
An Algorithm to Measure Parton

Fragmentation at Large Hadron

Colliders

Tom Macey

Supervisor: Professor G. Thompson

Submitted August 2013

Accepted January 2014

Submitted in partial fulfillment of the requirements of the Degree of Doctor of

Philosophy



Declaration

The work presented in this thesis is my own. Wherever contributions taken from other

sources are involved, they are identified as such. The material produced has not previously

been presented in identical or similar form, either in whole or in part, to any other

examination board.

i



Acknowledgements

I would like to thank my supervisor, Graham Thompson. I have (almost) always enjoyed

our exchange, he has taught and inspired me, and has been a brilliant mentor. He has

shown continuous commitment to his role, I will always remember and value this gift.

I would also like to thank Dr Eram Rizvi and Professor Steve Lloyd for their role in

my progression throughout the past four years, and Dr John Morris and Dr Dan Traynor,

for their time and teachings for which I am grateful.

I would like to thank my mother for her love, encouragement, and of course money.

Without her, I may not have reached the final phases of this PhD.

I would like to thank my sister, Emily, for her encouragement, belief, and for bringing

into this world my wonderful niece, Evie, who I look forward to getting to know as she

grows up in the future.

I would like to thank my father for his belief in me, his advice, and our conversations

which inspire me.

I would like to thank all my office companions, especially Jack Goddard, for their

company and advice over the years.

I would like to thank the computing team who kindly fix my computer when I cannot.

Finally I would like to thank the STFC for funding my activities for most of the past

four years. They have made it possible for me to pursue my interests, and for that I am

truly grateful.

ii



Abstract

The Standard Model of particle physics is discussed with emphasis on light quark QCD,

and existing data on light quark fragmentation from e+e− annihilation and deep inelastic

scattering experiments.

A method is developed to measure the directionally correlated pionic scaled momen-

tum distribution, or partonic fragmentation function, in large hadron collider conditions.

Jet algorithms are used to provide partonic momentum estimates, which in turn scale the

hadronic momenta. The associated resolution is unfolded.

Hadronic profiles about the parton are examined at Monte Carlo “truth” level. There

is found to be a uniform uncorrelated background, which may be estimated event-by-event

in regions away from jets and then subtracted statistically from the final distributions.

A variable radius cone sampling method is used to count correlated charged hadrons

and this also provides a method of coping with any poor directional resolution of jet

algorithms. Extrapolation techniques make an estimated measurement possible when the

largest safe sampling radius is not large enough to include all correlated hadrons.

A novel method to calculate jet mass using jet collimation information available from

the FAPS method is demonstrated.

The algorithm was tested over an order of magnitude in hard scale (∼100GeV →

1TeV) with two standard ATLAS reconstructed level Monte Carlos, Pythia and HERWIG,

and the calculated fragmentation function is found to be in agreement with the trend of

previous data at the hard scale overlap. These models have very different hadronisation

models, so may be used to estimate systematic error and test feasibility for a possible

full large scale measurement in data. Such work could support the concept of quark

universality by establishing propagator invariance.

iii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Measurement in the Hadronic Environment . . . . . . . . . . . . . . . . . 2

2 Partons 3

2.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 The Hard Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Scaling Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Higher Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 The “Running” Coupling Constant . . . . . . . . . . . . . . . . . . 9

2.4.3 Softening of the Fragmentation Function . . . . . . . . . . . . . . . 9

3 Monte Carlo Models 11

3.1 Hadron Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Practical Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Approximating pQCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Parton Showers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.2 Lund String Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Event Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Hadronic Profiles 17

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Detector Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 pT Deposited as f(η, φ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 Hadronic Profiles of Partons . . . . . . . . . . . . . . . . . . . . . . . . . . 19

iv



4.5 Background Variation with the Hard Scale . . . . . . . . . . . . . . . . . . 22

4.6 Hadronic Profile Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.7 Conclusions to Hadronic Profiles Study . . . . . . . . . . . . . . . . . . . 23

5 Definitions of xp 24

5.1 Transverse Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Parton Fragmentation 30

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Single Parton Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3 Definition of a Parton Fragmentation Function . . . . . . . . . . . . . . . 32

6.4 Previous Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Parton Fragmentation Algorithm 38

7.1 Method Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.2 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.3 Background Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.4 Background Proportions in Measuring Cones . . . . . . . . . . . . . . . . 42

7.5 Background Solid Angle Size . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.6 Statistical Uncertainty on Signal . . . . . . . . . . . . . . . . . . . . . . . 44

7.7 Systematic Uncertainty on Signal . . . . . . . . . . . . . . . . . . . . . . . 45

7.7.1 Systematic Uncertainty on Background Subtraction . . . . . . . . 45

7.7.2 Estimation of Systematic Uncertainty on the Background . . . . . 45

7.8 Extrapolation and Optimum Solution . . . . . . . . . . . . . . . . . . . . 48

7.8.1 Extrapolation of Dsignal vs R Curves . . . . . . . . . . . . . . . . . 48

7.8.2 Optimal Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.8.3 Extrapolation at Larger Hard Scale . . . . . . . . . . . . . . . . . 51

8 FAPS Transverse Fragmentation 54

8.1 Jet Shape Parametrisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.2 Interpretation of Jet Shape . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

v



9 Parton Estimator Algorithms 60

9.1 TRAPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9.2 TRAPS Leading Order Event Selection . . . . . . . . . . . . . . . . . . . 63

9.3 Parton Estimator Algorithm Comparison . . . . . . . . . . . . . . . . . . 66

9.4 Algorithmic Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9.4.1 The TUnfold Package . . . . . . . . . . . . . . . . . . . . . . . . . 68

9.4.2 Unfolding Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

9.4.3 TUnfold Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9.5 Extrapolation using Jet Finders . . . . . . . . . . . . . . . . . . . . . . . . 71

9.6 Jet Correlations in η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.7 Optimal Solutions Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.8 Comparison with the Anti-KT Algorithm . . . . . . . . . . . . . . . . . . 78

9.8.1 Anti-kT Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10 Hadron Measurement 83

10.1 Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

10.1.1 ATLAS Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . 84

10.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10.2.1 ATLAS Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

10.2.2 Jet Energy Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 88

11 Reconstructed Tracks 89

11.1 Track Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

11.2 Track Reconstruction Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 92

11.3 Unfolding of Track Momenta . . . . . . . . . . . . . . . . . . . . . . . . . 95

11.4 Bin-by-bin Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

11.5 Measured Level xp Bin Efficiencies and Purities . . . . . . . . . . . . . . . 101

11.5.1 Measured vs Truth Efficiencies and Purities . . . . . . . . . . . . . 102

11.5.2 Anti-kT and TRAPS Comparison . . . . . . . . . . . . . . . . . . . 102

12 Systematic Error in Resolution Unfolding 104

12.1 Monte-Carlo Model Systematics . . . . . . . . . . . . . . . . . . . . . . . . 104

12.2 Model Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

vi



12.3 Systematic Uncertainties of Unfolding Techniques . . . . . . . . . . . . . . 105

12.4 Comparison of Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . 109

13 Jet Fragmentation Comparison 110

14 Preparation For Data Analysis 113

14.1 Event Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

14.1.1 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

14.1.2 Collision Event Selection . . . . . . . . . . . . . . . . . . . . . . . . 114

14.1.3 Jet Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

14.2 Fragmentation Data Analysis Model . . . . . . . . . . . . . . . . . . . . . 118

14.2.1 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

14.2.2 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

14.2.3 Monte Carlo Concatenation . . . . . . . . . . . . . . . . . . . . . . 119

14.2.4 Comparing Monte Carlo and Data . . . . . . . . . . . . . . . . . . 120

15 Conclusions 122

15.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 129

vii



List of Figures

2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Diagram to indicate beyond some separation the colour string between two

quarks “splits”, producing a new quark-antiquark pair since this is more

energetically favourable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Two body scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Feynman diagrams of s (left), t (centre), and u (right)-channel scattering.

The direction of time is from left to right, A solid line with and arrow

pointing (backward)fowrard in time indicates a (anti)fermion and a dashed

line indicates a force carrying boson. . . . . . . . . . . . . . . . . . . . . . 6

2.5 Feynman diagrams of the 2 → 2 particle scattering processes which occur

at leading order at the LHC. A fermion line with an arrow pointing from

left to right indicates a quark, an arrow in the opposite direction indicates

an anti-quark and the curly lines represent gluons. In each line the different

possible sub-processes with the same initial and final states are shown. . . 7

4.1 The azimuthal and pseudorapidity deposition of pT . . . . . . . . . . . . . 19

4.2 A φ profile is the pT weighted ∆φ, in a ±0.5 slice ∆η away from the parton. 20

4.3 Hadronic pT deposition profiles measured with three event selections. Each

row corresponds to a different requirement on the minimum η separation

of the two outgoing partons, ∆η > 0 (top), ∆η > 0.5 (middle) and ∆η >

1.0 (bottom). Pythia J5 Monte Carlo has been used. . . . . . . . . . . . . 21

4.4 In the Monte Carlo, parton hadronic profiles are wider in η than in φ.

Profiles measured with Pythia J3 Monte Carlo. . . . . . . . . . . . . . . . 23

5.1 The Breit frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

viii



5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 The physics describing the short (between dashed lines) and long distance

is factorised. [32] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 The fragmentation function obtained with a näıve unit cone, calculated
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Chapter 1

Introduction

It has been shown that the fragmentation of partons into hadrons has been established

within the electromagnetic interaction environment as both factorisable and independent

of the production process [1]. The same fragments are produced, having the same share

of momentum, whether the parton comes from a pair-decay of a time-like virtual photon

or from being knocked out of a proton via the space-like virtual photon of deep inelastic

scattering (DIS).

Parton fragmentation has been studied in detail in electron-positron annihilation [2, 3,

4, 5] and DIS [1, 6] experiments. However only jet fragmentation [7] has been studied, to

a lesser extent, in hadron collisions. Such collisions are a prolific source of fragmentation

data, however at the high transverse momenta available recently, background has been an

insuperable problem.

The main purpose of this thesis is to demonstrate a large acceptance method (FAPS,

Fragmentation Algorithm for Parton Scatters) which may be used to to measure the

fragmentation of partons in the hadron collision environment of the LHC [8].

1.1 Motivation

Quantum chromodynamics (QCD) [9] is only well understood at large values of the hard

scale. Fragmentation studies allow experimental measurement in both the perturbative

and non-perturbative regimes of this theory. Measurements of hadronic momenta within

jets at high momenta allows a derivation of the hadron splitting function of partons and

could also allow a determination of the strong force coupling constant, αs [10]. Mea-
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surements at low momenta allow comparison of models describing the strong interaction

where quantum mechanical perturbation theory cannot make firm predictions.

Any BSM (beyond the standard model) physics search requires a precise knowledge

of all standard model processes so that the products of new processes may be distin-

guished. The majority of the background to new physics signatures in a hadron collision

environment comes from the fragmentation of hard scattered partons, which result in jets

of hadrons.

Partonic fragmentation measurements in the hadron collision environment also provide

for a test of “propagator universality”, i.e. whether the partons produced in strong

interactions fragment in the same way as those produced via electromagnetic processes,

i.e. whether virtual gluons can take the place of the virtual photon without altering the

subsequent fragmentation properties.

1.2 Measurement in the Hadronic Environment

In order to study partons through the hadrons they produce it is important to understand

other sources of background hadrons. This background, considered without “pile-up”

(multiple proton-proton collisions in the same data-taking time interval), is comprised of

hadrons from initial state bremsstrahlung (ISB) and multiple interactions of other partons

within a given proton (MI). In ATLAS [11] terminology, all particles originating from

processes, other than that of interest, are referred to as underlying event (UE). However,

in this study, all uncorrelated hadrons which are removed from the total fragmentation

function to give the signal fragmentation function are referred to as “background”.

ISB is radiation by the parton entering the hard scatter. In hadron-hadron collisions

ISB is usually peaked in the “forward” direction in the laboratory reference frame, but

not necessarily at the LHC, where the high virtuality of the incoming parton even allows

“backward” radiation. Multiple interactions are interactions of partons from the two

incoming hadrons in addition to the primary hard scatter. It will be shown that both ISB

and MI sources result in a “rapidity plateau” (discussed in Chapter 4) deposition of low

transverse momentum in the laboratory reference frame which is isotropic in azimuth.
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Chapter 2

Partons

2.1 The Standard Model

In the current theory of particle physics, the Standard Model, matter consists of twelve

fundamental “building blocks” or fermionic particles, the interactions of which are me-

diated by four force-carrying bosonic particles, see Table 2.1 [12]. The standard model

matter constituents force carriers higgs

quarks
u c t γ

H
d s b g (8 colours)

leptons
νe νµ ντ Z0

e µ τ W±

Table 2.1: The Standard Model of Particle Physics, excluding gravity.

matter constituents are the six strongly interacting quarks organised into weak-isospin

doublets, the three weakly interacting leptons, and the three corresponding lepton neutri-

nos, also in weak-isospin doublets. The standard model force mediators are the photon, γ

which mediates the electromagnetic force, the gluon, g, which mediates the strong colour

force and the W± and Z0 particles, which mediate the weak force. There are also a set

of antimatter fermions, which have equal but oppositely signed quantum numbers. These

antifermions are the building blocks of antimattter. The Standard Model also incorpo-

rates the higgs mechanism by which the W± and Z0 are given mass upon breaking of the

electroweak symmetry. The fermions may also acquire mass by coupling to the higgs field

in a different way to the gauge bosons. This thesis concerns quarks and gluons which are

collectively called partons.
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2.2 Quantum Chromodynamics

The force between any two coloured quarks is thought to remain constant after a separa-

tion approximately equal to the diameter of the proton, being equal to that required to

lift a tonne on the surface of the Earth [13].

The coupling of the quarks to the gluons occurs due to the quarks having colour charge.

The peculiar quality of the mediators of the strong force, the gluons, is that they them-

selves also possess colour charge, making QCD (quantum chromodynamics) a non-Abelian

theory, in contrast to the Abelian theory of the electromagnetic interaction QED (quan-

tum electrodynamics) in which the gauge bosons are neutral [14]. Consequently gluons

are self coupling and therefore field lines of force between two partons are attracted to one

another as shown in Figure 2.1(a) which may be compared to the case of electromagnetism

shown in Figure 2.1(b). Increasing the separation between two coloured objects causes

(a) Colour field lines between two
colour sources

(b) Electromagnetism field lines between electric
charges

Figure 2.1: Diagram to indicate gluons are self coupling and are attracted to one another,
sub-figure (a), and photons have no such property, sub-figure (b).

the field lines to become tube or string like as shown in Figure 2.2. The colour string

Figure 2.2: Diagram to indicate beyond some separation the colour string between two
quarks “splits”, producing a new quark-antiquark pair since this is more energetically
favourable.

has constant energy density per unit length of ∼1 GeV/fm [15], thus increasing the sep-

aration of two quarks increases the potential energy stored in the string. At some point

it becomes energetically more favourable for a new quark-antiquark pair to be created
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than for the string length to increase, which therefore occurs, as depicted in Figure 2.2.

Though no analytic proof exists, the fact that the gluons are colour charged is believed

to be the cause for quarks being confined to bound states. These colour neutral states

of two or three valence (anti-) quarks are known as mesons and baryons respectively, or

collectively as hadrons.

Hadrons collided at high energy act as partons sources, but whilst the partons are

scattered off one another, they are never detected alone, only the resultant hadrons are.

2.3 The Hard Scale

The centre-of-momentum (CMS) energy, momentum and scattering angles of any 2 → 2

particle scattering process (Figure 2.3) may be expressed as a function of the Lorentz

invariant Mandelstam variables s, t, u, each of dimension (GeV)2. These are given in

Equations 2.1 to 2.3, where (p̃1, p̃2) and (p̃3, p̃4) are the particle initial and final state

Figure 2.3: Two body scattering

four-momenta respectively. The corresponding Feynman diagrams are given in Figure 2.4.

The possible leading order QCD 2 → 2 particle scattering Feynman diagrams are shown

in Figure 2.5.

s = (p̃1 + p̃2)
2 = (p̃3 + p̃4)

2 (2.1)

t = (p̃1 − p̃3)2 = (p̃2 − p̃4)2 (2.2)

u = (p̃1 − p̃4)2 = (p̃2 − p̃3)2 (2.3)

Except the low cross-section Higgs, there are no high mass qq/qq̄ or qg resonances expected

in the hard scale range analysed and |t| is very much smaller than s. The s(t)-channel

propagator is roughly proportional to 1/s(1/t) for massless propagators in the absence of

resonances. The cross section is inversely proportional to the square of the propagator
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Figure 2.4: Feynman diagrams of s (left), t (centre), and u (right)-channel scattering.
The direction of time is from left to right, A solid line with and arrow pointing (back-
ward)fowrard in time indicates a (anti)fermion and a dashed line indicates a force carrying
boson.

term, so if the overall E∗ is only twice as large as the transverse momentum, the s

channel cross section will be approximately sixteen times smaller. At the very large

fractional momentum of the parton, x, which is necessary for high pT events there are

fewer anti-quarks than quarks in the collision protons at the LHC, further suppressing

the annihilation channel with respect to the scattering channels. Thus the cross section

is very much dominated by t-channel scattering. This kinematic variable then provides

the appropriate hard scale for the vast majority of parton interactions.

Hard scatters are those involving large values of this hard scale. The hard scale variable

may be used in the perturbative expansion of the running strong coupling constant and

this choice makes the series converge more quickly.

In previous DIS fragmentation measurements the invariant momentum transferred

between the scattering objects, Q =
√
−t, was used to represent the hard scale, simply

because there are no particles with eq quantum numbers. The same observable (
√
−t) is

used in the present measurement for relevant comparison.
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2

!(qq→qq,qq→qq) ~

!(qg→qg) ~

2

+ +

!(qq→qq) ~

2

!(gg→gg) ~

2

!(qq→gg) ~

2

+

+

Figure 2.5: Feynman diagrams of the 2 → 2 particle scattering processes which occur

at leading order at the LHC. A fermion line with an arrow pointing from left to right

indicates a quark, an arrow in the opposite direction indicates an anti-quark and the

curly lines represent gluons. In each line the different possible sub-processes with the

same initial and final states are shown.

7



Monte Carlo Sample p̂T -range (GeV) Mean p̂T (GeV) Mean
√
−t (GeV)

70-140 87 132
140-280 172 245
280-560 335 459
560-1120 669 886
1120-2240 1238 1738

Table 2.2: Mean p̂T and
√
−t values for the Monte Carlo samples.

The relationship between
√
−t and the transverse momentum in the centre of momen-

tum frame, p̂T , may be derived starting from Equation 2.2. In the centre of momentum

frame p̃1 = −p̃2, p̃3 = −p̃4 and |p̃1| = |p̃3| = p̂, and so for massless partons

− t = 2|~̂p|2(1− cos θ̂), (2.4)

where θ̂ is the angle through which the parton under consideration is scattered within

that frame. Substituting p̂T = p̂ sin θ̂, and using trigonometric identities

− t = p̂T
2 2

1 + cos θ̂
(2.5)

and so the relationship between
√
−t, and p̂T is given by the expression

√
−t = p̂T

√
2

1 + cos θ̂
. (2.6)

Note that in jet fragmentation [16] the jets are considered individually and therefore pT is

commonly chosen as the appropriate hard scale observable. This is a good approximation,

however
√
−t would be more suitable.

The next chapter will detail the Monte Carlo production which forms the input to

this feasibility study and shows how these comprise of non-overlapping ranges of p̂T . The

mean
√
−t values of these Monte Carlo samples used are compared to those of < p̂T > in

Table 2.2 with both calculated assuming that initially the collinear CMS partons entering

the hard scatter have no net momentum transverse to the beam, i.e. that the beam

remains on the z -axis after the transform. For a CMS scattering angle of π/4,
√
−t is

only approximately 14% larger than p̂T , whereas for pure transverse scatter of π/2,
√
−t

is approximately 40% larger. For a rare backwards scatter, which can not be identified in

practice,
√
−t is much larger, e.g. almost three times larger for θ̂ = 3π/4.
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2.4 Scaling Violations

2.4.1 Higher Orders

In the following, the “matrix-element” contribution to the interaction probability is con-

sidered rather than its product with the phase space which gives the total cross-section.

At any energy there are many possible final states to an initial state two-body inter-

action, i.e. 2 → 2, 2 → 3, etc. Even allowing for closed loops, each process leading to a

higher multiplicity must occur with decreased probability by a factor of an absolute, not

energy dependent (i.e. “scaling”) coupling constant, the value of which must be below

unity to allow perturbative theories such as QED and pQCD.

With decreasing energy, a QCD 2 → 3 process will coalesce into a 2 → 2 one, due to

self coupling of the force carriers. The 2→ 2 process therefore has an enhanced probability

at lower energy, at the cost of the suppressed 2 → 3 process, which itself is enhanced by

the 2→ 4 diagram, and so on.

