�2h;1 �0h;1x �0h;1s

�h;1x �h;xx �0h;xs

�h;1s �h;xs �h;ss

37777775 : (2.2.10)

These distributional assumptions allow for a cross-sectional corre-

lation between the shocks, which are otherwise iid over time.3 Given

the homoskedastic V AR(1) formulation, it is easy to derive the un-

conditional distribution of zt+1 because it inherits the normality of the

shocks. Note that unlike Brock and Hommes (1998), I assume that

agents may also disagree on how to estimate these variances and co-

variances.

Approximate solution

Epstein and Zin (1989, 1991) show that it is possible to write the value

3 The homoskedasticity assumption is rather restrictive because it rules out the
possibility that state variables predict changes in risk. This means that they can
only a¤ect the portfolio choice by predicting changes in expected returns. However,
many previous studies show that the e¤ect of those risk changes over portfolio
choice is limited. Campbell (1987), Harvey (1991) and Glosten et al. (1993) found
only modest e¤ects that are dominated by the e¤ects of the state variables on
expected returns. Also, Chacko and Viceira (2005) show that changes in risk are
not persistent enough to have large e¤ects on the intertemporal hedging demand.
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function obtained from the maximization in (2.2.1) per unit of wealth

as a power function of the optimal consumption-wealth ratio:

Vt �
Ut
Wt

= (1� �)�
 

1� 

�
Ct
Wt

� 1
1� 

: (2.2.11)

Campbell and Viceira (1999) note that, under the assumptions

made here,

lim
 !1

Ct
Wt

= (1� �); (2.2.12)

which guarantees that the value function (2.2.11) has a �nite limit

as  tends to 1: This result is important because it allows for an approx-

imation close to this limit where an analytical solution to the model

exists.

Following Campbell and Viceira (2001) and Campbell et al. (2003),

it is possible to approximate the return on the portfolio in (2.2.1). The

approximation is exact in continuous time and very close to the true

value at short time intervals. It is given by:

rp;t+1 = r1;t+1 + �0txt+1 +
1

2
�0t(�

2
x � �xx�t); (2.2.13)

where lower cases indicate variables in log and �2x � diag(�xx) is

a vector with the diagonal elements of �xx, i.e., the variances of the

excess returns.

Similar to Campbell (1993, 1996), we can also log-linearise the bud-

get constraint in the same problem. We do this around the uncondi-
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tional mean of the log consumption-wealth ratio. This results in

�wt+1 � rp;t+1 +

�
1� 1

�

�
(ct � wt) + k; (2.2.14)

where � is the di¤erence operator; � � 1 � exp(E[ct � wt]); and

k = ln(�)+ (1� �) ln(1� �)=� is endogenous because it depends on the

optimal level of ct relative to wt. When  = 1, ct � wt is constant and

� = �: In this case, the budget constraint approximation is exact.

Applying a second-order Taylor expansion to the Euler equation in

(2.2.5) around the conditional means of �ct+1, rp;t+1; ri;t+1 gives way

to

0 = � ln � � �

 
Et�ct+1 � (1� �)Etrp;t+1 + Etri;t+1 (2.2.15)

+
1

2
V art

�
� �
 
�ct+1 � (1� �)rp;t+1 + ri;t+1

�
:

This log-linearised Euler equation is exact if consumption and asset

returns are jointly lognormally distributed. This is the case when the

elasticity of intertemporal substitution equals one ( = 1).

Now, we subtract (2.2.15) evaluated in i = 1 from (2.2.15) evaluated

in i: Further noting that �ct+1 = �(ct+1 � wt+1) + �wt+1 yields

Et(ri;t+1 � r1;t+1) +
1

2
V art(ri;t+1 � r1;t+1) =

�

 
(�i;c�w;t � �1;c�w;t)(2.2.16)

+
(�i;p;t � �1;p;t)

�(�i;1;t � �1;1;t);
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where

�i;c�w;t = Covt(ri;t+1; ct+1 � wt+1);

�1;c�w;t = Covt(r1;t+1; ct+1 � wt+1);

�i;p;t = Covt(ri;t+1; rp;t+1);

�1;p;t = Covt(r1;t+1; rp;t+1);

�i;1;t = Covt(ri;t+1; r1;t+1);

�1;1;t = V art(r1;t+1):

On the left hand side of (2.2.16), we have the average excess return

of asset i over asset 1 that each agent requires. We add one-half of the

variance of the excess return because we consider log returns.4

The factors that determine the required excess return on each asset

are shown on the right-hand side. Factors that contribute to raise

the risk premium are the excess covariance with consumption growth

and excess covariance with the portfolio return. The last term cancels

out when the asset is risk free. It relates the covariance of the asset�s

excess return with the benchmark return to the required risk premium.

Because consumption growth and portfolio return are endogenous, this

is only a �rst-order condition describing the optimal solution. Thus, to

solve the model, it is necessary to determine both those values.
4 The left-hand side of equation (2.2.16) is determined by the dynamics of zt,

which also determines the variances and covariances on the right-hand side. How-
ever, the second term (
(�i;p;t��1;p;t)) is a function of portfolio choice, �t. This is
calculated to make both sides equal for a given consumption policy. See Apendix A
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Assuming that the optimal portfolio rule is linear in the VAR state

vector but with a quadratic optimal consumption rule produces (2.2.17)

and (2.2.18):

�t = A0 + A1zt; (2.2.17)

ct � wt = b0 +B0
1zt + z0tB2zt: (2.2.18)

Here A0, A1, b0, B1, and B2 are constant coe¢ cient matrices with

dimensions (n�1)�1, (n�1)�m, 1�1,m�1, andm�m�respectively,

that we need to determine.

Now, we simply write the conditional moments that appeared in

(2.2.16) as functions of the V AR and the unknown parameters in

(2.2.17) and (2.2.18). Finally we solve for the parameters that satisfy

(2.2.16).

For agent type h, we write the conditional expectation on the left-

hand side of (2.2.16) as

Eh;t(xt+1) +
1

2
V arh;t(xt+1) = Hx�h;0 +Hx�h;1zt +

1

2
�2h;x; (2.2.19)

where Hx is matrix that selects the vector of excess returns from

the full state vector, and V arh;t is the conditional volatility estimated

by agent h at time t.
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Campbell and Viceira (2001) and Campbell et al. (2003) also show

that it is possible to write the right-hand side of (2.2.16) as linear

functions of the state variables:

�h;c�w;t � �h;1;c�w;t� � [�h;i;c�w;t � �h;1;c�w;t]i=2;3;:::;n = �h;0 + �h;1zt;

(2.2.20)

�h;p;t� �h;1;p;t� � [�h;i;p;t � �h;1;p;t]i=2;3;:::;n = �h;xx�h;t+ �h;1x; (2.2.21)

�h;1;t � �h;1;1;t� � [�h;i;1;t � �h;1;1;t]i=2;3;:::;n = �h;1x; (2.2.22)

where � is a vector of ones.

The approximate demand for assets from agent h

By plugging (2.2.19) to (2.2.22) into the Euler equation (2.2.16) and

solving for the portfolio rule, we �nally obtain the optimal asset demand

for each investor type h:

��h;t =

Myopic Demandz }| {
1



��1h;xx

�
Eh;t(xt+1) +

1

2
V arh;t(xt+1) + (1� 
)�h;1x

�
+
1



��1h;xx

�
� �
 
(�h;c�w;t � �h;1;c�w;t�)

�
| {z }

Intertemporal hedging demand

: (2.2.23)
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Equation (2.2.23) is the generalised multiple-asset demand of Restoy

(1992) and Campbell and Viceira (1999) for agent type h. It charac-

terises the optimal portfolio choice as the sum of two components. The

�rst one is exactly the myopic demand with many risky assets and

lognormal returns. It does not depend on the elasticity of intertem-

poral substitution because this is a myopic component. The second

is the intertemporal hedging demand term. With time-varying invest-

ment opportunities, the prediction in Merton (1969, 1971) is that an

investor more risk-averse than a logarithmic investor would want to

hedge against those shocks.5 We verify this by noting that the second

term indeed depends on the excess covariance between the shocks on

the return on the risky asset and the shocks on consumption growth.

The investor demands more assets with returns that are negatively cor-

related with the consumption growth because he is willing to smooth

consumption. This makes the intertemporal hedging demand term usu-

ally positive for such assets.

Equation (2.2.23) highlights the di¤erence between the myopic and

the intertemporal frameworks. In this equation, we see that the my-

opic term is only a fraction of the complete demand for assets. The

intertemporal hedging demand term is the part that is ignored when

we cast investment problems within a myopic framework.

5 A logarithmic investor has coe�cient of risk aversion 
 = 1; hence � = 0.
Therefore, the portfolio rule of the investor is simply myopic, as we would expect.
� = 0 sets the intertemporal hedging demand term to zero, and the only term left
(that does not depend on �) is the myopic one.
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De�ne the Intertemporal Hedging Demand at time t for agent type

h as

IHDh;t �
1



��1h;xx

�
� �
 
(�h;c�w;t � �h;1;c�w;t�)

�
: (2.2.24)

Note that the hedging demand depends on h and can also vary over

time. We can now rewrite (2.2.23) as

��ht =
1



��1h;xx

�
Eh;t(xt+1) +

1

2
V arh;t(xt+1) + (1� 
)�h;1x

�
+ IHDh;t:

(2.2.25)

2.2.2 Evolution of trader types

Thus far, we derived the demand for assets of a given agent type but

with no discussion on how the agents initially choose their types. In

this section, we model the evolution of �ht, the fraction of agent type

h at time t. This is the so-called evolutionary part of the model and

describes how beliefs about the best strategy are updated over time.

