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Abstract

Noncommutative Riemannian geometry is an area that has seen intense activity
over the past 25 years. Despite this, noncommutative complex geometry is only
now beginning to receive serious attention. The theory of quantum groups pro-
vides a large family of very interesting potential examples, namely the quantum
flag manifolds. Thus far, only the irreducible quantum flag manifolds have been
investigated as noncommutative complex spaces. In a series of papers, Hecken-
berger and Kolb showed that for each of these spaces, there exists a g-deformed

Dolbeault double complex.

In this thesis a comprehensive framework for noncommutative complex geometry
on quantum homogeneous spaces is introduced. The main ingredients used are co-
variant differential calculi and Takeuchi’s categorical equivalence for faithfully flat
quantum homogeneous spaces. A number of basic results are established, produc-
ing a simple set of necessary and sufficient conditions for noncommutative complex
structures to exist. It is shown that when applied to the quantum projective spaces,
this theory reproduces the g-Dolbeault double complexes of Heckenberger and
Kolb. Furthermore, the framework is used to g-deform results from Borel-Bott—
WEeil theory, and to produce the beginnings of a theory of noncommutative Kéhler

geometry.
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Chapter 1
Introduction

“La richesse kdhlérienne fait dire a certains que la géométrie kdhlérienne est plus

importante que la géométrie riemannienne.” Marcel Berger

Classical complex geometry is a subject of remarkable richness and beauty with
deep connections to modern physics. Yet despite over twenty five years of non-
commutative geometry, the development of noncommutative complex geometry is
still in its infancy. What we do have is a large number of examples which de-
mand consideration as noncommutative complex spaces. We cite, among others,
noncommutative tori [22, 73], noncommutative projective algebraic varieties [69],
fuzzy flag manifolds [54], and (most importantly from our point of view) examples
arising from the theory of quantum groups [28, 51|. These objects are of central
importance to areas such as the construction of spectral triples [23, 20, 67], noncom-
mutative mirror symmetry [1, 66, 70], localisation for quantum groups [2, 3, 44],

and the quantum Baum—Connes conjecture [78].

Thus far, there have been two attempts to formulate a general framework for
noncommutative complex geometry. The first, due to Khalkhali, Landi, and van
Suijlekom [34], was introduced to provide a context for their work on the noncom-
mutative complex geometry of the Podle$ sphere. This followed on from earlier
work of Majid [51], Schwartz and Polishchuk [66], and Connes [12, 13]. Khalkhali
and Moatadelro [35, 36] would go on to apply this framework to D’Andrea and

Dabrowski’s work [20] on the higher order quantum projective spaces.



Subsequently, Beggs and Smith introduced a second more comprehensive approach
to noncommutative complex geometry in [6]. Their motive was to provide a frame-
work for quantising the intimate relationship between complex differential geom-
etry and complex projective geometry. They foresee that the rich interaction be-
tween algebraic and analytic techniques occurring in the classical setting will carry

over to the noncommutative world.

The more modest aim of this thesis is to begin the development of a theory of
noncommutative complex geometry for quantum group homogeneous spaces. This
will be done very much in the style of Majid’s noncommutative Riemannian geom-
etry [48, 51, 49]. The only significant difference being that here we will not need to
assume that our quantum homogeneous spaces are Hopf—-Galois extensions, while
we will assume that they are faithfully flat. We first introduce the notion of a co-
variant noncommutative complex structure for a total differential calculus. Then,
by calling on our assumption of faithful flatness, we use Takeuchi’s categorical
equivalence to establish a simple set of necessary and sufficient conditions for such
noncommutative complex structures to exist. In subsequent work, it is intended to
build upon these results and formulate noncommutative generalisations of Hodge
theory and Kéhler geometry for quantum homogeneous spaces [60]. Indeed, the

first steps in this direction have already been taken in Chapter 7.

For this undertaking to be worthwhile, however, it will need to be applicable to a
good many interesting examples. Recall that classically one of the most important
classes of homogeneous complex manifolds is the family of generalised flag mani-
folds. As has been known for a long time, these spaces admit a direct g-deformation
in terms of the Drinfeld-Jimbo quantum groups [42, 72, 76]. Somewhat more re-
cently, g-deformations of the complex geometry of the flag manifolds have also
begun to emerge. The first examples appeared in a series of works due to Hecken-
berger and Kolb [39, 26, 38]. In this series, they classified the covariant first-order
differential calculi over the quantum Grassmannians, and in so doing identified a
canonical first order calculus for the these spaces, along with a decomposition of
this calculus into g-deformed analogues of the holomorphic and anti-holomorphic
one-forms. Heckenberger and Kolb would go on to extend this work to include
all the irreducible quantum flag manifolds [27]. For the special case of the Podles

sphere, Majid would independently reproduce this decomposition of one-forms



using his framework for noncommutative Riemannian geometry. Moreover, he
showed that the decomposition could be extended to a direct g-deformation of the
Dolbeault double complex of CP!. A short time after, Heckenberger and Kolb
[28] showed that such a g-Dolbeault double complex exists for all the irreducible
flag manifolds. This group of results gives us one of the most important fami-
lies of noncommutative complex structures that we have, and as such, provides
an invaluable testing ground for any newly proposed theory of noncommutative

complex geometry.

Heckenberger and Kolb undertook their work in the absence of a general framework
for noncommutative complex geometry. While they produced an accomplished and
comprehensive treatment of the g-deformed Dolbeault complexes, the fundamental
processes at work were obscured by the complexity of the calculations. Moreover,
their technical style of presentation is quite difficult to use as a basis for future
work. Subsequent papers on the geometry of the quantum flag manifolds would

follow a different approach [40, 20].

The general framework for noncommutative complex geometry that we introduce
in this thesis is a refinement of Majid’s approach to the complex geometry of the
Podles sphere. We show that, for the special case of the quantum projective spaces,
the work of Heckenberger and Kolb can be understood in terms of our framework.
This allows for a significant simplification of the required calculations, and helps
identify some of the underlying general processes at work. It is foreseen that this
work will prove easily extendable to all the irreducible quantum flag manifolds.
Moreover, it is hoped to extend it even further to include all the quantum flag
manifolds, and in so doing, produce new examples of noncommutative complex
structures. As mentioned above, it is also hoped to use this new simplified pre-
sentation to identify noncommutative Hodge and Kéhler structures hidden in the

Dolbeault complexes of Heckenberger and Kolb.

One of the main motivations for studying noncommutative complex structures is
that a number of important research programs in noncommutative geometry make
central use of noncommutative generalisations of holomorphic vector bundles.
We cite noncommutative mirror symmetry (as discussed in [1]), noncommutative
Borel-Weil theory (as discussed in [51]), and the aforementioned efforts of Beggs

and Smith to formulate a noncommutative version of the géometrie-algebraique-



géometrie-analytique principal. Now, the definition of a noncommutative complex
structure over an algebra A naturally suggests a notion of holomorphic element of
A. However, to define a holomorphic element of a projective module over A (the
noncommutative analogue of a vector bundle) one needs to introduce a noncom-
mutative holomorphic structure for these modules. This is essentially a special
type of covariant derivative. A natural way to construct these covariant deriva-
tives is using the theory of quantum principal bundles due to Brezinski and Majid.
We do this for negative index quantum line bundles of the quantum projective
spaces, and then find an explicit description of the holomorphic subalgebras of
these line bundles. In addition to the research projects just mentioned, this work
is also foreseen to have applications to the theory of noncommutative holomorphic

differential operators (as discussed in [4, 5]).

The thesis is organised as follows: In Chapter 2 we introduce some well-known
material about quantum homogeneous spaces, Takeuchi’s categorical equivalence,
covariant differential calculi, the framing result of Majid, and the classification
result of Hermisson. The presentation will differ somewhat from standard in the

presentation of Majid and Hermisson’s work.

In Chapter 3 we discuss the quantum special unitary group, its coquasi-triangular
structure, and the quantum projective spaces. Moreover, we give an explicit pre-
sentation of the ideal corresponding to the Heckenberger—Kolb calculus for these

spaces.

In Chapter 4 we introduce one of the fundamental results of the thesis. We show
that we can restrict Takeuchi’s equivalence to a monoidal equivalence between
two subcategories of {fMjys and ML, Crucially, this allows us to take tensor
products of framings. We build upon this work and show how to frame the maximal
prolongation of a covariant first-order differential calculus. We then show how our
method can be greatly simplified by making a suitable choice of calculus on the
total space. The general theory is then applied to the Heckenberger—Kolb calculus
for the quantum projective spaces, yielding a novel description of its maximal

prolongation.

In Chapter 5 we introduce a new variation on the existing definitions of noncom-
mutative complex structure, and provide a simple set of necessary and sufficient

conditions for such structures to exist. The description of the maximal prolon-
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gation of the Heckenberger—Kolb calculus given in [28] is then presented as an

example of a noncommutative complex structure.

In Chapter 6 we consider holomorphic connections and show how to construct
such a connection for the quantum projective spaces using the theory of quantum
principal bundles. We define the notion of a holomorphic structure, show that our
connection induces a holomorphic structure for the negative index quantum line
bundles of the quantum projective spaces, and calculate the holomorphic subalge-
bras of these bundles.

Finally, in Chapter 7 we take the first steps towards a noncommutative theory of
Kahler geometry by ¢-deforming the the Kéhler identities for the Podles sphere.

11



Chapter 2

Preliminaries

In this section we recall Takeuchi’s categorical equivalence for faithfully flat quan-
tum homogeneous spaces, and some of the consequences of this result for the
theory of covariant differential calculi. With the exception of the somewhat novel
presentations of Majid’s framing theorem and Hermisson’s classification, all of the

material found here is well-known.

2.1 Quantum Homogeneous Spaces and Takeuchi’s

Categorical Equivalence

Let G be a Hopf algebra with comultiplication Ag, counit €4, antipode Sg, unit 14,
and multiplication m¢g (where no confusion arises, we will drop explicit reference
to G when denoting these operators). Throughout, we use Sweedler notation, as
well as denoting g7 := g—e(g)1, for g € G, and VT = V Nker(e), for V a subspace
of G. For a right G-comodule V' with coaction Ag, we say that an element v € V' is
coinvariant if Ar(v) = v ® 1. We denote the subspace of all coinvariant elements
by V&, and call it the coinvariant subspace of the coaction. More generally, a
covariant subspace W C V' is defined to be a subspace that is also a sub-comodule
of V. More generally, a covariant subspace W C V is defined to be a subspace

that is also a sub-comodule of V.

For H also a Hopf algebra, a homogeneous right H-coaction on G is a coaction
of the form (id ® 7) o A, where 7 : G — H is a Hopf algebra map. We call the

12



coinvariant subspace M := G of such a coaction a quantum homogeneous space.
As is easy to see, M will always be a subalgebra of G. Moreover, it can be shown
without difficulty that the coaction of G restricts to a right G-coaction on M, and
that

w(m) =¢e(m)ly, (for all m € M). (2.1)

In this thesis we will always use the symbols G, H, m and M in this sense. We also
note that G is itself a trivial example of a quantum homogeneous space, where
T =E¢.

Let us now introduce §.My, the category of associated bundles of M, whose
objects, the associated bundles, are the M-bimodules £ endowed with a left G-

coaction Ay, satisfying the compatibility condition
Ap(mem') = mayeym(yy @ mayemiy,  (forall m,m' € M,e € &),

and whose morphisms are both M-bimodule and left G-comodule maps. Moreover,
let M1 denote the category whose objects V are the right M-modules endowed

with a right H-coaction satisfying the compatibility condition
Agr(vm) = vym) @ S(m(may))vay, (for all veV,me M), (2.2)

and whose morphisms are both left M-module and right H-comodule maps. In
what follows, for sake of clarity, we will denote the right M-action on an object in
¢ M by juxtaposition, while we will denote the right M-action on an object in
ME by <.

For any object V in ML we can associate to it a corresponding object in §M
as follows: Consider the coinvariant subspace (G ® V)| where G ® V is endowed
with the usual tensor product coaction. We can give (G ® V) the structure of an

object in {;Mj; by defining right and left M-actions according to
m(» gov)=) mgev, O gdevim=> gmy®o @ amy),
and defining a left G-coaction according to

A9 ®v) = gy @iy © 0"

13



A framing, for an object £ in {,My, is a pair (V,t) where V is an object in M%
and t is an isomorphism from £ to (G®V)#. A natural question to ask is whether
a framing exists for every object in §.My,, and when it does how many different
choices of framing there are. In order to address this question, we will need to

introduce some additional structures.

The right M-module structure of £ clearly restricts to a right M-module struc-
ture on £/(M*E). Moreover, it can be shown using (2.1) that the left G-module
structure of £ induces a right H-comodule structure on £/(M*E) defined by

Ar(®) = 75 ® S(r(e(-1). (ccé€), (2.3)

where € denotes the coset of e in £/(MTE). To show that these two structures
are compatible in the sense of (2.2) is routine. Thus, we have given £/(M*E) the

structure of an object in M. Consider now the functors

Oy 1 GMur — M3, Dy (E) =E/(MTE),

Where for £, F two objects in {{My;, and f : &€ — F a morphism, we define
O (f) : Py (E) — Pp(F) to be the morphism to which f descends on ®,/(E).
While for ¢ : V' — W a morphism in M we define ¥y/(p) := 1 ® ¢. To show
that both morphisms are well-defined is routine. Moreover, using some basic linear
algebra arguments, it can also be shown that, for £, F two objects in M, and

V, W two objects in M, we have
OEDF)=D(E) D D(F), VVeW)=vV)ovW), (2.4)
and if we further assume that £ C F, and V C W, then

O(E/F) = B(€)/2(F), (/W) =T (V)/B(W). (2.5)

A natural question to ask is when this induces an equivalence of categories. This
leads us to the notion of faithful flatness: We say that G is a faithfully flat module
over M if the tensor product functor G @y — : yM — M, from the category
of left M-modules to the category of complex vector spaces, preserves and reflects

exact sequences.
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Theorem 2.1.1 (Takeuchi [75]) Let 7 : G — H be a quantum homogeneous
space for which G is a faithfully flat right module over M = G . An equivalence
of categories between between § My and ME is determined by the functors ®yy,

and ¥V, and the natural isomorphisms

frameps : € — Wy 0 Oy (), e e(—1) ® €, (2.6)
framei, : @y 0 Wy (V) =V, d gevie Y elgt.  (27)

Thus we see that we have a framing (®(€), framey,) for every object € in §M .
Now for any other framing s : £ — (G ®@ V), for V some object in M1, we have

the isomorphism
o = frameﬂ o} (I)M<8) . q)M(E) — ‘/,

which gives us the re-expression s = W, (o)oframe,,. It follows that every framing
of £ is of the form (V, W, (o) o frame,,), where V is some object in M, and
o:®y(E) — V is an isomorphism in M.

This result allows us to introduce a quantum generalisation of the classical notion
of vector bundle rank: For any object £ in § M, we define the rank of £ to be
the vector space dimension of ®,,(£). Moreover, we call an associated bundle of

rank 1 a quantum line bundle.

We should note that the original presentation of this work by Takeuchi uses
somewhat different conventions. Most noticeably, the notion of cotensor prod-
uct G Og ®)/(€) is used instead of coinvariant subspace (G @ ®,,(€))?. However,
as is easily seen, the two notions are equivalent. Another important point to note
is that the existence of the isomorphism from & to Wy, o ®5,(E) does not depend

on the assumption of faithful flatness, as the following lemma shows:

Lemma 2.1.2 For a (not necessarily faithfully flat) quantum homogeneous space

M, the map frame,; is an isomorphism, with inverse

frame,; : Wy 0 @y (E) — &, Zgi ® el ZgiS(e(_l))e(o). (2.8)
Proof. Let us begin by showing that frame,; is well-defined: For Y, g' ® m'e!

15



an element in (G ® &)X, with m* € M™*, for all i, we have
Z FrS((m'e’) ) (m'e’) ) = Z FES(miy el migelo
= Z fiS(eéfl))S(ml('l))méz)eéo)
= 3 elm) 7S (el )l = 0
Thus, frame},; descends to a well-defined map on (G ® ®,,(£))". That frame,; is
indeed the inverse of frame;,; follows from
frame,; o framey(e) = framey, (e(_1) ® €0)) = e_25(e(_1))ew) = e(e(-1))eq) = e

g

Thus, we see that even in the absence of faithful flatness, a framing will exist for
any £ € (M. However, without faithful flatness we are not guaranteed the

existence of an inverse for framey;.

2.2 Differential Calculi

In this section we recall the well known notions of a first order differential calculus,
and a total differential calculus. These are very natural generalisations of the
classical definitions of the Kahler forms, and the de Rham complex, of a variety

respectively. They originate in the seminal work of Woronowicz [79].

2.2.1 Covariant First Order Differential Calculi

Let A be an algebra. (In what follows all algebras are assumed to be unital.)
A first-order differential calculus over A is a pair (Q',d), where Q! is an A-A-
bimodule and d : A — Q! is a linear map for which the Leibniz rule holds

d(ab) = a(db) + (da)b, (a,b,e A),

and for which Q! = spang{adb|a,b € A}. (Where no confusion arises we will drop

explicit reference to d and denote a calculus by its bimodule 2! alone.) We call an

16



element of Q' a one-form. The universal first-order differential calculus over A is
the pair (2L(A),d,), where Q. (A) is the kernel of the product map m : AQ A — A

endowed with the obvious bimodule structure, and d, is defined by
d, : A— QL(A), a—1®a—a®l.

It is not difficult to show (see [79] for details) that every calculus over A is of
the form (QL(A)/N, projod,), where N is a A-sub-bimodule of Q! (A), and proj :
QL(A) — QL(A)/N is the canonical projection. Moreover, this association between

calculi and sub-bimodules is bijective.

Now let I' @ T" = Q! be a sub-bimodule of a first order differential calculus (Q*,d)
over an algebra A. Define 0 to be the composition of d with projection onto T,
and define @' to be the composition of d with projection onto I'. Since d = 0 + &',
we must have that I' and I” are spanned by elements of the form adb and ad’b
respectively, for a,b € A. From the Leibniz rule for d we have that d(ab) =
(da)b + adb. This implies that

O(ab) + d(ab) = (0a)b + (da)b + adb + a(db).

But I and I are both right submodules, so our direct sum decomposition says we

must have
d(ab) = (Da)b + adb, d(ab) = (0a)b + adb.

Hence, both (I',0) and (I",0’) are first order differential calculi. We call such

calculi subcalculi of QL.

A differential calculus Q'(A) over a left G-comodule A is said to be left-covariant
if there exists a (necessarily unique) left-coaction Ay : Q'(A) — G ® Q!(A) such
that

Ap(adb) = Aa)(id ® d)A(D), (a,b € A).

Clearly this can happen if, and only if, the corresponding sub-bimodule N C Q! (A)
is left-covariant, giving us a correspondence between left-covariant calculi and left-
covariant sub-bimodules of 2L(A). Furthermore, for M a quantum homogeneous
space, any left-covariant calculus has the structure of an object in §M ;. Thus,

Takeuchi’s theorem induces a correspondence between left-covariant calculi Q! (M)

17



and sub-objects of ®,,(QL(M)) in M. We define the dimension of the calculus

to be its rank as an associated bundle.