In essence, an extra loop now contributes to the 2→ 2 process and a similar mechanism

occurs for the higher orders. The decreasing probability for higher order final states, by

the factor of the coupling constant, means that while there are enhancements to the higher

orders, they are not as large as the suppressions due to the coalescence, and the largest

enhancement is to the 2→ 2 process.

2.4.2 The “Running” Coupling Constant

The above may be described in terms of a running coupling constant, αS(Q), which

accounts for all such loops and vertex diagrams and therefore has a larger value at lower

energies. The suppression of higher orders by the factor αS(Q) is then more significant

at lower energies, again enhancing the 2 → 2 process with respect to the higher orders.

Accounting for loops and vertex diagrams contributing to a process of some order in this

way is known as renormalisation.

2.4.3 Softening of the Fragmentation Function

Viewed in reverse, with increasing energy, a scaling violation is seen, which results in an

increased number of higher multiplicity final states than would be expected with strict

scaling. A classically resolved jet will therefore contain more low momentum hadrons
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with increasing hard scale. This will be at the expense of higher momentum hadrons, i.e.

higher topologies have become discernable at the expense of loops.

Such scaling violations may explain the softening of the fragmentation function with

increasing hard scale, as will be shown in Section 6.4.
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Chapter 3

Monte Carlo Models

The purpose of a Monte Carlo generator is to produce simulated final states in comparable

detail as would appear in real experiments. This “pseudo-data” can then be reconstructed

and analysed with exactly the same software as used with real data.

Analysis of generated Monte Carlo collisions has many fewer problems associated than

data. For example, they are free from the problems caused by apparatus malfunction,

they are in well defined kinematic regions, and sufficiently large samples may be generated

such that statistical uncertainties are minimal. In addition, such events have the huge

advantage of being accompanied by the physics information at generated or “truth” level.

These are often used to compare to data for insight into improving such models and the

correlations between these and reconstructed values will be used later in this study in

resolution unfolding methods.

For all these reasons the algorithm was tested on such events during development.

There are several popular general purpose (leading order) event generators, (e.g. Pythia

[17], HERWIG [18] and SHERPA [19]), Pythia is principally used in this chapter to

provide real examples of event generation techniques.

3.1 Hadron Collisions

The perturbative theory describing strong interactions, pQCD, predicts collimated “jets”

of hadrons as a result of radiation from hard scattered partons. This theory is, however,

incomplete in that it breaks down at low momentum. Lattice QCD [20] provides an alter-

native framework for (non-perturbative) QCD but is totally computationally impractical
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for our purposes.

To a first approximation, interactions between fundamental particles are simple. For

example much about the structure of e+e− annihilation events at LEP [21], may be under-

stood from the skeleton process e+e− → Z0 → qq̄ [17]. Corrections to this approximation

may be divided into three categories, namely those accounting for bremsstrahlung, “higher

order” loop diagrams in matrix elements, and confinement. Perturbative processes remain

the dominant factor in governing event shape energy flow, and corrections due to hadro-

nisation of partons after a hard scatter then merely “smear” resolution.

Perturbative corrections to the basic 2→2 (LO) process have traditionally been done

in Monte Carlo generation with two approaches, namely by the inclusion of higher order

diagrams in matrix element calculations, and by parton showering.

Bremsstrahlung type corrections provide a simple way to model higher order effects,

for example higher multiplicities. Probabilistic approximations to full perturbative cal-

culations may be used, providing an alternative approach to the otherwise necessary,

increasingly complex calculations, which are too computationally demanding for practical

generation of appropriately large samples.

Matrix element corrections may be referred to as “true higher order corrections” and

include interference effects. The required perturbative calculations are very complicated

and results of calculations beyond one trivial order, i.e. beyond one extra branching

(NLO), have rarely been presented. Some corrections in this category are however more

trivial, well known, and frequently applied, i.e. those solved by the running of the strong

coupling constant through loop diagrams. For accurate prediction of, say, the rate of well

separated jets, higher order matrix elements must be used.

There is no reliable way to know the error involved in the approximation of not includ-

ing higher order terms, without calculating them, but generally each higher order term

provides of the order of a 10% correction.

3.1.1 Practical Interpretation

Events containing jets observed in real data are modelled reasonably well using 2→2

matrix elements [17]. Even events with well separated jets may be simulated with this

approach, using parton showering with parameters tuned to data.

It is practically useful, and a good approximation, to consider the transverse mo-
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mentum of each of the two highest pT jets in an event as originating from two outgoing

hard scattered partons. The momentum transfered between the scattered partons may

then be calculated assuming forward scattering giving access to the highest Q-scale of the

interaction to a good approximation.

3.2 Approximating pQCD

A useful and very successful technique in dealing with functions describing the physics of

particle interactions is to factorise them into two, or more, functions each depending only

on the physics involved at one momentum scale. Factorisation into calculable functions

describing high momentum physics (e.g. parton cross sections), and those describing

the physics at long distances at low energies which may be measured with global fits to

data (e.g. fragmentation function) enables a full prediction of strong reactions. This is

the technique commonly used in event generation, where, initial and final state parton

showers and the hard interaction matrix element are calculated separately. The full matrix

element is calculated only for the hard scattering process, to leading order (2→2), or next-

to-leading order (2→3), depending on the generator.

3.2.1 Parton Showers

In initial and final state parton showers successive parton branchings e.g. q → qg, g → gg

and g → qq̄, are performed, with each parton being given a “virtuality” Q2 (= E2− p2).1

The process to construct initial state showers is somewhat different from those of the

final state. In this Sudakov picture [22], the parton begins on-mass-shell (massless) and

given that a hard scatter will occur, branching is performed such that one branch is given

a positive virtuality (bremsstrahlung) and the other a negative virtuality, thus conserving

energy and momentum at each vertex. Further space-like (E2 − p2 < 0) branchings are

performed up to the scale Q2 where the (negatively off-mass-shell, p2 > E2) parton enters

the hard scatter, at which point the mass squared of the parton is between 0 and −Q2
hard,

with the value given according to the Sudakov form factor. Momentum is then transfered

to the parton in the hard scatter, making it positively off-mass-shell and thus enabling a

time-like parton shower and ultimately fragmentation.

1Note that time ordering of parton showers is only quantum mechanically meaningful if the only
reversible measurement is the hard interaction.
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After a hard interaction (at some scale Q2
hard, corresponding to an associated p̂T

in the generation range), each of the outgoing two (or three) partons are given positive

virtualities Q2 (≤ Q2
hard) according to the Sudakov form factor, and final state showers are

evolved with time-like (E2−p2 ≥ 0), virtuality-decreasing branchings. The Q2 interaction

scale falls, until some defined cut-off value, Q0, where hadronisation occurs.

In practice, the likelihood of a scatter at scale Q2
hard is calculated first, and the initial

state shower is generated backwards (time reverse order) from that scale, “guessing” the

partons which branched, given the incoming pair, and matching to an initial parton with

a probability derived from known PDFs (parton density functions) from DIS analyses.

Like many of the ideas in this chapter the Sudakov parton shower picture is a heuristic

theory whose language, but not verity, has been useful in developing the FAPS algorithm,

in this case especially the content of Chapter 8.

3.2.2 Lund String Model

The inclusion of the Lund String model [23] in Pythia (and thus SHERPA, which interfaces

with Pythia for hadronisation) in addition to the basic parton shower, gives a closer

approximation to QCD at all orders.

In the string model outgoing partons from a hard scatter are connected to the remnant

proton by gluon fields. With increasing separation of the colour charged objects, the

field lines become tube-like giving rise to a constant energy density (∼1 GeV/fermi),

due to gluon self coupling. When the objects are separated by more than a fermi, the

potential energy stored in the string increases linearly with length. This may be contrasted

with QED, in which the potential energy decreases with the inverse-square of the charge

separation.

As discussed in Chapter 2 with increasing separation, at some point it becomes ener-

getically favourable to “snap” the string producing a new qq̄ pair, which then form the

new end points of the two shorter strings. The process is repeated until the parton combi-

nations or clusters are at small separations, and may be considered as effectively colourless

hadrons, which may, however, still be massive enough to undergo further hadronic decays.

The model produces hadrons roughly isotropically about the parton, but also depen-

dent on the string direction. Such production of hadrons preferentially in the η-direction

is consistent with observations in data [24]. There are, however, other models for the
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causal process.

The independent and cluster hadronisation models have also been popular. In the

former, quarks fragment independently depending on momentum (energy) not virtuality,

however this model is not Lorentz invariant.

The cluster model [25] starts by non-perturbatively splitting gluons after the parton

shower. Colour singlet qq̄ combinations are assumed to form clusters which decay isotrop-

ically into pairs of hadrons, taking into account the density of states with appropriate

quantum numbers. This model is used in HERWIG. It contains fewer parameters than

the Lund model, however it has been less successful at describing data.

More complicated models of fragmentation exist, which have also not been as successful

at describing experimental data, for example the colour dipole model [26], which treats

coloured objects connected by strings as dipole aerials, which emit partonic quanta.

3.3 Event Samples

Five Pythia [17] and HERWIG [18] Monte Carlo samples which are tuned to ATLAS

7TeV data have been used throughout this study, with each Pythia sample containing

approximately 1.4 million events, and each HERWIG sample containing approximately

one million events. These are of the same format (Event Summary Data, ESD) as official

ATLAS data, and the standard ATLAS Athena computing framework [27] has been used

for analysis. The p̂T -ranges of the event samples are repeated in Table 3.1 which now uses

the ATLAS J∗ nomenclature of the appropriate trigger to use to most efficiently collect

such events. The calculated LO cross-section has been used to find the expected num-

ber of events per fb−1 of collected luminosity, each contributing two scattered partons.

Development and testing of the algorithm at the reconstructed level, i.e. using gener-

ated collisions which have been passed through the GEANT simulation [28], has enabled

performance to be studied with realistic measurement resolutions. The algorithm has

Sample p̂T range [GeV] Expected number of events per fb−1

J3 70− 140 1.3× 108

J4 140− 280 8.7× 106

J5 280− 560 4.3× 105

J6 560− 1120 1.2× 104

J7 1120− 2240 87

Table 3.1: Number of expected LHC data events in the ATLAS J p̂T ranges.
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been tested on sufficiently low p̂T samples to enable comparison to data of previous quark

fragmentation measurements, and up to a maximum p̂T where significant measurement

would be possible given planned integrated luminosity.
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Chapter 4

Hadronic Profiles

In this chapter the event-normalised deposition of transverse momentum in typical high

jet pT hadron collider events is studied at generator level in Monte Carlo samples. The

preliminary survey represents all final state particle sources and without reference to

their charge, species, or momentum fractions. The shapes of hadronic profiles around the

scattered parton direction are also shown. The levels of background below these profiles

are estimated, and their variations are studied, over an order of magnitude in hard scale.

4.1 Motivation

In order to measure the fragmentation of partons in the background rich hadron collision

environment the angular distribution of the expected background must be known and a

suitable region to sample the background must be chosen. To be sure to measure all of

the charged hadrons which result from a fragmenting parton, it is necessary to consider

the expected dispersion of those hadrons with respect to the parton direction.

4.2 Detector Coordinate System

Kinematics in a hadron collider detector such as ATLAS are described using the variables

x, y, z and η, φ. Using ATLAS as and example, the variables are defined such that x

points to the centre of the LHC ring, z along the beam direction and y upwards. At

point 1 (where ATLAS is located), looking to point 8 is the direction of positive z. The

azimuthal angle, φ, is defined in the range −π to +π, such that φ = 0 along the positive

x -axis, increasing in the clockwise direction while facing the positive z -direction. The
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polar angle, θ, is measured from the positive z -direction and pseudorapidity, η, the high

energy limit of rapidity, y, is;

η = −ln(tan
θ

2
). (4.1)

Transverse momentum, pT , is defined to be the momentum perpendicular to the beam

axis.

4.3 pT Deposited as f(η, φ)

Since both beams are identical and along the z -axis, the expectation for energy or pT

at a hadron collider is for azimuthal symmetry and longitudinal symmetry about η = 0.

The Feynman prediction is then for a plateau in the rapidity variable for any given small

hadronic pT -range.

Intuitively, the origin of this prediction is related to the fact that for a given small

track pT range it is ‘easier’ to produce that pT with a large angle scatter which is rare,

however only a small partonic momentum fraction of the parent proton, xBj , is required

which is very common. Conversely, with a very common small angle scatter it is ‘more

difficult’ to produce the same track pT , i.e. a larger xBj is required, which is rare.

For a fixed beam energy the largest track pT may only be achieved around η ∼0 with

the largest possible momentum share, x, of the beam energy. Therefore the Feynman

rapidity plateau would be expected to be narrow for relatively high pT hadrons and vice

versa, the final total expectation would be for a peaked structure being taller for high

values of the hard scale and broader for lower values.

These expectations encourage the introduction of a Lorentz Invariant Solid Angle

(LISA) in (η, φ) space formed by a unit opening angle in η and φ, to measure the total

amount of deposited pT in a given direction. This should then be invariant to boosts

along the beam axis. As may be seen in Figure 4.1 these expectations are indeed seen in

the Monte Carlo samples.

The momentum of a bremsstrahlung transverse to a hard scattered parton direction,

kbrem.t , may be related to its momentum transverse to the z -axis, pbrem.T , in the following

way. In the transverse direction

kbrem.t = pbremT sin ∆φ ≈ pbremT ∆φ
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Figure 4.1: The azimuthal and pseudorapidity deposition of pT .

and in the longitudinal (beam) direction

kbrem.t = pbrem sin ∆θ ≈ pbrem∆θ

= pbrem sin θ∆η = pbremT ∆η,

and so there is an ∼isotropic deposition of kt in (η, φ) space with respect to the scat-

tered parton direction, supporting the use of a cone in (η, φ) space for sampling hadrons

correlated with a hard scattered parton and a LISA to sample pT deposited in a given

direction.

4.4 Hadronic Profiles of Partons

The pT weighted ∆φ, in a±0.5 slice ∆η away from the parton gives the φ profile, see Figure

4.2. An η profile is produced in a similar way. The hadronic profiles allow observation of

the angular deposition of hadrons with respect to the parton. The profiles measured at

the generator level are shown in Figure 4.3.

The red and magenta sections represent MI + ISB partons respectively, identified

using truth. Pythia doesn’t allow hadrons to be associated directly with any partons for
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Figure 4.2: A φ profile is the pT weighted ∆φ, in a ±0.5 slice ∆η away from the parton.

clear reasons of colour conservation. Therefore the pT of partons are plot to measure the

background. On average the hadrons must be found at the same locations as the partons

which produce them and so this procedure is justified, the effect of instead measuring

hadrons from ISB or MI would be a smearing in resolution, which is not important since

there is no fine detail in these distributions.

The secondary peaks in the φ profiles in Figure 4.3 are shown to be a result of mea-

suring the profile of partons which occur at similar η locations. Measuring the φ profile

of one parton picks up some hadrons from the other. The secondary peaks are removed

by selecting events in which partons are separated by a minimum ∆η, and for future

analysis the event selection of ∆η > 1.0 is applied to the two highest pT jets such that

a measuring cone may be used to which is large enough to sample all hadrons correlated

with one scattered parton, while avoiding those from another.

When weighting with their pT , hadrons coming from the interactions of other partons

within the proton, will naturally show a central peak for exactly the same reason as those

emerging from the primary collision, namely the symmetry of the beams and the higher

contributing pT for a given xBj at angles close to 90◦. Thus the appearance of an MI

hadron peak below the main jet peak reflects the common kinematics of all parton-parton

collisions in a hadron collider and should be regarded as correlated but not causal. Both

reflect the kinematics of superimposed Feynman plateaux.
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Figure 4.3: Hadronic pT deposition profiles measured with three event selections. Each
row corresponds to a different requirement on the minimum η separation of the two
outgoing partons, ∆η > 0 (top), ∆η > 0.5 (middle) and ∆η > 1.0 (bottom). Pythia J5
Monte Carlo has been used.

The variation of ISB may be due to the fact that quanta produced in the Model, near

to the outgoing hard scattered parton, are likely to be defined as FSB, rather than ISB.

Due to the relative magnitude of the background, note the logarithmic axis, the details

of these variations are not considered a point of concern.
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4.5 Background Variation with the Hard Scale

Background was superimposed on the profiles for each of the different Monte Carlo sam-

ples, giving a rough measure of the quantitative variation with parton the hard scale. The

results are summarised in Table 4.1. Background increases with the hard scale, but at

such a rate that it becomes a less significant proportion of the partonic pT . This type of

effect has been noted elsewhere [29] and it would seem that selecting, or triggering, on

very high pT localised (jet) energy has the reasonable effect of selecting lower pT in ISB

activity.

Monte Carlo Sample Background (GeV/LISA) % Background of Parton

J3 ∼2.7 1.4%
J5 ∼4.0 0.4%
J7 ∼4.5 0.1%

Table 4.1: Absolute background density in the different Monte Carlo samples, also ex-
pressed as the percentage of the transverse momentum of the parton.

4.6 Hadronic Profile Shape

The Lund string model of hadronisation is used in the Monte Carlo sample studied. In

the Lund model all but the highest energy gluons are treated as field lines which are

attracted to each other due to gluon self-interaction, causing narrow tubes or strings of

colour force. If resolution is sufficient, then parton hadronic profiles will be measured as

wider longitudinally than azimuthally in the Monte Carlo, due to the colour string joining

the jet partons to those in the remnant protons. Comparison of similar measurements on

data could enable a statement to be made about that model.

The parton hadronic profiles in η and φ are superimposed in Figure 4.4. They are

similar but slightly wider in η, in the range |∆η,∆φ| < 1.0. Outside this range, due to

the effect of the other scattered partons close in η, the φ profile is artificially wider in

azimuth. There is sufficient resolution to observe a shape in the correlated hadrons in

generator level Monte Carlo, further study is needed to determine whether resolution will

be sufficient to observe the effect in data.
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Figure 4.4: In the Monte Carlo, parton hadronic profiles are wider in η than in φ. Profiles
measured with Pythia J3 Monte Carlo.

4.7 Conclusions to Hadronic Profiles Study

The background to measuring partons at typical LHC energies has been studied in Monte

Carlo and found to be ∼5 GeV/LISA. Variation of the background with the hard scale

is minimal (2.7 GeV/LISA @ J3, to 4.5 GeV/LISA @ J7). Sampling the background to

partons at ∆φ = ±π
2 has been justified, and sensitivity at the generator level is sufficient

to observe the hadronic deposition of scattered partons to be slightly wider in η than in

φ. This could be due to dynamic effects of the Lund String model, or merely because

of the greater phase space in the η-direction for any uncorrelated ISB activity. Similar

phenomena have been seen and studied as “long range correlations” in e.g. [24].
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Chapter 5

Definitions of xp

It is the purpose of this thesis to study the momentum distribution of hadrons created

from the fragmentation of partons. Clearly higher momentum hadrons will be found in

higher momentum jets so to allow comparison it is obvious that the momentum must be

scaled in some way by the kinematics of the originating parton.

The Lorentz invariant expression of the scaled hadronic momentum xp, given in equa-

tion 5.1, has the advantage of being invariant to boosts along the parton direction.

Initial fragmentation studies, carried out in e+e− annihilation experiments [2, 3, 4, 5],

used the definition of xp given in equation 5.2.

xp =
(E + p||)hadron

(E + p||)parton
=

(E + p||)hadron

(E + p)parton
(5.1)

In e+e−, a quark-antiquark pair are produced out of the vacuum with equal and oppo-

site momenta, each with exactly half of the beam energy, Ebeam which was known very

accurately.

xp,e+e− =
phadron
Ebeam

(5.2)

This definition of xp may be seen as an approximation to the Lorentz invariant form

for hadrons produced at small angles to the parton, p||,hadron u phadron, giving the first

approximation in equation 5.3. Fragmentation studies in deep inelastic scattering exper-

iments used a similar approximation for comparison purposes, for example to test quark

universality.

The approximation also requires that in the laboratory frame the hadrons and partons

are of such large momenta that their rest mass energy is small enough to make their energy
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approximately equal to their momenta, Eparton,hadron u pparton,hadron, as in the second

approximation in 5.3. These two approximations are both good and have the additional

advantage of changing xp in opposite ways.

xp =
(E + p||)hadron

(E + p)parton
u

(E + p)hadron
(E + p)parton

u
2phadron
2pparton

=
phadron
Ebeam

(5.3)

In the e+e− experiments all charged particles in all selected hadronic events in the analysis

were in principle included and counted as the multiplicity due to two partons. In the DIS

measurements [1, 6] the Breit frame [30] (see Figure 5.1) was used to measure the hadronic

momenta phadron.

Figure 5.1: The Breit frame.

