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Abstract

Noncommutative Riemannian geometry is an area that has seen intense activity

over the past 25 years. Despite this, noncommutative complex geometry is only

now beginning to receive serious attention. The theory of quantum groups pro-

vides a large family of very interesting potential examples, namely the quantum

flag manifolds. Thus far, only the irreducible quantum flag manifolds have been

investigated as noncommutative complex spaces. In a series of papers, Hecken-

berger and Kolb showed that for each of these spaces, there exists a q-deformed

Dolbeault double complex.

In this thesis a comprehensive framework for noncommutative complex geometry

on quantum homogeneous spaces is introduced. The main ingredients used are co-

variant differential calculi and Takeuchi’s categorical equivalence for faithfully flat

quantum homogeneous spaces. A number of basic results are established, produc-

ing a simple set of necessary and sufficient conditions for noncommutative complex

structures to exist. It is shown that when applied to the quantum projective spaces,

this theory reproduces the q-Dolbeault double complexes of Heckenberger and

Kolb. Furthermore, the framework is used to q-deform results from Borel–Bott–

Weil theory, and to produce the beginnings of a theory of noncommutative Kähler

geometry.
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Chapter 1

Introduction

“La richesse kählérienne fait dire à certains que la géométrie kählérienne est plus

importante que la géométrie riemannienne.” Marcel Berger

Classical complex geometry is a subject of remarkable richness and beauty with

deep connections to modern physics. Yet despite over twenty five years of non-

commutative geometry, the development of noncommutative complex geometry is

still in its infancy. What we do have is a large number of examples which de-

mand consideration as noncommutative complex spaces. We cite, among others,

noncommutative tori [22, 73], noncommutative projective algebraic varieties [69],

fuzzy flag manifolds [54], and (most importantly from our point of view) examples

arising from the theory of quantum groups [28, 51]. These objects are of central

importance to areas such as the construction of spectral triples [23, 20, 67], noncom-

mutative mirror symmetry [1, 66, 70], localisation for quantum groups [2, 3, 44],

and the quantum Baum–Connes conjecture [78].

Thus far, there have been two attempts to formulate a general framework for

noncommutative complex geometry. The first, due to Khalkhali, Landi, and van

Suijlekom [34], was introduced to provide a context for their work on the noncom-

mutative complex geometry of the Podleś sphere. This followed on from earlier

work of Majid [51], Schwartz and Polishchuk [66], and Connes [12, 13]. Khalkhali

and Moatadelro [35, 36] would go on to apply this framework to D’Andrea and

Da̧browski’s work [20] on the higher order quantum projective spaces.
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Subsequently, Beggs and Smith introduced a second more comprehensive approach

to noncommutative complex geometry in [6]. Their motive was to provide a frame-

work for quantising the intimate relationship between complex differential geom-

etry and complex projective geometry. They foresee that the rich interaction be-

tween algebraic and analytic techniques occurring in the classical setting will carry

over to the noncommutative world.

The more modest aim of this thesis is to begin the development of a theory of

noncommutative complex geometry for quantum group homogeneous spaces. This

will be done very much in the style of Majid’s noncommutative Riemannian geom-

etry [48, 51, 49]. The only significant difference being that here we will not need to

assume that our quantum homogeneous spaces are Hopf–Galois extensions, while

we will assume that they are faithfully flat. We first introduce the notion of a co-

variant noncommutative complex structure for a total differential calculus. Then,

by calling on our assumption of faithful flatness, we use Takeuchi’s categorical

equivalence to establish a simple set of necessary and sufficient conditions for such

noncommutative complex structures to exist. In subsequent work, it is intended to

build upon these results and formulate noncommutative generalisations of Hodge

theory and Kähler geometry for quantum homogeneous spaces [60]. Indeed, the

first steps in this direction have already been taken in Chapter 7.

For this undertaking to be worthwhile, however, it will need to be applicable to a

good many interesting examples. Recall that classically one of the most important

classes of homogeneous complex manifolds is the family of generalised flag mani-

folds. As has been known for a long time, these spaces admit a direct q-deformation

in terms of the Drinfeld–Jimbo quantum groups [42, 72, 76]. Somewhat more re-

cently, q-deformations of the complex geometry of the flag manifolds have also

begun to emerge. The first examples appeared in a series of works due to Hecken-

berger and Kolb [39, 26, 38]. In this series, they classified the covariant first-order

differential calculi over the quantum Grassmannians, and in so doing identified a

canonical first order calculus for the these spaces, along with a decomposition of

this calculus into q-deformed analogues of the holomorphic and anti-holomorphic

one-forms. Heckenberger and Kolb would go on to extend this work to include

all the irreducible quantum flag manifolds [27]. For the special case of the Podleś

sphere, Majid would independently reproduce this decomposition of one-forms
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using his framework for noncommutative Riemannian geometry. Moreover, he

showed that the decomposition could be extended to a direct q-deformation of the

Dolbeault double complex of CP 1. A short time after, Heckenberger and Kolb

[28] showed that such a q-Dolbeault double complex exists for all the irreducible

flag manifolds. This group of results gives us one of the most important fami-

lies of noncommutative complex structures that we have, and as such, provides

an invaluable testing ground for any newly proposed theory of noncommutative

complex geometry.

Heckenberger and Kolb undertook their work in the absence of a general framework

for noncommutative complex geometry. While they produced an accomplished and

comprehensive treatment of the q-deformed Dolbeault complexes, the fundamental

processes at work were obscured by the complexity of the calculations. Moreover,

their technical style of presentation is quite difficult to use as a basis for future

work. Subsequent papers on the geometry of the quantum flag manifolds would

follow a different approach [40, 20].

The general framework for noncommutative complex geometry that we introduce

in this thesis is a refinement of Majid’s approach to the complex geometry of the

Podleś sphere. We show that, for the special case of the quantum projective spaces,

the work of Heckenberger and Kolb can be understood in terms of our framework.

This allows for a significant simplification of the required calculations, and helps

identify some of the underlying general processes at work. It is foreseen that this

work will prove easily extendable to all the irreducible quantum flag manifolds.

Moreover, it is hoped to extend it even further to include all the quantum flag

manifolds, and in so doing, produce new examples of noncommutative complex

structures. As mentioned above, it is also hoped to use this new simplified pre-

sentation to identify noncommutative Hodge and Kähler structures hidden in the

Dolbeault complexes of Heckenberger and Kolb.

One of the main motivations for studying noncommutative complex structures is

that a number of important research programs in noncommutative geometry make

central use of noncommutative generalisations of holomorphic vector bundles.

We cite noncommutative mirror symmetry (as discussed in [1]), noncommutative

Borel–Weil theory (as discussed in [51]), and the aforementioned efforts of Beggs

and Smith to formulate a noncommutative version of the géometrie-algebraique-
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géometrie-analytique principal. Now, the definition of a noncommutative complex

structure over an algebra A naturally suggests a notion of holomorphic element of

A. However, to define a holomorphic element of a projective module over A (the

noncommutative analogue of a vector bundle) one needs to introduce a noncom-

mutative holomorphic structure for these modules. This is essentially a special

type of covariant derivative. A natural way to construct these covariant deriva-

tives is using the theory of quantum principal bundles due to Breziński and Majid.

We do this for negative index quantum line bundles of the quantum projective

spaces, and then find an explicit description of the holomorphic subalgebras of

these line bundles. In addition to the research projects just mentioned, this work

is also foreseen to have applications to the theory of noncommutative holomorphic

differential operators (as discussed in [4, 5]).

The thesis is organised as follows: In Chapter 2 we introduce some well-known

material about quantum homogeneous spaces, Takeuchi’s categorical equivalence,

covariant differential calculi, the framing result of Majid, and the classification

result of Hermisson. The presentation will differ somewhat from standard in the

presentation of Majid and Hermisson’s work.

In Chapter 3 we discuss the quantum special unitary group, its coquasi-triangular

structure, and the quantum projective spaces. Moreover, we give an explicit pre-

sentation of the ideal corresponding to the Heckenberger–Kolb calculus for these

spaces.

In Chapter 4 we introduce one of the fundamental results of the thesis. We show

that we can restrict Takeuchi’s equivalence to a monoidal equivalence between

two subcategories of G
MMM and MH

M . Crucially, this allows us to take tensor

products of framings. We build upon this work and show how to frame the maximal

prolongation of a covariant first-order differential calculus. We then show how our

method can be greatly simplified by making a suitable choice of calculus on the

total space. The general theory is then applied to the Heckenberger–Kolb calculus

for the quantum projective spaces, yielding a novel description of its maximal

prolongation.

In Chapter 5 we introduce a new variation on the existing definitions of noncom-

mutative complex structure, and provide a simple set of necessary and sufficient

conditions for such structures to exist. The description of the maximal prolon-
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gation of the Heckenberger–Kolb calculus given in [28] is then presented as an

example of a noncommutative complex structure.

In Chapter 6 we consider holomorphic connections and show how to construct

such a connection for the quantum projective spaces using the theory of quantum

principal bundles. We define the notion of a holomorphic structure, show that our

connection induces a holomorphic structure for the negative index quantum line

bundles of the quantum projective spaces, and calculate the holomorphic subalge-

bras of these bundles.

Finally, in Chapter 7 we take the first steps towards a noncommutative theory of

Kähler geometry by q-deforming the the Kähler identities for the Podleś sphere.
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Chapter 2

Preliminaries

In this section we recall Takeuchi’s categorical equivalence for faithfully flat quan-

tum homogeneous spaces, and some of the consequences of this result for the

theory of covariant differential calculi. With the exception of the somewhat novel

presentations of Majid’s framing theorem and Hermisson’s classification, all of the

material found here is well-known.

2.1 Quantum Homogeneous Spaces and Takeuchi’s

Categorical Equivalence

Let G be a Hopf algebra with comultiplication ∆G, counit εG, antipode SG, unit 1G,

and multiplication mG (where no confusion arises, we will drop explicit reference

to G when denoting these operators). Throughout, we use Sweedler notation, as

well as denoting g+ := g−ε(g)1, for g ∈ G, and V + = V ∩ker(ε), for V a subspace

of G. For a right G-comodule V with coaction ∆R, we say that an element v ∈ V is

coinvariant if ∆R(v) = v ⊗ 1. We denote the subspace of all coinvariant elements

by V G, and call it the coinvariant subspace of the coaction. More generally, a

covariant subspace W ⊆ V is defined to be a subspace that is also a sub-comodule

of V . More generally, a covariant subspace W ⊆ V is defined to be a subspace

that is also a sub-comodule of V .

For H also a Hopf algebra, a homogeneous right H-coaction on G is a coaction

of the form (id ⊗ π) ◦ ∆, where π : G → H is a Hopf algebra map. We call the
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coinvariant subspace M := GH of such a coaction a quantum homogeneous space.

As is easy to see, M will always be a subalgebra of G. Moreover, it can be shown

without difficulty that the coaction of G restricts to a right G-coaction on M , and

that

π(m) = ε(m)1H , (for all m ∈M). (2.1)

In this thesis we will always use the symbols G,H, π and M in this sense. We also

note that G is itself a trivial example of a quantum homogeneous space, where

π = ε.

Let us now introduce G
MMM , the category of associated bundles of M , whose

objects, the associated bundles, are the M -bimodules E endowed with a left G-

coaction ∆L, satisfying the compatibility condition

∆L(mem′) = m(1)e(−1)m
′
(1) ⊗m(2)e(0)m

′
(2), (for all m,m′ ∈M, e ∈ E),

and whose morphisms are both M -bimodule and left G-comodule maps. Moreover,

let MH
M denote the category whose objects V are the right M -modules endowed

with a right H-coaction satisfying the compatibility condition

∆R(vm) = v(0)m(2) ⊗ S(π(m(1)))v(1), (for all v ∈ V,m ∈M), (2.2)

and whose morphisms are both left M -module and right H-comodule maps. In

what follows, for sake of clarity, we will denote the right M -action on an object in
G
MMM by juxtaposition, while we will denote the right M -action on an object in

MH
M by /.

For any object V in MH
M , we can associate to it a corresponding object in G

MMM

as follows: Consider the coinvariant subspace (G⊗ V )H , where G⊗ V is endowed

with the usual tensor product coaction. We can give (G⊗V )H the structure of an

object in G
MMM by defining right and left M -actions according to

m(
∑
i

gi ⊗ vi) =
∑
i

mgi ⊗ vi, (
∑
i

gi ⊗ vi)m =
∑
i

gim(1) ⊗ (vi / m(2)),

and defining a left G-coaction according to

∆L(
∑
i

gi ⊗ vi) =
∑
i

gi(1) ⊗ gi(2) ⊗ vi.
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A framing, for an object E in G
MMM , is a pair (V, t) where V is an object inMH

M ,

and t is an isomorphism from E to (G⊗V )H . A natural question to ask is whether

a framing exists for every object in G
MMM , and when it does how many different

choices of framing there are. In order to address this question, we will need to

introduce some additional structures.

The right M -module structure of E clearly restricts to a right M -module struc-

ture on E/(M+E). Moreover, it can be shown using (2.1) that the left G-module

structure of E induces a right H-comodule structure on E/(M+E) defined by

∆R(e) = e(0) ⊗ S(π(e(−1))), (e ∈ E), (2.3)

where e denotes the coset of e in E/(M+E). To show that these two structures

are compatible in the sense of (2.2) is routine. Thus, we have given E/(M+E) the

structure of an object in MH
M . Consider now the functors

ΦM : GMMM →MH
M , ΦM(E) = E/(M+E),

ΨM :MH
M → G

MMM , ΨM(V ) = (G⊗ V )H .

Where for E ,F two objects in G
MMM , and f : E → F a morphism, we define

ΦM(f) : ΦM(E) → ΦM(F) to be the morphism to which f descends on ΦM(E).

While for ϕ : V → W a morphism in MH
M , we define ΨM(ϕ) := 1 ⊗ ϕ. To show

that both morphisms are well-defined is routine. Moreover, using some basic linear

algebra arguments, it can also be shown that, for E ,F two objects in G
MMM , and

V,W two objects in MH
M , we have

Φ(E ⊕ F) = Φ(E)⊕ Φ(F), Ψ(V ⊕W ) = Ψ(V )⊕Ψ(W ), (2.4)

and if we further assume that E ⊆ F , and V ⊆ W , then

Φ(E/F) = Φ(E)/Φ(F), Ψ(V/W ) = Ψ(V )/Φ(W ). (2.5)

A natural question to ask is when this induces an equivalence of categories. This

leads us to the notion of faithful flatness: We say that G is a faithfully flat module

over M if the tensor product functor G ⊗M − : MM → CM, from the category

of left M -modules to the category of complex vector spaces, preserves and reflects

exact sequences.
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Theorem 2.1.1 (Takeuchi [75]) Let π : G → H be a quantum homogeneous

space for which G is a faithfully flat right module over M = GH . An equivalence

of categories between between G
MMM and MH

M is determined by the functors ΦM ,

and ΨM , and the natural isomorphisms

frameM : E → ΨM ◦ ΦM(E), e 7→ e(−1) ⊗ e(0), (2.6)

frame⊥M : ΦM ◦ΨM(V )→ V,
∑
i

gi ⊗ vi 7→
∑
i

ε(gi)vi. (2.7)

Thus we see that we have a framing (Φ(E), frameM) for every object E in G
MMM .

Now for any other framing s : E → (G⊗ V )H , for V some object inMH
M , we have

the isomorphism

σ := frame⊥M ◦ ΦM(s) : ΦM(E)→ V,

which gives us the re-expression s = ΨM(σ)◦frameM . It follows that every framing

of E is of the form (V,ΨM(σ) ◦ frameM), where V is some object in MH
M , and

σ : ΦM(E)→ V is an isomorphism in MH
M .

This result allows us to introduce a quantum generalisation of the classical notion

of vector bundle rank: For any object E in G
MMM , we define the rank of E to be

the vector space dimension of ΦM(E). Moreover, we call an associated bundle of

rank 1 a quantum line bundle.

We should note that the original presentation of this work by Takeuchi uses

somewhat different conventions. Most noticeably, the notion of cotensor prod-

uct G�H ΦM(E) is used instead of coinvariant subspace (G⊗ΦM(E))H . However,

as is easily seen, the two notions are equivalent. Another important point to note

is that the existence of the isomorphism from E to ΨM ◦ ΦM(E) does not depend

on the assumption of faithful flatness, as the following lemma shows:

Lemma 2.1.2 For a (not necessarily faithfully flat) quantum homogeneous space

M , the map frameM is an isomorphism, with inverse

frame−1
M : ΨM ◦ ΦM(E)→ E ,

∑
i

gi ⊗ ei 7→
∑
i

giS(e(−1))e(0). (2.8)

Proof. Let us begin by showing that frame−1
M is well-defined: For

∑
i g

i ⊗ miei

15



an element in (G⊗ E)H , with mi ∈M+, for all i, we have∑
i

f iS((miei)(−1))(m
iei)(0) =

∑
i

f iS(mi
(1)e

i
(−1))m

i
(2)e

i
(0)

=
∑
i

f iS(ei(−1))S(mi
(1))m

i
(2)e

i
(0)

=
∑
i

ε(mi)f iS(ei(−1))e
i
(0) = 0,

Thus, frame−1
M descends to a well-defined map on (G⊗ΦM(E))H . That frame−1

M is

indeed the inverse of frameM follows from

frame−1
M ◦ frameM(e) = frame−1

M (e(−1) ⊗ e(0)) = e−2S(e(−1))e(0) = ε(e(−1))e(0) = e.

�

Thus, we see that even in the absence of faithful flatness, a framing will exist for

any E ∈ G
MMM . However, without faithful flatness we are not guaranteed the

existence of an inverse for frame⊥M .

2.2 Differential Calculi

In this section we recall the well known notions of a first order differential calculus,

and a total differential calculus. These are very natural generalisations of the

classical definitions of the Kähler forms, and the de Rham complex, of a variety

respectively. They originate in the seminal work of Woronowicz [79].

2.2.1 Covariant First Order Differential Calculi

Let A be an algebra. (In what follows all algebras are assumed to be unital.)

A first-order differential calculus over A is a pair (Ω1, d), where Ω1 is an A-A-

bimodule and d : A→ Ω1 is a linear map for which the Leibniz rule holds

d(ab) = a(db) + (da)b, (a, b,∈ A),

and for which Ω1 = spanC{adb | a, b ∈ A}. (Where no confusion arises we will drop

explicit reference to d and denote a calculus by its bimodule Ω1 alone.) We call an
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element of Ω1 a one-form. The universal first-order differential calculus over A is

the pair (Ω1
u(A), du), where Ω1

u(A) is the kernel of the product map m : A⊗A→ A

endowed with the obvious bimodule structure, and du is defined by

du : A→ Ω1
u(A), a 7→ 1⊗ a− a⊗ 1.

It is not difficult to show (see [79] for details) that every calculus over A is of

the form (Ω1
u(A)/N, proj ◦ du), where N is a A-sub-bimodule of Ω1

u(A), and proj :

Ω1
u(A)→ Ω1

u(A)/N is the canonical projection. Moreover, this association between

calculi and sub-bimodules is bijective.

Now let Γ⊕Γ′ = Ω1 be a sub-bimodule of a first order differential calculus (Ω1, d)

over an algebra A. Define ∂ to be the composition of d with projection onto Γ,

and define ∂′ to be the composition of d with projection onto Γ. Since d = ∂ + ∂′,

we must have that Γ and Γ′ are spanned by elements of the form a∂b and a∂′b

respectively, for a, b ∈ A. From the Leibniz rule for d we have that d(ab) =

(da)b+ adb. This implies that

∂(ab) + ∂(ab) = (∂a)b+ (∂a)b+ a∂b+ a(∂b).

But Γ and Γ′ are both right submodules, so our direct sum decomposition says we

must have

∂(ab) = (∂a)b+ a∂b, ∂(ab) = (∂a)b+ a∂b.

Hence, both (Γ, ∂) and (Γ′, ∂′) are first order differential calculi. We call such

calculi subcalculi of Ω1.

A differential calculus Ω1(A) over a left G-comodule A is said to be left-covariant

if there exists a (necessarily unique) left-coaction ∆L : Ω1(A) → G ⊗ Ω1(A) such

that

∆L(adb) = ∆(a)(id⊗ d)∆(b), (a, b ∈ A).

Clearly this can happen if, and only if, the corresponding sub-bimodule N ⊆ Ω1
u(A)

is left-covariant, giving us a correspondence between left-covariant calculi and left-

covariant sub-bimodules of Ω1
u(A). Furthermore, for M a quantum homogeneous

space, any left-covariant calculus has the structure of an object in G
MMM . Thus,

Takeuchi’s theorem induces a correspondence between left-covariant calculi Ω1(M)
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and sub-objects of ΦM(Ω1
u(M)) in MH

M . We define the dimension of the calculus

to be its rank as an associated bundle.

A problem with this last classification is that our generator and relation presen-

tation of ΦM(Ω1
u(M)) is not particularly easy to work with. However, the follow-

ing very useful result tells us that there is an isomorphism between ΦM(Ω1
u(M))

and M+, where we consider M+ as an object in MH
M according to the obvi-

ous right M -module structure, and the right H-comodule structure defined by

∆M,R(m) = m(2) ⊗ S(π(m(1))), for m ∈M+. (Note that the proof given here does

not assume that G is a Hopf–Galois extension of M as is done in [48]. However,

this more general result is implicit in the original proof.)

Theorem 2.2.1 [Majid [48]] For a (not necessarily faithfully flat or Hopf–Galois)

quantum homogeneous space M , we have an isomorphism

σ : ΦM(Ω1
u(M))→M+,

∑
i

midni 7→
∑
i

ε(mi)(ni)+, (2.9)

and a corresponding framing (M+, s := Ψ(σ)◦frameM), which we call the canonical

framing. Explicitly s acts according to

s : Ω1
u(M)→ (G⊗M+)H , mdn 7→ mn(1) ⊗ (n(2))

+. (2.10)

Proof. We begin by showing that the map σ is well-defined as a right M -module

map: Consider the right M -module map

ε⊗ id : M ⊗M →M, m⊗ n 7→ ε(m)n.

It is clear from the definition of ΦM(Ω1
u(M)) that ε⊗ id descends to a well-defined

mapping from ΦM(Ω1
u(M)) to M . Moreover, since

(ε⊗ id)(mdn) = (ε⊗ id)(m⊗ n−mn⊗ 1) = ε(m)(n− ε(n)1) = ε(m)n+,

it is clear that this restriction is exactly the map σ defined in (2.9). That σ is also
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a right H-comodule map is clear from

(σ ⊗ id) ◦∆R(mdn) = (σ ⊗ id)(m(2)dn(2) ⊗ S(π(m(1)n(1))))

= ε(m(2))(n(2))
+ ⊗ S(π(m(1)n(1))) = (n(2))

+ ⊗ S(π(mn(1)))

= ε(m)(n(2))
+ ⊗ S(π(n(1)))

= ε(m)(n(2) ⊗ S(π(n(1)))− 1⊗ S(π(n)))

= ε(m)(n(2) ⊗ S(π(n(1)))− ε(n)1⊗ 1H) = ε(m)∆M,R(n+)

= ∆M,R ◦ σ(mdn),

where we have used the relation π(m) = ε(m)1H from (2.1).

Now that we have shown that σ is a well defined morphism, we can move on to

showing that it is, in fact, an isomorphism. To establish injectivity, we first note

that the kernel of ε ⊗ id is equal to M+ ⊗ M : Any element contained in the

intersection of M+ ⊗M and Ω1
u(M) will be of the form

∑
im

i ⊗ ni, where each

mi ∈M+, and
∑
mini = 0. Since∑

i

mi ⊗ ni =
∑
i

(mi ⊗ ni −mini ⊗ 1) =
∑
i

mi(1⊗ ni − ni ⊗ 1) =
∑
i

midni,

we must have that the kernel of (ε⊗ id)|Ω1
u(M) is contained in M+Ω1

u(M). Hence,

we can conclude that σ is an injective map. Since the surjectivity of σ is clear, we

can conclude that σ is an isomorphism.