A problem with this last classification is that our generator and relation presen-
tation of ®,,(QL(M)) is not particularly easy to work with. However, the follow-
ing very useful result tells us that there is an isomorphism between ®,,(Q}(M))
and M™T, where we consider M T as an object in M4, according to the obvi-
ous right M-module structure, and the right H-comodule structure defined by
Apr(m) = mo) ® S(m(my)), for m € M*. (Note that the proof given here does
not assume that G is a Hopf-Galois extension of M as is done in [48]. However,

this more general result is implicit in the original proof.)

Theorem 2.2.1 [Majid [48]] For a (not necessarily faithfully flat or Hopf-Galois)

quantum homogeneous space M, we have an isomorphism

o Dy (QL(M)) — M, > midni Zg(mf)(niﬁ, (2.9)

i

and a corresponding framing (M ™, s := U(o)oframe,,), which we call the canonical

framing. Fxplicitly s acts according to
s: QN M) — (Ge MT)H, mdn — mnay ® (ne) ™. (2.10)

Proof. We begin by showing that the map o is well-defined as a right M-module
map: Consider the right M-module map

e®id: M@ M — M, m®n — e(m)n.

It is clear from the definition of ®,,(QL(M)) that e ®id descends to a well-defined
mapping from ®,,(QL(M)) to M. Moreover, since

(e ®id)(mdn) = (e ®id)(m®@n —mn ® 1) = e(m)(n — e(n)1) = e(m)n*,

it is clear that this restriction is exactly the map o defined in (2.9). That o is also

18



a right H-comodule map is clear from

(0 ®id) o Ag(mdn) = (0 @ id)(mdng) @ S(r(manq))))
= e(mz)(ne)" ® S(r(muyna)) = (ne)" @ S(r(mnq))
= e(m)(nez))" ® S(r(nw)))

e(m)(n@) ® S(r(na))) —1® S(7(n)))

= e(m)(n@) ® S(r(na)) — ()1 ® ly) = e(m)Ayr(n")

= Ay g oo(mdn),

where we have used the relation 7(m) = e(m)1ly from (2.1).

Now that we have shown that ¢ is a well defined morphism, we can move on to
showing that it is, in fact, an isomorphism. To establish injectivity, we first note
that the kernel of ¢ ® id is equal to M* ® M: Any element contained in the
intersection of M+ ® M and QL (M) will be of the form Y, m' ® n’, where each
m' € M*, and Y m'n’ = 0. Since

Zmi ®@n' = Z(mi@)ni —m'n'®1) = Zmi(l(@ni —n'®1) = Zmidni,
we must have that the kernel of (¢ ® id)|qz1(ar) is contained in M+Q} (M). Hence,

we can conclude that o is an injective map. Since the surjectivity of o is clear, we

can conclude that ¢ is an isomorphism.

Finally, we come to the framing in (2.10): It is clear from Lemma (2.1.2) that
U )s(0) o frameyy is a framing for QL (M). That the explicit action of s is as given

above, follows from
s(mdn) = Wy (o) o framey (mdn) = Wy (o)(mayna) @ mzdn))
=mmna) ® oc(medne) = mayna) ® e(me))(ne)t = mna) @ (ne)*.

g

Combining this result with the classification of covariant calculi on quantum ho-

mogeneous spaces discussed earlier, gives us the classification result of Hermisson:

Corollary 2.2.2 (Hermisson [29]) For a faithfully flat quantum homogeneous
space M, there is a bijective correspondence between left-covariant first-order dif-

ferential calculi over M, and the sub-objects of M+ in M.
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Now for such a calculus Q' (M) ~ QL (M) /N, with its corresponding ideal (@, (N)),

the canonical framing clearly descends to a framing
S Ql(M) — (G & VM)H, adb — ab(l) ® (b(g))+,

where we have denoted Vi := M1 /o(®y(N)). We will call (Vyy, s) the canonical
framing of the calculus. It is easy to see from (2.8) that an explicit presentation

of the inverse of the canonical framing is given

sTH (G V)" — QN (M), Zfz Qv ZfiS(vél))dva). (2.11)

If we drop the assumption of faithful flatness, then because of Lemma 2.1.2 we will
still have a corresponding framing for every covariant calculus. However, we are
not guaranteed an equivalence between calculi and ideals. This is essentially what
is established in Majid’s second framing theorem in [51]. For the special case of
the trivial quantum homogeneous space G (where the faithful flatness condition
is trivial), the results of Majid and Hermisson reduce to Woronowicz’s celebrated
classification of left-covariant calculi over a Hopf algebra G. For such a calculus
QY(G), we will denote its cotangent space by Af, and call it the space of left-

invariant one forms.

If (', d) is a differential calculus over a x-algebra A such that the involution of A
extends to an involutive conjugate-linear map * on Q' for which (adb)* = (db*)a*,
for all a,b € A, then we say that (Q',d) is a first-order differential *-calculus. Tt
is easy to see that the universal calculus Q! (A) over any *-algebra A always has
a unique *-calculus structure. Moreover, any non-universal calculus of the form
QYA) = QY(A)/N is a x-calculus if, and only if, N* = N.

Let us now assume that both G and H are Hopf x-algebras, and that 7 is a Hopf
x-algebra map. It is easy to see that in this case M is a x-subalgebra of G. In
general it is not known how to tell that a calculus Q'(M) over M is a *-calculus,
directly from the corresponding sub-object of M ™. However, we can show without
too much difficulty, that for the universal x-calculus QL(G), the corresponding

x-map on G ® GT acts according to

x:GRGT - GG, gRU — g1y @ S(v*)g(y- (2.12)
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Thus, for Q!'(G) a non-universal calculus over G, with corresponding sub-object
I C G, we have that Q(Q) is a *-calculus if, and only if,

{S(’U*) ‘ v E Ig} =Iq.
Now if Q(G) restricts to Q! (M) on M, then since (mdn)* = d(n*)m* € Q' (M), for

any m,n € M, the *-structure on Q'(G) must induce a *-structure on Q'(M). This

provides us with a crude method for establishing that Q'(A/) has a *-structure.

Building upon the classification of left-covariant calculi, it can be shown that
bicovariant calculi are in bijective correspondence with the Adg-covariant right
ideals of H", where as usual the right adjoint action is defined by Adg(h) :=
hey ® S(hay)hs), for h € H.

We say that H is coquasi-triangular if it is equipped with a convolution-invertible
linear map r : H ® H — C obeying
r(fg@h) =r(f @hw)r(g®hg), r(f®gh)=r(fo)@h)r(fe®@g), (2.13)

and

g fayr(fe ®9e) =r(fo) ®gn)f@9e),
for all f,g,h € H. For any coquasi-triangular Hopf algebra H, the quantum Killing

form is the map
Q:H® H—C h® g r(ga) @ ha)r(he) ® ge)).
If H has a set of generators {u; |i,j =1,...,N}, for some N € N, then we can
use Q to define a family of maps {Qy | k,l =1,..., N} by setting
Qu:H— C, h— Q(h®ul).
Using this family of maps, an N2-dimensional representation ) can then be defined
by
Q:H— My(C) h— [Qri(h)] k-
We call @ the quantum Killing representation of H. It can be shown [47] that

ker(Q)* is an Adg-covariant right ideal of H*, and so, it corresponds to a bicovari-

ant calculus. We call the corresponding calculus the canonical bicovariant calculus
over H, and denote it by Q) (H). When H = C,[SU,], it can be shown that one
recovers Woronowicz’s 4D calculus [79]. More generally, for H = C,[SUy|, one

recovers the bicovariant calculus introduced by Jurco in [32].
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2.2.2 Total Differential Calculi

We now come to noncommutative higher differential forms: For (Y, +) a commu-
tative semigroup, a Y -graded algebra is an algebra of the form A = @er AY,
where each AY is a linear subspace of A, and AYA* C AY** for all y,z € Y. If
a € AY, then we say that a is a homogeneous element of degree y. A homogenous
mapping of degree d on A is a linear mapping L : A — A such that if a € AY,
then L(a) € AYT?. We say that a subspace B of A is homogeneous if it admits a
decomposition B = @,ey BY, with BY C AY for all y € Y.

A triple (A,0,0) is called a double complex if A is an NZ-graded algebra, O is
homogeneous mapping of degree (1,0), d is homogeneous mapping of degree (0, 1),
and

P=0 =0, Dod=—000.
A graded derivation d on an Ny-graded algebra A is a homogenous mapping of

degree 1 that satisfies the graded Liebniz rule
d(ab) = d(a)b+ (—1)"adb, (foralla € A", be A).

A pair (A, d) is called a differential algebra if A is an Ny-graded algebra and d is a
graded derivation on A such that d? = 0. The operator d is called the differential
of the algebra.

Definition 2.2.3. A total differential calculus over an algebra A is a differential
algebra (2(A),d), such that Q° = A, and

OF = spang{aoda; A --- Adag |ag,...,ar € A}. (2.14)

Following the classical example of the de Rham complex, we will always use A to
denote the multiplication between total calculus elements, both of order greater

than or equal to 1.

In commutative geometry the higher forms are constructed as exterior powers of
the one-forms. In the noncommutative setting such a construction is not in general
well-defined. However, there exists an alternative formulation of the higher forms
which 4s well-defined for noncommutative algebras: For (Q2'(A),d) a first-order dif-
ferential calculus with corresponding sub-bimodule N C Q!(A), denote by Q°(A)
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the quotient of the tensor algebra @~ ,(2(A))®4* by (d(N)), where (d(N)) is the
subalgebra of the tensor algebra generated by d(/N). As a little thought will con-
firm, the exterior derivative d has a unique extension to a map d : Q°*(A) — Q°*(A),
such that (Q°(A),d) has the structure of a total differential calculus. We call this
total differential calculus the mazimal prolongation of (Q'(A),d). The maximal
prolongation is easily seen to be unique, in the sense that any other calculus ex-
tending (2'(A),d) can be obtained as a quotient of the maximal prolongation by
an ideal of ker(d). It is clear that (d(/V)) is homogeneous with respect to the Ny-
grading of the tensor algebra. We will denote the corresponding decomposition
by

(AN) = € (dN),. (2.15)

TLENZQ

As is well known and easily seen, each (dN), is an object in §Mj,. This means
that the natural comodule structure of the tensor algebra descends to a comod-
ule structure on Q°(A), giving it the structure of an object in §M,,;. For the
special case of the universal calculus, its maximal prolongation is just its tensor
algebra. An important point to note is that the maximal prolongation of Q!(A)
can also be constructed as the quotient of the tensor algebra of Ql(A) by the
subalgebra (N + dNV), with the total derivative being obtained by restriction.

If (Q2°,d) is a differential calculus over a x-algebra A such that the involution of A
extends to an involutive conjugate-linear map * on 2°, for which (dw)* = dw*, for
all w € Q, and

(wp Awy)™ = (=1)Mw; A wy, (for all w, € O, w, € Q7),

then we say that (2, d) is a total x-differential calculus. It is easy to see that if
Q! is a first order *-calculus, then its maximal prolongation is canonically a total
x-calculus.

2.3 Quantum Principal Bundles

In this section we recall the general theory of quantum principal bundles. We will

use quantum principal bundles in Chapter 6 to construct holomorphic structures
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for the line bundles over the quantum projective spaces. Reflecting standard pre-
sentation, we give the general form of the definition. In practice, however, we will

only ever need to consider the homogeneous case.

Just as for the special case of quantum homogeneous spaces, the coinvariant sub-
space M = P of a right H-comodule algebra P, is clearly a subalgebra of P. If
the mapping

ver = (m®id)o (id® Ag): PRy P — P® H,

is an isomorphism, then we say that P is a Hopf-Galois extension of H. It is well-
known, and not too difficult to show, that this condition is equivalent to exactness

of the sequence

0 — PQLMPQLP)ELPR HT — 0, (2.16)
where QL (M) is the restriction of QL (P) to M, and ¢ is the inclusion map (see [50]
for details). Now it is natural to look for a generalisation of this sequence to one
using non-universal calculi. This brings us to one of the central structures used in
this thesis:

Definition 2.3.1. A quantum principal H-bundle is a four-tuple (P, H, N, Iy),
where H is a Hopf algebra; P a right H-comodule algebra such that P is a Hopf-
Galois extension of M = PH: N a sub-bimodule of Q!(P) determining a right-
covariant calculus Q'(P); Iy an Adg-covariant right ideal of HT determining a

bicovariant calculus Q! (H); for which holds the equality
ver(N) =P ® Iy. (2.17)

We usually omit explicit reference to the choice of calculi and refer to (P, H, N, I)
as the quantum principal H-bundle P <= M. It is clear that every Hopf-Galois
extension is a quantum principal bundle for the choice of the universal calculus on
G. An immediate consequence of the definition is that for any quantum principal

bundle (P, H, N, I;), we have an exact sequence:

ver

0 — PQ'M)PQY(P)XESP® AL — 0, (2.18)

where Q!(M) is the restriction of Q'(P) to M, ¢ is the inclusion map, and ver the
descent of ver to Q'(P) (which is well-defined since (2.17) holds).
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Let us now restrict our attention to the special case of a quantum homogeneous
space m : G — H, where m : G — H is a surjective Hopf algebra map. If
G is a Hopf-Galois extension of M, we say that M is a Hopf-Galois quantum
homogeneous space. Let us now look at when non-universal choices of calculi give
a Hopf-Galois quantum homogeneous space the structure of a quantum principal

bundle: The map s can be used to let ver act on G ® G*. As is easily seen,
ver: GG — G® H, f@g=fen(g). (2.19)

Thus, for any left-covariant calculus on G with corresponding right ideal I C G,
and left-covariant calculus on H with right ideal Iy C H™, the requirement (2.17)
is satisfied if, and only if, Iy = m(Ig). Similarly, it is easy to show that Q'(G) is
right-covariant if, and only if, (id ® 7)(Adgr(Ig)) C I ® H. In this case we have
that

AdR(T{'(]G)) = (7'(' X W)AdR<]G) Q (7T X ld)(IG X H) = W(]G) X H,

and so, the calculus on H corresponding to [y is bicovariant. We collect these

observations in the following proposition:

Proposition 2.3.2 [51] Let 7 : G — H be a Hopf-Galois quantum principal
homogeneous space, and Ig a right ideal of G*. If

(id®m)Adr(lg) C Ie ® H, (2.20)

then (G, H,s(Ig),m(1g)) is a quantum principal bundle. We call such a quantum

principal bundle a quantum principal homogeneous space.

A connection for a quantum principal H-bundle P <= M is a left P-module pro-
jection IT : Q*(P) — Q'(P) such that ker(IT) = PQ!(M)P and

Connections are in bijective correspondence with linear maps w : A}, — Q!(P) for
which Vet ow = 1®1id and Agpow = (w®id) o Adg g, where Adg g is the descent
of Adg y to the quotient A},. We call such a map w a connection form. Explicitly,

the connection I, corresponding to a connection form w is given by

[T, = mo (id ® w) o ver. (2.22)
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For a quantum principal homogeneous space m : G — H connection forms are in

turn equivalent to linear maps i : A}, — A}, such that 7o = id and
AdR,G 01 = (Z (%9 ld) e} AdR,Ha (223)

where ™ and Adp ¢ are defined to be the unique mappings for which the following

diagrams are commutative:

ker(eg) _ Adee ker(eg) @ G ker(eq) ——— ker(ep)
projl Lproj@n* projj lproj
AL AL ® H, AL _ AL,
AdR’G ™

(Note that Adg ¢ is well-defined because (2.20) is satisfied, while 7 is well-defined
because Iy = 7(Ig).) We call such a map i a bicovariant splitting map. Explicitly,
the connection form associated to ¢ is w = s o 7. For a more detailed presentation

of connections, connection forms, and bicovariant splitting maps see [8, 9, 50, 49].

A connection 1T is called strong if (id —IT)(QY(P)) € PQ'(M). Strong connections
are important because they allow us to construct covariant derivatives for all the
associated bundles of a principal bundle. Recall that if £ is a bimodule over an
algebra A and Q'(A) is a differential calculus over A, then a covariant derivative
for £ is a linear mapping V : £ — & ®4 Q'(A) such that

V(sa) = V(s)a+ s ® da, (se&acA).

It was shown in [24], that for any associated line bundle £ of a quantum principal

bundle P <= M, a strong connection II induces a covariant derivative V on &

defined by
V:E— E@u (M), e (id — IT)de, (2.24)

where we identify £ ®;; Q'(M) with its canonical image in Q!'(P).
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Chapter 3

The Quantum Projective Spaces

In this chapter we introduce the quantum projective spaces and their Heckenberger—
Kolb first order differential calculus. The description of C,[CPY~!] given in the
first half of the chapter is quite well-known. The material in the second half, how-
ever, is mainly novel. More explicitly, the calculus for SUy is original, as is the

explicit description of the ideal of the Heckenberger—Kolb calculus.

3.1 The Quantum Projective Spaces

In this the first half of the chapter we introduce the quantum projective spaces.
We begin by recalling the well known construction of the quantum special unitary
group. We then give the presentation of the quantum projective spaces originally
introduced by Meyer in [53]. Finally, we discuss the Hopf-Galois property and

faithful flatness for the quantum projective spaces.

3.1.1 The Quantum Special Unitary Group C,[SUy]

We begin by fixing notation and recalling the various definitions and constructions
needed to introduce the quantum unitary group and the quantum special unitary

group. (Where proofs or basic details are omitted we refer the reader to [37, 62].)

For ¢ € (0,1] and v := g — ¢!, let C,[My] be the quotient of the free noncommu-
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tative algebra C <u;, li,j=1,... ,N> by the ideal generated by the elements

uiui—qu{%u};, uu?—qu?u'»“ (1<i<j<N/1<k<N)
wiel —uwlul,  uiul —ulul —vulul,  (1<i<j<N,1<k<I<N).
These generators can be more compactly presented as

N N
> RS upul — > Rigugus, (1<a,be,d<N), (3.1)

w,r=1 y,z=1

where, for H the Heaviside step function with H(0) = 0, we have denoted
R = "6 + vH (k — 1)6;;0u. (3.2)

We can put a bialgebra structure on C,[My] by introducing a coproduct A, and
counit &, uniquely defined by A(u}) := SV Ul ® u¥, and e(u}) := 0;. The

quantum determinant of C,[My] is the element

dety = ZwesN(_q)z(ﬂ“i(n“i(m Uy

where summation is taken over all permutations 7 of the set of N elements, and
{(m) is the length of 7. As is well-known, dety is a central and grouplike element of
the bialgebra. The centrality of dety makes it easy to adjoin an inverse det]\,l. Both
A and ¢ have extensions to this larger algebra, which are uniquely determined by
A(dety') = dety' @ dety', and e(dety') = 1. The result is a new bialgebra which
we denote by C,[GLy]. We can endow C,[GLy] with a Hopf algebra structure by
defining

- 7 i—7 T kEn_ _
S(dety!) =detw,  S(uj) = (=) Y (=) iy i, gy dety,

where {k1,...,kn_1} = {1,...,N}\{j}, and {l1,...,In_1} = {1,..., N}\{i} as
ordered sets. Moreover, we can give C,[G Ly| a Hopf x-algebra structure by setting
(dety')* = dety, and (ul)* = S(u}). We denote this Hopf *-algebra by C,[Ux],
and call it the quantum unitary group of order N. For N = 1, we get the Hopf
algebra C[U;], where it is usual to denote u! = ¢, and det" = ¢~'. If we quotient
C,[Un] by the ideal (dety —1), then the resulting algebra is again a Hopf *-algebra.