Following Brock and Hommes (1997, 1998), agents observe the past

performance of each strategy and then decide between them. Agents

have access to �tness measures that are subjected to noise due to mea-

surement errors or non-observable characteristics. The observed �tness

of strategy h; ~Uh;t, is given by

~Uh;t = Uh;t + "h;t; (2.2.26)
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where Uh;t is the deterministic part of the measure, and "h;t an

iid noise across types, drawn from a double exponential distribution.

In this case, the probability that a given agent chooses strategy h is

given by the multinomial logit probabilities of a discrete choice when

the number of agents tends to in�nity. So, we describe the fractions

nht of trader types as follows:

�ht =
exp(�Uh;t�1)PH
h=1 exp(�Uh;t�1)

; (2.2.27)

where Uh;t�1 is the �tness measure of strategy h evaluated in period

t� 1; and � is a parameter regulating the intensity of choice. The later

is inversely proportional to the variance of the noise "h;t:6

The measure of evolutionary �tness of strategy h is the realised

pro�ts over a certain period, which is given by

Uh;t = (xt) � �h;t + !Uh;t�1; (2.2.28)

where ! is a memory parameter that re�ects how slowly agents

discount the success of past strategies when selecting their trading rules

and � is the direct product operator. We then consider the simplest

case: no memory, i.e., ! = 0: In this case, (2.2.28) becomes

Uh;t = (xt) � �h;t: (2.2.29)

6 This ensures that � = 0 when the variance of noise is in�nity. In this case,
agents cannot observe di¤erences in �tness and are not sensitive to di¤erences in the
performance of strategies. The other extreme situation is when the performances of
the strategies could be perfectly observed, or � =1: In this case, all agents switch
strategies when they see any di¤erence in relative performances.
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2.2.3 A tentative equilibrium

One of the drawbacks of using intertemporal models is the di¢ culty in

determining uniqueness or even the existence of an equilibrium. One

possibility to obtain it is to assume that if the market is in equilibrium,

total demand, �dt ; equals total supply, �
s
t , for each asset. In this case,

the following equation holds true:

HX
h=1

�ht � �ht = �dt = �st (2.2.30)

where the vector �ht denotes the (possibly di¤erent) fraction of

trader type h at date t in each of the asset markets while considering

H di¤erent trader types.

Now, combining (2.2.25) and (2.2.30) for the case of zero outside

supply shares (i.e., �st = 0) yields the the market-clearing condition:

HX
h=1

�ht �

8>><>>:
1


��1h;xx

�
Eh;t(xt+1) +

1
2
V arh;t(xt+1) + (1� 
)�h;1x

�
+IHDh;t

9>>=>>; = 0:

(2.2.31)

However, there is nothing that guarantees that the equation above

has a unique or even multiple solutions and therefore the model is not

guaranteed to be in general equilibrium. In this paper, I �t decision

models of di¤erent types of investors to empirical data, but not an

equilibrium model.
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2.3 Empirical application

In this section, I assume the perspective of investors in the U.S.A.

who would like to diversify their portfolio using the international stock

markets. These investors classify strategies into fundamentalists and

chartists. In each period, they need to decide whether to use the fore-

cast given by one or the other model (i.e., choose their types). I estimate

the model assuming that investors can allocate funds between four ma-

jor stock markets: U.S. (Dow Jones Industrials), UK (FTSE all share),

Japan (Nikkei 500) and Hong Kong (Hang Seng).

The main objective of the exercise is to evaluate the impact of con-

sidering only the myopic component of the demand for assets on the

results of the model. I �nd that if investors believe that the market

participants are very risk averse, then their assumptions about their

investment horizons are extremely important. This happens because

using the intertemporal demand for assets or only its myopic compo-

nent often results in di¤erent conclusions in this case. I show that the

intertemporal hedging demand term is not only signi�cant, but it dom-

inates for very risk averse agents. I also show that the inclusion of the

intertemporal hedging term in the demand for assets has di¤erent ef-

fects for fundamentalist and chartist agents. These e¤ects also depend

on their risk aversion. In addition, I show that the level of noise in the

observed performances also has di¤erent impacts on the model results

whether we consider the complete intertemporal demand for assets or
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only its myopic component.

Finally, I show that the proportion of trader types �uctuates ac-

cording to the market conditions. These �uctuations are relatively

more prominent for the Nikkei and Hang Seng markets. One explana-

tion is that these two markets show clearer regime switches during the

observed period.

2.3.1 Data Description

I use quarterly data from the U.S., UK, Japan and Hong Kong stock

markets. Table 2.3.1 reports the main descriptive statistics with all

returns in U.S. dollars. I estimate the fundamentalist and chartist

models using the complete data set for each individual market. These

data sets go until the �rst quarter of 2007, but they start at di¤erent

dates. The Dow Jones starts at the second quarter of 1978; the FTSE

starts at the �rst quarter of 1965; the Hang Seng starts at the third

quarter of 1973; and the Nikkei starts at the �rst quarter of 1992.

For the estimation of the intertemporal asset allocation problem,

however, I restrict attention to the common sample ranging from the

�rst quarter of 1993 until the �rst quarter of 2007. This is the period

when forecasts of these models exist.

Datastream is the source for the index values and dividend-price

ratios. Quarterly data regarding the American consumption-wealth
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Returns

Mean

Median

Maximum

Minimum

Std.Dev.

Skewness

Kurtosis

Observations

Dow FTSE Nikkei Hang Seng

0:0085 0:0070 �0:0004 0:0178

0:0172 0:0150 �0:0001 0:0437

0:1966 0:5763 0:2427 0:5158

�0:3211 �0:3493 �0:3737 �0:7288

0:08 0:11 0:13 0:19

�0:84 0:34 �0:46 �0:83

5:1 7:2 3:2 5:6

226 180 85 170

Table 2.3.1: Descriptive statistics for the series of Dow Jones Industri-

als, FTSE all shares, Nikkei 500 and Hang Seng real quarterly returns

in US dolars

ratio comes from the Martin Lettau�s website7 and corresponds to the

updated data set in Ludvigson and Lettau (2004). Finally, the CPI

series comes from the U.S. Department of Labor Statistics.

2.3.2 Estimation

I construct the real stock return using the di¤erence between the re-

turn on the stock index of each country and the U.S. in�ation in

7 http://faculty.haas.berkeley.edu/lettau/
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the same period using the CPI. I report the results for 	 = 0:98,

� = 10 and 
 = 5 or 
 = 50. However, the model estimates for

� = f0:25; 0:75; 0:5; 1; 5; 10; 20g and 
 = f1; 2; 5; 20; 50g have the same

qualitative results.

I restrict attention to a simple version of the model with two agents

and four assets. I �nd the proportions of fundamentalists and chartists

in two steps. First, I determine their demand for assets as in (2.2.23).

Next, I use this as an input to determine the corresponding proportion

of types given by (2.2.27). I use the constant conditional correlation

GARCH speci�cation proposed by Bollerslev (1990) to estimate the

conditional variances and covariances in (2.2.23).

Estimated agents�models

Fundamentalist agents predict the real return on every asset using the

past dividend-price ratio:

xt+1 = �+ �0xt + �1DPt + �2DPt�l2 + �3DPt�l3 + et: (2.3.1)

Past real return (xt) is included to eliminate serial correlation in

the equation; et is an error term; l2 and l3 are lags that vary according

to the asset that agents are forecasting. I choose the lags empirically

to match the data.

Chartist traders use only past returns to forecast future returns for
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each asset. This model is given by

xt+1 = �+ �0xt�l0 + �1xt�l1 + et: (2.3.2)

I choose the lags empirically but the aim is to keep these lags small,

given that momentum is mostly a short term e¤ect.

I estimate these models for each one of the n = 4 assets. They pro-

vide the inputs for the (restricted) VAR that agents use to describe the

market. Agents estimate the parameters in (2.3.1) and (2.3.2) recur-

sively, based on the information available on each date. For example,

agents use the information available up to third quarter of 1999 to

estimate � in fourth quarter of 1999.

Table 2.3.2 displays the results of these estimations for the two

agent types in each market (using the whole data set in the estima-

tion). The fundamentalist models �t the data much better than the

chartist ones. The positive coe¢ cients of the lagged returns in the

chartist models, however, are in accordance with the previous �ndings

of momentum e¤ect. The overall positive coe¢ cients of the dividend-

price ratios in the fundamentalist models are also in accordance with

the literature. The biggest di¤erence among the markets is that we can

�nd a relationship between future return and the dividend-price ratio

at much shorter horizons for the Nikkei index. The shorter estimation

sample (�rst quarter of 1991 until the �rst quarter of 2007) for the

Nikkei does not allow to test if there is a stronger relationship at longer

horizons.
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Table 2.3.2: The table shows the estimated models of the two agent

types in each market. Fundamentalist agents estimate for each market

a model of the form: xt+1 = �+�0xt+�1DPt+�2DPt�l2+�3DPt�l3+et;

where xt is the real return in time t; DPt is the dividend-price ratio

in time t; et is an error term and � and the � are the coe¢ cients to

be estimated. Chartist agents estimate for each market a model of the

form: xt+1 = � + �0xt�l0 + �1xt�l1 + et: In the table, the number in

parenthesis gives the number of lags of the corresponding variable.
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Table 2.3.3: Considering theGARCH (2; 1) given by �2t = �0+�1�
2
t�1+

�2�
2
t�2 + ��

2
t�1; the table shows the estimated coe¢ cients �1; �2 and �

in each market. It also shows the sum of these coe¢ cients.