Finally, we come to the framing in (2.10): It is clear from Lemma (2.1.2) that

ΨM(σ) ◦ frameM is a framing for Ω1
u(M). That the explicit action of s is as given

above, follows from

s(mdn) = ΨM(σ) ◦ frameM(mdn) = ΨM(σ)(m(1)n(1) ⊗m(2)dn(2))

= m(1)n(1) ⊗ σ(m(2)dn(2)) = m(1)n(1) ⊗ ε(m(2))(n(2))+ = mn(1) ⊗ (n(2))+.

�

Combining this result with the classification of covariant calculi on quantum ho-

mogeneous spaces discussed earlier, gives us the classification result of Hermisson:

Corollary 2.2.2 (Hermisson [29]) For a faithfully flat quantum homogeneous

space M , there is a bijective correspondence between left-covariant first-order dif-

ferential calculi over M , and the sub-objects of M+ in MH
M .
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Now for such a calculus Ω1(M) ' Ω1
u(M)/N , with its corresponding ideal σ(ΦM(N)),

the canonical framing clearly descends to a framing

s : Ω1(M)→ (G⊗ VM)H , adb 7→ ab(1) ⊗ (b(2))+,

where we have denoted VM := M+/σ(ΦM(N)). We will call (VM , s) the canonical

framing of the calculus. It is easy to see from (2.8) that an explicit presentation

of the inverse of the canonical framing is given

s−1 : (G⊗ VM)H → Ω1(M),
∑
i

f i ⊗ vi 7→
∑
i

f iS(vi(1))dv
i
(2). (2.11)

If we drop the assumption of faithful flatness, then because of Lemma 2.1.2 we will

still have a corresponding framing for every covariant calculus. However, we are

not guaranteed an equivalence between calculi and ideals. This is essentially what

is established in Majid’s second framing theorem in [51]. For the special case of

the trivial quantum homogeneous space G (where the faithful flatness condition

is trivial), the results of Majid and Hermisson reduce to Woronowicz’s celebrated

classification of left-covariant calculi over a Hopf algebra G. For such a calculus

Ω1(G), we will denote its cotangent space by Λ1
G, and call it the space of left-

invariant one forms.

If (Ω1, d) is a differential calculus over a ∗-algebra A such that the involution of A

extends to an involutive conjugate-linear map ∗ on Ω1, for which (adb)∗ = (db∗)a∗,

for all a, b ∈ A, then we say that (Ω1, d) is a first-order differential ∗-calculus. It

is easy to see that the universal calculus Ω1
u(A) over any ∗-algebra A always has

a unique ∗-calculus structure. Moreover, any non-universal calculus of the form

Ω1(A) = Ω1(A)/N is a ∗-calculus if, and only if, N∗ = N .

Let us now assume that both G and H are Hopf ∗-algebras, and that π is a Hopf

∗-algebra map. It is easy to see that in this case M is a ∗-subalgebra of G. In

general it is not known how to tell that a calculus Ω1(M) over M is a ∗-calculus,

directly from the corresponding sub-object of M+. However, we can show without

too much difficulty, that for the universal ∗-calculus Ω1
u(G), the corresponding

∗-map on G⊗G+ acts according to

∗ : G⊗G+ → G⊗G+, g ⊗ v 7→ g∗(1) ⊗ S(v∗)g∗(2). (2.12)
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Thus, for Ω1(G) a non-universal calculus over G, with corresponding sub-object

IG ⊆ G+, we have that Ω1(G) is a ∗-calculus if, and only if,

{S(v∗) | v ∈ IG} = IG.

Now if Ω1(G) restricts to Ω1(M) on M , then since (mdn)∗ = d(n∗)m∗ ∈ Ω1(M), for

any m,n ∈M , the ∗-structure on Ω1(G) must induce a ∗-structure on Ω1(M). This

provides us with a crude method for establishing that Ω1(M) has a ∗-structure.

Building upon the classification of left-covariant calculi, it can be shown that

bicovariant calculi are in bijective correspondence with the AdR-covariant right

ideals of H+, where as usual the right adjoint action is defined by AdR(h) :=

h(2) ⊗ S(h(1))h(3), for h ∈ H.

We say that H is coquasi-triangular if it is equipped with a convolution-invertible

linear map r : H ⊗H → C obeying

r(fg ⊗ h) = r(f ⊗ h(1))r(g ⊗ h(2)), r(f ⊗ gh) = r(f(1) ⊗ h)r(f(2) ⊗ g), (2.13)

and

g(1)f(1)r(f(2) ⊗ g(2)) = r(f(1) ⊗ g(1))f(2)g(2),

for all f, g, h ∈ H. For any coquasi-triangular Hopf algebra H, the quantum Killing

form is the map

Q : H ⊗H → C h⊗ g 7→ r(g(1) ⊗ h(1))r(h(2) ⊗ g(2)).

If H has a set of generators {uij | i, j = 1, . . . , N}, for some N ∈ N, then we can

use Q to define a family of maps {Qkl | k, l = 1, . . . , N} by setting

Qkl : H → C, h 7→ Q(h⊗ ukl ).

Using this family of maps, an N2-dimensional representation Q can then be defined

by

Q : H →MN(C) h 7→ [Qkl(h)]kl.

We call Q the quantum Killing representation of H. It can be shown [47] that

ker(Q)+ is an AdR-covariant right ideal of H+, and so, it corresponds to a bicovari-

ant calculus. We call the corresponding calculus the canonical bicovariant calculus

over H, and denote it by Ω1
bc,q(H). When H = Cq[SU2], it can be shown that one

recovers Woronowicz’s 4D+ calculus [79]. More generally, for H = Cq[SUN ], one

recovers the bicovariant calculus introduced by Jurc̆o in [32].
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2.2.2 Total Differential Calculi

We now come to noncommutative higher differential forms: For (Y,+) a commu-

tative semigroup, a Y -graded algebra is an algebra of the form A =
⊕

y∈Y A
y,

where each Ay is a linear subspace of A, and AyAz ⊆ Ay+z, for all y, z ∈ Y . If

a ∈ Ay, then we say that a is a homogeneous element of degree y. A homogenous

mapping of degree d on A is a linear mapping L : A → A such that if a ∈ Ay,

then L(a) ∈ Ay+d. We say that a subspace B of A is homogeneous if it admits a

decomposition B = ⊕y∈YBy, with By ⊆ Ay, for all y ∈ Y .

A triple (A, ∂, ∂) is called a double complex if A is an N2
0 -graded algebra, ∂ is

homogeneous mapping of degree (1, 0), ∂ is homogeneous mapping of degree (0, 1),

and

∂2 = ∂
2

= 0, ∂ ◦ ∂ = −∂ ◦ ∂.

A graded derivation d on an N0-graded algebra A is a homogenous mapping of

degree 1 that satisfies the graded Liebniz rule

d(ab) = d(a)b+ (−1)nadb, (for all a ∈ An, b ∈ A).

A pair (A, d) is called a differential algebra if A is an N0-graded algebra and d is a

graded derivation on A such that d2 = 0. The operator d is called the differential

of the algebra.

Definition 2.2.3. A total differential calculus over an algebra A is a differential

algebra (Ω(A), d), such that Ω0 = A, and

Ωk = spanC{a0da1 ∧ · · · ∧ dak | a0, . . . , ak ∈ A}. (2.14)

Following the classical example of the de Rham complex, we will always use ∧ to

denote the multiplication between total calculus elements, both of order greater

than or equal to 1.

In commutative geometry the higher forms are constructed as exterior powers of

the one-forms. In the noncommutative setting such a construction is not in general

well-defined. However, there exists an alternative formulation of the higher forms

which is well-defined for noncommutative algebras: For (Ω1(A), d) a first-order dif-

ferential calculus with corresponding sub-bimodule N ⊆ Ω1
u(A), denote by Ω•(A)
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the quotient of the tensor algebra
⊕∞

k=0(Ω1(A))⊗Ak by 〈d(N)〉, where 〈d(N)〉 is the

subalgebra of the tensor algebra generated by d(N). As a little thought will con-

firm, the exterior derivative d has a unique extension to a map d : Ω•(A)→ Ω•(A),

such that (Ω•(A), d) has the structure of a total differential calculus. We call this

total differential calculus the maximal prolongation of (Ω1(A), d). The maximal

prolongation is easily seen to be unique, in the sense that any other calculus ex-

tending (Ω1(A), d) can be obtained as a quotient of the maximal prolongation by

an ideal of ker(d). It is clear that 〈d(N)〉 is homogeneous with respect to the N0-

grading of the tensor algebra. We will denote the corresponding decomposition

by

〈dN〉 =
⊕
n∈N≥2

〈dN〉k . (2.15)

As is well known and easily seen, each 〈dN〉k is an object in G
MMM . This means

that the natural comodule structure of the tensor algebra descends to a comod-

ule structure on Ω•(A), giving it the structure of an object in G
MMM . For the

special case of the universal calculus, its maximal prolongation is just its tensor

algebra. An important point to note is that the maximal prolongation of Ω1(A)

can also be constructed as the quotient of the tensor algebra of Ω1
u(A) by the

subalgebra 〈N + dN〉, with the total derivative being obtained by restriction.

If (Ω•, d) is a differential calculus over a ∗-algebra A such that the involution of A

extends to an involutive conjugate-linear map ∗ on Ω•, for which (dω)∗ = dω∗, for

all ω ∈ Ω, and

(ωp ∧ ωq)∗ = (−1)pqω∗q ∧ ω∗p, (for all ωp ∈ Ωp, ωq ∈ Ωq),

then we say that (Ω, d) is a total ∗-differential calculus. It is easy to see that if

Ω1 is a first order ∗-calculus, then its maximal prolongation is canonically a total

∗-calculus.

2.3 Quantum Principal Bundles

In this section we recall the general theory of quantum principal bundles. We will

use quantum principal bundles in Chapter 6 to construct holomorphic structures
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for the line bundles over the quantum projective spaces. Reflecting standard pre-

sentation, we give the general form of the definition. In practice, however, we will

only ever need to consider the homogeneous case.

Just as for the special case of quantum homogeneous spaces, the coinvariant sub-

space M = PH of a right H-comodule algebra P , is clearly a subalgebra of P . If

the mapping

ver = (m⊗ id) ◦ (id⊗∆R) : P ⊗M P → P ⊗H,

is an isomorphism, then we say that P is a Hopf–Galois extension of H. It is well-

known, and not too difficult to show, that this condition is equivalent to exactness

of the sequence

0 −→ PΩ1
u(M)P

ι−→Ω1
u(P )

ver−→P ⊗H+ −→ 0, (2.16)

where Ω1
u(M) is the restriction of Ω1

u(P ) to M , and ι is the inclusion map (see [50]

for details). Now it is natural to look for a generalisation of this sequence to one

using non-universal calculi. This brings us to one of the central structures used in

this thesis:

Definition 2.3.1. A quantum principal H-bundle is a four-tuple (P,H,N, IH),

where H is a Hopf algebra; P a right H-comodule algebra such that P is a Hopf–

Galois extension of M = PH ; N a sub-bimodule of Ω1
u(P ) determining a right-

covariant calculus Ω1(P ); IH an AdR-covariant right ideal of H+ determining a

bicovariant calculus Ω1(H); for which holds the equality

ver(N) = P ⊗ IH . (2.17)

We usually omit explicit reference to the choice of calculi and refer to (P,H,N, I)

as the quantum principal H-bundle P ←↩ M . It is clear that every Hopf–Galois

extension is a quantum principal bundle for the choice of the universal calculus on

G. An immediate consequence of the definition is that for any quantum principal

bundle (P,H,N, IH), we have an exact sequence:

0 −→ PΩ1(M)P
ι−→Ω1(P )

ver−→P ⊗ Λ1
H −→ 0, (2.18)

where Ω1(M) is the restriction of Ω1(P ) to M , ι is the inclusion map, and ver the

descent of ver to Ω1(P ) (which is well-defined since (2.17) holds).
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Let us now restrict our attention to the special case of a quantum homogeneous

space π : G → H, where π : G → H is a surjective Hopf algebra map. If

G is a Hopf–Galois extension of M , we say that M is a Hopf–Galois quantum

homogeneous space. Let us now look at when non-universal choices of calculi give

a Hopf–Galois quantum homogeneous space the structure of a quantum principal

bundle: The map s can be used to let ver act on G⊗G+. As is easily seen,

ver : G⊗G+ 7→ G⊗H, f ⊗ g = f ⊗ π(g). (2.19)

Thus, for any left-covariant calculus on G with corresponding right ideal IG ⊆ G+,

and left-covariant calculus on H with right ideal IH ⊆ H+, the requirement (2.17)

is satisfied if, and only if, IH = π(IG). Similarly, it is easy to show that Ω1(G) is

right-covariant if, and only if, (id ⊗ π)(AdR(IG)) ⊆ IG ⊗H. In this case we have

that

AdR(π(IG)) = (π ⊗ π)AdR(IG) ⊆ (π ⊗ id)(IG ⊗H) = π(IG)⊗H,

and so, the calculus on H corresponding to IH is bicovariant. We collect these

observations in the following proposition:

Proposition 2.3.2 [51] Let π : G → H be a Hopf–Galois quantum principal

homogeneous space, and IG a right ideal of G+. If

(id⊗ π)AdR(IG) ⊆ IG ⊗H, (2.20)

then (G,H, s(IG), π(IG)) is a quantum principal bundle. We call such a quantum

principal bundle a quantum principal homogeneous space.

A connection for a quantum principal H-bundle P ←↩ M is a left P -module pro-

jection Π : Ω1(P )→ Ω1(P ) such that ker(Π) = PΩ1(M)P and

∆R ◦ Π = (Π⊗ id) ◦∆R. (2.21)

Connections are in bijective correspondence with linear maps ω : Λ1
H → Ω1(P ) for

which ver ◦ ω = 1⊗ id and ∆R ◦ ω = (ω⊗ id) ◦AdR,H , where AdR,H is the descent

of AdR,H to the quotient Λ1
H . We call such a map ω a connection form. Explicitly,

the connection Πω corresponding to a connection form ω is given by

Πω = m ◦ (id⊗ ω) ◦ ver. (2.22)
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For a quantum principal homogeneous space π : G → H connection forms are in

turn equivalent to linear maps i : Λ1
H → Λ1

G such that π ◦ i = id and

AdR,G ◦ i = (i⊗ id) ◦ AdR,H , (2.23)

where π and AdR,G are defined to be the unique mappings for which the following

diagrams are commutative:

ker(εG)
AdR,G //

proj
��

ker(εG)⊗G
proj⊗π
��

Λ1
G

AdR,G

// Λ1
G ⊗H,

ker(εG) π //

proj
��

ker(εH)

proj
��

Λ1
G π

// Λ1
H .

(Note that AdR,G is well-defined because (2.20) is satisfied, while π is well-defined

because IH = π(IG).) We call such a map i a bicovariant splitting map. Explicitly,

the connection form associated to i is ω = s ◦ i. For a more detailed presentation

of connections, connection forms, and bicovariant splitting maps see [8, 9, 50, 49].

A connection Π is called strong if (id−Π)(Ω1(P )) ⊆ PΩ1(M). Strong connections

are important because they allow us to construct covariant derivatives for all the

associated bundles of a principal bundle. Recall that if E is a bimodule over an

algebra A and Ω1(A) is a differential calculus over A, then a covariant derivative

for E is a linear mapping ∇ : E → E ⊗A Ω1(A) such that

∇(sa) = ∇(s)a+ s⊗ da, (s ∈ E , a ∈ A).

It was shown in [24], that for any associated line bundle E of a quantum principal

bundle P ←↩ M , a strong connection Π induces a covariant derivative ∇ on E
defined by

∇ : E → E ⊗M Ω1(M), e 7→ (id− Π)de, (2.24)

where we identify E ⊗M Ω1(M) with its canonical image in Ω1(P ).
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Chapter 3

The Quantum Projective Spaces

In this chapter we introduce the quantum projective spaces and their Heckenberger–

Kolb first order differential calculus. The description of Cq[CP
N−1] given in the

first half of the chapter is quite well-known. The material in the second half, how-

ever, is mainly novel. More explicitly, the calculus for SUN is original, as is the

explicit description of the ideal of the Heckenberger–Kolb calculus.

3.1 The Quantum Projective Spaces

In this the first half of the chapter we introduce the quantum projective spaces.

We begin by recalling the well known construction of the quantum special unitary

group. We then give the presentation of the quantum projective spaces originally

introduced by Meyer in [53]. Finally, we discuss the Hopf–Galois property and

faithful flatness for the quantum projective spaces.

3.1.1 The Quantum Special Unitary Group Cq[SUN ]

We begin by fixing notation and recalling the various definitions and constructions

needed to introduce the quantum unitary group and the quantum special unitary

group. (Where proofs or basic details are omitted we refer the reader to [37, 62].)

For q ∈ (0, 1] and ν := q− q−1, let Cq[MN ] be the quotient of the free noncommu-

27



tative algebra C
〈
uij, | i, j = 1, . . . , N

〉
by the ideal generated by the elements

uiku
j
k − qu

j
ku

i
k, uki u

k
j − qukjuki , (1 ≤ i < j ≤ N, 1 ≤ k ≤ N);

uilu
j
k − u

j
ku

i
l, uiku

j
l − u

j
lu
i
k − νuilu

j
k, (1 ≤ i < j ≤ N, 1 ≤ k < l ≤ N).

These generators can be more compactly presented as

N∑
w,x=1

Rac
wxu

w
b u

x
d −

N∑
y,z=1

Ryz
bdu

a
yu

c
z, (1 ≤ a, b, c, d ≤ N), (3.1)

where, for H the Heaviside step function with H(0) = 0, we have denoted

Rik
jl = qδikδilδkj + νH(k − i)δijδkl. (3.2)

We can put a bialgebra structure on Cq[MN ] by introducing a coproduct ∆, and

counit ε, uniquely defined by ∆(uij) :=
∑N

k=1 u
i
k ⊗ ukj , and ε(uij) := δij. The

quantum determinant of Cq[MN ] is the element

detN :=
∑

π∈SN
(−q)`(π)u1

π(1)u
2
π(2) · · ·uNπ(N),

where summation is taken over all permutations π of the set of N elements, and

`(π) is the length of π. As is well-known, detN is a central and grouplike element of

the bialgebra. The centrality of detN makes it easy to adjoin an inverse det−1
N . Both

∆ and ε have extensions to this larger algebra, which are uniquely determined by

∆(det−1
N ) = det−1

N ⊗ det−1
N , and ε(det−1

N ) = 1. The result is a new bialgebra which

we denote by Cq[GLN ]. We can endow Cq[GLN ] with a Hopf algebra structure by

defining

S(det−1
N ) = detN , S(uij) = (−q)i−j

∑
π∈SN−1

(−q)`(π)uk1π(l1)u
k2
π(l2) · · ·u

kN−1

π(lN−1) det−1
N ,

where {k1, . . . , kN−1} = {1, . . . , N}\{j}, and {l1, . . . , lN−1} = {1, . . . , N}\{i} as

ordered sets. Moreover, we can give Cq[GLN ] a Hopf ∗-algebra structure by setting

(det−1
N )∗ = detN , and (uij)

∗ = S(uji ). We denote this Hopf ∗-algebra by Cq[UN ],

and call it the quantum unitary group of order N . For N = 1, we get the Hopf

algebra C[U1], where it is usual to denote u1
1 = t, and det−1

N = t−1. If we quotient

Cq[UN ] by the ideal 〈detN −1〉, then the resulting algebra is again a Hopf ∗-algebra.

We denote it by Cq[SUN ], and call it the quantum special unitary group of order

N .
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As is well-known [62], for each N th-root q
1
N of q, we have a map

r : Cq[SUN ]⊗Cq[SUN ]→ C, uij ⊗ ukl 7→ q−
1
NRki

jl ,

which we call the coquasi-triangular structure map of Cq[SUN ], for q
1
N . We can

use r to define a family of maps {Qkl | k, l = 1, . . . , N} by setting

Qkl : Cq[SUN ]→ C, f 7→
N∑
a=1

r(uka ⊗ f(1))r(f(2) ⊗ ual ). (3.3)

Using this family of maps, an N2-dimensional representation Q can be defined by

Q : Cq[SUN ]→MN(C) h 7→ [Qkl(h)]kl.

We call Q the quantum Killing representation of Cq[SUN ].

For N = 2, we get the well-known Hopf algebra Cq[SU2]. Conforming to standard

notation, we denote its generators u1
1, u

1
2, u

2
1, and u2

2 by a, b, c, and d respectively.

3.1.2 The Quantum Projective Spaces Cq[CP
N−1] and the

Quantum Line Bundles Ek

We are now ready to introduce the quantum projective spaces. As mentioned ear-

lier, they form a subfamily of the quantum flag manifolds, and they will serve as an

invaluable testing ground for our general theory. We use a description, introduced

in [53], that presents quantum (N−1)-projective space as the coinvariant subalge-

bra of a Cq[UN−1]-coaction on Cq[SUN ]. This subalgebra is a q-deformation of the

coordinate algebra of the complex manifold SUN/UN−1. (Recall that classically

CPN−1 is isomorphic to SUN/UN−1.)

Definition 3.1.1. Let αN : Cq[SUN ] → Cq[UN−1] be the surjective Hopf al-

gebra map defined by setting αN(u1
1) = det−1

N−1; αN(u1
i ) = αN(ui1) = 0, for

i = 2, · · · , N ; and αN(uij) = ui−1
j−1, for i, j = 2, . . . , N . Quantum projective (N−1)-

space Cq[CP
N−1] is defined to be the coinvariant subspace of the corresponding

homogeneous coaction ∆SUN ,αN = (id⊗ αN) ◦∆, that is,

Cq[CP
N−1] := {f ∈ Cq[SUN ] |∆SUN ,αN (f) = f ⊗ 1}.

29



An important family of objects in SUN

CPN−1M CPN−1 is the family of quantum line

bundles {Ek | k ∈ Z}: The module Ek is defined to be ΨCPN−1(C), where C is

considered as an object in MUN−1

CPN−1 according to the unique C[U1]-coaction for

which 1 7→ 1⊗ det−pN−1, for λ ∈ C. Clearly, we have that E0 = CPN−1. Moreover,

identifying Cq[SUN ] ⊗ C and Cq[SUN ] allows us to consider Ek as a coinvariant

subalgebra of Cq[SUN ]. The corresponding coaction, which we denote by ∆k
SUN ,α

,

is clearly a homogeneous coaction, whose Hopf algebra map we denote by αkN .

For practical purposes, it will later prove very useful to have a more concrete

generator-and-relation description of the quantum projective spaces and their line

bundles. We will find such a description using an alternative presentation of

Cq[CP
N−1] based upon the classical isomorphism between Cq[CP

N−1] and

S2N−1/U1, where S2N−1 is the (2N − 1)-sphere. We begin by presenting a

q-deformation of the coordinate algebra of S2N−1 which was first introduced in

[74]. This deformation is based upon yet another classical isomorphism, this time

the identification of S2N−1 and SUN/SUN−1.

Definition 3.1.2. For the surjective Hopf algebra map βN : Cq[SUN ]→ Cq[SUN−1]

defined by setting βN(u1
1) = 1; βN(u1

i ) = βN(ui1) = 0, for i 6= 1; and βN(uij) = ui−1
j−1,

for i, j = 2, . . . , N , we have a homogeneous Cq[SUN−1]-coaction on Cq[SUN ] given

by ∆SUN ,β = (id ⊗ βN) ◦ ∆. The quantum (2N − 1)-sphere Cq[S
2N−1] is the

coinvariant subalgebra of ∆SUN ,β, that is,

Cq[S
2N−1] = {f ∈ Cq[SUN ] |∆SUN ,β(f) = f ⊗ 1}.