In this inertial reference frame events are boosted and rotated such that the energy

of the exchange photon is zero, i.e. it is completely space-like (E2 − p2 < 0), and its

momentum is the transferred momentum, Q. The momentum of the photon is then chosen

to define the z -axis, and the plane of the outgoing and incoming electron/positron defines

the φ = 0-direction. The “current hemisphere” θ > π/2 then contains the outgoing

quark. In the näıve quark parton model (QPM) [23], the incoming and outgoing quarks

have momenta −Q2 , and Q
2 respectively, and thus pparton is Q

2 . The “target hemisphere”

contains the scattered electron/positron and proton remnant. The fragmentation hadrons

have boosted momenta and are thus claimed to be easily separated from background [1, 6].
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The definition of xp used is given in Equation 5.4.

xp,DIS,Breitframe u
phadron
pparton

=
phadron

Q
2

(5.4)

Equations 5.2 and 5.4 are thus the same quantity.

The DIS experiments allowed a test of the validity of a different variable to be used

to represent the hard scale. In e+e− annihilation the centre of mass energy is chosen as

the appropriate variable, while in DIS the momentum transfered to the struck quark, Q,

was used. This was known very accurately through accurate measurement of the beam

and recoil electron. Note that it is an approximation that the scattering involves a single

parton which is struck and ejected. Vector boson fusion, for example, also contributes at

low Q.

In hadronic collisions an alternative method must be used to define and measure signal,

as will be described in Chapter 7. In such experiments pparton is not measured so easily

or accurately as in e+e− and DIS, and so accurate measurement of the fragmentation

function relies on the ability of a parton/jet reconstruction algorithm being able to obtain

a good approximation for the parton. Then, in addition the resolution must be well known

such that unfolding with very high statistics may compensate for the lack of precision.

In this study the same definition of xp will be used as in e+e− and DIS for the same

comparison reasons above. The “resolution” associated with using the approximation

with respect to the Lorentz invariant form is shown in Figures 5.2(a) and 5.2(b), with

the parton momentum resolution superimposed for comparison purposes. The parton

momentum resolution is that associated with using the TRAPS algorithm [31] to provide

the input instead of the truth supplied value, as will be described in Chapter 9. The

resolutions are the difference, dxp, divided by the sum,
∑
xp.

The asymmetry in the “resolution” definition at low xp is consistent with being due

to the approximation being worse for lower momentum hadrons. The resolution on the

parton is bad enough that the definition resolution is insignificant. The only exception

being possibly at low hadron and high parton momentum, where low momentum tracks

are emitted at large angles to the parton and the rest mass of hadrons may not be

insignificant.
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5.1 Transverse Fragmentation

Longitudinal fragmentation may be measured if there is a well defined direction associated

with fragmenting object, as is the case in jet fragmentation studies. For a hadron of

momentum, phadron, at opening angle χ to a jet of momentum pjet, the longitudinal

fractional momentum, xL, is then given by;

xL =
phadron.pjet
|pjet|2

(5.5)

xL =
|phadron||pjet| cosχ

|pjet|2
≈ |phadron|
|pjet|

. (5.6)

A longitudinal fragmentation measurement is less appropriate using the FAPS method

since the direction of the fragmenting object is not defined as it is in jet measurements.

The transverse fragmentation function provides an independent measurement of frag-

mentation in the transverse direction to the jet. The transverse momentum fraction, xT ,

of a hadron within a jet is defined as;

xT =
phadron × pjet
|pjet|2

(5.7)

xT =
|phadron||pjet| sinχ

|pjet|2
≈ |phadron|χ

|pjet|
. (5.8)

A transverse fragmentation measurement is in principle possible with the FAPS method,

though significant resolution unfolding would be required, generating much larger errors

than those to be described in Section 9.4. In any case, it should be noted that there is a

correlation of xT with xp (e.g. high xp tracks have smaller opening angles), and so without

also making a longitudinal measurement, a transverse fragmentation measurement would

be less complementary.
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(a)

(b)

Figure 5.2: The resolution asymmetry of the xp approximation used in this study with
respect to a Lorentz invariant definition (black) at low xp (a) and high xp (b). The
resolution associated with using TRAPS to supply the parton momentum with respect
to the truth supplied value is superimposed (red). The resolutions have been calculated
using Pythia J3 Monte Carlo.
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(a)

(b)

Figure 5.3: The “resolution” of the xp approximation used in this study with respect to
a Lorentz invariant definition (black). The resolution associated with using TRAPS to
supply the parton momentum with respect to the truth supplied value is superimposed
(red). The resolutions have been calculated using Pythia J7 Monte Carlo.
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Chapter 6

Parton Fragmentation

6.1 Introduction

Fragmentation is a part of the theory of strong interactions, QCD [32]. To apply QCD to

hadron collisions we rely on the factorisation theorem; that we may effectively separate

long and short distant interactions between fundamental particles. At short distance or

large momentum transfer squared (Q2) the partons interact in hard scatters, described

by perturbative QCD and at long distances, well “before” and “after” the hard scatter,

non-perturbative effects dominate [33].

The total inclusive cross section for proton + proton → hadrons of type X, may be

calculated by factorising in the following way [32];

σ(Q2)pp→X =
∑
ijk

∫
fi(x1, µ

2)fj(x2, µ
2)σ̂ij→k(x1, x2, z,Q

2, αs(µ
2), µ2)DX

k (xp, µ
2)dx1dx2dxp.

(6.1)

The structure functions f(xi, µ
2) determine the momentum fraction, x, of the parent

hadrons the interacting partons have, at renormalisation/factorisation scale µ, and the

convolution of the two gives the parton luminosity. The hard parton inclusive scattering

cross section, σ̂ij→k, may in principle be calculated to all orders of the strong coupling

constant, αs(µ
2), using perturbation theory which describes partons interacting at short

distances, i.e. of the order 1/Q [32]. The final state X, which may denote hadrons or

even jets, includes a transition from perturbative hard (coloured) partons to (colourless)

hadrons. This may be achieved with the experimentally known fragmentation function,

DX
k (xp, µ

2). For such processes Monte Carlo based showering algorithms are crucial tools.
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Figure 6.1: The physics describing the short (between dashed lines) and long distance is
factorised. [32]

In Figure 6.1 the part between the inner dashed lines (k, short distance parton branch-

ing) is, in principle, calculable in perturbation theory as long as the soft infrared and

collinear gluon emission divergences are avoided. That outside the lines, including the

fragmentation function, is not and so must be extracted from data measurements. Once

measured or fit to data at some scale Q, the fragmentation function may then (at least

for xp ≥ 0.1, since lower than this non perturbative effects are significant) be evolved

to larger scales using the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) QCD evo-

lution equations [34]. There are different models of the non-perturbative hadronisation

process, as described in Chapter 3, which all require a specified cut off scale at which

point the hadronisation process takes place. This is usually the same scale as is chosen

to stop parton branching becoming infinite and is about 1 GeV.

6.2 Single Parton Fragmentation

There is a philosophical problem with the concept of measuring the fragmentation of

an individual hard scattered coloured parton to colourless hadrons since conservation of

colour means that, in a given event there must be one hadron which is associated with at

least two scattered partons.

In this study, no claim is made that a single “free” coloured parton results solely

in colourless hadrons, however an assumption is made which grants freedom to try to

measure parton properties. The assumption is that the properties of an effectively free

parton may be indirectly measured through the hadrons strongly directionally correlated

with it.
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If there were a hadron associated with both hard scattered partons, or their emissions,

it would be between the two in momentum space and thus have a low xp value. Given

that two partons would be measured per event in the present study at the data level,

an ambiguous hadron would likely be included even if associated with the wrong parton.

Incorrect inclusion or exclusion of this ambiguous single low xp hadron, in a bin with

large multiplicity, would not alter the measured values beyond assigned statistical, let

alone other, uncertainties.

Earlier e+e− experiments measured di-parton fragmentation simultaneously, circum-

venting this issue. In DIS experiments, something purporting to be single parton frag-

mentation was measured using one hemisphere of the Breit frame.

As already stated, there is no theory of QCD at low momentum, and so the fact that

the FAPS measurement may be philosophically uncertain here is no surprise. Even if

the detailed theory of the measurement is incomplete, the result of measuring is certainly

worthwhile since it may aid theoretical progress, as occurred in DIS with the substantiated

claim for “quark universality”.

6.3 Definition of a Parton Fragmentation Function

The fragmentation function, Dh±
i (xp, Q,R), gives the average hadron of type h± multi-

plicity, at a given hard scale, Q, due to a fragmenting parton of type i (where i = u, d,

s..., g), as a function of xp, the momentum fraction the hadron takes of the fragmenting

parton, within the radius, R, of a sampling cone used to measure it, i.e.

Dh±
i (xp, Q,R) =

1

σi

dσh
±

dxp
. (6.2)

Previous parton fragmentation measurements (described in Section 6.4) have not included

an R-dependence. In the measurement of D as a function of R in the hadron collision

environment, with subtraction of uncorrelated background, there is an expectation of a

limiting plateau in the amount of correlated signal measured.

It will be shown (Section 6.4) that dependence on Q is small, and R dependence is

removed by techniques of variable cone sampling, extrapolation, and the choice of an

“optimum” solution from compatible solutions at large R (Section 7.8).

The inclusive cross section, σi, to produce partons of a given type i, is σi = 2 ×
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Nevent × 1
L , where L is the luminosity, and the inclusive hadron cross section for any

charged hadrons is σh
±

= nh± × 1
L , where nh± is the charged hadron multiplicity in the

same events. This means that the luminosity L cancels, and Dh±
i (xp) may be written

independently of luminosity as

Dh±
i (xp) =

1

Ni

dnh
±

dxp
, (6.3)

where the superscript h± on D(xp) indicates the intention to sum over all charged hadrons

and Ni is the number of fragmenting partons.

In principle, measurements can be made in which h± is decomposed to its constituents,

e.g. K+, π−..., in which case the fragmentation function corresponding to parton (of type

i) fragmenting to, for example, specifically K+ may be selected. This type of measurement

is in general difficult, since it involves hadron identification to measure any particular

mode. This study, like many past fragmentation studies, first takes the summation over

all hadron types to measure the fragmentation function of a parton fragmenting to any

charged hadron. Later, the hadron fragmentation function is corrected using Monte Carlo

to give the pion fragmentation function.

Note from the definition that the fragmentation functions for a given type of parton

to specific hadron species, e.g. pions and kaons, may be simply added in the following

way

Dπ±+K±

i = Dπ±
i +DK±

i , (6.4)

however, in order to add fragmentation functions for different partons, e.g. quarks and

gluons, the number of each parton type must be accounted for, i.e.

(Nquark +Ngluon)Dh±
quark+gluon = Nquark ∗Dh±

quark +Ngluon ∗Dh±
gluon. (6.5)

In this feasibility study quarks are selected, using truth information, as described in

Section 9. This enables comparison to previous quark fragmentation data, providing a

benchmark for the algorithm to test whether the calculated fragmentation function is in

agreement, as it should be since that data was used to tune the Monte Carlo models

used. Of course, further testing of the algorithm with quark and gluon samples would be

performed, in preparation for a data measurement, since at present it is not possible to
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select a sample of light quark jets.

In order to begin this study a few arbitrary choices are made which are tested and

verified later. A unit radius cone, or “unit cone”, (in η, φ) around the parton may be used

as an initial example. Using this näıve method the resulting fragmentation function is

px
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Figure 6.2: The fragmentation function obtained with a näıve unit cone, calculated with
J3, J5, and J7 Pythia Monte Carlo samples.

shown in Figure 6.2. It is a “soft” function, i.e. a fragmenting parton will fragment into

many hadrons, most with a small momentum fraction of the parton. Very rarely will it

fragment into a hadron taking a large fraction of its momentum. Variable width binning

is used to compensate for lower average multiplicities in the higher xp bins.

There are four orders of magnitude between the average multiplicity in the first and

last xp ranges. There is approximate scaling of the fragmentation function with the hard

scale of the Monte Carlo samples, i.e. the multiplicity is approximately only varying as

a function of xp. A closer look shows scaling violation, i.e. the fragmentation function is

not only varying with xp but also as a function of hard scale, becoming “softer” at higher

hard scales as expected, since the hard scale enables more hadrons to be seen in each

parton, though at this stage background levels are not accounted for.
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6.4 Previous Measurements

Previously, detailed measurements of fragmentation functions have been made using

electron-positron (e+e−) annihilation [2, 3, 4, 5] and deep inelastic scattering (DIS) ep

data [1, 6]. The results of these studies are shown in Figure 6.3. The same binning

scheme has been used by previous experiments, and will be used in this study, to allow

comparison of results.

In the figure D(xp, Q) is shown for quarks as a function of the hard scale of the

interaction which produced them, each of the nine sub-figures shows the multiplicity per

quark for the specified xp range.

Notice the abscissa has two labels, Q (transferred momentum) and E* (the centre-

of-mass energy). As discussed in Section 2.3 in DIS the momentum transferred from the

photon to the quark, Q, is the best measure of the hard scale, while in e+e− annihilation,

all incoming energy is converted to make the outgoing quark-antiquark (qq̄) pair and so

this energy is the best measure of the hard scale. The momentum of the scattered electron

was accurately measured in the DIS experiments, and the beam energy was well known

in e+e−, and so the hard scale was accurately known in both of these experiments.

There is only DIS data in the first xp interval. In e+e− experiments, as in any particle

collision experiment, there is a difficulty in measuring the lowest momentum tracks and

therefore the fragmentation function in the lowest xp range, due to their low momenta

being insufficient to escape the beam pipe or at least be well-measured after doing so.

However, the DIS experiments were able to measure the fragmentation function in this

low xp range by using the Breit frame, in which the boost and rotation sometimes gives

tracks of high momentum in the laboratory frame, low momenta, and thus low xp values,

in the Breit frame.

Looking at the different ordinates of all nine sub-figures the same four orders of mag-

nitude variation of the data are seen, however, use of a linear range for each bin in xp

shows the hard scale dependence, or scaling violations more clearly. The use of a “scaled

variable” (xp) is noted. Since this quantity is dimensionless D “should” scale.
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Figure 6.3: Results from previous fragmentation studies, obtained from e+e− (DELPHI
[35], TASSO [4], MARKII [36] and AMY [37] and DIS (H1 [38] and ZEUS [39]) experi-
ments.
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Note the agreement of fragmentation functions of the quarks produced “out of the

vacuum” in s channel e+e− annihilation and quarks knocked out of protons by photons

in t channel DIS scattering experiments. This agreement makes a statement about the

quarks produced in these two processes, that the objects produced are in fact the same

objects, in that they fragment (on average) in the same way. This is evidence for the

“universal nature” of a common concept of a quark, i.e. that quarks have transferable

behaviour (properties) and thus can be said to exist as definite objects.

Having commented on the agreement observed, it should be said that Figure 6.3 also

displays some disagreement between e+e− and DIS data, perhaps best demonstrated in

the second, third and fourth xp range sub-figures. The use of the Breit-frame, which

might not include the decay products of a very off-mass-shell quark, is a possible cause of

such a difference.

The e+e− experiment was limited in its ability to alter the hard scale and in the DIS

experiment there was a limited cross section, and the Breit-frame was only a hemisphere.

A measurement with proton-proton collisions, which can provide huge statistics due to the

strong coupling strength αs, may enable comment on the disagreement of previous data.

However, there is a quark/gluon ambiguity which would rely on (reliable) cross-section

calculations to provide gluon fragmentation measurements.
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Chapter 7

Parton Fragmentation Algorithm

7.1 Method Philosophy

The fragmentation function of the parton is different in concept from that of a jet. Jets are

well defined objects, according to various algorithms with fixed cones and/or recombina-

tion methods and arbitrary “seeding” parameters. Nevertheless a measurement pertaining

to the actual partons themselves allows fundamental statements about nature.

In order to measure parton fragmentation a radius independent strategy is employed

which aims to measure a signal which is itself independent. This is defined to be those

charged final state hadrons correlated with the parton direction after subtraction of un-

correlated background. The former are referred to as FSB, and the latter as ISB and/or

underlying event, both for practical purposes and since they are referred to in that way

within the Monte Carlo models being used for correction and test purposes.

7.2 Algorithm Overview

The parton position in this method is provided either by a truth scattered parton or by

some jet finding algorithm which provides parton estimators. For this study truth is taken

to be the most perfect position a jet finding algorithm could provide. The fragmentation

function calculated with the parton direction provided by a jet algorithm and truth may

be compared as a quality touchstone of the algorithm. Note that none of the previous

quark fragmentation measurements, described in Section 6.4, utilised a jet algorithm to

provide partonic momentum estimates.
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Resolution on the xp variable, due to algorithms used to associate tracks and estimate

partons, and due to the intrinsic resolution of the detector, is unfolded in a single step,

as will be described in Sections 9.4 and 11.3.

To measure the signal, charged hadrons in a given xp interval are counted in cones of

various radii centred on the (estimated) parton position. For a meaningful measurement

rather than a qualitative view, it is necessary to consider the background underneath the

parton. The background is sampled using a solid angle at some large angle to the parton

and to the beam. A square solid angle is used instead of a cone, since there is not expected

to be a centre of activity as there is for measuring partons. The measured background

is scaled by the ratio of cone to sampling solid angle and then subtracted from the total

leaving a measurement of the signal, which still has radial dependence.

Once all events have been accumulated an exponential function is calculated at each

radius utilising the two neighbouring points. As the radius increases statistical error

decreases whilst background subtraction, and hence its error, increases. Extrapolation

error, assessed as the total from each point to the calculated limiting value, also decreases.

Thus an array of solutions (∼6 in practice) is available from which that with the minimum

error is selected. In this way, directional resolution of the parton estimators is resolved.

Such a choice is justified given the compatibility of all extrapolated solutions, which in

turn demonstrates the independence of the final measured fragmentation function from a

radius parameter.

The method has been developed using the five Monte Carlo samples described in

Section 3.3 in order to test the feasibility of measuring the partonic fragmentation function

over a realistic order of magnitude of hard scale given integrated luminosity expectations.

The only selection criteria used are the requirements that the outgoing partons are in

the range |ηparton| < 1.0, such that a large measuring cone would still be inside the AT-

LAS tracking fiducial volume, and are sufficiently well separated such that fragmentation

sampling cones will not overlap other jets.
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7.3 Background Subtraction

In order to find a location that is far from partons, ±π
2 from the parton in consideration is

chosen for the azimuthal location, since, in general, omitting ISB perturbations, scattered

partons are back-to-back in azimuth and so the farthest possible location from any parton,

in a two parton event, is here. Both φ locations are sampled for each parton. At these

locations it is expected that, for all practical purposes, there are only background hadrons.

The η location which is far from scattered partons in a two parton event is not such a

simple location to define, since when considering one of the partons, no such correlation

exists in the laboratory reference frame, as with the azimuthal angle, of the other parton.

For this reason a classification of two parton events is made, such that all events fall into

one of four classes.

The four event topology categories are defined based on (a) whether both partons

point in the same z direction or not, and (b) how close the partons are to either zero

(for same z direction partons), or the mean η position of the two partons (for opposite z

direction partons).

For partons pointing in the same z direction, the background location is chosen to be

at either (η, φ)1 = (−ηparton,±π
2 ) for partons which are far from zero, or in the opposite

z direction to the parton, at (η, φ)2 = (ηmax

2 ,±π
2 ) where ηmax is the maximum η value for

which partons are accepted in this study.

For partons on opposite sides of the detector the background locations are chosen to

be at either (η, φ)3 = (ηmean,±π
2 ), where ηmean is the mean η position of the two partons,

when the parton is far from ηmean, or in the opposite z direction to the parton being

measured at (η, φ)4 = (ηmax

2 ,±π
2 ) otherwise.

This is summarised in Table 7.3.

Event type Location 1 Location 2 Location 3 Location 4

ηparton Partons on same side Partons on opposite sides
Far from zero Near zero Far from mean Near mean

ηbackground −ηparon −sgn(ηparton)× ηmax

2 ηmean −sgn(ηparton)× ηmax

2

Table 7.1: ηparton is the η value of the parton of which the background is being measured.
ηbackground is the η location chosen to sample that background.
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This procedure was designed in order to keep the |η| for the background the same as

for the parton as far is possible without compromising picking up signal from the other

parton.

The background fragmentation function was measured in each of these locations, to

test that each location gives roughly the same measurement of ISB/MI background within

expected variation with η. Figure 7.1 shows the background measured in each of the

topology specified locations. Each colour represents only the background measured in

that location for events with topology corresponding to the location.