We denote it by C,[SUy], and call it the quantum special unitary group of order
N.
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As is well-known [62], for each N*®-root q% of ¢, we have a map

r: Cy[SUx] ® C,[SUy] — C, ui @ uf s ¢V RY

gbo

which we call the coquasi-triangular structure map of C,[SUy], for q%. We can

use r to define a family of maps {Qg |k, =1,..., N} by setting

N

Qu : C,[SUN] — C, e ok @ fa)r(feo @ uf). (3.3)

a=1

Using this family of maps, an N?-dimensional representation ) can be defined by
Q : Cq[SUN] — MN(C> h+— [le(h>]kl

We call @) the quantum Killing representation of C,[SUy].

For N = 2, we get the well-known Hopf algebra C,[SUs]. Conforming to standard

notation, we denote its generators uj,ul, u?, and u2 by a,b,c, and d respectively.

3.1.2 The Quantum Projective Spaces C,[CP""!| and the

Quantum Line Bundles &;

We are now ready to introduce the quantum projective spaces. As mentioned ear-
lier, they form a subfamily of the quantum flag manifolds, and they will serve as an
invaluable testing ground for our general theory. We use a description, introduced
in [53], that presents quantum (NN — 1)-projective space as the coinvariant subalge-
bra of a C,[Un_1]-coaction on C,[SUy|. This subalgebra is a g-deformation of the
coordinate algebra of the complex manifold SUy/Uyn_1. (Recall that classically
CPN-1 is isomorphic to SUy/Un_1.)

Definition 3.1.1. Let ay : C,[SUx] — C,[Un-1] be the surjective Hopf al-
gebra map defined by setting ay(ul) = dety',; an(u}) = ay(u}) = 0, for
1=2,---,N;and ozN(u;'.) = uj:ll, fori,j =2,..., N. Quantum projective (N —1)-
space C,[CPN~! is defined to be the coinvariant subspace of the corresponding

homogeneous coaction Agpy oy = (id ® ay) o A, that is,
Co[CPY] = {f € Cy[SUN]| Asvy.an(f) = F® 1}
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An important family of objects in CSPU;V,IM cpv-1 is the family of quantum line

bundles {& |k € Z}: The module & is defined to be Vepn-1(C), where C is
Un—1
cpN-1

which 1 — 1 ® det,” |, for A € C. Clearly, we have that & = CPY~!. Moreover,
identifying C,[SUx| ® C and C,[SUy| allows us to consider & as a coinvariant

considered as an object in M according to the unique C[U;]-coaction for

subalgebra of C,[SUy]|. The corresponding coaction, which we denote by A’gUN’a,

is clearly a homogeneous coaction, whose Hopf algebra map we denote by ;.

For practical purposes, it will later prove very useful to have a more concrete
generator-and-relation description of the quantum projective spaces and their line
bundles. We will find such a description using an alternative presentation of
C,[CPN~1] based upon the classical isomorphism between C,[CPY~!] and
S2N=1/U,, where S*M~! is the (2N — 1)-sphere. We begin by presenting a
g-deformation of the coordinate algebra of S*¥~! which was first introduced in
[74]. This deformation is based upon yet another classical isomorphism, this time
the identification of S*¥~! and SUy/SUpn_;.

Definition 3.1.2. For the surjective Hopf algebra map fx : C,[SUy] — C,[SUn_1]
defined by setting Sy (uj) = 1; By (uf) = Bn(ui) = 0, for i # 1; and By (u}) = u/”},
for 7,7 =2,..., N, we have a homogeneous C,[SUy_1]-coaction on C,[SUy]| given
by Asyys = (id ® By) o A. The quantum (2N — 1)-sphere C,[S?*N~!] is the

coinvariant subalgebra of Agy, 3, that is,
C,[S*" '] = {f € C,[SUN] | Asuys(f) = f @ 1}.

Now for 2 =1,..., N, we have
N N
Asuyp(ui) = (1Id® Bx)(Y_up @ uf) = Y uj ® By(u) =uj @ 1,

and
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Thus, u¢ and S(u}) are contained in C,[S*N~!]. Using representation theoretic
methods, it was established in [74] that C,[S*¥~!] is in fact generated as a alge-

bra by the elements u} and S(u}) . It was also shown that a full set of relations is

given by
wiu] = quivl  (i<j); uiS(u)) =qSuh)ul, (i #j);
(3.4)
N N
uiS(ul) = S(uhuy +q7'v Y @FuES (), Y Sy = 1.
k=i+1 =1

(More easily accessible versions of the proof can be found in [37, 10].)

We now introduce a right C[U}]-coaction, 7%, for k € Z, for the quantum (2N —1)-
sphere and show that & arises as its coinvariant subalgebra. This alternative
description of C,[CPN~!] comes from [53].

Lemma 3.1.3 Define a surjective Hopf algebra map ~% : C,[SUn] — ClU1| by
setting Y& (ul) = t7%; yn(ul) = 1, for 1l = 2,...,N — 1; Y% ul) = t*; and
() =0, fori,j =1,...,N, and i # j. The map (id ® 7§) o A restricts
to a C[Uy]-coaction on C,[S* 1] which we denote by AIEQN*W' Moreover, & is

the coinvariant subalgebra of this coaction, that is,
={f € Cy[S*" | Alan-n, (f) = f@ 1}

Proof. That we have a C[U]-coaction on C,[S?*V~1] is clear from the fact that

N N
Nov, () = ([d@3) Y up @uf =Y up @k uh) =ui @t™*,  (3.5)

k=1 k=1

and the fact that

N N
Agan-1 (S(u))) = ([d@y8) Y S(uf) @ S(ug) = > S(uf) @k (S(up)  (3.6)
k=1 k=1
= S(u}) @ t*.

Let us now move onto showing that & is the coinvariant subalgebra of Agav-1 i .

For the canonical projection dy_1 : C,[Un-1] — C,[SUn-1], we have that
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dn_10ak = By, and so, the following diagram is commutative:

Ak

C,[SUN] TN C,[SUN] © Cy[Un-1]
idl lid®51\/1
A Un»
C,[SUN] SINE . C,[SUN] ® Cy[SUN_1].

It follows that C,[CPY™!] is contained in C,[S*"~!]. Now let us denote by
J : ClUi] = C4[Un—1] the canonical embedding of C[U;] into C,[Un_;] uniquely
defined by j(t) = dety and j(¢™') = det'. Just as in (3.5) and (3.5), it is easy to
show that A%, (u}) = ui ® dety” and Ak, (S(u})) = S(u!) ® detl, and so,

we have another commutative diagram:

Ak
$2N-1

C,[5*V C,[5*" 1 ® C|Uy] (3.7)

L L®g
Ak

C,[SUN] TN L C,ISUN] ® CylUn—1).

That & is the coinvariant subalgebra of A’§2 No1, follows easily from this. O

Corollary 3.1.4 We have that C,[CPN"'] is generated as an algebra by the ele-
ments z;j = u’IS(ujl), fori,j=1,...,N. Moreover, for k € N, the algebras & is
generated as right C,[CPN"-module by the finite set

N
) = {(S(up))™ -+ (S(up)™ | > mi =k},
i=1
while E_y, is generated as right C,[CPN = -module by the finite set
N
€0, = ()™ (™ | Yo = b}
i=1

Proof. Since Agav-1
This grading is uniquely determined by for deg(u}) = —1 and deg(S(u;)) = 1. The

r is a C[Uy]-coaction, it induces a Z-grading on C,[S?N 1.

corollary now follows from the fact that C,[S?*¥~1] is generated by the elements
v’ and S(u}), and the relations (3.4). O

32



3.1.3 The Hopf—Galois Property and Faithful Flatness

Let us now present this quantum homogeneous space as a quantum principal ho-

mogeneous space. We begin by proving a general result:

Lemma 3.1.5 For a Hopf algebra map 7 : G — H, with corresponding quantum
homogeneous space M, we have that G is a Hopf-Galois extension of M if v(1 ®
p) = 0, for all p € ker(m), where the map v:G® G — G Ry G is defined by

setting v(f ® g) = fS(g9(1)) ® g(2), for f,g € G.

Proof. We will establish this result by introducing a map ver ! : G H — G®,, G
that acts as an inverse for ver whenever v(1 ® p) = 0, for all p € ker(w). Let
i : H — G be a linear mapping such that 7 o¢ = id (such a mapping can always
be constructed) and set ver™! = v o (id ® 7). We first show that ver o ver™! = id:
For any h € H,

verover™ ' (f ® h) = ver(fS(i(h) ) ® i(h)2)) = fS(i(h)))i(h)@) @ m(i(h)()
(3.8)
= fe(i(h)w)) @ m(i(h) @) = f @ m(i(h)) = f @ h.

We now move on to showing that ver™! o ver = id: For any x € G, the fact that

7o = id, implies that i(7(z)) = x + p,, for some p, € ker(r). This means that

ver ' over(f ® g) = ver ' (fga) @ 7(92))) = v(f9) @ i(n(g2))))
=v(f90) ® 92)) + v(f90) ® Pgrry)) = f91)S(92)) ® g(3)
= felgn) ® g =f®g.

We note that ver—! does not depend upon our choice for the map i. U

Using this lemma we now give a detailed proof of a result that was originally

proposed in [53].

Corollary 3.1.6 The quantum homogeneous space oy : C,[SUyx] — C,lUn_1]

has a quantum principal bundle structure.
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Proof. Since (ul,u}|i# 1) C ker(ay), there exists a unique map proj’ such

that the following diagram is commutative:

Cq[SUN] = Cq[UN—l]

proj
proj’

Co[SUN]/ (ui, ui |1 # 1)

Now the mapping
(proj') ™" : Cy[Un—1] = Co[SUN]/ (ui,ui |i # 1), ul — ult], dety | = ui,

is well-defined because
(proj’) !(dety_i detyt, —1) = S(u)uj — 1 = Z S(up)ul =0,

and
(proj’) ! (det ", dety_, —1) = 0.

Moreover, (proj’)~! is clearly inverse to proj’. This means that we must have

(uf,uj |i# 1) = ker(ay).

Thus, we see that every p € ker(ay) is of the form
N N
p= uifi+) ug (fi, 91, € CoSUN]). (3.9)
=2 =2

Now, for any f € C,[SUy|, we have

N N
v @ulf) = S(fu)S(up) @ uf foy = > S(fn)S(ul) @ ufS(uf )l fo
k=1 k=1
N
= S(fw)Sup)ufS(u)) @ ul foy = > S(f )S(u)) @ ul fo)
k=1 k=1
=0.

It can be shown in an exactly analogous manner that v(1 ® ujg) = 0, for any
g c Cq[SUN] 0
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We now come to the question of faithful flatness. In [55] Miiller and Schneider
undertook a general investigation of faithful flatness for quantum homogeneous
spaces. They established the condition for a quite large class of homogeneous
spaces, for which the quantum flag manifolds are a motivating family. We present

their result here for the very special case of the quantum projective spaces.

Theorem 3.1.7 (Miiller, Schneider) The Hopf algebra C,[SUN] is a faithfully
flat module over C,[CPN~1].

3.2 The Heckenberger—Kolb Calculus Q;(CPY1)

In this section we will present the Heckenberger—Kolb calculus Q; [CPYN=1] in terms
of its classifying ideal. We will also consider a calculus on C,[SUx]| that restricts
to the Q [CPY '] on C,[CPY~!]. This calculus is not of interest in itself (it has
highly non-classical dimension), instead it will serve as a very convenient calculat-

ing tool throughout the rest of the thesis.

3.2.1 A Distinguished Quotient of the Bicovariant Calculus
for C,[SUx]|

As explained in Chapter 2, for every coquasi-triangular Hopf algebra H, there

exists a canonical bicovariant differential calculus Q%)C’q(H ) over H, constructed

using the quantum Killing representation. In this subsection we will recall what

the calculus looks like for the case of C,[SUy]; construct a certain quotient of it;

and then explain why this quotient is important.

We begin by establishing some very useful formulae (given in terms of the coquasi-
triangular structure specified in (3.2) for the action of () on certain distinguished
elements of C,[SUy].

Lemma 3.2.1 For {Q |k,l=1,...,N} the family of maps defined in (3.3), we
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have the following formulae:

N

le(U;) = Z q Rza ]l ) (310)

a,z=1

N

QuiStu) =Y PP IRGRY, (3.11)

a,z=1

N
Quuinl) = > ¢ VRERZRURY, (3.12)
a,b,x,y,z=1
l bk
QuuiSu) = Y " MR,R;RER,, (3.13)
a,b,x,y,z=1
N
Qu(uiSuiul) = Y g0 ¥ RIYR RY R R, (3.14)

a,b,c,v,w,x,y,z=1

Proof. The proof of the lemma consists of a series of routine calculations involv-
ing the definition of QJy;, and the properties of a general coquasi-quasitriangular

structure: For uj, we have

N
Qu(ul) = Y r(uf @ ul)r(uf @ uf) Z q NRLRY.
z,a=1 z,a=1

For u]us, we have

N
Qu(ulul) Zr P @ ulup)r(utul @ uf)

Il
i M=
=
®
$
®
£
&
S
=
&
£

T,Y,2,a,b

N
= > ¢ VRGRLRER.
T,Y,2,a,b
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We now move onto calculating Qp(S(uj)):
Qu(S(uf)) = Z (uf @ S(up))r(S(uf) @ uf) = Zr<S< 5 ® (i) (ug © uf)

_Zq (S (uf) @ up)F(ud @ uf) Zq Ik @ )T (ud © uf)

—ak—
- 3 R

a,z=1

Next we take Qp(u}S(uj)):

N
Qu(uiS(uf)) = > r(uf @ (u,S(uh))r((wS(uf)) @ u;)
a,b,z=1
N
= Z r(uf ® S(u%))r(uz ® g )7 (uf @ ul)r(S(uy) @ up’)
a,b,x,y,z=1
al b
= Z qz(b_h)thR;ZngZsz ;
a,b,x,y,z=1

where we have used the fact that r(f ® (g h)) =7r(fay@h)r(fo®9).)
Finally, we establish the formula for Q(u}S(uj)uy):

Qua(u S (uf Juy)
= Y r(uf @ulS(up)ul)r(ulS(uf)ul @ uf)

= Z r(uf ® ug )T (u;, ® S(ub))r(ul @ ufl)r(u‘;S(u*Z)ui ® up)
a,b,c,v,w,x,y,z=1
al b
1 — .
= Y PUPRIR RS (u)u @ )
a,b,c,v,w,x,y,z=1
al )
1 — .
= ) PUYNRER,RYr(uf @ ul)r(S(uf) @ ul)r(uf ® uf)
a,b,c,v,w,x,y,z=1
N

= Z q2(b m)- RrkRthzaRﬁszv sl :

a,b,c,v,w,x,y,z=1
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With these formulae in hand we can now introduce a novel first-order differential
calculus for C,[SUy]|.

Proposition 3.2.2 The subspace Isy, = ker(Q)" + D1 + Da, with
Dy = spanc{ujS(uj)|i=2,...,N}, and Dy :=spanc{u’|i,j =2...,N;i # j},
is a right ideal of C,[SUN]T. Moreover, fori=1,...,N — 1, the elements

— T 0._ 1 R |
e; ==uj, e ==u; — 1, e = Ui, (3.15)

form a (2N — 1)-dimensional left-module basis of Ny = C4[SUN]T/Isu, -

Proof. As discussed in Section 2.2, ker(Q)" is a right ideal of C,[SUy]", whose
calculus is the standard bicovariant calculus for C,[SUy]. We will begin by con-
structing a basis for Ay, g, = Co[SUn]T /ker(Q)™: The map Qy acts on on uj,
for ¢ # j, according to
N
Qu(ui) = > ¢ ¥RER: = ¢ ¥ (RERY + RI:RY).
a,2=1

Since i # j, this gives a non-zero value if, and only if, k = j and | = i, whereupon

Qji(ul) = ¢~ ¥ (RIRY + RIRI) = ¢ ¥ (W9(j — i) + v.0(i — j)) = ¢ ~v.

J1 " Vg4

Thus, for E;; the usual (i, j)™-element of the canonical basis of My(C), we have

Qul) = ¢ NV E;; (3.16)
For i > 2, the map Q; acts on u!S(u}) according to
N
le(uls(uzl)> = Z q2(b )Rzz RyaRll/wal
a,b,x,y,z=1

ya

N N

_ Bk iz pyapil —i BF piz piptt

=20 § R, R, R, R1z+612(1 ) E R, R{,RI1 Ry,
z=1

a,z=1 -
N I " 1
=Y RURERIR, + 2 R RERIR, +0
z=1 z=1

— qQ(l_i)FifRﬁRgﬁi(sh +0
= ORY RRYR 6,0k

= U601
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Thus, this gives a non-zero answer if, and only if, k = [ = 7, and so,
QuiS(u})) = ¢V Ey.

Now on u}, the map @Q1; operates as
N
_z2 _z2 _z2
Qui(up) = ¢ NE RLRiY = ¢ ¥Ry Rj; = ¢ ¥,

Finally, we note that the general properties of a coquasi-triangular structure imply
that Q(1) = 1y, where 1y is the identity matrix of order N. Thus, ul — 1 has a
non-zero image under )q;.

All this tells us that the elements Q(uj — 1); Q(u}), for i # j; and Q(uS(u})), for
i # 1, form a spanning set of My(C), and hence a basis. It follows directly that
the elements ul — 1 uj, for i # j; and ulS—(u}), for i # 1, form an N?-dimensional

basis of A}, g, -

We can now move onto showing that Isy, is a submodule of C,[SUy]T. We first
note that this is equivalent to the image of Dy + Dy in A})%SUN being a right

submodule. This is in turn equivalent the subspace
{Eijli,j=2,...,N}.

being a submodule of My (C). Thus, we see that Isy, is a submodule if, and only
if,

Quujuy) = Qu (ujug) = QuuyS(ug)uy) = Qra (uyS(ui)uy) =0,

for all 1 < k,l,r,s < N. This is easily proved using (3.12) and (3.14). Let us
begin with the action of Qy; on u}uj

N N

Qulujul) =g~ Y RGRLRURY =q % Y RURIRIRY =0
a,b,x,y,z=1 bx=1

Next we take the action of Qz on ujuj
N
4 4 . .