Now for i = 1, . . . , N , we have

∆SUN ,β(ui1) = (id⊗ βN)(
N∑
k=1

uik ⊗ uk1) =
N∑
k=1

uik ⊗ βN(uk1) = ui1 ⊗ 1,

and

∆SUN ,β(S(u1
i )) = (id⊗ βN)(

N∑
k=1

S(uki )⊗ S(u1
k)) =

N∑
k=1

S(uki )⊗ βN(S(u1
k))

= S(u1
i )⊗ 1.
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Thus, ui1 and S(u1
i ) are contained in Cq[S

2N−1]. Using representation theoretic

methods, it was established in [74] that Cq[S
2N−1] is in fact generated as a alge-

bra by the elements ui1 and S(u1
i ) . It was also shown that a full set of relations is

given by

ui1u
j
1 = quj1u

i
1 (i < j); ui1S(u1

j) = qS(u1
j)u

i
1, (i 6= j);

(3.4)

ui1S(u1
i ) = S(u1

i )u
i
1 + q−1ν

N∑
k=i+1

q2(k−i)uk1S(u1
k);

N∑
i=1

S(u1
i )u

i
1 = 1.

(More easily accessible versions of the proof can be found in [37, 10].)

We now introduce a right C[U1]-coaction, γkN , for k ∈ Z, for the quantum (2N−1)-

sphere and show that Ek arises as its coinvariant subalgebra. This alternative

description of Cq[CP
N−1] comes from [53].

Lemma 3.1.3 Define a surjective Hopf algebra map γkN : Cq[SUN ] → C[U1] by

setting γkN(u1
1) = t−k; γN(ull) = 1, for l = 2, . . . , N − 1; γkN(uNN) = tk; and

γkN(uij) = 0, for i, j = 1, . . . , N , and i 6= j. The map (id ⊗ γkN) ◦ ∆ restricts

to a C[U1]-coaction on Cq[S
2N−1] which we denote by ∆k

S2N−1,γ. Moreover, Ek is

the coinvariant subalgebra of this coaction, that is,

Ek = {f ∈ Cq[S
2N−1] |∆k

S2N−1,γ (f) = f ⊗ 1}.

Proof. That we have a C[U1]-coaction on Cq[S
2N−1] is clear from the fact that

∆k
S2N−1,γ (ui1) = (id⊗ γkN)

N∑
k=1

uik ⊗ uk1 =
N∑
k=1

uik ⊗ γkN(uk1) = ui1 ⊗ t−k, (3.5)

and the fact that

∆S2N−1,γ (S(u1
i )) = (id⊗ γkN)

N∑
k=1

S(uki )⊗ S(u1
k) =

N∑
k=1

S(uki )⊗ γkN(S(u1
k)) (3.6)

= S(u1
i )⊗ tk.

Let us now move onto showing that Ek is the coinvariant subalgebra of ∆S2N−1,γkN
.

For the canonical projection δN−1 : Cq[UN−1] → Cq[SUN−1], we have that
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δN−1 ◦ αkN = βN , and so, the following diagram is commutative:

Cq[SUN ]

id
��

∆k
SUN ,α // Cq[SUN ]⊗Cq[UN−1]

id⊗δN−1

��
Cq[SUN ]

∆SUN ,β // Cq[SUN ]⊗Cq[SUN−1].

It follows that Cq[CP
N−1] is contained in Cq[S

2N−1]. Now let us denote by

j : C[U1] → Cq[UN−1] the canonical embedding of C[U1] into Cq[UN−1] uniquely

defined by j(t) = detN and j(t−1) = det−1
N . Just as in (3.5) and (3.5), it is easy to

show that ∆k
SUN ,α

(ui1) = ui1 ⊗ det−kN and ∆k
SUN ,α

(S(u1
i )) = S(u1

i ) ⊗ detkN , and so,

we have another commutative diagram:

Cq[S
2N−1]

ι

��

∆k
S2N−1,γ // Cq[S

2N−1]⊗C[U1]

ι⊗j
��

Cq[SUN ]
∆k
SUN ,α // Cq[SUN ]⊗Cq[UN−1].

(3.7)

That Ek is the coinvariant subalgebra of ∆k
S2N−1,γ follows easily from this. �

Corollary 3.1.4 We have that Cq[CP
N−1] is generated as an algebra by the ele-

ments zij := ui1S(u1
j), for i, j = 1, . . . , N . Moreover, for k ∈ N, the algebras Ek is

generated as right Cq[CP
N−1]-module by the finite set

E0
k := {(S(u1

1))m1 · · · (S(u1
N))mN |

N∑
i=1

mi = k},

while E−k is generated as right Cq[CP
N−1]-module by the finite set

E0
−k := {(u1

1)m1 · · · (uN1 )mN |
N∑
i=1

mi = k}.

Proof. Since ∆S2N−1,γkN
is a C[U1]-coaction, it induces a Z-grading on Cq[S

2N−1].

This grading is uniquely determined by for deg(ui1) = −1 and deg(S(u1
i )) = 1. The

corollary now follows from the fact that Cq[S
2N−1] is generated by the elements

ui1 and S(u1
i ), and the relations (3.4). �
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3.1.3 The Hopf–Galois Property and Faithful Flatness

Let us now present this quantum homogeneous space as a quantum principal ho-

mogeneous space. We begin by proving a general result:

Lemma 3.1.5 For a Hopf algebra map π : G → H, with corresponding quantum

homogeneous space M , we have that G is a Hopf–Galois extension of M if v(1⊗
p) = 0, for all p ∈ ker(π), where the map v : G⊗G→ G⊗M G is defined by

setting v(f ⊗ g) = fS(g(1))⊗ g(2), for f, g ∈ G.

Proof. We will establish this result by introducing a map ver−1 : G⊗H → G⊗MG
that acts as an inverse for ver whenever v(1 ⊗ p) = 0, for all p ∈ ker(π). Let

i : H → G be a linear mapping such that π ◦ i = id (such a mapping can always

be constructed) and set ver−1 = v ◦ (id ⊗ i). We first show that ver ◦ ver−1 = id:

For any h ∈ H,

ver ◦ ver−1(f ⊗ h) = ver(fS(i(h)(1))⊗ i(h)(2)) = fS(i(h)(1))i(h)(2) ⊗ π(i(h)(3))

(3.8)

= fε(i(h)(1))⊗ π(i(h)(2)) = f ⊗ π(i(h)) = f ⊗ h.

We now move on to showing that ver−1 ◦ ver = id: For any x ∈ G, the fact that

π ◦ i = id, implies that i(π(x)) = x+ px, for some px ∈ ker(π). This means that

ver−1 ◦ ver(f ⊗ g) = ver−1(fg(1) ⊗ π(g(2))) = v(fg(1) ⊗ i(π(g(2))))

= v(fg(1) ⊗ g(2)) + v(fg(1) ⊗ pg(2)) = fg(1)S(g(2))⊗ g(3)

= fε(g(1))⊗ g(2) = f ⊗ g.

We note that ver−1 does not depend upon our choice for the map i. �

Using this lemma we now give a detailed proof of a result that was originally

proposed in [53].

Corollary 3.1.6 The quantum homogeneous space αN : Cq[SUN ] → Cq[UN−1]

has a quantum principal bundle structure.
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Proof. Since 〈ui1, u1
i | i 6= 1〉 ⊆ ker(αN), there exists a unique map proj′ such

that the following diagram is commutative:

Cq[SUN ]
αN //

proj
��

Cq[UN−1]

Cq[SUN ]/ 〈ui1, u1
i | i 6= 1〉 .

proj′

44

Now the mapping

(proj′)−1 : Cq[UN−1]→ Cq[SUN ]/
〈
ui1, u

1
i | i 6= 1

〉
, uij 7→ ui+1

j+1, det−1
N−1 7→ u1

1,

is well-defined because

(proj′)−1(detN−1 det−1
N−1−1) = S(u1

1)u1
1 − 1 =

N∑
k=2

S(u1
k)u

k
1 = 0,

and

(proj′)−1(det−1
N−1 detN−1−1) = 0.

Moreover, (proj′)−1 is clearly inverse to proj′. This means that we must have〈
ui1, u

1
i | i 6= 1

〉
= ker(αN).

Thus, we see that every p ∈ ker(αN) is of the form

p =
N∑
i=2

ui1fi +
N∑
i=2

u1
i gi, (fi, gi,∈ Cq[SUN ]). (3.9)

Now, for any f ∈ Cq[SUN ], we have

v(1⊗ ui1f) =
N∑
k=1

S(f(1))S(uik)⊗ uk1f(2) =
N∑

k,l=1

S(f(1))S(uik)⊗ uk1S(u1
l )u

l
1f(2)

=
N∑

k,l=1

S(f(1))S(uik)u
k
1S(u1

l )⊗ ul1f(2) =
∑
k,l=1

S(f(1))ε(u
i
1)S(u1

l )⊗ ul1f(2)

= 0.

It can be shown in an exactly analogous manner that v(1 ⊗ u1
i g) = 0, for any

g ∈ Cq[SUN ]. �
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We now come to the question of faithful flatness. In [55] Müller and Schneider

undertook a general investigation of faithful flatness for quantum homogeneous

spaces. They established the condition for a quite large class of homogeneous

spaces, for which the quantum flag manifolds are a motivating family. We present

their result here for the very special case of the quantum projective spaces.

Theorem 3.1.7 (Müller, Schneider) The Hopf algebra Cq[SUN ] is a faithfully

flat module over Cq[CP
N−1].

3.2 The Heckenberger–Kolb Calculus Ω1
q(CP

N−1)

In this section we will present the Heckenberger–Kolb calculus Ω1
q[CP

N−1] in terms

of its classifying ideal. We will also consider a calculus on Cq[SUN ] that restricts

to the Ω1
q[CP

N−1] on Cq[CP
N−1]. This calculus is not of interest in itself (it has

highly non-classical dimension), instead it will serve as a very convenient calculat-

ing tool throughout the rest of the thesis.

3.2.1 A Distinguished Quotient of the Bicovariant Calculus

for Cq[SUN ]

As explained in Chapter 2, for every coquasi-triangular Hopf algebra H, there

exists a canonical bicovariant differential calculus Ω1
bc,q(H) over H, constructed

using the quantum Killing representation. In this subsection we will recall what

the calculus looks like for the case of Cq[SUN ]; construct a certain quotient of it;

and then explain why this quotient is important.

We begin by establishing some very useful formulae (given in terms of the coquasi-

triangular structure specified in (3.2) for the action of Q on certain distinguished

elements of Cq[SUN ].

Lemma 3.2.1 For {Qkl | k, l = 1, . . . , N} the family of maps defined in (3.3), we
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have the following formulae:

Qkl(u
i
j) =

N∑
a,z=1

q−
2
NRik

zaR
za
jl , (3.10)

Qkl(S(ugh)) =
N∑

a,z=1

q2(a−h)+ 2
NR

ak

zhR
zg

al , (3.11)

Qkl(u
i
ju
r
s) =

N∑
a,b,x,y,z=1

q−
4
NRrk

zbR
iz
yaR

ya
jxR

xb
sl , (3.12)

Qkl(u
i
jS(ugh)) =

N∑
a,b,x,y,z=1

q2(b−h)R
bk

zhR
iz
yaR

ya
jxR

xg

bl , (3.13)

Qkl(u
i
jS(ugh)u

r
s) =

N∑
a,b,c,v,w,x,y,z=1

q2(b−h)− 2
NRrk

zcR
bz

yhR
iy
xaR

xa
jwR

wg

bv R
vc
sl . (3.14)

Proof. The proof of the lemma consists of a series of routine calculations involv-

ing the definition of Qkl, and the properties of a general coquasi-quasitriangular

structure: For uij, we have

Qkl(u
i
j) =

N∑
z,a=1

r(ukz ⊗ uia)r(uaj ⊗ uzl ) =
N∑

z,a=1

q−
2
NRik

zaR
za
jl .

For uiju
r
s, we have

Qkl(u
i
ju
r
s) =

N∑
z,a,b

r(ukz ⊗ uiaurb)r(uajubs ⊗ uzl )

=
N∑

x,y,z,a,b

r(ukz ⊗ urb)r(uzy ⊗ uia)r(uaj ⊗ uyx)r(ubs ⊗ uxl )

=
N∑

x,y,z,a,b

q−
4
NRrk

zbR
iz
yaR

ya
jxR

xb
sl .
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We now move onto calculating Qkl(S(ugh)):

Qkl(S(ugh)) =
∑
a,z

r(ukz ⊗ S(uah))r(S(uga)⊗ uzl ) =
∑
a,z

r(S(ukz)⊗ S2(uah))r(u
g
a ⊗ uzl )

=
∑
a,z

q2(a−h)r(S(ukz)⊗ uah)r(uga ⊗ uzl ) =
∑
a,z

q2(a−h)r(ukz ⊗ uah)r(uga ⊗ uzl )

=
N∑

a,z=1

q2(a−h)+ 2
NR

ak

zhR
zg

al .

Next we take Qkl(u
i
jS(ugh)):

Qkl(u
i
jS(ugh)) =

N∑
a,b,z=1

r(ukz ⊗ (uiaS(ubh))r((u
a
jS(ugb))⊗ u

z
l )

=
N∑

a,b,x,y,z=1

r(ukz ⊗ S(ubh))r(u
z
y ⊗ uia)r(uaj ⊗ uyx)r(S(ugb)⊗ u

x
l )

=
N∑

a,b,x,y,z=1

q2(b−h)R
bk

zhR
iz
yaR

ya
jxR

xg

bl ,

where we have used the fact that r(f ⊗ (gh)) = r(f(1) ⊗ h)r(f(2) ⊗ g).)

Finally, we establish the formula for Qkl(u
i
jS(ugh)u

r
s):

Qkl(u
i
jS(ugh)u

r
s)

=
N∑

a,b,c,z=1

r(ukz ⊗ uiaS(ubh)u
r
c)r(u

a
jS(ugb)u

c
s ⊗ uzl )

=
N∑

a,b,c,v,w,x,y,z=1

r(ukz ⊗ urc)r(uzy ⊗ S(ubh))r(u
y
x ⊗ uia)r(uajS(ugb)u

c
s ⊗ uzl )

=
N∑

a,b,c,v,w,x,y,z=1

q2(b−h)− 1
NRrk

zcR
bz

yhR
iy
xar(u

a
jS(ugb)u

c
s ⊗ uzl )

=
N∑

a,b,c,v,w,x,y,z=1

q2(b−h)− 1
NRrk

zcR
bz

yhR
iy
xar(u

a
j ⊗ uxw)r(S(ugb)⊗ u

w
v )r(ucs ⊗ uvl )

=
N∑

a,b,c,v,w,x,y,z=1

q2(b−h)− 2
NRrk

zcR
bz

yhR
iy
xaR

xa
jwR

wg

bv R
vc
sl .
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With these formulae in hand we can now introduce a novel first-order differential

calculus for Cq[SUN ].

Proposition 3.2.2 The subspace ISUN = ker(Q)+ +D1 +D2, with

D1 := spanC{ui1S(u1
i ) | i = 2, . . . , N}, and D2 := spanC{uij | i, j = 2 . . . , N ; i 6= j},

is a right ideal of Cq[SUN ]+. Moreover, for i = 1, . . . , N − 1, the elements

e−i := ui+1
1 , e0 := u1

1 − 1, e+
i := u1

i+1, (3.15)

form a (2N − 1)-dimensional left-module basis of Λ1
SUN

:= Cq[SUN ]+/ISUN .

Proof. As discussed in Section 2.2, ker(Q)+ is a right ideal of Cq[SUN ]+, whose

calculus is the standard bicovariant calculus for Cq[SUN ]. We will begin by con-

structing a basis for Λ1
bc,q,SUN

:= Cq[SUN ]+/ker(Q)+: The map Qkl acts on on uij,

for i 6= j, according to

Qkl(u
i
j) =

N∑
a,z=1

q−
2
NRik

zaR
za
jl = q−

2
N (Rik

ikR
ik
jl +Rik

kiR
ki
jl ).

Since i 6= j, this gives a non-zero value if, and only if, k = j and l = i, whereupon

Qji(u
i
j) = q−

2
N (Rij

ijR
ij
ji +Rij

jiR
ji
ji) = q−

2
N (νθ(j − i) + ν.θ(i− j)) = q−

2
N ν.

Thus, for Eij the usual (i, j)th-element of the canonical basis of MN(C), we have

Q(uij) = q−
2
N νEji (3.16)

For i ≥ 2, the map Qkl acts on ui1S(u1
i ) according to

Qkl(u
i
1S(u1

i )) =
N∑

a,b,x,y,z=1

q2(b−i)R
bk

ziR
iz
yaR

ya
1xR

x1

bl

= q2(1−i)
N∑

a,z=1

R
1k

ziR
iz
yaR

ya
1l R

l1

1l + q2(1−i)
N∑
z=1

R
1k

ziR
iz
11R

11
11R

11

11

= q2(1−i)
N∑
z=1

R
1k

ziR
iz
1lR

1l
1lR

l1

1l + q2(1−i)
N∑
z=1

R
1k

ziR
iz
l1R

l1
1lR

l1

1l + 0

= q2(1−i)R
1k

1iR
i1
1iR

1i
1iR

i1

1iδli + 0

= q2(1−i)R
1i

1iR
i1
1iR

1i
1iR

i1

1iδliδki

= q2(1−i)ν2δliδki.
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Thus, this gives a non-zero answer if, and only if, k = l = i, and so,

Q(ui1S(u1
i )) = q2(1−i)ν2Eii.

Now on u1
1, the map Q11 operates as

Q11(u1
1) = q−

2
N

N∑
a,z=1

R11
zaR

za
11 = q−

2
NR11

11R
11
11 = q2− 2

N .

Finally, we note that the general properties of a coquasi-triangular structure imply

that Q(1) = 1N, where 1N is the identity matrix of order N . Thus, u1
1 − 1 has a

non-zero image under Q11.

All this tells us that the elements Q(u1
1− 1); Q(uij), for i 6= j; and Q(ui1S(u1

i )), for

i 6= 1, form a spanning set of MN(C), and hence a basis. It follows directly that

the elements u1
1 − 1; uij, for i 6= j; and ui1S(u1

i ), for i 6= 1, form an N2-dimensional

basis of Λ1
bc,q,SUN

.

We can now move onto showing that ISUN is a submodule of Cq[SUN ]+. We first

note that this is equivalent to the image of D1 + D2 in Λ1
bc,q,SUN

being a right

submodule. This is in turn equivalent the subspace

{Eij | i, j = 2, . . . , N}.

being a submodule of MN(C). Thus, we see that ISUN is a submodule if, and only

if,

Q1l(u
i
ju
r
s) = Qk1(uiju

r
s) = Q1l(u

i
1S(u1

i )u
r
s) = Qk1(ui1S(u1

i )u
r
s) = 0,

for all 1 ≤ k, l, r, s ≤ N . This is easily proved using (3.12) and (3.14). Let us

begin with the action of Q1l on uiju
r
s:

Q1l(u
i
ju
r
s) = q−

4
N

N∑
a,b,x,y,z=1

Rr1
zbR

iz
yaR

ya
jxR

xb
sl = q−

4
N

N∑
b,x=1

Rr1
1rR

i1
1iR

1i
jxR

xb
sl = 0

Next we take the action of Qk1 on uiju
r
s:

Qk1(uiju
r
s) = q−

4
N

N∑
a,b,x,y,z=1

Rrk
zbR

iz
yaR

ya
jxR

xb
s1 = q−

4
N

N∑
b,z=1

Rrk
zbR

iz
1jR

1j
j1R

1s
s1 = 0.
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For the action of Q1l on ui1S(u1
i )u

r
s we have

Q1l(u
i
1S(u1

i )u
r
s) = q2(b−i)−1

N∑
a,b,c,v,w,x,y,z=1

Rr1
zcR

bz

yiR
iy
xaR

xa
1wR

w1

bv R
vc
sl

= q2(b−i)−1

N∑
c,v=1

Rr1
1rR

i1

1iR
i1
1iR

1i
1iR

11

i1R
vc
sl = 0.

Finally, we take the action of Qk1 on ui1S(u1
i )u

r
s

Qk1(ui1S(u1
i )u

r
s) = q2(b−i)−1

N∑
a,b,c,v,w,x,y,z=1

Rrk
zcR

bz
yiR

iy
xaR

xa
1wR

w1

bv R
vc
s1

= q2(b−i)−1

N∑
b,c,y=1

Rrk
zcR

bz
yiR

iy
11R

11
11R

11

11R
1s
s1 = 0.

It now follows directly that the set of elements given in (3.15) is a basis. �

We denote the calculus corresponding to ISUN by Ω1(SUN). We acknowledge that

the dimension of this calculus is significantly less than the classical value, forN > 2.

However, we are not interested in Ω1
q(SUN) as a quantum deformation in itself.

Instead, we will view it as a useful mathematical tool to be exploited in our efforts

to investigate the geometry of Cq[CP
N−1]. As we shall show below, the calculus

that Ω1
q(SUN) restricts to on Cq[CP

N−1] has classical dimension. By contrast,

Ω1
bc,q(SUN) restricts to an (N2 − 1)-dimensional calculus on Cq[CP

N−1], a value

much higher than the classical one. (The three-dimensional calculus induced by

Ω1
bc,q(SU2) on Cq[CP

1] was thoroughly investigated in [7].)

We finish our general discussion of the calculus Ω1
q(SUN) with the following tech-

nical lemma. It contains a number of explicit formulae which will prove invaluable

in the chapters to come.

Lemma 3.2.3 For the calculus Ω1
q(SUN) we have the following relations: For

i = 2, . . . , N ; j = 3, . . . , N ; i < j, and m = 1, . . . , N . The only non-zero actions of

the generators on the basis elements e±i are given by

e±i−1 / u
m
m = qδm1+δim− 2

N e±i−1, e+
i−1 / u

j
i = q−

2
N νe+

j−1, e−i−1 / u
i
j = q−

2
N νe−j−1.

(3.17)
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The only non-zero actions of the antipodes of the generators are given by

e+
i−1 / S(uji ) = −q

2
N νe+

j−1, e−i−1 / S(uij) = −q
2
N

+2(i−j)νe−j−1, (3.18)

e±i−1 / S(umm) = q
2
N
−δ1j−δije±i−1. (3.19)

Moreover, we have the relations

S(ui1) = −q
4
N
−1e+

i−1, S(u1
i ) = −q

4
N

+1−2ie−i−1; (3.20)

and, that ummf = q2δm1− 2
N f , and S(umm)f = q

2
N
−2δm1f , for all f ∈ Cq[SUN ].

Proof. We begin by introducing a variation on the operator Qkl:

Q̂kl := Qk1 +Ql1(1− δ1l).

Clearly, we have that ker(Q̂) = ISUN . We will now use Q̂, and (3.12), to calculate

the action of the generator urs on the basis element ui1:

Q̂kl(u
i
1u

r
s) =

N∑
a,b,x,y,z=1

q−
4
NRrk

zbR
iz
yaR

ya
1xR

xb
sl

=
N∑
b=1

q−
4
NRrk

1bR
i1
1iR

1i
1iR

ib
sl +

N∑
b,x,y=1

q−
4
NRrk

zbR
iz
y1R

y1
1xR

xb
sl

=
N∑
b=1

q−
4
N νRrk

1bR
ib
sl + 0 = q−

4
N ν(Rr1

1rR
ir
slδk1 +R1k

1kR
ik
sl δ1r(1− δk1))

= q−
4
N ν(Rr1

1rR
ir
irδk1δsiδlr +Rr1

1rR
ir
riδsrδli + 0)

= q−
4
N ν(θ(r − i)δk1δsiδlr + q−δr1−δriδsrδli).

