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Abstract 

Catheter ablation complex or fractionated atrial electrograms (CFAE) may 

improve outcomes for persistent AF. However, it is unclear whether CFAE are 

important in maintaining AF or whether targeting of CFAE can be refined based 

on electrogram morphology or knowledge of the remodelling process.   

 

A detailed classification of CFAE was described. Assessment of 100 CFAE by 

visual inspection in real time correlated well with detailed offline measurement. 

 

Targeting of different CFAE morphologies in 20 patients with persistent AF 

caused cycle length prolongation only with ablation of certain CFAE 

morphologies. Therefore, targeting CFAE is not simply atrial de-bulking, certain 

CFAE morphologies are more important for maintaining AF. 

 

A computer model was established to simulate LA wall stress using a 3D 

reconstruction of the chamber from CT imaging. Electrophysiologic data was 

acquired in 19 patients in persistent AF and compared to simulated wall stress 

data. Peaks in wall stress were associated with areas of low voltage suggestive 

of focal remodelling. CFAE were not associated with peaks in wall stress or 

areas of remodelling. Wall stress did not determine whether ablation of CFAE 

caused cycle length prolongation. 

  

Long term outcome of catheter ablation for AF was good with little late 

recurrence. Outcome for persistent AF was improved by targeting CFAE in 

addition to pulmonary vein isolation and may reduce late recurrence. 
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1.1 Atrial Fibrillation in context 

 

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. The 

prevalence in adults has varied in large population based studies from 1.5-

6.2%,1 although a large cross sectional study of 18 000 subjects suggested the 

prevalence in adults was nearer 1%.2 The prevalence of AF increases with age 

affecting only 0.1% of those under 55 years of age, increasing to 4% of those 

aged over 65 years and  reaching 17% in those aged over 84 years.2, 3 The 

prevalence was slightly higher in men than women,2 and although these were 

predominantly Western Caucasian cohorts, data suggests a similar prevalence 

around the world.4 The lifetime risk of developing AF at the age of 40 was 

estimated from the Framingham study at 25%.5 With the demographic change 

its prevalence is expected to double over the next twenty five years.6 

 

Although the precise aetiology of AF is often unclear, population studies such 

as the Framingham study have shown that factors such as hypertension, 

diabetes, cardiac failure, or valvular heart disease are all associated with AF.7 

Other factors found to be associated with AF are obesity, sleep apnoea, chronic 

obstructive pulmonary disease, thyroid dysfunction, renal disease and 

ischaemic heart disease.8, 9  

 

AF causes a number of symptoms, most commonly palpitations, dyspnoea, 

fatigue, dizziness and pre-syncope which can be disabling in some cases. The 

presentation can range from discrete paroxysms of rapid palpitations in 

paroxysmal AF, to the insidious onset of breathlessness and fatigue in 

persistent AF, or in some cases may be an incidental finding in an 



21 

 

asymptomatic individual. The natural history of AF is thought to involve 

increasing frequency of AF paroxysms until AF becomes persistent,10 although 

this progression may occur less often in those without conditions promoting AF, 

so called ‘lone AF’.11  To reflect this progression, and also for practical 

purposes, AF has been categorised in recent guidelines:12 

 First diagnosed episode of AF 

 Paroxysmal AF - self-terminating and usually lasting < 48 hours, (although 

up to 7 days is allowed within the definition). 

 Persistent AF - when an episode of AF lasts > 7 days or requires 

cardioversion, either with medication or by direct current cardioversion. 

 Long-lasting persistent AF – where persistent AF has been present for ≥ 1 

year.  

 Permanent AF - when the patient and physician accept persistent AF as 

permanent. 

 

Although previously viewed as a fairly benign condition, the mortality and 

morbidity associated with AF is actually substantial. The incidence of stroke in 

AF is increased up to six fold, giving a crude stroke rate in mixed cohorts of 

approximately 5% per annum.7, 13 Even after adjusting for other comorbidities, 

AF is associated with a 2 fold increase in annual mortality.7 In one large 

longitudinal study which followed up 15 000 patients for 20 years, AF was 

associated with an increased risk of cardiovascular events (death or 

hospitalization) with a relative risk ratio (RR) of 3.0, fatal or nonfatal stroke (RR 

3.2) and heart failure (RR 3.4).14 The direct cost to the NHS associated with AF 

doubled in the 5 years from 1995, accounting for 1% of the total NHS budget by 
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2000. 6 With the demographic change and increasing prevalence of AF this 

figure is expected to continue rising. 

 

1.2 Management of AF 

Although the need for risk stratification and early decisions regarding 

anticoagulation are universally accepted, these concepts are not related to the 

subject matter of this thesis and hence are not reviewed here. Other aspects of 

management such as rate control versus rhythm control, which antiarrhythmic 

drugs (AADs) to use, the place of cardioversion and catheter ablation are all still 

controversial. The AFFIRM study and others initially showed no benefit in 

pursuing a rhythm control strategy over rate control in terms of symptoms or 

mortality.15-17 Treatment was predominantly pharmacological however, and was 

not very successful in maintaining sinus rhythm. At any given time point during 

the AFFIRM study approximately a third of the rate control group were in sinus 

rhythm compared to two thirds in the rhythm control group, leading some to 

conclude this was a test of a treatment strategy rather than comparing the effect 

of sinus rhythm restoration to continued AF.  

 

Subsequent re-analysis of the AFFIRM study has shown that in those achieving 

sinus rhythm mortality was halved, although this effect was effectively negated if 

ongoing antiarrhythmic drug (AAD) therapy was used.18 As a post-hoc finding 

this association between sinus rhythm and improved mortality must be 

interpreted with caution. This relationship has been demonstrated subsequently 

in some studies,19, 20 but not others.21 The potential for AADs to increase 

mortality has been documented in several high profile trials such as CAST and 

SWORD,22, 23 but has also been shown in other cohorts of patients taking AADs 
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for AF such as in the Stroke Prevention in AF (SPAF) study.24 The toxicity of 

AADs combined with their limited efficacy in the treatment of AF may be 

obscuring any symptomatic or prognostic advantage in pursuing sinus rhythm.  

 

More definitive methods of rate control and rhythm control have evolved utilising 

catheter ablation techniques. A so called ’pace and ablate’ approach involves 

implantation of a permanent pacemaker followed by catheter ablation of the AV 

node to cause complete heart block. This is a definitive solution to rate control 

but is an irreversible palliative manoeuvre. AV node ablation may be particularly 

useful for patients with difficult rate control despite medication and little hope of 

achieving or maintaining sinus rhythm. An alternative approach is catheter 

ablation attempting to restore sinus rhythm which is discussed in the relevant 

sections that follow.   

 

1.3 Aetiology of atrial fibrillation 

 

Historical perspective 

There had been several descriptions of maladies involving an irregular pulse 

going back some centuries, but the first description of AF accompanied by basic 

electrical recordings was by Lewis in 1909.25 There were initially two contrasting 

theories: Engelmann suggested that each muscle fibre became independently 

rhythmic, whereas Winterberg and Rothberger thought that a single focus 

discharging at 50 Hz produced a fibrillatory response in the rest of the atrium.26 

However, with the discovery of the reentry phenomena this rapidly gained 

favour as the most plausible mechanism to explain AF and evidence continues 

to mount for this today. The theory that AF is supported by focal drivers has 
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also accumulated evidence over the years, although it appears that there may 

be overlap between the focal and reentry theories. A variant of the reentry 

theory is the ‘wandering wavelet hypothesis’ in which wavefronts randomly 

meandering around the atria sustain AF. Although this theory in its original form 

now seems implausible as a sole mechanism for maintenance of AF, it may still 

contribute and there is arguably overlap between this and current concepts of 

reentry.  

 

Reentry mechanisms in AF 

Around the same time as Lewis described AF, Mayer showed that stimulation of 

rings cut from jelly fish could initiate a visible wave of contraction revolving 

around the central hole (Figure 1A).27 Mines replicated this experiment in atrial 

and ventricular myocardium cut from animals and hypothesized that this 

phenomena might explain cardiac tachyarrhythmia.28, 29 Mines defined the basic 

requirements for initiation and maintenance of reentry: (i) unidirectional 

conduction block, (ii) a core of inexcitable tissue around which the wavefront 

can propagate, (iii) excitable tissue ahead of the wavefront. This last point in 

particular means that there are theoretical limitations on the size of a reentry 

circuit. The wavefront and associated zone of refractoriness that follows 

constitute the wavelength, which will extinguish if it meets it’s refractory tail. 

Therefore, to maintain an ‘excitable gap’, the anatomical circuit must be longer 

than the wavelength, which is equal to the conduction velocity multiplied by the 

refractory period of the tissue: 

 

Wavelength = conduction velocity x refractory period 
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Figure 1.1: Mechanisms of reentry. 

 

 

 

 

 

Figure 1.1: A. shows circus movement around an area of anatomical 

conduction block. B. shows the leading circle reentry hypothesis, with 

movement around an area of functional block. C. shows a rotor and it’s resultant 

spiral wave. D. shows a chaotic activation pattern due to wandering wavelets. 

There are lines of block between different wavelets (shown in different colours 

with arrows to illustrate direction of propagation), with asterisks marking sites at 

which new wavelets form. (Adapted from Schotten et al, 2011.)30 
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When a reentry circuit occurs in the absence of a central anatomical obstacle, 

the inexcitable core is due to ‘functional block’. This concept was put forward 

separately by both Lewis and Garrey.31, 32 However, it was not until the advent 

of multielectrode cardiac mapping in the 1970s that Allessie was able to confirm 

this mechanism in rabbit hearts.33 Allessie went on to show that non-uniform 

recovery of tissue excitability following extrastimuli might allow unidirectional 

block and reentry to occur.34 He put forward the ‘leading circle hypothesis’, 

whereby the wavefront moving in the smallest possible circuit allowed by the 

wavelength is referred to as the leading circle.35 There is no excitable gap as 

such ahead of this leading circle, possibly explaining why AF cannot be 

entrained or pace-terminated. This leading circle activates both the surrounding 

tissues and the central ‘vortex’ (Figure 1B). What precisely occurs at this central 

vortex remains controversial, but Allessie’s data suggested that this was in a 

state of perpetual excitation due to invading centripetal wavelets. 

 

Rotors and spiral waves 

The leading circle hypothesis was a significant advance along the original lines 

of Mines description of reentry, but remained a one dimensional model. The 

study of wave propagation in other excitable media36 and subsequent computer 

modelling of arrhythmia37 showed that a rotating wavefront in 2 dimensions 

would assume the form of a spiral wave (Figure 1C). At the centre of the spiral 

wave is the rotor driving the system. The conduction velocity slows 

progressively towards the rotor as the curvature of the wavefront increases. 

This is due to a phenomenon called ‘source-sink’. The ‘source’ of a wavefront is 

the diffusion gradient generated by excited tissue causing ions to flow towards 

depolarized downstream cells which act as a ‘sink’. When an excited area of 
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tissue activates a greater volume of tissue through the flow of ions across a 

convex wavefront, there is a resultant slowing of conduction velocity. This 

source-sink phenomenon provides an explanation for what may occur at the 

rotor core, since this places theoretical limits on the curvature of the wavefront 

at the core meaning that although the core may be excitable it cannot be 

excited. This core is sometimes called a ‘phase singularity’, where all phases of 

the action potential meet: the fully excited tissue at the leading edge of the 

advancing wavefront, the refractory tissue at the trailing edge of the recovery 

front and the non-excited tissue at the core.38 These electrotonic effects reduce 

conduction velocity and action potential duration, resulting in a very short 

wavelength which helps to stabilise the rotor.38, 39 The initiating event for the 

formation of a rotor is thought to involve the perpendicular collision of a 

wavefront with the tail of a preceding wave.38  

 

With the advent of high resolution mapping techniques rotors and spiral waves 

have been demonstrated in isolated cardiac tissues.40, 41 The Jalife/Berenfeld 

group have published extensively on their optical mapping studies in a 

Langendorff-perfused ovine model of acetycholine induced AF.42-46 They were 

able to demonstrate sustained rotors in AF, most notably on the posterior wall 

left atrium (LA), but also on the anterior wall of the left atrial appendage (Figure 

1.2A). These rotors could be either stationary or meandering, and could be free 

standing or anchored to structures such as the pulmonary veins.45 These rotors 

had an area of only 3.8 ± 2.8 mm2.45 Although this experimental evidence 

appeared convincing, there was concern that rotors had not yet been 

demonstrated in human AF. However, recent studies using non-contact 

mapping or basket catheters in the LA have demonstrated rotors in humans 



28 

 

(Figure 1.2B).47, 48 A recent trial used basket catheters to map and target rotors 

and other focal drivers in addition to pulmonary vein isolation (PVI), and showed 

improved outcomes compared to PVI alone.49 These studies therefore provide 

strong support for the role of rotors in maintaining AF. 

 

Figure 1.2: Isochronal maps demonstrating rotors in AF. 

A   

 
B 

 
 

Legend to Figure 1.2: A. Optical mapping of a rotor on the posterior wall in a 

sheep model of AF (adapted from Skanes et al, 1998).42 B. Mapping of drivers 

in AF using a basket catheter, figure on the left shows a rotor, figure on the right 

shows a radial discharge from a focal driver (adapted from Narayan et al, 

2012).49 
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A further layer of complexity to this model may be introduced by considering 

cardiac activation in 3 dimensions. The equivalent of a spiral wave occurring in 

3 dimensions is a ‘scroll wave’, which is essentially a continuous stack of spiral 

waves. The complexities of mapping cardiac tissue in 3 dimensions means that 

speculation on how this may be relevant to arrhythmias comes mostly from 

computer modelling.50 Although the concept of arrhythmias occurring in 3 

dimensions may be more relevant to ventricular arrhythmia than atrial 

arrhythmia due to the thin atrial wall, the wall of the atria are complex with 

layering of muscle fibres and thicker pectinate muscles endocardialy.  

 

Derakhchan et al showed that during right atrial pacing activation was faster 

endocardialy than epicardialy and utilised anatomic structures such as the crista 

terminalis and pectinate muscles endocardialy to create preferential conduction 

pathways.51 This disparity was more apparent at rapid pacing rates and during 

induced tachycardia. Allessie showed that endocardial breakthrough from 

epicardial sources was common in AF, particularly at the posterior wall where 

there is complex layering of fibres at the junctions with the pulmonary veins 

(PVs).52  Although these tended not to be localised or repetitive, reentry within 

the LA wall due to edocardial-epicardial dissociation was demonstrated.52  

 

The multiple wavelet hypothesis 

In 1959 Moe proposed the multiple wavelet hypothesis.53 He suggested that a 

single wavefront could be split by islands of refractoriness to produce a number 

of wavelets which randomly wander the atria, extinguishing as they encounter 

refractoriness or anatomical block, but also dividing to produce new daughter 

wavelets. Maintenance of AF was therefore thought to be probabilistic, with AF 
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only terminating if all wavelets extinguished simultaneously. Moe subsequently 

produced computer modelling data to support this theory.54 This incorporated 

(although modified) the concept of reentry and allowed for block occurring and 

extinguishing of wavelets intermittently, but made no provision for the possibility 

of reentry at fixed locations or focal drivers. 