Table 2.3.3 reports the coe¢ cient estimates of the GARCH(2; 1)

speci�cation, given in:

�2t = �0 + �1�
2
t�1 + �2�

2
t�2 + ��2t�1 (2.3.3)

These univariate GARCH are inputs for the constant conditional

correlation GARCH of Bollerslev (1990). The sum of the coe¢ cients

in the GARCH models are at most one. This indicates that they are

all weakly stationary, though not necessarily with �nite unconditional

variance.
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2.3.3 Model results

The components of the demand for assets

Figures 2.3.1 and 2.3.2 show the relative importance of each component

in the demand for assets of fundamentalist and chartist agents with

two di¤erent levels of risk aversion. Equation (2.2.23) describes how

to obtain the myopic and the intertemporal hedging demand terms in

each graph.

Comparing the two columns in Figures 2.3.1 and 2.3.2, we see that

as agents become more risk averse, the importance of the intertemporal

hedging demand in relation to the myopic demand for assets increases.

For very risk averse individuals and depending on the asset, the in-

tertemporal hedging term in fact becomes the dominant component in

the demand for assets. Figure 2.3.1 reveals that this happens with the

Dow Jones and the FTSE for the fundamentalists whereas Figure 2.3.2

shows that this applies for every stock market index, but the Hang

Seng, in the case of the chartist agents.

There are two main reasons that explain why the increase in risk

aversion leads to an increase in the relative importance of the intertem-

poral hedging demand. The �rst is that it decreases the overall demand

for risky assets, reducing the myopic demand term. The second is that

the agents become more willing to hedge against changes in the invest-

ment opportunity set. Therefore, they demand more of assets with such
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Figure 2.3.1: The �gure shows the relative importance of the myopic

and the intertemporal hedging terms in the demand for assets of fun-

damentalist agents. The results correspond to the four markets: U.S.

(Dow Jones), Japan (Nikkei), U.K. (FTSE) and Hong Kong (Hang

Seng) and to a coe¢ cient of relative risk aversion 
 = 5 or 
 = 50.

properties (via the intertemporal hedging demand term).

Examining the pairs of Figures 2.3.2 and 2.3.1, we see that the

intertemporal hedging demand term has di¤erent e¤ects on the total

demand for assets of fundamentalist and chartist agents. For instance,

the intertemporal hedging demand for the Hang Seng is positive for the

chartist agents, and negative for the fundamentalists.
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Figure 2.3.2: The �gure shows the relative importance of the myopic

and the intertemporal hedging components in the demand for assets of

chartist agents. The results correspond to the four markets: U.S. (Dow

Jones), Japan (Nikkei), U.K. (FTSE) and Hong Kong (Hang Seng) and

to a coe¢ cient of relative risk aversion 
 = 5 or 
 = 50.
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The intertemporal hedging demand term with multiple assets

The four assets present desirable intertemporal hedging characteris-

tics given the negative covariance between shocks on their returns and

shocks on the consumption-wealth ratio.8 Therefore, in a single asset

framework, the intertemporal hedging demand would be positive for

all of them. In a multiple asset framework, however, the results can be

di¤erent.

Fundamentalists have a negative intertemporal hedging demand for

the Hang Seng because from a portfolio perspective this asset is very

risky. Table 2.3.4 shows that the shocks on the return on the Hang

Seng have the largest variance and covariance with the shocks on the

returns on the other assets. This happens for both fundamentalist and

chartist agents. However, fundamentalists have an overall larger in-

tertemporal hedging demand. We can �nd the intuition for this result

in Campbell et al. (2003). They note that the predictability of returns

increases the demand for intertemporal hedge. As mentioned before,

fundamentalist agents use models that predict returns more accurately

than chartists. Therefore, keeping everything else constant, fundamen-

talists should have higher intertemporal hedging demands. As a con-

8 Although not reported, the estimated excess covariance between shocks on the
asset�s return and shocks on the consumption-wealth ratio, as given in equation
(2.2.24), is negative.
For 	 = 0:98 < 1 and for an agent that is more risk averse than a logarithmic one

(i.e., 
 > 1); it would be possible to obtain a negative value for the intertemporal
hedging demand term if the excess covariance between shocks on the asset�s return
and shocks on the consumption-wealth ratio was positive.
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sequence, they short the Hang Seng index to reduce the risk of their

overall portfolio.

Chartist agents

Covariances (�10�3) Dow Jones FTSE Hang Seng Nikkei

Dow Jones 6:4

FTSE 5:5 7:3

Hang Seng 8:1 8:4 21:1

Nikkei 4:2 5:0 6:3 16:2

Fundamentalist agents

Covariances (�10�3) Dow Jones FTSE Hang Seng Nikkei

Dow Jones 4:4

FTSE 3:6 5:0

Hang Seng 4:7 5:6 15:8

Nikkei 2:6 2:6 4:0 10:3

Table 2.3.4: Variance-Covariance matrix of the shocks on the expected

returns estimated by chartist and by fundamentalist agents.

Estimated proportions of types

Figure 2.3.3 plots the estimated proportions of fundamentalists given

two di¤erent levels of risk aversion, 
 = 5 and 
 = 50. It compares
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the proportions obtained from the complete intertemporal demand for

assets (i.e. including also the intertemporal hedging demand term) with

the ones obtained from its myopic component alone.

As expected, considering only the myopic component or the com-

plete demand for assets results in signi�cantly di¤erent estimations

when the agents are very risk averse, i.e., 
 = 50. When agents are

not extremely risk averse, i.e., 
 = 5; the estimated proportions do not

change much from one formulation to another in the data set used here.

This happens regardless of the fact that the intertemporal hedging de-

mand term, shown earlier, is signi�cantly large for agents with both

levels of risk aversion.

Changing the intensity of choice �

Figure 2.3.4 shows how the estimated proportions of agents change with

the noise in the observed performances (captured by the values of �)

given the myopic or intertemporal framework used. The plot shows that

changing the value of � a¤ects the variation in the proportions of agents.

The intensity of choice, �; is negatively correlated with the magnitude

of the noise in the observed performance of the strategy. In other

words, a high value of � corresponds to a situation in which traders

observe relative di¤erences in performance more clearly. It increases

the likelihood of the traders changing their types. This in turn results

in a higher variation over time in the proportions of fundamentalists,
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Figure 2.3.3: The �gure shows the proportions of fundamentalists in

each market estimated from the complete intertemporal demand for

assets and also from its myopic component alone. I assume a coe¢ cient

of relative risk aversion 
 = 5 or 
 = 50:
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as we see in the graph.

The picture also shows that this e¤ect is stronger when we consider

the complete demand for assets, as opposed to the myopic component

alone. Considering the complete demand increases the di¤erences in the

performances of the strategies. This happens because the additional

intertemporal hedging demand term is di¤erent across types and these

di¤erences do not cancel the di¤erences in the myopic components.

The proportions of fundamentalists and the markets

Figure 2.3.5 displays the variation in the proportions of fundamentalist

traders according to the market conditions. It shows these variations

in the four di¤erent markets plotting each index level (in US$) with

the corresponding fundamentalist proportion. In common, the plots

show a pattern of a decrease in the fraction of fundamentalists being

followed by a reversal in prices and a subsequent increase in the fraction

of fundamentalists. This pattern is clearer in the Hang Seng index, or

during the period between the last quarter of 1998 and the last quarter

of 2002 in the Nikkei and also, to a lesser extent, in the FTSE.

The decrease in the fraction of fundamentalists occurs because fun-

damentalist strategies are not successful in forecasting returns when

prices do not follow the fundamentals. This is what happens between

1998 and 1999 especially in the Hang Seng and Nikkei indices.

When prices start to revert to the fundamentals, the traders begin
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Figure 2.3.4: The graph shows the estimated proportions in the Dow

Jones for � = f1; 5; 10g considering the complete demand for assets

or only its myopic component for 
 = 50. It shows the relationship

between the estimated proportions, the demand for assets and the dif-

ferent levels of noise in the observed performances (captured by the

values of �).
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Figure 2.3.5: The �gure shows the proportions of fundamentalists and

the corresponding stock market index value when agents have a coe¢ -

cient of relative risk aversion 
 = 50:

to believe that fundamentalist strategies are correct. Subsequently, the

proportion of fundamentalists increases until the �rst half of 2000, when

the market prices are back to the level that they were in 1998. In the

Hang Seng (and to a lesser extent in the FTSE also), we do not observe

a reversal, but we see that the last increase in prices starting in the

second half of 2003 is not consistent with fundamentals, as provided

by our model. Finally, the participation of fundamentalists in the Dow

Jones does not oscillate much.
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2.4 Concluding remarks

In this paper I develop a new asset-pricing model in which agents

with long investment horizons maximise a recursive utility function and

choose the strategy used to forecast returns based on its previous prof-

itability. The model keeps many characteristics of earlier asset pricing

models with heterogeneous beliefs. For instance, it has the ability to

generate changes in prices that are not driven by fundamentals with-

out requiring restrictive assumptions about the agent�s preferences or

rationality.

The paper extends the literature on heterogeneous beliefs into two

di¤erent directions. First by considering agents with long-term invest-

ment horizons as opposed to myopic investors. The empirical exercise

shows that the component on the demand for assets that is ignored in

a myopic framework can be signi�cantly large. This is especially true

when agents are very risk averse. In addition, the impact of changes in

the parameters of the model is also di¤erent whether we consider the

complete intertemporal asset demand or only its myopic component.

These parameters are for instance the noise in observed performances,

captured by �; or the level of risk aversion, 
:

The paper also extends the literature on heterogeneous beliefs by

considering an arbitrary large number of assets, n: The negative in-

tertemporal hedging demand for the Hang Seng by fundamentalist

agents, for instance, would be positive in a single risky asset formu-
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lation given its desirable hedging properties.