Thus, we see that Q̂(ui1u
r
s) gives us a non-zero answer if and only if s = i and

r > s; or if s = r. For the first case we get that

Q̂(ui1u
r
i ) = q−

4
N ν2E1r = q−

4
N ν2(q−

2
N ν)−1ur1 = q−

2
N ν ur1;

while for second case we get that

Q̂(ui1u
r
r) = qδr1+δri− 4

N νE1i = qδr1+δri− 4
N ν(q−

2
N ν)−1ui1 = qδr1+δri− 2

N ui1;
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where for both cases we have used (3.16). The formulae for the non-zero actions

on e+
i now easily follow.

Using (3.12) once more, we now calculate the action of the generator urs on the

basis element u1
i :

Q̂kl(u
1
iu

r
s) =

N∑
a,b,x,y,z=1

q−
4
NRrk

zbR
1z
yaR

ya
ixR

xb
sl

=
N∑

a,b,z=1

q−
4
NRrk

ib R
1i
1iR

1i
i1R

1b
sl +

N∑
b,y,z=1

q−
4
NRrk

zbR
1z
y1R

y1
ixR

xb
sl

=
N∑
b=1

q−
4
N νRrk

ib R
1b
sl + 0 = q−

4
N ν(Rri

irR
1r
sl δki +Rrk

ikR
1k
sl )

= q−
4
N ν(Rri

irR
1r
r1δkiδl1δrs +Ris

isR
1s
s1δriδl1δks)

= νqδri+δr1−
4
N δkiδl1δrs + q−

4
N ν2δriδl1δksθ(s− i).

Thus, we see that Q̂(u1
iu

r
s) gives us a non-zero answer if, and only if, r = s; or

i = r, and s > i. For the first case we get

Q̂(u1
iu

r
r) = qδri+δr1−

4
N νE1i = qδri+δr1−

4
N ν(q−

2
N ν)−1ui1 = qδri+δr1−

2
N ui1;

while for the second case we have

Q̂(u1
iu

i
s) = q−

4
N νEs1 = q−

4
N ν2(q−

2
N ν)−1 u1

i = q−
2
N ν u1

i ;

where for both cases we have again used (3.16). The formulae for the non-zero

actions on e−i now easily follow.

Moving on, we use (3.13) to calculate the action of the element S(urs) on the basis

element ui1:

Q̂kl(u
i
1S(ugh)) =

N∑
a,b,x,y,z=1

q2(b−h)R
bk

zhR
iz
yaR

ya
1xR

xg

bl

=
N∑
b=1

q2(b−h)R
bk

1hR
i1
1iR

1i
1iR

ig

bl +
N∑

b,x,y,z=1

q2(b−h)R
bk

zhR
iz
y1R

y1
1xR

xg

bl

= ν(q2(1−h)R
1h

1hR
ig

1l(1− δh1)δkh + q2(h−h)R
h1

1hR
ig

hlδk1) + 0

= 0 + q−δ1hνR
ig

hlδk1 = ν(R
ig

igδhiδlg + q−δ1hR
ig

giδhgδli)δk1

= −ν2θ(g − i)δhiδlgδk1 + νq−δ1h−δigδhgδliδk1
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Thus, we see that Q̂(ui1S(ugh)) gives a non-zero answer if, and only if, we have

h = i, and g > i; or h = g. For the first case we have

Q̂(ui1S(ugi )) = ν2E1g = −ν2(q−
2
N ν)−1 ug1 = −q

2
N ν ug1;

while for the second case we have

Q̂(ui1S(ugg)) = νq−δ1h−δigE1i = νq−δ1h−δig(q−
2
N ν)−1 ui1 = q

2
N
−δ1h−δig ui1;

where for both cases we have again used (3.16).

Using (3.13) again, we now calculate the action of the element S(urs) on the basis

element u1
i :

Q̂kl(u
1
iS(ugh)) =

N∑
a,b,x,y,z=1

q2(b−h)R
bk

zhR
1z
yaR

ya
ixR

xg

bl

=
N∑
b=1

q2(b−h)R
bk

ihR
1i
1iR

1i
i1R

1g

bl +
N∑

b,x,y,z=1

q2(b−h)R
bk

zhR
1z
y1R

y1
ixR

xg

bl

=
N∑
b=1

q2(b−h)νR
bk

ihR
1g

bl + 0

= q2(i−h)νR
ih

ihR
1i

i1δgiδkhδl1(1− δhi) + q2(h−h)νR
hi

ihR
1g

hl δki

= −q2(i−h)ν2δgiδkhδl1θ(h− i) + νR
hi

ihR
1h

h1δghδkiδl1

= −q2(i−h)ν2δgiδkhδl1θ(h− i) + q−δh1−δhiνδghδkiδl1.

Thus, we see that Q̂(ui1S(ugh)) gives a non-zero answer if, and only if, we have

g = i, and h > i; or h = g. For the first case we have

Q̂(u1
iS(uih)) = −q2(i−h)ν2Eh1 = −q2(i−h)ν2(q−

2
N ν)−1 u1

h = −q
2
N

+2(i−h)ν u1
h;

while for the second case we have

Q̂(u1
iS(ugg)) = q−δ1g−δigνEi1 = q−δ1g−δigν(q−

2
N ν)−1 u1

i = q
2
N
−δ1g−δig u1

i ;

where for both cases we have, as usual, used (3.16).

We now move onto finding a formula for S(ui1) using (3.11):

S(ui1) =
N∑

a,z=1

q2(a−1)+ 2
NR

ak

z1R
zi

al = q2(1−1)+ 2
NR

11

11R
1i

1iδliδk1 = q
2
N
−1νδliδk1.
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Thus, we see that

Q̂(S(ui1)) = q
2
N
−1νE1i = q

2
N
−1ν(q−

2
N ν)−1ui1 = q

4
N
−1ui1,

which gives us the first relation in (3.20). For Q̂(S(u1
i )), we have

Q̂kl(S(u1
i )) =

∑
a,z

q2(a−i)+ 2
NR

ak

ziR
z1

al = q2(1−i)+ 2
NR

1i

1iR
11

11δkiδl1 = −q1−2i+ 2
N νδkiδl1.

This gives us that

Q̂(S(u1
i )) = q1−2i+ 2

N νEil = q1−2i+ 2
N ν(q−

2
N ν)−1u1

i = q
4
N

+1−2iu1
i ,

from which follows the second relation in (3.20).

Finally, we come to ummf and S(umm)f , for f ∈ Cq[SUN ], for m = 1, · · · , N . Now

as a little thought will confirm, we can canonically identify Cq[SUN ]/ker(Q) and

Λ1
SUN

. This allows us to consider 1, umm, and S(umm) as elements in Λ1
SUN

. From

(3.10) we now get

Q̂kl(u
m
m) =

N∑
a,z=1

q−
2
NRmk

za R
za
ml = q−

2
NRmk

kmR
km
mkδkl = q−

2
NRm1

1mR
1m
m1δk1δl1 (3.21)

= q2δm1− 2
N δklδk1, (3.22)

which tells us that umm = q2δm1− 2
N 1. From (3.11) we have

Q̂kl(S(umm)) =
N∑

a,z=1

q2(a−m)+ 2
NR

ak

zmR
zm

al = q2(m−m)+ 2
NR

mk

kmR
km

mkδkl = q
2
NR

m1

1mR
1m

m1δk1δl1

= q
2
N
−2δm1δk1δl1,

which tells us that S(umm) = q
2
N
−2δm11. It now follows directly that

ujjf = q2δj1− 2
N f , and S(ujj)f = q

2
N
−2δj1f , for all f ∈ Cq[SUN ]. �

Example 3.2.4. Let us look now at the case of N = 2: The ideal ISU2 corre-

sponding to Ω1
q(SU2) is generated by the six elements

(a− q)(a− 1), bc, b2, c2, (a− q)b, (a− q)c,
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or equivalently by the six elements

a+ qd− (q + 1), bc, b2, c2, (a− q)b, (a− q)c.

A three-dimensional basis of VCP 1 is given by

e+ := c, e0 := a− 1, e+ := b.

Explicitly, s−1 acts on these elements according to

s−1(e+
1 ) = adc− qcda, s−1(e0) = dda− q−1bdc, s−1(e−1 ) = ddb− q−1bdd.

While the exterior derivative acts according to

da = ae0 + be+
1 , db = ae−1 − q−1be0, dc = ce0 + de+

1 , dd = ce−1 − q−1de0.

Finally, in matrix form, the right module relations are given by:

e0

(
a b

c d

)
=

(
qa q−1b

qc q−1d

)
e0 + (q − 1)

(
b 0

d 0

)
e+ + (q − 1)

(
0 a

0 c

)
e−,

e±

(
a b

c d

)
=

(
a b

c d

)
e±.

Since Ω1
q(SU2) is a three-dimensional calculus, it is natural to ask whether or not it

is isomorphic to Woronowicz’s well-known 3D calculus [79]. Recall that the ideal

corresponding to the the 3D calculus is generated by the elements

a+ q−2d− (1 + q−2), bc, b2, c2, (a− 1)b, (a− 1)c. (3.23)

Now Lemma 3.2.3 tells us that

(a− 1)b = b(qa− 1) = (q2 − 1)b, (a− 1)c = c(qa− 1) = (q2 − 1)c,

and that

a+ q−2d− (1 + q−2) = (q + q−3 − (1 + q−2))1.

As is easy to see, there is no value of q ∈ C for which these three elements are

simultaneously zero, and so, the two calculi cannot be isomorphic. Alternatively,

one can observe that since (a− q)b− (a−1)b = (1− q)b, any ideal containing both

(a− q)b and (a− 1)b will also contain b. Since this is not the case for either ideal,

they cannot be equal. Moreover, a similar argument will show that Ω1
q(SU2) is not

isomorphic to any of the other three-dimensional calculi presented in [71].
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3.2.2 The Heckenberger–Kolb Calculus

We now introduce an ideal that will play a central role in this thesis:

ICPN−1 := 〈zij, zi1zj1, z1iz1j | i, j = 2, . . . , N〉 . (3.24)

As will be shown, it is a left covariant subspace of Cq[CP
N−1]+, and so, it has

a corresponding calculus. We denote this calculus by Ω1
q(CP

N−1) and call it the

Heckenberger–Kolb calculus. The following proposition establishes the essential

properties of the calculus.

Proposition 3.2.5 The ideal ICPN−1 is a left-covariant ideal of Cq[CP
N−1]+.

Moreover, the canonical map ι̂ : VCPN−1 → Λ1
SUN

is an embedding, and ι̂(VCPN−1)

has a basis given by

zi1 = q
2
N
−1e+

i−1, z1i = q
2
N
−2i+3e−i−1, (i = 2, . . . , N). (3.25)

Proof. That ∆CPN−1 restricts to a Cq[UN−1]-coaction on ICPN−1 is clear from the

following calculations: For zij we have

∆CPN−1(zij) = (id⊗ S) ◦ (id⊗ αN)(
N∑

a,b=1

ua1S(u1
b)⊗ uiaS(ubj))

= (id⊗ S)(
N∑

a,b=2

ua1S(u1
b)⊗ αN(uiaS(ubj))

=
N∑

a,b=2

zab ⊗ S(αN(uiaS(ubj))) = ICPN−1 ⊗Cq[UN−1].

For zi1zj1 we have

∆(zi1zj1) = (id⊗ S) ◦ (id⊗ αN)(
N∑

a,b,c,d=1

ua1S(u1
b)u

c
1S(u1

d)⊗ uiaS(ub1)ujcS(ud1))

= (id⊗ S)(
N∑

a,c=2

ua1S(u1
1)uc1S(u1

1)⊗ αN(uiaS(u1
1)ujcS(u1

1)))

=
N∑

a,c=2

za1zc1 ⊗ S(αN(uiau
j
c)) det−2

N−1 ∈ ICPN−1 ⊗Cq[UN−1].
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Finally, for z1iz1j, we have

∆(z1iz1j) = (id⊗ S) ◦ (id⊗ αN)(
N∑

a,b,c,d=1

ua1S(u1
b)u

c
1S(u1

d)⊗ u1
aS(ubi)u

1
cS(udj ))

= (id⊗ S)(
N∑

b,d=2

u1
1S(u1

b)u
1
1S(u1

d)⊗ αN(u1
1S(ubi)u

1
1S(udj )))

=
N∑

b,d=2

z1bz1d ⊗ S(αN(S(ubi)S(udj ))) det2
N−1 ∈ ICPN−1 ⊗Cq[UN−1].

We will next establish that ι̂ is well defined by showing that ICPN−1 is contained

in ker(Q̂)+: For zij, we have

Q̂(zij) = Q̂(ui1S(u1
j)) = e+

i−1 / S(u1
j) = 0.

For zi1zj1, we have

Q̂(zi1zj1) = Q̂(ui1S(u1
1)uj1S(u1

l )) = e+
i−1 / (S(u1

1)uj1S(u1
1)) = q

2
N
−2e+

i−1 / (uj1S(u1
1)) = 0.

Finally, for z1iz1j, we have

Q̂(z1iz1j) = Q̂(u1
1S(u1

i )u
1
1S(u1

j)) = q5−2ie−i−1 / S(u1
j) = 0.

Since ker(Q̂)+ is a right ideal, it follows that ICPN−1 is contained in ker(Q̂)+.

Next we show that {zi1, z1i | i = 2, . . . , N} is a spanning set for VCPN−1 : Since

N∑
i=1

q2(i−1)zii =
N∑
i=1

q2(i−1)ui1S(u1
i ) =

N∑
i=1

S(u1
i )u

i
1 = 1,

we must have that

0 = (
N∑
i=2

zii) + z11 − 1 = z11 − 1.

Thus, since zkl ∈ ICPN−1 , for (k, l) 6= (1, 1), we need only consider monomials

which have zi1, or z1i, as a first factor, for i 6= 1.
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Recalling now the quantum sphere relations given in (3.4), we see that for any

monomial zi1zkl, with l 6= 1, we have

zi1zkl = ui1S(u1
1)uk1S(u1

l ) = q−2ui1u
k
1S(u1

l )S(u1
1)

= q−2ui1S(u1
l )u

k
1S(u1

1)− q−3δklν
N∑

a=i+1

q2(a−i)ui1S(u1
a)u

a
1S(u1

1)

= q−2zilzk1 − q−3δklν

N∑
a=i+1

ziaza1 ∈ ICPN−1 .

Moreover, for the element z1izkl, for k 6= 1, we have

z1izkl = u1
1S(u1

i )u
k
1S(u1

l ) = q2S(u1
i )u

k
1u

1
1S(u1

l )

= q2uk1S(u1
i )u

1
1S(u1

l )− q−1δkiν
N∑

a=i+1

q2(a−i)ua1S(u1
a)u

1
1S(u1

l )

= q2zkiz1l − q−1δkiν
N∑

a=i+1

q2(a−i)zaaz1l ∈ ICPN−1 .

It follows directly that {zi1, z1i | i = 2, . . . , N} is a spanning set for VCPN−1 .

We can now finish by showing that {zi1, z1i | i = 2, . . . , N} is a basis for ι̂(VM), and

consequently that ι̂ is an embedding: For i = 2, . . . , N , we have

Q(zi1) = Q(ui1S(u1
1)) = e+

i−1 / S(u1
1) = q

2
N
−1e+

i−1,

and

Q(z1i) = Q(u1
1S(u1

i )) = q2− 2
NQ(S(u1

i )) = q
2
N
−2i+3e−i−1.

�

We will show how this calculus relates to the one-forms of Heckenberger and Kolb’s

q-deformed de Rham complex in Section 5.3, using the framework of noncommu-

tative complex structures.
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Chapter 4

Framing the Maximal

Prolongation

A natural question to ask is whether or not one can extend the canonical framing

of a left-covariant calculus Ω1(M) to a framing for its maximal prolongation. In

this chapter we will use Takeuchi’s categorical equivalence to show that, for a

distinguished class of calculi, this can indeed be done. We will do so in two parts,

first we show how to frame tensor powers, and then we show how this framing

restricts to the maximal prolongation.

4.1 Framings and Tensor Powers

In this section we will show how to frame tensor powers. This will require us to

restrict our attention to a distinguished subcategory of G
MMM , introduced in the

subsection below. Following this we introduce the notion of a framing calculus

which will serve as an invaluable tool for simplifying calculations throughout the

rest of the thesis.

4.1.1 A Monoidal Equivalence of Categories

The category G
MMM has a natural monoidal structure ⊗M , where for E ,F two

objects in G
MMM , we define E ⊗M F to be the usual bimodule tensor product
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endowed with the obvious left G-comodule structure

∆L : E ⊗M F → G⊗ E ⊗M F , e⊗M f 7→ e(−1)f(−1) ⊗ e(0) ⊗M f(0). (4.1)

However, for MH
M no such obvious monoidal structure exists. This leads us to

consider a particular subcategory of MH
M defined as follows: Let MH

0 be the

strictly full monoidal subcategory of MH
M whose objects V are those endowed

with the trivial right action

v / m = ε(m)v, (v ∈ V,m ∈M).

This category has a natural monoidal structure ⊗, where for V,W two objects in

MH
0 , we define V ⊗W to be the usual vector space tensor product, endowed with

the trivial right M -action, and a right H-comodule structure given by

∆R : V ⊗W → V ⊗W ⊗H, v ⊗ w 7→ v(0) ⊗ w(0) ⊗ w(1)v(1). (4.2)

That these two structures are compatible in the sense of (2.2) follows easily from

(2.1).

One should now of course ask what the corresponding subcategory of G
MMM is.

As a candidate we propose the strictly full subcategory whose objects E are those

which satisfy EM+ ⊆ M+E . As a moment’s thought will confirm, for E ,F two

objects in G
MM0, their tensor product E ⊗M F is still an object in G

MM0. Thus it

is clear that G
MM0 is a monoidal subcategory of GMMM . Moreover, as the following

theorem demonstrates, it is monoidally equivalent to MH
0 .

Theorem 4.1.1 The functor ΦM restricts to an equivalence of categories between
G
MM0 and MH

0 . Moreover, for any two objects E ,F ∈ G
MM0, the natural transfor-

mation

µE,F : ΦM(E ⊗M F)→ ΦM(E)⊗ ΦM(F), v ⊗M w 7→ v ⊗ w, (4.3)

gives an equivalence of monoidal categories between G
MM0 and MH

0 .

Proof. Let us first show that Φ restricts to an equivalence of categories between
G
MM0 and MH

0 : If E is an object in G
MM0, then for any e ∈ E , and m ∈ M+, we

must have, from the definitions of G
MM0 and ΦM(E), that e / m = 0. Hence, for

any n ∈M , we have

e / n = e / (n+ + ε(n)1) = e / n+ + e / (ε(n)1) = ε(n)e.
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Thus, ΦM(E) is well-defined as an object in MH
0 . Conversely, if V is an object in

MH
0 , then for any element

∑
i f

i ⊗ vi in Ψ(V ), the right action of M on ΨM(V )

must operate according to

(
∑
i

f i ⊗ vi)m =
∑
i

f im(1) ⊗ (vi / m(2)) =
∑
i

f im(1)ε(m(2))⊗ vi =
∑
i

f im⊗ vi.

Now if m ∈M+, then
∑

i f
im⊗ vi must be an element of ker(frame⊥M). But since

ker(frame⊥M) is equal to M+ΨM(V ), we must have that (
∑

i f
i⊗ vi)m is contained

in M+ΨM(V ). Hence ΨM(V ) is well-defined as an object in G
MM0. That this gives

an equivalence of categories now follows from the fact that ΦM : GMMM →MH
M is

an equivalence of categories, and that G
MM0, andMH

0 , are both full subcategories

of GMMM , and MH
M , respectively.

We now turn to showing that µE,F is a natural isomorphism: It is trivial that µE,F

is well-defined as a right M -module map. To see that it is also a H-comodule map,

note first that the right comodule structure on ΦM(E ⊗M F) acts according to

∆R : e⊗M f 7→ e(0) ⊗M f(0) ⊗ S(e(−1)f(−1)), (e ∈ E , f ∈ F).

By (4.2), the right comodule structure on ΦM(E)⊗ ΦM(F) acts according to

∆R : e⊗ f 7→ e(0) ⊗ f(0) ⊗ S(f(−1))S(e(−1)), (e ∈ E , f ∈ F).

Hence, µE,F is indeed a morphism in MH
0 . It remains to show that the inverse

morphism, which would send v ⊗ w to v ⊗ w, is well-defined. But this follows

directly from the fact that

(M+E)⊗M F + E ⊗M (M+F) = M+(E ⊗M F).

�

This result allows us to identify ΦM((Ω1(M))⊗Mk) and ΦM(Ω1(M))⊗k, and gives

us the following corollary.

Corollary 4.1.2 Let Ω1(M) be a left-covariant first-order differential calculus with

canonical framing (VM , σ). If Ω1(M) is contained in the subcategoryMH
0 , then we

have a framing (V ⊗kM , σk), where

σk : ΦM((Ω1(M))⊗Mk)→ V ⊗kM , ω1 ⊗ · · · ⊗ ωk 7→ σ(ω1)⊗ · · · ⊗ σ(ωk).
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4.1.2 Framing Calculi

For Ω1(G) a left-covariant differential calculus over a Hopf algebra G, it can quite

often happen that Ω1(G) is not an object in G
GM0, meaning we cannot frame its ten-

sor powers using the above approach. An obvious example is the calculus Ω1
q(SUN)

introduced in Chapter 3. For such calculi consider the framing ((Λ1
G)⊗k, tk), where

tk := ck ◦ s⊗k : (Ω1(G))⊗Gk → G⊗ (Λ1
G)⊗k, (k ≥ 2),

with ck : (G ⊗ Λ1
G)⊗Gk → G ⊗ (Λ1

G)⊗k the obvious identification. We denote the

corresponding isomorphism in MG
G by

τ k : ΦG((Ω1(G))⊗Gk)→ (Λ1
G)⊗k.

Explicitly, τ k acts on g1dg2 ⊗G dg3 ⊗G · · · ⊗G dgk to give

ε(g0)(g1)+g2
(1) · · · gk(1) ⊗ (g2

(2))
+g3

(2) · · · gk(2) ⊗ · · · ⊗ (gk(k−1))
+.

As we shall now show, for certain distinguished calculi on G, we can use τ k to give

a new framing for tensor powers of Ω1(M):

Definition 4.1.3. For any first-order differential calculus Ω1(M) over M , a fram-

ing calculus Ω1(G) is a first-order differential calculus for G such that

1. Ω1(G) restricts to Ω1(M) on M , by which we mean

Ω1(M) = {
∑
i

midni ∈ Ω1(G) | mi, ni ∈M, for all i};

2. Ω1(M)G ⊆ GΩ1(M).

Now Ω1(M) and Ω1(G) live in two ostensibly different categories. For sake of

clarity, we should spend a little time exploring the relationship between G
GMG and

G
MMM ; as well as the relationship between MG

G and MH
M . First we note that,

since every G-G-bimodule is obviously an M -M -bimodule, we have the forgetful

inclusion of GGMG in G
MMM , which remembers only the M -M -bimodule structure

of the objects of G
GMG. On the other side of Takeuchi’s equivalence, it is easy to

see that the only coaction on a right G-module that is compatible in the sense of
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(2.2), is the trivial coaction. Thus, MG
G must be equivalent to MG, giving us a

forgetful inclusion of MG
G in MH

M .

Let us denote by i : Ω1(M)→ Ω1(G) the embedding of Ω1(M) into Ω1(G). With

respect to the inclusion of GGMG in G
MMM , it is clear that i is a morphism in G

MMM ,

as are its tensor powers i⊗k : (Ω1(M))⊗Mk → (Ω1(G))⊗Gk, for k ∈ N. An important

question to ask is when i⊗k is is an embedding, for k ≥ 2. To address this question

we will need to introduce two important commutative diagrams: First consider

the maps

ιk := proj ◦ ΦM(i⊗k) : ΦM((Ω1(M))⊗Mk)→ ΦG((Ω1(G))⊗Gk), (k ≥ 2)

where proj : ΦM((Ω1(G))⊗Mk) → ΦG((Ω1(G))⊗Gk) is the canonical projection.