 

Years later Allessie et al produced mapping data that seemed to support Moe’s 

theory. AF was induced in Langendorff perfused canine hearts by rapid atrial 

pacing in the presence of acetylcholine and atrial activation patterns were 

mapped by placing a specially designed ‘egg’ in each atrium with simultaneous 

recording of 192 endocardial electrograms.55 This appeared to show multiple 

random reentry circuits as Moe predicted. Allessie proposed that 4-6 

independent wavelets were needed to sustain AF – many fewer than the 15-30 

initially suggested by Moe. 

 

Further support for Moe’s hypothesis came from mapping studies performed at 

the time of cardiac surgery in Humans. Konings et al performed high density 

epicardial mapping of the right atrium after inducing AF in patients undergoing 

surgical correction of Wolff-Parkinson-White syndrome.56 Varying degrees of 

complexity of wavefront propagation were observed (which they graded from 

type I to III), ranging from single broad wavefronts unimpeded by any 

conduction delay to complex activation patterns with multiple wavelets and lines 

of functional block evident.  They described both random reentry analogous to 

Moe’s multiple wavelets hypothesis and leading circle reentry, but in keeping 

with Moe’s predictions did not observe fixed reentry circuits or focal drivers.    
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Cox et al performed a similar mapping study in patients with paroxysmal AF 

undergoing surgical correction of Wolff-Parkinson-White syndrome, and also in 

a canine model of AF.57 In both scenarios areas of non-uniform conduction and 

block were demonstrated. They again found multiple discrete meandering 

wavefronts, although also observed macro-reentry. No focal drivers or areas 

suggestive of rotors were observed. 

 

Moe’s hypothesis had been particularly popular because it unites and explains 

several observations. It predicted that the stability of AF would depend on the 

surface area of atrial tissue available and the wavelength. The progression from 

paroxysmal AF to persistent AF is most common in those with structural heart 

disease and is associated with LA dilatation.11 Furthermore, refractory periods 

of atrial myocardium are reduced by episodes of tachyarrhythmia or AF which 

reduces wavelength and seems to stabilize AF as Moe predicted.58 

Furthermore, the excellent long term results achieved with the Cox-maze 

procedure (which involves creating lines of scar using a ‘cut and sew’ technique 

to compartmentalize the atria, so limiting the contiguous tissue area available 

for fibrillation) provide support to reentry circuits of some description playing a 

role in the maintenance of AF.59     

 

Areas consistent with random wavelet reentry have been described in other 

recent mapping studies, but usually in addition to rotors or focal drivers with a 

radial activation pattern.42-49 It is therefore difficult to be sure to what extent they 

contribute to the maintenance of AF and whether they may in fact be bystander. 

Furthermore, difficulty demonstrating rotors or other focal drivers in certain 
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studies is not necessarily strong evidence that they are absent. The relevance 

and importance of wandering wavelets in AF therefore remains uncertain.   

 

Focal mechanisms in AF 

In 1949 Scherf et al induced AF in canine hearts by injecting the atrial 

appendage with acontine (which triggers neurally mediated acetylcholine 

release) to produce ‘auricular fibrillation’.60 Cooling of the appendage led to 

termination of AF, although when the appendage rewarmed AF restarted. They 

proposed that not only were the fibrillating atria driven by the appendage, but 

that circus movement reentry could not be responsible because this would have 

been terminated by the cooling. They concluded that this was strong evidence 

that AF was both initiated and then also maintained by a focal driver.  

 

Perhaps the strongest evidence that AF may depend on focal mechanisms is 

the observation that AF is often initiated by ectopy arising from the PVs. 

Haissaguerre et al mapped the sources of ectopy initiating AF in 45 patients 

with AF and found that the vast majority (94%) arose from the PVs.61 Chen et al 

published very similar findings around the same time.62 These groups both 

found that elimination of these sources by catheter ablation could eliminate 

paroxysms of AF. This removal of PV triggers for AF is the rationale behind PV 

isolation for PAF. However, it is less clear whether such focal mechanisms are 

as important for sustaining AF. 

 

PVI during persistent AF usually prolongs AF cycle length, suggesting removal 

of some drivers.63 However, termination of AF occurs in only a small proportion 
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of patients at this stage suggesting that drivers elsewhere may also be 

important. 63, 64  

 

Schuessler et al showed that in a canine model of acetylcholine induced AF 

there were initially multiple re-entrant circuits after induction, but that these 

condensed into a single stable rapid reentry circuit with a cycle length of 39-48 

ms, with fibrillatory conduction to the rest of the atria.65 Several subsequent 

studies using combinations of optical mapping and high density electroanatomic 

mapping have suggested stable high frequency drivers in AF due to rotors or 

focal discharging in the atria. 42-46 More recently studies using non-contact 

mapping or basket catheters in the LA have demonstrated rotors in human 

AF.47, 48 Targeting these LA foci terminated AF in 85% of patients and improved 

outcome compared to PVI alone.49 Therefore, although the PVs may be very 

important to the initiation of AF, other LA drivers may be at least as important 

for the subsequent maintenance of AF.  

 

The pulmonary veins 

The proximal PVs are enshrouded in sleeves of muscular tissue extending from 

the LA to approximately the first division of the PVs. The orientation of layered 

muscle fibres surrounding the PVs are far more complex than elsewhere in the 

atria.66 The electrophysiologic properties also differ to that of atrial myocardium. 

Decremental conduction has been demonstrated within the sleeves.67 The 

action potential duration and refractory period of the muscular sleeves is shorter 

than that of the atrial myocardium and actually decreases progressively moving 

from the atrium towards the more distal PV. 62, 67-69 There is also a slower phase 

0 upstroke velocity than in atrial tissue.68 Cells in the myocardial sleeves also 
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have an ultrastructure more akin to that of the sinus node than that of atrial 

cardiomyocytes.70 

 

Triggered activity, automaticity and reentry have all been suggested as potential 

mechanisms by which the PVs might act as triggers.62, 71-74 High density 

mapping of AF in dogs showed drivers which appeared to be truly focal, 

emanating from the proximal PVs towards the atrium and distal PV.74 Studies of 

individual PV sleeve cardio-myocytes from canine and rabbit models of AF have 

shown that cells exhibit more rapid intrinsic depolarisations and were more 

prone to early and delayed afterdepolarisations than LA tissue.71, 75 

 

Clinical studies have shown areas of conduction block within the PVs.62 

Multielectrode mapping of the PVs has suggested this may correlate 

anatomically with segmentation of the pulmonary sleeves or abrupt changes in 

myocardial fibre orientation.76, 77 Optical mapping of canine PVs has 

demonstrated complete reentry circuits occurring within them measuring only 1-

2 cm.69, 73 Similarly, Kalifa et al used optical mapping in their ovine model of AF 

to show that rotors could be anchored to the PV-LA junction.78 Ouyang et al 

showed that after PVI in patients with AF spontaneous PV tachycardias could 

be reliably and reproducibly entrained and terminated by pacing within the 

isolated vein.79 These data on balance suggest that much of the ‘focal’ 

discharging from the PV may in fact be due to reentry of some description.  

 

Other atrial sites of special importance in maintaining AF 

Several sites in the atria commonly exhibit focal activity and contribute towards 

atrial tachycardias. In the right atrium the crista terminalis, tricuspid annulus, 
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ostium of the coronary sinus, right atrial appendage, the perinodal region and 

right sided septum are common foci for atrial tachycardias.80-83 In the LA, foci 

are commonly found at the ostium of the PVs, mitral annulus, LA appendage 

and left sided septum.83-87 Although the most common sites for AF initiation is 

the PVs, other thoracic venous structures have also been implicated such as 

the superior vena cava, coronary sinus and ligament of Marshall.83, 88, 89 

 

The posterior wall has been shown in several studies to have the highest 

dominant frequencies and the most rapid cycle lengths in AF.90-93 

Embryologically the primitive PV fuses to the LA forming the smooth posterior 

wall. The muscular fibres connecting the muscular sleeves of the PVs to the 

posterior wall form a diffuse complex junction with overlapping fibres in differing 

orientations.66 Remodelling and fibrosis in the LA seems to preferentially affect 

the posterior wall and may further exacerbate conduction heterogeneity and 

anisotropy.94-98  Optical mapping studies demonstrating rotors have found them 

predominantly on the posterior wall. 42-46 Mapping studies in humans have also 

shown a consistent vertical line of functional block running through the posterior 

wall.94, 99 This line of block may protect rotors or wavelets from other circulating 

wavefronts, whilst still allowing wavelets to escape through it.99 

 

 

1.4 Atrial remodelling  

 

Electrical remodelling in AF 

It is recognised that AF is often progressive, with episodes becoming more 

frequent and lasting longer until AF becomes persistent. The Allessie group 
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investigated the impact of AF on electrophysiologic properties of the atrial 

myocardium in goats.58 After only a few days in AF the cycle length had 

shortened significantly with a corresponding reduction in refractory periods. AF 

was easier to induce and episodes lasted longer. These changes clearly 

promote AF and the authors coined the phrase ‘AF begets AF’. Morillo et al 

observed a similar phenomenon in a canine model of pacing induced AF.90 After 

6 weeks in AF there was a comparable reduction in atrial refractory periods. 

There also appears to be greater spatial heterogeneity in refractory periods 

which may further facilitate reentry and AF.100, 101 Similar findings have been 

reported in humans with AF.102, 103  

 

The mechanism of this shortening of refractory periods appears to be down 

regulation of the L-type calcium channel, which reduces the calcium current 

(ICaL) that usually maintains and lengthens the plateau (phase 2) of the cardiac 

action potential.104, 105 This electrical remodelling may be a compensatory 

mechanism to prevent cellular calcium overload during tachycardia.104, 105 There 

are also changes to various other membrane potassium currents, such as 

reduction in the transient outward current (Ito) and the G protein–coupled inward 

rectifying K+ current (IK,Ach), although the importance of these changes are less 

clear.30, 105, 106 These changes may be protective in the short term, but overall 

are maladaptive in the long term as they facilitate reentry and hence AF.  

 

In addition to changes in the action potential duration and refractory periods, it 

has been demonstrated that action potential duration alternans may be a 

marker for vulnerability to AF. Narayan et al examined the propensity for action 

potential duration alternans in control patients in sinus rhythm, patients with 
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paroxysmal AF, and those with persistent AF.107 They found that action 

potential duration alternans occurred only at very fast pacing rates in control 

patients (> 230 bpm) but occurred at rates as low as 100-120 bpm in patients 

with persistent AF. During rapid pacing action potential duration alternans gave 

way to complex oscillations in action potential duration immediately before 

onset of AF. This likely predisposes to dispersion of refractoriness and wave 

break precipitating AF. It is uncertain why this action potential duration alternans 

might occur but it is likely a result of abnormalities of calcium handling due to 

calcium overload, and is probably part of the electrical remodelling in AF.108-111  

 

After termination of AF the reduced action potential duration and refractory 

period reverses within only a few days.58, 112 However, in a separate study using 

a similar goat model, AF was induced for 3 consecutive periods of 4 weeks, 

each separated by 6 days of sinus rhythm to allow refractory periods to 

normalise.113 They found that after each episode of AF it became easier to 

induce AF and induced episodes lasted longer. This suggested that there must 

be a more gradual and sustained component of remodelling, or possibly a 

‘second factor’ to explain this ongoing and increasing propensity to AF.   

 

Gaspo et al examined the effect of prolonged pacing induced AF on canine 

atrial electrical properties.101 Although changes in refractory periods peaked at 7 

days, there was a gradual slowing of conduction velocity that continued after 

this. A similar reduction in atrial conduction velocity has also been 

demonstrated in humans with AF.102, 114 This may be due in part to electrical 

remodelling as a reduction in the inward sodium current (INa) which causes 

deoplarisation (phase 0) has been demonstrated.115 However, alterations in the 
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intercellular channels between the myocytes has also been implicated in this 

conduction slowing. Connexin proteins form ion channels at gap junctions 

between myocytes, and are found predominantly at intercalated disks. In a goat 

model of chronic AF, the levels of Connexin 40 (the predominant subtype in 

goats and humans) were reduced and the distribution was no longer 

concentrated at the intercalated disks.116 This reduced expression and altered 

distribution became more marked with time. Kanagaratnam et al showed that in 

humans, the complexity of circulating wavefronts in AF was inversely 

proportional to the Connexin 40 content.117  

 

The reduction in both refractory period and conduction velocity as a result of AF 

cause a marked reduction in wavelength which is critical to facilitating reentry. 

The action potential duration alternans that results from abnormalities of 

calcium homeostasis causes dispersion of refractoriness and predisposes to 

wave break which may initiate reentry. However, there is also evidence of 

structural remodelling resulting from AF, the so called ‘second factor’ by which 

AF begets AF.  

 

Structural remodelling in AF 

The progressive macroscopic LA dilatation that occurs in AF is well established 

in both animal models and humans.90, 118 It has been assumed that this LA 

dilatation is mechanistically important since it appears to be pro-arrhythmic. 

There is a strong relationship between LA size and the propensity to develop 

AF. In the Framingham study a 5mm increase in LA size was associated with a 

39% increased risk for the development of AF.119 In patients with AF an 

enlarged LA also predicts recurrence of AF after direct current cardioversion or 
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catheter ablation.120, 121 However, Morillo et al were the first to describe atrial 

ultrastructural changes in a canine model of pacing induced AF.90 

 

Both human and animal studies have suggested a multitude of changes to atrial 

architecture in AF:90, 122-124 

 Atrial fibrosis, 

 Myocyte hypertrophy,  

 central loss of sarcomeres (myolysis),  

 changes in quantity and localization of structural cellular proteins, 

 fragmentation of sarcoplasmic reticulum,  

 perinuclear accumulation of glycogen,  

 homogeneous distribution of nuclear chromatin,  

 widening of the undifferentiated portions of the intercalated discs 

 aggregation of lysosomes 

 glycogen accumulation 

 Increased mitochondrial size and altered shape 

 Cellular dedifferentiation towards a more immature phenotype 

(comparable to fetal cardiomyocytes) 

 

Although there are clearly several ultrastructural changes that occur as part of 

structural remodelling, perhaps the most apparent is fibrosis. This occurs due to 

proliferation of fibroblasts and fibrin deposition in the extracellular matrix. 

Fibrous tissue can accumulate within myocyte bundles between cells 

(endomysial fibrous tissue) or between bundles (perimysial fibrous tissue). 

These can develop into large collagenous septa between muscle fibres. In 

some contexts with more marked atrial dilatation such as occurs in heart failure, 
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larger areas of fibrosis are occur which are more similar to ‘replacement fibrosis’ 

secondary to tissue damage and cell death.125  

 

These changes lead to slowing of conduction velocity. The fibrosis and 

formation of collagenous septa between muscle bundles can cause uncoupling 

of parallel muscle fibres, causing impulse propagation in the direction 

perpendicular to muscle fibres to flow in a zigzag fashion, further slowing 

conduction and causing anisotropy.126, 127 Fibroblasts are no longer thought to 

act solely as passive insulators and by electrically coupling with myocytes may 

affect electrophysiology on a cellular level and an organ level.96, 128 Computer 

modelling data suggests that fibroblasts may act as a current sink, causing 

failure of the myocyte to depolarise and conduction block.128 Fibroblast-myocyte 

coupling may also cause elevation of myocyte resting potential, causing slowing 

of sodium channel recovery which extends post-repolarisation refractoriness. 