2.5 Chapter Appendix

2.5.1 Excess returns and the stochastic discount

factor

The basic equation of asset pricing (in terms of returns) can be written

as follows:

1 = Et [Mt+1(1 +Ri;t+1)] ; (2.5.1)

where Mt+1 is the "stochastic discount factor" (SDF) that prices

any asset in the economy. Equation (2.5.1) can be developed into:

1 = Et [Mt+1(1 +Ri;t+1)]

= Et [Mt+1] � Et [(1 +Ri;t+1)] + Covt (Mt+1; (1 +Ri;t+1))

= Et [Mt+1] � Et [(1 +Ri;t+1)] + Covt (Mt+1; Ri;t+1) :

Using the fact that Et [Mt+1]
�1 = (1+Rf;t+1), obtained from (2.5.1)

for the risk-free asset, we have:

Et [(1 +Ri;t+1)] =
1� Covt (Mt+1; Ri;t+1)

Et [Mt+1]

= (1 +Rf;t+1)�
Covt (Mt+1; Ri;t+1)

Et [Mt+1]
;
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and �nally, the expression for the excess returns rearranging the

equation once again is given by:

Et [(1 +Ri;t+1)� (1 +Rf;t+1)] = �Covt (Mt+1; Ri;t+1)

Et [Mt+1]

Et [Ri;t+1 �Rf;t+1] = �Covt (Mt+1; Ri;t+1)

Et [Mt+1]
:(2.5.2)

During the derivation of the approximate solution in the text, we

obtain (2.2.16), that is similar to (2.5.2). The left-hand side of (2.5.2)

is the expected excess return for asset i. This expectation is given by

the beliefs of the agents, modeled by the VAR described in the text.

Agents with heterogeneous beliefs have di¤erent expectations of returns

and therefore di¤erent demands for assets.

Note that, in the Euler equation (2.2.5), we obtain:

Mt+1 =

(
�

�
Ch;t+1
Ch;t

�� 1
 

)�

(1 +Rh;p;t+1)
�(1��): (2.5.3)

In this case, the right hand side of (2.5.2) depends on the agent�s

choices, i.e., the covariance term depends on the portfolio composition,

��h;t (via Rh;p;t+1) and consumption, C�h;t, the two variables that the

agent chooses and also the only two sources of variability in the SDF.

So, given the expectation on the left-hand side of (2.5.2) and a

consumption policy, we are able to determine the portfolio choice (i.e.,

asset demands).



Chapter 3

Regularization and portfolio

selection

3.1 Introduction

The biggest issue regarding the implementation of mean-variance op-

timisation is estimation error. Small di¤erences between asset returns

or covariances are exploited by the optimiser. When these di¤erences

are due to estimation error instead of the real di¤erences in the data

generating process of returns for each asset, the problem becomes more

signi�cant.

In theory, having highly concentrated portfolios is not always prob-

lematic, as pointed out by Green and Holli�eld (1992). When the
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concentration of the portfolios is due to estimation error, however, a

suboptimal allocation would result that tends to worsen as the estima-

tion error grows and more extreme allocations are selected. Portfolios

in this case tend to be underdiversi�ed and have extreme allocations.

The result is that they tend to perform poorly out of sample even when

they are compared to naive portfolios, such as the 1=N equal allocation

shown in DeMiguel et al. (2009). Estimation error becomes an even

bigger issue as the number of available assets grows.

Even when the problem is to �nd the minimum-variance portfo-

lio (which ignores expected returns and reduces estimation error), the

result is still an underdiversi�ed portfolio with poor out-of-sample per-

formance. In an attempt to improve the out-of-sample performance of

these estimates, several econometric procedures are proposed. However,

no unique solution has been presented so far.

This chapter begins with a brief review of plug-in estimation, dis-

cussing its asymptotic and �nite sample properties. Later, we present

the regularisation methods and how they can be applied to the portfolio

choice problem.

3.1.1 Plug-in estimation

Plug-in estimation is the most widely used econometric approach in

the portfolio choice literature. In this approach, the parameters of a

given model are estimated and plugged into the analytical solution ob-
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tained from the theoretical model. Naturally, the estimation error in

the parameters obtained with this approach will be passed on to port-

folio weights, and the resulting allocation is di¤erent from the optimal

allocation in almost every case.

Single period problem - Asymptotic properties

Consider the mean variance problem with a risk-free asset as an exam-

ple. With iid excess returns, the optimal portfolio weights are given

by

x� =
1



��1�; (3.1.1)

where � is the (constant) risk premia and � is the variance-covariance

matrix of returns. Given the excess return data frt+1gTt=1; the moments

� and � can be estimated using the sample counterparts:

�̂ =
1

T

TX
t=1

rt+1 (3.1.2)

and

�̂ =
1

T �N � 2

TX
t=1

(rt+1 � �̂)(rt+1 � �̂)0: (3.1.3)

Plugging these values into (3.1.1) results in the estimated weights

x̂� = (1=
)�̂�1�̂: Under normality, this estimator is unbiased:
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E[x̂�] =
1



E[�̂�1]E[�̂] =

1



��1� = x�: (3.1.4)

The �rst equality comes from independence between �̂ and �̂; and

the second is due to the unbiasedness of �̂�1 and �̂:1

The second moments of the plug-in estimator can be derived by

expanding the estimation around the true risk premia and return co-

variance matrix. To illustrate the technique, we consider only one risky

asset. In this case, it can be shown that the variance of the estimator

is given by

var[x̂�] =
1


2

� �
�2

�2�var[�̂]
�2

+
var[�̂2]

�4

�
: (3.1.5)

This illustrates that the imprecision of the plug-in estimator is pro-

portional to the magnitude of the true optimum portfolio weights

x� =
1




� �
�2

�
; (3.1.6)

and depends on the imprecision in the estimation of the volatility and

risk premia, each scaled by their respective true magnitudes. For real

applications, portfolio weights tend to be estimated very imprecisely

because inputs to the estimator are di¢ cult to pin down.

The second moments become more di¢ cult to estimate with fat tails

because outliers have a strong impact on the estimates. Therefore, styl-

ised facts of �nancial series, such as the conditional heteroskedasticity,

1 Without normality, the plug in estimator is still consistent with plim x̂� = x�:
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in�ate the variance of the unconditional sample variance considerably.

This illustrates the point that both return moments can contribute to

asymptotic imprecision of plug-in portfolio weight estimates.

Plug-in estimation in �nite samples

The asymptotic results derived previously are useful in characterising

statistical uncertainty when the sample size is large enough with re-

spect to the number of parameters to be estimated. On the other hand,

it is easy to �nd real-life applications of portfolio selection where the

number of assets is on the order of thousands while the length of obser-

vations is still on the order of decades. This characterises this solution

as an ill-posed or ill-conditioned problem. The prevailing issue with

plug-in estimates in portfolio selection in these cases becomes �nite

sample performance.

A substantial amount of the literature describes the shortcomings

of plug-in estimates. In general, �ndings show that plug-in estimates

could be very unreliable even with a relatively large sample size. This

is especially true when the number of assets in the portfolio increases.2

Much of the recent literature on portfolio selection focuses on �nd-

ing econometric methods with better �nite sample properties, and shrink-

age estimation is one of the most prominent methods.

2 Note that the number of unique elements of the return covariance matrix
increases at a quadratic rate with the number of assets.
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3.2 Regularisation to improve estimates:

constraining, penalising and shrink-

ing

It is well known that the plug in estimator�s performance can be im-

proved in �nite samples by constraining/shrinking the estimates. An

early example of this is given by James and Stein (1961) with respect

to estimates of the mean of a multivariate normal. These estimates are

shrunk towards a common mean and were shown to outperform the

sample mean in terms of mean squared error for dimensions as small

as 3.

In the context of portfolio selection, regularisation can be intro-

duced in at least two alternative ways. We can obtain an empirical

minimum-variance portfolio by plugging in a regularised return covari-

ance matrix to the unconstrained problem in:

x�MINU(�t) = argmin
x

xT�tx

s.t. xT � = 1:

(3.2.1)

Alternatively, we can interpret the weights of the portfolio as the

coe¢ cients to be estimated and apply regularisation techniques to these

coe¢ cients while plugging in the sample covariance matrix to same

problem.
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In this section, we �rst provide an overview of regularisation for

statistical estimates. Then, we discuss the two alternative paths to

regularising empirically optimised portfolios. We conclude with a brief

discussion on the equivalence of the two alternative approaches.

3.2.1 Statistical regularisation

The basic idea in shrinkage estimation is that it is possible to reduce

an estimator�s variance by averaging it with a given constant that, by

de�nition, has no variance. This can be done at the expense of includ-

ing some bias in the estimation, and the goal to correctly apply these

estimators is to �nd the optimum balance between bias and variance.

Penalised estimates shrink the maximum likelihood estimators (MLE)

towards a deterministic minimiser of a deterministic function. A good

penalty is one that introduces the least bias in the estimates but reduces

a large part of their variance.

Regularization by explicit shrinking

James and Stein (1961) introduced what is perhaps the earliest example

of a regularised statistical estimate. In their set-up, the N -dimensional

vector of means of a multivariate normal distribution N (�;�) are to be

estimated. The classical non-regularised maximum likelihood estimate

for �j was the sample average �yj. Letting the �̂0 be the �grand mean�

(i.e., the average of the sample averages �yj), James and Stein (1961)
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introduce a family of estimators indexed by � 2 (0; 1) as

�̂j(�) = ��̂0 + (1� �)�yj; with � 2 (0; 1): (3.2.2)

In other words, each estimator in this family shrinks each sample

mean towards a common mean with the amount of shrinkage given by

�. James and Stein (1961) show that the best performance in terms of

mean squared error is achieved by setting � to be

�� = min

�
1;

(N � 2)=T
(�� �0�)

T��1(�� �0�)

�
; where �0 =

1

N

NX
j=1

�j: (3.2.3)

Although the optimal weighting �� was derived for estimating the means,

the equation above provides an intuitive guidance on how to tune the

regularisation parameter. More aggressive shrinkage is advised in three

cases: �rst, when the bias introduced by the shrinkage is small (as mea-

sured by (���0�)��1(���0�)); second, when the number of parameters

being estimated (N) is large; and third, when the noise level is high

(small det(�)). As the sample size increases, however, less shrinkage

seems to be necessary.