Since

i⊗k = frame−1
G ◦ΨM(ιk) ◦ frameM ,

it is clear that i⊗k is an embedding if, and only if, ιk is an embedding. We are now

ready to introduce our first commutative diagram:

ΦG(Ω1(G)) σ // Λ1
G

ΦM(Ω1(M)) σ
//

ι

OO

VM ,

ι̂

OO

where ι̂ is the descent of the embedding M+ ↪→ G+. It is clear that ι̂ is a morphism

in MH
M , as are its tensors powers ι̂ ⊗k : V ⊗kM ↪→ (Λ1

G)⊗k. For higher powers of k,

we have the analogous diagram

ΦG((Ω1(G))⊗Gk) τk // (Λ1
G)⊗k

ΦM((Ω1(M))⊗Mk)
σk

//

ιk

OO

V ⊗kM ,

γk

OO
(4.4)

where γk is the unique map for which the diagram is commutative. Explicitly, the

action of γk is given by

γk(m1 ⊗ · · · ⊗mk) = τ k ◦ ιk ◦ (σk)−1(m1 ⊗ · · · ⊗mk) = τ k(dm1 ⊗G · · · ⊗G dmk),

= m1m2
(1) · · ·mk

(1) ⊗ · · · ⊗ (mk−1
(k−2))

+mk
(k−2) ⊗ (mk

(k−1))
+.
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Thus, unless Ω1(G) is an object in G
GM0, we have no guarantee that γk is equal to

ι̂ ⊗k. With these maps and diagrams in hand we are now ready to give a sufficient

criteria for i⊗k to be an embedding:

Lemma 4.1.4 If Ω1(M) is a finite dimensional calculus, then γk is an embedding,

and hence ιk and i⊗k are embeddings.

Proof. If the image of γk could be shown equal to ι̂ ⊗k(V ⊗kM ), then, since we

are assuming Ω1(M) to be finite dimensional, it would follow that γk was an

isomorphism. As a first step towards establishing this, we note that i(Ω1(M)) is

well-defined as an object in G
MM0, and so, we can identify ΦM(i(Ω1(M))⊗Mk) and

ΦM(i(Ω1(M)))⊗k, giving us the isomorphism

σk : ΦM(i(Ω1(M))⊗Mk)→ ι̂ ⊗k(V ⊗kM ).

Combining this fact with the commutative diagram in (4.4), gives us the new

diagram

ΦG(Ω1(G))⊗Gk) τk // (Λ1
G)⊗k

ΦM((i(Ω1(M))⊗Mk)
σk

//

proj

OO

ι̂ ⊗k(V ⊗kM ),

γ′k

OO
(4.5)

where proj is the canonical projection, and γ′k is defined so as to make the diagram

commutative. Now for an arbitrary element m1⊗ · · ·⊗mk in ι̂ ⊗k(V ⊗kM ), it follows

from condition 2 of the framing calculus definition that

m1S(m2
(1))⊗m2

(2)S(m3
(2))⊗ · · · ⊗m

k−1
(2) S(mk

(1))⊗mk
(2) ∈ ι̂

⊗k(V ⊗kM ).

Let us look at the image of this element under γ′k, for the first few values of k:

For k = 2, we have

γ′2(m1S(m2
(1))⊗m2

(2)) = m1S(m2
(1))m

2
(2) ⊗ (m2

(3))
+ = m1 ⊗m2.

For k = 3, we have

γ′3(m1S(m2
(1))⊗m2

(2)S(m3
(1) ⊗m3

(2))

= m1S(m2
(1))m

2
(2)S(m3

(2))m
3
(3) ⊗ (m2

(3)S(m3
(1)))

+m3
(4) ⊗ (m3

(5))
+
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= m1 ⊗ (m2S(m3
(1)))

+m3
(2) ⊗ (m3

(3))
+

= m1 ⊗m2S(m3
(1))m

3
(2) ⊗ (m3

(3))
+

= m1 ⊗m2 ⊗ (m3)+ = m1 ⊗m2 ⊗m3.

Continuing in this manner for subsequent values of k, it becomes easy to see that

in general

γ′k(m1S(m2
(1))⊗m2

(2)S(m3
(1))⊗ · · · ⊗m

k−1
(2) m

k
(1) ⊗mk

(2)) = m1 ⊗m2 · · · ⊗mk.

Hence, ι̂ ⊗k(V ⊗kM ) is mapped surjectively onto itself by γ′k, immediately implying

that γk and ik are embeddings. �

As a direct consequence we get the following corollary:

Corollary 4.1.5 The pair (V ⊗kM , τ k ◦ ιk) (or equivalently the pair (V ⊗kM , γk ◦ σk))
is a framing for (Ω1(M))⊗Mk.

We note that, if Ω1(G) is an object in G
GM0, then γk = ι̂ ⊗k and the two framings

(V ⊗kM , τ k ◦ ιk) and (VM , σ
k) are equal.

4.2 Framing the Maximal Prolongation

Let Ω1(G) be a covariant first-order differential calculus over a Hopf algebra G,

with corresponding submodule NG ⊆ Ω1
u(G), and ideal IG ⊆ G+. Since

d(NG) = {d(S(v(1)))⊗G dv(2) | v ∈ IG},

we must have that

τ 2(ΦG(d(NG))) = {S(v(1))+v(2) ⊗ (v(3))+ | v ∈ IG}
= {ε(v(1))⊗ (v(2))+ − v(1) ⊗ (v(2))+ | v ∈ IG}
= {v(1) ⊗ v(2) | v ∈ IG}.

This result, usually referred to as the Maurer–Cartan formula [79, 37], allows one

to give an explicit description of the higher forms for the maximal prolongation of

Ω1(G). In this section we will build on the earlier work of the chapter to construct

an analogous result for calculi over quantum homogeneous spaces M = GH , which

are objects in G
MM0. Throughout all calculi are assumed to be finite dimensional.
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4.2.1 A Direct Approach

Let Ω1(M) be a left-covariant first-order differential calculus over a quantum homo-

geneous space M , and let NM be the corresponding sub-bimodule of the universal

calculus over M . If we denote IkM := σk(ΦM(〈dNM〉k)), for k ≥ 2, then it is clear

from (2.5) that σk descends to an isomorphism

σk : ΦM(Ωk(M))→ σk(ΦM((Ω1(M))⊗Mk)/σk(ΦM(〈dNM〉k)) = V ⊗kM /IkM =: V k
M .

In order for this isomorphism to be of use to us, we will need to find a convenient

description of IkM . The following lemma brings us some way towards this goal.

Lemma 4.2.1 For a left-covariant first-order differential calculus Ω1(M), which

is an object in G
MM0, we have

I2
M = {

∑
i

m+
i ⊗ n+

i |
∑
i

midni ∈ NM}, (4.6)

or equivalently that

I2
M = {

∑
i

(f iS(vi(1)))
+ ⊗ (v(2))+ |

∑
i

f i ⊗ vi ∈ (G⊗ IM)H}. (4.7)

Moreover, for k ≥ 3, we have IkM =
⊕

a+b=k−2 V
⊗a
M ⊗ I2

M ⊗ V ⊗bM .

Proof. It follows immediately from the properties of the total derivative d, and

the construction of the maximal prolongation, that

ΦM(d(NM)) = {
∑
i

dmi ⊗M dni |
∑
i

midni ∈ NM}. (4.8)

Operating on (4.8) by σ2 then gives us (4.6). One derives (4.7) from (2.11) in the

same way.

For k ≥ 3, the construction of the maximal prolongation tells us that

〈d(NM)〉k =
⊕

a+b=k−2

(Ω1(M))⊗Ma ⊗M d(NM)⊗M (Ω1(M))⊗M b.

The fact that Ω1(M) is an object in G
MM0, and that d(NM) is a sub-object of

Ω1(M) in G
MMM , easily implies that ΦM(d(NM)) is an object inMH

0 . This in turn
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tells us that d(NM) is an object in G
MM0. Thus, since ΦM restricts to a monoidal

functor on G
MM0, we have

ΦM(〈dNM〉k) =
⊕

a+b=k−2

(ΦM(Ω1(M)))⊗a ⊗ ΦM(dNM)⊗ (ΦM(Ω1(M)))⊗b.

Operating on this by σk gives us the required expression for IkM . �

4.2.2 Framing Calculi and the Maximal Prolongation

While Lemma 4.2.1 gives an explicit description of the ideal IkM , it requires a

complete description of the generating relations of the calculus Ω1(M) before one

can begin calculating. This is more or less the approach followed in [28], and it

leads to the type of heavily technical calculations that we are trying to avoid.

Instead, in this section we will show that one can use a framing calculus to find a

simple description of IkM in terms of any generating set of IM .

Theorem 4.2.2 Let Ω1(G) be a framing calculus for Ω1(M), with Λ1
G its space of

left-invariant one forms. We have the equality

ι̂ ⊗2(I2
M) = spanC{S(z(1))⊗ (z(2))+ | z ∈ Gen(IM)} ⊆ (Λ1

G)⊗2,

where Gen(IM) is any subset of IM that generates it as a right M-module.

Proof. In the first part of the proof we establish the identity

ι2(Φ(dNM)) = {d(S(z(1)))⊗G d(z(2)) | z ∈ IM}.

We begin with the inclusion ι2(Φ(dNM)) ⊆ {d(S(z(1)))⊗G d(z(2)) | z ∈ IM}: It is

clear from (2.11) that we have

i⊗2(dNM) = {
∑
i

d(giS(vi(1)))⊗G dvi(2) |
∑

gi ⊗ vi ∈ (G⊗ IM)H}.

For each i, since S(vi(1))d(vi(2)) = 0 in Ω1(G), it holds in (Ω1(G))⊗G2 that

d(giS(vi(1)))⊗G dvi(2) = d(gi)S(vi(1))⊗G dvi(2) + gidS(vi(1))⊗G dvi(2)

= dgi ⊗G S(vi(1))dv
i
(2) + gidS(vi(1))⊗G dvi(2)

= gidS(vi(1))⊗G dvi(2).
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Thus, we have that

i⊗2(dNM) = {
∑
i

gidS(vi(1))⊗G dvi(2) |
∑
i

gi ⊗ vi ∈ (G⊗ IM)H}.

This in turn implies that

ι2(ΦM(dNM)) = {
∑
i

ε(gi)d(S(vi(1)))⊗G dvi(2) |
∑
i

gi ⊗ vi ∈ (G⊗ IM)H}. (4.9)

From which it is clear that

ι2(ΦM(d(NM))) ⊆ {d(S(v(1)))⊗G dv(2) | v ∈ IM},

giving us the required inclusion.

We now turn to the opposite inclusion of {d(S(v(1)))⊗G d(v(2)) | v ∈ IM} in

ι2(ΦM(dNM)): From Takeuchi’s theorem we have that the image of (G ⊗ IM)H

under frame⊥M is equal to IM . In other words, for any z ∈ IM , we have an element∑
i g

i ⊗ vi contained in (G⊗ IM)H such that z =
∑

i ε(g
i)vi. This gives us that

dS(z(1))⊗G dz(2) =
∑
i

ε(gi)dS(vi(1))⊗G dvi(2).

Since (4.9) tells us that
∑

i ε(g
i)dS(vi(1))⊗ dvi(2)is an element of ι2(ΦM(d(NM)), we

must have dS(z(1))⊗ dz(2) contained in ι2(Φ(d(NM)). This gives us the required

opposite inclusion, and hence the required equality.

Let us now move onto the second part of the proof where we find the image of

ι2(ΦM(dNM)) under τ 2:

τ 2 ◦ ι2(ΦM(dNM))) = {τ 2(dS(z(1)))⊗G d(z(2))) | z ∈ IM}
= {(S(z(1)))+z(2) ⊗ (z(3))+} | z ∈ IM}
= {(ε(z(1))− z(1))⊗ (z(2))+ | z ∈ IM}
= {z(1) ⊗ z(2) − 1⊗ z − z ⊗ 1} | z ∈ IM}
= {z(1) ⊗ z(2) | z ∈ IM}

For any m ∈M+, the fact that VM is an object in MH
0 means that

(zm)(1) ⊗ (zm)(2) = z(1)m(1) ⊗ z(2)m(2) = z(1)m(1) ⊗ z(2)ε(m(2))

= z(1)m⊗ z(2) = ε(m)z(1) ⊗ z(2).
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Hence, for any generating subset Gen(IM) of IM , we have

τ 2 ◦ ι2(ΦM(dNM)) = spanC{z(1) ⊗ z(2) | z ∈ Gen(IM)}.

We begin the final part of the proof by noting that, for any z ∈ IM ,

S(z(1))+ ⊗ (z(2))+ = S(z(1))⊗ (z(2))+ − 1⊗ z = S(z(1))⊗ (z(2))+

Thus, since γ2 = γ′2 ◦ ι̂ ⊗2 (where we recall that γ′2 is defined in the commuta-

tive diagram (4.5)), the theorem would follow if we could show that γ′2 acted on

spanC{(S(z(1)))+⊗ (z(2))+ | z ∈ Gen(IM)} to give spanC{z(1)⊗ z(2) | z ∈ Gen(IM)}.
But this follows directly from the calculation

γ′2(S(z(1))+ ⊗ (z(2))+) = τ 2(d(S(z(1)))⊗G d(z(2))) = S(z(1))+z(2) ⊗ z+
(3)

= ε(z(1))− z(1) ⊗ z+
(2) = −z(1) ⊗ z(2) + 1⊗ z

= −z(1) ⊗ z(2).

�

4.3 Framing the Maximal Prolongation of the

Heckenberger–Kolb Calculus

In this section we will make two applications of the general theory developed

earlier in this chapter. First we take the calculus Ω1
q(SUN) as a framing calculus

for Ω1
q(CP

N−1), and use it to explicitly describe the maximal prolongation of

Ω1
q(CP

N−1). Secondly, we take the famous three-dimensional Woronowicz calculus

Γ1
q(SU2) as a framing calculus for Ω1

q(SU2), and use it to describe the maximal

prolongation of Ω1
q(CP1). We see that these two descriptions for the maximal

prolongation of Ω1
q(SU2) agree, as of course they should.
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4.3.1 The Calculus Ω1
q(SUN) as a Framing Calculus for the

Heckenberger–Kolb Calculus Ω1
q(CP

N−1)

From the relations given in (3.17), (3.18), and (3.19), it is clear that Cq[CP
N−1]

acts on VCPN−1 according to

e±i / z11 = e±i , e±i / zij = 0, ((i, j) 6= (1, 1)). (4.10)

Thus, Ω1(CPN−1) is an object in G
MM0, and we have a well-defined framing/Users/johnmccarthy/Library/Containers/com.apple.Preview/Data/Desktop/Obair

CCC/NCCS-QHS/Ar Eagla/Ar Eagla na hEagla/Arxiv.v2.tex.pdf (V ⊗k
CPN−1 , σ

k)

for the kth-tensor power over Cq[CP
N−1] of Ω1(CPN−1). As one might expect, the

calculus Ω1
q(SUN) introduced in Chapter 2 is a framing calculus for Ω1

q(CP
N−1).

To see this we first recall that Ω1
q(SUN) restricts to Ω1

q(CP
N−1) on Cq[CP

N−1].

Moreover, the right actions given in Lemma 3.2.3 show that VCPN−1 is a right

submodule of Λ1
SUN

. This means that we can use Theorem 4.2.2 to calculate the

maximal prolongation of Ω1
q(CP

N−1):

Theorem 4.3.1 The subspace I2
CPN−1 is spanned by the elements

e−i ⊗ e+
j + qe+

j ⊗ e−i , e+
i ⊗ e−i + q−2e−i ⊗ e+

i − q2i−1ν
N−1∑
a=i+1

q−2ae−a ⊗ e+
a , (4.11)

e−i ⊗ e−h + qe−h ⊗ e
−
i , e+

i ⊗ e+
h + q−1e+

h ⊗ e
+
i , e+

i ⊗ e+
i , e−i ⊗ e−i , (4.12)

for h, i, j = 1, . . . , N − 1, i 6= j, and h < i. Hence, V k
CPN−1 is a

(
2(N−1)

k

)
-

dimensional vector space, with a basis given by

{e+
i1
∧ · · · ∧ e+

im
∧ e−j1 ∧ · · · ∧ e

−
jm
| i1 < · · · < im; j1 < · · · < jm}.

Proof. Beginning with the generators of the form zij, for i, j ≥ 2, we see that

S((zij)(1))⊗ ((zij)(2))+ =
N∑

a,b=1

S(uiaS(ubj))⊗ (ua1S(u1
b))

+

=
N∑

a,b=1

S2(ubj)S(uia)⊗ (ua1S(u1
b))

+

=
N∑

a,b=1

q2(b−j)ubjS(uia)⊗ (ua1S(u1
b))

+.
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For the case i 6= j, Lemma 3.2.3 tells us that the summand ubjS(uia)⊗ (ua1S(u1
b))

+

is non-zero only if a = 1, b = j or a = i, b = 1. Thus, we must have

S((zij)(1))⊗ ((zij)(2))+ = ujjS(ui1)⊗ u1
1S(u1

j) + q2(1−j)u1
jS(uii)⊗ ui1S(u1

1)

= q2− 4
N S(ui1)⊗ S(u1

j) + q
4
N

+1−2ju1
j ⊗ ui1

= q
4
N

+2−2jui1 ⊗ u1
j + q

4
N

+1−2ju1
j ⊗ ui1

= (q
4
N

+2−2j)(e+
i−1 ⊗ e−j−1 + q−1e−j−1 ⊗ e+

i−i).

This gives us the first relation in (4.11).

For the case i = j, Lemma 3.2.3 tells us that the summand ubiS(uia)⊗ (ua1S(u1
b))

+

is non-zero only if a = 1, b = i or a ≥ i, b = 1. Thus, we must have that

S((zii)(1))⊗ ((zii)(2))+ is equal to

uiiS(ui1)⊗ u1
1S(u1

i ) + q2(1−i)(u1
iS(uii)⊗ ui1S(u1

1) +
N∑

a=i+1

u1
iS(uia)⊗ ua1S(u1

1)).

This is easily seen to be equal to

q2− 4
N S(ui1)⊗ S(u1

i ) + q2(1−i)(q
4
N
−2u1

i ⊗ ui1 − q
4
N

+2i−1ν
N∑

a=i+1

q−2au1
a ⊗ ua1),

which reduces to

q2+ 4
N
−2iui1 ⊗ u1

i + q
4
N

+2(1−i)(q−2u1
i ⊗ ui1 − q2i−1ν

N∑
a=i+1

q−2au1
a ⊗ ua1),

giving us finally that

q
4
N

+2(1−i)(e+
i−1 ⊗ e−i−1 + q−2e−i−1 ⊗ e+

i−1 − q2i−1ν
N∑

a=i+1

q−2ae−a−1 ⊗ e+
a−1).

This gives us the second relation in (4.11).

We now come to the generators of the form zi1zj1, for j 6= 1, and calculate

S((zi1zj1)(1))⊗ ((zi1zj1)(2))+ =S((ui1S(u1
1)uj1S(u1

1))(1))⊗ ((ui1S(u1
1)uj1S(u1

1))(2))+

=
N∑

a,b,c,d=1

S(uiaS(ub1)ujcS(ud1))⊗ (ua1S(u1
b)u

c
1S(u1

d))
+

=
N∑

a,b,c,d=1

q2(d+b−2)ud1S(ujc)ub1S(uia)⊗ (ua1S(u1
b)u

c
1S(u1

d))
+.
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The module relations given in Lemma (3.2.3) imply that at most one element of

{a, c} is equal to 1, and that at least three elements of {a, b, c, d} are equal to 1.

Thus, we must have b, d = 1, and (a, c) 6= (1, 1), giving us

S((zi1zj1)(1))⊗ ((zi1zj1)(2))+ =
∑

(a,c)6=(1,1)

u1
1S(ujc)u1

1S(uia)⊗ ua1S(u1
1)uc1S(u1

1)

= q(
N∑
a=2

S(uj1)S(uia)⊗ ua1u1
1 +

N∑
c=2

S(ujc)S(ui1)⊗ u1
1u

c
1)

= q2− 2
N (

N∑
a=2

S(uj1)S(uia)⊗ ua1 + q

N∑
c=2

S(ujc)S(ui1)⊗ uc1)

= q2− 2
N (

N∑
a=2

S(uj1)S(uia)⊗ ua1 + q S(ujj)S(ui1)⊗ uj1)

= − q
2
N

+1(
N∑
a=2

uj1S(uia)⊗ ua1 + q
2
N

+1 ui1 ⊗ u
j
1).

For the case of i = j, we have

(S(zi1zi1)(1))⊗ ((zi1zie+i ⊗e
+
i +1)(2))+ = − q

2
N

+1(ui1S(uii)⊗ ui1 + q
2
N

+1 ui1 ⊗ ui1),

which is just a linear multiple of e+
i−1⊗e+

i−1, giving us the fourth element in (4.12).

While for the case i < j, we have

S((zi1zj1)(1))⊗ ((zi1zj1)(2))+ = −q
2
N

+1(uj1S(uii)⊗ ui1 + uj1S(uij)⊗ u
j
1 + q

2
N

+1 ui1 ⊗ u
j
1)

= −q
4
N

+1(uj1 ⊗ ui1 − νui1 ⊗ u
j
1 + q ui1 ⊗ u

j
1)

= −q
4
N

+1(uj1 ⊗ ui1 + q−1ui1 ⊗ u
j
1)

= −q
4
N

+1(e+
j−1 ⊗ e+

i−1 + q−1e+
i−1 ⊗ e+

j−1),

which gives us the second element in (4.12). For i > j, it is easy to see from the

quantum sphere relations in (3.4), that zi1zj1 = q−1zj1zi1, which means that we

just get us the second element in (4.12) again.
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Finally, we come to the z1iz1j, for j 6= 1. We calculate that

S((z1iz1j)(1))⊗ ((z1iz1j)(2))+ = S((u1
1S(u1

i )u
1
1S(u1

j))(1))⊗ ((u1
1S(u1

i )u
1
1S(u1

j))(2))+

=
N∑

a,b,c,d=1

S(u1
aS(ubi)u

1
cS(udj ))⊗ (ua1S(u1

b)u
c
1S(u1

d))
+

=
N∑

a,b,c,d=1

q2(b−i+d−j)udjS(u1
c)u

b
iS(u1

a)⊗ (ua1S(u1
b)u

c
1S(u1

d))
+.

Now for udjS(u1
c)u

b
iS(u1

a) ⊗ (ua1S(u1
b)u

c
1S(u1

d))
+ to be non-zero, the relations in

Lemma 3.2.3 imply that at least three elements of {a, b, c, d} must be equal to

1, while at most one element of {b, d} must be equal to one, giving us that

S((z1iz1j)(1))⊗ ((z1iz1j)(2))+ =
∑

a,b,c,d=1

q2(b−i+d−j)udjS(u1
1)ubiS(u1

1)⊗ u1
1S(u1

b)u
1
1S(u1

d)

=
N∑

a,b,c,d=1

q2(b−i+d−j)+1udjS(u1
1)ubi ⊗ S(u1

b)u
1
1S(u1

d).

For the case i = j, this tells us that S((z1iz1j)(1))⊗ ((z1iz1j)(2))+ is equal to

q2(1−i)+1u1
iS(u1

1)uii ⊗ S(u1
i )u

1
1S(u1

1) + q2(1−i)+1uiiS(u1
1)u1

i ⊗ S(u1
1)u1

1S(u1
i ),

which is just a linear multiple of e+
i ⊗ e+

i , giving us the last relation in (4.12). For

the case of i < j, we have S((z1iz1j)(1))⊗ ((z1iz1j)(2))+ equal to

q3−2j u1
jS(u1

1)uii ⊗ S(u1
i )u

1
1S(u1

1) + q3−2i ujjS(u1
1)u1

i ⊗ S(u1
1)u1

1S(u1
j).