This prolongation of refractoriness is a common consequence of fibrosis, and 

although it might not be expected to be pro-arrhythmic, it’s heterogenous nature 

can facilitate reentry. Atrial fibrosis in itself is proarrhythmic and may be 

sufficient to increase AF vulnerability, as occurs in mice with over expression of 

TGF-ß1 causing selective atrial fibrosis.129 The totality of changes that occur as 

part of structural remodelling promote reentry and further facilitate what Allessie 

described as the ‘domestication of AF’.123 

 

Mechanically induced remodelling of the atria 

Conditions causing increased atrial stretch were found to underlie AF in the 

majority of patients in the Framingham study,13 and is a consistent aetiological 

factor in the development of AF.13, 130-136 Conditions such as valvular heart 
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disease, heart failure and hypertension all cause chronic atrial stretch leading to 

LA dilatation, with heterogenous changes in atrial architecture very comparable 

to those occurring in AF, such as myocyte hypertrophy and fibrosis.125, 134, 137-140   

 

Electrophysiologic effects of chronic atrial stretch have been demonstrated in a 

variety of animal models and clinical scenarios. There is some heterogeneity in 

the results of these studies, and they are reviewed in Table 1.1. On balance 

these studies suggest reduced voltage throughout and discrete areas of 

electrical scar, reduced conduction velocity with conduction heterogeneity, 

anisotropy and areas of block, complex fractionated atrial electrograms (CFAE) 

and double potentials, and greater inducibility of AF.94, 125, 131-136, 139, 140 

Interestingly, atrial stretch does not seem to shorten refractory periods as 

occurs in AF, but in most of these studies the effective refractory period was 

actually increased. This may owe to the effects of fibroblast myocyte 

coupling.128 Although there appears to be a great deal of common ground in 

these remodelling processes, the shortening of action potential duration and 

refractory periods appears to be unique to tachyarrhythmias such as AF and 

may be a compensatory mechanism to prevent calcium overload due to 

tachycardia.104, 105 It is noteworthy that the remodelling in AF and particularly in 

response to chronic mechanical stretch appears to be heterogenous with focal 

areas of scarring, the reasons for which remain unclear. 
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Table 1.1: Mechanically induced atrial remodelling. 

 
Author Model or scenario Remodelling compared to control group 

Li
125

 Canine model of 
heart failure due to 
rapid ventricular 
pacing compared to 
rapid atrial pacing 
(with complete heart 
block and 
ventricular pacing) 
and controls. 

Heart failure compared to control: 

 No change in CV overall but discrete areas of 
slowing  

 No change in ERP  

 Extensive fibrosis compared with controls and the 
rapid atrial pacing group. 

 Increased duration of induced AF with heart failure 
and rapid atrial pacing compared to control. 
 
Rapid atrial pacing compared to heart failure and 
controls: 

 Reduced conduction velocity 

 Reduced effective refractory period  

Kistler
140

 Ovine model of 
hypertension 
compared to 
controls 

 Reduced CV 

 No change in ERP  

 Reduced wavelength overall 

 Myocyte hypertrophy, myolysis, fibrosis, focal 
scarring  

Verheule
139

  Canine model of 
mitral regurgitation 
compared to control 

 No change in CV,  

 Increased ERP 

 Sustained AF inducible  

 Areas of fibrosis and chronic inflammation. 

John
133

 Patients with mitral 
stenosis compared 
to controls 

 Reduced CV and zones of slow CV 

 Lower atrial voltage and focal electrical scar  

 Increased ERP  

 Greater inducibility of AF 

Sanders
134

 Heart failure versus 
control patient 

 Decreased CV with regional CV slowing 

 Areas of low voltage and electrical scar 

 Increased ERP 

 A greater number of CFAE and double potentials 

 AF more sustained once induced. 

Roberts-
Thomson

136
 

Atrial septal defect 
versus control 
patient 

 Regional slowing of CV 

 Reduced atrial voltage and areas of electrical scar 

 Unchanged or prolonged ERP 

 Greater number of CFAE and double potentials 

 AF more easily inducible. 

Roberts-
Thomson

94
 

Mitral regurgitation 
with AF, Mitral 
regurgitation without 
AF, and control 
patients. 

Mitral regurgitation groups compared to control: 

 Zones of slow CV and block 

 Conduction heterogeneity and anisotropy 

 Focal scarring 
ERP increased in mitral regurgitation group without AF 
compared to both controls and the group with mitral 
regurgitation and AF, which had the shortest ERP of 
all. 

Sparks
131

 Patients with loss of 
AV synchrony  due 
to complete heart 
block versus 
controls 

 Decreased CV 

 Increased ERP but not uniformly 

 Lengthening of cSNRT  

 Restoring AV synchrony normalised, ERP, CV, 
cSNRTs,  

 

Legend to Table 1.1: Impact of various animal models and clinical conditions 

on atrial remodelling. ERP, effective refractory period; CV, conduction velocity; 

cSNRT, corrected sinus node recovery time. 
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Mechanisms of atrial remodelling 

Fibrosis is linked to the release of matrix metalloproteinases (MMPs) and tissue 

inhibitor of metalloproteinase (TIMPs) which are secreted from fibroblasts, 

smooth muscle cells, endothelial cells, and myocytes. Several studies have 

shown changes to these cellular signalling pathways and others involved in the 

regulation of interstitial matrix composition and cell-to-cell / cell-to-matrix 

connections. AF has been associated with down regulation of TIMP-2, up-

regulation of MMP-2, MMP-9 and MMP-15, A disintegrin and metalloproteinase-

10 (ADAM-10) and ADAM-15, and upregulation of mitogen activated protein 

kinases (MAPKs).141-144 These pathways may be activated by neurohumoural 

factors, but may also be activated directly by mechanical stretch. Mechanical 

stretch of atrial myocytes has been shown to cause upregulation of MMP-2 and 

MMP-9, and hence mechanical stretch may be able to directly stimulate release 

of these cytokines to cause fibrosis.144, 145   

 

The renin-angiotensin-aldosterone system (RAAS) may also impact on atrial 

remodelling in AF.146, 147 Angiotensin II receptors in cardiac tissue activate 

MAPKs and stimulate TGF- ß1 production which stimulates fibroblasts and 

promotes interstitial fibrosis.148-151 In addition to the systemic effects of 

angiotensin II, mechanical stress can directly activate type 1 angiotensin II 

receptors by inducing a conformational change in the protein.152, 153  

 

Increased oxidative stress may also contribute to atrial remodelling and is 

thought to be due to increased NADPH oxidase and xanthine oxidase activity 

and dysfunctional NO synthase leading to increased production of 
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superoxide.154, 155 In addition to systemic factors impacting on oxidative stress, 

local stretch may also increase superoxide anion production.156 Therefore 

mechanical stretch may bring about remodelling through local oxidative stress.  

 

Inflammation may also be important in the atrial remodelling process. Serum 

levels of inflammatory markers are increased in patients with AF,157 and human 

atrial biopsies from patients with AF have shown inflammatory infiltrates and 

accumulation of myeloperoxidase (MPO), a heme enzyme produced by 

neutrophils.124, 158  

 

There are therefore several mechanisms by which AF and mechanical stretch 

might cause remodelling. Further work is needed to define the role of these 

processes relative to each other and explore the potential of ‘upstream 

therapies’ that might interrupt the atrial remodelling process.  

 

 

1.5 Catheter ablation of AF 

 

Since the description of PVI as a successful treatment for AF almost 15 years 

ago,61 there has been an exponential increase in the number of catheter 

ablation procedures performed worldwide.159 Catheter ablation of AF has 

evolved since its inception with increasing success rates and decreasing 

complication rates along the way.159, 160 Several recent randomised controlled 

trials have demonstrated the superiority of catheter ablation over medical 

treatment for AF in terms of maintenance of sinus rhythm and improved 

symptoms.161-166 Catheter ablation is now a recognised treatment for patients 
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with symptoms refractory to drug treatment, or for those intolerant of drug 

treatment.12 However, there remains scope for refinement in the procedure and 

room for improvement in success rates, particularly for persistent AF. There is 

also still a paucity of long term follow up data to examine outcomes years down 

the line, leaving questions about the real efficacy of catheter ablation in this 

context. 

 

 

Safety of catheter ablation for AF 

The World Wide survey on catheter ablation of AF by Cappato et al saw the first 

large scale reporting of outcome data (albeit voluntary and self reported).159 A 

wide variety of techniques were practiced initially, with variable safety and 

efficacy.159 Major complications were reported in 6% of patients.159 Published 

case series from leading single centres typically report lower rates of major 

complications in the region of 2-3%.167-174 These consist mostly of stroke/TIA or 

tamponade. PV stenosis was initially reported after around 1% of cases but has 

become much rarer now most groups target ablation at a distance from the 

ostia to encircle the PVs in pairs (wide area circumferential ablation).159 

Although a serious and often fatal complication, atrio-oesophageal fistula is very 

rare.159  

 

Death following catheter ablation of AF is rare. As few centres have sufficiently 

large registries and as reporting of results is voluntary, the true mortality is 

difficult to determine. Expanding on his work with the world wide survey, 

Cappato has produced an analysis of procedural mortality.175 Of 45 115 

procedures, there were 13 intra-operative deaths (0.02%), the 30 day mortality 
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was 25 (0.06%), and including all late deaths potentially related to the 

procedure this rose to 32 (0.07%). This was reported in the study as a mortality 

of 0.098% per patient, as some patients underwent more than one procedure. 

Stroke, tamponade and atrio-oesophageal fistula accounted for more than half 

of these deaths. Other large registries have reported similar mortalities of 

approximately 0.07-0.2%.159, 160, 170, 174 Table 1.2 shows the most important 

complications of catheter ablation for AF as reported in the World Wide surveys 

and 2 large registries examining this issue. Notably, many patients in these 

registries also underwent more than one procedure, meaning that the 

complication rate on a per patient basis may actually be higher than that 

reported on a per procedure basis. 

 

Efficacy of catheter ablation  

Catheter ablation of AF is a relatively new procedure and the long term outcome 

is therefore only recently being examined. The first world wide survey 

conducted by Cappato reported registry data from 100 centres between 1995 

and 2002 for a mixed cohort of 8745 patients with paroxysmal and persistent 

AF.159 Freedom from AF or other atrial tachyarrhythmias (AT) was reported in 

52% off AADs, rising to 76% after re-introduction of previously ineffective AAD 

therapy at almost 1 year. However, techniques have evolved significantly in a 

short space of time.  
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Table 1.2: Procedural complications from catheter ablation of AF. 

 

 World Wide 

Survey I159 

World Wide 

Survey II160 

Bhargava174  Dagres170  

No. procedures 

 

11 762 20 825 1691 1000 

TIA or stroke 

 

0.6% 0.7% 0.3% 0.4% 

Tamponade 

 

0.9% 1.0% 0.3% 1.3% 

Symptomatic  

PV stenosis  

 

 

0.4% 

 

0.23% 

 

1.1% 

 

0.1% 

Atrio-oesophageal 

fistula 

 

 

0% 

 

0.03% 

 

0% 

 

0.2% 

Peri-procedural 

death 

 

 

0.05% 

 

0.12% 

 

0.06% 

 

0.2% 

Total major 

complications 

 

4.5% 

 

3.6% 

 

2.7% 

 

3.9% 

 

Legend to Table 1.2: Procedural complications of catheter ablation for AF 

expressed as a percentage per procedure. Major complications are those that 

are deemed serious, those that have lasting sequelae, or that delay discharge.  

 

Early catheter based techniques tried to replicate the surgical maze procedure 

with very limited success.176 Targeting of initiating PV foci was not reported until 

1998,61 and only in 2000 was it realised that all PVs must be targeted to avoid 

later emergence of ectopy not apparent at the index procedure.177 High rates of 

PV stenosis with ostial isolation prompted lesion placement in the LA 1-2cm 
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outside the vein ostia, forming continuous rings of scar around them (usually 

with the use of 3D mapping systems).178 It remains controversial as to whether 

isolation of the PVs at their ostia or at a distance in pairs is more effective, and 

data from randomised controlled trials are conflicting.179, 180 Many groups have 

used the technically challenging procedural end-point of PV electrical isolation, 

although firm evidence of incremental benefit from randomised trials has been 

lacking until recently.181  

 

The worldwide survey reflected this progression in techniques, with the most 

common technique being right atrial maze from 1995-1997, targeting of PV foci 

from 1998-1999, and PVI from 2000 onwards. The second ‘updated’ worldwide 

survey reported registry data from 85 centres for 16 309 patients undergoing 

catheter ablation of AF from 2003-2008.160 Freedom from AF had risen to 70% 

without the need for AADs (80% including those still taking AADs) at 18 months. 

The proportion of patients with persistent AF and long-lasting persistent AF (i.e. 

continuous for > 1 year) had also risen markedly. Techniques almost always 

incorporated PVI for this cohort.  

 

Studies now typically report long term freedom from AF or atrial tachycardias 

(AT) in 70-90% of patients without the need for AADs, with a small number of 

studies reporting data up to 7 years.167-174, 182-184 Table 1.3 summarizes studies 

reporting greater than 2 years of follow-up for greater than 100 patients. It is an 

important caveat that many patients require more than one procedure to 

maintain freedom from AF, particularly for persistent AF, with studies typically 

reporting a mean of 1.2-2.0 procedures per patient over the long term.167-174, 182-

184 
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Since the number of long term follow-up studies remain small, it is still uncertain 

whether sinus rhythm will be maintained long-term post ablation, or whether 

catheter ablation is a palliative procedure delaying the inevitable. The small 

amount of long term data available suggests that most recurrences of AF/AT 

occur within a year of the procedure. The AF free survival curve appears to 

flatten between 2-3 years, with approximately 3% per year recurring after 

this.167, 169, 172, 174, 182  

 

However, long term follow-up data often reports success following the last 

procedure, meaning patients with late recurrence who undergo successful 

repeat procedures are counted as successes. This may distort perception of 

success and patterns of recurrence. Some studies with particularly aggressive 

follow-up have reported rates of late recurrence (occurring ≥ 1 year post 

ablation) as high as 7-10% per annum.185, 186 It may therefore be that the harder 

one looks for asymptomatic paroxysmal arrhythmia, the more one will find. The 

importance of asymptomatic arrhythmia is uncertain: currently catheter ablation 

is recommended solely for the alleviation of symptoms, but were it proven as a 

treatment to reduce rates of stroke or obviate the need for anticoagulation then 

this may become more important.  
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Table 1.3: Studies reporting long-term efficacy of catheter ablation for AF. 