Qu(uul) =g Z RRERIRY = ¢~ Y RGRERAIRYE = 0.

a,b,x,y,z=1 b,z=1
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1

For the action of Qq; on u}S(u;)u’ we have

N
7 r —1)— r1 0% i za WL poe
Qll(uls(uil)us> = q2(b )1 Z RziRyi R:):yaleva sl

a,b,c,v,w,x,y,z=1
N .
_ 2(b—i)—1 r1pH pil plipll pve
=dq E Ry, R, Ry R Ry Ry = 0.
c,v=1

1

i

T

Finally, we take the action of Qy; on ufS(u})u”

N
Qu(uS(ubyul) = ¢t N~ RERERYRIGR,RY

a,b,c,v,w,x,y,z=1

N
=" YT RERGRARIR R = 0.
b,c,y=1
It now follows directly that the set of elements given in (3.15) is a basis. O

We denote the calculus corresponding to Igy, by Q'(SUy). We acknowledge that
the dimension of this calculus is significantly less than the classical value, for N > 2.
However, we are not interested in Q) (SUy) as a quantum deformation in itself.
Instead, we will view it as a useful mathematical tool to be exploited in our efforts
to investigate the geometry of C,[CPN!]. As we shall show below, the calculus
that Qé(SU ~) restricts to on C,[CPN~!] has classical dimension. By contrast,
0l

SUy) restricts to an (N2 — 1)-dimensional calculus on C,[CPY~!], a value
be,q q

much higher than the classical one. (The three-dimensional calculus induced by
Q). ,(SUz) on C4[CP'] was thoroughly investigated in [7].)

We finish our general discussion of the calculus Q}I(S Un) with the following tech-
nical lemma. It contains a number of explicit formulae which will prove invaluable

in the chapters to come.

Lemma 3.2.3 For the calculus Qé(SUN) we have the following relations: For
1=2,....,N;5=3,...,N;i<j,andm=1,...,N. The only non-zero actions of
the generators on the basis elements ef[ are given by

+ m _ Omi+Sim— 5 E + J— et
ei_ldum—qm m Nei_l, ei_ldui—q Nype

i1

Jj—1-

(3.17)

. 2
- i —2
€1 du; =q Nve
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The only non-zero actions of the antipodes of the generators are given by

61—"_—1 < S(“i) = _q%yej—la 6i_—l < S(U;) _qN+2(Z ])]/6] 1 (318)

ey aS(up) = qn ek | (3.19)

Moreover, we have the relations

S(uf) = =¥ ey, S) = =" ey (3.20)
and, that w7 f = ¢ =% F, and S(um)f = qv 2 F, for all f € C,[SUn].

Proof. We begin by introducing a variation on the operator Qy;:

Qi = Qi + Qu(l —dy).

Clearly, we have that ker(@) = Isy,. We will now use @, and (3.12), to calculate

the action of the generator u} on the basis element e

N
Quuiul) = Y ¢ VRERZRIRY
a,bx,y,z=1
N
. . 4 .
= Zq NRERLRIRY + Y ¢ VRERARLRY
b=1 b,x,y=1
N
= Z NVR 0_(] NV(R R 5k1+R R;’félr(l—ékl))
=1
= ¢ Nu(R] R 8110401 + RIIR"S,,.6, + 0)
= ¢ u(0(r — i)0510si01r + ¢ 6,.6).

Thus, we see that Q(ul ") gives us a non-zero answer if and only if s = i and

r > s; or if s = r. For the first case we get that
Quiu)) = q NV’ Ey, = ¢ V(g V) ] = ¢ Vv

while for second case we get that

o i _ 4 4 _2 14 2
Q(uﬁu:> — q6rl+§rz NVElZ — q6rl+§rz Ny(q N]/) lu’bl — q57‘1+5r2 Nu,:t[’
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where for both cases we have used (3.16). The formulae for the non-zero actions

on e; now easily follow.

Using (3.12) once more, we now calculate the action of the generator u} on the
basis element u;:
N

A 1. .r\y —4 vk plz pya pzb
le<uius) - E : q NszRyaRistl

a,b,x,y,z=1

N N
> O VRERIRERY + Y q VRERGRLRY

a,b,z=1 b=l
= > vRERY 0= g S (RIR S+ RERY)
b=1

— V(R R 6i010ys + RERY 6,011 64)
= vg" TN G010 + ¢V V26,00 01s0(s — ).

Thus, we see that Q(ulu”) gives us a non-zero answer if, and only if, r = s; or

1 =r, and s > 1. For the first case we get
N N Y g A 2 62T
Q(u,}u:) — q‘srz+5rl NVEIZ — q‘srz+6rl Ny(q Nl/) 1u7i — q6r1+6r1 N u7i,

while for the second case we have

Quiul) = ¢ NvEq = ¢ V(g Nv) " uf = g N vl

where for both cases we have again used (3.16). The formulae for the non-zero

actions on e; now easily follow.

Moving on, we use (3.13) to calculate the action of the element S(u}) on the basis

element U1
al bk
Qu(wiS)) = > " RLRLRER,
a,b,x,y,z=1
N
_ Z q2(b7h)E RiZR Z 2(b— h ZZR RZC;J
b=1 bx,y,z=1

_p\=lh==ig
V(PR R (L — )0 + VR thR 20k1) + 0
=0+ q "R 0k = V(Riga,”alg 4 g0 R 2 Ong01i) O
= —120(g — 1)6ni01,011 + 1q —o1n— 5lg5hgéli5k1

42



Thus, we see that @(u’lS (u?)) gives a non-zero answer if, and only if, we have

h =1, and g > 7; or h = ¢. For the first case we have
P L, .
QuiS(uf)) = v Erg = —v*(q %) uf = —gvw

while for the second case we have

Q(u}S(uf)) = vg %0 By = vg ™™ (g Nv) T ul = qN Ot u;

where for both cases we have again used (3.16).

Using (3. 13) again, we now calculate the action of the element S(u}) on the basis

element u}:
N
Qu(u/Si) = > ¢ R, RYRIR,)
ab:c,y,z*l
) N
-SRI ¢ Y IR R

b,x,y,z=1
al bk—=1
= ZQQ(b_h)VRithzg +0
b=1

= q2(i_h)I/EEZF;;5QZ'(SIC}Z511(1 — 5]“) —|— C]Q(h_h)l/ﬁf}zﬁ:jdkl
i . —hi—1h

= —* Y2501 010(h — i) + VR, Ry 0gn0ridn

= Y26 810 0(h — i) + O TR S, SO

Thus, we see that Q(u!S (u?)) gives a non-zero answer if, and only if, we have

g=1,and h > i; or h = g. For the first case we have
65(“35(“2)) = "By = —q2(i7h)y2(q*%y)*1u_ll1 - _q%+2(17h)yu—}1l;

while for the second case we have

@(u}S(ug)) = ¢ Wty = q*‘;lg*‘sigy(q*%y)*l ul = q%*‘slg*% u_zl;

where for both cases we have, as usual, used (3.16).

We now move onto finding a formula for S(u}) using (3.11):

S(ui) = Z QQ(Q_IH%EZfﬁZ — POV R R R 050k = 7 664
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Thus, we see that
2 : 2 2 _2 — 4 1
Q(S(uy)) = q~ WEy; = qv 1V(q Ny) 1u11 =gV 1u’1,

which gives us the first relation in (3.20). For Q(S (u})), we have

Qu(s ZQQ(a ) %}_% Ry = ¢ Jr]\’}21»#1%1151m511— ¢ TN o0

al

This gives us that

Q(S(uzl)) == q1_2i+%l/Eil = q1_2i+% V(q_%y)_lu_,} — q%+1—2iu1

from which follows the second relation in (3.20).

Finally, we come to u™ f and S(um)f, for f € C,[SUy], for m =1,--- | N. Now
as a little thought will confirm, we can canonically identify C,[SUy]/ker(Q) and
A%y, - This allows us to consider 1, w7, and S S(um) as clements in Agy,- From

(3.10) we now get

Qui(u Z ¢ NRIFRZ — N RPFRES, = ¢ N RPIR S0, (3.21)
a,2=1
= PN b, (3.22)
which tells us that w7 = ¢®=~%1. From (3.11) we have
ka( (U Z q (e~ m)+NRsz (m=m)+ FﬁRmém = QJQVET,:LR 10k1011
a,2=1
= g6,
which tells us that S(um) = gn2%mT. Tt now follows directly that
ugf = ¢¥n~~ f, and S(uj)f — qv 20 for all f e C,[SUn]. O

Example 3.2.4. Let us look now at the case of N = 2: The ideal Igy, corre-
sponding to € (SUs) is generated by the six elements

(a_q)(a_D’ bC, 62’ CQa (G_Q>b7 (G_Q)Ca
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or equivalently by the six elements
a+ qd - (q + 1)7 bC, b27 627 (a - Q)b7 (a - Q)C

A three-dimensional basis of Vgp1 is given by

et =g, e :=a—1,

9
+

I
=l

Explicitly, s~ acts on these elements according to

s H(ef) = adc — geda, s7'(e?) =dda — ¢ 'bde, s '(e]) = ddb— ¢ 'bdd.
While the exterior derivative acts according to

da = ae® +bef, db=ae; —q 'be’, dc=ce® +def, dd=ce; —q 'de’.

Finally, in matrix form, the right module relations are given by:

of a b qa ¢ b\ b 0 0 a)\ _
- 1 1
6(0 d) (qc q_ld)€+(q )<d0 e tla-1) 0 ¢/
St a b [ b ot
c d c d

Since ;(SUs) is a three-dimensional calculus, it is natural to ask whether or not it
is isomorphic to Woronowicz’s well-known 3D calculus [79]. Recall that the ideal

corresponding to the the 3D calculus is generated by the elements
a+q?d—(1+q?), be, b*, &2, (a—1)b, (a—1)c. (3.23)

Now Lemma 3.2.3 tells us that

(a—1)b=0b(ga—1)=(¢*=1)b,  (a—1c=clga—1)=(¢* - 1),

and that

atq?d—(1+q¢?)=(g+q¢’-(1+¢)L

As is easy to see, there is no value of ¢ € C for which these three elements are
simultaneously zero, and so, the two calculi cannot be isomorphic. Alternatively,
one can observe that since (a —q)b— (a —1)b = (1 — q)b, any ideal containing both
(a —q)b and (a — 1)b will also contain b. Since this is not the case for either ideal,
they cannot be equal. Moreover, a similar argument will show that Q;(S Us) is not

isomorphic to any of the other three-dimensional calculi presented in [71].
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3.2.2 The Heckenberger—Kolb Calculus

We now introduce an ideal that will play a central role in this thesis:
ICpN—l = <Zij; Zi1%41, 21”15 | Z,j == 2, e ,N> . (324)

As will be shown, it is a left covariant subspace of C,[CPN~!]*, and so, it has
a corresponding calculus. We denote this calculus by Q;(CPN 1) and call it the
Heckenberger—Kolb calculus. The following proposition establishes the essential

properties of the calculus.

Proposition 3.2.5 The ideal Icpn-1 is a left-covariant ideal of C,[CPN=1*t.
Moreover, the canonical map v : Vopy-1 — A}QUN is an embedding, and T(Vgpn-1)

has a basis given by

T=qr8 e, — N2 (i=2,....N). (3.25)

Proof. That Agpn-1 restricts to a C,[Un—_1]-coaction on Igpn-1 is clear from the

following calculations: For z;; we have

Acpy-1(z;) = ([d @ 8) o ([d @ an)( D ufS(uy) @ ulS(uh))

a,b=1

= (id® 9)( D ufS(uy) @ ay(ulS(ub))

a,b=2

=3z ® Slan(uiS(uh)) = Iopv ® CylUn—1).

a,b=2
For z;;z;; we have
N . .
Alznzp) = (id®8) o (i[d@ay)( Y ufS(up)usS(uy) @ ulS(uf)ulS(uf))
a,b,c,d=1

= (id®8)( ) ufS(up)usS(uf) ® an(u)S(ul)uls(u})))

a,c=2

= Z Za1zar @ S(ay(uiul)) dety® | € Igpy—1 @ Cy[Un_1].

a,c=2
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Finally, for z1;21;, we have

Alzuzy) = ([d® S) o ((d@an)( Y ufS(uy)uiS(ug) © upS(uf)uyS(uf))

a,b,c,d=1

= ([d® 5)( D uiS(uy)upS(ug) ® aw (uiS (uf)u; S (uf)))

b,d=2

N
= 2214 ® S(an(S(uf)S(uf))) ety € Icpy-1 @ Cg[Un—1]-

b,d=2

We will next establish that 7 is well defined by showing that Igp~-1 is contained

~

in ker(Q)*: For z;;, we have
@(Zij) = @(uﬁs(ujl)) =e¢f, q S(Ugl) =0.

For z2;1, we have

~ ~

Qznzjn) = QuiS(u)uiS(u)) = el A (S(up)uiS(up)) = g

2z

ety a (ulS(ub)) = 0.

Finally, for z1;21;, we have

~

Q(z1215) = @(U%S(Ui)U%S(U;)) = ¢ e < S(Ujl) =0.

~ ~

Since ker(Q)™ is a right ideal, it follows that Igpny-1 is contained in ker(Q)™.

Next we show that {Z;7,%Z1; |i = 2,..., N} is a spanning set for Vgpn-1: Since
N N N
DoV = Y S (ul) = Y S(upuy =1,
i=1 i=1 i=1

we must have that

N

Oz(ZZ_ii)—l—zu—l:zn—l.

=2

Thus, since zy € Igpn-1, for (k,1) # (1,1), we need only consider monomials

which have z;;, or zy;, as a first factor, for ¢ £ 1.
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Recalling now the quantum sphere relations given in (3.4), we see that for any

monomial z; 2y, with [ # 1, we have
Ri1%kl = u’iS(ul)ulS(ul) =q U1U1S(U1)S( 1)

= q i S(u))ubS(ul) — ¢ 36 Z U S (ug s S (uy)

a=1+1
N
=2 —35 I
=q "Zjy2k1 —q “ORV ZiaZal € LlopN-1.
a=i+1

Moreover, for the element zq;2y;, for k # 1, we have
2z = uyS(u JuiS(u)) = ¢*S(u )U1U1S<ul)

= ¢*uiS(ui)uwS(uy) — ¢~ ' Oiv Z ¢ utS (ug)ur S (uy )

a=i+1

= q Zrizu —q Yoy E q ZaaZu € Icpn-1.
a=i+1

It follows directly that {Z;7,Z1;|i = 2,..., N} is a spanning set for Vgpn-1.

We can now finish by showing that {Z;7,z1; | ¢ = 2, ..., N} is a basis for 7(V)), and

consequently that 7 is an embedding: For i =2,..., N, we have
Qzn) = Q(uiS(u})) = ¢y aS(ul) = ¢¥ e,
and
Q=) = QUuiS(w)) = ¢ ¥ Q(S(u})) = g% e,

g

We will show how this calculus relates to the one-forms of Heckenberger and Kolb’s
g-deformed de Rham complex in Section 5.3, using the framework of noncommu-

tative complex structures.
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Chapter 4

Framing the Maximal

Prolongation

A natural question to ask is whether or not one can extend the canonical framing
of a left-covariant calculus Q'(M) to a framing for its maximal prolongation. In
this chapter we will use Takeuchi’s categorical equivalence to show that, for a
distinguished class of calculi, this can indeed be done. We will do so in two parts,
first we show how to frame tensor powers, and then we show how this framing

restricts to the maximal prolongation.

4.1 Framings and Tensor Powers

In this section we will show how to frame tensor powers. This will require us to
restrict our attention to a distinguished subcategory of §,My, introduced in the
subsection below. Following this we introduce the notion of a framing calculus
which will serve as an invaluable tool for simplifying calculations throughout the
rest of the thesis.

4.1.1 A Monoidal Equivalence of Categories

The category §M; has a natural monoidal structure ®,;, where for £, F two

objects in ]\G}M m, we define £ ®,; F to be the usual bimodule tensor product
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endowed with the obvious left G-comodule structure
AL EQuF —>GRE Q@ F, 6®Mf'—>6(_1)f(_1)®6(0) R f(O)' (41)

However, for M no such obvious monoidal structure exists. This leads us to
consider a particular subcategory of M1, defined as follows: Let M be the
strictly full monoidal subcategory of ME whose objects V are those endowed

with the trivial right action
vam = e(m)v, (veV,meM).

This category has a natural monoidal structure ®, where for V, W two objects in
MU we define V@ W to be the usual vector space tensor product, endowed with

the trivial right M-action, and a right H-comodule structure given by
Arp VoW ->VeoW®wH, VW = Vo) @ W) & Wa)v(1)- (4.2)

That these two structures are compatible in the sense of (2.2) follows easily from
(2.1).

One should now of course ask what the corresponding subcategory of § My is.
As a candidate we propose the strictly full subcategory whose objects £ are those
which satisfy EMT C MTE. As a moment’s thought will confirm, for £, F two
objects in §M, their tensor product £ ®,, F is still an object in §;M,. Thus it
is clear that §;M, is a monoidal subcategory of {JM ;. Moreover, as the following

theorem demonstrates, it is monoidally equivalent to M.

Theorem 4.1.1 The functor ®,, restricts to an equivalence of categories between
G Mo and ME. Moreover, for any two objects £, F € (M, the natural transfor-

mation
peF 2 (€ @u F) = P (E) @ P (F), VRM W VR W, (4.3)

gives an equivalence of monoidal categories between My and MY

Proof. Let us first show that ® restricts to an equivalence of categories between
G Moy and ME: If € is an object in {fM,, then for any e € £, and m € M, we
must have, from the definitions of §,M, and ®,,(€), that e<m = 0. Hence, for

any n € M, we have

ean==ec¢<(nt +e(n)l)=eant +e<(e(n)l) =e(n)e.



Thus, ®,/(€) is well-defined as an object in M. Conversely, if V' is an object in
M, then for any element Y, f* ® v’ in U(V), the right action of M on ¥(V)
must operate according to

(Zfi®vi)m:Zfim(1) (v <ma ZfZ e(m)) ®v' —Zflm@m

Now if m € M*, then 3. fim ® v* must be an element of ker(framey;). But since
ker (framey; ) is equal to M+, (V), we must have that (3, f*®v')m is contained
in MW, (V). Hence Wy, (V) is well-defined as an object in §M. That this gives
an equivalence of categories now follows from the fact that ®,; : § My, — ME is
an equivalence of categories, and that (.M, and MY, are both full subcategories
of §M s, and ML respectively.

We now turn to showing that pe r is a natural isomorphism: It is trivial that pe
is well-defined as a right M-module map. To see that it is also a H-comodule map,

note first that the right comodule structure on ®,,(€ ® F) acts according to

Ag:e®uy frr e ®u fro)® Slenfi-n), (e€& ferF).

By (4.2), the right comodule structure on ®,,(€) @ ®,,(F) acts according to

Ap: €®f’—>(_ fo) ® S(f=1))S(e)), (e€& feF).

Hence, pe 7 is indeed a morphism in MZ. It remains to show that the inverse
morphism, which would send v ® w to v ® w, is well-defined. But this follows
directly from the fact that

(ME)@u F+E @y (MYF)=M"(E @y F).

g

This result allows us to identify ®,,((QY(M))®¥*¥) and @, (Q1(M))®*, and gives
us the following corollary.