The multiplicities measured in each solid angle are of the same order of magnitude

given the proportion of background to signal.
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Figure 7.1: The background fragmentation function measured using a unit square solid
angle in each of the four (eight considering +π and -π in azimuth) topology-specified
background locations defined in Table 7.3. Measured with Pythia (J5) Monte Carlo at
the truth level.
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7.4 Background Proportions in Measuring Cones

When a cone is used to measure the fragmentation function, naturally some background

will be included in the cone. The ratio of signal to background calculated using a cone of

given radius is presented in Figure 7.2. The ratio is consistently higher for the lower pT MC
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Figure 7.2: The ratio of background to total hadrons measured using a cone of unit radius.
Measured with Pythia J3, J5 and J7 Monte Carlo.

samples in all xp bins. In the range 0< xp <0.02, and the ratio background
total is greater than

one half at low momentum (J3), therefore any method which does not include background

subtraction may make mistakes of more than 100% here.

Smaller sampling cones are sufficient to encompass the higher xp signal and so a unit

cone would be expected to have a higher noise/total ratio for higher xp, as shown in Figure

7.2.
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7.5 Background Solid Angle Size

The background sampling solid angle is chosen with a compromise between the solid angle

being large enough that good statistics are measured to provide an accurate background

measurement with minimum uncertainty, but not so large such that it begins to include

signal hadrons.

To check the safety of an appropriate solid angle size, the background per unit LISA

was measured with different solid angles. In Figure 7.3 the measured background per unit
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Figure 7.3: Background per unit LISA as a function of solid angle size used to measure
background. Study with on J5 Pythia Monte Carlo data.

LISA is shown as a function of the measuring solid angle, again in the nine separate xp

intervals. As will be shown the background is of significant magnitude in the xp interval

0< xp <0.1, and thus the first three sub-figures are of most interest. For this xp range,

the calculated background per unit LISA is independent of the measuring solid angle,

Ωm, for small values, i.e. Ωm <0.5. No signal is measured in this range, so measuring

background with a solid angle in this range is justified.

The last two sub-figures show a fluctuation by a factor of two or three with varying

solid angle size. The fluctuation here can be seen to be due to limited statistics. The last

sub-figure is consistent with measuring one hadron in the smallest solid angle, and not
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measuring another until the largest angle is used. The background in this xp range is not

significantly large (O(1%)) and so this fluctuation is not a point of concern.

7.6 Statistical Uncertainty on Signal

In discussion of the statistical uncertainty the following nomenclature is used. The total

charged hadron multiplicity per parton, per unit of xp , including background, using a

measuring cone of radius R =
√

∆η2 + ∆φ2, is

DT,R =
1

Np

nT,R
∆xp

(7.1)

Once background has been subtracted the signal is written

DS,R =
1

Np

nS,R
∆xp

. (7.2)

Where Np is the total number of partons used, nT,R is the total, not background sub-

tracted, charged hadron multiplicity measured and nS,R is the corresponding, background

subtracted, signal multiplicity, both within that cone of radius R.

A change in DS,R with radius may be written,

DS,2 = DS,1 + ∆DS (7.3)

i.e. ∆DS is the difference between DS,1 and DS,2, calculated at those two radii.

Writing DS,R in terms of total and background components,

DT,2 −A2DB = DT,1 −A1DB + ∆DS . (7.4)

Where A1 and A2 (LISA) are the areas of the two measuring cones and DB is the back-

ground density per unit LISA. Written in this way, all terms are uncorrelated with each

other, this is not true if the equation is expressed in terms of DS,1 and DS,2 since a similar

background has been subtracted from both of them. Rearranging,

DT,2 = DT,1 + (A2 −A1)DB + ∆DS . (7.5)
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The errors on these quantities may now be written,

δ2DT,2 = δ2DT,1 + (A2 −A1)
2δ2DB + δ2∆DS . (7.6)

Where δ2DB may be written in terms of the component systematic and statistical con-

tributions,

δ2DB = δ2DBSTAT
+ δ2DBSY ST

. (7.7)

7.7 Systematic Uncertainty on Signal

There may be systematic uncertainty introduced in the measured value of Dsignal due to

the sampling and subsequent subtraction of background from Dtotal.

7.7.1 Systematic Uncertainty on Background Subtraction

In Chapter 4 on hadronic profiles, background from ISB and MI was shown to have a

small η dependence. This fact is important in considering the quantitative estimation of

background to a parton which is being measured. Ideally, the parton background would

be sampled at the same |η| as the parton as shown before. While an attempt is made to

sample at this value, it is not always possible because of contamination from the parton

in the other semi-cylinder. Sampling background in a different |η| from that of the parton

may thus introduce a systematic uncertainty, which must therefore be estimated.

7.7.2 Estimation of Systematic Uncertainty on the Background

The behaviour of Dsignal as a function of the measuring cone radius, R, is considered in

order to estimate an upper limit on the systematic uncertainty on the background. As

previously stated, this curve results from measuring the total charged hadron multiplic-

ity around a fragmenting parton, then sampling and subtracting what is believed to be

background. The maximum cone radius used is 1.3, in order to avoid proximity with

the other parton. With the correct amount of background sampled and subtracted, and

a sufficiently large measuring cone, the cumulative Dsignal vs R curve, should plateau.

However, if the incorrect amount of background is subtracted from the measuring cone,

or if an insufficiently large measuring cone is used, then a plateau may not be observed.
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There are two scenarios, which are treated differently in terms of the method adopted

to estimate a limit of the systematic background uncertainty. The Dsignal vs R curve

may be turning over after subtraction of unscaled background. Since the Dsignal vs R

curve is a cumulative function, then if it is turning over, this is unphysical and too much

background must have been subtracted. If the curve is still increasing at the largest safe

measuring radius, then either too little background has been subtracted or the curve may

be increasing due to signal. The first method gives an estimate and a lower limit of the

systematic error, the second gives only an upper limit.

At this point, it is useful to give a formal definition of the curve turning over. The

difference in Dsignal, ∆Dsignal, measured at two different radii is considered. When the

difference is negative, and the magnitude of the difference is greater than the uncertainty

in the difference, δ(∆Dsignal), then the curve is said to turn over. The conditions, which

must both be satisfied, for the curve to be turning over are thus

∆DSignal < 0 and |∆DSignal| > δ(∆Dsignal). (7.8)

In order to estimate a limit on the uncertainty on the background when the Dsignal vs R

curve is turning over, the amount of background which is subtracted from the measuring

cone is scaled downward until the curve no longer turns over. The scaling factor, α, which

just makes the curve flat is used to scale all background subtractions, in this hard scale

range, shifting all values of Dsignal after this. The Dsignal measurement is then obtained

from Dtotal and Dbackground from

Dsignal = Dtotal − αDbackground. (7.9)

To be safe, a systematic uncertainty error bar, δsystDsignal, of the same magnitude as the

correction which has been made, is applied to the Dsignal data points. The systematic

uncertainty is thus expressed as

δsyst(Dbackground) = |α− 1|Dbackground. (7.10)

In the case where the Dsignal vs R curve is flat or still increasing at the largest safe radius,

the amount of background is scaled upward until the curve turns over. The minimum value
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of the scaling factor, α, which makes the curve turn over is then used to calculate the

maximum systematic uncertainty, as in the above equation. However, no correction is

made to the amount of background to be subtracted since the possibility of signal causing

the rising curve is still very possible.

The estimated systematic uncertainties in the background subtraction procedure are

summarised in Table 7.2 and 7.3. Exceptionally, the estimation was performed at a lower

value of hard scale (using J2 Monte Carlo, of p̂T -range 35 − 70GeV), where excessive

background would preclude analysis. It increases with increasing xp, due to the lack of

xp range Scaling Correction Factor |1− α| δsyst(Dbackground)/Dtotal

0→0.02 0.89 0.11 8%
0.02→0.05 1.0 <0.03 <11%
0.05→0.1 1.0 <0.69 <10%
0.1→0.2 1.0 <2.18 <9%
0.2→0.3 1.0 <2.61 <5%
0.3→0.4 1.0 <2.31 <3%
0.4→0.5 1.0 <2.02 <2%
0.5→0.7 1.0 <2.18 <3%
0.7→1.0 1.0 <0.65 <2%

Table 7.2: The systematic uncertainty estimated limits as a function of xp range from the
J2 Monte Carlo sample.

Monte Carlo Sample Scaling Correction Factor |1− α| δsyst(Dbackground)/Dtotal

J3 0.96 <0.04 2%
J4 1.0 <0.08 4%
J5 0.99 <0.007 <1%
J6 1.0 <0.007 <1%
J7 1.0 <0.16 4%

Table 7.3: The systematic uncertainty estimated limits, estimated at the lowest xp interval
with Pythia Monte Carlo at the truth level for the samples used in later analysis.

background available to constrain the uncertainty, which decreases rapidly with increasing

xp. The less-than symbols are included to highlight that the estimates are expected to

be generous for this reason, and that the uncertainties at larger xp are believed to be

compatible with that at the lowest xp. Since the amount of background present at higher

xp is minimal, a relatively large uncertainty makes little contribution to the error on

Dsignal. A similar reasoning is applied to the evolution with pT of the estimated limit of

the background systematic uncertainty.

The systematic uncertainty in the background is assumed to be independent of xp ,

and since the majority of background is of low xp and the best limit is expected to be
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obtained here, it is estimated, generally, in this interval and applied to all others. While

this study is presented at the truth level, to ensure relevant estimation and correction the

same procedure is repeated later at the reconstructed level.

7.8 Extrapolation and Optimum Solution

In the case where the largest safe measuring cone is not sufficiently large to encompass all

of the signal, extrapolation may be used to estimate the missing signal (Figure 7.4). The

Figure 7.4: A cartoon extrapolation of a Dsignal vs R curve which has not reached plateau
with the largest safe radius.

method utilises multiple Dsignal extrapolations for each R value within a given (xp, Q)

range. An extrapolation from a small value of R has a large error from the distance to

be extrapolated but a small error from the lack of background. The reverse is true for an

extrapolation at large R so from this variety of solutions the one with the smallest total

error is selected as being “optimum”.

7.8.1 Extrapolation of Dsignal vs R Curves

The probability of a bremsstrahlung with transverse momentum kt with respect to the

original parton direction, has an approximate exponential dependence such that small

values are common and large values are rare. This approximate relationship may be

expressed as in Equation 7.11

Pbrem.(kt) = P kt=0
brem.e

−bkt (7.11)
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where Pbrem.(kt) is the probability of bremsstrahlung with some kt value, P kt=0
brem. is the

probability of bremsstrahlung with kt = 0, where b, with units of GeV−1, relates to the

rate of decrease in expectation with increasing kt.

Given the relationship between kt and R discussed in Chapter 4, the Dsignal vs R

curves are then expected to be reasonably well described by the following cumulative

function.

y = D(1− e−aR) (7.12)

D is the value of the extrapolation in the limit R → ∞ and a gives the rate at which

the function is approaching the limit. The value, yi, of the function at radius Ri, and the

gradient at Ri is approximated as (yi+1− yi)/(Ri+1−Ri). To find the unknown variables

the differential of the exponential function is used, equation 7.13, as illustrated in Figure

7.5.

dy

dR
= Dae−aR (7.13)

Equation 7.13 gives a value of the product Da at R = 0 as in equation 7.14.

Figure 7.5: A cartoon illustrating an exponential extrapolation from R1 = 0.2.

dy0
dR0

= D0a0 (7.14)

The subscripts in equation 7.14 indicate the radius used to obtain the variables. The

product D0a0 is used to find a better estimate or updated value for the variable a, a1,
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using the following substitution

dy1
dR1

= D0a0e
−a1R1 . (7.15)

The assumption has been made that the product aD does not vary significantly with

radius, justifying the use of D0a0 in the calculation of a1. Substitution of a1 into the

original exponential function yields D1;

D1 =
y1

1− e−a1R1
(7.16)

where y1 is set to be the value of Dsignal at R1. For safety an “extrapolation” error of the

magnitude of the total extrapolation is placed on D, i.e. δDi = (Di − yi).

The process to find a1 and D1 is repeated to find further updated values of a and D

for increasing radii up to R = 1.15. Multiple compatible D solutions result from which

an optimal solution which has the smallest total error is then quoted as Dq(xp, Q).
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Figure 7.6: Exponential extrapolations and error bars of equal magnitude as the extrap-
olations for 0≤ xp <0.02 J3 Monte Carlo.
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7.8.2 Optimal Solutions

The total error on an extrapolated value of Dsignal is a summation in quadrature of the sta-

tistical, systematic and extrapolation components, δstatistical, δsystematic, and δextrapolation

respectively.

δ2total = δ2statistical + δ2systematic + δ2extrapolation (7.17)

The total error as a function of R is shown for one interval of xp, at one hard scale in

Table 7.4. The significant contributions to uncertainty come from systematic background

uncertainty which increases with R and that due to extrapolation, which decreases with

R. The smallest total error corresponds to the solution at R = 1.15, and this is then the

optimal solution for the lowest xp range at J3. The table excludes the columns of R =

R 0.6 0.8 1.0 1.15
Extrapolated Dsignal 477.3 208.7 191.6 181.2
δstatistical(Dsignal) 15.1 6.7 6.8 7.0
δsystematic(Dsignal) 5.3 9.3 14.6 19.3
δextrapolation(Dsignal) 342.1 46.1 17.1 1.5

δtotal(Dsignal) 341.5 47.5 23.5 20.6
% Error 72% 23% 12% 11%

Table 7.4: Extrapolated Dsignal values and corresponding uncertainties shown as a func-
tion or R for 0≤ xp <0.02 calculated using the J3 Monte Carlo sample.

0.2 and 0.4 since the method for calculating a yields a negative value. In this case the

exponential extrapolation is replaced with a linear one which uses the gradient at that

point with an extrapolation to R = π
2 .

7.8.3 Extrapolation at Larger Hard Scale

So far the low
√
−t and xp scenario has been described in which significant background

is present and fragmenting partons produce hadrons at large angles from the parton

direction. In contrast, at large
√
−t and xp a small radius is adequate to encompass

the signal. Figure 7.7 is a demonstration of the extrapolation method applied to the J7

0.7≤ xp ≤1.0 Dsignal vs R curve. In Figure 7.8 zoom has been used to illustrate that the

method does not break down at large hard scale and still provides a variety of compatible

solutions. The solutions and corresponding errors are summarised in Table 7.5.
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Figure 7.7: Exponential extrapolations and error bars of equal magnitude as the extrap-
olations for 0.7≤ xp <1.0 J7 Monte Carlo.
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Figure 7.8: Zoomed version of Figure 7.7.
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R 0.2 0.4 0.6 0.8 1.0 1.15
Extrapolated Dsignal 0.0168 0.0165 0.0165 0.0166 0.0166 0.0166
δstatistical(Dsignal) 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
δsystematic(Dsignal) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
δextrapolation(Dsignal) 0.0002 0.00001 0.00001 0.00000 0.00000 0.00000

δtotal(Dsignal) 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004
% Error 3% 2% 2% 2% 2% 2%

Table 7.5: Extrapolated Dsignal values and corresponding uncertainties shown as a func-
tion of R for 0.7≤ xp <1.0 calculated using the J7 Monte Carlo sample.
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Chapter 8

FAPS Transverse Fragmentation

This chapter gives an alternative to describing the jet shape and measuring the transverse

fragmentation function from the method referred to in Section 5.1. FAPS provides for a

more physically based measurement, thus also enabling the task of Monte-Carlo tuning

by reference to parameters closer to the models employed. This study is conducted at

the truth level, and therefore truth supplied values of partonic and hadronic momenta are

used as the algorithm inputs.

8.1 Jet Shape Parametrisation

The extrapolation process provides information about the transverse behaviour of the

correlated hadrons. The coefficient, a, of the extrapolation function (Equation 7.12) gives

a measure of how fast the cumulative Dsignal(xp, Q,R) curves are approaching their limit

with increasing R, i.e. how collimated the hadrons are in that xp range. This then

constitutes a measure of the jet “shape”, as a function of fractional momenta, xp, rather

than a pT or energy deposition profile as given in Chapter 4. Even though all local

extrapolations give compatible final plateau values, the Dsignal(xp, R) curves are only

approximately exponential over the entire R range, and therefore the values of a in a

given xp range vary with R. Generally they are larger at smaller values of R. Since the

behaviour is exponential, the inverse of the mean values of a, i.e. 1/ < a >, may be taken

as a measure of the mean value of R at a given xp, but because of this variation, the

standard error on the mean of the a values for a given xp range is taken as typical error.

The mean value of a, for a given xp range is shown as a function of the mean value of xp
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for hadrons within that range, and for each hard scale of the Monte Carlo data sets in

Figure 8.1.
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Figure 8.1: Mean values of a as a function of xp, calculated at the truth level with
HERWIG Monte Carlo samples at increasing hard scale from ∼100 GeV to ∼1 TeV. The
straight line fits omit the first two < xp > values in each case.

There is a linear variation of < a > vs < xp > beyond the first two points where the

value of < a > changes quite rapidly with < xp >, however, the gradient of this linear

proportion changes minimally with hard scale. Thus jet shape is found to be modelled as

momentum fraction dependent; there is increased hadronic collimation at higher fractional

momenta, and the shape almost scales with jet momentum.

Increased collimation might be expected at higher xp given that as xp → 1, there is,

by definition, no hadronic momentum transverse to the jet direction.

As xp → 0, hadrons are produced almost in no preferred direction, having momenta

∼zero, and randomised hadronisation produces randomised directions, isotropically about

the parton direction, with momenta of the order of the hadronisation scale, i.e. a few

hundred MeV, and very much less than the bremsstrahlung scale. These factors will

result in little collimation of the jet in the low xp ranges. The observed resultant hadronic

angular distributions, shown in Figure 8.1, indeed show an initial steep rise at low <

xp >, which is consistent with the expectation of additional low momentum hadrons from

hadronic decays and hadronisation processes. There is then an increasing collimation, a,
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Figure 8.2: Cartoon diagram of how parton branching axis results in kbremt between 0 and
M/2.

linear beyond the lowest xp values.

8.2 Interpretation of Jet Shape

In order to interpret and quantify the above remarks, it is now assumed that the spread

of a jet at larger xp is dominated by the first sub-branching of a massive, (off-mass-

shell) parton, into two comparatively massless final state bremsstrahlung partons (also

off-mass-shell) which subsequently radiate on a much lower scale.

In the following, a lower case t and an upper case T are used to indicate the directions

transverse to jet and z -axis respectively. An approximate relationship is derived between

the transverse momentum, kbremt , of a bremsstrahlung and the hadronic R dependence,

as characterised by 1/ < a >.

As shown in Chapter 4 the bremsstrahlung kt may be related to its pT as follows

kbrem.t ≈ pbremT Rbrem..

For a transverse decay each bremsstrahlung takes an equal momentum fraction, X =

pbrem/pjet, i.e. X = 0.5, and for small R, pbremT = pjetT /2. This configuration, as shown

in the right hand side of Figure 8.2, gives the largest possible kbrem.t , kbrem.t,max, for a given

off-shell mass of the original parton.

kbrem.t,max =
pjetT
2
Rbrem.X=0.5
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Different masses give different values of kbrem.t,max, which in turn give different values of

Rbrem.X=0.5, the average value of kt,max over all possible masses, < kbrem.t,max >M , is then

< kbrem.t,max >M=
pjetT
2

< Rbrem.X=0.5 >M ,

where < Rbrem.X=0.5 >M is unknown. However the average R of a hadron, over all possible

masses, < Rhadronxp=0.5 >M , is known, and using the further assumption that in an event

containing a hadron of xp = 0.5, the other hadrons may be considered together (vector

addition) as a pseudo particle, which would have a combined xp value of 0.5. This is

then a similar kinematic situation to the initial transverse bremsstrahlung branching to

relatively massless partons. It therefore expected that < Rhadronxp=0.5 >M is similar to the

unknown quantity giving:

< kbrem.t,max >M=
pjetT
2

< Rhadronxp=0.5 >M .

The mean value of R expected for a given (xp = 0.5) hadron is then < R >hadronxp=0.5=

1/axp=0.5, and therefore

< kbrem.t,max >M=
pjetT

2axp=0.5
. (8.1)

For a transverse decay of an off-mass-shell parton, of mass M,

M = 2kbremt,max,

considering that different masses give different values kt, the average mass, < M >, is

then

< M >= 2 < kbremt,max >Ml
< pjetT >

axp=0.5
. (8.2)

The scale independent Sudakov form factor (referred to in Section 3.2) gives the mass of

an off-mass-shell scattered parton exiting an interaction at some hard scale, Q. This mass

then enables the branching.

Since the defined quantity < M > has dimensions of mass and, like the Sudakov

mass, the scale of this quantity, is an order of magnitude less than the hard scale, it is

therefore assumed to be a closely related “mass” property, and, by scaling is expected to

vary linearly in proportion with the hard scale. Due to the details of the assumptions
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made, the value of < M > may differ from the mean mass in the Sudakov picture, and

so Equation 8.2 should be regarded as a formula defining such a typical mass.