 

 

Authors Year Patients Follow-up 

(yrs) 

PAF 

(%) 

AF free off 

drugs (%) 

Tilz187 2012 202 4.7 0 33 

Bhargava174 2009 1404 4.7 52 88 

Wokhlu185 2010 774 3.0 55 66 

Pappone169  2003 589 2.5 69 79 

Lee172 2004 207 2.5 100 72* 

Nademanee167 2008 635 2.3 28 81 

Miyazaki188 2011 574 2.3 79 84 

Zado173 2008 781 2.2 64 64 

Oral183 2006 755 2.1 65 71 

Cheema168 2006 200 2.1 46 41 

 

 

Legend to Table 1.3: This table summarizes studies reporting follow-up for 

greater than 2 years following catheter ablation of AF for more than 200 

patients. The percentage success rate quoted is after repeated procedures. 

Note, other publications by the Natale group (first author Bhargava) met this 

criteria but presumably included the same patients. Therefore the Bhargava 

paper was included as it was the largest. Note also that published studies 

resulting from this thesis are excluded (see publications section). * indicates 

studies where it was not specified how many patients were still taking 

antiarrhythmic drugs, otherwise the success rate excludes those taking AADs. 
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Reporting of Success 

Success can be difficult to gauge for the reader, as it is reported differently in 

different studies. Guidelines now suggest trials use frequent monitoring to look 

for asymptomatic AF, and that use of AADs or the capture of greater than 30 

seconds of any atrial tachyarrhythmia (regardless of symptoms) are regarded 

as failure.189 This level of monitoring can be difficult to achieve outside clinical 

trials, and such harsh definitions of success may be seen as artificial and 

arbitrary. A patient with a short run of asymptomatic AF may well regard their 

procedure as a success and decline a repeat procedure. In the world of 

coronary intervention looking for asymptomatic ischaemia, with this or the use 

of anti-anginal medication counting as failure might be seen as excessive.  

 

Hence, real world registry data typically involves less monitoring of 

asymptomatic patients, recognizing that further monitoring of asymptomatic 

patients may reveal an increment in recurrent AF. Nademanee’s group report 

monitoring patients only if they have recurrent symptoms,167 and although 

Pappone’s group have reported monitoring patients, they defined failure as 

symptomatic recurrence lasting longer than 10 minutes on ambulatory 

monitoring and confirmed on an ECG.169 The reader is then left with the difficult 

task of comparing results between studies reporting different techniques. 

Therefore, although these harsh definitions of success form an essential bench 

mark for comparing trials using different techniques or technologies, they may 

under represent the benefit some patients derive.    
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Predictors of success 

Not all patients stand equal chances of success following catheter ablation of 

AF. Factors identified on multivariate analysis as predictors of recurrent 

arrhythmia (although none uniformly in all studies) include persistent AF, time 

spent in persistent AF, structural heart disease, left ventricular impairment, 

hypertension, female gender, and increasing left atrial diameter.171, 174, 182, 185 

Interestingly, there appears not to be an effect of age or ischaemic heart 

disease, and the impact of structural heart disease and left ventricular 

impairment appears small. Perhaps the most consistently identified factors 

predisposing to recurrent arrhythmia are persistent AF and left atrial dilatation. 

These suggest more advanced structural and electrical remodelling. Given the 

differing results between studies and the short follow-up in many, further 

clarification on predictors of long term success/failure is highly desirable to aid 

patient selection and clinical decision making. Further understanding of the 

remodelling process and how best to modify the atrial substrate may also clarify 

how best to treat these patients at risk of recurrent arrhythmia.    

 

Catheter ablation of persistent AF 

PVI alone is successful for 70-90% of patients with paroxysmal AF (PAF).179, 190 

This now forms the cornerstone of catheter ablation for AF and is recommended 

in current guidelines.189 However, PVI alone maintains sinus rhythm in only 10-

30% of patients with persistent AF.179, 190, 191 Efforts to improve outcomes, 

particularly for persistent AF, has led to investigation of alternative and 

adjunctive targets for ablation such as ganglionic plexi,192 CFAE,167, 191 linear 

lesions,171 isolation of the posterior wall between the PVs,191, 193 or extensive 

modification of the posterior and inferior wall.174 Catheter ablation of persistent 
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AF now usually involves a hybrid strategy incorporating PVI with further 

targeting of CFAE and/or linear ablation.171  

 

However, there is currently no real consensus as to what constitutes a CFAE, or 

on how CFAE should be targeted.  It remains uncertain what different CFAE 

morphologies represent, and hence it is unclear exactly what is being targeted.  

Furthermore, there is precious little long term follow up data for patients who 

have undergone CFAE ablation, and there remains concern as to whether the 

resultant atrial scarring may be proarrhythmic over the long term.   

 

 

1.6 Complex fractionated atrial electrograms in atrial fibrillation 

 

Several mapping studies have described CFAE and alluded to their potential 

importance in arrhythmia. Nademanee was the first to describe targeting of 

CFAE as a stand alone approach for catheter ablation of AF in 2004.194 He 

targeted CFAE in 121 patients and reported freedom from arrhythmia in 110 

(91%) at 1 year. This technique opened the door to a completely novel method 

of catheter ablation for AF. There has been a great deal of research in 

subsequent years attempting to answer several key questions: 

 What do CFAE represent and why they are important in AF? 

 Can CFAE ablation be refined to target only areas important in maintaining 

AF? 

 What is the impact of CFAE ablation in patients with paroxysmal or 

persistent AF? 
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 Should CFAE ablation be performed alone, or in combination with PVI or 

linear lesions? 

This section reviews the literature in this area and the current understanding 

with regard to these key questions. 

 

 

What are CFAE? 

CFAE were first described in the context of ventricular myocardium. In a canine 

model of ventricular scarring following myocardial infarction, Gardner et al 

showed that infracted areas were associated with complex or fractionated 

electrograms, and that this was associated with zones of slow and anisotropic 

conduction.195-197 Histological analysis showed that muscle fibres were poorly 

connected due to fibrosis and formation of collagenous septa, suggesting that 

electrogram fractionation was due to asynchronous activation of muscle 

fibres.127, 197 The uncoupling of parallel muscle fibres means that impulse 

propagation in the direction perpendicular to muscle fibres can occur in a zigzag 

fashion, further increasing electrogram complexity.126, 127 The multiple 

deflections making up complex or fractionated electrogram may therefore be 

due to slow conduction along muscle bundles, with partial longitudinal 

dissociation between parallel fibres leading to asynchronous activation and 

anisotropy. The asynchronous activation of fibres leads to reduced summation 

of electrograms, which together with reduced myofibrillar content of tissues 

reduces electrogram amplitude in these areas. 

 

It is a reasonable supposition that such areas of fibrosis may explain CFAE in 

AF, but several recent studies have cast doubt on this by suggesting that CFAE 
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are not dependent on areas of low voltage, and in fact are associated with 

regions of higher voltage.198-203 Furthermore, areas supporting CFAE in AF do 

not necessarily have abnormal or fractionated electrograms in sinus rhythm.199 

This therefore suggests that some CFAE at least must be due to functional 

abnormalities rather than structural pathology.  

 

Berenfeld et al, examined right atrial conduction in isolated sheep hearts at 

increasing pacing rates.204 This showed normal conduction at low pacing rates, 

but with progressive delay in impulses reaching distal branching sites of the 

crista terminalis and pectinate muscles at pacing rates between 2-6 Hz. At 

pacing rates above 6.5 Hz they saw non-uniform intermittent functional block. 

They described this as the ‘breakdown frequency’, above which the direction of 

impulse propagation became completely variable from beat to beat: a state they 

described as fibrillatory conduction. Increasing electrogram fractionation was 

also observed at higher pacing rates, with widespread CFAE during fibrillation. 

This suggests that during rapid stimulation of normal tissue, non-uniform 

conduction delay interrupts 1:1 conduction around the atria, precipitating 

fibrillatory conduction.  

 

Computer modelling data suggests that electrogram fractionation may occur as 

wavefronts enter or exit zones of slow conduction, whether anatomical or 

functional, and that tissue anisotropy means that the distribution and 

morphology of CFAE may vary according to the seemingly random direction of 

impulse propagation in AF.205, 206 In keeping with this basic explanation of 

CFAE, mapping studies in AF have suggested that CFAE may be markers of 

more complex emergent phenomena.  
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CFAE and rotors 

Kalifa et al, examined the impact of rotors on the posterior wall of the LA on 

electrogram morphology, and in particular the spatial relationship between 

rotors and CFAE.207 Using methodology similar to their previous work 

investigating rotors,42, 45 rapid pacing of isolated sheep hearts in the presence of 

acetylcholine was used to induce AF, with simultaneous optical mapping of 

wavefront propagation and recording of electrograms from the posterior wall. 

This showed rapid high frequency areas suggestive of rotors with organised 

electrograms at these sites, with the most fractionated areas occurring 

approximately 3 mm away forming a band between rotors and nearby low 

frequency areas. CFAE may therefore occur at the borders of rapid drivers such 

as rotors, where impulse propagation to surrounding tissues fails to conduct in 

1:1 fashion. The same group later used similar techniques to show that 

meandering of the rotor could reduce the regularity of electrogram deflections, 

and increase electrogram fractionation.208   

 

Despite evidence that rotors may exist from computer models and mapping in 

animal models, there has been difficulty demonstrating them in human AF. 

Sequential mapping may not capture a small meandering rotor. Similarly, non-

contact mapping of low amplitude signals in AF is problematic and makes this 

sort of phenomena difficult to detect. Nevertheless, there are recent reports 

describing rotors in human AF using non-contact mapping,47 or contact mapping 

with basket catheters.48 Furthermore, a recent single centre trial suggested that 

mapping and targeting of rotors using these techniques may improve outcome 

when performed as an adjunct to PVI.49 
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Ganglionated plexi and CFAE 

A possible mechanism underlying drivers in AF, whether they be rapidly 

discharging foci or rotors, is autonomic innervation through ganglionated 

plexi.209 Although sympathetic innervation of the heart is more widely spread, 

parasympathetic innervation occurs through epicardial ganglionated plexi which 

are located in fat pads mostly around the pulmonary veins. Parasympathetic 

discharge can cause PV discharge to initiate AF.210 Furthermore stimulation 

through ganglionated plexi causes a reduction in the effective refractory period 

which promotes reentry and hence facilitates ongoing fibrillation.209 Hence, 

targeting of ganglionated plexi may reduce recurrence of AF when performed in 

addition to PVI.211 

 

Application of acetylcholine to canine atria induces rapid firing and CFAE in a 

dose dependent fashion.212 In this model peaks in dominant frequency and 

CFAE occurred at sites of ganglionated plexi, with a gradient of reducing 

dominant frequency and decreasing prevalence of CFAE moving further away 

from the ganglionated plexi.213  Subsequent ablation of ganglionated plexi 

slowed rapid electrograms, abolished gradients in dominant frequency, 

regularised CFAE, and often terminated AF.212, 213 Therefore, ganglionated plexi 

innervation may explain the importance of the PVs in AF, and may be a 

mechanism underlying rapid drivers which sustain AF and the CFAE associated 

with them.   

 

Mapping studies in AF 

Konings et al induced AF in patients with Wolff-Parkinson-White undergoing 

cardiac surgery and performed high density mapping of the right atrial free 



58 

 

wall.214 It was found that CFAE occurred at areas of slow conduction and pivot 

points where wave fronts turn and split to allow reentry to occur. This was 

arguably the first mapping study to attach mechanistic significance to CFAE in 

AF, and raised the possibility that they could be targeted by catheter ablation.  

 

Other investigators have examined CFAE using non-contact mapping and have 

found that CFAE can occur due to various passive phenomena such as wave 

front collision, wave break against electrically inert structures or wave fusion (all 

of which reduce the number of circulating wavefronts).47, 215  However, these 

studies have also shown that CFAE can occur at active sites which sustain AF, 

such as rotors, rapidly discharging foci, areas of functional block which allow 

pivot points, and areas of wave division. 47, 215 However, there are conflicting 

data as to whether CFAE occur at predominantly active47 or passive215 sites. 

 

Rostock et al performed high density mapping of CFAE sites in AF using 

multipolar catheters.216 As with many studies they found that CFAE were 

transient. Local AF cycle length shortened progressively until electrograms 

appeared fractionated, then cycle length increased again until electrograms 

were no longer fractionated. This could suggest 2 things: it could suggest 

increasing fractionation as a passive response to increasingly rapid stimulation, 

or possibly that local effective refractory period reduces until reentry can be 

supported, at which point rotors or microreentry circuits initiate. Analysis of 

activation patterns suggests that the majority of CFAE occurred due to passive 

activation (86%). However, of the remaining 14% approximately half were due 

to bursts of activity from rapidly discharging foci, and half showed a ‘gradient of 

activation’ suggesting local reentry, possibly a rotor. This study therefore 
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suggests that a minority of CFAE sites do perform active roles in supporting AF. 

Clearly the sensitivity and specificity of CFAE as markers for these phenomena 

will depend on exactly how they are defined, but in this study at least, CFAE 

were not specific markers for active phenomena. 

 

Narayan et al, used a duodecapolar pentarray catheter (Biosense-Webster, 

Diamond Bar, CA, USA) to map CFAE whilst simultaneously recording 

monophasic action potentials (MAPs) in the same area to define local 

depolarisation and repolarisation.217 They found that only 8% of CFAE had 

continuous activity on bipolar electrograms with discrete rapid MAPs. These 

areas had higher dominant frequencies and a high organisation index, 

suggesting they may be drivers. Using the multipolar catheter it was possible to 

map activation in some cases which demonstrated localised reentry or possibly 

rotors. This would be consistent with the continuous electrical activity observed 

at sites of rotors in experimental models.207, 208 Mapping studies in humans with 

AF have suggested similar localised reentry circuits at the sites of continuous 

electrical activity.216 This might suggest that CFAE with continuous electrical 

activity are more mechanistically important than other CFAE. However, the fact 

that this pattern was observed in only 8% of CFAE mapped in this study is 

consistent with findings of other studies.216  

 

Narayan et al also observed local shortening of AFCL before the appearance of 

CFAE at a further 8% of sites. This was also associated with rapid regular 

MAPs. This phenomenon was also described by Rostock et al.216 It remains 

unclear whether the CFAE that occur after a decrease in AFCL represent a 

breakdown into fibrillatory conduction, or are perhaps due to more 
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mechanistically important pnenomena such as bursts of rapid firing, perhaps 

due to intermittent ganglionated plexi innervation.  

 

However, as with the Rostock study, the majority of CFAE did not appear to be 

mechanistically important: 67% of CFAE were associated with discrete MAPs 

with superimposed signals suggestive of far-field electrograms, and for 17% 

discrete MAPs could not be recorded at all perhaps suggesting fibrillatory 

conduction. This raises the possibility that targeting CFAE for AF may in fact be 

targeting bystander phenomena the majority of the time. Given that the bipolar 

electrogram showed continuous electrical activity at these sites, this suggests 

that it may be possible to refine targeting of CFAE based on electrogram 

morphology.     

 

Using a multi-electrode array to perform high density mapping of the posterior 

left atrium in surgical patients with AF, Lee et al demonstrated that CFAE were 

prevalent on the posterior wall, and that electrograms with continuous electrical 

activity usually occurred < 5mm from peaks in dominant frequency. This echos 

the work of Kalifa et al, demonstrating the proximity of CFAE to high frequency 

drivers in the posterior left atrium of sheep.207 Furthermore, this again draws 

attention to CFAE with continuous electrical activity as a potential marker of 

drivers in AF.  