Corollary 4.1.2 Let Q' (M) be a left-covariant first-order differential calculus with
canonical framing (Var, o). If Q1 (M) is contained in the subcategory M{, then we

have a framing (V3% 0%), where

of Dy (QH(M))BMk) — VER W R Qug i o(W]) ® -+ ® o(Wg).
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4.1.2 Framing Calculi

For Q!(G) a left-covariant differential calculus over a Hopf algebra G, it can quite
often happen that Q'(G) is not an object in &M, meaning we cannot frame its ten-
sor powers using the above approach. An obvious example is the calculus Qé(S Un)
introduced in Chapter 3. For such calculi consider the framing ((AL)®*, t*), where

th = "o s (QYG))PF = G @ (AL)®F, (k> 2),

with ¢* : (G ® AL)®ek — G @ (AL)®* the obvious identification. We denote the

corresponding isomorphism in M by

T e ((Q1(G))PF) — (Ag)™".

Explicitly, 7% acts on ¢ldg? ®¢ dg3 ®¢ - - - ®¢ dgk to give

()9 98y 96 © (9) Ty - 9l @ -+ @ (gfiy)) T

As we shall now show, for certain distinguished calculi on G, we can use 7" to give

a new framing for tensor powers of Q(M):

Definition 4.1.3. For any first-order differential calculus Q'(M) over M, a fram-

ing calculus Q*(G) is a first-order differential calculus for G such that
1. QYG) restricts to QY (M) on M, by which we mean

QY (M) = {Z m'dn' € QY(GQ) | m',n' € M, for all i};

2. QY(M)G C GQY(M).

Now QM) and Q'(G) live in two ostensibly different categories. For sake of
clarity, we should spend a little time exploring the relationship between &Mg and
G My as well as the relationship between M& and ML, First we note that,
since every (G-G-bimodule is obviously an M-M-bimodule, we have the forgetful
inclusion of ¥Mg in §Ms, which remembers only the M-M-bimodule structure
of the objects of %M. On the other side of Takeuchi’s equivalence, it is easy to

see that the only coaction on a right G-module that is compatible in the sense of

52



(2.2), is the trivial coaction. Thus, M& must be equivalent to Mg, giving us a
forgetful inclusion of M& in M.

Let us denote by i : Q'(M) — Q(G) the embedding of Q'(M) into QY(G). With
respect to the inclusion of &M in §M y, it is clear that 4 is a morphism in My,
as are its tensor powers i®* : (Q1(M))®¥* — (Q1(G))®ek, for k € N. Animportant
question to ask is when i®¥ is is an embedding, for £ > 2. To address this question
we will need to introduce two important commutative diagrams: First consider

the maps

& 1= projo @ (i%7) : @ ((Q'(M))*F) = 6 ((Q1(G)*F),  (k=2)
where proj : ®/((Q(G))2MF) — D ((Q(G))®e*) is the canonical projection.
Since

i®* = frameg' o Wy, (%) o frameyy,

it is clear that i®* is an embedding if, and only if, /¥ is an embedding. We are now

ready to introduce our first commutative diagram:

Da(QY(G)) z Ag
Dy ((M)) 5 VL7

where 7 is the descent of the embedding M ™ — G*. It is clear that 7is a morphism
in MH  as are its tensors powers 7 %F : VZF <5 (AL)®F. For higher powers of &,

we have the analogous diagram

CDG((Ql(TG))@Gk) - (A?)‘X”“ (4.4)
(0 (M))22F) ; Vit

o

where 7* is the unique map for which the diagram is commutative. Explicitly, the

action of 7 is given by

’Yk(m@%..@ﬁ) :TkOLkO(Uk)il(m(g"'@W) =7H(dm' @ - ®¢ dmF),

_ mlm?l) .. -mla) R ® (m’(“;_12))+ml(€k_2) & (ml(ck_l))-i-.
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Thus, unless Q!(G) is an object in §&M,, we have no guarantee that v* is equal to
7 @k With these maps and diagrams in hand we are now ready to give a sufficient

criteria for i®* to be an embedding:

Lemma 4.1.4 IfQY(M) is a finite dimensional calculus, then v is an embedding,

and hence * and i®* are embeddings.

Proof. If the image of ¥ could be shown equal to 7 ®*(V2¥), then, since we
are assuming Q'(M) to be finite dimensional, it would follow that 7* was an
isomorphism. As a first step towards establishing this, we note that i(Q'(M)) is
well-defined as an object in My, and so, we can identify ®,,(i(Q(M))®»*) and
O (i(QH(M)))®*, giving us the isomorphism

oF D (i(QH(M))BME) 5 T ER (IR,

Combining this fact with the commutative diagram in (4.4), gives us the new

diagram
%(ﬂl(TG»@G’f) - (A}f@k (4.5)
 r ((§(Q (M) @) —— TER(VER),

o

where proj is the canonical projection, and 7* is defined so as to make the diagram
commutative. Now for an arbitrary element m! ® - -- @ mk in 7 ®*(VEF), it follows

from condition 2 of the framing calculus definition that

mtS(mf))) ® miyS(miy) ® - ® m?zsls(m’(“l)) ®mfy € TER(VIR),

Let us look at the image of this element under 7%, for the first few values of k:

For k = 2, we have

7/2<m15(m?1)) ® mé)) = mls(m%l))mé) ® (m%3))+ =ml@m?

For k = 3, we have

? (mls(m%l)) ® m?2)5<m?1) ® m?2))

= mtS(miy) )iy S(miy) Jmisy ® (mfg) S (miy))) miy © (mis)*
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= m!l @ (m2S(m 1))) m? 9 ® (m?g))Jr
= m1®m25( ) (2)®< ))+

= W@W@(m )t =m! @m2®ms.

Continuing in this manner for subsequent values of k, it becomes easy to see that

in general

YRS (me) @ miy S(my)) @ - -~ @ miy'mfyy @ mfy) =ml @m?- - @ mk,

Hence, 7 ®*(V2*) is mapped surjectively onto itself by v/, immediately implying
that 4% and i* are embeddings. U

As a direct consequence we get the following corollary:

Corollary 4.1.5 The pair (Vi3¥, 78 0 %) (or equivalently the pair (Vi3¥, ¥ o o))
is a framing for (QY(M))®mk,

We note that, if Q1(G) is an object in &My, then v¥ =7 ®* and the two framings

(V3R 78 0 1F) and (Viy, o*) are equal.

4.2 Framing the Maximal Prolongation

Let Q'(G) be a covariant first-order differential calculus over a Hopf algebra G,
with corresponding submodule Ng C Q! (G), and ideal I C G*. Since

d(Ng) = {d(5(v))) ®¢ dv | v € la},

we must have that

T2 ( g (d(Ne))) = {S(va))toe @ (ve)* v e Ia}
= {e(v) ® (v@)* — o) ® (ve))* |v € I}
= {%@U@) ‘ Vv E Ig}.

This result, usually referred to as the Maurer—Cartan formula [79, 37|, allows one
to give an explicit description of the higher forms for the maximal prolongation of
Q(@G). In this section we will build on the earlier work of the chapter to construct
an analogous result for calculi over quantum homogeneous spaces M = G| which

are objects in ;M. Throughout all calculi are assumed to be finite dimensional.
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4.2.1 A Direct Approach

Let QY(M) be a left-covariant first-order differential calculus over a quantum homo-
geneous space M, and let Nj; be the corresponding sub-bimodule of the universal
calculus over M. If we denote 1§, := o*(®,,((dNys),)), for k > 2, then it is clear
from (2.5) that o* descends to an isomorphism

0"+ @y (M) — o (@ar (1 (M))*MF) Jo* (@ar({ANwr),)) = Vag™ iy = Vi

In order for this isomorphism to be of use to us, we will need to find a convenient

description of I%,. The following lemma brings us some way towards this goal.

Lemma 4.2.1 For a left-covariant first-order differential calculus Q'(M), which

is an object in {tMy, we have
Iy={>_mi@nf| Y midn' € Ny}, (4.6)

or equivalently that

L= (S @ le) | 3 ffeve@ah)). (1)

Moreover, for k > 3, we have I¥, = @aer:ka Vf}’a ® I3, ® V]\?}b.

Proof. 1t follows immediately from the properties of the total derivative d, and

the construction of the maximal prolongation, that

Op(d(Nyr)) = {D_dm @y dni| Y m'dn’ € Ny} (4.8)

Operating on (4.8) by o2 then gives us (4.6). One derives (4.7) from (2.11) in the

same way.

For k > 3, the construction of the maximal prolongation tells us that

(A(Nu)) = €D (' (M)¥* @ar d(Nar) @ar (21(M))*".

a+b=k—2

The fact that Q'(M) is an object in {JM,, and that d(Ny,) is a sub-object of
QY(M) in §Myy, easily implies that ®,,(d(Nyy)) is an object in M. This in turn
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tells us that d(Ny,) is an object in §,My. Thus, since @), restricts to a monoidal

functor on §;My, we have

Cu((ANu)) = €D (@ar(Q2'(M))** ® Par(dNar) @ (Dar(R21(M))) .

a+b=k—2

Operating on this by o* gives us the required expression for I¥,. O

4.2.2 Framing Calculi and the Maximal Prolongation

While Lemma 4.2.1 gives an explicit description of the ideal I¥,, it requires a
complete description of the generating relations of the calculus Q'(M) before one
can begin calculating. This is more or less the approach followed in [28], and it
leads to the type of heavily technical calculations that we are trying to avoid.
Instead, in this section we will show that one can use a framing calculus to find a

simple description of I¥, in terms of any generating set of I,;.

Theorem 4.2.2 Let Q'(G) be a framing calculus for QY(M), with AL, its space of

left-invariant one forms. We have the equality

T (Iyy) = spanc{S(z) ® (22))" | 2 € Gen(In)} € (Ag)™,
where Gen(Iyy) is any subset of Iy that generates it as a right M-module.

Proof. In the first part of the proof we establish the identity

2(D(ANy)) = {d(S(z)) ®c d(z@) | = € Inr}.

We begin with the inclusion *(®(dNy)) € {d(S(zq))) ®c d(z2) | 2 € In}: Tt is
clear from (2.11) that we have

i#2(dNy) = {D_ d(g'S(v]y)) ©a dvlyy | Y g' @0’ € (G @ I)"}.
For each 4, since S(vf}))d(v(y) = 0 in QY(G), it holds in (Q'(G))#? that

d(giS(vél))) Qa dvéZ) = d(gi)S(Ufl)) ®a dUZQ) + gidS@él)) Qa dUEQ)
= dg' ®a S(v(y))dv(y) + ¢'dS(v(y)) @c dv(y
— gZdS(U21)> ®G dU%Q).
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Thus, we have that
P(dNy) = {D | g'dS(vy) ®a dufyy | > g'®@v' € (G @ Iy)"}.
This in turn implies that

(@ (ANy)) = {Z (vf1))) ®c duly, Zgi@)vi € (G®Iu)"}. (4.9)

From which it is clear that

(@ar(d(Nar))) € {d(S(v))) ®c dvg) | v € I},

giving us the required inclusion.

We now turn to the opposite inclusion of {d(S(v())) ®c¢ d(v)) | v € Iy} in
12(®pr(dNyy)): From Takeuchi’s theorem we have that the image of (G ® Ij)%
under frameﬁ is equal to ;. In other words, for any z € I;, we have an element

> 9" ® v contained in (G ® Ip)" such that z =3, e(¢g")v’. This gives us that

dS(zn)) ®¢ dz@) = Z E(gi)dS(Ufl)) Ve dva)

%

Since (4.9) tells us that ) . (g )dS( ) ® dv is an element of (@ (d(Nyy)), we
must have dS(z1)) ® dz) Contalned in ¢ (<I>(d(N a)). This gives us the required
opposite inclusion, and hence the required equality.

Let us now move onto the second part of the proof where we find the image of
12(Ppr(ANyy)) under 72

7% 0 2y (ANwr))) = {72(dS(201))) ®c d(2(2))) | 2 € T}
={(5CGw))* 22 ® (23)*} |z € In}
= {(e(z)) — 21)) ® (22))* | = € I}
={ZnH®zZp - 10z-z®1}|z € Iy}
={zy ®ze)|z € In}

For any m € M, the fact that V}; is an object in M} means that

1) ® Z)M2) = Zmm() ® 2@2)e(m()
@ = &(m)zq) @ Z(z).

I
B
EE
X =
N
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Hence, for any generating subset Gen(Iy;) of I);, we have

7202 (Pp(dNy)) = spanc{Zu) @ Zz) | 2 € Gen(In)}.

We begin the final part of the proof by noting that, for any 2z € I,

S(Z(l))+ X (Z(g))+ = S(Z(l)) ® (2(2))+ —1®z= S(Z(l)) X (Z(g))+

Thus, since v2 = 72 o7 ®? (where we recall that 7 is defined in the commuta-
tive diagram (4.5)), the theorem would follow if we could show that 7'? acted on
spanc{(S(za)))T ® (2(2)) T | 2 € Gen(Iy)} to give spanc{Z1) @ Z3) | z € Gen(Iy)}.
But this follows directly from the calculation

V28 (m)* @ (22))7) = 72(d(S(201))) ®a d(2(2)) = S(21) T20) @ 255

=e(z) —2) ® 2 = —Zn @z T 1®%

= 7721 © Z(2)-

4.3 Framing the Maximal Prolongation of the
Heckenberger—Kolb Calculus

In this section we will make two applications of the general theory developed
earlier in this chapter. First we take the calculus Q) (SUy) as a framing calculus
for Q(CPN~'), and use it to explicitly describe the maximal prolongation of
Q) (CPN~1). Secondly, we take the famous three-dimensional Woronowicz calculus
[, (SU,) as a framing calculus for Q) (SUs), and use it to describe the maximal
prolongation of Q;(CPl). We see that these two descriptions for the maximal

prolongation of Qé(S Us,) agree, as of course they should.
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4.3.1 The Calculus Q(SUy) as a Framing Calculus for the
Heckenberger—Kolb Calculus € (CPV 1)

From the relations given in (3.17), (3.18), and (3.19), it is clear that C,[CPN~1]

acts on Vgpnv-1 according to
e; <z = ¢, e <z =0, ((4,9) # (1, 1)). (4.10)

Thus, Q1(CPYN=1) is an object in § My, and we have a well-defined framing/Users/johnmccarthy /Lib
CCC/NCCS-QHS/Ar Eagla/Ar Eagla na hEagla/Arxiv.v2.tex.pdf (VSiy 1, o)
for the k"™ -tensor power over C,[CPY~1] of Q'(CPY~1). As one might expect, the
calculus Q}(SUy) introduced in Chapter 2 is a framing calculus for Q) (CPV1).
To see this we first recall that Q(SUy) restricts to Q) (CPY~") on C,[CPN™'].
Moreover, the right actions given in Lemma 3.2.3 show that Vgpnv-1 is a right
submodule of Ag; . This means that we can use Theorem 4.2.2 to calculate the

maximal prolongation of Q}(CPN~1):

Theorem 4.3.1 The subspace IéPN_l 15 spanned by the elements

N-1
e ®el +qef Qe ef @ey +q e @ef =" Y g e, @ef, (4.11)
a=i+1

e; ®e, +qe, ®e;, e @ef +qlef @wel,  ef @ef, e @e;, (4.12)

for hyi,j = 1,....N —1, ¢ # j, and h < i. Hence, VC’“PN,1 s a (2(1\;_1))—

dimensional vector space, with a basis given by
fet N nel Nejp A Neg i < <y i <o <

i1 m

Proof. Beginning with the generators of the form z;;, for 4, j > 2, we see that

S((zi) @) @ ((zi)@) " = Y SuiS(uh)) ® (ugS(uf))*

a,b=1

=Y S2(ub)S(ui) @ (uS(ul)*

a,b=1

N
= 3 OIS @ (WS ()

a,b=1

60



For the case i # j, Lemma 3.2.3 tells us that the summand u}S(ul) ® (ufS(uy))*
is non-zero only if a = 1,b = j or a = 7,0 = 1. Thus, we must have
S((zi7) ) ® ((zi)2) " = wlS(ul) ® ulS(ul) + 7 15( i) @ uiS(uy)
= ¢* ¥ S(u}) ® S(uj) + g7 ] @ uf
q%+272ju_§ ® u_]l + q%+172ju_]1‘ ® u_zl

i _ .
(QN+2 2J)( 1 ®e; 1+q 1®3;’tz‘)-

This gives us the first relation in (4.11).
For the case i = j, Lemma 3.2.3 tells us that the summand u?S(u}) ® (u$S(u}))+

is non-zero only if a = 1,b = ¢ or a > 7,b = 1. Thus, we must have that
S(Ga)m) @ ()™ is equal to

N

uS(up) @ ufS(ul) + ¢ (ufS(ul) @ uiS(u) + Y ufS(ug) @ uiS(uf)).
a=1i+1
This is easily seen to be equal to
N
4 - . 4 — — 4 . —_— —_
¢ v S(u}) @ S(u}) + (g Rl @ ul — v Y gl @ ),
a=i+1
which reduces to
N
4 el e 4 —A - _— J—
a=i+1
giving us finally that
N
4 . .
qﬁ+2(1—z)(6;1 ® e, + q—2€i—_1 ® e;r_l . q2z—1y Z q—2a€;_1 ® 6;1)
a=1i+1

This gives us the second relation in (4.11).

We now come to the generators of the form z;2;1, for j # 1, and calculate

S((zinzj) ) ® ((zinzin)@)* 25((%5( DuiS(uh)ay) © ((uhS(ui)uiS(u))@)*

_ Z S(u ulS(ud)) @ (ugS(ul)usS(ul))*

a,b,c,d=1

N
= Y P 0dS (ud)ad S (ul) © (ugS (ud)us S(ul))

a,b,c,d=1
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The module relations given in Lemma (3.2.3) imply that at most one element of
{a, c} is equal to 1, and that at least three elements of {a, b, c,d} are equal to 1.
Thus, we must have b,d = 1, and (a,c) # (1, 1), giving us

S((znz) ) ® (zaz) @)t = Y. ulS(ud)utS(u}) @ uiS(ul)usS(ul)
(a, ) (1,1)

ZS w)) S (uf ®u1u1—|—25 S(ut) ® uius)

c=2

N - -
=5 () S(u])S(ul) @ uf + qZS S(uh) ©uf)

a=2 c=2

N h—
=q2*W(ZS(u1)S(UZ;)®u1+qS( )S(uf) ® uy)

a=2

2 N ;
= - QWH(ZU]lS( ) @uf + vl @ u))
a=2

For the case of i = j, we have

(S(zinzi) 1) ® ((ziZigrger 1) @) " = — gV (Wi S(u) @ u + gV ul @ uh),

which is just a linear multiple of e;” ; @ e |, giving us the fourth element in (4.12).