8.3 Results

The values of a at xp = 0.5 are calculated by fitting a straight line to the points in Figure

8.1, excluding the first two points. Corresponding values of < kbrem.t,max >M and < M >, are

calculated by equations 8.1 and 8.2 respectively, the latter given in the left-hand side of

Table 8.1. The variation of < M > with
√
−t of the Monte Carlo samples (related to J*

Monte Carlo Sample < M > [GeV] δ < M > [GeV] < M > /
√
−t δ(< M > /

√
−t)

J3 12.4 ±2.2 0.09 ±0.02
J4 24.8 ±6.1 0.10 ±0.02
J5 38.9 ±4.8 0.08 ±0.01
J6 73.1 ±13.2 0.08 ±0.01
J7 127.7 ±20.8 0.07 ±0.01

Table 8.1: The values of M and M/
√
−t, measured on the HERWIG Monte Carlo samples

at the truth level.

in Table 2.2), is shown in Figure 8.3. A fit of a straight line, passing through the origin

has an associated χ2/degrees-of-freedom of ∼1.6/(5-1), compatible with the expectation

of scaling, as are the compatible values of M/
√
−t, shown in the right hand side of Table

8.1. Scaling violations of the fragmentation function (discussed in Section 2.4) which

enhance production of low xp hadrons, at the expense of high xp hadrons, may lead to a

more rapid increase of < M > with hard scale than would be expected by scaling alone.

Effects of scaling violation, especially the faster than scaling predicted jet mass increase

with hard scale, have not been observed in the HERWIG Monte Carlo samples used.
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Figure 8.3: The defined jet mass as a function of hard scale, using HERWIG Monte Carlo
samples at the truth level.
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Chapter 9

Parton Estimator Algorithms

9.1 TRAPS

Thus far in the development of the fragmentation algorithm the “true” parton momentum

has been used to calculate the true hadronic xp. The use of a unit cone about that

direction gave a fair approximation to the optimal solutions and allowed development of

other aspects of the algorithm.

In this section a newly developed algorithm, TRAPS (Topological Reconstruction

Algorithm for Parton Scatters) [31], is used to estimate the parton momentum and later

compared with the performance of the standard Anti-kt jet finder.

Quarks have again been selected by matching the reconstructed parton candidate to

a quark, by comparing the sum of the angles between the two TRAPS parton candidates

and two truth partons, see Figure 9.1. The configuration with the smallest sum of angles

is taken to be the appropriate match. The truth information about parton type may then

safely be used for the TRAPS parton estimators.

The results shown in Figures 9.2(a) and 9.2(b) with TRAPS are in significant dis-

agreement with the case where the truth parton momentum is used. The disagreement

is attributed to poor momentum resolution of TRAPS causing migration across the xp

ranges. Since the hadronic xp is the fractional hadronic momentum divided by the parton

momentum, overestimation of the partonic momentum decreases the xp value and vice

versa.

Due to the soft nature of the function, i.e. that the scales of neighbouring xp ranges

vary by large factors, migrations to the higher xp ranges are more noticeable than to the
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(a) Configuration A (b) Configuration B

Figure 9.1: The sums of R1 + R2 in the two possible configurations are compared to
match TRAPS parton candidates to truth partons. Blue circles correspond to truth
partons, black crosses correspond to TRAPS parton candidates.

lower ranges, and they then cause large discrepancies in the value of D. In the case of

underestimation of partonic momenta, where a hadronic xp value is unphysically larger

than unity, this value is then set to be equal to 0.999. By doing this, they do not

contribute to acceptance losses, and a better estimate of the true momentum has clearly

been assigned.

Although the differences with truth values are significant, they are not large compared

to errors on existing data as can be seen in Figure 6.3. The poor resolution that is the

ultimate cause is well-understood and there are huge Monte Carlo statistics presently

available for correction procedures which will be used later in Sections 9.4 and 11.3 with

tolerable systematic error. For the next few sections, however, methods of ameliorating

the problem using event selections will be discussed.
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Figure 9.2: The fragmentation function with TRAPS used to provide the parton mo-
menta estimates, as a percentage of that obtained using the truth supplied partonic mo-
menta values, at small hard scale (J3), left, and large hard scale (J7), right, calculated
with Pythia Monte Carlo at the truth level.
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9.2 TRAPS Leading Order Event Selection

Poor assessment of partonic momenta by the TRAPS algorithm causes migration of xp

values. The problem is worse at low momentum (J3) and might be improved using event

selection. The fragmentation algorithm and TRAPS assume 2→2 parton scatters. By

removing clear next-to-leading order (NLO) type events, where possible, both algorithms

become more relevant.

It is the intention of TRAPS to sum over FSB (final state bremsstrahlung), as much as

possible excluding ISB and MI which are largely uncorrelated with the parton. Processes

which may inhibit the assessment of partonic momenta by TRAPS, or any jet finder which

reconstructs only two jets in each event, are indicated in Figure 9.3. The arrow from the

Figure 9.3: Processes which may degrade the momentum resolution of TRAPS.

top left fermion line indicates an ISB which may be incorrectly included. The arrow from

the top right fermion line indicates an FSB, which should be included but may be missed.

The arrow on the propagator represents a NLO parton which should be ignored from the

point of view of efficient background calculation. Pile-up and MI background may also

be incorrectly included. Removing events in which these processes occur is expected to

improve the estimation of partonic momenta by TRAPS.

Di-parton events must be planar, those with more final state partons need not be. A

selection was applied to remove acoplanar events using the TRAPS acoplanarity variable,

which is defined as the pT out of a plane divided by the total pT , where the plane is that

from which the transverse momenta is minimised. NLO type events are not planar, and

so a cut on the event planarity may remove them, however such a requirement might also

preferentially select events which contain high xp hadrons, which would also be planar.

The selection of events with acoplanarity< 0.05 removes approximately 90% of events

in the lowest p̂T sample, and only 10% in the highest p̂T sample. Comparison of the

fragmentation function calculated with selected events to that calculated with all events

confirms the introduction of a bias.
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An alternative requirement is made, to attempt to remove NLO type events, the

partons are required to be balanced in pT within 10% and back to back in azimuth within

10%. Some good events will be removed, such as events in which an ISB boosts the hard

scatter system. The event acceptance after this requirement is shown in Table 9.1. At low

Monte Carlo Sample Truth Parton TRAPS Parton Estimator

J3 ≈ 70% ≈ 65%
J4 ≈ 80% ≈ 80%
J5 ≈ 85% ≈ 90%
J6 ≈ 85% ≈ 90%
J7 ≈ 98% ≈ 97%

Table 9.1: Event acceptance after leading order event selection.

momentum, migration into the highest xp range is reduced without the introduction of

a bias, as shown in Figures 9.4(a) and 9.4(b), which may be compared to Figures 9.2(a)

and 9.2(b).
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Figure 9.4: The fragmentation function with TRAPS used to provide the parton mo-
menta estimates for events passing the event selection, as a percentage of that obtained
using the truth supplied partonic momenta values, at low momentum (J3), left, and high
momentum (J7), right, calculated using Pythia Monte Carlo at the truth level.
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xp Efficiency Purity
Anti-kT TRAPS Anti-kT TRAPS

0≤ xp <0.02 98% 97% 98% 97%
0.02≤ xp <0.05 91% 85% 90% 86%
0.05≤ xp <0.1 89% 81% 88% 82%
0.1≤ xp <0.2 90% 82% 89% 84%
0.2≤ xp <0.3 85% 75% 84% 76%
0.3≤ xp <0.4 90% 69% 79% 69%
0.4≤ xp <0.5 82% 66% 76% 64%
0.5≤ xp <0.7 79% 76% 84% 73%
0.7≤ xp ≤1.0 86% 80% 86% 70%

Table 9.2: Efficiencies and purities in the chosen analysis intervals using the respective
parton estimators at low transverse momentum (J3 Monte Carlo). Statistical errors are
well below the 1% level.

9.3 Parton Estimator Algorithm Comparison

The efficiencies and purities in the chosen analysis intervals, calculated using hadrons

within a unit cone about the jet or parton estimator (η, φ) position are shown in Tables

9.2 and 9.3. Quarks have been selected as described in Section 9.1. Since only the jet

direction is used in this exercise, migration of xp values may only occur due to mis-

estimation of the parton momentum.

The efficiency in a given xp bin is the total number of hadrons with an xp value in that

range at the truth (partonic) and algorithmic level, divided by the number of hadrons

with an xp value in that range at the truth level. The purity is the number of hadrons

with an xp value in that range at the truth and algorithmic level, divided by the number

in that range at the algorithmic level. That is, the efficiency is the percentage of hadrons

that remain in a given bin after the resolution of a given algorithm is considered, and the

purity is the percentage of such hadrons compared to the new bin content.

Higher algorithm efficiencies and purities indicate less dependence on the unfolding,

and the lower of the two indicates whether emigration (smaller efficiency) or immigration

(smaller purity) is the larger resolution problem to be unfolded in a given bin. As expected

from such a “soft” function, immigration into the higher xp intervals can be seen from

Table 9.2 to be the chief problem.

While Tables 9.2 and 9.3 clearly indicated the Anti-kT algorithm [40] to be the pre-

ferred choice, the resolutions of both parton estimators are sufficient for a measurement

with the same binning as used in previous measurements.
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xp Efficiency Purity
Anti-kT TRAPS Anti-kT TRAPS

0≤ xp <0.02 100% 99% 100% 100%
0.02≤ xp <0.05 98% 96% 97% 95%
0.05≤ xp <0.1 98% 96% 97% 94%
0.1≤ xp <0.2 98% 96% 97% 94%
0.2≤ xp <0.3 97% 94% 96% 91%
0.3≤ xp <0.4 96% 93% 95% 88%
0.4≤ xp <0.5 95% 91% 94% 86%
0.5≤ xp <0.7 98% 96% 96% 89%
0.7≤ xp ≤1.0 98% 99% 96% 87%

Table 9.3: Efficiencies and purities in the chosen analysis intervals using the respective
parton estimators at high transverse momentum (J7 Monte Carlo). Statistical errors are
well below the 1% level.

The fact that both algorithms may be used as input to the fragmentation algorithm,

which then produces compatible output, i.e. agreement with truth values, demonstrates

a lack of dependence of the fragmentation algorithm on the specific algorithm chosen to

supply the parton estimates.

9.4 Algorithmic Unfolding

Any physical measurement is subject to a resolution problem which may, or may not be a

significant problem. The resolution will be degraded by the detector used or similarly by

inefficiencies of any tool or algorithm employed as part of the measurement. As long as

the true result and the result affected by resolution may be linked then such effects may

be removed on a statistical basis.

The FAPS method is thought to be safe against directional accuracy, via the optimal

solutions method, however, it is sensitive to poor resolution in the magnitude of partonic

momenta.

The ROOT ([41]) package TUnfold [42] is applied to remove the effect of a jet finding

algorithm on the measured distribution of fractional hadronic momenta, i.e. to remove

the affect of imperfect assessment of partonic momenta magnitude. It is noted that two

jet algorithms will be used to estimate the partonic momenta, to test for dependence of

FAPS on the exterior algorithm.
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9.4.1 The TUnfold Package

TUnfold iteratively solves Equation 9.1 to minimise the χ2 as a function of x, the true

distribution.

χ2 = (y −Ax)TVyy−1(y −Ax) + τ2(L(x− x0))TL(x− x0) + Λ
∑
i

(yi − (Ax)i) (9.1)

There are three separate terms on the right. The first term gives the standard χ2 of the

difference between the “measured” distribution and the expected distribution Ax, taking

account of correlation, where A is the migration matrix found by relating the true to

measured distributions in Monte Carlo. The covariance matrix, Vyy−1 , is calculated from

the known errors on y.

In the present case the measured distribution, y, is the number of hadrons measured

in each bin of xp using the jet algorithm estimated partonic momenta.

The second term applies a vector of offsets of the mean unfolded “true” result from the

diagonal, x0. The matrix of regularisation conditions, L(x−x0), ensures the minimisation

is performed with respect to the values of best fit to the migration distribution, thus

accounting for the bias in the measurement. The parameter τ defines the significance

of the second term, with relation to the first. The third term ensures the same number

of hadrons in the measured distribution as the unfolded one (i.e. unitarity) and the

Lagrangian multiplier, Λ, allows minimisation with respect to this constraint.

9.4.2 Unfolding Results

To test the unfolding process and its error handling, 90% of the available Monte Carlo

events are used to fill the matrices A, V and the vector x0. The remaining 10% were

treated as “data” only and unfolded.

The τ parameter is chosen to give the smallest optimal χ2 possible for which χ2 is

still sensitive to τ , found by plotting the logarithm of τ against the logarithm of χ2
min

and choosing the value of τ on the kink of the resulting curve. The results of unfolding

at high pT are shown in Figure 9.5(b) for the J7 sample.
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Figure 9.5: The fragmentation function with TRAPS used to provide the parton mo-
menta estimates, as a percentage of that obtained using the truth supplied partonic mo-
menta values, at low momentum (J3), left, and high momentum (J7), right, measured on
Pythia Monte Carlo at the truth level. Also shown is the unfolded result.
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The unfolding works well at this high pT . The results of unfolding at the lowest pT

are shown in Figure 9.5(a). At low pT the unfolding does not get back to the truth result,

within errors, in the lowest two xp ranges. The discrepancy between the truth and the

unfolded result will be shown to be attributed to less than perfect directional resolution

of the TRAPS algorithm (Figure 9.6). This discrepancy is not a problem since a larger

cone may be used and if necessary extrapolation. The unfolded result is compared to that

obtained using the truth supplied magnitude of the parton momentum with the TRAPS

supplied parton direction of the parton in Figure 9.6. The unfolding of the magnitude

px
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 -
 tr

ut
h

± h si
gn

al
%

 o
f D

60

80

100

120

140

160
|)

parton
J3 - TRAPS (Truth |p

J3 - TRAPS R=1
J3 - TRAPS R=1 Unfolded

Figure 9.6: The fragmentation function with TRAPS used to provide the parton momenta
estimates, as a percentage of that obtained using the truth supplied partonic momenta
values at low momentum (J3), measured on Pythia Monte Carlo at the truth level. Also
shown is the result using TRAPS with the truth supplied magnitude of the partonic
momenta and the unfolded result.

of the parton momenta gets back to the distribution of fractional hadronic momenta

obtained using the TRAPS supplied direction for the measurement cone with the truth

supplied magnitude, and therefore there is a problem of direction resolution when using

the TRAPS algorithm.

9.4.3 TUnfold Instabilities

The method is unstable, small changes in the input lead to large changes in the output

and the errors associated are large, errors bars and sometimes even central values can

unphysically extend to less than zero. This is especially a problem when correcting the
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background, which is mainly at low xp, meaning that the higher xp bins of the matrices

and inputs vectors to the unfolding are sparsely populated. Many more statistics could

be used in an attempt to sufficiently populate the higher xp bins, however an impractical

number would probably be required.

The author of TUnfold has been contacted with regard unphysical outputs. The

question was asked as to whether there is a setting available to “impose positivity” by

perhaps constraining the chi-squared fit to make negative results impossible. However,

there is no such option, this could be a useful option which may make results more

accurate/sensible, by removing the possibility of unphysical solutions.

9.5 Extrapolation using Jet Finders

When using a jet finder to provide the parton estimator information poor directional

resolution of the algorithm may cause a lower starting value and some delay of the rise

of the curve of Dsignal as a function of R, as shown in the low R region of Figure 9.7.

In essence, the estimated direction is displaced from the truth parton direction, as shown

Figure 9.7: Dsignal as a function of R for 0 > xp ≥ 0.02. Pythia J3 Monte Carlo has been
used at the truth level.

in Figure 9.8, in which a significantly large ISB has caused TRAPS to reconstruct the

parton direction slightly away from the truth parton direction and towards the ISB. Fewer

hadrons will now be counted in the smallest cone than would have been if it were centered

on the true parton direction. As a result, the first gradient of the Dsignal(R) curve may
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Figure 9.8: A cartoon η, φ map of a parton, ISB, the corresponding background solid
angle and the TRAPS supplied parton direction. The dashed lines represent successive
iterative search cones.

be more shallow than the next, (see Figure 9.9), which would give a negative value for

the exponential coefficient, and hence an unphysical solution. Such solutions are avoided

by discarding the first measured value when there is a rising gradient, and calculating the

first gradient using the next point which invariably then yields a viable solution.

There is more background included in a sampling cone of large R in this configuration,

compared to when the ISB is far from the parton, and this may lead to a Dsignal(R) curve

which does not asymptotically plateau, as shown in the large R section of the TRAPS

curve in Figure 9.7. Calculating an asymptotically plateauing function to such a curve,

and extrapolating from each measured value may lead to a variety of inconsistent solutions,

as shown in Figure 9.10. This is a problem since the freedom to choose the solution with

the smallest total error is only acceptable if all solutions are compatible. This problem

is avoided by iteratively discarding a solution if it is incompatible with any smaller R

solutions.
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Figure 9.9: A cartoon diagram of Dsignal as a function of R using the TRAPS supplied
parton information. The first measured value is discarded since it yields an unphysical
extrapolated solution.
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9.6 Jet Correlations in η

Following on from the problem case found in the extrapolation and optimal solutions

study a test done to investigate whether the behaviour has a direction dependence.

The fragmentation cone was divided into quadrants for which ∆η2 > ∆φ2 for two of

the quadrants and ∆φ2 > ∆η2 for the other two, see Figure 9.11. The Dsignal vs R curve

Figure 9.11: The fragmentation cone divided into quadrants.

for ∆η2 > ∆φ2 exhibits the behaviour in question while the other curve does not, Figure

9.12. Two possible causes for this behaviour are colour strings connecting the jet to the

Figure 9.12: Dsignal as a function of R for ∆η2 > ∆φ2 and ∆φ2 > ∆η2.

proton remnants and ISB which is preferentially in the η direction.
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9.7 Optimal Solutions Results

The results using the optimal solutions method are shown in Figures 9.13(a) and 9.13(b).

There is very good agreement between the results of the algorithm on pure truth and the

algorithm using TRAPS and unfolding. In Section 9.4 it was shown that the unfolding of

the TRAPS momentum works well in all but the lowest pT and xp. The excellent agree-

ment in the lowest xp range between the pure truth and TRAPS unfolded results at J3

should be contrasted to the poorer agreement in the next xp range. The Dsignal(R) curves

are included to explain the discrepancy. The non-plateau in Figure 9.14(b) results in a

large extrapolation, while Figure 9.14(a) has a plateau and hence no large extrapolation.
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Figure 9.13: The fragmentation function obtainted using the optimal solutions method,
with TRAPS used to provide the parton momenta estimates for events passing the event
selection, as a percentage of that obtained using the truth supplied partonic momenta
values, at low momentum (J3), left, and high momentum (J7), right, measured on Pythia
Monte Carlo at the truth level. Also shown is the unfolded result.
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(a) Dsignal(R), 0 > xp ≥ 0.02 J3.

(b) Dsignal(R), 0.02 ≥ xp ≥ 0.05 J3

Figure 9.14: Dsignal as a function of R.
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9.8 Comparison with the Anti-KT Algorithm

The fragmentation algorithm requires as input the vector momentum of a parton esti-

mator, from which the measuring cones are centred and which also serves to normalise

the fractional momenta of the hadrons within each cone. The parton estimator informa-

tion may be supplied by TRAPS or another algorithm which at least provides a good

approximation to a fragmenting parton’s momentum vector.

While the TRAPS algorithm claims to measure the partons themselves, the algorithm

is new and as yet not used widely. It is useful to demonstrate input insensitivity of

the fragmentation algorithm being developed. Thus the present algorithm of choice of the

ATLAS collaboration, the Anti-kT algorithm [40], has also been used to supply the parton

estimator momenta. While Anti-kT is well recognised, it claims only to be measuring ‘jets’

rather than estimating partons specifically, let alone those partons which are the result

of a hard scatter.

The Anti-kT algorithm is a sequential recombination clustering algorithm, based on

the following distance measures which are expressed in terms of the particle rapidity, y,

azimuth, φ, and transverse momentum pT . The distance, dij , between any two particles

i and j

dij = min(p−2T i , p
−2
Tj )

∆ij

R
,∆2

ij = (yi − yj)2 + (φi − φj)2

and the distance, diB, between any particle, i, and the beam, B

diB = p−2T i .

Clustering is performed by first calculating all distances dij and diB. If the smallest is a dij

the two particles are combined (by summing their four-momenta) and the new distances

are computed. If the smallest is a diB then particle i is removed from the clustering

sample. This process is repeated until all particles are either discarded or clustered into

jets. The parameter R scales the dij with respect to the diB such that any pair of final

jets are separated by at least that value.