 

Atienz et al mapped the posterior LA in 24 patients after inducing AF by rapidly 

pacing the PVs.218 They again found that AF cycle length often shortened prior 

to the onset of CFAE, then slowed after resolution of CFAE. They used 

computer modelling to simulate the movement of wave fronts and proposed a 
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novel mechanism for this phenomena: that rotors meandering in the direction of 

these points might increase the frequency of wave fronts through the Doppler 

effect. This is supported by other modelling data from the same group showing 

meandering of rotors.208 

 

Clinical impact of CFAE ablation for AF 

In Nademanee’s original description of CFAE ablation,194 121 patients with AF 

were included (64 with persistent AF). Although the PVs were not routinely 

isolated, 58 patients (91%) with persistent AF were ablated to sinus rhythm. It is 

widely quoted that 110 (91%) patients were free from arrhythmia at 1 year. 

However, 29 required repeat procedures (giving a mean of 1.2 procedures per 

patient), and 7 of those who were arrhythmia free after the first procedure were 

still taking antiarrhythmic drugs. This therefore gives a single procedure 

freedom from atrial arrhythmia off antiarrhythmic drugs of 74/121 (61%), which 

is possibly more in keeping with other studies. Examining specifically those with 

persistent AF, 40 of 64 patients (63%) were free of arrhythmia and off 

antiarrhythmic drugs after a single procedure at 1 year. This rises to 49 (77%) 

after 2 procedures and 56 (88%) counting those still taking antiarrhythmic drugs. 

This technique opened a promising new paradigm in catheter ablation of AF. 

However, although subsequent reports from Nademanee’s group appeared to 

confirm the success of this technique,167 others have been unable to replicate 

these results with CFAE ablation alone.64, 219 Table 1.4 summarizes the 

randomised and other controlled studies investigating the efficacy of CFAE 

ablation. 
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Table 1.4: Randomised trials or controlled studies investigating the efficacy of CFAE ablation for AF. 

 
 Study Design Follow-up Cohort Result 

Verma 2007220 Matched 
comparison 

1 yr Paroxysmal (120) & 
persistent AF (80) 

PVI 80% 
PVI & CFAE 85% (p = 0.054) 
 
In persistent only: PVI 72% 
PVI & CFAE 82%, (p < 0.047) 

Verma 2008221 Matched 
comparison 

1.1 ± 0.3 yr Paroxysmal (42) 
and persistent (28) 
AF 

PVI 71% 
PVI & CFAE 83% 
(p = 0.045) 
[CFAE ablation prolonged AFCL] 

Verma 2010222 RCT 1 yr High burden PAF 
(65) & persistent AF 
(35) 

PVI 29% 
CFAE 48% 
PVI + CFAE 74% (p = 0.004) 

Di Biase 2009223 RCT 1 yr PAF only (103) PVI 89% 
CFAE 23% 
PVI & CFAE 91% 
(CFAE alone versus other groups p < 0.001; PVI versus both 
NS) 

Deisenhofer 
2009224 

RCT 1.6 ± 0.7 
years 

PAF only (98) PVI 74% 
PVI & CFAE 83% (p = 0.08)* 

Lin 2009225 Controlled trial  1.6 ± 0.9 
years 

Persistent AF (60) PVI & linear lesions 40% 
PVI & linear lesions & CFAE 70% 
(p = 0.013) 
[AF termination predicted freedom from AF] 

Oral 200964  RCT 0.8 ± 0.2 
years 

Long-lasting 
persistent AF only 
(119 included, 100 
in AF after PVI 
randomised) 

PVI 36% 
PVI & CFAE 34% 
(p = NS) 
[79% of those who terminated to SR during PVI remained in 
SR] 

Elayi2008191 RCT 1.3 years Long-lasting 
persistent AF only 
(144) 

PVI (not confirming isolation) 11%, 
PVI (confirming isolation) and posterior wall isolated 40%,  
PVI (confirming isolation) and posterior wall isolated & CFAE 
61% (p < 0.01) 
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Legend to Table 1.4: Randomised or otherwise controlled studies investigating 

the efficacy of CFAE ablation for AF. 

 

CFAE ablation as a standalone strategy 

Oral et al, performed CFAE ablation alone in 100 patients with persistent AF.219 

Only 33% remained in sinus rhythm after a single procedure at 14 ± 7 months. 

44 patients underwent a repeat procedure and all had evidence of pulmonary 

vein tachycardia. After a mean of 1.4 procedures, 57% were in sinus rhythm off 

antiarrhythmic drugs at 13 ± 7 months. These results suggested a fairly poor 

efficacy of CFAE ablation alone for AF, but it was not until recently that 2 

studies compared these strategies formally through randomised controlled 

trials.222, 223  

 

Verma et al,222 randomised 100 patients with high-burden paroxysmal AF (>4 

episodes of AF each lasting >6 hours, in the last 6 months) or persistent AF to 1 

of 3 strategies: CFAE ablation, PVI, or both. At 1 year the single procedure 

success rate was 74% for the PVI and CFAE group compared to 48% in the PVI 

group and 29% in the CFAE group (p = 0.004). There were significantly more 

repeat procedures in the CFAE arm (47%) versus PVI (31%) or PVI and CFAE 

(15%) (p = 0.01). After two procedures, the PVI and CFAE group still had the 

highest success (88%) compared with PVI (68%) or CFAE (38%) (p = 0.001). 

 

Di Biase et al, 223 performed a similar trial in which 103 patients with PAF were 

randomised to CFAE ablation alone, PVI, or both.  After a single procedure 89% 

remained free from arrhythmia and off antiarrhythmic drugs at 1 year after PVI, 
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compared to 23% in the CFAE group, and 91% in the group receiving both 

(CFAE alone versus other groups p < 0.001; PVI versus both not significant). 

 

With the exception of Nademanee’s data, these studies suggest that CFAE 

ablation as a standalone strategy has little clinical efficacy. The data by Oral et 

al regarding the high prevalence of PV tachycardias at repeat procedures 

suggest that the PVs remain an important target. 219 Indeed, recurrence of AF 

after PVI is usually associated with PV reconnection.226 The study by Verma et 

al, 222 suggests that CFAE ablation when performed in addition to PVI may be 

beneficial for patients with persistent AF or PAF with a high AF burden. 

However, the Di Biase data suggests that CFAE ablation adds little to PVI in an 

unselected group of patients with PAF. 223 Other studies over a similar time 

frame have focused on the role of CFAE ablation as an adjunct to PVI.  

 

CFAE ablation as an adjunct to PVI 

Oral et al performed pulmonary vein isolation in 119 patients with long lasting 

persistent AF and randomised the 100 that did not revert to sinus rhythm after 

PVI to either DC cardioversion or CFAE ablation for up to 2 hours.64 They were 

able to terminate AF during CFAE ablation in 9 of 50 patients (18%). After a 

single procedure sinus rhythm was maintained in 36% of those who were 

cardioverted after PVI and 34% of those who received additional CFAE ablation 

at 10 ± 3 months. Interestingly, sinus rhythm was maintained in 79% of those 

who terminated during PVI (and hence were not randomised), suggesting that 

termination of AF is associated with subsequent freedom from arrhythmia. After 

1.3 procedures, sinus rhythm was maintained in 79% of those who terminated 

during PVI, 68% in those who were cardioverted after PVI, and 60% of those 
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who had additional CFAE ablation at 9 ± 4 months. However, at repeat 

procedures the PVs were reisolated and additional CFAE ablation was 

performed at the discretion of the operator, regardless of the patient’s initial 

treatment allocation. Therefore the impact of CFAE ablation after repeat 

procedures is difficult to determine in this study. Notably, at the repeat 

procedure all patients had PV reconnection in ≥ 1 PV, again suggesting that the 

PVs are important. 

  

Elayi et al,191 randomised 144 patients with long standing persistent AF to 1 of 3 

groups: anatomical PVI (without confirming electrical isolation), PV antrum 

isolation (meaning confirmed PVI and isolation of the posterior wall between the 

PVs), or PV antrum isolation and CFAE ablation. Freedom from arrhythmia was 

achieved in 11% of patients in the anatomical PVI group, 40% of the PV antrum 

isolation group, and 61% of the PV antrum isolation and CFAE ablation group.  

 

The studies by Oral and Elayi appear contradictory.64, 191 Both enrolled patients 

with long lasting persistent AF (mostly of 5-7 years duration) and applied 

seemingly similar treatments. In the study by Elayi et al, 191 CFAE were targeted 

before PVI in the LA, RA and coronary sinus until elimination of all CFAE. 

However, in the study by Oral,64 CFAE were targeted for up to 2 hours after PVI. 

Although it is difficult to be certain, this gives the impression that CFAE may 

have been targeted rather more extensively and thoroughly in the Elayi study, 

which may explain the results. Another difficulty interpreting CFAE ablation 

studies is that although both papers describe CFAE in a similar way, it is difficult 

to be certain that both groups were targeting the same electrogram 

morphologies.  



66 

 

 

Deisenhoffer et al, 224 randomised 98 patients with PAF to CFAE ablation or not 

after PVI. Attempts were made to induce AF in both groups after PVI, with 

CFAE ablation preformed only in those patients in whom AF could be induced. 

There was no difference in the proportion of patients maintaining sinus rhythm 

in the 2 groups (74% versus 83%; p = 0.08). However, looking only at those 

with inducible AF, sinus rhythm was maintained in a greater proportion of those 

who received CFAE ablation (89%) compared to those who had no additional 

ablation (73%; p = 0.003). Although this study appeared not to support CFAE 

ablation after PVI when a standard ‘intention to treat’ analysis was applied, it 

therefore suggested that CFAE ablation may be beneficial in patients whom AF 

can be induced after PVI. This could be seen as complementing the data from 

the Di Biase and Verma studies, suggesting that CFAE ablation after PVI is not 

beneficial in all PAF patients, but may benefit those patients with a high AF 

burden.  

 

Patients selection & procedural end-points for CFAE ablation 

Therefore, the majority of studies suggest that CFAE ablation may improve 

outcomes when performed in addition to PVI for patients with persistent AF. It is 

less clear whether this is the case for patients with PAF, although it appears 

that patients with a high burden of PAF or inducibility of AF after PVI may 

benefit from CFAE ablation as an adjunct to PVI. It is uncertain why these 

patients may benefit from CFAE ablation, but it is conceivable that PAF patients 

with a high AF burden or AF inducible after PVI may have more remodelled 

atria and may therefore benefit from some form of substrate modification. This 

is supported by the observation that although extensive LA scarring is 
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associated with recurrent arrhythmia after ablation, CFAE ablation appears to 

negate the impact of this remodelling process to some extent.191 

 

Non-inducibility after PVI has been suggested as an end point for PAF ablation 

by others, perhaps helping to select those that require further ablation in 

whatever form.63, 227 Haissaguerre et al randomised 70 patients with long 

episodes of PAF to PVI alone, or PVI plus a mitral isthmus line.63 At 7 months 

they found that sinus rhythm was maintained in a similar proportion of those 

with additional mitral isthmus ablation (83%) compared to PVI alone (74%; 

difference not significant). However, they also found that non-inducibility of atrial 

arrhythmia at the end of the procedure predicted subsequent maintenance of 

sinus rhythm, with recurrent arrhythmia in 13% of those with no inducible 

arrhythmia compared to 38% of those who remained inducible (p = 0.03). 

Similarly, Oral et al performed PVI and then a posterior line between the PVs 

and a mitral isthmus line in 100 patients. 60 patients had inducible AF and were 

randomised to either no further ablation, or further ablation of CFAE and/or 

linear ablation.227 At 6 months 86% of those who had additional CFAE ablation 

± linear ablation were free from AF, compared to 67% of those randomised to 

no further ablation (p < 0.05). However, when one considers both recurrent AF 

and AT there was no difference between groups (65% versus 60%; p = NS). 

Therefore, if ongoing AF or inducibility of AF after PVI identifies patients that 

may benefit from CFAE ablation, non-inducibility of AF may be a reasonable 

end point for PAF. However, evidence for such an aggressive approach is 

limited to these studies and hence this is not widely practised. 
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There is similar debate regarding end points for CFAE ablation in persistent AF. 

Data from the Oral study above suggested that outcome was better in their 

cohort of patients with persistent AF in those whom AF terminated after PVI 

compared to those who remained in AF requiring either further ablation or DC 

cardioversion.64 The Bordeaux group also published outcome data for 153 

patients with persistent AF who underwent catheter ablation of AF using a 

standardised stepwise approach (PVI, followed by CFAE ablation, followed by 

linear lesions) with termination of AF as the procedural end point (achieved in 

85%).171 They found that termination of AF during ablation was associated with 

less recurrent AF after a single procedure, although there was no difference in 

the rate of patients with recurrent atrial arrhythmia suggesting that patients 

simply had recurrent AT rather than AF. At 30 ± 11 months after an average of 

1.5 procedures, 95% of patients in whom AF terminated remained in sinus 

rhythm compared to only 52% in whom AF could not be terminated by ablation. 

Therefore, although termination of AF during ablation meant that patients were 

more likely to re-present with AT than AF (with a similar overall arrhythmia 

recurrence rate), ultimately these recurrent arrhythmias were more successfully 

eliminated and patients were more likely to remain in sinus rhythm in the long 

term. Factors predicting failure to terminate AF during ablation were longer time 

in AF, greater LA diameter and shorter LA cycle length, perhaps suggesting 

greater structural and electrophysiologic remodelling.  

 

In contrast to these results, Elayi et al examined the impact of AF termination 

during ablation on outcome in 306 patients with persistent AF following a similar 

stepwise approach (PVI followed by CFAE ablation, but no linear lesions 

routinely).184 Termination of AF was achieved during ablation in a smaller 
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proportion (58%). In patients whom AF terminated during ablation a greater 

proportion of recurrences were due to AT rather than AF, but with a similar 

recurrence rate overall (68 % versus 70% at 25 ±7 months; difference not 

significant) as with the Bordeaux data. However, after a second procedure there 

was still no difference in the success rate (82% versus 83%; difference not 

significant). Furthermore, successful ablation of macro-reentrant AT did not 

predict freedom from AT subsequently, although successful ablation of focal AT 

did predict freedom from further AT.  

 

The reason for this discrepancy remains unclear. Although all agree that 

termination of AF predicts mode of arrhythmia recurrence (i.e. AT rather than 

AF), it does not seem to predict the overall rate of recurrent arrhythmia after a 

single procedure and may or may not affect final outcome. The Bordeaux group 

argue that the extensive ablation terminating AF is important mechanistically as 

it eliminates the ability of the atria to fibrillate, leaving only AT which are 

potentially easier to deal with. Elayi and co-authors argue that striving for AF 

termination appears unnecessary and that the extensive ablation taken to 

achieve this may scar and resultant zones of slow conduction which may 

ultimately be pro-arrhythmic. Opinion therefore remains divided as to whether 

termination of AF is necessarily an important clinical end-point. The end points 

for CFAE ablation also remain unclear, with some groups striving for either 

termination of AF or abolition of all CFAE, whilst others target CFAE more 

selectively or for only a limited period of time. Clarification of which CFAE are 

important in maintaining AF may help determine the optimal end point for CFAE 

ablation.   
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1.7 Conclusion and formulation of the current studies 

 

AF is a common problem and is associated with substantial morbidity and 

mortality. Catheter ablation appears to be an effective treatment for AF, but 

there remains a paucity of extended follow-up data and hence long term 

outcome remains uncertain. Although high success rates are reported for 

catheter ablation of paroxysmal AF, results for persistent AF are not as good. 