While for the case i < j, we have

2

|

S((zaz) ) ® ((zazn)@)* = —a¥ 7 (u]S(u)) © ul + uiS(u) ® uf + g% uf ® uf)
+
+

ul—yu1®u1+qu1®u1)

2w

J
uy

&®
Uj1®u1+q 1u1®u1)
ej+1®e;r_1+q e ®ej ),

Zls ozl

—-q
=—q
—q

(
(
(
(
which gives us the second element in (4.12). For i > j, it is easy to see from the

quantum sphere relations in (3.4), that z;;12zj1 = ¢ 21211, which means that we

just get us the second element in (4.12) again.
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Finally, we come to the z1;2;, for j # 1. We calculate that

S((z1i215) 1) ® ((21215) )T = S((uiS(uj)urS(uj))y) ® ((upS(uj)urS(uj))@)*

= Y S@Su)ulS(ud)) @ (ugS(ub)usS(ul))*

a,b,c,d=1

N
= > AUDudS(ul)ulS (ul) © (uf S (u)JugS(uf))*

a,b,c,d=1

Now for ulS(ul)ulS(ul) ® (ufS(uy)uiS(uy))* to be non-zero, the relations in
Lemma 3.2.3 imply that at least three elements of {a,b,c,d} must be equal to

1, while at most one element of {b, d} must be equal to one, giving us that

S((zuz)w) @ (Guzy)@) = Y @ PudS(ul)ulS(ul) @ ulS(uf)ulS(ub)
a,b,c,d=1

N
= Y QU ISl © ST ulS ().
a,b,c,d=1

For the case i = j, this tells us that S((21;21j) 1)) ® ((215215)(2)) T is equal to

¢ S (ub)uf @ S(ub)uiS(uf) + 0 S (uf)uf @ S(ui)uiS(ul),

which is just a linear multiple of €] ® ], giving us the last relation in (4.12). For

the case of i < j, we have S((215215)q)) ® ((21:215)(2)) T equal to

¢ w}S(uf)u} © Sl S(ul) + ¢* 2 wS(u})ul @ S(uf)uSTu]).
This easily reduces to
q%+3—2(z‘+j) u_]l ® U_zl + q%+2—2(i+j) U_zl ® u_},
which is just a linear multiple of
ge  ®@el +ef @el .

This gives the first relation in (4.12). For i > j, it is easy to see from the quantum
sphere relations in (3.4), that 2z1;21; = g21j21;, which means that we just get the

first element in (4.12) again. O
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4.3.2 The Woronowicz Calculus I';(SU,) as a Framing Cal-

culus

In this section we specialise to the case of C,[CP*], and use the three-dimensional
Woronowicz calculus Q(SUs) on Cy[SU,], as discussed in Chapter 3, as a framing
calculus for the Heckenberger—Kolb calculus. We do this firstly to demonstrate that
there can exist more than one framing calculus for any given quantum homogeneous
space calculus, and secondly to highlight the fact that the description produced is
independent of the choice of framing calculus.

Let us recall the ideal Igy, corresponding to the Woronowicz calculus given in
(3.23). As is very well known (see [79, 37] for details), the cotangent space
Vo, icry) = Cy[CP'|" /Isy, has a basis given by

et :=¢, e =a—1, et :=b.

Moreover, from the description of gy, given in (3.23), it is easy to see that the
non-zero actions of the generators of Cy[SUs] on e™ and e~ are given by

et aa=qlet, et ad = ge*. (4.13)

It is also clear that Icpr = (b2, be, ¢?), the ideal corresponding to the Heckenberger—
Kolb calculus, is contained in Igy,, giving us a well-defined map Vgpr — A}qU2.
With respect to this map, we have that ab = e, and cd = ge*, showing that the
map is in fact an inclusion. Since it is clear from (4.13) that Vgpr is aright C,[SUs|-
submodule of Agy,, we have that C,[SUs| is a framing calculus for Q,(CP'). We
can now use Theorem 4.2.2 to find a framing for the maximal prolongation of
Q;(CPl):

Lemma 4.3.2 It holds that
Ipn-1 =spang{et ®et, e" ®@e , et ®@e + ¢ % ®@eT}, (4.14)
and hence that Vi, = Ce™ @ e, while Vi, = {0}, for all k > 3.

Proof. Take the generating set {b%, bc, c*} for Igpi. For b* we have that

S((?) 1)) @ (1)) " = S(a?) @ b2 + (1 + ¢%)S(ab) @ bd + S(0?) @ (d?)*
=(1+q¢H(—q¢'d@bd) = —(1+¢*)ge” e
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For ¢?, we have that

S(@)w) © (A)@)" = 5(@) @ (@) + (1 +4¢7)5(ed) @ @ + 5(&) © A
=(1+ q2)(—qa_6®ﬁ) = _q*5(1 + q2)e+ et

Finally, for bc, we have that

S((be) 1)) @ (be)z) = S(ac) ® ba + S(ad) @ be + S(be) ® (da)t + S(bd) ® de
= —qed®ba—q¢lab®dc= —qe@b—q¢'b®c
= —qle ®et + e ®e).

This gives the three elements in (4.14), along with the implied descriptions of the
the higher forms. O
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Chapter 5
Covariant Complex Structures

In this chapter, which can be considered the central chapter of the thesis, we
introduce complex structures and covariant complex structures. While such objects
have been considered elsewhere [6, 34], this is the first presentation of a simple set

of sufficient conditions for such structures to exist.

5.1 Almost Complex Structures

We begin this section by introducing our definition of an almost complex struc-
ture over a general algebra. We then specialise to the case where this algebra
is a quantum homogeneous space, and give a simple set of necessary and suffi-
cient conditions for such an almost complex structure to exist. Finally, we apply
this general theory to the Heckenberger—Kolb calculus for the quantum projective

spaces.

5.1.1 Almost Complex Structures for a Not Neccessarily

Covariant Calculus

Let us first introduce the wedge map A for a total differential calculus 2°(A), by
defining

A QF(A) @4 QY(A) — QFTHA), WRsw = wAW,
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Next, we introduce the central definition of the thesis:

Definition 5.1.1. An almost complex structure for a total x-differential calculus
Q*(A) over a x-algebra A, is an NZ-algebra grading @(p,q)eNg QP for Q*(A) such
that, for all (p,q) € NZ:

1. QF(A) = @pﬂ:k Q9.
2. the wedge map restricts to isomorphisms

A QPY g, Q00 QP9 A Q0D g, QPO P, (5.1)

3. x(QP)) = Qlar),
We call an element of QP9 a (p, q)-form.

(Classically every decomposition of the cotangent bundle into two sub-bimodules ex-
tends to an almost complex structure. As the following proposition shows, things
are more complicated in the noncommutative setting. The proof requires us to
consider the unique N2-grading of the tensor algebra @, ,(2'(A))®4* of Q'(A)
extending a bimodule decomposition Q'(A4) = Q19 @ QO Explicitly, the de-
composition Q®(**) ;= Dogen Q@) is defined by

Q0 = {w € PH(A) | 7(w) € (Q1)P 64 (QOD)P4, for some 7 € Sy},

where S, is the permutation group on p+ ¢ objects, acting C-linearly on QP*9(A)
in the obvious way.

Theorem 5.1.2 For QY(A) a first-order differential calculus over an algebra A,
and QY(A) = Q0 ¢ QO o decomposition of Q*(A) into sub-bimodules, we have
that:

1. the decomposition has at most one extension, satisfying condition (1), to an

N2-grading of the mazimal prolongation of Q'(A);

2. such an extension exists if, and only if, d(N) is homogeneous with respect
to the decomposition

(Ql(A))®A2 = 0®20) g L) g 0.2), (5.2)
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3. When this decomposition exists, the maps in condition 2 of the almost com-
plex structure definition are isomorphisms if, and only if, A restricts to iso-

morphisms

A Q0 g, QO 5 b A Q0D g, QL0 5 QD). (5.3)

4. moreover, condition 8 holds if, and only if, *(QM9)) = QOV | or equivalently

if, and only if, *(QON) = QLO),

Proof. We begin by giving a sufficient condition for an NZ-grading, extending the
decomposition of Q!(A), to exist: For some w € d(N), we denote the decomposition
of w with respect to (5.2) by w := wy +wy +ws. By definition d(N) is homogeneous
with respect to (5.2) if, for each w, we have wy, ws, w3 € d(IN). In this case, for any
homogeneous elements v,/ in the tensor algebra of Q'(A), the decomposition of

the element v ® 4 w ®4 v/, with respect to Q2 is given by
VRAWRAY =V Q@aw @AV V@ wr @aV + 1V @aws @4V

It is clear that v ®4 w; ®4 V' € (d(N)), for i = 1,2,3. Now since every element of
(d(NN)) is a sum of elements of the from r@uw®1/, we see that homogeneity of d(V)
with respect to (5.2), implies homogeneity of (d(N)) with respect to Q®(®*). In
this case, Q®(**) clearly descends to a grading (**) on the maximal prolongation.
Finally, we note that if d(/V) is not homogeneous with respect to to (5.2), then

clearly Q®(**) cannot descend to a grading on the maximal prolongation.

We will now show that this grading is the only possible N3-grading on the maximal
prolongation extending the decomposition of Q'(A): For another such distinct
grading T'(®*) to exist, there would have to be an element w € Q®®9 for some
(p, q) € N2, such that the image of w in Q*(A) was not contained in I, Now it

is clear from the definition of Q®®%) that every element of Q®®9 is of the form
W= W e ®u,, (5.4)
i=1

where each w! ® -+ ® W' +q has exactly p of its factors contained in Q1O and

P
q of its factors contained in QY. However, the general properties of a graded
algebra imply that the image of such an element in Q°*(A) must be contained in

"9 Thus, we can conclude that there exists no other grading on the maximal
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prolongation extending the decomposition Q'(A). This gives us the first and second

parts of the theorem.

Now we come to showing that when this N2-grading exists, condition 2 of the
definition of an almost complex structure holds if, and only if, the maps in (5.3)
are isomorphisms. Let us begin by establishing that surjectivity of the first map

in (5.1) follows from surjectivity of the first map in (5.3): Let
w::Zwi/\-~-/\w;+q, (5.5)
be a general element of Q% where, just as in (5.4), each wi A --- A wf)Jrq has
exactly p of its factors contained in Q9 and ¢ of its factors contained in Q).
If for each of these summands, there exists no pair of adjacent factors wi A wi 1)
for some 1 < k < p + ¢, such that w;, € QY and w, € QY then it is clear
that w is contained in the image of Q" ©,4 Q09 under A. If such an adjacent

pair does exist, then since we are assuming the first map in (5.3) to be surjective,

there must exist an element ), v; ®4 v/} in Q19 @, QO guch that

Zyj AV = w; Awiy1.
j
If upon inserting this relation into w we obtain a presentation of w whose summands
contain no other such pairs of adjacent factors, then it is clear that w is contained
in the image of Q®0 @, Q09 under A. If such adjacent pairs do exist, then it
is easy to see that by successive applications of this process, one will eventually
arrive at a presentation of w containing none. Thus, it is clear that w is contained
in the image of Q®% @, Q9 under A, which is to say that surjectivity of the first
map in (5.1) follows from surjectivity of the first map in (5.3). That surjectivity
of the second map in (5.1) follows from surjectivity of the second map in (5.3) is

established in an exactly analogous manner.

We now move on to establishing injectivity. As a little thought will confirm, the

first map of (5.1) would be seen to be injective if it could be shown that, for all
(p.q) € NG,

(A(N) N (2P0 @, Q%OD) = (AN) o) ©4 QZOD + QPO @4 (AN), (5.6)

0,9)
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where <d]\f>(p’0)7 and (dN)(07q), are the ®(p,0), and ®(0, ¢), homogeneous compo-
nents of (dNV) respectively. To see that this is so, consider the general element
> vi®Qw; Qv of (A(N)), with each 4, v/ contained in the tensor algebra of Q'(A),
and each w; € d(N). Since the first mapping in (5.3) is an isomorphism, it must
hold that

d(N) N Q1Y ®, QODY = {0},

This implies that Y, 7 ® w; ® v} is contained in QP @, Q09 only if
w' e QY or W € Q202 It now follows that (5.6) holds, and hence that
the first map of condition 3 is injective. That the second map of (5.1) is injec-
tive is established analogously. Thus, we have established the third part of the

theorem.

We now come to the fourth and final part of the theorem. Note first that since the
x-map is involutive, assuming *(Q10) = QO is clearly equivalent to assuming
#(QOD) = QL9 Next we note that, for a general element w in Q®% as given in

(5.5), the properties of graded *-algebra imply that

. i i N (p+a) (p+g—1) i % 7\ %
W= (WA AW ) =Y (<) W ) A A (WD) (BT)
i=1 =1
Our two equivalent assumptions, and the properties of a graded algebra, now imply
that w* must be contained in Q@?), giving us that *(Q®?) C Q@) The opposite

inclusion is established analogously, giving us the desired equality. U

An interesting question to ask here is whether one can find a first-order differential
calculus Q! with a decomposition Q' = QF & Q- that does not extend to an
N2-grading of the maximal prolongation of Q'. At present there is no obvious

candidate for such a calculus.

Another interesting question to consider is that of almost complex structures on
total calculi other than maximal prolongations. Recall that every total calculus
extending (2!(A), d) can be obtained as a quotient of the maximal prolongation by
an ideal I C ker(d). Tt is not difficult to see that a decomposition of Q'(A) =
Q19 ¢ Q0D i extendable to an almost complex structure on such a total calculus

if, and only if, it is extendable to an almost complex structure on the maximal
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prolongation, and for which I is homogeneous with respect to the associated N3-
grading. This gives us a classification of all almost complex structures over an
algebra A. However, since at present we have no interesting examples of such

structures, we will not pursue this observation here.

5.1.2 Covariant Almost Complex Structures

We say that an almost complex structure Q(** for a quantum homogeneous space

M = G*H is left-covariant if we have
AL(QPD) C G QP (for all (p, q) € N?).

As a little thought will confirm, an almost complex structure will be covariant if,

and only if,
AL QT C G et AL (QOY) C G e h,

For covariant almost complex structures we will of course have each Q®% contained
as an object in §,M,;. For the special case that Q'(M) is an object in §M,, we

denote
VE(M) — 0P+Q((I)M<Q®(p»‘ﬂ))‘

Clearly, it follows from the definition of an almost complex structure that we have
VE = D,io—r V]\(j’ ) Another important fact is that since A is clearly a morphism
in My, we have a corresponding morphism ®,;(A) in M. Moreover, since we
have given ®;; the structure of a monoidal functor, we can consider ®,,(A) as a

morphism

Dur(A) 2 (Par(QH(M)))P? — o (2°(M)).
We use this to define a new morphism

No =020 @y (A)o (o)t V2 = Vi

The following corollary shows that for covariant complex structures, we have a

convenient reformulation of Theorem 5.1.2.
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Corollary 5.1.3 For a left-covariant first-order differential calculus Q(M), with

canonical framing (Vay, s), we have that:

1. Decompositions of Q' (M) = Q10 @ QO into left-covariant bimodules cor-
respond to decompositions of Vi = V]\(}’O) S V]&O’l) into right-covariant right

comodules.

2. Such a decomposition extends to an N3-grading of the mazimal prolonga-
tion of QY (M) if, and only if, I3; is homogeneous with respect to the decom-

position

V®2 _ VZS(Q:O) D V]S(Ll) ® VJS(O’Q). (58)

3. If QY (M) is contained as an object in the category (Mo, then condition 3

of the almost complex structure definition is satisfied if, and only if, we have

1somorphisms
T A e R A A S/ AR GX')

Proof. Since ® obeys (2.4), every covariant bimodule decompositions of Q!(M)
induces a covariant right module decomposition of ®(Q'(M). Conversely, since ¥
obeys (2.4), every covariant right module decomposition of ®(Q2'(M)) induces a
covariant bimodule decomposition of Q!(M). This gives an equivalence between
decompositions of Q'(M) and decompositions of ®(Q(M)). The first part of the
proof now follows from the fact that s is an isomorphism in M, and o is an

isomorphism in M1%.

Turning now to the second part of the proof, we see that, using an analogous argu-
ment to the one above, one can establish an equivalence between decompositions of
(QY(M))®m2 and decompositions of V2. Moreover, the decomposition of (Q'(M))
given in (5.2), corresponds to the decomposition of V* given in (5.8). Properties
(2.4) and (2.5) of the functors ¥ and ® now imply that d(/N) is homogeneous with
respect to (5.2) if, and only if, I3, is homogeneous with respect to (5.2). Part 2 of

the corollary now follows from part 2 of Theorem 5.1.2.

For the last part of the proof, we note that since o2 is an isomorphism, the func-

torial properties of ®,; imply that the maps in (5.3) are isomorphisms if, and only
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if, the maps in (5.9) are isomorphisms. Part 3 of the corollary now follows from
part 3 of Theorem 5.1.2. Il

Finally, we come to finding an easily verifiable reformulation of the %-condition.
As for first order differential x-calculi, the fact that the x-map is not a bimodule
map means that Takeuchi’s equivalence will be of no use here. However, just as

for first order differential %-calculi, there exists a convenient direct reformulation.

Proposition 5.1.4 Let QY (M) be a first order differential *-calculus in § My,
and let Q**) be an N2-grading for its mazimal prolongation Q*(M) satisfying the
first condition of an almost complex structure. If QY(G) is a framing calculus for
QY (M), with respect to which

QG c g0, QG c gy, (5.10)

then we have x(QPD) = Q) if and only if,
{S(m)*|m e VIO} =y, (5.11)
Proof. From (2.12), we see that if (5.10) and (5.11) holds, then
GV =Gge Vo,

From this it easily follows that *(Q1%) = QOV  Part 4 of Theorem 5.1.2 now
implies that *(Q®?)) = Ql@r),
Conversely, let us assume that there exists a 7 € V(19 such that S(v)* ¢ VO,

With respect to the choice of framing calculus, we have

(s(1eD) =s(1en)) =51 Sw?) ¢ (GaVil)=ca0.
(5.12)

However, we must also have s7!(1 ® v) = Y, a;w;, for some q; € G,w; € Q1O If
we had an almost complex structure, then w! would be contained in QO for all
1, giving us that

Z(aiwi)* = Z(wi)*af e QLOG c GOy,
Since this contradicts (5.12), we are forced to conclude that, for some w;, we have

wi ¢ QO and consequently, that we do not have an almost complex structure.
OJ
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5.2 Integrability and Complex Structures

In this section we will show how the classical notion of integrability transfers di-
rectly to the noncommutative setting. Mirroring the classical picture, we demon-
strate how integrability of an almost complex structure implies the existence of a
quantum Dolbeault double complex. Moreover, with respect to a choice of framing
calculus, we give a simple set of sufficient criteria for a complex structure to be

integrable.

5.2.1 Integrability for a General Almost Complex Struc-

ture

In this subsection we discuss integrability for complex structures without the as-
sumption of covariance. We begin with two lemmas whose proofs carry over di-
rectly from the classical case. (It should be noted that these results have already
appeared in [6], where one can find a more comprehensive treatment of integrability

in the noncommutative setting.)