In this study the R parameter is chosen to be 0.6, one of the two ATLAS defaults, the

other being 0.4. It has previously been demonstrated within this thesis that a maximum

cone radius of 0.6 will not include all of the fragments correlated with the parton direction,
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see, for example, Figure 9.14(a). The algorithm makes no intrinsic underlying event (UE)

subtraction as TRAPS does, this will cause lower xp values due to overestimation of parton

momentum. Using, say, a 0.6 cone radius will cause opposite migration. In Figures 9.15(a)

and 9.15(b) the results using Anti-kT are shown, with no event selection used and the

two highest pT quark initiated jets considered, the matching of jets to truth partons was

done the same way as for TRAPS, Section 9.1. There is uniform migration to higher xp,

indicating the net effect is underestimation of the partonic momenta.

9.8.1 Anti-kT Selection

The 2→2 event selection (see Section 9.2) is applied based on the momentum of the parton

estimators as measured by the Anti-kT algorithm, Figures 9.16(a) and 9.16(b). A bias is

introduced to the truth level scaled momentum distribution.

The Anti-kT algorithmic resolution is unfolded, see Figures 9.17(a) and 9.17(b). Agree-

ment with results where the truth supplied value of the partonic momenta had been used

are good, indicating that the Anti-kT algorithmic partonic momentum resolution has been

successfully removed. The event selection is not needed. The agreement is excellent at

high momentum. At low momentum xp resolution is adequate, and comparable to that

obtained with the TRAPS algorithm (Figure 9.13(a)), which had poorer agreement at

low xp, 40% difference in the range 0.02< xp <0.05, which is of the order of the difference

observed at high xp with the Anti-kT algorithm.

From this point onwards, the fragmentation algorithm will be developed and tested

using both the above algorithms in parallel either to demonstrate input independence,

or to justify the choice of one while measuring the systematic error with respect to the

other.
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Figure 9.15: The fragmentation function with the Anti-kT algorithm as input, as a per-
centage of that obtained using the truth supplied partonic momenta values, at low mo-
mentum (J3), left, and high momentum (J7), right, measured on Pythia Monte Carlo at
the truth level. The optimal solution is used with no event selection.
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Figure 9.16: The fragmentation function with truth supplied values of partonic momenta
as input, with and without application of the event selection at the Anti-kT level, at low
momentum (J3), left, and high momentum (J7), right, measured on Pythia Monte Carlo
at the truth level. Both are displayed as a percentage of the result obtained without
selection of events. The optimal solution is used in both cases.
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Figure 9.17: The fragmentation function using Anti-kT and unfolding, displayed as a
percentage of that using the truth supplied partonic momenta, at low momentum (J3),
left, and high momentum (J7), right, measured on Pythia Monte Carlo at the truth level.
The optimal solution is used.
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Chapter 10

Hadron Measurement

To measure charged particles and jets, and therefore the xp variable and the directions

for fragmentation sampling cones, algorithms are applied to tracking and calorimetry

measurements, which also then define these measured objects. These measured objects

then have associated resolutions due to the physical apparatus and due to the algorithms

used.

Unfolding is used to correct for the momentum resolution of the tracks and parton

estimates, to recover what would have been measured, as described by the Monte Carlo

‘truth’ variables. Directional resolution of the parton estimators is resolved by the variable

cone and extrapolation techniques as explained in Section 7.8.

In the present study, no attempt is made to address optimisation beyond using stan-

dard selections and calibrations. However, in the interest of algorithmic resolution, two

completely different jet algorithms are used as input.

10.1 Calorimetry

The energy of a particle is measured by collecting, or essentially by counting, the sec-

ondary charged particle multiplicity produced during showering in an active medium.

The fractional error on the multiplicity is of the form δNparticles
/Np = 1/

√
Nparticles, i.e.

it is smaller for larger energies, as, then, is the fractional energy resolution of an incident

particle or group of particles.

Hadrons deposit some of their energy in both the electromagnetic and the hadronic

calorimeters. Both the ATLAS electromagnetic and the hadronic calorimeters have dif-
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ferences in their response to electromagnetic and hadronic particles (i.e. they are non-

compensating) and are calibrated at the EM scale.

10.1.1 ATLAS Calorimetry

The ATLAS electromagnetic calorimeter (ECAL) [43] is of sampling type, utilising liquid

Argon (LAr) as the active medium, interspersed with lead absorber plates. The ECAL

electrodes have accordion geometry. In the barrel region the sampling layers are 2.1 mm

thick, while in the end-caps the LAr layers are of variable thickness due to the increasing

amplitude of the accordion waves with increasing radius and the constant thickness of the

absorption layers. The ATLAS hadronic calorimeter (HCAL) barrel and extended barrel

sections are of sampling type, utilising lead absorber interspersed with scintillating tiles.

The hadronic end-caps consist of copper plates filled with 8.5 mm thick layers of LAr.

Three electrodes divide each LAr layer, providing four drift layers, each approximately

1.8 mm thick. A summary of the ATLAS calorimetry is given in Table 10.1.1. The

reconstructed energy of a hadron is expressed using a set of energy independent corrections

in the ‘Benchmark method’ [11] (equation 10.1)

Erec = a.Ehad + Eem + b.E2
em + c.

√
a.Ehad1 + Eem3. (10.1)

The coefficient a accounts for ECAL and HCAL differences in their response to pions. A

first order correction for non-compensation is made by the quadratic term, and the last

term estimates the energy lost in the cryostat between the two calorimeters, Eem3 is the

energy in the last LAr compartment and Ehad1 is the energy measured in the first Tile

Calorimeter compartment. The fractional energy resolution may then be parameterised

as

σ/E = (A/
√
E +B)⊕ C/E. (10.2)

Minimising the energy, E, resolution for 300 GeV pions gives coefficient values A = (59.5±

0.3) % GeV1/2, B = (1.8± 0.2) % and C = (2.0± 0.1) GeV.
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EM Calorimeter

Barrel |η| < 1.475
3 Sampling layers ∆η ×∆φ granularity
1st sampling 0.003 × 0.1
2nd sampling 0.025 × 0.025
3rd sampling 0.05 × 0.025

End-caps 1.375 < |η| < 3.2

1.5 < |η| < 2.5 3 sampling layers
1.375 < |η| < 1.5 2 sampling layers
2.5 < |η| < 3.2

Hadronic Calorimeter |η| < 4.9

Barrel |η| < 1.0

3 sampling layers ∆η ×∆φ granularity
1st and 2nd samplings 0.1× 0.1
3rd sampling 0.2× 0.1

Extended Barrel 0.8 < |η| < 1.7

3 sampling layers ∆η ×∆φ granularity
1st and 2nd samplings 0.1× 0.1
3rd sampling 0.2× 0.1

End-caps 1.5 < |η| < 3.2

4 Sampling layers ∆η ×∆φ granularity
1.5 < |η| < 2.5 0.1× 0.1
2.5 < |η| < 3.2 0.2× 0.2

Table 10.1: The geometry and ∆η ×∆φ granularity of the ATLAS Calorimeters.
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10.2 Tracking

The transverse momentum, pT , of a particle with charge q, may be measured using the

curvature of its trajectory in a magnetic field, B. The relationship between the particle

pT and its radius of curvature, r, is given by; r = pT /qB. In practice, this radius is

determined by helical fits to a finite set of measured points.

For large values of r, or small traversed angles, the sagitta, s, is given by; s ≈ L2/8r

where L is the chord length of the track, see Figure 10.1.

Figure 10.1: The trajectory of a charged particle in the presence of a magnetic field.

The track pT is related to the sagitta by;

pT =
L2qB

8s
,

(
1

s
=

8pT
L2qB

)
. (10.3)

Therefore the fractional pT resolution, which is given in Equation 10.4, increases linearly

with the magnitude of the track pT .

δpT
pT

=
δs

s
=

8δs

L2qB
pT , (10.4)

This expression is reasonable for tracks of sufficiently large pT , for low pT tracks

uncertainty due to multiple scattering becomes significant (Ø ≈ 1.5%, [11]). The track pT

resolution is much (δpT ∝ p2T ) worse at high jet energies for the same xp. The resolution

could be improved by increasing the detection medium traversed (large L) by the particle,

or increasing the B -field strength.
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Pixel Detector Radial Extension 5-12 cm
Detector Medium 50×400 µm Silicon Pads
Spacial Resolution 10×115 µm
Number of Channels 80M
Average number of hits per track 3

SCT Radial Extension 30-52 cm
Detector Medium 80 µm×12 cm Stereo Silicon Strips
Spacial Resolution 17×580 µm
Number of Channels 6.3M
Average number of hits per track 8

TRT Radial Extension 56-107 cm
Detector Medium 4 mm diameter straw tubes
Spacial Resolution 130 µm
Number of Channels 3.5×105

Average number of hits per track 30

Table 10.2: The geometry, media, spacial resolution, number of channels and average
number of hits per track of the ATLAS Inner Detector tracker.

10.2.1 ATLAS Tracking

The ATLAS tracker is composed of three sub-detectors, the Pixel Detector (PD), the

Semiconductor Tracker (SCT) and the Transition Radiation Tracker (TRT), known col-

lectively as the Inner Detector (ID) [44]. The inner detector extends 7 m in the z -direction,

has an outer radius of 1.15 m and is immersed in a 2 T magnetic field, from the central

solenoid. A complete overview of the tracker is given in Table 10.2.

It is the product of charge and inverse transverse momentum which may be deduced

from the sagitta. The sagitta measurement is itself dependent on the basic positional

measurement error, and is thus Gaussian. It is therefore that quantity, q/pT , and not

the transverse momentum, on which the errors are Gaussian [45]. The ATLAS tracking

inverse transverse momentum resolution, σ1/pT , may be parameterised as follows [11],

σ1/pT = σ1/pT (∞)(1⊕ CpT ,equ./pT ) (10.5)

where σ1/pT (∞) is the asymptotic resolution expected at infinite momentum and CpT ,equ.

is a constant representing the value of pT for which the intrinsic (first term in bracket)

and multiple scattering (second) terms are equal. Specific resolution values are shown in

Table 10.3 [11].
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Angular coverage pT [GeV] σ1/pT

0.25< |η| <0.5 44 0.34 TeV−1

1.5< |η| <1.75 80 0.41 TeV−1

Table 10.3: ATLAS tracking inverse pT resolution.

10.2.2 Jet Energy Resolution

Fundamentally, calorimeter jets are composed of energy deposits from incident hadrons,

the fractional errors on which behave as ≈ 1/
√
Ehadron, hence the jet energy resolution

has the same approximate energy dependence. Since the ATLAS calorimeters are cal-

ibrated at the EM scale, a correction must be applied to measure energies of hadronic

jets. This correction is referred to as the jet energy scale (JES). The JES has a signif-

icant systematic uncertainty, which results primarily due to uncertainty in the degree

of non-compensation and of the jet electromagnetic fraction, F (E), Ø30%, (due to π0

production, decaying to photons), [46]. The JES systematic uncertainty is estimated at

ATLAS using in situ methods and using single pion test beams. Jets are reconstructed

with the Anti-kT algorithm using R parameter values of 0.4 and 0.6. Uncertainties on the

amount of material in the ATLAS detector, the description of electromagnetic noise and

the Monte Carlo models used are taken into account. The JES systematic uncertainty is

less than 2.5% for 60 < pT jet < 800 GeV, |ηjet| < 0.8, [46]. Background from additional

proton-proton interactions per bunch crossing leads to a further 1.5% per additional in-

teraction for pT jet > 50 GeV. This implies similar systematic measurement errors on
δxp
xp

which are small even compared to jet algorithm errors and are ignored for this study.
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Chapter 11

Reconstructed Tracks

11.1 Track Selection

The ATLAS tuned Monte Carlo is passed through the Geant4 [28] model of the ATLAS

detector. The same standard ATLAS reconstruction algorithms are then run on the

simulated detector read out as on real data, resulting in fully reconstructed events, but

which also contain a record of the simulation at the truth level.

The fragmentation algorithm was tested on reconstructed Monte Carlo (Pythia 6.4 -

ATLAS tune:mc11 [47]) to check its performance with realistic resolutions and recon-

struction efficiencies. Migration due to track momentum mismeasurement and track

reconstruction inefficiency is corrected along with that due to jet algorithm resolution

migration in one step of unfolding. An identical track selection is used as in the ATLAS

jet fragmentation paper [16], namely;

• pT > 500 MeV - Tracks of lower momentum suffer a high percentage of energy loss,

or large angle scatter and are hence unreliable.

• |η| < 2.4 - Inner detector (ID) tracking safe angular coverage limit.

• |d0| < 1.5 mm - The impact parameter, the shortest distance from the extrapolated

track to the primary vertex. This strongly reduces non-primary tracks.

• |z0.sinθ| < 1.5 mm - The shortest distance from the extrapolated track to the pri-

mary vertex along the z -axis. This offers discrimination not based on extrapolated

track bending, but instead on pointing of the track towards the primary vertex.
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• At least five hits in the Semiconductor Tracker (SCT) - This ensures tracks are rel-

atively long, since shorter tracks have poorer momentum resolution. It also reduces

secondary tracks, which begin further away from the primary vertex.

• At least one pixel hit - Reduces secondaries.

To measure the reconstruction efficiency, track matching links available in the Athena

framework [27], have been used to link a given reconstructed track to the corresponding

truth particle, to which it is best matched. The distribution of matching probabilities
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Figure 11.1: The distribution of matching probabilities for truth particles with a single
matched track.

between tracks and truth particles is shown in Figure 11.1 at the highest energy scale

where tracking is most difficult. This includes the 92% of truth particles with one and

only one matched track. The majority of matches have a probability close to one and

even more so, as expected, after the track selection is applied.

There may be more than one track matched to a given truth particle. The distribution

of the highest and second highest matching probabilities is given for truth particles with

more than one matched track in Figures 11.2(a),(b).
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Figure 11.2: The highest matching probability vs the second highest for truth particles
with more than one matched track for the J7 Atlas Pythia sample.
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A truth particle which has undergone a small angle secondary scatter may have two

shorter reconstructed tracks associated, one before, and one after the secondary scatter,

both of which are well matched. The majority of double matches occur with both matches

having a probability close to one, indicating such tracks may be a cause.

11.2 Track Reconstruction Efficiency

The efficiency for reconstructing a track matched to a given truth particle is shown in

Figures 11.3(a)-(d), for the J3 and J7 samples as a function of the truth particle transverse

momentum. Note that (a) resolution implies that the requirement that tracks are of at

least 500 MeV results in a “soft” cutoff at the truth level, since the requirement is applied

at the reconstructed level. In Figures 11.3(b)-11.3(c) it can be seen that the efficiency goes

up to approximately 90% after selection, before falling to 75% at around 300 GeV (J7) or

30 MeV (J3), afterwards it rises again to approximately 90% at the highest momentum.

This behaviour may result due to higher pT jets in a given pT range being composed

of only few high momentum tracks, which then are reconstructed well since they are in

a relatively sparse region of the detector. Conversely the lower pT jets in that sample,

comprising of many more lower pT tracks which may be more poorly reconstructed due

to now crowded regions.

Significant correction for efficiency loss is needed, predominantly in the lowest xp bin

due to the low efficiency at approximately 500 MeV.

The spectra and efficiencies as a function of η and φ are shown in Figures 11.4(b)-(d).

The efficiencies are flat as a function of φ but reduced at large |η|, probably due to the

larger traversed beam pipe thickness at small angles and thus limited track acceptance.
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Figure 11.3: Efficiency of reconstructing a track given a truth particle, as a function of
the truth particle momentum. Measured before and after the track selection, on the J7
sample (Figures a, b, and c) and the J3 Atlas Pythia sample (d).
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Figure 11.4: Spectra and efficiencies, shown before and after the track selection is applied,
measured on the J7 Atlas Pythia sample.
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11.3 Unfolding of Track Momenta

The resolution involved in measuring tracks causes migration of xp. The algorithmic

migration associated with measurement of the parton estimator has already been corrected

for by unfolding, now unfolding is used to correct for track momentum resolution. This is

complicated by the limited track reconstruction efficiency and noise. For the purposes of

observing and hence correcting for migration and efficiency losses without complication

from migration from any other source, the truth supplied values of the fragmenting partons

momenta are used and the fragmentation algorithm is run with a unit cone.

The tracks passing the selection are unfolded using TUnfold with a response matrix

filled by matching tracks to truth particles in the way described above. The underflow

bin of the response matrix is filled with truth particles which do not have a matched

track passing the selection, this underflow bin is used in TUnfold to correct for track

reconstruction inefficiency. The results when tracks passing the selection are unfolded

and efficiency corrected are shown in Figure 11.5.
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Figure 11.5: The unfolded distribution of hadronic momenta of reconstructed tracks with
efficiency loss correction, shown as a percentage of the truth particle distribution. Mea-
sured on the J7 Monte Carlo sample using a unit cone.

The unfolded result on is average 30% larger than the truth result, due to noise. Noise

is defined as tracks originating from interaction with the detector and decays in flight as

well as tracks that migrate into a measuring cone due to directional resolution. The first

two types of noise are known as secondaries and are identified using matching to a list of
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truth particles labeled as secondary. A fourth type of noise is henceforth defined as all

non-pions tracks, i.e. the Monte Carlo will be used to make a correction to the charged

hadron fragmentation function, to give the charged pion fragmentation function. The

percentage of charged hadrons which are pions, in a unit cone about the truth parton

direction, is shown in Figure 11.6. A larger fraction of charged hadrons are pions in the

lower xp intervals at low hard scale (J3). This remains to be true at larger hard scale (J7),

however, there are more non-pions at high xp, and fewer at low xp at lower hard scale.

Decays of unstable non-pions would produce more tracks with lower xp values. In any
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Figure 11.6: The fraction of all charged hadrons which are pions, in a unit cone centered
on the truth parton direction, calculated at the truth level using Pythia J3 and J7 Monte
Carlo samples.

two, or indeed multi, particle production process, of which q∗ → h1, h2... is an example,

kinematically the heaviest particle will take a greater share of the momentum. Clearly

this is a scale dependent statement since, when all particles are relatively massless, they

will take equal shares - thus at J7 there is a flatter curve.

The above curve would produce a flatter fragmentation function D(xp) for pions rather

than for all charged hadrons. Kinematically decays can not affect xp = 1 particles. The

effect is cumulative as xp gets larger. So this is a probable cause for this (Figure 11.6)

curve. If this curve is that of a kinematic decay effect rather than a dynamic parton shower
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effect, then it could be the cause of spurious scaling violations. Such scaling violations

have been claimed in [1].

The lowest xp bin in Figure 11.5 is 10% smaller than the others. This is due to

the track selection cut at 500 MeV and the fact that the acceptance correction corrects

for missed pions but not for missed non-pions. Missed non-pions are not corrected for

since they would be removed again as noise, and hence the total error involved would be

unnecessarily increased.

The percentage of tracks which are noise, including non-pions, is shown in Figure

11.7. Note that the total noise level of around 30% (J7) is in agreement with the excess
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Figure 11.7: The noise xp distribution as a percentage of that of the measured tracks
passing the selection. Calculated with the J3 and J7 Monte Carlo samples using a unit
cone.

observed in Figure 11.5. This noise is removed by measuring the ratio of pions, to pions

plus noise at the truth level, denoted Rnoise.

Rnoise =
Nπ

Nπ+noise
(11.1)
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In order to correct for migration due to track direction resolution, the particles which

are selected in a unit cone about the parton estimator (the truth parton in this instance),

are selected based upon the direction of the track to which they are matched. The ratio

Rnoise is shown in Figure 11.8.
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Figure 11.8: The ratio Rnoise measured on the J3 and J7 Monte Carlo samples with a
unit cone.

The results after unfolding and scaling by Rnoise are shown in Figures 11.9(a) and

11.9(b).
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11.4 Bin-by-bin Correction

The TUnfold method is unstable as described in Section 9.4.3. A simpler bin-by-bin

method of unfolding has also been used to see if it can do better. The method guarantees

positivity and does not suffer the same instability as TUnfold.

The ratio (“truth” pions)/(raw measured level) is measured as a correction factor,

using reconstructed level Monte Carlo. This is then applied to the raw measured ‘data’

(in practice reconstructed level Monte Carlo). This way noise (including non-pions),

acceptance and migration are corrected for in a single step.