This easily reduces to

q
4
N

+3−2(i+j) u1
j ⊗ u1

i + q
4
N

+2−2(i+j)u1
i ⊗ u1

j ,

which is just a linear multiple of

q e+
j−1 ⊗ e+

i−1 + e+
i−1 ⊗ e+

j−1.

This gives the first relation in (4.12). For i > j, it is easy to see from the quantum

sphere relations in (3.4), that z1iz1j = qz1jz1i, which means that we just get the

first element in (4.12) again. �
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4.3.2 The Woronowicz Calculus Γ1
q(SU2) as a Framing Cal-

culus

In this section we specialise to the case of Cq[CP
1], and use the three-dimensional

Woronowicz calculus Ω1
q(SU2) on Cq[SU2], as discussed in Chapter 3, as a framing

calculus for the Heckenberger–Kolb calculus. We do this firstly to demonstrate that

there can exist more than one framing calculus for any given quantum homogeneous

space calculus, and secondly to highlight the fact that the description produced is

independent of the choice of framing calculus.

Let us recall the ideal ISU2 corresponding to the Woronowicz calculus given in

(3.23). As is very well known (see [79, 37] for details), the cotangent space

VCq [CP 1] := Cq[CP
1]+/ISU2 has a basis given by

e+ := c, e0 := a− 1, e+ := b.

Moreover, from the description of ISU2 given in (3.23), it is easy to see that the

non-zero actions of the generators of C2[SU2] on e+ and e− are given by

e± / a = q−1e±, e± / d = qe±. (4.13)

It is also clear that ICP 1 = 〈b2, bc, c2〉, the ideal corresponding to the Heckenberger–

Kolb calculus, is contained in ISU2 , giving us a well-defined map VCP 1 → Λ1
SU2

.

With respect to this map, we have that ab = e−, and cd = qe+, showing that the

map is in fact an inclusion. Since it is clear from (4.13) that VCP 1 is a right Cq[SU2]-

submodule of Λ1
SU2

, we have that Cq[SU2] is a framing calculus for Ω1
q(CP

1). We

can now use Theorem 4.2.2 to find a framing for the maximal prolongation of

Ω1
q(CP

1):

Lemma 4.3.2 It holds that

I2
CPN−1 = spanC{e+ ⊗ e+, e− ⊗ e−, e+ ⊗ e− + q−2e− ⊗ e+}, (4.14)

and hence that V 2
CP 1 = Ce+ ⊗ e−, while V k

CP 1 = {0}, for all k ≥ 3.

Proof. Take the generating set {b2, bc, c2} for ICP 1 . For b2 we have that

S((b2)(1))⊗ ((b2)(2))+ = S(a2)⊗ b2 + (1 + q−2)S(ab)⊗ bd+ S(b2)⊗ (d2)+

= (1 + q−2)(−q−1bd⊗ bd) = −(1 + q2)qe− ⊗ e−.
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For c2, we have that

S((c2)(1))⊗ ((c2)(2))+ = S(c2)⊗ (a2)+ + (1 + q−2)S(cd)⊗ ac+ S(d2)⊗ c2

= (1 + q2)(−q ac⊗ ac) = −q−5(1 + q2)e+ ⊗ e+.

Finally, for bc, we have that

S((bc)(1))⊗ (bc)(2) = S(ac)⊗ ba+ S(ad)⊗ bc+ S(bc)⊗ (da)+ + S(bd)⊗ dc
= −q cd⊗ ba− q−1ab⊗ dc = −q c⊗ b− q−1b⊗ c
= −q(e− ⊗ e+ + q2e+ ⊗ e−).

This gives the three elements in (4.14), along with the implied descriptions of the

the higher forms. �

65



Chapter 5

Covariant Complex Structures

In this chapter, which can be considered the central chapter of the thesis, we

introduce complex structures and covariant complex structures. While such objects

have been considered elsewhere [6, 34], this is the first presentation of a simple set

of sufficient conditions for such structures to exist.

5.1 Almost Complex Structures

We begin this section by introducing our definition of an almost complex struc-

ture over a general algebra. We then specialise to the case where this algebra

is a quantum homogeneous space, and give a simple set of necessary and suffi-

cient conditions for such an almost complex structure to exist. Finally, we apply

this general theory to the Heckenberger–Kolb calculus for the quantum projective

spaces.

5.1.1 Almost Complex Structures for a Not Neccessarily

Covariant Calculus

Let us first introduce the wedge map ∧ for a total differential calculus Ω•(A), by

defining

∧ : Ωk(A)⊗A Ωl(A)→ Ωk+l(A), ω ⊗A ω′ 7→ ω ∧ ω′.
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Next, we introduce the central definition of the thesis:

Definition 5.1.1. An almost complex structure for a total ∗-differential calculus

Ω•(A) over a ∗-algebra A, is an N2
0-algebra grading

⊕
(p,q)∈N2

0
Ω(p,q) for Ω•(A) such

that, for all (p, q) ∈ N2
0:

1. Ωk(A) =
⊕

p+q=k Ω(p,q);

2. the wedge map restricts to isomorphisms

∧ : Ω(p,0) ⊗A Ω(0,q) → Ω(p,q), ∧ : Ω(0,q) ⊗A Ω(p,0) → Ω(p,q); (5.1)

3. ∗(Ω(p,q)) = Ω(q,p).

We call an element of Ω(p,q) a (p, q)-form.

Classically every decomposition of the cotangent bundle into two sub-bimodules ex-

tends to an almost complex structure. As the following proposition shows, things

are more complicated in the noncommutative setting. The proof requires us to

consider the unique N2
0-grading of the tensor algebra

⊕∞
k=0(Ω1(A))⊗Ak of Ω1(A)

extending a bimodule decomposition Ω1(A) = Ω(1,0) ⊕ Ω(0,1). Explicitly, the de-

composition Ω⊗(•,•) :=
⊕

(p,q)∈N2
0

Ω⊗(p,q) is defined by

Ω⊗(p,q) := {w ∈ Ωp+q(A) |π(ω) ∈ (Ω(1,0))⊗Ap ⊗A (Ω(0,1))⊗Aq, for some π ∈ Sp+q},

where Sp+q is the permutation group on p+q objects, acting C-linearly on Ωp+q(A)

in the obvious way.

Theorem 5.1.2 For Ω1(A) a first-order differential calculus over an algebra A,

and Ω1(A) = Ω(1,0) ⊕ Ω(0,1) a decomposition of Ω1(A) into sub-bimodules, we have

that:

1. the decomposition has at most one extension, satisfying condition (1), to an

N2
0-grading of the maximal prolongation of Ω1(A);

2. such an extension exists if, and only if, d(N) is homogeneous with respect

to the decomposition

(Ω1(A))⊗A2 = Ω⊗(2,0) ⊕ Ω⊗(1,1) ⊕ Ω(0,2). (5.2)
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3. When this decomposition exists, the maps in condition 2 of the almost com-

plex structure definition are isomorphisms if, and only if, ∧ restricts to iso-

morphisms

∧ : Ω(1,0) ⊗A Ω(0,1) → Ω(1,1), ∧ : Ω(0,1) ⊗A Ω(1,0) → Ω(1,1); (5.3)

4. moreover, condition 3 holds if, and only if, ∗(Ω(1,0)) = Ω(0,1), or equivalently

if, and only if, ∗(Ω(0,1)) = Ω(1,0).

Proof. We begin by giving a sufficient condition for an N2
0-grading, extending the

decomposition of Ω1(A), to exist: For some ω ∈ d(N), we denote the decomposition

of ω with respect to (5.2) by ω := ω1 +ω2 +ω3. By definition d(N) is homogeneous

with respect to (5.2) if, for each ω, we have ω1, ω2, ω3 ∈ d(N). In this case, for any

homogeneous elements ν, ν ′ in the tensor algebra of Ω1(A), the decomposition of

the element ν ⊗A ω ⊗A ν ′, with respect to Ω⊗(•,•), is given by

ν ⊗A ω ⊗A ν ′ = ν ⊗A ω1 ⊗A ν ′ + ν ⊗A ω2 ⊗A ν ′ + ν ⊗A ω3 ⊗A ν ′.

It is clear that ν ⊗A ωi ⊗A ν ′ ∈ 〈d(N)〉, for i = 1, 2, 3. Now since every element of

〈d(N)〉 is a sum of elements of the from ν⊗ω⊗ν ′, we see that homogeneity of d(N)

with respect to (5.2), implies homogeneity of 〈d(N)〉 with respect to Ω⊗(•,•). In

this case, Ω⊗(•,•) clearly descends to a grading Ω(•,•) on the maximal prolongation.

Finally, we note that if d(N) is not homogeneous with respect to to (5.2), then

clearly Ω⊗(•,•) cannot descend to a grading on the maximal prolongation.

We will now show that this grading is the only possible N2
0-grading on the maximal

prolongation extending the decomposition of Ω1(A): For another such distinct

grading Γ(•,•) to exist, there would have to be an element ω ∈ Ω⊗(p,q), for some

(p, q) ∈ N2
0, such that the image of ω in Ω•(A) was not contained in Γ(p,q). Now it

is clear from the definition of Ω⊗(p,q) that every element of Ω⊗(p,q) is of the form

ω :=
∑
i=1

ωi1 ⊗ · · · ⊗ ωip+q, (5.4)

where each ωi1 ⊗ · · · ⊗ ωip+q has exactly p of its factors contained in Ω(1,0), and

q of its factors contained in Ω(0,1). However, the general properties of a graded

algebra imply that the image of such an element in Ω•(A) must be contained in

Γ(p,q). Thus, we can conclude that there exists no other grading on the maximal
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prolongation extending the decomposition Ω1(A). This gives us the first and second

parts of the theorem.

Now we come to showing that when this N2
0-grading exists, condition 2 of the

definition of an almost complex structure holds if, and only if, the maps in (5.3)

are isomorphisms. Let us begin by establishing that surjectivity of the first map

in (5.1) follows from surjectivity of the first map in (5.3): Let

ω :=
∑
i

ωi1 ∧ · · · ∧ ωip+q, (5.5)

be a general element of Ω(p,q), where, just as in (5.4), each ωi1 ∧ · · · ∧ ωip+q has

exactly p of its factors contained in Ω(1,0), and q of its factors contained in Ω(0,1).

If for each of these summands, there exists no pair of adjacent factors ωik ∧ ωik+1,

for some 1 ≤ k < p + q, such that ωk ∈ Ω(0,1), and ωk+1 ∈ Ω(1,0), then it is clear

that ω is contained in the image of Ω(p,0) ⊗A Ω(0,q) under ∧. If such an adjacent

pair does exist, then since we are assuming the first map in (5.3) to be surjective,

there must exist an element
∑

j νj ⊗A ν ′j in Ω(1,0) ⊗A Ω(0,1), such that∑
j

νj ∧ ν ′j = ωi ∧ ωi+1.

If upon inserting this relation into ω we obtain a presentation of ω whose summands

contain no other such pairs of adjacent factors, then it is clear that ω is contained

in the image of Ω(p,0) ⊗A Ω(0,q) under ∧. If such adjacent pairs do exist, then it

is easy to see that by successive applications of this process, one will eventually

arrive at a presentation of ω containing none. Thus, it is clear that ω is contained

in the image of Ω(p,0)⊗AΩ(0,q) under ∧, which is to say that surjectivity of the first

map in (5.1) follows from surjectivity of the first map in (5.3). That surjectivity

of the second map in (5.1) follows from surjectivity of the second map in (5.3) is

established in an exactly analogous manner.

We now move on to establishing injectivity. As a little thought will confirm, the

first map of (5.1) would be seen to be injective if it could be shown that, for all

(p, q) ∈ N2
0,

〈d(N)〉 ∩ (Ω⊗(p,0) ⊗A Ω⊗(0,q)) = 〈dN〉(p,0) ⊗A Ω⊗(0,q) + Ω⊗(p,0) ⊗A 〈dN〉(0,q) , (5.6)
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where 〈dN〉(p,0), and 〈dN〉(0,q), are the ⊗(p, 0), and ⊗(0, q), homogeneous compo-

nents of 〈dN〉 respectively. To see that this is so, consider the general element∑
i νi⊗ωi⊗ν ′i of 〈d(N)〉, with each νi, ν

′
i contained in the tensor algebra of Ω1(A),

and each wi ∈ d(N). Since the first mapping in (5.3) is an isomorphism, it must

hold that

d(N) ∩ (Ω(1,0) ⊗A Ω(0,1)) = {0}.

This implies that
∑

i νi ⊗ ωi ⊗ ν ′i is contained in Ω⊗(p,0) ⊗A Ω⊗(0,q) only if

ωi ∈ Ω⊗(2,0), or ωi ∈ Ω⊗(0,2). It now follows that (5.6) holds, and hence that

the first map of condition 3 is injective. That the second map of (5.1) is injec-

tive is established analogously. Thus, we have established the third part of the

theorem.

We now come to the fourth and final part of the theorem. Note first that since the

∗-map is involutive, assuming ∗(Ω(1,0)) = Ω(0,1) is clearly equivalent to assuming

∗(Ω(0,1)) = Ω(1,0). Next we note that, for a general element ω in Ω(p,q) as given in

(5.5), the properties of graded ∗-algebra imply that

ω∗ :=
∑
i=1

(ωi1 ∧ · · · ∧ ωip+q)∗ =
∑
i=1

(−1)
(p+q)(p+q−1)

2
)(ωip+q)

∗ ∧ · · · ∧ (ωi1)∗. (5.7)

Our two equivalent assumptions, and the properties of a graded algebra, now imply

that ω∗ must be contained in Ω(q,p), giving us that ∗(Ω(p,q)) ⊆ Ω(q,p). The opposite

inclusion is established analogously, giving us the desired equality. �

An interesting question to ask here is whether one can find a first-order differential

calculus Ω1 with a decomposition Ω1 = Ω+ ⊕ Ω− that does not extend to an

N2
0-grading of the maximal prolongation of Ω1. At present there is no obvious

candidate for such a calculus.

Another interesting question to consider is that of almost complex structures on

total calculi other than maximal prolongations. Recall that every total calculus

extending (Ω1(A), d) can be obtained as a quotient of the maximal prolongation by

an ideal I ⊆ ker(d). It is not difficult to see that a decomposition of Ω1(A) =

Ω(1,0)⊕Ω(0,1) is extendable to an almost complex structure on such a total calculus

if, and only if, it is extendable to an almost complex structure on the maximal
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prolongation, and for which I is homogeneous with respect to the associated N2
0-

grading. This gives us a classification of all almost complex structures over an

algebra A. However, since at present we have no interesting examples of such

structures, we will not pursue this observation here.

5.1.2 Covariant Almost Complex Structures

We say that an almost complex structure Ω(•,•) for a quantum homogeneous space

M = GH is left-covariant if we have

∆L(Ω(p,q)) ⊆ G⊗ Ω(p,q), (for all (p, q) ∈ N2).

As a little thought will confirm, an almost complex structure will be covariant if,

and only if,

∆L(Ω(1,0)) ⊆ G⊗ Ω(1,0), ∆L(Ω(0,1)) ⊆ G⊗ Ω(0,1).

For covariant almost complex structures we will of course have each Ω(p,q) contained

as an object in G
MMM . For the special case that Ω1(M) is an object in G

MM0, we

denote

V
⊗(p,q)
M := σp+q(ΦM(Ω⊗(p,q))).

Clearly, it follows from the definition of an almost complex structure that we have

V k
M =

⊕
p+q=k V

(p,q)
M . Another important fact is that since ∧ is clearly a morphism

in G
MM0, we have a corresponding morphism ΦM(∧) in MH

0 . Moreover, since we

have given ΦM the structure of a monoidal functor, we can consider ΦM(∧) as a

morphism

ΦM(∧) : (ΦM(Ω1(M)))⊗2 → ΦM(Ω2(M)).

We use this to define a new morphism

∧σ := σ2 ◦ ΦM(∧) ◦ (σ2)−1 : V ⊗2
M → V 2

M .

The following corollary shows that for covariant complex structures, we have a

convenient reformulation of Theorem 5.1.2.
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Corollary 5.1.3 For a left-covariant first-order differential calculus Ω1(M), with

canonical framing (VM , s), we have that:

1. Decompositions of Ω1(M) = Ω(1,0) ⊕ Ω(0,1) into left-covariant bimodules cor-

respond to decompositions of VM = V
(1,0)
M ⊕ V (0,1)

M into right-covariant right

comodules.

2. Such a decomposition extends to an N2
0-grading of the maximal prolonga-

tion of Ω1(M) if, and only if, I2
M is homogeneous with respect to the decom-

position

V ⊗2
M = V

⊗(2,0)
M ⊕ V ⊗(1,1)

M ⊕ V ⊗(0,2)
M . (5.8)

3. If Ω1(M) is contained as an object in the category G
MM0, then condition 3

of the almost complex structure definition is satisfied if, and only if, we have

isomorphisms

∧σ : V
(1,0)
M ⊗ V (0,1)

M → V
(1,1)
M , ∧σ : V

(0,1)
M ⊗ V (1,0)

M → V
(1,1)
M . (5.9)

Proof. Since Φ obeys (2.4), every covariant bimodule decompositions of Ω1(M)

induces a covariant right module decomposition of Φ(Ω1(M). Conversely, since Ψ

obeys (2.4), every covariant right module decomposition of Φ(Ω1(M)) induces a

covariant bimodule decomposition of Ω1(M). This gives an equivalence between

decompositions of Ω1(M) and decompositions of Φ(Ω1(M)). The first part of the

proof now follows from the fact that s is an isomorphism in G
MMM , and σ is an

isomorphism in MH
M .

Turning now to the second part of the proof, we see that, using an analogous argu-

ment to the one above, one can establish an equivalence between decompositions of

(Ω1(M))⊗M2 and decompositions of V ⊗2
M . Moreover, the decomposition of (Ω1(M))

given in (5.2), corresponds to the decomposition of V ⊗2
M given in (5.8). Properties

(2.4) and (2.5) of the functors Ψ and Φ now imply that d(N) is homogeneous with

respect to (5.2) if, and only if, I2
M is homogeneous with respect to (5.2). Part 2 of

the corollary now follows from part 2 of Theorem 5.1.2.

For the last part of the proof, we note that since σ2 is an isomorphism, the func-

torial properties of ΦM imply that the maps in (5.3) are isomorphisms if, and only

72



if, the maps in (5.9) are isomorphisms. Part 3 of the corollary now follows from

part 3 of Theorem 5.1.2. �

Finally, we come to finding an easily verifiable reformulation of the ∗-condition.

As for first order differential ∗-calculi, the fact that the ∗-map is not a bimodule

map means that Takeuchi’s equivalence will be of no use here. However, just as

for first order differential ∗-calculi, there exists a convenient direct reformulation.

Proposition 5.1.4 Let Ω1(M) be a first order differential ∗-calculus in G
MMM ,

and let Ω(•,•) be an N2
0-grading for its maximal prolongation Ω•(M) satisfying the

first condition of an almost complex structure. If Ω1(G) is a framing calculus for

Ω1(M), with respect to which

Ω(1,0)G ⊆ GΩ(1,0), Ω(0,1)G ⊆ GΩ(0,1), (5.10)

then we have ∗(Ω(p,q)) = Ω(q,p) if, and only if,

{S(m)∗ |m ∈ V (1,0)} = V (0,1). (5.11)

Proof. From (2.12), we see that if (5.10) and (5.11) holds, then

(G⊗ V (1,0))∗ = G⊗ V (0,1).

From this it easily follows that ∗(Ω(1,0)) = Ω(0,1). Part 4 of Theorem 5.1.2 now

implies that ∗(Ω(p,q)) = Ω(q,p).

Conversely, let us assume that there exists a v ∈ V (1,0) such that S(v)∗ /∈ V (0,1).

With respect to the choice of framing calculus, we have

(s−1(1⊗ v))∗ = s−1((1⊗ v)∗) = s−1(1⊗ S(v)∗) /∈ s−1(G⊗ V (0,1)) = GΩ(0,1).

(5.12)

However, we must also have s−1(1⊗ v) =
∑

i aiωi, for some ai ∈ G,ωi ∈ Ω(1,0). If

we had an almost complex structure, then ω∗i would be contained in Ω(0,1), for all

i, giving us that ∑
i

(aiωi)
∗ =

∑
i

(ωi)
∗a∗i ∈ Ω(1,0)G ⊆ GΩ(0,1).

Since this contradicts (5.12), we are forced to conclude that, for some ωi, we have

ω∗i /∈ Ω(0,1), and consequently, that we do not have an almost complex structure.

�
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5.2 Integrability and Complex Structures

In this section we will show how the classical notion of integrability transfers di-

rectly to the noncommutative setting. Mirroring the classical picture, we demon-

strate how integrability of an almost complex structure implies the existence of a

quantum Dolbeault double complex. Moreover, with respect to a choice of framing

calculus, we give a simple set of sufficient criteria for a complex structure to be

integrable.

5.2.1 Integrability for a General Almost Complex Struc-

ture

In this subsection we discuss integrability for complex structures without the as-

sumption of covariance. We begin with two lemmas whose proofs carry over di-

rectly from the classical case. (It should be noted that these results have already

appeared in [6], where one can find a more comprehensive treatment of integrability

in the noncommutative setting.)

Lemma 5.2.1 If
⊕

(p,q)∈N2 Ω(p,q) is an almost-complex structure for a total calcu-

lus Ω•(A) over an algebra A, then the following two conditions are equivalent:

1. d(Ω(1,0)) ⊆ Ω(2,0) ⊕ Ω(1,1),

2. d(Ω(0,1)) ⊆ Ω(1,1) ⊕ Ω(0,2).

Proof. For any ω ∈ Ω(0,1), the properties of an almost complex structure imply

that ω∗ ∈ Ω(1,0). Thus if we assume 1, it must hold that dω∗ ∈ Ω(2,0)⊕Ω(1,1). This

in turn implies that dω = (dω∗)∗ ∈ Ω(1,1) ⊕ Ω(0,2), showing us that 2 holds. The

proof in other other direction is entirely analogous. �

If these conditions hold for an almost-complex structure, then we say that it is

integrable. We will usually call an integrable almost-complex structure a complex

structure. (To see how the formulation of integrability that we have generalised is

equivalent to the more standard formulation, see [30]).

With a view to exploring some of the consequences of integrability, we now in-

troduce two new operators: For
⊕

(p,q)∈N2 Ω(p,q) an almost complex structure, we
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define ∂, and ∂, to be the unique order (1, 0), and (0, 1) respectively, homogeneous

operators for which

∂|Ω(p,q) = projΩ(p+1,q) ◦ d, ∂|Ω(p,q) = projΩ(p,q+1) ◦ d,

where projΩ(p+1,q) , and projΩ(p,q+1) , are the projections onto Ω(p+1,q), and Ω(p,q+1)

respectively.

Lemma 5.2.2 If an almost complex structure
⊕

(p,q)∈N2
0

Ω(p,q) is integrable, then

1. d = ∂ + ∂;

2. (
⊕

(p,q)∈N2 Ω(p,q), ∂, ∂) is a double complex;

3. ∂(a∗) = (∂a)∗, and ∂(a∗) = (∂a)∗, for all a ∈ A;

4. both ∂ and ∂ satisfy the graded Liebniz rule.

Proof. We begin by proving that d = ∂ + ∂: Since Ω(p,q) is spanned by products

of p elements of Ω(1,0), and q elements of Ω(0,1), it follows from the Liebniz rule and

the assumption of integrability that

dω ∈ Ω(p+1,q) ⊕ Ω(p,q+1), (for all ω ∈ Ω(p,q)).

Thus, we must have that d = ∂ + ∂.

Let us now move on to the second part of the proof: Since d2 = 0, we have

0 = d2 = (∂ + ∂) ◦ (∂ + ∂) = ∂2 + (∂ ◦ ∂ + ∂ ◦ ∂) + ∂
2
.