Lemma 5.2.1 If @(pyq)eNQ QP9 s an almost-complex structure for a total calcu-

lus Q°(A) over an algebra A, then the following two conditions are equivalent:
1. d(Q(1’0)> g Q(Q,O) D Q(l,l)}

2. d(QOD) € Q0D g 002,

Proof. For any w € Q1 the properties of an almost complex structure imply
that w* € Q9. Thus if we assume 1, it must hold that dw* € Q9 @ Q. This
in turn implies that dw = (dw*)* € QWD @ Q02 showing us that 2 holds. The
proof in other other direction is entirely analogous. O
If these conditions hold for an almost-complex structure, then we say that it is
integrable. We will usually call an integrable almost-complex structure a complex
structure. (To see how the formulation of integrability that we have generalised is

equivalent to the more standard formulation, see [30]).

With a view to exploring some of the consequences of integrability, we now in-

tI‘OduCG tWO new OperatOI‘S: FOI‘ ®(p q)€N2 Q(p7Q) an almost Complex Structure, we
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define 9, and 9, to be the unique order (1,0), and (0, 1) respectively, homogeneous

operators for which

a’Q(p,Q) = prOjQ(m—l,q) o d, 8’9(%4) = prOjQ(p,qH) o d,

where projoe+i.q, and projoem.q+1), are the projections onto Q(p“’q), and Q@a+1)

respectively.
Lemma 5.2.2 [If an almost complex structure @(p,q)eNg QP9 s integrable, then
1.d=0+0;
2. (B pgene QP9 9,0) is a double complex;
3. d(a*) = (0a)*, and d(a*) = (Da)*, for all a € A;
4. both O and O satisfy the graded Liebniz rule.

Proof. We begin by proving that d = 0 + 0: Since Q®9 is spanned by products
of p elements of Q10 and ¢ elements of Q1 it follows from the Liebniz rule and

the assumption of integrability that
dw € QL9 @ QPatD), (for all w € QPD),

Thus, we must have that d = 0 + 0.

Let us now move on to the second part of the proof: Since d? = 0, we have
0=d2=(0+0)0(@+0) =+ (00 +d0d)+0.

For any w € QF(M), it is easy to see that any non-zero images of w under 92,
00 + 00, and 52, would lie in complementary subspaces of Q*2(M). Thus, it
must hold that

0? =0, 0dod=—000, 0 =0,

showing that we have a double complex.

For the third part of the proof, we first note that since d(a*) = (da)*, we have
d(a*) + d(a*) = (0a)* + (Da)*.
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Now d(a*) and (9a)* both lie in Q19 while d(a*) and (Ja)* both lie in Q). Since
these are again complementary subspaces of Q'(M), we must have d(a*) = (Ja)*,
and d(a*) = (Ja)*.

The fourth part of the lemma is an analogously consequence of the Liebniz rule of

d. 4

Thus we see that integrability in the noncommutative setting has many of the
same properties as classical integrability. Inspired by the classical case we call the
double complex (@(p’ 4)EN? QP9 9, 0) the quantum Dolbeault double complex of an

integrable complex structure.

5.2.2 Integrability for a Covariant Complex Structure

Directly verifying that an almost complex structure is integrable can lead to quite
involved calculations. So we would like to use the assumption of covariance to
find a simple set of sufficient criteria (analogous to our method for verifying the
existence of an almost-complex structure given in the previous section). This will
require us to make a choice of linear complement Vj; to 2(Vy,) in AL. With respect

to this choice of complement, we will write

(Vi)™ = (@Var) @ Vip) @ (Vig @ (Vi) & (Vi)™

for the corresponding linear complement to 7(V3;)®? in (A})®2. Moreover, we will
say that a subset {m/}; C M* descends to a spanning set of V(19 if we have

(1L0) " We state the result in terms of the holomorphic cotangent

spang{mi}; =V
space, however, as is clear from the proof, an exactly analogous result holds for

the anti-holomorphic cotangent space V(1.

Proposition 5.2.3 Let Q®* be a covariant almost-complex structure over
M = G a quantum homogeneous space, Vis a choice of linear complement to
T(Var) in AL, and {m’}; a subset of M that descends to a spanning set of V10,
It holds that Q(**) is integrable if, for all m’ € {m’};, and v € AL, we have that

(v 8(miy)) @ (mpy)* € AV ) @ V™) @ (Vi)™ (5.13)
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Proof. 1t is clear that d(Q(1?) is contained in Q2% @ Q1) if we have
@ (A(QI)) C B (QZ) @ By (QID), (5.14)

We will establish the proposition by demonstrating that this happens when (5.13)
holds: From (2.11) it is clear that

QU0 = s (G @ VENT) = {3 FS(my,))dmpy | Y FF @mi € (Go VD)1,
J J

This in turn implies that

Dar(A(@M)) = {3 _d(fS(ml,)) @ d(mi,) | Y f @mi € (G V)T,

J

giving us the equality

(P (A(QTD)) = {Z (f1S(m{y)))*+ @ (miy)* | Z ffeomi e (G V)i

J

Now as a little thought will confirm, this means that (5.14) holds if, for each such

>, (ij(n”L{l)))Jr ® (m{2))+, we have that its image in (A})®? under 72 satisfies

Z (ij(mgl)))wL ® (m{Q))-i— c /L\(V]S)(Q’O)) @f(Vj\@;(l’l)),

J

As a little more thought will confirm, this will hold if, for each j, we have

(f1S(m))t @ (mly)+ € 22V @) @®2(v D) @ (Vi)

That (5.14) is implied by the requirements of the proposition now follows from the
identity

(35 (miy)))* @ (miy))* = (1S (mfy)) @ (mi)*.

g

5.2.3 Integrability and an Alternative Construction of the

Maximal Prolongation

For an almost complex structure Q(** the pairs (29, 9) and (QV,9) are each

first order differential calculi. Thus, one can consider their maximal prolongations.
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Let us denote the k-forms of the maximal prolongation of Q10 by (Q10) and

the k-forms of the maximal prolongation of Q9 by (QOD)* Tt is natural to ask

when we have
(Q(I,O))k — Q(k’0)7 (Q(O,l))k — Q(O,k)‘ (515)
The following result tells us that this condition is in fact equivalent to integrability.

Lemma 5.2.4 For an almost complex structure Q**) | the equalities in (5.15) are

equivalent to each other, and to integrability.

Proof. Let {w; };, be a subset of QL(M), such that spang{w; } = QY where by

abuse of notation we have used the same symbol for w;, as for its coset in Q'(M).

7 )

If Ny, is the sub-bimodule of Q! (M) corresponding to Q(M), then it is clear that
the sub-bimodule of Q! (M) corresponding to (29, 9) is given by

Ny} := Ny + spang{w; }..
Now from the definition of the maximal prolongation, we have that
(U0 = (@) (DN,
while Theorem 5.1.2 tells us that
k0 = Q®(k’0)/ <dNM>(k,O) = (Q(l’o))@)Mk/ <dNM>(k,0) :
It is easy to see that

(ONfi)e = €D () sour (ONFy) s (200
a+b=k—1

and

<dNM>(O,k) = @ (Q(LO))@M@ Qs <dNM>(170) Qs (Q(l,O))@Mb‘
a+b=k—1

Thus, the first equality in (5.15) is equivalent to ON;; = (dN M) (1) - As a little

careful thought will confirm, we have
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Thus, the first equality in (5.15) amounts to having dw, = 0, for all i. But this

holds if, and only if, our almost complex structure is integrable.

That the second equality in (5.15) is equivalent to integrability is proved in exactly

the same way.

O

5.3 The Heckenberger—Kolb Calculus

In this section we apply the machinery developed in this chapter to the Heckenberger—
Kolb calculus. We show that the total calculus Q*(CPY~!) has an almost complex,
and that this almost complex structure is integrable. We also demonstrate that
the holomorphic top form, and the anti-holomorphic top form, are isomorphic to
the line bundles £y, and &€_y, respectively. Finally, we show explicitly how our

construction of the de Rham complex relates to that of Heckenberger and Kolb.

5.3.1 An Almost Complex Structure

Consider the canonical linear decomposition Vapn-1 = V19 @ VO where
V39— spang{ef |i=2,...,N}, VO .=gspanc{e; |i=2,...,N}.

The relations in (4.10) tell us that this is a decomposition into right submodules.

In fact, as the following lemma shows, it induces an almost complex structure on

Q(CPN.

Lemma 5.3.1 The decomposition Vapn—1 = VIO VO js o decomposition into
right-covariant right submodules, and the corresponding decomposition of Q}](CPN’l)

extends to an almost complex structure for Q;(CPN_I).

Proof. That the decomposition is right-covariant is clear from the following cal-

culations: For z;; we have

Agpy-i(zn) = (id @ 8) o ([d @ an)( Y ufS(up) © ulS(u}))

a,b=1
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N

= (id® ) (> ufS(uj) ® an(u}S(uy))

a=2

N
= Z Za1 ® S(an(ul)) dety,

a,b=2

while for zy; we have

N
Acpr-i(211) = ([ ® S) o (i[d @ an)( D ufS(uf) @ ubS(uy))
a,b=1
N

= (id® 5)(D_ uiS(u) ® an(uiS(u}))

b=2

=) za ® S(an(S(uh))) dety .

a,b=2

That IéPN,l is homogeneous with respect to the decomposition from part 2 of
Corollary 5.1.3, follows directly from Proposition 4.3.1, as does the fact the maps
in (5.9) are isomorphisms. That the first two conditions of an almost complex

structure are satisfied now follows directly from Proposition 4.3.1.

We now come to the third condition of an almost complex structure. That (5.10)
holds follows directly from the module relations given in (3.17). Moreover, (5.11)
follows from the fact that for i = 2,..., N, we have

S@) = ST = 5o 5(ul) = uf = e, € VOD,

where we have used the standard Hopf *-algebra identity * o S = S~1 o x. Propo-
sition 5.1.4 now directly implies that the third, and final, condition of an almost

complex structure holds. O

Classically, we have that Q=19 is isomorphic to £_y, and that QN1 is isomor-
phic to £_y. As a consequence, it also holds that CPY~! is orientable, which is to
say that QV=1N=1 is isomorphic to C,[CPY~!]. These are very important prop-
erties and one would naturally hope that they generalise to the quantum setting.

The following proposition tells us that this is indeed the case.
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Proposition 5.3.2 It holds that: QW10 ~ & . QON=D ~ & and, as a direct

consequence, that
QUWLN=D(C PN ~ ¢ [CPNTY.

Proof. We begin with the anti-holomorphic forms, and the action of AAN[1 on
VNI ~ Cep A---ey_y

N—-1N-—

A er A Aeyy) e Ao Mgy @S (uft) - S (up ) et
I=1 k=
N—

H

,_.
2
}—‘H

Nep,  ® S2(ukr kY detV
=1

>
Il
—

1

Since any summand with a repeated basis element in the first tensor factor will be

zero, we must have

AN Her Aereyoy) = Z Cxy N N vy @ Sy Y detN

TESN_1

Now as a little thought will confirm e_ ) A---Ae_ )y = (= Q) ™er A Aey_

Hence, since
3 a5 g,
TeESN_1

we must have

AN e Avreyy) =er A /\eN 1®S2(det) detV !

Thus, QWV=10(CPN~1) ~ £y as one would have hoped.

Let us now tum to the anti-holomorphic forms. We begin with the action of AY™

on VON=D ~ Cef A---ef,_

—1N-1
S e A nef @ S(up) e S(up ) det™N
k=
—1N—
+ 1 1-N
Zek AN Nef 1®S(ukN Py ) dett ™Y

1
1=1

AN HEf A Ne ) =

D g/

=1

I
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Now since any summand with a repeated basis element in the first tensor factor

will be zero, we must have

AV el A el ) Z et (1 N) ® S(u? N 0 --u}r(l))detN_l.

WESN 1

As a little thought will confirm e,y A -+ Aef,

for any m € Sy_1. Thus, since it is clear that

Z (_Q)_Sgn( R N(N1 1) u71r(1) = det,

TESN_1

nopy = () 7Bl A Aef

we must have

AN N ef ANref) =ef A Aeko @ S(det) det' N
=ef Ao Nefy @det™.

Thus, as we would have hoped, it holds that QON-D(CPN~1) ~ £ _y. An exactly

analogous proof can be used to establish that Q=19 (CPN-1) is isomorphic to

En.
Finally, we note that the fact that Q(V="1N=1(CPN-1) is isomorphic to C,[CPN 1]
is a direct consequence of these two results. O

5.3.2 Integrability of the Almost-Complex Structure

Finally, we come to establishing integrability for this almost complex structure

using Proposition 5.2.3.
Proposition 5.3.3 The almost-complez structure Q" (CPN=1) is integrable.

Proof. We will establish the proposition by showing that (5.13) holds for the cal-

culus, where as a choice of complement to 7%2(VE5y_,) in Ay, we take Vg,

cpN-1 CcpN-1 —
Ce.
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For Ziy = v} S(ul) € VU0, withi=2,..., N, we have, for k=1,..., N — 1, that

N

(ef <S((z) ) ® (i) @)t = Y (ef aS(uiS(wh))) @ (usS(up))t

a,b=1

¢V (ef < (uiS(uy))) @ (ugS(uy))*

[
WE

a 1

o~
Il

(ex < (u1S(up))) @ (ugS(up))*

M-

2
Il
—

M-

(ex 9 5(uq)) ® uf

s}
||
N

=(ef aS(ul)) @ ul + (eff 9 S(uf,y)) @ uf*.

From the relations given in Section 3.3, it is clear that (e <.S(u})) ® ui is equal
to a linear multiple of e} ® e} |, while (ef < S(uj,;)) ® u}"" is equal to a linear
multiple of e ; ® ;. Thus, we have that (e} <.S((zi1)1)) ® ((zi1)(2))" is contained
in (V&)

Moreover, for e, , with k =1,..., N — 1, we have

(e <S((2i) ) ® ((z)@)* = Y (e 15(uS(uh))) @ (ufS(up))*

)

O ey < (WhS(u)))) @ (ugS(ul))t

[
M =

1

8
o>
Il

(ex < (urS(ug))) @ (ugS(up))*

-

1

S
I

M-

(e < S(up)) @ uf

[|
N

a
N

=(e 4S(u) @ ui + 8 Y (ef <5(up)) ©uf.
a=i+1
From the relations given in Lemma 3.2.3, it is clear that (e <S(u)) @ ul is equal
to a linear multiple of e, ®e; |, while (e, <S(u¥)) ®@ud is equal to a linear multiple
of e;_; ® el ;. Thus, we have that (e} <.5((z:1)1)) @ ((2i1)@2))* 1s contained in
V),
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Finally, we come to €°. To simplify our calculations we identify C,[SUx]/ker(Q)
and Agy, . just as in Lemma 3.2.3. With respect to this identification, (3.21)
implies that ¢® = ul —1 = (¢* ¥ — 1)T. Denoting for sake of presentation y :=
(g2~ — 1), we get that

e® 45((zi1) ) @ ((zi1) @)+ = 1 S((zi1) ) ® ((zi1)(2)*
= 1 ((S((za) )t @ ((zi) )" —T@7Z)
= 1 (S((zi) )t @ ((zi1) @) — ” @ 71,

which, by our earlier calculations, is contained in 7(V®29) @ 7(Ve1D) @ Ce®,

Hence, the requirements of (5.13) are satisfied, and our almost-complex structure

is in fact a complex structure. U

5.3.3 Relationship with the Heckenberger—Kolb Construc-

tion

We will finish this chapter by explicitly demonstrating how the g¢-deformed de
Rham complex we have constructed for the quantum projective spaces relates
to the g-deformed de Rham complex constructed by Heckenberger and Kolb in
[27, 28]. We begin by recalling the celebrated classification result, for the special
case of the quantum projective spaces. Just before, however, we will need to
recall a simple definition: A left-covariant first-order calculus over an algebra A is
called irreducible if it does not possess any non-trivial quotients by a left-covariant

A-bimodule. We now state the result:

Theorem 5.3.4 [27] There exist exactly two non-isomorphic finite-dimensional
wrreducible left-covariant first-order differential calculi over quantum projective
(N — 1)-space. Each has dimension N — 1.

Since both le’o) and ng’l) have dimension N — 1, they must both be irreducible
(since otherwise there would exist an irreducible left-covariant calculus of dimen-
sion strictly less than N — 1 in contradiction of the theorem). Moreover, it is easy
to see that Q((Jl’o) and Q((Jo’l) correspond to different ideals of C,[CPY~1]* and

consequently are non-isomorphic. This gives us the following corollary:

Corollary 5.3.5 The two calculi identified in Theorem 5.5.4 are Qél’o) and Q((JO’I).
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Heckenberger and Kolb constructed a total differential calculus extending the di-
rect sum calculus QL(11,0) &) Q((]O’l) as follows: They took the maximal prolongations
of QY and QY and defined

Qk<CPN71)q = @ (Q(l’o))a ®e,[cpPy-1] (ng’l))ba

q
a+b=k

where (Qél’o))“ is the space of a-forms of Q"% and (Q,(Io’l))b is the space of b-forms
of Qg071). They then showed that the partial derivatives 9 and d could be extended

to operators on the direct sum @i(ﬁ*l) giving it the structure of a double complex.

That Heckenberger and Kolb’s construction of Q*(CPN=1), is isomorphic to ours
follows from Lemma 5.2.4 and the integrability of our calculus. That the two
constructions of the exterior derivative agree follows from the fact that there exists
only one exterior derivative on the maximal prolongation of a first-order differential

calculus.
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Chapter 6

Holomorphic Structures

As discussed in the introduction, one of the primary motivations for studying non-
commutative complex structures is the need for a general framework in which to
understand noncommutative holomorphic vector bundles. In this chapter we fol-
low [6, 36] and formulate a definition of holomorphic vector bundle based upon the
classical Koszul-Malgrange characterization of holomorphic structures. We then
specialise to the quantum homogeneous space case, and formulate noncommuta-
tive versions of the basic facts underlying geometric representation theory. This
general picture is then realised in detail for the specific case of the negative charge

quantum line bundles over the quantum projective spaces.

6.1 Holomorphic Structures and Corepresenta-

tions

In this section we will discuss three topics: First we present a general framework
for noncommutative holomorphic structures; then we consider a very tractable
type of holomorphic structure which generalises the classical notion of a globally
generated holomorphic vector bundle; finally we specialise to the quantum homo-
geneous space setting and establish direct links with the corepresentation theory

of quantum groups.
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6.1.1 Noncommutative Holomorphic Sructures

For a complex structure Q(**) over an algebra A, we define a holomorphic element

of A to be an element of the subalgebra

AL = [9(a) =0]a € A}.

This of course directly generalises the classical notion of a holomorphic function.

Generalising the classical notion of a holomorphic section of a vector bundle will
prove a little more involved: An anti-holomorphic covariant derivative for a right
A-module &, is a linear map V : £ = £ ®4 QY such that

V(ea) = V(e)a+e®4 d(a), (a€ Aecé).