The general lesson seems to be that the less stable the non-regularised

estimate (�yj) is, whether the instability is due to noisier measurements

or the smaller sample size or the smaller bias introduced by shrinkage,

the more can be gained by borrowing strength from the more restricted

estimate (�̂0). Although enlightening, the expression in (3.2.3) is not

feasible because it involves the very parameters we are trying to es-
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timate. Practical methods for tuning � are required, and some are

discussed later.

A natural extension of the James and Stein (1961) estimate for a

vector of means is to consider the family of estimates:

�̂(�) = ��̂0 + (1� �)�̂MLE; (3.2.4)

where �̂MLE is the MLE estimate for parameter � in a broader model

(low bias, high variance) and �̂0 is an MLE estimate for the same para-

meter under more restrictive assumptions (higher bias, lower variance).

Again, �nding an appropriate way to tune � is an integral part of any

such method.

Regularisation by penalisation

Penalised estimates are another way to obtain regularised stable statis-

tical estimates. For a given loss function L(Z; t) and

�̂(�) = argmin
t2Rp

"
nX
i=1

L(Zi; t) + � � T (t)
#
; (3.2.5)

where L is a loss function, T is a penalty function, Zi are the observed

data points, and � � 0 is a tuning parameter that trades o¤between the

loss and penalty functions. The estimate �̂(�) in (3.2.5) and (3.2.10) can

be interpreted as a compromise between the unpenalised M-estimator

�̂(0) and the deterministic a priori estimate �̂(1) := argmint T (t) with

� controlling the emphasis put on the prior/penalty T .
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The `1- and `2-penalised portfolios Considering a constant �1, a

vector of portfolio weights x; the sample covariance matrix �̂t; and a

vector of ones �; we may write

nX
i=1

L(Zi; x) = xT �̂tx+ �1 � xT �

in equation (3.2.5). In this case we obtain, respectively, the `1- or

`2-penalised portfolios assuming

T (x) =
nX
i=1

kxik1 (3.2.6)

or

T (x) =
nX
i=1

kxik2; (3.2.7)

where the right hand side of equation (3.2.6) represents the `1-norm

of the portfolio weights x, and the right hand side of equation (3.2.7)

represents its `2-norm.

Therefore, the `1- or `2-penalised estimates are given, respectivelly,

by equation (3.2.8) or equation (3.2.9):

�̂(�) = arg min
x2Rp

"
xT �̂tx+ �1 � xT �+ � �

nX
i=1

kxik1

#
; (3.2.8)

�̂(�) = arg min
x2Rp

"
xT �̂tx+ �1 � xT �+ � �

nX
i=1

kxik2

#
: (3.2.9)

In equations (3.4.4) and (3.4.14) in the next subsection, we show

how to obtain the same portfolios using constraints.
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Often, the loss L and penalty T can be interpreted as neg-log like-

lihood functions. In such cases, p(�) / [exp(�T (�))]� plays the role of

a prior distribution on � and �̂(�)can be interpreted as the maximum a

posteriori likelihood estimate (MAPLE) for �, that is, �̂(�) maximizes

the a posteriori likelihood for �:

�̂(�) = argmax
t2Rp

8<:
"

nY
i=1

exp (�L(Zi; t))
#
�
"
exp(�T (�))

#�9=; : (3.2.10)

Penalised estimates in the form �̂(�) have garnered increasing at-

tention in the statistical literature as a means of �tting increasingly

complex models (large p) with limited amounts of data. The ridge re-

gression of Hoerl and Kennard (1970) provides an early example of a

penalised estimate for linear regression models using the squared error

loss `2-norm of errors and a penalty on the Euclidean (`2) norm of the

regression parameters. In such cases, the MAPLE estimate can be in-

terpreted as a random e¤ects model with a normal N (0; 1
�
� Ip) prior to

the parameters. More recently, the penalised approach was extended

to a myriad of loss and penalty functions.

Penalised estimate as constrained estimates

Penalised estimates as de�ned in (3.2.5) are often de�ned in terms of a

constrained M-estimator. Consider estimates de�ned as:

~�(T ) := argmint2Rp
Pn

i=1 L(Zi; t)

s.t. T (t) � T ;
(3.2.11)
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for the same functions L and T as in (3.2.5) above. As long as T � �̂(0),

writing this problem in Lagrangian form shows that a corresponding �

exist in (3.2.5) for each T in (3.2.11). This is certainly true for the loss

functions and penalty functions considered in this paper; therefore, we

will use the terms �constraints�and �penalties�interchangeably.

As a �nal remark, notice that the parameter � in this framework

played a similar role as the � parameter in shrinkage estimates, as de-

�ned in (3.2.4): that is, more emphasis is placed on the shrinking target

values with larger values of the parameter �. As before, a method for

tuning � is needed to select one estimate �̂(�) from the family of esti-

mates de�ned by (3.2.5), often called the regularisation path. The same

principles in choosing � apply when selecting �: more constrained esti-

mates are preferred when there is more noise in the data, when the sam-

ple size is smaller, and when the introduction of a constraint/penalty

produces less distortion.

Tuning the regularisation/shrinkage parameter

In empirical applications, we may use cross validation to select the

optimal amount of regularisation to be applied to the problem. The

selected value in both problems gives us information regarding the op-

timal strategy to be used.

When we solve the 2-norm restricted optimisation and �nd the

optimal amount of regularisation to be equal to 1=N;for instance, the
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noise in the data for that sample is so large that it is preferable to use

the naive 1=N allocation as in DeMiguel et al. (2009). If the optimal � is

di¤erent from 1=N; the naive allocation is expected to be sub-optimal.

The same applies to the 1-norm restriction formulation: if cross

validation gives us � 6= 1, we have evidence that using a no-short-sale

portfolio is not optimal; nevertheless, this portfolio may be better than

the portfolio with no restrictions at all.

These results also hold in the reverse case. If we �nd an optimal

non-binding �; the regularised solution is not needed; investors would

obtain better portfolios by using the unrestricted formulation of the

mean variance optimisation.

3.3 Plug-in portfolios with regularised em-

pirical covariance matrices

It is possible to apply shrinkage estimation to portfolio selection prob-

lems not only to estimate the risk premia but also to estimate the

covariance matrix.3. In this last case, a covariance matrix �̂s is usually

proposed; the matrix is the convex combination of the sample estima-

3 See Jobson et al. (1979), Jobson and Korkie (1980), Frost and Savarino (1986)
and Jorion (1986) for risk premia shrinkage estimation, and Frost and Savarino
(1986) and Ledoit and Wolf (2004) for shrinking the covariance matrix of returns.
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tion �̂ and a shrinkage target Ŝ; as in:

�̂s = �Ŝ + (1� �)�̂: (3.3.1)

The usual candidates include the identity matrix, the equal corre-

lation covariance matrix or the one-factor matrix.

3.3.1 No-short-sales constraint: Jagannathan and

Ma (2003)

Imposing no-short-sales constraints on the minimum-variance portfolio

changes the problem to

x�NSS(�̂t) = argmin
x

xT �̂tx

s.t. xT � = 1;

x > 0;

where the last restriction ensures that all weights are positive (meaning

that short sale is not permitted). Jagannathan and Ma (2003) shows

that the solution to this problem is equivalent to the unconstrained

problem if the sample covariance matrix is replaced by

�̂JM = �̂t � ��0 � ��0; (3.3.2)

where � 2 RN is the vector of Lagrangian multipliers from the

restricted optimisation.
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3.3.2 Shrinking the covariance matrix towards a

deterministic one: Ledoit and Wolf (2003,

2004)

Ledoit and Wolf (2004) consider several shrinking targets such as the

identity matrix, the constant correlation matrix, and the covariance

matrix obtained from estimating a 1-factor model with the market as

the factor. They use an alternative covariance matrix that is a convex

combination between the sample covariance and the selected target

matrix, as given by

�̂LW =
1

1 + �
�̂ +

�

1 + �
�̂TARGET ; (3.3.3)

where v 2 R+ is a constant and �̂TARGET 2 RN�N is the target matrix.

Ledoit and Wolf also show how to �nd the asymptotically optimum

value for v that minimises the expected Frobenius norm of the di¤erence

between the matrix �̂LW and the true covariance matrix.

3.4 Constraining/shrinking portfolio weights

An alternative to obtaining stable, data-driven minimum-variance port-

folios relies on interpreting the weights of the optimal portfolio them-

selves as the parameter of interest and applying regularisation tech-

niques directly to the portfolio weights, as in DeMiguel et al. (2009).
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This framework is particularly appealing because it is often easier to

set sensible shrinking targets to portfolio weights (e.g., equal weighting,

market capitalisation) than it is to model the structure of the assets

correlations. The use of theoretically supported targets derived from

asset-pricing models is also easier within this framework, which also

better captures the link between �rst and second moments because

this link doesn�t need to be modelled.

DeMiguel et al. (2009) also argues that constraining portfolio weights

give extra �exibility and interpretation to the constraints that are not

easily obtained when constraints on the moments of returns are im-

posed.

3.4.1 Shrunk portfolios

Given the unstable empirical minimum-variance portfolio x�MINU(�̂)

and a more stable target portfolio x̂0 (which may or may not depend

on the data), a shrunken portfolio can be de�ned in the spirit of James

and Stein (1961) as

x̂�JS(�) = � � x̂0 + (1� �)x̂�MINU(�̂); (3.4.1)

where �is a shrinkage parameter that must be determined empirically.