For any ω ∈ Ωk(M), it is easy to see that any non-zero images of ω under ∂2,

∂∂ + ∂∂, and ∂
2
, would lie in complementary subspaces of Ωk+2(M). Thus, it

must hold that

∂2 = 0, ∂ ◦ ∂ = −∂ ◦ ∂, ∂
2

= 0,

showing that we have a double complex.

For the third part of the proof, we first note that since d(a∗) = (da)∗, we have

∂(a∗) + ∂(a∗) = (∂a)∗ + (∂a)∗.
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Now ∂(a∗) and (∂a)∗ both lie in Ω(1,0), while ∂(a∗) and (∂a)∗ both lie in Ω(0,1). Since

these are again complementary subspaces of Ω1(M), we must have ∂(a∗) = (∂a)∗,

and ∂(a∗) = (∂a)∗.

The fourth part of the lemma is an analogously consequence of the Liebniz rule of

d. �

Thus we see that integrability in the noncommutative setting has many of the

same properties as classical integrability. Inspired by the classical case we call the

double complex (
⊕

(p,q)∈N2 Ω(p,q), ∂, ∂) the quantum Dolbeault double complex of an

integrable complex structure.

5.2.2 Integrability for a Covariant Complex Structure

Directly verifying that an almost complex structure is integrable can lead to quite

involved calculations. So we would like to use the assumption of covariance to

find a simple set of sufficient criteria (analogous to our method for verifying the

existence of an almost-complex structure given in the previous section). This will

require us to make a choice of linear complement V ⊥M to ι̂(VM) in Λ1
G. With respect

to this choice of complement, we will write

(V ⊗2
M )⊥ := (ι̂(VM)⊗ V ⊥M )⊕ (V ⊥M ⊗ ι̂(VM))⊕ (V ⊥M )⊗2,

for the corresponding linear complement to ι̂(VM)⊗2 in (Λ1
G)⊗2. Moreover, we will

say that a subset {mj}j ⊆ M+ descends to a spanning set of V (1,0), if we have

spanC{mj}j = V (1,0). We state the result in terms of the holomorphic cotangent

space, however, as is clear from the proof, an exactly analogous result holds for

the anti-holomorphic cotangent space V (0,1).

Proposition 5.2.3 Let Ω(•,•) be a covariant almost-complex structure over

M = GH a quantum homogeneous space, V ⊥M a choice of linear complement to

ι̂(VM) in Λ1
G, and {mj}j a subset of M+ that descends to a spanning set of V (1,0).

It holds that Ω(•,•) is integrable if, for all mj ∈ {mj}j, and v ∈ Λ1
G, we have that

(v / S(mj
(1)))⊗ (mj

(2))
+ ∈ ι̂(V

⊗(2,0)
M )⊕ ι̂(V ⊗(1,1)

M )⊕ (V ⊗2
M )⊥. (5.13)
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Proof. It is clear that d(Ω(1,0)) is contained in Ω(2,0) ⊕ Ω(1,1) if we have

ΦM(d(Ω(1,0))) ⊆ ΦM(Ω(2,0))⊕ ΦM(Ω(1,1)). (5.14)

We will establish the proposition by demonstrating that this happens when (5.13)

holds: From (2.11) it is clear that

Ω(1,0) = s−1((G⊗ V (1,0))H) = {
∑
j

f jS(mj
(1))dm

j
(2) |

∑
j

f j ⊗mj ∈ (G⊗ V (1,0))H}.

This in turn implies that

ΦM(d(Ω(1,0))) = {
∑
j

d(f jS(mj
(1)))⊗ d(mj

(2)) |
∑
j

f j ⊗mj ∈ (G⊗ V (1,0))H},

giving us the equality

σ2(ΦM(d(Ω(1,0))) = {
∑
j

(f jS(mj
(1)))

+ ⊗ (mj
(2))

+ |
∑
j

f j ⊗mj ∈ (G⊗ V (1,0))H}.

Now as a little thought will confirm, this means that (5.14) holds if, for each such∑
j (f jS(mj

(1)))
+ ⊗ (mj

(2))
+, we have that its image in (Λ1

G)⊗2 under ι̂⊗2 satisfies∑
j

(f jS(mj
(1)))

+ ⊗ (mj
(2))

+ ∈ ι̂(V
⊗(2,0)
M )⊕ ι̂(V ⊗(1,1)

M ).

As a little more thought will confirm, this will hold if, for each j, we have

(f jS(mj
(1)))

+ ⊗ (mj
(2))

+ ∈ ι̂⊗2(V
⊗(2,0)
M )⊕ ι̂⊗2(V

⊗(1,1)
M )⊕ (V ⊗2

M )⊥.

That (5.14) is implied by the requirements of the proposition now follows from the

identity

(f jS(mj
(1)))

+ ⊗ (mj
(2))

+ = (f jS(mj
(1)))⊗ (mj

(2))
+.

�

5.2.3 Integrability and an Alternative Construction of the

Maximal Prolongation

For an almost complex structure Ω(•,•), the pairs (Ω(1,0), ∂) and (Ω(0,1), ∂) are each

first order differential calculi. Thus, one can consider their maximal prolongations.
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Let us denote the k-forms of the maximal prolongation of Ω(1,0) by (Ω(1,0))k, and

the k-forms of the maximal prolongation of Ω(1,0) by (Ω(0,1))k. It is natural to ask

when we have

(Ω(1,0))k = Ω(k,0), (Ω(0,1))k = Ω(0,k). (5.15)

The following result tells us that this condition is in fact equivalent to integrability.

Lemma 5.2.4 For an almost complex structure Ω(•,•), the equalities in (5.15) are

equivalent to each other, and to integrability.

Proof. Let {ω−i }i, be a subset of Ω1
u(M), such that spanC{ω−i } = Ω(0,1), where by

abuse of notation we have used the same symbol for ω−i , as for its coset in Ω1(M).

If NM is the sub-bimodule of Ω1
u(M) corresponding to Ω1(M), then it is clear that

the sub-bimodule of Ω1
u(M) corresponding to (Ω(1,0), ∂) is given by

N+
M := NM + spanC{ω−i }i.

Now from the definition of the maximal prolongation, we have that

(Ω(1,0))k = (Ω(1,0))⊗Mk/
〈
∂N+

M

〉
k
,

while Theorem 5.1.2 tells us that

Ω(k,0) = Ω⊗(k,0)/ 〈dNM〉(k,0) = (Ω(1,0))⊗Mk/ 〈dNM〉(k,0) .

It is easy to see that〈
∂N+

M

〉
k

=
⊕

a+b=k−1

(Ω(1,0))⊗Ma ⊗M (∂N+
M)⊗M (Ω(1,0))⊗M b

and

〈dNM〉(0,k) =
⊕

a+b=k−1

(Ω(1,0))⊗Ma ⊗M 〈dNM〉(1,0) ⊗M (Ω(1,0))⊗M b.

Thus, the first equality in (5.15) is equivalent to ∂N+
M = 〈dNM〉(1,0) . As a little

careful thought will confirm, we have

〈dNM〉(1,0) = ∂NM ,
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Thus, the first equality in (5.15) amounts to having ∂ω−i = 0, for all i. But this

holds if, and only if, our almost complex structure is integrable.

That the second equality in (5.15) is equivalent to integrability is proved in exactly

the same way.

�

5.3 The Heckenberger–Kolb Calculus

In this section we apply the machinery developed in this chapter to the Heckenberger–

Kolb calculus. We show that the total calculus Ω•(CPN−1) has an almost complex,

and that this almost complex structure is integrable. We also demonstrate that

the holomorphic top form, and the anti-holomorphic top form, are isomorphic to

the line bundles EN , and E−N , respectively. Finally, we show explicitly how our

construction of the de Rham complex relates to that of Heckenberger and Kolb.

5.3.1 An Almost Complex Structure

Consider the canonical linear decomposition VCPN−1 = V (1,0) ⊕ V (0,1), where

V (1,0) := spanC{e+
i | i = 2, . . . , N}, V (0,1) := spanC{e−i | i = 2, . . . , N}.

The relations in (4.10) tell us that this is a decomposition into right submodules.

In fact, as the following lemma shows, it induces an almost complex structure on

Ω•q(CP
N−1).

Lemma 5.3.1 The decomposition VCPN−1 = V (1,0)⊕V (0,1) is a decomposition into

right-covariant right submodules, and the corresponding decomposition of Ω1
q(CP

N−1)

extends to an almost complex structure for Ω•q(CP
N−1).

Proof. That the decomposition is right-covariant is clear from the following cal-

culations: For zi1 we have

∆CPN−1(zi1) = (id⊗ S) ◦ (id⊗ αN)(
N∑

a,b=1

ua1S(u1
b)⊗ uiaS(ub1))

79



= (id⊗ S)(
N∑
a=2

ua1S(u1
1)⊗ αN(uiaS(u1

1))

=
N∑

a,b=2

za1 ⊗ S(αN(uia)) detN ,

while for z1i we have

∆CPN−1(z1i) = (id⊗ S) ◦ (id⊗ αN)(
N∑

a,b=1

ua1S(u1
b)⊗ u1

aS(ubi))

= (id⊗ S)(
N∑
b=2

u1
1S(ub1)⊗ αN(u1

1S(ub1))

=
N∑

a,b=2

za1 ⊗ S(αN(S(ub1))) det−1
N .

That I2
CPN−1 is homogeneous with respect to the decomposition from part 2 of

Corollary 5.1.3, follows directly from Proposition 4.3.1, as does the fact the maps

in (5.9) are isomorphisms. That the first two conditions of an almost complex

structure are satisfied now follows directly from Proposition 4.3.1.

We now come to the third condition of an almost complex structure. That (5.10)

holds follows directly from the module relations given in (3.17). Moreover, (5.11)

follows from the fact that for i = 2, . . . , N , we have

S(ui1)∗ = S−1((ui1)∗) = S−1 ◦ S(u1
i ) = u1

i = e−i−1 ∈ V (0,1),

where we have used the standard Hopf ∗-algebra identity ∗ ◦ S = S−1 ◦ ∗. Propo-

sition 5.1.4 now directly implies that the third, and final, condition of an almost

complex structure holds. �

Classically, we have that Ω(N−1,0) is isomorphic to E−N , and that Ω(0,N−1) is isomor-

phic to E−N . As a consequence, it also holds that CPN−1 is orientable, which is to

say that Ω(N−1,N−1) is isomorphic to Cq[CP
N−1]. These are very important prop-

erties and one would naturally hope that they generalise to the quantum setting.

The following proposition tells us that this is indeed the case.
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Proposition 5.3.2 It holds that: Ω(N−1,0) ' E−N , Ω(0,N−1) ' EN , and, as a direct

consequence, that

Ω(N−1,N−1)(CPN−1) ' Cq[CP
N−1].

Proof. We begin with the anti-holomorphic forms, and the action of ∆N−1
M on

V (N−1,0) ' Ce−1 ∧ · · · e−N−1:

∆N−1
M (e−1 ∧ · · · ∧ e−N−1) =

N−1∑
l=1

N−1∑
kl=1

e−k1 ∧ · · · ∧ e
−
kN−1
⊗ S2(uk11 ) · · ·S2(u

kN−1

N−1 ) detN−1

=
N−1∑
l=1

N−1∑
kl=1

e−k1 ∧ · · · ∧ e
−
kN−1
⊗ S2(uk11 · · ·u

kN−1

N−1 ) detN−1 .

Since any summand with a repeated basis element in the first tensor factor will be

zero, we must have

∆N−1
M (e−1 ∧ · · · e−N−1) =

∑
π∈SN−1

e−π(1) ∧ · · · ∧ e
−
π(N−1) ⊗ S

2(u
π(1)
1 · · ·uπ(N−1)

N−1 ) detN−1 .

Now as a little thought will confirm e−π(1)∧· · ·∧e
−
π(N−1) = (−q)sgn(π)e−1 ∧· · ·∧e−N−1.

Hence, since ∑
π∈SN−1

(−q)sgn(π)u
π(1)
1 · · ·uπ(N−1)

N−1 = det,

we must have

∆N−1
M (e−1 ∧ · · · e−N−1) = e−1 ∧ · · · ∧ e−N−1 ⊗ S

2(det) detN−1

= e−1 ∧ · · · ∧ e−N−1 ⊗ detN .

Thus, Ω(N−1,0)(CPN−1) ' EN as one would have hoped.

Let us now turn to the anti-holomorphic forms. We begin with the action of ∆N−1
M

on V (0,N−1) ' Ce+
1 ∧ · · · e+

N−1:

∆N−1
M (e+

1 ∧ · · · ∧ e+
N−1) =

N−1∑
l=1

N−1∑
kl=1

e+
k1
∧ · · · ∧ e+

k1−N
⊗ S(u1

k1
) · · ·S(uN−1

kN−1
) det1−N

=
N−1∑
l=1

N−1∑
kl=1

e+
k1
∧ · · · ∧ e+

kN−1
⊗ S(uN−1

kN−1
· · ·u1

k1
) det1−N .

81



Now since any summand with a repeated basis element in the first tensor factor

will be zero, we must have

∆N−1
M (e+

1 ∧ · · · e+
N−1) =

∑
π∈SN−1

e+
π(1) ∧ · · · ∧ e

+
π(1−N) ⊗ S(uN−1

π(N−1) · · ·u
1
π(1)) detN−1 .

As a little thought will confirm e+
π(1) ∧ · · · ∧ e

+
π(N−1) = (−q)−sgn(π)e+

1 ∧ · · · ∧ e+
N−1,

for any π ∈ SN−1. Thus, since it is clear that∑
π∈SN−1

(−q)−sgn(π)uN−1
π(N−1) · · ·u

1
π(1) = det,

we must have

∆N−1
M (e+

1 ∧ · · · e+
N−1) = e+

1 ∧ · · · ∧ e+
N−1 ⊗ S(det) det1−N

= e+
1 ∧ · · · ∧ e+

N−1 ⊗ det−N .

Thus, as we would have hoped, it holds that Ω(0,N−1)(CPN−1) ' E−N . An exactly

analogous proof can be used to establish that Ω(N−1,0)(CPN−1) is isomorphic to

EN .

Finally, we note that the fact that Ω(N−1,N−1)(CPN−1) is isomorphic to Cq[CP
N−1]

is a direct consequence of these two results. �

5.3.2 Integrability of the Almost-Complex Structure

Finally, we come to establishing integrability for this almost complex structure

using Proposition 5.2.3.

Proposition 5.3.3 The almost-complex structure Ω
(•,•)
q (CPN−1) is integrable.

Proof. We will establish the proposition by showing that (5.13) holds for the cal-

culus, where as a choice of complement to ι̂⊗2(V ⊗2
CPN−1) in Λ1

SUN
, we take V ⊥CPN−1 =

Ce0.
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For zi1 = ui1S(u1
1) ∈ V (1,0), with i = 2, . . . , N , we have, for k = 1, . . . , N − 1, that

(e+
k / S((zi1)(1)))⊗ ((zi1)(2))+ =

N∑
a,b=1

(e+
k / S(uiaS(ub1)))⊗ (ua1S(u1

b))
+

=
N∑

a,b=1

q2(b−1)(e+
k / (ub1S(uia)))⊗ (ua1S(u1

b))
+

=
N∑
a=1

(e+
k / (u1

1S(uia)))⊗ (ua1S(u1
1))+

=
N∑
a=2

(e+
k / S(uia))⊗ ua1

=(e+
k / S(uii))⊗ ui1 + (e+

k / S(uik+1))⊗ uk+1
1 .

From the relations given in Section 3.3, it is clear that (e+
k / S(uii)) ⊗ ui1 is equal

to a linear multiple of e+
k ⊗ e

+
i−1, while (e+

k / S(uik+1)) ⊗ uk+1
1 is equal to a linear

multiple of e+
i−1⊗ e+

k . Thus, we have that (e+
k /S((zi1)(1))⊗ ((zi1)(2))+ is contained

in ι̂(V (2,0)).

Moreover, for e−k , with k = 1, . . . , N − 1, we have

(e−k / S((zi1)(1)))⊗ ((zi1)(2))+ =
N∑

a,b=1

(e−k / S(uiaS(ub1)))⊗ (ua1S(u1
b))

+

=
N∑

a,b=1

q2(b−1)(e−k / (ub1S(uia)))⊗ (ua1S(u1
b))

+

=
N∑
a=1

(e−k / (u1
1S(uia)))⊗ (ua1S(u1

1))+

=
N∑
a=2

(e−k / S(uia))⊗ ua1

=(e−k / S(uii))⊗ ui1 + δki

N∑
a=i+1

(e+
k / S(uka))⊗ ua1.

From the relations given in Lemma 3.2.3, it is clear that (e−k / S(uii))⊗ ui1 is equal

to a linear multiple of e−k ⊗e
+
i−1, while (e−k /S(uka))⊗ua1 is equal to a linear multiple

of e−a−1 ⊗ e+
a−1. Thus, we have that (e+

k / S((zi1)(1)) ⊗ ((zi1)(2))+ is contained in

ι̂(V (1,1)).
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Finally, we come to e0. To simplify our calculations we identify Cq[SUN ]/ker(Q)

and Λ1
SUN

, just as in Lemma 3.2.3. With respect to this identification, (3.21)

implies that e0 = u1
1 − 1 = (q2− 2

N − 1)1. Denoting for sake of presentation µ :=

(q2− 2
N − 1), we get that

e0 / S((zi1)(1)))⊗ ((zi1)(2))+ = µS((zi1)(1))⊗ ((zi1)(2))+

= µ ((S((zi1)(1))+ ⊗ ((zi1)(2))+ − 1⊗ zi1)

= µ (S((zi1)(1))+ ⊗ ((zi1)(2))+ − e0 ⊗ zi1,

which, by our earlier calculations, is contained in ι̂(V ⊗(2,0))⊕ ι̂(V ⊗(1,1))⊕Ce0.

Hence, the requirements of (5.13) are satisfied, and our almost-complex structure

is in fact a complex structure. �

5.3.3 Relationship with the Heckenberger–Kolb Construc-

tion

We will finish this chapter by explicitly demonstrating how the q-deformed de

Rham complex we have constructed for the quantum projective spaces relates

to the q-deformed de Rham complex constructed by Heckenberger and Kolb in

[27, 28]. We begin by recalling the celebrated classification result, for the special

case of the quantum projective spaces. Just before, however, we will need to

recall a simple definition: A left-covariant first-order calculus over an algebra A is

called irreducible if it does not possess any non-trivial quotients by a left-covariant

A-bimodule. We now state the result:

Theorem 5.3.4 [27] There exist exactly two non-isomorphic finite-dimensional

irreducible left-covariant first-order differential calculi over quantum projective

(N − 1)-space. Each has dimension N − 1.

Since both Ω
(1,0)
q and Ω

(0,1)
q have dimension N − 1, they must both be irreducible

(since otherwise there would exist an irreducible left-covariant calculus of dimen-

sion strictly less than N − 1 in contradiction of the theorem). Moreover, it is easy

to see that Ω
(1,0)
q and Ω

(0,1)
q correspond to different ideals of Cq[CP

N−1]+, and

consequently are non-isomorphic. This gives us the following corollary:

Corollary 5.3.5 The two calculi identified in Theorem 5.3.4 are Ω
(1,0)
q and Ω

(0,1)
q .
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Heckenberger and Kolb constructed a total differential calculus extending the di-

rect sum calculus Ω
(1,0)
q ⊕ Ω

(0,1)
q as follows: They took the maximal prolongations

of Ω
(1,0)
q , and Ω

(0,1)
q , and defined

Ωk(CPN−1)q :=
⊕
a+b=k

(Ω(1,0)
q )a ⊗Cq [CPN−1] (Ω(0,1)

q )b,

where (Ω
(1,0)
q )a is the space of a-forms of Ω

(1,0)
q , and (Ω

(0,1)
q )b is the space of b-forms

of Ω
(0,1)
q . They then showed that the partial derivatives ∂ and ∂ could be extended

to operators on the direct sum ⊕2(N−1)
k=1 giving it the structure of a double complex.

That Heckenberger and Kolb’s construction of Ωk(CPN−1)q is isomorphic to ours

follows from Lemma 5.2.4 and the integrability of our calculus. That the two

constructions of the exterior derivative agree follows from the fact that there exists

only one exterior derivative on the maximal prolongation of a first-order differential

calculus.
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Chapter 6

Holomorphic Structures

As discussed in the introduction, one of the primary motivations for studying non-

commutative complex structures is the need for a general framework in which to

understand noncommutative holomorphic vector bundles. In this chapter we fol-

low [6, 36] and formulate a definition of holomorphic vector bundle based upon the

classical Koszul–Malgrange characterization of holomorphic structures. We then

specialise to the quantum homogeneous space case, and formulate noncommuta-

tive versions of the basic facts underlying geometric representation theory. This

general picture is then realised in detail for the specific case of the negative charge

quantum line bundles over the quantum projective spaces.

6.1 Holomorphic Structures and Corepresenta-

tions

In this section we will discuss three topics: First we present a general framework

for noncommutative holomorphic structures; then we consider a very tractable

type of holomorphic structure which generalises the classical notion of a globally

generated holomorphic vector bundle; finally we specialise to the quantum homo-

geneous space setting and establish direct links with the corepresentation theory

of quantum groups.
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6.1.1 Noncommutative Holomorphic Sructures

For a complex structure Ω(•,•) over an algebra A, we define a holomorphic element

of A to be an element of the subalgebra

A(1,0) := {∂(a) = 0 | a ∈ A}.

This of course directly generalises the classical notion of a holomorphic function.

Generalising the classical notion of a holomorphic section of a vector bundle will

prove a little more involved: An anti-holomorphic covariant derivative for a right

A-module E , is a linear map ∇ : E → E ⊗A Ω(0,1), such that

∇(ea) = ∇(e)a+ e⊗A ∂(a), (a ∈ A, e ∈ E).

Now anti-holomorphic covariant derivatives can easily be constructed from ordi-

nary covariant derivatives: Given a covariant derivative ∇ : E → E ⊗A Ω1(A), we

have a canonical decomposition ∇ = ∇(1,0) + ∇(0,1), where for Π(1,0), and Π(0,1),

the projections onto Ω(1,0), and Ω(0,1), respectively, we have denoted

∇(1,0) := (id⊗ Π(1,0)) ◦ ∇, ∇(0,1) := (id⊗ Π(0,1)) ◦ ∇.

Since Π(0,1) is a right A-module map, we must have

∇(0,1)(ea) = (id⊗ Π(0,1)) ◦ ∇(ea) = (id⊗ Π(0,1))(∇(e)a+ e⊗A da)

= ∇(0,1)(e)a+ e⊗A (Π(0,1)(da)) = ∇(0,1)(e)a+ e⊗A ∂a.

Hence, ∇(0,1) is an anti-holomorphic covariant derivative.

The following important lemma is a direct generalisation of the classical case.

Lemma 6.1.1 Let ∇ be an anti-holomorphic covariant derivative for a right A-

module E. For k ∈ N0, the map

∇ : E ⊗A Ω(0,k) → E ⊗A Ω(0,k+1), e⊗A ω 7→ ∇(e) ∧ ω + e⊗A ∂ω,

is a well-defined extension of ∇. Moreover, the operator

∇ 2
: E → E ⊗A Ω(0,2),

which we call the curvature of ∇, is a right A-module map.

87



Proof. First we show that the map is well-defined: For a ∈ A, we have

∇(ea⊗ ω) = ∇(ea) ∧ ω + (ea)⊗ ∂ω
= ∇(e)a ∧ ω + e⊗ ∂a ∧ ω + (ea)⊗ ∂ω
= ∇(e) ∧ (aω) + e⊗ ∂a ∧ ω + e⊗ a∂ω
= ∇(e) ∧ (aω) + e⊗ ∂(aω)

= ∇(e⊗ aω).