Now anti-holomorphic covariant derivatives can easily be constructed from ordi-
nary covariant derivatives: Given a covariant derivative V : & — € ®4 Q'(A), we
have a canonical decomposition V = V19 + VO where for 10, and 1OV,

the projections onto Q1% and Q1| respectively, we have denoted
VD = (id @ TH) o v, VO = ([d @Yy o V.
Since IV is a right A-module map, we must have

VO (ea) = (id @ V) 0 V(ea) = (id © TOD)(V(e)a + e ©4 da)
= VO (e)a+e©4 (1 (da) = VO (e)a + e @4 Da.

Hence, V(®1) is an anti-holomorphic covariant derivative.

The following important lemma is a direct generalisation of the classical case.

Lemma 6.1.1 Let V be an anti-holomorphic covariant derivative for a right A-
module €. For k € Ny, the map

V:E@4 000 5 £, QO e@awi V(e)Aw+e®y 0w,
is a well-defined extension of V. Moreover, the operator
Vi€ - E,00?,
which we call the curvature of V, is a right A-module map.
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Proof. First we show that the map is well-defined: For a € A, we have

ea) Aw + (ea) ® Ow
e)aNw+e®daAw+ (ea) ® Ow

V(ea ® w) (
(
(e) A (aw) + e ® da Aw + e ® adw
(
(

e) A (aw) + e ® d(aw)
e® aw).

I
444 4ad

Thus, we see that this extension of V is indeed well-defined.

To show that V- is a left A-module map, we first need to note that, for
t:=Y e @ar € E@a QO and w € O, we have

V(tAw) Zve RV Aw) ZV Rq V' /\w—i—Ze ®A(9(V Aw)

= DEIR% /\w+26 R0V Aw+ ( Ze @4 VA Ow

:Zve @av) Aw+ (1) Ze @4 VA Ow

% i

=V(t) Aw+ (=1)" A Qw.

With this result in hand, we can now see that

V(ea) = V(V(e)a+e®40a) =V (e)a—V(e) Ada+ V(e) Ada+e @40 a
= v2(e)a.
Thus, we see that 62(6) is indeed a left A-module map. d

If the curvature of a holomorphic covariant derivative V is equal to the zero map,
then we say that V is flat. For any complex structure Q(**) over an algebra A, a
holomorphic vector bundle over A is a pair (£,V), where £ is a right A-module,
and V is a flat holomorphic covariant derivative for £. We call an element e € &

holomorphic if V(e) = 0, and denote the space of holomorphic elements by £(1:0).

The Koszul-Malgrange theorem tells us that this is a direct generalisation of the
classical definition of the space of holomorphic sections of a holomorphic vector

bundle. (See [41, 6] for a more detailed presentation of this correspondence.)
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6.1.2 Globally Generated Holomorphic Vector Bundles

In general, proving that a covariant derivative is flat can lead to quite tedious
calculations. There does, however, exist a special class of covariant derivatives for
which the situation is much simpler: For an anti-holomorphic covariant derivative
V:E = E®Q0Y we call a subspace 2 C & a holomorphic generating set if
&% C ker(V), and £° generates & as a right A-module. The importance of such

subspace is demonstrated by the following lemma:

Lemma 6.1.2 Let V : £ — ER4Q0Y be an anti-holomorphic covariant derivative
for a right A-module £. If there exists a holomorphic generating set for V, then it

1s flat, and moreover,
spang{eale € £° a € ker(d)} C L0 (6.1)

Proof Since £° is a generating set of £ as a right A-module, we have that every
element of & is of the form Y, e'a’, for ¢’ € £° and a € A. Now from Lemma

6.1.1, we have

V(> ed) =Y V(eha' =0, (6.2)
giving us that v =o.
Let now consider the identity

7(2 e'a’) = Zv(ei)ai + Z €' ®40a" = Z e' @4 0d".

Clearly, V(3, e'a’) is zero if a’ € ker(d), for each i. O

We will call a holomorphic vector bundle for which there exists a holomorphic
generating set a globally generated holomorphic vector bundle. This definition
generalises the classical notion of a globally generated holomorphic vector bundle
(see [57] for details).

6.1.3 Covariant Holomorphic Structures and Corepresen-

tations

Let M = G* be a quantum homogeneous space endowed with a covariant complex

structure Q(**). Since (Q®Y,9) is a left-covariant first-order differential calculus,
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it must hold that
Apod=(id®d)oAp.
This implies that, for a holomorphic element m € M9 we have
(id® 0) o Ap(m) = Ap o d(m) = 0. (6.3)
Hence, Ap (M) C G ® M®, or in other words, M%) is a right G-comodule.

Let us now try to generalise this fact for objects & in {(Mj;. Denoting the
left G-coaction of £ by A, we say that an anti-holomorphic covariant derivative
V: &€ = £y QO is homogeneous if it holds that

(id®V)oAL =A?0V. (6.4)
The following result generalises the G-comodule structure of M (10):

Lemma 6.1.3 If an anti-holomorphic covariant derivative V : € — € @3, QO s
homogeneous, then its space EY) of holomorphic elements is a right G-comodule.
Moreover, if £ has a holomorphic generating set, then this is an if, and only

if, statement.

Proof. For e € £1:0 we have
(id®V)oALle) = AF? o V(e) = 0.

Hence, AL (£0Y) C G ® LY and £10) is a right G-comodule.

Let us now assume the existence of a holomorphic generating set £Y. For a € A,

and e € £°, we have
AF? 0 V(ea) = AT (e ®4 Da) = e_1ya) @ e() ®a Dag),
and

(id ® V) o) AL(ea) = €(-1)a(1) & €(0)(2) = €(-1)a(1) ® v(e(g)a(g))
= e(-nyaq) ® V(ew)ae) + enaq) @ o) ®4 dag).
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Now if £1:0) is a left G-comodule, then v(e(o)) = 0, giving us that

A$? o V(ea) = (id ® V) o Ay (ea).
Hence, V is homogeneous. U
The theory of quantum principal bundles provides us with an important method for
constructing homogeneous anti-holomorphic covariant derivatives for line bundles:

We define a covariant derivative V : & — £ ®4 Q1 (M) to be homogeneous if it
satisfies the obvious analogue of (6.4):

AP?oV = (id® V) o Ap.

Now if the complex structure on M is covariant, then it is easy to see that the
holomorphic part of V will be a homogeneous anti-holomorphic covariant deriva-
tive. Moreover, if M = G¥ is a quantum principal homogeneous space, then it

is easy to see that any covariant derivative for £ induced by a strong connection
I1: QYG) — QG) will be homogeneous.

We finish this section with a short lemma linking the definitions of a strong con-

nection and a framing calculus.

Lemma 6.1.4 For a quantum principal homogeneous space M = G" such that

QY@G) is a framing calculus for Q*(M), all connections are strong.

Proof. From the general definition, any connection IT : Q'(G) — Q!(G) satisfies
(id — T)(Q'(M)) = GO (M)G.

But if Q'(G) is a framing calculus for Q' (M), then by definition we also have that
QYM)G C GO (M), implying that

(id — TT)(Q' (M) € GR(M).

Hence, II is a strong connection. U

6.2 A Holomorphic Structure for the Quantum

Projective Space Line Bundles

In this section we construct holomorphic structures for the quantum line bundles

of C,[CPY~!] which are indexed by the negative integers. We begin by showing
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that the differential structure we have been using for C,[SUx]| gives the quan-
tum homogeneous space ay : C,[SUy| = C,[Un_1] the structure of a quantum
principal bundle. We use the general theory of quantum principal bundles to con-
struct a connection for the bundle, and then show that this connection induces
holomorphic covariant derivatives on the line bundles £ i, for £ € N. Finally,

we show the corresponding spaces of holomorphic sections contain the standard

(N—l—k—l

N h)-dimensional corepresentations of Cy[SUy].

6.2.1 A Quantum Principal Bundle Structure

We carefully show that the calculus Q) (SUy) induces the structure of a quantum
principal bundle on the Hopf-Galois extension C,[SUy| <> C,[CPN~!. (The

proof used here is a more concise version of the original proof in [58].)

Proposition 6.2.1 It holds that (C,[SUn|, Cy[Un-1], Isuy, an(Isuy)) is a quan-

tum principal homogeneous space.

Proof. We have already proved that ay : C,[SUn| — C,[Un—1] is a Hopf-Galois
principal homogeneous space. Thus, Proposition 2.3.2 tells us that all we need to
show is that (2.20) holds for Igy,. Recall that Isy, = ker(Q)" + Dy + Ds, where
Dy = spang{uiS(u;)|i = 2,...,N}, and Dy = spang{u}|i # j;i,j = 2,...,N}.

Now since ker(Q)" is an Adg-stable ideal, it is clear that
(id @ ay)Adg(ker(Q)") C ker(Q)" ® C,[Un_1].

For Dy, we begin by noting that

(id @ an)Adr(uiS(uf) = Y upS(ug) ® an(S(uyS(uf))uiS(uy))

a,b,c,d=1

= > uiS(ug) ® S(ui S (uf))) detyt dety
a,d=2
N

= Y ugS(uh) @ S S(ul))).

a,d=2

For a = d, we have u{S(u}) € D; by definition. For a # d, it follows directly

from the relations in Lemma 3.2.3 that u{S(u}) € Isy,. Hence, we have that
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(id ® an)Adg(Dy) is contained in sy, ® Cy[Uy_1]. Turning now to u} € Dy, we
see that

(id ® oy )Adg(u}) = (id ® ay)( Z uf @ S(u Z uf @ S(u ué
k=1 k=2

For k # [, we have uf € D, by definition. It remains for us to show that
SN uk@S (i 1)u | is contained in I, ® C,[Uy_1]. We will do this by showing

_2
that its image in Agy, ® C4[Un—1] is zero: Denoting X := ﬁ, we have
¢ N-
N N N-1
> uf @ S ul) = Z A’ @ S(u b=t = A" @ (D S(uiuly)
k=2 k=2 k=1

(Note that the summation S 8" S (ul 1) uj_; takes place in C4[Uy_1].) Thus, we
have shown that (2.20) holds for gy, . O

6.2.2 An Anti-Holomorphic Covariant Derivative

In this section we will use the general theory presented in Chapter 2 to construct
a connection for the bundle ay : C,[SUy| — C,[CPN1].

Lemma 6.2.2 A bicovariant splitting map is given by

it Ay, Aby,, detyl, —1—ul — 1,
Moreover, the corresponding connection 11 = Qi (SUy) — Q(SUy) is strong and
satisfies

I(e") = €, I(ef) =TI(e; ) =0, (i=1,...,N—1).

Proof. That i satisfies ay 0@ = id is obvious, while (2.23) follows from

N
Adpsuy oi(dety' —1) = Adg vy (€”) = D (uf @ an(S(upul)) — 1@ 1

k=1
—ul®l1-191=e"®1=i(dety! —1)®1
= (i ®id) o Adgyy,_, (dety' —1).
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Denoting the connection form corresponding to ¢ by w, we have

I1,(e°) =mo (id ® w) o ver(e’) = wo ay(ul — 1) = w(dety' , —1) = uf — 1 = ¢".

Similarly, an(u{™) = an(ul,,) = 0 implies that I, (e}f) = II,(e; ) = 0.
The fact that IT is strong follows from Lemma 6.1.4 and the fact that Q(SUy) is
a framing calculus for Q}(CPN™1). O

For any object &€ in §,M s, we denote the corresponding covariant derivative by
V:E€ = EQcpn—1 Q(CPY!), and the corresponding anti-holomorphic covariant
derivative by VOV : £ — £ @cpn—1 QL (CPNTY).

6.2.3 A Holomorphic Structure for the Modules £ _;

A natural question to ask is for which objects £ in {M,y, is the pair (£, V(D)
a holomorphic vector bundle. As first step towards answering this, let us look at
the quantum line bundles £_;, for all £k € N.

Proposition 6.2.3 [t holds that
N
mi m _ 1,0
{u)™ - @)™ | > m =k} € €57, (6.5)
=1

is a holomorphic generating set for VOV and so, (E_, VD) is a globally gener-

ated holomorphic vector bundle.

Proof. Since we established in Corollary 3.1.4 that 59,;0) is a generating set for
E_k, all we need to do is show that the elements of £2, are contained in the kernel
of VOD_ To this end, we note that

N N-1
duf =57 (3w @ Wh)7) = Y uhef € & Rcpr-r (UM @ Ce')
a=1 a=1

Now from Lemma 3.2.3 it is easy to see that QE}’O) ® Ce is closed under right
multiplication by elements of the form wi. This fact, when combined with the

Liebniz rule, implies that

de € & ®@cpr-1 (Qéo’l) @ Ce?), (for all e € £°).
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It now follows that II%Y o Tl o d(e) = 0, and so, £°, C 59,;0), implying that £°,
is a holomorphic generating set for V(®Y. Lemma 6.1.2 now tells us that V(b is
flat. 0

Thus we see that 59,;0) contains the standard (N;ﬁzl)—dimensional corepresenta-

tion of C,[SUy]. This generalises the classical Borel-Weil theorem, and extends
Majid’s result for C,[CP'] [51]. The extension of this work to include the quan-
tum Grassmannians will be considered elsewhere, as will the explicit relationship
of these results to the work of Khalkhali, Landi, Moatadelro, and van Suijlekom
(34, 35, 36].

Finally, we finish with a very natural conjecture:

Conjecture 6.2.4 [t holds that

N
E7 ={0}, and  ELY = {(u)™ - (@)Y Y my =k}, (kEN).
=1
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Chapter 7

The Noncommutative Kahler
Geometry of C,[CP!]

In this chapter we take the first steps towards a general theory of noncommuta-
tive Kéhler geometry by establishing a noncommutative generalisation of the Kéh-
ler identities for C,[CP']. While we use a minimum of formalism here, a fuller
treatment incorporating a noncommutative metric and a noncommutative funda-

mental Kahler form will appear in [60].

7.1 Hodge, Lefschetz, and Laplace Operators

We will now introduce a direct generalisation of the classical Hodge *-map for the
Fubini-Study metric on CP*!: First we define

* Qé(CPN’l) — Qé(CPN’l), x: fe  — —ife”, *x:fet —ife’.

We see that * squares to give —id on Q}(CP"™'), as one would want. Next we

choose e™ A e™ as our top form, and define
«: Q2 (CPYY) — C [cPYY, fet ne w f.
We then complete the picture by defining the inverse map

x: C[CPN ™ — Q2(CPY ), fr fetne .
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We note that * squares to the the identity on Qg(CPNfl) and C,[CPN7!], as one

would want.

Directly generalising the classical picture again, we define the Lefschetz operator
L:C,[CP'] —>Qg(CP1), fr—fetne =—x(f),

and the dual-Lefschetz operator
A: QX(CP') — C,[CP], wr ko Lox(w)=—x(f).

We extend L and A to operators on the total calculus by defining them to be zero

on all other forms.

We next define the codifferentials by
d* = — x dx, 0" = — x Ox, 9 =—%0x.
Finally, we define the Laplace operators A, Ay, and Ay, by

Nop=(0+0)2=000"+0 00, Nyg:=(@+9)? =000 +3 00,

A= (d+d)?=dod"+d"od.

7.2 The Kiahler Identities

In this section we will show the Hodge, Lefschetz, and dual Lefschetz operators
defined above satisfy a generalisation of the Kahler identities for the projective
line. We will then use this result to show that the three Laplacians Aq, Ay, and

Ay, are simple scalar multiples of each other.

Proposition 7.2.1 Using the notation of the previous section, we have the fol-

lowing relations:

[L,0"] = id, [L,8] = —id, [L,0] =0, [L,8] =

(A, 8] =0, (A, 0] = —id", [A, 0] =0, A 0] =
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Proof. The relations
[L7a] = [L7—] = [A>a*] = [Aag*] =0

are direct consequences of the definition of L and A. The remaining relations
are easily verified by direct calculation. We begin with the relation [L,d*] = i0:
Note that [L,d*], and id, have non-zero actions only on C,[CP'] and Qél’o). For
f € C,[CP'], we have

[L,0°)f = (—Lox0%+xd*oL)f =% *oL(f) = —* (9f) = idf.
While for fog € le’o), we have
[L,0*)(f0g) = (—Lo*0 %+ x 0% oL)fOg = —L o 0 x (f0g) = i0(f0g),

which establishes the relation.

Next we turn to [L,d ] and —id: Note that both operators have non-zero actions
only on C,[CPY~1] and Q. For f € C,[CPY~], we have

[L,0](f) = (Lod =8 oL)(f) = =08 oL(f) = —x(0f) = —idf.
For fog € QY we have

[L,9)(f0g) = (Lod — 9 oL)(fdg) = Lod (fdg)

= d(x(f0g)) = —id(f0yg),

which establishes the identity.

Now [A, 8] and i0", both have non-zero actions only on Q" and Q2(CPN1). For
fog € Qéo’l), we have

[A,0](f0g) =(Aod— Do A)(fdg) = Ao d(fdg) = —*I(fIg)
= — %0 (ifdg) = id (fdg).

For fet @ e € Q2(CP'), we have
A, 0](fem ®e ) =(Aod—0oA)(fet ®e)=—-oA(fet ®e™)

—0x(fet@e )=—%0x(ife" @e ) =100 (fet @e),
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giving us the required equality.

Finally, we come to [A,d] and —id*. Note that both operators have non-zero
actions only on Q"% and Q2(CPNY). For fog € Q0 we have

[A,9](f99) =(A 0 — o A)(fOg) = Ao d(fdg) = —*O(fdg)
= %0 % (if0g) = —i0*(f0g).
For fet @ e” € Q2(CP'), we have
(A d)(fet®e ) =(Aod—oA)(fef ®e™) = —doA(fe" ®eT)
=0x(fe"®@e ) =#0* (ifet ®e™) = —id*(fet ®@e7),
establishing the last required identity. U

We can now follow the standard classical proof [30] and use the Kéhler identities

to establish equality of the three Laplacians.

Corollary 7.2.2 The Laplace operators are related by A = 27y = 2A5.

Proof. First note that
—i(90" + 9°0) = O[A, D] + [A, 9]0 = OAD — O'A — AD” — DAD

AO — OND =

and similarly
99" + 80 = 0[A, 0] + [\, 9]0 = 0.

This gives that

A=dod* +d od=(0+8) (0 +d)+(8"+0)(0+0)
— (00" +9*0) + (00 + 0 9) 4 (90" + 09) + (99" + I 0)
= (00" 4+ 0"9) + (00 +9 ) +0+0
— Ao+ Ay

It remains to show that Ay = Az. But this is an easy consequence of the calcula-

tion:

—iNg = —i(00" + 8°0) = J[A, D] + [A,
— OAD + DOA — TAD = [0, A]D +

)]

10 = OND — DDA + ADO — DAD
[0,A] = —i0 0 — 100 = —ily.

Ql
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g

One could now attempt to extend this result to the higher order quantum pro-
jective spaces by direct calculation. However, such an approach seems likely to
be overly laborious. A more promising idea is to build upon our framework of
noncommutative complex geometry, and develop a general theory of noncommu-
tative Kéhler geometry for quantum homogeneous spaces. Such an approach is at

present being developed [61].
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