This is likely a reflection of the atrial remodelling process that occurs in AF and 

due to conditions which cause AF in the first place by causing mechanical 

stretch of the atria.  

 

The role of adjunctive targets beyond PVI remains unclear. It seems that for 

persistent AF in particular, the atrial remodelling process may mandate further 

atrial ablation in some form to achieve acceptable outcomes. 191, 228 There is 

currently some enthusiasm for CFAE ablation as a way of targeting the 

abnormal atrial substrate in AF. However, it remains unclear how the atrial 

remodelling process relates to CFAE, and whether CFAE in areas of 

remodelling might perhaps be more important in maintaining AF. Furthermore, it 

is unclear whether CFAE really represent drivers of AF, are markers for 

unhealthy tissue with slow conduction, or are simply passive phenomena of no 

mechanistic importance in AF (such as wavefront collision). There is 

disagreement as to what constitutes CFAE and great variation in how CFAE are 

targeted.171, 194, 222 In fact, there is currently precious little evidence for targeting 

any particular location or electrogram morphology during CFAE ablation. This 

has led some sceptics to conclude that the termination of AF that sometimes 

occurs during CFAE ablation may simply be due to de-bulking of atrial tissue. 
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Moreover, although there is some trial data suggesting that CFAE ablation may 

be beneficial over the short term, there is uncertainty as to whether the creation 

of wide spread atrial scar using this approach may be pro-arrhythmic over the 

long term. The studies in this thesis aimed to clarify some of these key issues in 

CFAE ablation. 

 

Perhaps the most fundamental question in CFAE ablation is whether CFAE are 

important in maintaining AF, and if they are, what electrogram morphology 

constitutes an important CFAE and hence ought to be targeted? The hypothesis 

was therefore formulated that certain CFAE morphologies are of greater 

importance in the maintenance of AF. If this hypothesis were proved, then it 

would also prove that CFAE ablation is not simply atrial de-bulking, and provide 

useful evidence as to what CFAE morphologies ought to be targeted in the 

clinical setting. 

 

In order to test this hypothesis CFAE first had to be defined more precisely than 

has been done previously and classified based on morphology. This 

classification had to be simple enough to be accurately applied by eye in real 

time, but detailed enough to reproducibly cover all electrogram morphologies.  

In Chapter 3 of this thesis a classification of CFAE was formulated and its 

application validated.  

 

This enabled the response to ablation of different CFAE morphologies to be 

assessed. In Chapter 4, patients undergoing catheter ablation of persistent AF 

had CFAE classified using this novel classification system and then targeted for 

ablation according to a strict protocol as part of a randomised trial. The acute 
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response to ablation of these CFAE morphologies was assessed by monitoring 

AF cycle length. 

 

To explore the relationship between CFAE and the electrophysiologic 

remodelling that occurs in AF, a computer model was developed in 

collaboration with a team of biomedical engineers to simulate wall stress based 

on left atrial contour and geometry (Chapter 5). Using this model it was possible 

to test the hypothesis that peaks in LA wall stress are associated with focal 

electrophysiologic remodelling which maintains AF. The first part of Chapter 5 

was therefore to establish a computer model for simulation of wall stress. 

Secondly, electrophysiologic data were collected during persistent AF and 

compared to simulated wall stress data from a patient specific LA geometry 

derived from pre-procedure CT imaging. This allowed assessment of any 

relationship between LA wall stress, atrial remodelling (as evidence by areas of 

low voltage or electrical scar), and CFAE. Thirdly, since patients were in 

persistent AF, it was possible to test the relative importance of peaks in wall 

stress by examining the response to ablation in these locations. This was 

assessed by monitoring AF cycle length during CFAE ablation, to see if peaks 

in wall stress or areas or focal remodelling predicted the response to ablation. It 

was therefore possible to assess whether the wall stress simulation might be of 

use in guiding CFAE ablation, potentially offering further refinement of this 

process beyond the morphological approach being investigated in Chapter 4.    

 

To address these hypotheses it was necessary to study the immediate 

response to ablation of CFAE in AF. However, important questions remain as to 

the clinical efficacy of catheter ablation for AF in general, and for CFAE ablation 
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in particular. There is a paucity of long term follow-up data following catheter 

ablation of AF with reported success rates varying widely between groups. 

Some groups report a large difference in results for paroxysmal and persistent 

AF underscoring a need for further ablation targets beyond PVI, whereas others 

do not.174, 182 For CFAE ablation, randomised trials have typically reported 

results at approximately 1 year. 64, 191, 220-225 This may not reflect truly long term 

outcome and there is concern that the widespread scar caused by CFAE 

ablation might be pro-arrhythmic over the long term. To address these issues, it 

was hypothesised firstly that once sinus rhythm is successfully restored, late 

recurrence occurring more than a year later is uncommon. Secondly, it was 

hypothesised that long term freedom from AF is achieved in a significantly lower 

proportion of patients following catheter ablation of persistent AF than for 

patients with paroxysmal AF. Thirdly, it was hypothesised that targeting of 

CFAE in addition to PVI increases the long term freedom from atrial arrhythmia 

in patients with persistent AF.  

 

To test these hypotheses, a prospective registry of patients undergoing catheter 

ablation of AF at St Bartholomew’s Hospital was analysed and all patients 

followed up to review their rhythm status (Chapter 6 of this thesis). This enabled 

analysis of long term outcome and whether results were really significantly 

worse for persistent AF. Patients at St Bartholomew’s have undergone a 

consistent procedure for persistent AF for several years, including PVI and 

linear lesions at the roof and mitral isthmus from 2002-2007. The impact of 

targeting CFAE from 2005 onwards was evaluated in this cohort with an 

otherwise consistent lesion set, allowing an assessment of how this impacted 

on long term maintenance of sinus rhythm. 
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Through the studies comprising this thesis it was therefore hoped that several 

key issues in CFAE ablation could be clarified. In particular, are CFAE important 

in maintaining AF? If so, which electrogram morphologies are important to 

target? How does stretch in the walls of the atria impact on focal remodelling, 

and is this relevant to CFAE? If CFAE are related to focal remodelling, can 

predicting sites of remodelling be used to target the most important CFAE? 

Lastly, what is the impact of CFAE ablation as it has conventionally been 

performed on long term outcome? 
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Chapter 2 

 

Materials & Methods 
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Although the main results chapters all involve catheter ablation of AF, the 

precise methodology varies for each chapter. Therefore a broad description of 

the patient selection, personnel, equipment, techniques employed, peri-

procedural management and follow-up for catheter ablation of AF at St 

Bartholomew’s Hospital is provided below, followed by a precise methodology 

specific to each of the results chapters with detail as where practice differed 

from routine care. 

   

2.1 Study institution and personnel 

 

All recruitment, procedures, data collection and follow-up were conducted at St 

Bartholomew’s Hospital, which is part of Barts Health NHS Trust. This thesis is 

comprised of several different studies which required different levels of 

approval: 

 Chapter 3 involved retrospective analysis of electrograms initially, then 

viewing of electrograms during live cases. This did not require an ethics 

application. 

 Chapter 4 involved detailed mapping studies followed by randomisation to 

different ablation protocols so as to study the response to ablation of 

different CFAE morphologies in AF. The study protocol was reviewed by the 

Trust Cardiac Peer Review Committee and was then approved by East 

London and The City Research Ethics Committee, UK (reference number 

09/H0703/6). The study was financially indemnified by the Trust Research 

and Development department. 
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 Chapter 5 involved computer modelling based on patient imaging and 

correlation with mapping data. These studies were included as part of the 

same ethics application as the studies in Chapter 4.  

 Chapter 6 involved collecting data from an existing prospective registry of all 

patients undergoing catheter ablation of AF at St Bartholomew’s Hospital. 

Follow-up data were acquired by seeing patients in clinic or calling patients 

by telephone. These data were acquired as audit and service development 

and did not require an ethics application.  

 

All studies were conceived and designed by the author and the supervisor 

Professor Richard Schilling who was the principal investigator for the ethics 

application and subsequent studies constituting chapters 4 and 5. Co-

investigators were Dr Simon Sporton and Dr Mark Earley. Chapter 5 involved 

developing a computer model to simulate left atrial wall stress based on contour 

and geometry from CT. This model was produced in collaboration with a team 

of biomedical engineers from the School of Engineering and Materials Science, 

Queen Mary’s University of London. This team included Professor Wen Wang, 

Dr Yiling Lu, and Dr Yankai Liu. For a detailed list of contributors and their roles 

see the Acknowledgements section. 

  

  

2.1 Patients 

All patients were recruited for catheter ablation of AF at the Cardiology 

Department of St Bartholomew’s Hospital, a tertiary referral centre serving 

predominantly the North East Thames and Essex Regions but also taking 

quaternary referrals from around the country. Patients with AF were offered 
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catheter ablation if they had symptomatic AF refractory to at least 1 

antiarrhythmic drug, or intolerance to antiarrhythmic drugs. Patients already 

selected for catheter ablation of persistent AF were approached and recruited 

for the studies constituting chapters 4 and 5 with the following pre-specified 

exclusion criteria: 

1. Contraindication to catheter ablation, anticoagulation or TOE 

2. Contraindication to or intolerance of cardiac CT angiography 

3. Intracardiac thrombus which cannot be eliminated by anticoagulation 

4. Valve disease requiring surgical intervention 

5. Age <18 years or pregnancy 

6. Any known acute reversible cause of AF e.g. uncontrolled hypertension 

7. Recent acute coronary syndrome, myocardial infarction, percutaneous 

coronary intervention or cardiac surgery (within one month). 

 

 

2.3 Catheter laboratory setup 

 

The setup of equipment in the electrophysiology catheter laboratory is complex, 

particularly for cases such as catheter ablation of AF which involve the use of 

3D mapping systems. The setup of equipment is summarized in Figure 2.1. 
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Figure 2.1: Catheter laboratory setup. 

 

Legend to Figure 2.1: Diagrammatic representation of the equipment setup in 

the catheter laboratory. There is continuous ECG monitoring and pulse 

oximetry, with blood pressure routinely cycled every 3 minutes. 

Electrophysiologic data from the diagnostic catheters passes to the break out 

box. These signals and the ECG are then split between the Bard amplifier 

(Labsystem pro, Bard Electrophysiology, MA, USA) and the Ensite NavX patient 

interface unit (St Jude Medical, CA, USA) which contains its own amplifier. 

These signals are then amplified, filtered and digitized by the Bard and NavX 

amplifiers before being displayed on their respective computer systems. Skin 

patches are also attached to the Ensite NavX patient interface unit. The 

electrograms are displayed on a live screen and a review screen for 

measurement and analysis, with a separate station for the Ensite system and 

screens for fluoroscopy images. Although the Ensite NavX system was used for 
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all the experimental protocols in chapters 4 and 5, the CARTO XP mapping 

system (Biosense Webster, Diamond Bar, CA, USA) is also used in our 

laboratory and hence was used for many patient cases reported in chapter 6.       

 

2.4 Mapping systems 

As the number of ablation procedure performed worldwide is increasing 

exponentially the case mix in many centres is becoming increasingly slanted 

towards more complex dysrhythmias such as catheter ablation of AF, post 

ablation atrial tachycardias and ventricular tachycardia. For ‘simple’ arrhythmias 

such as typical right atrial flutter or supraventricular tachycardia, mapping using 

fluoroscopy and the timing of activation relative to a stable reference catheter is 

usually sufficient to localize the site of earliest activation or the anatomy of the 

reentry circuit. The ablation required is also often fairly limited. However, this 

approach requires a sustained, haemodynamically stable and consistent beat to 

beat mechanism. Complex arrhythmia such as AF cannot be mapped in this 

way. Furthermore the anatomy of the left atrium is complex and variable 

between subjects. Lengthy catheter ablation procedures also mean that 

fluoroscopy use can be excessive. For these reasons, reliance on 3-

dimensional (3D) mapping systems and other technologies is increasing.  

 

The two most popular 3D mapping systems in use today are Ensite NavX (St 

Jude Medical, CA, USA) and CARTO (Biosense Webster, Diamond Bar, CA, 

USA). When these studies were conducted Carto XP was in use, and although 

Carto 3 has since been released it was not in use at the time of these studies. 

Likewise, various versions of Ensite NavX have been used at St Bartholomew’s 

over the years, but only version 8 was used for the study cases in chapters 4 
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and 5 (as the mapping data and geometry had to be exported in a consistent 

format for the purposes of computer modelling and subsequent analysis), and 

the recently released Ensite Velocity was not yet in use. Therefore, discussion 

here focuses on Carto XP and Ensite NavX. 

 

There are features common to both CARTO and Ensite NavX, such as the 

ability to build a geometry, to display catheter location, to store corresponding 

spatial and electrophysiologic data (electroanatomic mapping) and to display 

this in different ways (as isochrone maps, propagation maps, voltage maps and 

more). However, there are important differences between the systems.  

 

The Ensite NavX System 

Endocardial Solutions Inc. (ESI) was founded in 1992, and was acquired by St 

Jude Medical (CA, USA) in 2005. The original system allowed non-contact 

mapping, but this has been largely superseded by Ensite NavX which allows 

electroanatomic mapping using contact electrograms. The system passes a low 

amplitude ‘locator signal’ (5.68 kHz for Ensite NavX, changed to 8.14 kHz in the 

new Velocity system) which alternates between 3 different pairs of skin patches 

placed on the body’s surface in orthogonal planes. The voltage measured from 

each catheter electrode can be used to locate the catheter in 3 planes (x, y, and 

z). Up to 64 electrodes can be located on up to 4 conventional catheters.  

 

The chamber geometry is stationary relative to a reference electrode, usually a 

proximal electrode on the coronary sinus catheter in AF cases. Since cardiac 

structures move with respiration,229, 230 an intra-cardiac reference point means 

less movement of the geometry relative to the chamber than if a static extra-
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cardiac reference is used (as with CARTO).230 The drawback of using an 

intracardiac catheter is that if it displaces, the geometry shifts relative to the 

chamber and can be difficult to replace exactly using fluoroscopy.  

 

Geometry collection involves selecting a catheter (ideally multipolar such as the 

pulmonary vein mapping catheter) and moving it around the chamber of interest 

to collect points from the position of the electrodes in 3D space to create a 

detailed volume composed of many thousands of points. To improve definition 

of anatomy separate geometries can be collected for different anatomical 

features. Alternatively, complex anatomy like the LA can be acquired as a single 

geometry and points then reassigned to create separate geometries for the left 

atrial appendage and PVs. This is particularly advantageous in AF cases, since 

the geometry created very much resembles the LA, particularly at the crucial 

veno-atrial junction (Figure 2.2). 