Because there is no self-evident counterpart to the grand mean in the

portfolio selection problem, di¤erent alternatives can be used as the

shrinkage target x̂0Two possible targets with good empirical perfor-



94

mance are: the completely balanced portfolio with equal weights on

all assets, and the no-short-sales empirical minimum-variance portfolio

x�NSS(�̂).

Norm-constrained minimum-variance portfolio

An alternative way to reduce statistical error in portfolio selection prob-

lems is through the use of portfolio constraints. Frost and Savarino

(1988) shows that portfolio constraints truncate the extreme portfolio

weights. While the theory does not rule out the optimality of portfo-

lio with extreme weights (e.g., Green and Holli�eld (1992)), the em-

pirical evidence is that constrained mean-variance optimisers do lead

to better out-of-sample performance, as in DeMiguel et al. (2009),

Michaud (1989)and others. Such empirical results suggest that the

extreme weights observed in plug-in empirical minimum-variance port-

folios x�MINU

�
�̂
�
are actually artefacts of estimation errors rather than

a re�ection of the true correlation among the assets.

Several alternative constraints can be proposed as a means to obtain

more stable portfolios. Given that both the minimum-variance portfolio

selection and the estimation of linear regression parameters are de�ned

as minimisers of quadratic functions, many portfolio constraints can

be traced back to the literature on penalised linear regression. The

`p-penalised minimum-variance portfolio introduced by DeMiguel et al.



95

(2009) is de�ned as

x�`p(�̂t; �) = argmin
x

xT �̂tx

s.t. xT � = 1;

kxkp � �;

where kxkp denotes the `p-norm of the portfolio weights vector, i.e.,

kxkp :=
 

NX
i=1

jxijp
!1=p

: (3.4.2)

These portfolios �nd their counterpart in the penalised linear re-

gression literature in the bridge estimates of Frank and Friedman (1993).].

The CAP portfolios to be de�ned can also be traced back to the linear

regression literature. These portfolios are based on penalties that trans-

late grouping information into penalties for the estimation problem (see

Zhao et al. (2009)).

Penalised portfolios can also be obtained without explicitly con-

straining the norm of the minimum-variance portfolio. This is the

case of the partial minimum-variance portfolios of DeMiguel et al.

(2009)which is related to the 2-norm-constrained minimum-variance

portfolios obtained without constraining any norms4. These portfolios

can also be traced back to the linear regression literature, and their

counterpart can be found in the partial least squares of Wold (1975).

The 2-step unconstrained minimum-variance portfolios that we would

4 DeMiguel et al. (2009) view these portfolios as a discrete �rst-order approxi-
mation to the 2-norm-constrained portfolios.
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describe later constitute another example that can be interpreted as

a penalised portfolio without explicit norm constraints. Before we in-

troduce our grouped portfolios, we discuss two important particular

cases of norm-penalised portfolios here: the `1 and the `2 penalised

minimum-variance portfolios.

The `1-constrained portfolio and short-sales constraint

Setting p = 1 in equation (3.4.2) gives

jjxjj1 =
NX
i=1

jxij; (3.4.3)

which is the sum of the absolute values of the portfolio weights.

The optimisation problem in this particular case becomes

x�`p(�̂t; �) = min
x

xT �̂tx

s.t. xT � = 1;Pn
i=1 kxik � �:

(3.4.4)

It is easy to see that when � = 1 the budget restriction along with

the `1 restriction are equivalent to the usual short-sales constraint.5

DeMiguel et al. (2009) also consider less restrictive alternatives where

� > 1: They argue that the short-sales-constrained portfolios in this

case are generalised to allow limits for short sales (negative weights) in

5 To verify, just note that it is impossible to satisfy both restrictions if there is
any negative value in the vector of weights xi:
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the portfolio. By constructing the modulus function, we could separate

the positive and negative terms in the sum as

jjxjj1 =
NX
i=1

jxij =
X
xi2R+

xi �
X
xi2R�

xi: (3.4.5)

Considering the fact that portfolio weights need to add up to one,

we would then have

x0� = 1 =
X
xi2R+

xi +
X
xi2R�

xi; (3.4.6)

and therefore

X
xi2R+

xi = 1�
X
xi2R�

xi: (3.4.7)

Using both conditions and substituting equation (3.4.7) in (3.4.5)

we obtain

jjxjj1 = 1� 2
X
xi2R�

xi: (3.4.8)

For any jjxjj1 < �; we rearrange the previous equation as follows:

�
X
xi2R�

xi <
� � 1
2

: (3.4.9)

In this expression, the left-hand side is the total short-selling weight

of the portfolio. On the right-hand side, this position is restricted by

(� � 1)=2: In this formulation, the investor may choose which assets

for short sale as long as its total weights are kept under this limit. As
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we increase the amount of regularisation and decrease �; the solution

approaches the no-short-sales portfolio that could be interpreted as our

target portfolio. Jagannathan and Ma (2003) prefer to interpret this

portfolio as the one resulting from shrinking some of the covariance

matrix elements, but the results are equivalent.6

The `2-constrained portfolio and naive diversi�cation

It is also possible to consider the 2-norm-constrained portfolio by set-

ting p = 2 in equation (3.4.2). In this case, our constraint would limit

the portfolio weight�s Euclidian norm in RN :

jjxjj2 =
 

NX
i=1

jxij2
!1=2

(3.4.13)

6 DeMiguel et al. (2009) show that it is possible to obtain the 1-norm-constrained
portfolio (xNC1) by solving the unconstrained problem using

�̂NC1 = �̂� �n�0 � ��n0: (3.4.10)

where �̂NC1 is the updated covariance matrix, � is the Lagrangian multiplier for
the 1-norm constraint in the constrained optimization, and n 2 RN is an indicator
vector that tells which covariances should be shrunk: Its ith element assumes a
value of 1 if this asset is sold short in the 1-norm constrained optimization and 0
otherwise:

xNC1;i < 0) ni = 1; (3.4.11)

xNC1;i > 0) ni = 0: (3.4.12)

Equation (3.4.10) gives the 1-norm-constrained portfolio a moment shrinkage in-
terpretation.
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The problem then becomes

x�`p(�̂t; �) = min
x

xT �̂tx

s.t. xT � = 1;PN
i=1 jxij2 � �;

(3.4.14)

where we substitute � = ��
2
for analytical tractability.

Lastly, as shown in DeMiguel et al. (2009), we note that the restric-

tion in (3.4.13) can be rewritten as

NX
i=1

�
xi �

1

N

�2
�
�
� � 1

N

�
: (3.4.15)

As we decrease the value of �,the selected portfolio tends to be

closer to the equal-weighted portfolio because the 2-norm di¤erence

between the selected portfolio weights and the equal-weighted weights

are constrained to be smaller than the di¤erence on the right-hand

side of equation (3.4.15). In the limit where � = 1=N; the resulting

regularised portfolio is exactly the equal weighted one.



Chapter 4

Group information and asset

allocation

Intuitively, securities that belong to a given class share some class-risk

factors; therefore, further diversi�cation can be achieved by including

assets from di¤erent classes in a portfolio. Thus, information on how the

assets are grouped is potentially useful in both the mean-variance and

the inter-temporal asset allocation frameworks. In the latter, grouping

information is especially important because di¤erent classes of securi-

ties may respond di¤erently to shocks on the productivity of wealth.

Despite the importance of dynamics and inter-temporal hedging in asset

allocation between classes, as shown in Campbell and Viceira (2002),

we focus here on the mean-variance framework.

Within this framework, we consider two di¤erent ways in which
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grouping information can be incorporated into the asset allocation

problem. In both cases, the classi�cation of the n assets into K groups

of assets is assumed and denoted by the non-overlapping subsets Gk �

f1; : : : ; ng containing each of the nk indices of the assets belonging to

group k, for k = 1; : : : ; K.

4.1 Two-step portfolio selection

A common practice to select portfolios in multi-class asset allocation

problems is to divide the problems into two steps. In the �rst step,

a within-class portfolio containing only assets from the each of the K

classes is constructed using only estimates for the intra-class covari-

ance matrix. In the second step, the across-class portfolio is selected

containing only these synthetic class assets constructed in the �rst step.

In the �rst step, the investor solves an asset allocation problem for

each of the K classes with the form

x�Gk(�;Gk; 
k; �k) = arg min
x2Rnk

xT�Gk;Gkx

s.t. xT � = 1;

`
k(x) � �k:

(4.1.1)

For su¢ ciently large �k, x�Gk(�;Gk; �k) corresponds to the within-class

minimum-variance portfolio for class k. Smaller values of �k result in

within-class minimum-variance portfolios similar to the ones in DeMiguel

et al. (2009) or Frost and Savarino (1988). TheK portfolios arising from
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the K separate optimisation problems can also be written as

266666666664

x�G1(�;G1; 
1; �1)

x�G2(�;G2; 
2; �2)
...

x�GK (�;GK ; 
K ; �K)

377777777775
=

arg min
x2RN

266666666664

xG1

xG2

...

xGK

377777777775

T

2666666666666664

�G1;G1 0 � � � 0

0 �G1;G1 � � � 0

...
...

. . .
...

0 0 � � � �Gm;Gm

3777777777777775

266666666664

xG1

xG2

...

xGK

377777777775
;

s.t.

8>><>>:
xTGj � = 1;

kxGkk
k � �k;

for j = 1; : : : ;m:

(4.1.2)

Apart from a di¤erence in the budget constraints, the asset allocation

problem in (4.1.2)is similar to the problem of �nding the minimum-

variance portfolio under within-group constraints while completely ig-

noring the across-group covariances.