Thus, we see that this extension of ∇ is indeed well-defined.

To show that ∇2
is a left A-module map, we first need to note that, for

t :=
∑

i e
i ⊗A νi ∈ E ⊗A Ω(0,k), and ω ∈ Ωl, we have

∇(t ∧ ω) =
∑
i

∇(ei ⊗A νi ∧ ω) =
∑
i

∇(ei)⊗A νi ∧ ω +
∑
i

ei ⊗A ∂(νi ∧ ω)

=
∑
i

∇(ei)⊗A νi ∧ ω +
∑
i

ei ⊗A ∂νi ∧ ω + (−1)l
∑
i

ei ⊗A νi ∧ ∂ω

=
∑
i

∇(ei ⊗A νi) ∧ ω + (−1)l
∑
i

ei ⊗A νi ∧ ∂ω

= ∇(t) ∧ ω + (−1)lt ∧ ∂ω.

With this result in hand, we can now see that

∇2
(ea) = ∇(∇(e)a+ e⊗A ∂a) = ∇2

(e)a−∇(e) ∧ ∂a+∇(e) ∧ ∂a+ e⊗A ∂
2
a

= ∇2
(e)a.

Thus, we see that ∇2
(e) is indeed a left A-module map. �

If the curvature of a holomorphic covariant derivative ∇ is equal to the zero map,

then we say that ∇ is flat. For any complex structure Ω(•,•) over an algebra A, a

holomorphic vector bundle over A is a pair (E ,∇), where E is a right A-module,

and ∇ is a flat holomorphic covariant derivative for E . We call an element e ∈ E
holomorphic if ∇(e) = 0, and denote the space of holomorphic elements by E (1,0).

The Koszul–Malgrange theorem tells us that this is a direct generalisation of the

classical definition of the space of holomorphic sections of a holomorphic vector

bundle. (See [41, 6] for a more detailed presentation of this correspondence.)
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6.1.2 Globally Generated Holomorphic Vector Bundles

In general, proving that a covariant derivative is flat can lead to quite tedious

calculations. There does, however, exist a special class of covariant derivatives for

which the situation is much simpler: For an anti-holomorphic covariant derivative

∇ : E → E ⊗ Ω(0,1), we call a subspace E0 ⊆ E a holomorphic generating set if

E0 ⊆ ker(∇), and E0 generates E as a right A-module. The importance of such

subspace is demonstrated by the following lemma:

Lemma 6.1.2 Let ∇ : E → E⊗AΩ(0,1) be an anti-holomorphic covariant derivative

for a right A-module E. If there exists a holomorphic generating set for ∇, then it

is flat, and moreover,

spanC{ea | e ∈ E0, a ∈ ker(∂)} ⊆ E (1,0). (6.1)

Proof. Since E0 is a generating set of E as a right A-module, we have that every

element of E is of the form
∑

i e
iai, for ei ∈ E0, and a ∈ A. Now from Lemma

6.1.1, we have

∇2
(
∑
i

eiai) =
∑
i

∇2
(ei)ai = 0, (6.2)

giving us that ∇2
= 0.

Let now consider the identity

∇(
∑
i

eiai) =
∑
i

∇(ei)ai +
∑
i

ei ⊗A ∂ai =
∑
i

ei ⊗A ∂ai.

Clearly, ∇(
∑

i e
iai) is zero if ai ∈ ker(∂), for each i. �

We will call a holomorphic vector bundle for which there exists a holomorphic

generating set a globally generated holomorphic vector bundle. This definition

generalises the classical notion of a globally generated holomorphic vector bundle

(see [57] for details).

6.1.3 Covariant Holomorphic Structures and Corepresen-

tations

Let M = GH be a quantum homogeneous space endowed with a covariant complex

structure Ω(•,•). Since (Ω(0,1), ∂) is a left-covariant first-order differential calculus,
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it must hold that

∆L ◦ ∂ = (id⊗ ∂) ◦∆L.

This implies that, for a holomorphic element m ∈M (1,0), we have

(id⊗ ∂) ◦∆L(m) = ∆L ◦ ∂(m) = 0. (6.3)

Hence, ∆L(M (1,0)) ⊆ G⊗M (1,0), or in other words, M (1,0) is a right G-comodule.

Let us now try to generalise this fact for objects E in G
MMM . Denoting the

left G-coaction of E by ∆L, we say that an anti-holomorphic covariant derivative

∇ : E → E ⊗M Ω(0,1) is homogeneous if it holds that

(id⊗∇) ◦∆L = ∆⊗2
L ◦ ∇. (6.4)

The following result generalises the G-comodule structure of M (1,0):

Lemma 6.1.3 If an anti-holomorphic covariant derivative ∇ : E → E ⊗M Ω(0,1) is

homogeneous, then its space E (1,0) of holomorphic elements is a right G-comodule.

Moreover, if E has a holomorphic generating set, then this is an if, and only

if, statement.

Proof. For e ∈ E (1,0), we have

(id⊗∇) ◦∆L(e) = ∆⊗2
L ◦ ∇(e) = 0.

Hence, ∆L(E (0,1)) ⊆ G⊗ E (1,0), and E (1,0) is a right G-comodule.

Let us now assume the existence of a holomorphic generating set E0. For a ∈ A,

and e ∈ E0, we have

∆⊗2
L ◦ ∇(ea) = ∆⊗2

L (e⊗A ∂a) = e(−1)a(1) ⊗ e(0) ⊗A ∂a(2),

and

(id⊗∇) ◦∆L(ea) = e(−1)a(1) ⊗ e(0)a(2) = e(−1)a(1) ⊗∇(e(0)a(2))

= e(−1)a(1) ⊗∇(e(0))a(2) + e(−1)a(1) ⊗ e(0) ⊗A ∂a(2).

90



Now if E (1,0) is a left G-comodule, then ∇(e(0)) = 0, giving us that

∆⊗2
L ◦ ∇(ea) = (id⊗∇) ◦∆L(ea).

Hence, ∇ is homogeneous. �

The theory of quantum principal bundles provides us with an important method for

constructing homogeneous anti-holomorphic covariant derivatives for line bundles:

We define a covariant derivative ∇ : E → E ⊗A Ω1(M) to be homogeneous if it

satisfies the obvious analogue of (6.4):

∆⊗2
L ◦ ∇ = (id⊗∇) ◦∆L.

Now if the complex structure on M is covariant, then it is easy to see that the

holomorphic part of ∇ will be a homogeneous anti-holomorphic covariant deriva-

tive. Moreover, if M = GH is a quantum principal homogeneous space, then it

is easy to see that any covariant derivative for E induced by a strong connection

Π : Ω1(G)→ Ω1(G) will be homogeneous.

We finish this section with a short lemma linking the definitions of a strong con-

nection and a framing calculus.

Lemma 6.1.4 For a quantum principal homogeneous space M = GH such that

Ω1(G) is a framing calculus for Ω1(M), all connections are strong.

Proof. From the general definition, any connection Π : Ω1(G)→ Ω1(G) satisfies

(id− Π)(Ω1(M)) = GΩ1(M)G.

But if Ω1(G) is a framing calculus for Ω1(M), then by definition we also have that

Ω1(M)G ⊆ GΩ1(M), implying that

(id− Π)(Ω1(M)) ⊆ GΩ1(M).

Hence, Π is a strong connection. �

6.2 A Holomorphic Structure for the Quantum

Projective Space Line Bundles

In this section we construct holomorphic structures for the quantum line bundles

of Cq[CP
N−1] which are indexed by the negative integers. We begin by showing
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that the differential structure we have been using for Cq[SUN ] gives the quan-

tum homogeneous space αN : Cq[SUN ] → Cq[UN−1] the structure of a quantum

principal bundle. We use the general theory of quantum principal bundles to con-

struct a connection for the bundle, and then show that this connection induces

holomorphic covariant derivatives on the line bundles E−k, for k ∈ N. Finally,

we show the corresponding spaces of holomorphic sections contain the standard(
N+k−1
N−1

)
-dimensional corepresentations of Cq[SUN ].

6.2.1 A Quantum Principal Bundle Structure

We carefully show that the calculus Ω1
q(SUN) induces the structure of a quantum

principal bundle on the Hopf–Galois extension Cq[SUN ] ←↩ Cq[CP
N−1]. (The

proof used here is a more concise version of the original proof in [58].)

Proposition 6.2.1 It holds that (Cq[SUN ],Cq[UN−1], ISUN , αN(ISUN )) is a quan-

tum principal homogeneous space.

Proof. We have already proved that αN : Cq[SUN ]→ Cq[UN−1] is a Hopf–Galois

principal homogeneous space. Thus, Proposition 2.3.2 tells us that all we need to

show is that (2.20) holds for ISUN . Recall that ISUN = ker(Q)+ +D1 +D2, where

D1 = spanC{ui1S(u1
i ) | i = 2, . . . , N}, and D2 = spanC{uij | i 6= j; i, j = 2, . . . , N}.

Now since ker(Q)+ is an AdR-stable ideal, it is clear that

(id⊗ αN)AdR(ker(Q)+) ⊆ ker(Q)+ ⊗Cq[UN−1].

For D1, we begin by noting that

(id⊗ αN)AdR(ui1S(u1
i )) =

N∑
a,b,c,d=1

uabS(ucd)⊗ αN(S(uiaS(udi ))u
b
1S(u1

c))

=
N∑

a,d=2

ua1S(u1
d)⊗ S(ui−1

a−1S(ud−1
i−1 )) det−1

N−1 detN−1

=
N∑

a,d=2

ua1S(u1
d)⊗ S(ui−1

a−1S(ud−1
i−1 )).

For a = d, we have ua1S(u1
a) ∈ D1 by definition. For a 6= d, it follows directly

from the relations in Lemma 3.2.3 that ua1S(u1
d) ∈ ISUN . Hence, we have that
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(id⊗ αN)AdR(D1) is contained in ISUN ⊗Cq[UN−1]. Turning now to uij ∈ D2, we

see that

(id⊗ αN)AdR(uij) = (id⊗ αN)(
N∑

k,l=1

ukl ⊗ S(uik)u
l
j) =

N∑
k,l=2

ukl ⊗ S(ui−1
k−1)ul−1

j−1.

For k 6= l, we have ukl ∈ D2 by definition. It remains for us to show that∑N
k=2 u

k
k⊗S(ui−1

k−1)uk−1
j−1 is contained in ISUN⊗Cq[UN−1]. We will do this by showing

that its image in Λ1
SUN
⊗Cq[UN−1] is zero: Denoting λ := q−

2
N

(q2−
2
N −1)

, we have

N∑
k=2

ukk ⊗ S(ui−1
k−1)uk−1

j−1 =
N∑
k=2

λe0 ⊗ S(ui−1
k−1)uk−1

j−1 = λe0 ⊗ (
N−1∑
k=1

S(ui−1
k )ukj−1)

= λe0 ⊗ ε(ui−1
j−1) = 0.

(Note that the summation
∑N−1

k=1 S(ui−1
k )ukj−1 takes place in Cq[UN−1].) Thus, we

have shown that (2.20) holds for ISUN . �

6.2.2 An Anti-Holomorphic Covariant Derivative

In this section we will use the general theory presented in Chapter 2 to construct

a connection for the bundle αN : Cq[SUN ]→ Cq[CP
N−1].

Lemma 6.2.2 A bicovariant splitting map is given by

i : Λ1
UN−1

→ Λ1
SUN

, det−1
N−1−1 7→ u1

1 − 1,

Moreover, the corresponding connection Π : Ω1
q(SUN) → Ω1

q(SUN) is strong and

satisfies

Π(e0) = e0, Π(e+
i ) = Π(e−i ) = 0, (i = 1, . . . , N − 1).

Proof. That i satisfies αN ◦ i = id is obvious, while (2.23) follows from

AdR,SUN ◦ i(det−1
N −1) = AdR,SUN (e0) =

N∑
k,l=1

(ukl ⊗ αN(S(u1
ku

l
1))− 1⊗ 1

= u1
1 ⊗ 1− 1⊗ 1 = e0 ⊗ 1 = i(det−1

N −1)⊗ 1

= (i⊗ id) ◦ AdR,UN−1
(det−1

N −1).
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Denoting the connection form corresponding to i by ω, we have

Πω(e0) = m ◦ (id⊗ ω) ◦ ver(e0) = ω ◦ αN(u1
1 − 1) = ω(det−1

N−1−1) = u1
1 − 1 = e0.

Similarly, αN(ui+1
1 ) = αN(u1

i+1) = 0 implies that Πω(e+
i ) = Πω(e−i ) = 0.

The fact that Π is strong follows from Lemma 6.1.4 and the fact that Ω1
q(SUN) is

a framing calculus for Ω1
q(CP

N−1). �

For any object E in G
MMM , we denote the corresponding covariant derivative by

∇ : E → E ⊗CPN−1 Ω1
q(CP

N−1), and the corresponding anti-holomorphic covariant

derivative by ∇(0,1) : E → E ⊗CPN−1 Ω1
q(CP

N−1).

6.2.3 A Holomorphic Structure for the Modules E−k

A natural question to ask is for which objects E in G
MMM , is the pair (E ,∇(0,1))

a holomorphic vector bundle. As first step towards answering this, let us look at

the quantum line bundles E−k, for all k ∈ N.

Proposition 6.2.3 It holds that

{(u1
1)m1 · · · (uN1 )mN |

N∑
i=1

mi = k} ⊆ E (1,0)
−k , (6.5)

is a holomorphic generating set for ∇(0,1), and so, (E−k,∇(0,1)) is a globally gener-

ated holomorphic vector bundle.

Proof. Since we established in Corollary 3.1.4 that E (1,0)
−k is a generating set for

E−k, all we need to do is show that the elements of E0
−k are contained in the kernel

of ∇(0,1). To this end, we note that

dui1 = s−1(
N∑
a=1

uia ⊗ (ua1)+) =
N−1∑
a=1

uia+1e
+
a ∈ Ek ⊗CPN−1 (Ω(1,0)

q ⊕Ce0)

Now from Lemma 3.2.3 it is easy to see that Ω
(1,0)
q ⊕ Ce0 is closed under right

multiplication by elements of the form ui1. This fact, when combined with the

Liebniz rule, implies that

de ∈ Ek ⊗CPN−1 (Ω(0,1)
q ⊕Ce0), (for all e ∈ E0

−k).
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It now follows that Π(0,1) ◦ Π ◦ d(e) = 0, and so, E0
−k ⊆ E

(1,0)
−k , implying that E0

−k

is a holomorphic generating set for ∇(0,1). Lemma 6.1.2 now tells us that ∇(0,1) is

flat. �

Thus we see that E (1,0)
−k contains the standard

(
N+k−1
N−1

)
-dimensional corepresenta-

tion of Cq[SUN ]. This generalises the classical Borel-Weil theorem, and extends

Majid’s result for Cq[CP
1] [51]. The extension of this work to include the quan-

tum Grassmannians will be considered elsewhere, as will the explicit relationship

of these results to the work of Khalkhali, Landi, Moatadelro, and van Suijlekom

[34, 35, 36].

Finally, we finish with a very natural conjecture:

Conjecture 6.2.4 It holds that

E (1,0)
k = {0}, and E (1,0)

−k ,= {(u1
1)m1 · · · (uN1 )mN |

N∑
i=1

mi = k}, (k ∈ N).
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Chapter 7

The Noncommutative Kähler

Geometry of Cq[CP
1]

In this chapter we take the first steps towards a general theory of noncommuta-

tive Kähler geometry by establishing a noncommutative generalisation of the Käh-

ler identities for Cq[CP
1]. While we use a minimum of formalism here, a fuller

treatment incorporating a noncommutative metric and a noncommutative funda-

mental Kähler form will appear in [60].

7.1 Hodge, Lefschetz, and Laplace Operators

We will now introduce a direct generalisation of the classical Hodge ∗-map for the

Fubini–Study metric on CP 1: First we define

∗ : Ω1
q(CP

N−1)→ Ω1
q(CP

N−1), ∗ : fe− 7→ −ife−, ∗ : fe+ 7→ ife+.

We see that ∗ squares to give −id on Ω1
q(CP

N−1), as one would want. Next we

choose e+ ∧ e− as our top form, and define

∗ : Ω2
q(CP

N−1)→ Cq[CP
N−1], fe+ ∧ e− 7→ f.

We then complete the picture by defining the inverse map

∗ : Cq[CP
N−1]→ Ω2

q(CP
N−1), f 7→ fe+ ∧ e−.
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We note that ∗ squares to the the identity on Ω2
q(CP

N−1) and Cq[CP
N−1], as one

would want.

Directly generalising the classical picture again, we define the Lefschetz operator

L : Cq[CP
1]→ Ω2

q(CP
1), f 7→ −fe+ ∧ e− = − ∗ (f),

and the dual-Lefschetz operator

Λ : Ω2
q(CP

1)→ Cq[CP
1], ω 7→ ∗ ◦ L ◦ ∗(ω) = − ∗ (f).

We extend L and Λ to operators on the total calculus by defining them to be zero

on all other forms.

We next define the codifferentials by

d∗ = − ∗ d∗, ∂∗ = − ∗ ∂∗, ∂
∗

= − ∗ ∂ ∗ .

Finally, we define the Laplace operators ∆,∆∂, and ∆∂, by

∆∂ := (∂ + ∂∗)2 = ∂ ◦ ∂∗ + ∂∗ ◦ ∂, ∆∂ := (∂ + ∂
∗
)2 = ∂ ◦ ∂∗ + ∂

∗ ◦ ∂,

∆ := (d + d∗)2 = d ◦ d∗ + d∗ ◦ d.

7.2 The Kähler Identities

In this section we will show the Hodge, Lefschetz, and dual Lefschetz operators

defined above satisfy a generalisation of the Kähler identities for the projective

line. We will then use this result to show that the three Laplacians ∆d,∆∂, and

∆∂, are simple scalar multiples of each other.

Proposition 7.2.1 Using the notation of the previous section, we have the fol-

lowing relations:

[L, ∂∗] = i∂, [L, ∂
∗
] = −i∂, [L, ∂] = 0, [L, ∂] = 0,

[Λ, ∂] = i∂
∗
, [Λ, ∂] = −i∂∗, [Λ, ∂∗] = 0, [Λ, ∂

∗
] = 0.
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Proof. The relations

[L, ∂] = [L, ∂] = [Λ, ∂∗] = [Λ, ∂
∗
] = 0

are direct consequences of the definition of L and Λ. The remaining relations

are easily verified by direct calculation. We begin with the relation [L, ∂∗] = i∂:

Note that [L, ∂∗], and i∂, have non-zero actions only on Cq[CP
1] and Ω

(1,0)
q . For

f ∈ Cq[CP
1], we have

[L, ∂∗]f = (−L ◦ ∗∂ ∗+ ∗ ∂ ∗ ◦L)f = ∗∂ ∗ ◦L(f) = − ∗ (∂f) = i∂f.

While for f∂g ∈ Ω
(1,0)
q , we have

[L, ∂∗](f∂g) = (−L ◦ ∗∂ ∗+ ∗ ∂ ∗ ◦L)f∂g = −L ◦ ∗∂ ∗ (f∂g) = i∂(f∂g),

which establishes the relation.

Next we turn to [L, ∂
∗
] and −i∂: Note that both operators have non-zero actions

only on Cq[CP
N−1] and Ω

(0,1)
q . For f ∈ Cq[CP

N−1], we have

[L, ∂
∗
](f) = (L ◦ ∂∗ − ∂∗ ◦ L)(f) = −∂∗ ◦ L(f) = − ∗ (∂f) = −i∂f.

For f∂g ∈ Ω(0,1), we have

[L, ∂
∗
](f∂g) = (L ◦ ∂∗ − ∂∗ ◦ L)(f∂g) = L ◦ ∂∗(f∂g)

= ∂(∗(f∂g)) = −i∂(f∂g),

which establishes the identity.

Now [Λ, ∂] and i∂
∗
, both have non-zero actions only on Ω

(0,1)
q and Ω2

q(CP
N−1). For

f∂g ∈ Ω
(0,1)
q , we have

[Λ, ∂](f∂g) =(Λ ◦ ∂ − ∂ ◦ Λ)(f∂g) = Λ ◦ ∂(f∂g) = − ∗ ∂(f∂g)

= − ∗ ∂ ∗ (if∂g) = i∂
∗
(f∂g).

For fe+ ⊗ e− ∈ Ω2
q(CP

1), we have

[Λ, ∂](fe+ ⊗ e−) = (Λ ◦ ∂ − ∂ ◦ Λ)(fe+ ⊗ e−) = −∂ ◦ Λ(fe+ ⊗ e−)

= ∂ ∗ (fe+ ⊗ e−) = − ∗ ∂ ∗ (ife+ ⊗ e−) = i∂
∗
(fe+ ⊗ e−),
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giving us the required equality.

Finally, we come to [Λ, ∂] and −i∂∗. Note that both operators have non-zero

actions only on Ω
(1,0)
q and Ω2

q(CP
N−1). For f∂g ∈ Ω(1,0), we have

[Λ, ∂](f∂g) =(Λ ◦ ∂ − ∂ ◦ Λ)(f∂g) = Λ ◦ ∂(f∂g) = − ∗ ∂(f∂g)

= ∗∂ ∗ (if∂g) = −i∂∗(f∂g).

For fe+ ⊗ e− ∈ Ω2
q(CP

1), we have

[Λ, ∂](fe+ ⊗ e−) = (Λ ◦ ∂ − ∂ ◦ Λ)(fe+ ⊗ e−) = −∂ ◦ Λ(fe+ ⊗ e−)

= ∂ ∗ (fe+ ⊗ e−) = ∗∂ ∗ (ife+ ⊗ e−) = −i∂∗(fe+ ⊗ e−),

establishing the last required identity. �

We can now follow the standard classical proof [30] and use the Kähler identities

to establish equality of the three Laplacians.

Corollary 7.2.2 The Laplace operators are related by ∆ = 2∆∂ = 2∆∂.

Proof. First note that

−i(∂∂∗ + ∂∗∂) = ∂[Λ, ∂] + [Λ, ∂]∂ = ∂Λ∂ − ∂2
Λ− Λ∂

2 − ∂Λ∂

= ∂Λ∂ − ∂Λ∂ = 0,

and similarly

∂∂
∗

+ ∂
∗
∂ = ∂[Λ, ∂] + [Λ, ∂]∂ = 0.

This gives that

∆ = d ◦ d∗ + d∗ ◦ d = (∂ + ∂)(∂∗ + ∂
∗
) + (∂∗ + ∂

∗
)(∂ + ∂)

= (∂∂∗ + ∂∗∂) + (∂ ∂
∗

+ ∂
∗
∂) + (∂∂∗ + ∂∗∂) + (∂∂

∗
+ ∂

∗
∂)

= (∂∂∗ + ∂∗∂) + (∂ ∂
∗

+ ∂
∗
∂) + 0 + 0

= ∆∂ + ∆∂.

It remains to show that ∆∂ = ∆∂. But this is an easy consequence of the calcula-

tion:

−i∆∂ = −i(∂∂∗ + ∂∗∂) = ∂[Λ, ∂] + [Λ, ∂]∂ = ∂Λ∂ − ∂∂Λ + Λ∂∂ − ∂Λ∂

= ∂Λ∂ + ∂∂Λ− ∂Λ∂ = [∂,Λ]∂ + ∂[∂,Λ] = −i∂∗∂ − i∂∂∗ = −i∆∂.
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One could now attempt to extend this result to the higher order quantum pro-

jective spaces by direct calculation. However, such an approach seems likely to

be overly laborious. A more promising idea is to build upon our framework of

noncommutative complex geometry, and develop a general theory of noncommu-

tative Kähler geometry for quantum homogeneous spaces. Such an approach is at

present being developed [61].
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[22] M. Dieng, A. Schwarz, Differential and complex geometry of two-

dimensional noncommutative tori, Lett. Math. Phys., 61, (2002)

102
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