To test the method 90% of the available Monte Carlo events are used to measure

the correction vector and the remaining 10%, representative of typical data samples, are

corrected as pseudo-data, see Figure 11.10. The corrected “data” results are consistent
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Figure 11.10: The fragmentation function measured with unit cone at the raw measured
level using Anti-kT jets as input as a percentage of the truth pion fragmentation function,
measured with Pythia (J3) Monte Carlo. Also included is the bin-by-bin corrected result.

with the truth values within statistical uncertainties. The bin-by-bin unfolding is more

stable than the TUnfold method. However the errors are suspiciously small.
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xp Efficiency Purity
Anti-kT TRAPS Anti-kT TRAPS

0≤ xp <0.02 94% 92% 96% 96%
0.02≤ xp <0.05 86% 83% 85% 81%
0.05≤ xp <0.1 83% 78% 81% 76%
0.1≤ xp <0.2 85% 80% 81% 76%
0.2≤ xp <0.3 75% 69% 72% 63%
0.3≤ xp <0.4 65% 60% 64% 54%
0.4≤ xp <0.5 57% 53% 55% 44%
0.5≤ xp <0.7 67% 66% 68% 54%
0.7≤ xp ≤1.0 58% 75% 59% 42%

Table 11.1: Efficiencies and purities in the chosen analysis intervals using the respective
parton estimators at low transverse momentum (J3 Monte Carlo). Statistical errors are
well below the 1% level.

xp Efficiency Purity
Anti-kT TRAPS Anti-kT TRAPS

0≤ xp <0.02 99% 98% 99% 100%
0.02≤ xp <0.05 91% 90% 89% 87%
0.05≤ xp <0.1 81% 81% 81% 79%
0.1≤ xp <0.2 69% 70% 72% 70%
0.2≤ xp <0.3 42% 42% 45% 43%
0.3≤ xp <0.4 27% 27% 28% 26%
0.4≤ xp <0.5 19% 19% 17% 16%
0.5≤ xp <0.7 25% 26% 16% 16%
0.7≤ xp ≤1.0 58% 60% 4% 4%

Table 11.2: Efficiencies and purities in the chosen analysis intervals using the respective
parton estimators at high transverse momentum (J7 Monte Carlo). Statistical errors are
well below the 1% level.

11.5 Measured Level xp Bin Efficiencies and Purities

The efficiencies and purities in the chosen xp analysis intervals, measured as defined in

Section 9.3 but now using reconstructed tracks within a unit cone about the reconstructed

jet or parton estimator (η, φ) position are shown in Tables 11.1 and 11.2 at extreme

values of the hard scale. As before, quarks have been selected for the matched parton.

Acceptance losses are now a consideration, for example, a truth particle which was in the

signal cone may no longer be after the reconstruction, i.e. directional resolution of the

tracks is now an issue, though, as before, directional resolution of the jets is absorbed in

the radial dependence.

Migration of xp values now occurs due to mis-estimation of the parton and/or the track

momenta. Measurement of track momenta and the inputs to the exterior jet algorithm

introduces an additional possible cause of calculated values of xp which are unphysically
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larger than unity. Any such calculated values (which amount to less than 1% of entries

in the highest xp bin) are dealt with in the same fashion, i.e. by setting their value to be

0.999. At worst, this still improves the resolution.

Low xp values (from low momenta, well resolved tracks in the numerator) are better

resolved at larger jet momenta, where calorimeter resolution is also better to improve the

denominator also. Migration into the higher xp intervals remains the dominant problem

and is most severe at high pT , in the top four xp bins, where track momentum uncertainty

is largest.

11.5.1 Measured vs Truth Efficiencies and Purities

Referring to Tables 11.1 and 11.2 and the truth equivalents Tables 9.2 and 9.3, at low pT

the efficiencies and purities are approximately 4% worse at the measured level than at the

truth level in the lowest xp bins, and approximately 20% worse in the mid-higher bins,

where tracking resolution is a problem. The high pT lowest xp efficiencies and purities are

only decreased by approximately 1% at the measured level with respect to the truth level,

however there is a major degradation in the highest xp interval, efficiencies and purities

achieved are of the order of 90% at the truth level and approximately 20%(efficiency) and

5%(purity) at the measured level.

11.5.2 Anti-kT and TRAPS Comparison

Similar efficiencies and purities are achieved with both algorithms at high pT , however

at low pT the situation is slightly less straightforward. Higher values (approximately 5%

better) are achieved with the Anti-kT algorithm in all but the highest xp interval, where

the efficiency is 15% higher using TRAPS and the purity is significantly (40% vs 60%)

better doing so.

For efficiencies throughout, and for purities at the low momentum, the absolute per-

centage differences between estimators remain about the same as they were at the truth

level, but the smaller numbers at the reconstructed level mean bigger proportionate dif-

ference.

The Anti-kT algorithm remains to be the preferred choice, but the resolutions of both

parton estimators at the measured level are just sufficient for a measurement with the

same binning as used in previous measurements in all but the higher xp bins at high pT .
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Analysis with wider bins at high xp could be used to reduce uncertainties here whilst new,

narrower bins (e.g. as in the jet analysis, Figure 13.1) could be used at low xp with no

significant degradation.
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Chapter 12

Systematic Error in Resolution

Unfolding

12.1 Monte-Carlo Model Systematics

Unfolding necessarily depends on a model and the best way of validating a model is to

use an alternative model. Ideally, n different models (which describe the data) would

be tested, giving (n(n − 1)) independent combinations to be entered into a distribution,

the associated RMS would be used as the systematic uncertainty estimate. However,

reconstructing millions of events with many models would be unfeasible.

Thus to assess the systematic uncertainty associated with using “truth” information

to unfold the jet algorithm and tracking resolutions, one model (HERWIG) is used to

correct another (Pythia) and the results are compared to that model (Pythia) correcting

itself. If both models give a good description of the resolving process, then correcting one

model with the other should yield unfolded results compatible with those from the first

model correcting itself. If incompatibilities are observed when the above comparison is

made, any differences are interpreted to be due to a Monte Carlo systematic uncertainty.

The model which best describes the measured data would be chosen, and to be safe, an

error of ± the difference used as the uncertainty, since a further alternate model might

have produced a similar difference in the other direction.
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12.2 Model Differences

The model differences have been compared at the truth and measured levels (see Figures

12.1 and 12.2) for all parton interactions.
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Figure 12.1: The ratio of tracks (HERWIG/Pythia) at small and large hard scale (J3 and
J7 Monte Carlo) in the signal unit cone and background solid angle at the truth level.

A unit cone has been used, since this is sufficiently large to measure most of the

correlated tracks - the ratio of tracks sampled in Pythia/HERWIG should be the close to

that of optimal solution. At the truth level, there are on average more charged hadrons

in Pythia than HERWIG in the Dtotal sampling unit cone (see Figure 12.1), and less in

the corresponding background solid angles. At large hard scale (J7), there are 5% more

low xp tracks in Pythia than HERWIG in the Dtotal sampling unit cone and almost 25%

more in the highest xp range at the truth level.

At large hard scale (J7), but at the raw measured level (Figure 12.2), there are 7%

more low xp and 6% less mid-xp range tracks in Pythia. The differences are larger at

small hard scale (J3) and are smallest in the mid-xp range.

12.3 Systematic Uncertainties of Unfolding Techniques

TUnfold and bin-by-bin methods are used to correct for resolution. The systematic differ-

ences associated with using the Monte Carlo model to unfold with matrix and bin-by-bin
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Figure 12.2: The ratio of tracks (HERWIG/Pythia) at small and large hard scale (J3 and
J7 Monte Carlo) in the Dtotal unit cone at the measured level.

methods are shown in Table 12.1. The model differences as estimated using the two cor-

rectional methods are compatible at low xp - see Figures 12.3 and 12.4. The bin-by-bin

method has a smaller associated systematic uncertainties at the highest xp compared to

the TUnfold method, the latter of course involving separate noise removal.

The TUnfold differences, at low xp, are generally of the order 12%, 5% and 2%, for

the J3, J4 and J7 samples respectively. They are much larger in the higher xp bins, due

to low efficiencies and purities as seen in both correctional methods, though TUnfold is

clearly unstable, probably due to low efficiency and purity. Note the severely low purity

(∼5%) and low efficiency (∼40%) in the top bin in Table 9.3.

While the systematic error differences are large at the lowest pT , where the jet reso-

lution is poorest, they are largest at high pT and xp, where tracking resolution is poorest

and dependence on unfolding is largest.

Clearly the fragmentation algorithm is sensitive to the hadronisation differences be-

tween the two models. Some of the higher xp bins may be combined to achieve resolution

sufficient to make a data measurement feasible. Given that the raw measured level ratio

of Pythia/HERWIG is not compatible with unity in many of the xp bins, at least one of

these models must not be correctly describing nature.
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Systematic Uncertainty(Error on difference)
TUnfold Method Bin-by-bin Method

xp range J3 J4 J7 J3 J7
0≤ xp <0.02 -12(±3)% +9(±1)% +2(±1)% +6(±1)% +4(±1)%

0.02≤ xp <0.05 +16(±1)% +5(±1)% +1(±1)% +10(±1)% +2(±1)%
0.05≤ xp <0.1 +9(±1)% +5(±1)% +1(±1)% +8(±1)% +1(±1)%
0.1≤ xp <0.2 +13(±2)% +7(±1)% -1(±1)% +9(±1)% -1(±1)%
0.2≤ xp <0.3 +13(±4)% +6(±2)% -7(±3)% +11(±3)% -3(±1)%
0.3≤ xp <0.4 +20(±7)% +2(±5)% -4(±12)% +10(±4)% -3(±1)%
0.4≤ xp <0.5 +11(±8000)% +3(±8)% -9(±63)% +15(±6)% -4(±2)%
0.5≤ xp <0.7 +18(±13)% +3(±9)% -32(±45)% +28(±8)% -6(±2)%
0.7≤ xp ≤1.0 +48(±67)% +28(±19)% +322(±175)% +17(±15)% -25(±2)%

Table 12.1: Systematic uncertainties due to the Monte Carlo Model. The systematic
uncertainty quoted is the difference of the subtraction of the Pythia corrected result from
the HERWIG corrected result.
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cone, corrected by the bin-by-bin and noise removal/unfolding methods with correctional
vectors/matrices measured with HERWIG, at small hard scale (J3 Monte Carlo).
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cone, corrected by the bin-by-bin and noise removal/unfolding methods with correctional
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The errors associated with the instabilities of the TUnfold method are being accounted

for twice in the present comparison of Pythia unfolded by Pythia, to Pythia unfolded with

HERWIG. It is argued that this gives an overestimation of the systematic uncertainty. In

an attempt to measure a smaller - more fair estimate, a comparison of Pythia truth to

Pythia unfolded with HERWIG is done. The resulting quantified model differences are

show in Table 12.2. Some over estimation of this error is removed from the systematic

uncertainties estimation by comparing Pythia unfolded with HERWIG to Pythia truth.

Systematic Uncertainty(Error on difference)
TUnfold Method Bin-by-bin Method

xp range J3 J7 J3 J7
0≤ xp <0.02 -12(±3)% +2(±1)% +8(±1)% +3(±1)%

0.02≤ xp <0.05 +16(±1)% +1(±1)% +8(±1)% +2(±1)%
0.05≤ xp <0.1 +9(±1)% +1(±1)% +7(±1)% +1(±1)%
0.1≤ xp <0.2 +13(±2)% -1(±1)% +8(±1)% -1(±1)%
0.2≤ xp <0.3 +13(±4)% -7(±3)% +11(±1)% -3(±1)%
0.3≤ xp <0.4 +20(±7)% -4(±12)% +9(±2)% -3(±1)%
0.4≤ xp <0.5 +11(±8000)% -9(±63)% +15(±3)% -4(±1)%
0.5≤ xp <0.7 +18(±13)% -32(±45)% +27(±3)% -6(±1)%
0.7≤ xp ≤1.0 +48(±67)% +322(±175)% +22(±7)% -26(±2)%

Table 12.2: Systematic uncertainties due to the Monte Carlo Model. The systematic
uncertainty quoted is the difference of the subtraction of the Pythia truth result from the
HERWIG corrected result.
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Systematic Uncertainty(Error on difference)
TUnfold Method Bin-by-bin Method

xp range J3 J7 J3 J7
0≤ xp <0.02 -18(±1)% +1(±1)% +8(±1)% +3(±1)%

0.02≤ xp <0.05 +12(±1)% +1(±1)% +8(±1)% +2(±1)%
0.05≤ xp <0.1 +7(±1)% 0(±1)% +8(±1)% +1(±1)%
0.1≤ xp <0.2 +8(±1)% +1(±1)% +8(±1)% -1(±1)%
0.2≤ xp <0.3 +9(±3)% +5(±2)% +12(±1)% -2(±1)%
0.3≤ xp <0.4 +23(±5)% +29(±10)% +13(±2)% -1(±1)%
0.4≤ xp <0.5 -3(±9)% +72(±30)% +12(±3)% -2(±1)%
0.5≤ xp <0.7 +25(±9)% +46(±38)% +22(±3)% -4(±1)%
0.7≤ xp ≤1.0 +15(±20)% +80(±80)% +7(±7)% -27(±2)%

Table 12.3: Systematic uncertainties due to the Monte Carlo Model. The systematic
uncertainty quoted is the difference of the subtraction of the Pythia truth result from the
weighted HERWIG corrected result.

However the differences and their associated errors remain to be large.

The two models don’t describe one another, as demonstrated in Figures 12.1 and

12.2. In a further attempt for a smaller, more suitably measured systematic uncertainty,

the failure of the HERWIG ‘model’ to describe the Pythia ’data’ is addressed. As an

alternative to the impractical method to address such differences, namely re-tuning the

Monte Carlo, instead HERWIG is weighted to describe Pythia when filling the unfolding

tools. Consequently, the differences and associated errors are slightly reduced, see Figure

12.3. The largest improvement is at high xp, where the differences were largest.

12.4 Comparison of Uncertainties

It is not completely understood why a more crude method ought to have smaller associated

uncertainties. The bin-by-bin method clearly has more consistency within errors from

bin to bin. If the TUnfold package had been used with increased statistics, perhaps its

behaviour would be more stable and the more sophisticated method might have smaller

associated errors. The larger uncertainties are a sign of over-parameterisation or lack of

constraint of, for example, positivity.
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Chapter 13

Jet Fragmentation Comparison

The pion content correcting factor may be relaxed to provide the inclusive charged hadron

results of the parton fragmentation algorithm at the measured-unfolded level to compare

with those from the ATLAS jet fragmentation paper [16], see Figure 13.1. The jet frag-

mentation measurement is longitudinal, as defined in Section 5.1, this would give a softer

function, since xL < xp. For these comparison purposes, all partons are included and

a similar jet selection is used, (400-500 GeV pT of R = 0.6, Anti-kT algorithm, selected

from the J5 Pythia reconstructed Monte Carlo). The same track and event selections

are applied in the present study, and “data” corrected (using TUnfold) as previously

discussed.

The binning scheme used in the present study is motivated by comparison (at low

hard scale) to relevant data, as in the previous section. Taking into account the measured

efficiencies and purities (Section 11.5), finer binning would be used in a data measurement

at low xp, where average multiplicity is large and resolution is sufficient. To measure with

reasonable uncertainty given the low efficiency and purity at high pT and xp, more coarse

binning (than here) would be used.

There appears to be a statistically significant slightly sharper fall at low xp (FAPS),

which is contrary to that which would be expected given the differences of xp and xL,

but the agreement of the jet and parton functions is remarkable, even in the lowest xp

range, where uncorrelated background is considerable and a large angle sampling cone is

required to measure all of the hadrons correlated with a parton’s direction, illustrated in

Figure 13.2. It may be seen in the figure, that measuring the total number of hadrons

confined to a jet cone of R=0.6, without background subtraction, gives a fortuitously
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Figure 13.1: Official ATLAS jet fragmentation function (400-500 GeV) data measurement
and FAPS parton fragmentation function (400-500 GeV reconstructed Monte Carlo).

good estimate of the total number of correlated signal hadrons.

This might be the reason for the popular use of the (R=0.6) Anti-kT algorithm jets.

Of course, in using such a basic definition for a fragmentation measurement, no claim of

parton measurement could be justified.
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Figure 13.2: The (FAPS) measured fragmentation function as a function of measuring
angle, R, in the range 0 < xp ≤ 0.02, at the Dtotal, Dsignal and Dsignal,extrapolated levels.
The optimum solution is also shown.
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Chapter 14

Preparation For Data Analysis

In the first section of this chapter the selection of well measured jets but unbiased which

may later be unfolded for resolution is demonstrated. Then, in the next section, data

selection techniques which could be used to measure the fragmentation function in data

are described.

Data collected in a low efficiency range of a trigger might be biased or not well

measured. Even in the optimally efficient transverse momentum range of a jet trigger,

calorimeter noise, for example, may result in fake and poorly resolved jets. Such jets

could be simulated in Monte Carlo for unfolding purposes but removal from data results

in smaller uncertainties.

14.1 Event Cleaning

Finite measurement precision gives all measured objets associated resolutions and com-

ponent malfunction is inevitable in such a vast measuring apparatus as ATLAS. Cuts

are used to select runs of high quality and then to form a dividing line between those

measured objects which are reasonably well resolved from those too hopeless to unfold,

and thus must be compensated for with acceptance corrections. In this chapter, selection

methods are applied to jets in ATLAS data and Monte Carlo. The experience was gained

in summer 2010 when selection cuts that were to be used in an early paper on jet cleaning,

[48] were validated. The work shows practical examples of bad measurements and how

well measured key variables are used to choose appropriate selection cuts.
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14.1.1 Data Quality

The first stage of selecting data which is believed to be well measured involves choosing

“good” runs and luminosity blocks. These are data taking periods identified by the data

quality team, which are defined according to whether some possible known issues are

expected to have degraded the integrity of collected data. The following were taken into

account in this early phase of data collection by ATLAS;

• Validity of physics run and luminosity block verified by data quality team.

• Trigger was functional.

• “Stable beams” declared.

• Solenoid and toroid magnets on and stable.

• All LAr, Tile and endcap calorimeters performed without major problems.

14.1.2 Collision Event Selection

In the next stage of filtering, “collision events” in which two beam protons undergo a

head-on inelastic collision, are selected. Known backgrounds to collision events are beam

gas collisions, beam halo events, and a small contribution from cosmic ray events. Beam

gas collisions are collisions between a beam proton and residual nuclei within the beam

pipe. Beam halo “events” are caused by pions and muons travelling in the beam halo,

originating upstream in either direction from ATLAS, for example due to interaction with

beam collimators.

Beam-backgrounds are removed using the assumption that collision events are ex-

pected to produce activity in both sides of the LAr endcap and forward calorimeters with

similar timings, such that they are consistent with particles originating from the detec-

tor centre. Beam-backgrounds originate from outside ATLAS and will therefore produce

signal in one side before the other, with significant timing difference. They are removed

from the collision events by requiring the following;

• A trigger with signal in the beam pickup timing devices (located either side of AT-

LAS 175 m along the beam pipe) and at least one minimum bias trigger scintillator

hit on both sides of ATLAS.
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• At least one vertex per event, with at least 5 tracks of pT > 150 MeV

• The mean arrival times of particles in each side of the end-cap calorimeter inner

wheels and the forward calorimeters are considered. The mean side-arrival time is

the average time of all particles arriving in that side. The difference in the mean

arrival time of the two sides, δtime, is considered. The distribution of δtime has a

peak at zero, and secondary peaks at ±30(±23) ns. The selection requires δtime <

5 ns for the LAr ECAL, and δtime < 10 ns for the minimum bias trigger scintillator.

14.1.3 Jet Selection

The Anti-kT algorithm was then run over the surviving events with a resolution parameter,

∆R, of 0.6 (0.4 in the note [48]) and jets of pT greater than 20 GeV (10 GeV in the note),

measured at the EM scale are accepted in this study.

After the selection of collision events this minimum bias sample still mainly consists of

poorly measured and fake jets. Poorly measured jets are largely due to out-of-time energy

depositions, and jets from real energy depositions, but where the energy measurement is

of low confidence due to not well calibrated sections of the calorimeter. Fake jets are due

to poor LHC beam conditions, hardware problems, and coincidental cosmic ray showers.

Jet cleaning cuts are used to address only jets from fake or out-of-time energy depo-

sitions. The following three criteria define fake or mis-reconstructed jets and each are

accounted for with a dedicated selection on one or two related cleaning observables;

• Sporadic noise bursts in the Hadronic calorimeter EndCap (HEC). Removed when

both the fraction of the jet energy in the HEC, labeled fHEC , is greater than 80%

and a small number of cells, labeled n90, in the HEC whose sum contains at least

90%, of the jet energy, i.e. fHEC > 0.8 and n90 ≤ 5.

• Noise bursts in the Electromagnetic Calorimeter (ECal). Removed by excluding

jets with both the fraction of jet energy in the ECal, labeled fEM , greater than 95%

and the fraction of jet energy is measured in bad quality calorimeter cells, labeled

fquality, greater than 80 %, i.e. fEM > 0.95 and fquality > 0.8.

• “Jets” reconstructed with large out-of-time energy deposits with respect to collision

time, due to e.g. cosmic rays. Removed by demanding that the energy-squared-
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weighted cell time of a jet, labeled tjet, is within 50 ns of the collision, i.e. |tjet| <

50 ns.

Figures from the ATLAS note [48] are included alongside the jet observable distributions

produced for validation in this study. Those from the note are measured with the 7 TeV 0.3

nb−1 (April 2010) data-set and compared with the ATLAS minimum bias (Pythia MC09

tune) Monte Carlo, and those from the present validation, are measured with similar data

differing by being reprocessed in April 2010 and Monte Carlo, see Figures 14.1-14.6. To

observe the effect of a cut on each cleaning observable the other two independent selection

criteria are applied. The Monte Carlo jet samples are normalised to the data.