While the cross-class correlation information is intuitively impor-

tant, ignoring it in this �rst step allows the investor to obtain more

stable within-group minimum-variance portfolios using empirical data.

This is because the same sample size is now used to estimate fewer
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elements in the covariance matrix, restricting the impact of estima-

tion error to those elements only and bringing stability to the matrix

estimate.

We denote the within class minimum-variance portfolios by x�Gk(�̂;Gk; �k);which

are obtained by plugging in the sample covariance matrix into the asset

allocation problems in (4.1.1).

Across-group correlations are taken into account in the second step

of the procedure. In this step, the investor decides how to allocate his

wealth over the K portfolios built during the �rst step. Formally, the

variance minimisation in the second step is given by

z�(�;G;�;�) = arg min
z2RK

zT � �AG (�;G; �1; : : : ; �k) � z

s.t. zT � = 1;

`
(z) � �0;

(4.1.3)

where G denotes the set of subsets de�ning the grouping of assets,

�0 is the across-group norm-constraint, � is a vector containing the

norm-constraints �1; : : : ; �K and �AG (�;G; �1; : : : ; �k) is the covariance

matrix of the returns of the assets built in step 1. Formally, �AG is

de�ned by

[�AG (�;G; �1; : : : ; �k)]k1;k2 : =

x�Gk1
(�;Gk1 ; �k1)T � �Gk1 ;Gk2 � x

�
Gk2
(�;Gk2 ; �k2); for k1; k2 = 1; : : : K:

Even though the investor is selecting the minimum-variance portfolio

in this second step, he or she is constrained to choosing from the K



104

synthetic assets built during the �rst step. Here, this constraint may

once again lead to more stable selection of portfolios given the fact that

the smaller K �K across-group covariance matrix �AG can be better

estimated than the larger n� n asset covariance matrix �.

The advantages of this procedure include the low computational

cost and the possibility of having unique solutions even when the num-

ber of assets is large relative to the sample size once the assets are split

into smaller groups. Another advantage is the �exibility a¤orded by

many "fudge" parameters. For instance, it is possible to use a given

penalisation norm and value for each optimisation problem and to be

�exible in the group structure.

4.2 Grouping constraints

The two-step procedure above incorporates group information into the

selection of portfolios by completely ignoring the across-group correla-

tion at �rst; then, the group structure in the second step is imposed

when the across-group covariance is taken into account.

We now introduce a single-step procedure that incorporates the

group information in the portfolio selection problem by means of group-

inducing constraints. Such constraints were initially proposed in the

statistical model selection literature in the form of penalties for per-

forming structured variable selection in linear regression problems; this



105

is seen in Zhao et al. (2009), Kim et al. (2006) or Yuan and Lin (2006).

In such penalties/constraints, the di¤erent properties of `
-norm pe-

nalised optimisers are exploited to induce di¤erent group behaviours

on the penalised optimisers.

On one hand, the penalised optimisers for 0 < 
 � 1, tend to have

many zero components (sparsity). On the other hand, the penalised

optimisers for 2 � 
 � 1 tend to concentrate on the diagonals (simi-

larity). The CAP penalties in Zhao et al. (2009) combine these di¤erent

behaviours of `
-penalised optimisers to incorporate group information

into linear regressors.

Taking the groups of assets G1; : : : ;GK as given, the CAP penalty

for portfolio selection is de�ned by �rst setting a vector of norm parame-

ters � = (
0; 
1; : : : ; 
K) . The 
0 norm-parameter is the across-group

norm, and for k = 1; : : : ; K, the 
k parameter is the within-group-k

norm. Once the grouping and the � parameter are given, the CAP

penalty could be computed as

`�(x) := `
0(N�(x)) =

"
KX
k=1

`
k(xGk)

0

# 1

0

:

The rationale is that 
k determines how the weights within a group are

related to one another. 
k=1, for instance, promotes sparsity within

group k. The 
0 parameter then determines how the groups are related

to one another: setting 
0 = 2; for instance, would promote weights

with balanced group-norms. For a more detailed discussion on the

properties of CAP-penalised optimisers, we refer the reader to Zhao
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et al. (2009).

With a CAP penalty at hand, the group-constrained portfolio could

then be de�ned as

x�`�(�; �) = arg min
x2Rn

xT�x

s.t. xT � = 1;

`�(x) � �:

(4.2.1)

In the follow section, we will focus on the CAP penalties having


0 2 f1; 2g and 
k = 
1 2 f1; 2g for all k = 1; : : : ; K. Intuitively, we

have:

� 
0 = 1; 
1 = � � � = 
k = 2 leads to portfolios with balanced

weights within a few selected groups;

� 
0 = 2; 
1 = � � � = 
k = 1 leads to portfolios with few assets from

within a group and balanced weights across groups;

� 
0 = 
1 = � � � = 
k = 2 recovers the penalised portfolios intro-

duced in DeMiguel et al. (2009);

� 
0 = 
1 = � � � = 
k = 1 recovers the penalised portfolios intro-

duced in Jagannathan and Ma (2003);

Before moving on, we emphasise that the CAP penalty reduces to

the `
 penalty discussed in DeMiguel et al. (2009) when 
0 = 
k = 
 for

all k = 0; : : : ; K. Of particular interest are the cases where 
j � 1 for

all j = 0; : : : ;m. In those cases, the optimisation problem in (4.2.1) is
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convex; thus, e¢ cient computational tools are available for computing

large-scale constrained minimum-variance portfolios.

4.3 Empirical exercise

In this section, we apply the two-step and group-constraint approaches

to construct a constrained minimum-variance portfolio from observed

data. Next, we describe the data set that we use, the methodology and

the results.

4.3.1 Fitted portfolios

Four penalised versions of the minimum variance portfolios were �tted

to empirical data, namely:

1. The `1-penalised portfolio x�`1

x�`1 = argminx xT �̂x

s.t. xT � = 1; and

kxk1 � �:

(4.3.1)

2. The `2-penalised portfolio x�`2

x�`2 = argminx xT �̂x

s.t. xT � = 1; and

kxk2 � �:

(4.3.2)



108

3. The grouped `1;2-penalised portfolio x�`1;2

x�`1;2 = argminx xT �̂x

s.t. xT � = 1; and

NG
2 (x)




1
� �;

(4.3.3)

where

� a given G group structure is given (sectors of the economy)

involving K groups,

� NG
2 (x) is a K dimensional-vector containing the `2 norm of

the within group portfolios

NG
2 (x) =

�
kxG1k2 kxG2k2 � � � kxGKk2

�
; (4.3.4)

with xGk denoting the weights of assets in group k.

4. The grouped `2; `1-penalised portfolio x�`2;1

x�`2;1 = argminx xT �̂x

s.t. xT � = 1; and

NG
1 (x)




2
� �;

(4.3.5)

where

� a given G group structure is given (sectors of the economy)

involving K groups,
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� NG
1 (x) is a K dimensional-vector containing the `1 norm of

the within group portfolios

NG
1 (x) =

�
kxG1k1 kxG2k1 � � � kxGKk1

�
; (4.3.6)

with xGk denoting the weights of assets in group k.

Portfolio paths and selection criteria

For a �xed penalty function and observed data, a portfolio path is the

set of solutions for all di¤erent values of the regularisation parameter �.

Given a portfolio path, a portfolio is selected according to the selection

criteria that will be described in detail.

4.3.2 The data set

To obtain and compare the performance of the di¤erent portfolios, we

use the monthly return data covering the period between January/1973

and April/2009. Our data set contained the 237 stocks that are part

of the S&P500 index during this period. We group the assets into

9 sectors according to the ICB (Industry Classi�cation Benchmark):

basic materials, conglomerates, consumer goods, �nancial, health care,

industrial goods, services, technology, and utilities.

Within this period, the data was divided into rolling windows 120

Because the data covered 433 months, portfolio estimates has 314 win-

dows. For each method (penalty+selection criterion), the constrained
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portfolio �tted using the sample covariance matrix for returns rt�119

through rt is used in period t+ 1.

4.3.3 Compared portfolios

We compare the performance of the following four penalised portfolios:

� ungrouped `1,

� ungrouped `2,

� sector grouped `1; `2 portfolio, and

� sector grouped `2; `1 portfolio.

For each constrained method, the regularisation parameter � is se-

lected according to three di¤erent criteria:

� Most constrained (MC) portfolio: this is obtained by setting �to

be the minimum value for which a feasible portfolio satisfying

xT � = 1 exists. For the `2-constrained portfolio, MC portfolio

completely disregards the data and is reduced to the naive di-

versi�cation 1
N
-portfolio. For `1-constrained portfolios, the MC

portfolio corresponds to the no-short-sale minimum variance con-

strained (MINC) portfolio.

� K-fold cross-validated (CV) portfolio: this portfolio is obtained

by �rst splitting the �tting data (January/1973 to January/2001)
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into K subsets (folds). In the k-th fold, the path of portfolios x(�)

is computed on a grid of values of � using data points not in the k-

th subsets of observations. The k-th subset of data points is used

to estimate the out-of-sample variance for each portfolio x(�) on

the grid.on the grid, and the process is repeated K times. The

K estimates of the out-of-sample variance of the portfolio x(�)

are averaged for each value of � on the grid. The estimate then

is chosen to be x(�̂; ��); where �� is the one delta on the grid for

which the mean out-of-sample variance is minimal.

If K equals the number of observations, this corresponds to using

the jackknife/leave-one-out method to select a single portfolio

from the portfolio path. In the exercise that follows, we setK = 5

as the number of cross-validation folds.

� The maximum return (MR) portfolio: this portfolio is obtained

by selecting the portfolio on the regularisation path with the max-

imum return at the last observed data point (see DeMiguel et al.

(2009)).