 

Another feature of the Ensite system is that it allows simultaneous data 

collection from all electrodes of any/all catheters if desired. It is therefore 

relatively quick to create a high density map.  
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Figure 2.2: Mapping with the Ensite system. 

 

 

Legend to Figure 2.2: Top left shows wide area circumferential ablation being 

performed for AF. Note how the geometry resembles LA anatomy, particularly 

at the veno-atrial junction. Top right shows a CFAE map after PVI, with CFAE 

concentrated at the appendage ridge and at the orifice of the appendage. 

Bottom left shows an isochronal map from a patient whose rhythm regularised 

during CFAE ablation. The colours show rotation around a point at the anterior 

edge of the left atrial appendage, suggesting a localised macro-reentry circuit or 

rotor. Bottom right shows a reconstruction of the LA from CT fused with the 

NavX geometry. A circular mapping catheter is placed in the pulmonary vein 

and yellow lesions are placed where ablation has been performed in order to 

isolate the pulmonary veins.  
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The CARTO system 

The CARTO system was invented by Shlomo Ben-Haim who founded Biosense 

in the early 1990s. This was acquired by Johnson & Johnson in 1997 who 

merged it with Cordis Webster (which produced predominantly catheters) in 

1998. The customised ablation catheter (Navistar, Biosense Webster, Diamond 

Bar, CA, USA) is located by a magnetic sensor near the tip which senses 3 

different weak magnetic fields (5 x 10-6 to 5 x 10-5 Tesla) emitted from 3 coils in 

a locator pad beneath the catheter lab table. Since the strength of the magnetic 

fields are inversely proportional to the distance between the sensor and each of 

the 3 coils, the system can triangulate the position of the catheter tip in 3D 

space. Catheter orientation (calculated from Euler angles which determine 

rotation in 3 planes called roll, pitch and yaw) is also displayed, not just in terms 

of which way the catheter is pointing, but also which aspect the catheter 

deflects toward (shown as red at the tip). 

 

At the start of a case a reference patch is placed on the patient's back overlying 

the heart and with the patient lying down the device carrying the magnets is 

aligned within a defined circumference of the reference patch. The position of 

the reference patch relative to the magnets is recorded to allow repositioning if 

needed. Although use of an extra-cardiac reference point may slightly diminish 

the accuracy of chamber localisation, the stability achieved is actually a real 

strength of the CARTO system. 

 

Using the ablation catheter, corresponding electrical and spatial endocardial 

points are taken which the system joins to generate a surface representation of 

the chamber. The geometry created using surface points is inevitably far fewer 
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than the thousands of anatomical location only points used by Ensite to create a 

geometry. Consequently, the geometry on CARTO XP can often appear rather 

orthogonal, particularly at the critical veno-atrial junction where accurate 

location and placement of lesions is so critical for catheter ablation of AF 

(Figure 2.3). 

 

Image integration with CARTO and NavX 

Image integration has been widely used for catheter ablation of AF, since 

variability in anatomy of the pulmonary veins, the dimensions of their ostia and 

the width of the appendage ridge may impact on the techniques used for PVI. 

CARTO and Ensite both have the facility to import 3D reconstructions of the LA 

(or any chamber) from CT or MRI. The chamber of interest is segmented, 

imported into the case and registered with the geometry. The registration 

process differs somewhat between the mapping systems. 

 

CARTOMERGE (Biosense Webster, Diamond Bar, CA, USA) has 2 steps.231 

‘Landmark registration’ involves moving the catheter to 3 or more sites around 

the chamber and placing user-defined landmarks on the 3D reconstruction. 

‘Surface registration’ involves creating a point by point geometry of the 

chamber, which CARTO will then auto-register with the 3D reconstruction 

(although this can be manually corrected). The reconstruction is then simply 

displayed in the same uncorrected space as the geometry (Figure 2.3).  
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Figure 2.3: Ablation guided by CARTO. 

 

 

 

 

Legend to Figure 2.3: Top left image shows an activation map on CARTO XP, 

with a tachycardia originating from the right upper pulmonary vein. Top right 

shows an activation map in antero-posterior and left anterior oblique views, 

demonstrating a flutter circuit running clockwise around the mitral valve 

annulus. The bottom left image shows a LA geometry with image integration 

and a lesion set for persistent AF: red lesions are isolating the PVs, pink lesions 

are linear lesions, and yellow lesions are targeting of CFAE. Bottom middle 

panel shows image integration being used to guide PVI for AF in a case with 

variant anatomy (a left common trunk and a right sided roof vein). Bottom right 

shows a clipping plane looking into the left PVs and appendage to help guide 

ablation on these complex structures.  
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Ensite Verismo (St Jude Medical CA, USA) requires the user to define 

corresponding pairs of fiducial points on the geometry and the reconstruction. 

Verismo then ‘stretches’ the geometry to fit the reconstruction, assuming the 

reconstruction to be correct (Figure 2.2). Regardless of these differences, the 

registration of imaging appears similarly accurate for both mapping systems and 

are accurate to within 2-3mm.231, 232  

 

Data regarding the clinical benefit of image integration in the context of catheter 

ablation for AF is conflicting. 233-237 It has been suggested that part of the benefit 

may be derived from simply knowing the anatomy, rather than image integration 

per se.235 It is also noteworthy that all the trials to date have used 

CARTOMERGE and there have been no trials examining the role of Ensite 

Verismo. 
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2.5 Catheter ablation of AF at St Bartholomew’s 

 

Peri-procedural management of patients 

Patients stopped warfarin 5 days pre-procedure and self administered 

enoxaparin (1.5 mg/Kg subcutaneously od) until the day before the procedure. 

Patients were routinely admitted the day before the procedure for routine blood 

tests, a transoesophageal echocardiogram (TOE) to rule out intra-cardiac 

thrombus and left atrial imaging for integration into the 3D mapping system 

(either CT angiography or cardiac MRI). Patients were taken to the catheter 

laboratory in the fasted state, and procedures were performed under local 

anaesthetic (lidocaine) and moderate sedation (midazolam and diamorphine).  

 

Heparin was administered, starting with 5000 units after venous access was 

obtained, a further 5000 units after transseptal puncture, and further boluses to 

maintain activated clotting time 300-400 seconds. Post procedure femoral 

sheaths were removed once activated clotting time had fallen below 150 

seconds. Warfarin loading began the day after the procedure with Enoxaparin 

administered until INR was therapeutic.   

 

Catheter ablation of AF 

Typically venous access was via the right femoral vein with 3 sheaths. A 

multipolar catheter was passed to the coronary sinus (a decapolar catheter for 

persistent AF or a quadripolar catheter for paroxysmal AF). After double trans-

septal puncture a pulmonary vein mapping catheter and an ablation catheter 

were introduced to the LA. Ablation catheters were irrigated with 2 ml/minute 

heparinised saline, increased to ≤30 ml/minute where temperature increase 
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limited energy delivery. Power was generally limited to 25 W and 50˚C near the 

PV ostia, 30 W and 50 ˚C in the body of the, 40 W and 45˚C at the cavo-

tricuspid isthmus.  

 

Catheter ablation of AF at St Bartholomew’s has remained fairly consistent over 

recent years. All procedures were guided by 3D mapping systems (either 

CARTO or Ensite NavX). Since 2004 CT or MRI imaging was used routinely for 

image integration.232, 235 PVI was by wide area circumferential ablation (WACA) 

with lesions placed 1-2 cm outside the PV ostia to isolate them as ipsilateral 

pairs, with confirmation of electrical isolation since 2002. All patients with 

persistent AF had linear lesions added at the mitral isthmus (between mitral 

valve and left sided WACA ring), the roof between WACA rings, and the 

cavotricuspid isthmus in patients with a history of typical atrial flutter. Block was 

verified by examining activation sequence either side of linear lesions after 

restoration of sinus rhythm. From 2005, after WACA and linear lesions if the 

patient remained in AF, CFAE were systematically targeted throughout the left 

then right atria. CFAE were identified visually with operators using a common 

consensus definition: electrograms with (i) prolonged complexes with 

continuous deflections from baseline (ii) a rapid cycle length (< 120ms) or (iii) 

complexes with multiple deflections (without distinguishing between high and 

low amplitude signals). If at any point AF organised into AT this was mapped 

and ablated. If sinus rhythm was not restored following these lesions the patient 

was cardioverted with a DC shock. The exact mapping and ablation protocols 

for chapters 4 and 5 are described below as they differ slightly from this 

standardised lesion set. 
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Follow-up 

Patients were discharged the day after the procedure, having stopped all AADs. 

As early recurrences often settle spontaneously,172, 238 patients were managed 

medically for the first 3 months post ablation if symptoms recurred. Patients 

were followed up at 3 months, and again at 6 months if symptomatic initially, 

with a period of ambulatory monitoring of 2-7 days. Those with persistent AF/AT 

or symptomatic PAF at 3 months were offered a repeat procedure. 

Anticoagulation was continued for a minimum of 3 months and ongoing 

anticoagulation advised if the CHADS2 score was ≥2 (regardless of rhythm) as 

per current guidelines.189, 239    

 

 

 

2.6 Methods for Chapter 3 

 

This chapter involved three key steps which are detailed below:  

1) A classification of electrograms had to be described to grade the degree of 

electrogram fractionation in AF. This was based on retrospective review of 

CFAE targeted in historical cases. 

2) Secondly, the utility of the classification had to be tested to ensure that it 

could be reproducibly applied in real time live during cases. 

3) Thirdly, if the two steps above were successful, this novel grading system 

could be used to assess automated CFAE detection algorithms available on 

3D mapping systems, both in terms of their accuracy in detecting CFAE and 

their ability to assess the degree of electrogram fractionation. 
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Study Population 

All patients studied underwent first time catheter ablation for persistent AF. All 

had symptomatic AF despite at least one antiarrhythmic drug.  

 

Analysis of electrograms 

Electrograms were recorded after LA catheterisation but before any ablation 

was performed, at points evenly distributed around the LA as determined by 

electroanatomic mapping systems. All electrograms were recorded with a 3.5 

mm irrigated tip ablation catheter (Navistar Thermo-Cool or Thermo-Cool 

Celsius, Biosense Webster) with 2-5-2 mm electrode configuration. Unclipped 

bipolar electrograms were examined on the computer-based digital 

amplifier/recording system (Labsystem pro, Bard Electrophysiology, MA). 

Recordings were filtered at 30 to 250 Hz and displayed at 100 mm/Second. 

Electrograms were examined on digital display (rather than paper printouts) for 

development and testing of the classification system. After collection of data 

ablation was performed as described above in section 2.5.  

 

(1) Development of classification 

Electrograms were reviewed from the 118 patients with persistent AF who 

underwent catheter ablation in our institution over the last 10 months. Using 

these data we concluded that the following were relevant and distinguishable 

features of fractionated electrograms: 

 

1. The presence of rapid deflections from baseline. Deflections were 

distinguished from low amplitude noise and far-field activity by defining them 

as (a) amplitude ≥ 0.05 mV, (b) amplitude also ≥ 20% of the largest peak to 
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peak deflection of an atrial electrogram within 500 ms, (c) ‘sharp’. The 

criterion used for sharp was a slope of ≥45˚ from the isoelectric line for the 

upstroke and the downstroke. With complex electrograms where the 

deflections did not reach baseline, an extrapolation of the deflection was 

extended to cross the isoelectric line as in Figure 2.4. For the purposes of 

analysis far field ventricular electrograms were easily identified and 

discarded (See Figure 2.5, example electrogram for grade 5). 

 

2.  The proportion of a sample occupied by rapid deflections. We distinguished 

between discrete complex electrograms (i.e. with multiple deflections per 

complex), and those with more continuous fractionation. Atrial effective 

refractory periods as low as 70 ms have been recorded in animal models 

during autonomic stimulation.212, 240 This was therefore regarded as an 

absolute minimum possible and deflections < 70 ms apart were regarded as 

part of the same complex, since it was not thought possible for this to  

represent successive wavefronts passing through the same tissue (although 

it is recognised that other groups have used variable times, typically ranging 

from 50-70 ms).194, 241 Complexes lasting ≥ 70 ms were regarded as 

fractionated and were further subdivided based on the proportion of the 

electrogram occupied by fractionation and the consistency of fractionated 

activity. Targeting electrograms fractionated for ≥70% of the recording is 

associated with an increase in cycle length, and uninterrupted segments 

lasting ≥1 Second have been proposed as targets based on their increased 

prevalence in persistent AF.241-243  
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3. The amplitude of the signal was categorised to reflect whether there may be 

electrically inert scar tissue, a small mass of fibrillating tissue, or an 

epicardial source of activation.244 Peak to peak atrial complexes <0.5 mV 

have been regarded as low amplitude signals previously.221, 245    

 

Using these strict criteria our grading system was devised. Each grade of 

electrogram is defined in Table 2.1 and examples of each are shown in Figure 

2.4. A suffix was added to the numerical grade to reflect signal amplitude, with 

‘a’ denoting a peak to peak deflection of ≥0.5 mV in greater than half of all 500 

ms intervals during the recording, and ‘b’ denoting signals not meeting this 

criterion. 

 

Modification of the classification system during development 

Initially grade 5 was divided into normal electrograms which were rapid (cycle 

length ≤ 120 ms) or slow (cycle length > 120 ms), as a cycle length of 70-120ms 

has generally been included as criteria for identifying CFAE in clinical trials.194, 

245 However, on testing application of the classification system (see below) this 

distinction was found to be redundant. When the cycle length was < 120ms, the 

deflections would often fall within 70ms of the last and hence were classified as 

continuous fractionation. This would then be classified as grade 1, 2 or 3 

depending on the proportion of the sample occupied by this continuous 

fractionation. Hence this has been removed from the classification system.   
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Table 2.1 – Classification system for electrograms 

 

 

Grade Electrogram criteria 

1 Uninterrupted fractionated activity 

Fractionated activity (defined as continuous deflections without pause 

at the isoelectric line for ≥ 70ms) occupying ≥70% of sample, and at 

least 1 uninterrupted episode of fractionated activity lasting ≥1s.   

2 Interrupted fractionated activity  

Fractionated activity occupying ≥70% of sample. 

3 Intermittent fractionated activity 

Fractionated activity occupying 30-70% of sample. 

4 Complex electrograms  

Discrete electrograms (<70ms) and complex (≥5 direction changes), 

with any fractionated activity occupying <30% of sample (otherwise 

grade 3). 

5 Normal electrogram  

Discrete electrograms (<70ms) and simple (≤ 4 direction changes). 

6 Scar 

No discernible deflections. 

 

Legend to Table 2.1: In assessment of electrograms, for a deflection to be 

counted it must be a sharp signal discernible from noise, with amplitude both > 

0.05 mV and >20% of the largest deflection within 500ms. Deflections occurring 

within 70ms of the last deflection were regarded as part of the same complex, 

with complexes lasting ≥70ms regarded as continuous fractionation. In addition 
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to the numerical grade, a suffix is added to describe amplitude. The suffix ‘a’ 

denotes a high amplitude signal (at least 1 peak to peak deflection of ≥0.5 mV 

in the majority of 500ms segments of the recording) and ‘b’ denotes low 

amplitude signals not meeting this criterion. 