Figure 14.1: The n90 observable in data and Monte Carlo for the inclusive jet distribution
after application of jet timing and ECal noise cuts. The Monte Carlo distribution is shown
before (dashed line) and after sporadic noise bursts in the HEC are removed by cutting
on the fHEC variable. Results from ATLAS note (left) and from this study (right).

For jets with pT > 20 GeV, the percentage of the defined mis-reconstructed jets is 5%.

The majority (99%) of mis-reconstructed jets are from sporadic out-of-time HEC noise

bursts, which leave energy depositions in only a few cells. These jets produce the peaks

in the data at n90=1 and fHEC >0.8, which are not present in the Monte Carlo, see the

dashed lines in the n90 and fHEC distributions which indicate jets with fHEC > 0.8 and

n90 ≤ 5 respectively. Fake jets from noise bursts in the ECAL are rare, at the sub-percent

level, illustrated by the good agreement of Monte Carlo and data in the fEM observable

(Figure 14.4).

The numbers of events remaining in the sample after applying the selections and

cuts are shown in Table 14.1. The transverse momentum spectra for surviving jets after
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Figure 14.2: The fHEC observable in data and Monte Carlo for the inclusive jet distri-
bution after application of jet timing and ECal noise cuts. The Monte Carlo distribution
is shown before (dashed line) and after single cell jets are removed by cutting on the n90
variable. Results from ATLAS note (left) and from this study (right).

successive application of the cleaning cuts are shown in Figure 14.6. Almost all jets in

the tail of the distribution are rejected.

Number of Events After Collision Cut After Jet Cleaning

Data - Minimum Bias 30× 106 6.8× 106 106× 103

ATLAS (J0-J2) Monte Carlo 250× 103 210× 103 5.6× 103

Table 14.1: The number of events in data and Monte Carlo in the present study after
successive stages of the jet sample selection.

The J0-J2 MC analysed in this study was generated in the parton CMS transverse

momentum range 8 < P̂T parton < 70 GeV, rather than the complete minimum bias value

of >2.5 GeV. This is believed to account for some differences between the ATLAS plots

and those reproduced in this study. Also the dataset in the present study was only a small

proportion of that used in the ATLAS note. Further differences are expected since the

data analysed in the present study had been reprocessed in April, those in the ATLAS

note had not. The significant differences in Figure 14.1 are not expected, and further

work would be needed to establish the cause.

Note that jets which would be measured in the proposed fragmentation analysis would

be much cleaner, since they are of much higher transverse momenta than those studied in

this section. Note also that this study used minimum bias data, meaning that “collision

events” must be selected among the triggered events, this is not required when using a
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Figure 14.3: The fquality observable in data and Monte Carlo for the inclusive jet distri-
bution after application of single cell and jet timing noise cuts. Results from ATLAS note
(left) and from this study (right).

jet trigger, where events are almost certainly from collisions.

14.2 Fragmentation Data Analysis Model

There are many inverse femtobarns of recorded jet data available. This section details how

data would be selected for a fragmentation analysis. In addition to the track selections

described in Chapter 11, this will involve selecting efficiently triggered events containing

central jets, and forming equivalent Monte Carlo samples to unfold the data, and for

comparison purposes.

14.2.1 Trigger

The selection of data events should be based on an observable which is well-measured and

efficiently related to the trigger variable, such that the data could be included with known

high efficiency and thus less bias. For this reason, and to lessen Monte Carlo wastage,

events are selected in defined pT ranges according to the (offline) reconstructed transverse

momentum of the highest pT jet in each event, using triggers of the form “at least one

Anti-kT jet with greater than some pT ”. Level 1 calorimeter (missing transverse energy)

trigger efficiencies have been studied in data as part of an ATLAS service task, however

since not directly relevant they are not included in this thesis. Effects of trigger turn

on curves, such as bias, would be avoided by only selecting events collected with a given

trigger, where that trigger had reached full efficiency.
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Figure 14.4: The fEM observable in data for the inclusive jet distribution after application
of single cell and jet timing noise cuts. Results from ATLAS note (left) and from this
study (right).

14.2.2 Event Selection

Exclusive data samples will be selected each from only one trigger. If an event passes

more than one trigger, it will only be included in the sample corresponding to the highest

pT (optimally efficient) trigger it passed. Removing such events spoils inclusivity.

To measure with large angle sampling cones without acceptance losses (due to detector

geometry), all selected events will be further required to have the two highest pT jets both

with |ηjet| <1.0.

14.2.3 Monte Carlo Concatenation

The Monte Carlo samples used thus far are defined according to the transverse momentum

of the outgoing partons in the centre of momentum system, p̂T,parton, at the truth level. As

stated, data samples will be defined in terms of the (offline) reconstructed jet transverse

momentum, pT,jet, and so the available Monte Carlo samples will be concatenated to have

similar spectra in the same variable so that unfolding tools trained on them are relevant.

Events will be combined from more than one sample, see Diagram 14.7, appropriately

weighted by σ/N , where σ is the (Monte Carlo supplied) cross section corresponding to

the N generated events being analysed. To avoid a possible bias to the concatenated

Monte Carlo samples due to the difference in pT,jet and p̂T,parton values, jets with pjet

values in the J3 pT range should be included from the J2 sample.
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Figure 14.5: The jet time in data for the inclusive jet distribution after application of
single cell and ECal noise cuts. Results from ATLAS note (left) and from this study
(right).

14.2.4 Comparing Monte Carlo and Data

Final results will be plotted as a function of the hard scale observable (
√
−t) calculated

in the appropriate Monte Carlo sample in the interests of both the fundamental nature of

this variable and for comparison with existing DIS data. The cross section per event will

be measured in data and Monte Carlo and used to weight events (data events weighted by

S/L, where S and L are the prescale and luminosity, respectively), such that raw spectra

(e.g. pTjet) in addition to normalised spectra may be compared.

It is noted at this stage that, while the Monte Carlo used to unfold a data sample

should ideally have an identical pT selection, small differences will not significantly affect

the accuracy of the results, since the evolution of the function being measured varies only

with the logarithm of the hard scale.

Since the function is normalised by the number of partons measured, no cross section

is measured, and there is only slow variation of the fragmentation function with the

logarithm of the hard scale, absolute inclusivity, i.e. that every event ends up in one of

the concatenated samples, is not crucial, and may be relaxed within existing errors.
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Figure 14.6: pT of the inclusive jet distribution after all jet cleaning cuts. The difference
above 100 GeV is due to limited available Monte Carlo events. Results from ATLAS note
(left) and from this study (right).

Figure 14.7: Diagram showing how MC samples will be concatenated based on transverse
momentum values of jets, pT,jet, reconstructed with the (R = 0.6) Anti-kT algorithm from
available J* samples, which are defined in terms of p̂T,parton.

121



Chapter 15

Conclusions

A review of the Standard Model of particle physics has been presented with emphasis on

light quark QCD, and existing data on light quark fragmentation from e+e− annihilation

and deep inelastic scattering experiments.

Methods of modelling hadronic collisions, including perturbative parton showering

techniques and non-perturbative models for hadronisation have been discussed and a brief

description has been given of particle measurement processes using the ATLAS detector

as an example.

The feasibility of measuring the partonic fragmentation function in large hadron col-

lider conditions has been tested and a novel method (FAPS) to do so has been developed.

The Anti-kT and TRAPS algorithms have been used to provide initial partonic mo-

mentum estimates, which in turn scale the hadronic momenta. Minimal dependence on

the specific exterior jet algorithm chosen has been demonstrated, and it has been shown

that parton estimator resolution may be unfolded using bin-by-bin and matrix methods.

Tracking and calorimetry measurement resolution has also been unfolded simultaneously

within the same processes. The two jet algorithms have been compared for their partonic

momentum resolutions: the Anti-kT algorithm has better resolution at low momentum,

however they are competitive at high momentum at the measured level.

Examination of hadronic profiles about the parton at Monte Carlo truth level has

shown that there is an approximately uniform uncorrelated background from ISB and

underlying event. There is also an additional uncorrelated background from pile-up.

Background has been estimated on an event-by-event basis, in regions away from jets.

At low xp and at the lowest hard scales tested, background is almost twice as large as
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signal. However after subtraction there is a satisfactory and expected plateau behaviour

and good agreement with previous fragmentation data in the hard scale overlap region

(Figure 15.1).

A variable radius cone sampling method with background subtraction has been used

to count correlated charged pions with Monte Carlo reliance for correction vectors. The

varying radius technique provides a way of coping with any bias or poor partonic direc-

tional resolution of jet algorithms. Extrapolation techniques have been used to estimate

total numbers of correlated pions, where measurement with a large enough sampling cone

is not viable, for example, due to proximity to the fiducial region or to other jets.

A novel method to extract information on transverse fragmentation based on a jet

collimation parameter has been demonstrated, which is in principle sensitive to scaling or

scaling violations.

The fragmentation algorithm has been tested over an order of magnitude in hard scale

(∼100 GeV → 1 TeV) with two standard ATLAS reconstructed level Monte Carlos and

using standard data quality selection cuts. Notably these Monte Carlos have different

hadronisation models. The systematic error associated with unfolding data has been

estimated by the difference observed when using one of the models to unfold the “data”

from the other.

The algorithm is limited at the highest momentum by significant tracking uncertainty

and as a result, efficiencies and purities are as low as 5%. Wider binning may be used

here to compensate, while much narrower binning than DIS/e+e− may be used at low mo-

mentum, where statistics are enormous, acceptance is high and tracks are well-measured.

There are instabilities associated with the matrix unfolding method. The use of a much

larger Monte Carlo sample might reduce errors due to matrices which are sparsely popu-

lated at high xp.

Results of the algorithm at the reconstructed level have been compared to ATLAS jet

fragmentation data. Compatibility is observed, however the limitations of using a fixed

cone are highlighted through the observable differences.

Selections have been applied to ATLAS data to gather events and objects suitably

resolved such that unfolding may be done. A description has been given of how events

would be selected from available Monte Carlo and data for an unfolded fragmentation

data measurement. Such measurement could support the concept of quark universality
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Figure 15.1: The quark to charged hadron fragmentation function calculated with the
FAPS method from LHC Monte Carlo presented alongside previous quark to charged
hadron fragmentation data.
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by establishing propagator invariance, and enable comment on the disagreement of e+e−

and DIS quark fragmentation data.

For comparison, the correction to pions was relaxed and the quark to charged hadron

fragmentation function calculated with the FAPS method, using Pythia reconstructed

Monte Carlo as “data” and HERWIG Monte Carlo for the bin-by-bin correction, is shown

in Table 15.1 and alongside previous quark to charged hadron fragmentation data (de-

scribed in Section 6.4) in Figure 15.1.

The pion fragmentation function can be used more suitably (for the reasons given in

Section 11.3) than the charged hadron fragmentation function, to observe whether or not

scaling has been violated. The quark to charged pion fragmentation function calculated

with the FAPS method, using Pythia reconstructed Monte Carlo as “data” and HERWIG

Monte Carlo for the bin-by-bin correction is shown in Table 15.2.

There is agreement of the fragmentation function as calculated by this algorithm with

previous data, thus propagator invariance is at least modelled in the Monte Carlo, as are

scaling violations, or a softening of the fragmentation function with increasing hard scale,

but only, presently, within a systematic error.

Realistic statistical uncertainties given the presently available 20 fb−1 of ATLAS data

are included in Tables 15.1 and 15.2, they are not significant apart from at the very highest

momenta, i.e. xp ≥ 0.2 for the J7 sample. A systematic Monte Carlo model uncertainty

of 10% is included for the first seven xp bins, and one of 25% is included in the two highest

bins. This is the most significant error in all of the xp intervals excluding the lowest, where

there is much background, extrapolation is most necessary, and corresponding errors are

considerable, and at the highest momenta where statistical uncertainty is large. The

background error could be reduced by suitable Monte Carlo retune, or re-weighting to

reproduce data, and with greater confidence the extrapolation error could be reduced by

around half from the present estimate of over the entire extrapolation range.

15.1 Outlook

Background is not an insuperable problem preventing parton fragmentation measurement

in hadron collisions. The LHC is presently operating at a centre-of-mass energy of 8 TeV

and the parton fragmentation algorithm would be tested at this energy in preparation
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for data analysis. The cross section for events at the upper limit of the hard scale range

considered is larger at 8 TeV. The cross section for events at the lower hard scale limit is

also larger, however an increased prescale further reduces the proportion of such events

recorded. More background would be produced in a given hard scale range, however this

is not thought to be a point of concern due to the ability to cope with large proportionate

background demonstrated in this thesis.

Due to the relative stability, simplicity and guarantee of positivity, the bin-by-bin

method of unfolding would be the preferred choice over the TUnfold package for a mea-

surement in data. Such a measurement could then be used to predict charged pionic or

hadronic multiplicities from hard scattered partons in hadron collisions using well known

partonic cross sections. The jet mass definition may be useful by enabling a theoretical

prediction which could be compared to experimental results.

Given the similarity of the parton and the jet fragmentation function, comparison

where possible over the entire hard scale range considered would be performed in future.

This would enable comment on whether the jet function measured at ATLAS is in fact

the same as that of the parton.
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MC Sample xp Dsignal
δstat.
Dsignal

δbackground

Dsignal

δextrap.
Dsignal

δmodel
Dsignal

δtotal
Dsignal

J3 0> xp ≥0.02 198.3 1% 26% 16% 10% 32%
0.02> xp ≥0.05 81.5 1% 2% 24% 10% 26%
0.05> xp ≥0.1 30.5 1% 1% 5% 10% 11%
0.1> xp ≥0.2 9.69 1% 1% 4% 10% 11%
0.2> xp ≥0.3 3.46 1% 1% 2% 10% 10%
0.3> xp ≥0.4 1.52 1% 1% 1% 10% 10%
0.4> xp ≥0.5 0.73 1% 1% 1% 10% 10%
0.5> xp ≥0.7 0.26 1% 2% 4% 25% 25%
0.7> xp ≥1.0 0.04 1% 4% 0 25% 25%

J4 0> xp ≥0.02 390.8 1% 8% 8% 10% 15%
0.02> xp ≥0.05 91.3 1% 1% 7% 10% 12%
0.05> xp ≥0.1 29.0 1% 1% 4% 10% 11%
0.1> xp ≥0.2 9.49 1% 1% 2% 10% 10%
0.2> xp ≥0.3 3.16 1% 1% 1% 10% 10%
0.3> xp ≥0.4 1.33 1% 1% 1% 10% 10%
0.4> xp ≥0.5 0.61 1% 1% 1% 10% 10%
0.5> xp ≥0.7 0.20 1% 1% 4% 25% 25%
0.7> xp ≥1.0 0.023 1% 3% 0 25% 25%

J5 0> xp ≥0.02 637.1 1% 20% 29% 10% 37%
0.02> xp ≥0.05 96.7 1% 1% 3% 10% 11%
0.05> xp ≥0.1 29.8 1% 1% 3% 10% 10%
0.1> xp ≥0.2 9.23 1% 1% 2% 10% 10%
0.2> xp ≥0.3 3.01 1% 1% 1% 10% 10%
0.3> xp ≥0.4 1.27 1% 1% 1% 10% 10%
0.4> xp ≥0.5 0.59 1% 1% 1% 10% 10%
0.5> xp ≥0.7 0.18 1% 1% 3% 25% 25%
0.7> xp ≥1.0 0.017 1% 3% 0 25% 25%

J6 0> xp ≥0.02 718.5 1% 11% 25% 10% 29%
0.02> xp ≥0.05 95.6 1% 1% 2% 10% 11%
0.05> xp ≥0.1 29.9 1% 1% 2% 10% 10%
0.1> xp ≥0.2 8.98 1% 1% 1% 10% 10%
0.2> xp ≥0.3 2.89 1% 1% 1% 10% 10%
0.3> xp ≥0.4 1.19 1% 1% 1% 10% 10%
0.4> xp ≥0.5 0.54 2% 1% 1% 10% 10%
0.5> xp ≥0.7 0.16 2% 1% 2% 25% 25%
0.7> xp ≥1.0 0.014 5% 2% 0 25% 26%

J7 0> xp ≥0.02 891.3 1% 7% 12% 10% 17%
0.02> xp ≥0.05 98.7 3% 1% 2% 10% 11%
0.05> xp ≥0.1 29.7 4% 1% 1% 10% 11%
0.1> xp ≥0.2 8.77 5% 1% 1% 10% 11%
0.2> xp ≥0.3 2.80 9% 1% 1% 10% 14%
0.3> xp ≥0.4 1.14 14% 1% 3% 10% 18%
0.4> xp ≥0.5 0.52 20% 1% 2% 10% 22%
0.5> xp ≥0.7 0.16 22% 1% 1% 25% 33%
0.7> xp ≥1.0 0.013 47% 2% 0 25% 53%

Table 15.1: The quark to charged hadron fragmentation function and percentage errors
calculated with the FAPS method.
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MC Sample xp Dsignal
δstat.
Dsignal

δbackground

Dsignal

δextrap.
Dsignal

δmodel
Dsignal

δtotal
Dsignal

J3 0> xp ≥0.02 177.2 1% 45% 15% 10% 49%
0.02> xp ≥0.05 67.6 1% 3% 20% 10% 23%
0.05> xp ≥0.1 23.7 1% 1% 4% 10% 11%
0.1> xp ≥0.2 7.00 1% 1% 3% 10% 11%
0.2> xp ≥0.3 2.28 1% 1% 2% 10% 10%
0.3> xp ≥0.4 0.91 1% 1% 1% 10% 10%
0.4> xp ≥0.5 0.42 1% 1% 1% 10% 10%
0.5> xp ≥0.7 0.15 1% 2% 4% 25% 25%
0.7> xp ≥1.0 0.022 1% 4% 2% 25% 25%

J4 0> xp ≥0.02 317.16 1% 10% 0 10% 14%
0.02> xp ≥0.05 74.4 1% 1% 6% 10% 12%
0.05> xp ≥0.1 22.6 1% 1% 4% 10% 11%
0.1> xp ≥0.2 6.94 1% 1% 2% 10% 10%
0.2> xp ≥0.3 2.14 1% 1% 1% 10% 10%
0.3> xp ≥0.4 0.82 1% 1% 1% 10% 10%
0.4> xp ≥0.5 0.36 1% 1% 1% 10% 10%
0.5> xp ≥0.7 0.12 1% 2% 4% 25% 25%
0.7> xp ≥1.0 0.015 1% 4% 2% 25% 26%

J5 0> xp ≥0.02 498.9 1% 12% 11% 10% 19%
0.02> xp ≥0.05 79.0 1% 1% 3% 10% 10%
0.05> xp ≥0.1 23.2 1% 1% 2% 10% 10%
0.1> xp ≥0.2 6.81 1% 1% 1% 10% 10%
0.2> xp ≥0.3 2.08 1% 1% 1% 10% 10%
0.3> xp ≥0.4 0.81 1% 1% 1% 10% 10%
0.4> xp ≥0.5 0.34 1% 1% 1% 10% 10%
0.5> xp ≥0.7 0.11 1% 2% 1% 25% 25%
0.7> xp ≥1.0 0.013 1% 4% 1% 25% 25%

J6 0> xp ≥0.02 647.0 1% 10% 14% 10% 20%
0.02> xp ≥0.05 77.6 1% 1% 3% 10% 11%
0.05> xp ≥0.1 23.4 1% 1% 2% 10% 10%
0.1> xp ≥0.2 6.70 1% 1% 1% 10% 10%
0.2> xp ≥0.3 2.02 1% 1% 1% 10% 10%
0.3> xp ≥0.4 0.78 1% 1% 1% 10% 10%
0.4> xp ≥0.5 0.34 2% 1% 1% 10% 10%
0.5> xp ≥0.7 0.11 2% 1% 2% 25% 25%
0.7> xp ≥1.0 0.011 5% 2% 1% 25% 26%

J7 0> xp ≥0.02 742.8 2% 4% 9% 10% 14%
0.02> xp ≥0.05 79.7 3% 1% 2% 10% 11%
0.05> xp ≥0.1 23.2 4% 1% 1% 10% 11%
0.1> xp ≥0.2 6.58 5% 1% 1% 10% 11%
0.2> xp ≥0.3 1.98 10% 1% 1% 10% 14%
0.3> xp ≥0.4 0.76 15% 1% 3% 10% 18%
0.4> xp ≥0.5 0.33 21% 1% 2% 10% 24%
0.5> xp ≥0.7 0.11 24% 1% 2% 25% 35%
0.7> xp ≥1.0 0.011 50% 2% 0 25% 56%

Table 15.2: The quark to charged pion fragmentation function and percentage errors
calculated with the FAPS method.
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