At time t, each method is applied to the data observed between

times t�w and t; and the �tted portfolio is used in time t+1, where w is

a window size. For a given method (penalisation + selection criterion),

the portfolio used at time t + 1 is constructed by using the sample

covariance matrix �̂t computed with the data stretching from t�w to
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t. In the comparisons below, the window size was set to w = 120.

4.3.4 Evaluation criteria

Applying each method to the data produces a portfolio trajectory. Each

trajectory is evaluated according to the following out-of-sample results

calculated over the 120-month rolling window:

1. Variance:

�2r =
1

T

TX
t=1

�
xTt Rt � �r

�2
; (4.3.7)

�r =
1

T

TX
t=1

xTt Rt;

2. Sharpe Ratio:

S =
�r

�r
(4.3.8)

4.3.5 Signi�cance of results

The statistical signi�cance of the variance and Sharpe ratios di¤er-

ences are obtained by bootstrap when portfolio returns are not indepen-

dently and identically distributed as a multivariate normal. Following

DeMiguel et al. (2009), we compute the p-values for the Sharpe ratios

using the bootstrapping methodology of Ledoit and Wolf (2008).This

is recommended for �nancial time series that are generally serially cor-

related and exhibit volatility clustering.
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We test the hypothesis that the Sharpe ratio of the return of port-

folio i is equal to that of portfolio j:

H0 : �i=�i � �j=�j = 0: (4.3.9)

We report a two-sided p-value using the studentised circular block

bootstrap of Ledoit and Wolf (2008), with B = 1000 bootstrap resam-

ples and block size b = 5.

We also test the hypothesis that the variance of the returns of two

portfolios are equal:

H0 : �
2
i � �2j = 0: (4.3.10)

For this test, we use the (nonstudentised) stationary bootstrap of

Politis and Romano (1994) to construct a two-sided con�dence interval

for the di¤erence using the same B = 1000 bootstrap resamples and

block size b = 5:We then construct the p-values using the methodology

in Ledoit and Wolf (2008).

4.3.6 Methodology

Because we only consider constraints constructed using the `1 and `2

norms, all portfolios we studied are de�ned as the solution to a con-

vex optimisation problem. To �t the path of portfolios for a given

constraint (and input data), we �rst compute the minimal value the
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constraint could assume over the xT � = 1 hyperplane. Starting from

this point (and corresponding value of �) we progressively increase �

until the Lagrange multiplier of the constraint is numerically zero. To

compute the initial value of � and to compute each portfolio along the

path, we used the CVX disciplined convex optimisation suite for Mat-

lab (Grant and Boyd (2008) and Grant and Boyd (2011)). Although

we are able to use this generic tool for this particular problem, larger

problems involving thousands of assets may require exact-path follow-

ing algorithms similar to those used in Osborne et al. (2000), Efron

et al. (2004) or Brodie et al. (2009) (in a portfolio selection frame-

work), or approximate algorithms (as seen in Zhao and Yu (2004) or

Rosset (2004)) to be e¢ ciently computed.

4.3.7 Empirical Results

Table 4.3.1 shows the out-of-sample variances of each portfolio: 1/N

is the equal weighted portfolio, MINU is the minimum-variance un-

constrained portfolio, and MINC is the minimum-variance short-sales

constrained portfolio. Portfolios that ignore the group information are

speci�c cases of portfolios that did not ignore the group information:

`1 is obtained by penalising the `1 norm, and `2 is obtained by penal-

ising the `2 norm. Both of these portfolios ignore the group structure

and are equivalent to the 1-step `1 � `1 and `2 � `2 portfolios, respec-

tively. Portfolios that used the group information are obtained in 1
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or 2 steps. In general, `i � `j is a portfolio that penalises the `i norm

across groups and the `jnorm intra groups. The next entries correspond

to the amount of penalisation needed to obtain the portfolios. In the

table, CV corresponds to cross-validation; MR corresponds to �max-

imised return from the last period�, MC stands for "most constrained"

and MRL for "most relaxed".

Among the benchmarks, MINC is the portfolio that shows the lower

out-of-sample variance; hence, this portfolio is chosen to be compared

with the others . Therefore, the p-values in Table 4.3.1 refer to the test

in equation 4.3.10 between the respective portfolio and MINC.

Table 4.3.1shows that we could not reject the hypothesis of equal

variances for any of the portfolios constructed in 2 steps; the hypothesis

also could not be rejected for most of the portfolios constructed in 1 step

at the usual signi�cance levels. In fact, all group regularised portfolios

that use the information in the data to choose the amount of penali-

sation (CV and MR) has variances that are statistically equivalent to

the benchmark.

Although the null hypothesis of equal variances could not be re-

jected because the series is too noisy , we could still analyse the esti-

mated values. First, we note that CV portfolios that does not use the

group information (i.e., the ones in DeMiguel et al. (2009))already have

very low variances. These 1-step portfolios are the `2 � `2 CV (shrink-

ing towards the 1/N, which is equivalent to a single penalisation on the
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`2norm chosen by cross-validation) and the `1� `1 CV (which is equiv-

alent to a single penalisation in the `1norm chosen by cross-validation,

shrinking the portfolio towards the MINC portfolio). The variances for

`2 � `2 CV, and `1 � `1 CV were 1:068 and 1:096, respectively.

The other cross-validation portfolios obtained in 1 step had vari-

ances around these values; again, the portfolio with the lowest variance

is the `1 � `2 CV, which tends to select equal weighted portfolios in-

tra class and several economic sectors. The variance of this portfolio

is marginally smaller than that of the previous portfolios: 1:067.We

see that the variances of the 2-step portfolios are typically higher than

those of the 1-step portfolios.

Table 4.3.1 suggests the following: if computational costs are not

an issue, investors may use the 1-step solution penalising the `1 � `2;

or the `2� `2 norms as a very close second best solution. Only the �rst

solution actually actively uses the grouping information: it tends to

select a few sectors with equally weighted portfolios in each sector. The

second one tends to allocate assets in an equal fashion, penalising the

`2 portfolio norm. In both cases, there are marginal improvements over

the MINC portfolio when using cross validation to select the amount of

penalisation. The MINC portfolio could be used when computational

costs are an issue given its simple implementation and good results.

Table 4.3.2 shows the Sharpe ratios of the portfolios that are cre-

ated. Among the benchmarks, the 1/N portfolio corresponds to the
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Table 4.3.1: Monthly out-of-sample variances of selected portfolios

(x1000). P-values refer to the MINC portfolio
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highest Sharpe ratio; therefore, it is chosen as the reference for the

hypothesis tests given by equation 4.3.9. Similar to the variances, we

cannot reject the null hypothesis of equality of Sharpe ratios at the

usual signi�cance levels in almost any case because the p-values are

too high . In fact, we could only reject the null hypothesis at 10%

for the MR 1-step `1 � `2 portfolio that has the same interpretation as

before: selecting a few sectors of the economy but equally allocating

the portfolio among the assets in each of the portfolios.

It is interesting to note that the use of group information results in

portfolios with Sharpe ratios that are not worse than the ones in the

literature; furthermore, the performance is signi�cantly improved (at

least in one particular norm penalization).

As we examine the estimated Sharpe ratios of the 1-step portfolios,

we see that choosing the penalisation by maximising the last period re-

turn yields the highest values. However, cross validation yields better

results with the 2-step portfolios. Comparing 2-step and 1-step port-

folios, we see that 1-step portfolios tend to have higher Sharpe ratios,

except in the `2 � `1 case.

Finally, we compare the use of the group structure in the estimated

portfolios. We �nd that the original portfolios in DeMiguel et al. (2009),

that ignore the group structure have Sharpe ratios that are higher than

all 2-step portfolios but are statistically similar to the Sharpe ratios

obtained in the 1-step portfolios. The MR `1 � `2 is the only portfolio
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that has a Sharpe ratio statistically higher than the benchmark; it is

also higher than that of all portfolios that ignore the group structure.

The best version of the `2�`1 on the other hand1, still has a Sharpe ratio

that is lower than the ones obtained by ignoring the group structure.

An alternative that should increase the performance of portfolios

using group information is to select better characteristics that are used

to group assets in the �rst place. For stocks, characteristics such as the

�rm size, fundamentalist ratios, momentum and the proximity to major

announcements could be used. It is also possible to use assets from

di¤erent classes, such as commodities, stocks, bonds, and real estate

and group them accordingly . The main idea is to have assets with

similar behaviour grouped together. Considering only stocks and using

their economic sector to group them is just one of many possibilities to

improve portfolio performance.

4.3.8 Conclusion

In this section, we presented an alternative approach for the portfolio

selection problem in the presence of estimation error in �nite samples;

this approach used the group structure of the asset. Like DeMiguel et al.

(2009) and Brodie et al. (2009), we also chose to shrink the portfolio

weights rather than the covariance matrix to improve the performance

1 Choosing the amount of penalization that maximizes the returns of the last
period.
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Table 4.3.2: Monthly out-of-sample Sharpe ratios of selected portfolios

(x100)
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of the portfolio. We showed that our framework nests the portfolios in

DeMiguel et al. (2009)as a special case, and these portfolios nest several

others.

Empirically, we found that the use of the group structure could be

bene�cial and could provide an improvement over the existing bench-

mark portfolios. Speci�cally, we saw that the 1-step portfolios tend to

have equal or better performance than portfolios that ignore the group

structure. We also presented the 2-step portfolios with much lower

computational costs, which generate more stable estimates with better

out-of-sample performance when compared to some of the benchmarks

used in the literature. The 2-step portfolios could be used as an alter-

native when computational costs are an issue.

Finally, we found that these results were true to our objective func-

tion, both in terms of the minimised variance and in terms of max-

imising the Sharpe ratio. This was achieved indirectly by reducing

the variance of the portfolios and by choosing appropriate penalisation

parameters.
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