 

Figure 2.4: Analysis of complex electrograms. 

 

 

 

Legend to Figure 2.4: To distinguish local electrical signals from far-field 

electrograms and wandering baseline, an objective criterion to describe ‘sharp’ 

deflections was developed. The angle between both the up-stroke and the 

down-stroke of the deflection must be ≥ 45˚ to the isoelectric line. For complex 

electrograms where the deflections may not reach baseline, an extrapolation of 

that line was continued to cross the isoelectric line allowing the angle to be 

measured. In this case the angle is calculated as 60˚. 

 

  

60˚ 
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Figure 2.5: Examples of electrograms from the revised grading system. 

 

Legend to Figure 2.5: Grade 1 shows uninterrupted fractionated activity 

without pause at the isoelectric line for ≥ 70ms lasting  1 Second. Grade 2 

shows fractionated activity which is interrupted by pauses at the isolelectric line 

of ≥ 70ms but still occupying > 70% of the recording. Grade 3 shows intermittent 

fractionated activity which occupies between 30 and 70% of the recording. 

Grade 4 shows complex electrograms (≥ 5 deflections) which are discrete 

lasting for < 70ms. Towards the end of this sample, some complexes merge to 

last 320 ms (i.e. longer than 70 ms) and hence this part of the recording is 

considered fractionated. However, this is still grade 4 as < 30% of the sample is 

fractionated. Grade 5 shows discrete electrograms (i.e. < 70ms in duration and 

≤ 4 direction changes). There are two examples of far-field ventricular 

electrograms which can be easily distinguished from near field electrograms. 

Grade 6 shows scar with no discernible deflections. 

Grade 1 

Grade 2 

Grade 3 

Grade 4 

Grade 5 

Grade 6 

 

Far-field ventricular signal 

62 ms 80 ms 320 ms 
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(2) Application of the classification system 

We sought to examine whether the electrogram classification system could be 

accurately applied during cases by rapid online visual inspection. Electrograms 

recorded for 10 Seconds were viewed on the computer-based recording system 

and graded by an experienced electrophysiologist. It has been demonstrated 

previously that recordings of 5 seconds or greater are adequate for determining 

the duration and characteristics of CFAEs.246 Variable times have been used in 

the literature ranging commonly from 2-10 seconds.201, 246-248 We used the 

maximum analysis time (10 Seconds) to ensure accurate results. 100 

electrograms over 10 patients (10 per case) were chosen at random from those 

graded during the case and subjected to detailed manual analysis offline by a 

second investigator blinded to the previous results. These results were then 

compared. 

 

As CFAE can be consistent, fleeting or cyclical,201, 249, 250 the proportion of a 

sample that is fractionated can vary which may affect the grade determined. 

Over the short term however, automated assessment of samples longer than 5 

seconds has yielded consistent results compared to longer samples.246 To 

determine the consistency of fractionation and grade when shorter samples 

were analysed, the percentage of the sample that was fractionated and the 

grade determined by manual measurement were calculated for the first 3 

Seconds, then recalculated adding successive seconds up to 10 Seconds. The 

absolute percentage difference in fractionation compared to 10 Seconds was 

then calculated. Agreement in grade was also compared to 10 Seconds. 
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(3) Validation of commercial automated detection systems 

As electrogram appearance may be altered by differences in amplification and 

filtering of signals between systems, validation of automated CFAE detection 

systems was done by viewing electrograms on the 3D mapping systems. The 

same sample analysed by the mapping system was graded by visual 

inspection. Electrograms were graded offline by visual inspection on the 

mapping system and compared to the automated result for the same sample. 

As this process is slightly different to the process of grading live during cases, 

the validation process was repeated. In total 1000 electrograms were analysed 

on the 3D mapping systems (500 on each one assessed). Of these, 100 

electrograms (50 from each system) were chosen at random and subjected to 

detailed manual analysis offline by a second investigator blinded to the previous 

results. These results were then compared. 

 

The grade determined by visual inspection was compared to the score from 

automated algorithms. To assess automated CFAE detection, grades 1-4 were 

considered fractionated. To assess differentiation between highly fractionated 

signals and less fractionated electrograms, grade 1-2 were considered highly 

fractionated. Correlation between grade and automated scores were also 

examined to characterise automated assessment of degree of electrogram 

fractionation. 

 

Automated detection by Carto 

There are three algorithms for CFAE detection available on Carto XP (Biosense 

Webster Inc., Diamond Bar, CA) which work by assessing intervals between 

deflections. A deflection must meet certain criteria to be counted by the 
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software. Each deflection must have a minimum and a maximum width to 

exclude noise and wandering baselines (15 and 30 ms respectively are default 

settings). Deflections must also fall within a window of amplitude that can be 

varied (factory settings suggest low voltage deflections between 0.05 and 0.15 

mV be selected). The software tags the deflections meeting these criteria on-

screen, and the algorithms then calculate a score as follows: 

1. The interval confidence level (ICL) counts the number of intervals 

between tagged deflections falling within a range (70-120 ms is 

suggested) as shown in Figure 2.6. The ICL was calculated using the 

factory settings (ICL-FS) as above, and using previously published 

optimised settings (ICL-OS) where the upper limit of amplitude for 

sensing deflections was increased to 1mV.251  

2. The average complex interval (ACI) calculates the mean interval between 

tagged deflections which fall within the specified range (70-500 ms was 

used). Factory settings were used as above. 

3. The shortest complex interval (SCI) calculates the shortest interval 

between tagged deflections which fall within the specified range (70-500 

ms). Factory settings were used as above. 

2.5 Second bipolar electrograms were reviewed on Carto (this parameter 

cannot be altered on the software).  
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Figure 2.6: Automated detection of CFAE using Carto. 

 

 

 

Legend to Figure 2.6: This electrogram is shown as it appears on Carto. The 

software will recognise deflections only if they meet certain criteria. To be 

counted deflections must be between 15-30 ms in duration, and within a window 

of amplitude marked by the blue and red lines (in this example between 0.05 

and 0.15 mV). Deflections meeting these criteria are marked with white dots, all 

other deflections are marked with purple dots and ignored. The interval 

confidence level (ICL) algorithm counts the number of intervals between 

deflections which fall within a pre-specified range (the factory settings suggest a 

range of 70-120 ms). The intervals marked with the yellow lines above will be 

counted and those marked with the orange line below which fall outside of the 

70-120 ms range are ignored. 

  

70ms 90ms 70ms 

150ms 50ms 

0.15 mV 

0.05 mV 

- 0.05 mV 

- 0.15 mV 
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Automated detection by Ensite NavX 

The Ensite software uses a similar set of criteria to recognise deflections. We 

adopted parameters used previously.221 The minimum amplitude was set at 

0.1mV (there is no upper limit for amplitude specified on this software), with a 

minimum deflection width of 20ms and refractory ‘blanking’ period of 30ms.  The 

software then tags deflections meeting these criteria on-screen and calculates 

the mean interval between deflections or ‘CFAE mean’. 5 Second electrograms 

were viewed for Ensite NavX (St. Jude Medical, Minneapolis, MN) as this has 

been shown to give consistent results.246  

 

Statistics 

Continuous variables are reported as mean ± standard deviation, or median 

(range) if not normally distributed. Correlation between observers was tested 

with Cohen’s Kappa coefficient (к). Correlation between grade and automated 

scores were examined using Spearman rank correlation coefficient. For each 

algorithm sensitivity and specificity were calculated using previously defined cut 

off values. Receiver operating characteristic (ROC) analysis was performed 

using SPSS 16.0 software (SPSS, Chicago, IL).  This was used to determine 

optimal cut-off for detection of CFAE and selection of highly fractionated 

signals. Area under ROC curves is presented with 95% confidence intervals. 

There are currently no standardised statistical tests to compare the area under 

ROC curves when they are derived from different cases.   
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2.7 Methods for Chapter 4 

 

Methods 

Study population and randomisation procedure 

The study population was comprised of 20 patients who underwent catheter 

ablation of persistent AF at a single institution. Randomisation involved a 

random number generator, with sealed envelopes opened on the day of the 

procedure. Although patients and physicians performing clinical follow up were 

blinded, the nature of the study did not allow blinding of the operator. All 

patients gave written informed consent. The study was approved by East 

London and The City Research Ethics Committee, and was prospectively 

registered on NIH clinicaltrials.gov (NCT00894400).  

 

Study protocol 

The peri-procedural management of patients and equipment is as discussed in 

Section 2.5. AADs were not stopped pre-procedure. Under local anaesthetic 

(lidocaine) and conscious sedation (midazolam and diamorphine) a decapolar 

catheter (Viking, Bard EP, MA, USA) was inserted into the coronary sinus and a 

hexapolar catheter (Supreme, St. Jude Medical, MN, USA) placed in the right 

atrial appendage. After double trans-septal puncture a 14 pole deflectable PV 

mapping catheter (Orbiter PV, Bard EP, MA, USA) and a 3.5 mm irrigated 

ablation catheter (Thermo-Cool Celsius, Biosense Webster, CA, USA) were 

introduced to the LA. All electrograms targeted for CFAE ablation were 

recorded using the 3.5 mm ablation catheter with a 2-5-2 mm electrode 

configuration. Unclipped bipolar electrograms were examined on a computer-
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based digital amplifier/recording system (Labsystem pro, Bard EP, MA, USA). 

Recordings were filtered at 30 to 250 Hz and displayed at 100 mm/Second.  

 

Mapping 

Right and left atrial geometries were created using a 3D mapping system 

(Ensite NavX, St Jude, CA, USA). The PV mapping catheter (0.75 - 5 - 0.75 

configuration) was used to record 10 second electrograms at evenly spaced 

points which were graded according to our validated classification (described in 

Section 2.6). Electrograms were assigned a number on a scale from 1-6, with 1 

being most fractionated and 5 being a normal electrogram (scar being nominally 

designated grade 6), and a letter ‘a’ or ‘b’ for high or low amplitude respectively 

(the definition of each grade and the suffix for amplitude are shown in Table 2.1, 

with examples of each shown in Figure 2.5).   

 

Electrograms were located using 22 and 16 segment models of the left and right 

atria (Figure 2.7). For each map, at least 1 set of electrograms was recorded 

using the PV mapping catheter for each segment, and the most fractionated 

grade recorded. 
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Figure 2.7: Anatomical division of the left and right atrium.  

 

 

Legend to Figure 2.7: (A) Anterior and posterior views of the LA, showing the 

22 segment model. (B) Right anterior oblique and left lateral views of the right 

atrium showing the 16 segment model.   
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After PVI a further LA CFAE map was acquired and used to guide subsequent 

CFAE ablation. The pre- PVI map of the right atrium was used to guide ablation, 

since no ablation had yet been performed there. During CFAE ablation, 

electrogram grade was re-checked in each segment prior to ablation there. The 

effect of PVI on LA CFAE distribution was determined by comparing pre and 

post PVI maps. The stability during CFAE ablation was assessed by comparing 

the maps used to guide ablation with the grade found in each segment during 

CFAE ablation. 

 

Ablation 

PVI was performed by WACA, with electrical isolation confirmed using the PV 

mapping catheter as described in Section 2.5.  

 

Targeting of CFAE 

Patients were randomised to targeting of CFAE starting with the most 

fractionated grade first (i.e. grades 1 to 5) in group 1, or starting with the least 

fractionated first (i.e. grades 5 to 1) in group 2. 199, 252Since grade 5 

electrograms were considered normal and served as control lesions, only 5 

were ablated per patient. These were placed in locations that could later be 

incorporated into linear lesions. Once all LA CFAE were abolished and 5 grade 

5 electrograms targeted, the process was repeated in the right atrium. Targeting 

of CFAE continued until atrial tachycardia or sinus rhythm ensued, or all atrial 

CFAE were abolished. Radiofrequency energy was delivered until electrogram 

amplitude was reduced by ≥ 80% or 60s of energy delivered. 
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If AF persisted after abolition of CFAE, linear lesions were added at the mitral 

isthmus and the roof. A cavotricuspid isthmus line was added only in patients 

with a history of typical right atrial flutter. If at any point AF organised into atrial 

tachycardia this was mapped and ablated. If sinus rhythm was not restored 

following these lesions the patient was cardioverted with a DC shock. PVI was 

then re-confirmed, and if necessary veins were re-isolated.   

 

AFCL is thought to reflect the number of drivers supporting AF.253 It lengthens 

progressively during ablation until termination of AF, with prolongation reflecting 

clinical outcome.63 AFCL has been used by others to quantify response to 

ablation, and an increase of ≥ 5-6 ms has been regarded as significant.241, 254, 

255 Mean AFCL was determined manually over 30 cycles from bipolar 

electrograms recorded at the apex of the left and right atrial appendages (where 

electrograms are high amplitude and AFCL is unambiguous) before and after 

each CFAE lesion.  

 

We analysed baseline AFCL variability and considered a change ≥ mean + 2 

standard deviations as significant. The cycle length of fractionated electrograms 

(grades 1-3) was ambiguous and was therefore not quantified. The cycle length 

of complex electrograms (grade 4) was measured manually over the 10 second 

sample, with segments of continuous fractionation discarded (< 30% of sample 

as per definition of grade 4).   

 

The randomised strategy was employed: 

(i) To control for any cumulative effect of ablation on AFCL. 
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(ii) To examine whether elimination of highly fractionated electrograms 

first reduces the number of less fractionated electrograms remaining. 

(iii) To assess whether the order in which CFAE were targeted affects the 

amount of ablation required to abolish CFAE/terminate AF. 

 

Inter-operator variability 

All CFAE targeted were classified in real time by visual inspection. Electrograms 

were later graded off-line with the benefit of on-screen callipers by a second 

operator blinded to the earlier grade, and the two grades compared. AFCL was 

also re-measured by a second operator before 5 lesions chosen at random in 

each patient to allow assessment of inter-operator variability. 

 

Statistics 

Continuous variables are reported as mean ± standard deviation, or median 

(range) if not normally distributed. Continuous data were compared by Student’s 

t-test if normally distributed or Wilcoxon two-sample test if not normally 

distributed. Categorical data were compared by chi-squared test.  

 

Since this study was completely novel there was no pilot data available for 

sample size estimation. After 20 patients interim analysis was conducted to 

clarify sample size, but showed that the primary end-point had been met. 

    

To assess the primary end-point, which was a comparison of the response to 

ablation of each CFAE grade, the mean percentage of lesions causing AFCL 

prolongation for each grade were compared using repeated measures analysis 
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of variance. To assess the impact of the order of ablation, group was included 

as an independent variable (repeated measures MANOVA).  

 

The number of CFAE per patient did not permit inclusion of further dependent 

variables in addition to CFAE grade in the repeated measures MANOVA 

design. Therefore, response to ablation was assessed across all lesions using 

binary logistic regression, including grade, order of ablation, amplitude 

(categorised as high or low) and location (in the left or right atrium) as 

covariates. However, it is recognised that this approach did not account for the 

variable response to ablation between patients.  

 

The effect of the order of ablation on the mean number of lesions per patient for 

each grade was compared using repeated measures MANOVA. Although 

comparison of the number of lesions between grades from MANOVA was not 

thought meaningful, comparison within each grade between groups was using 

Student’s t test.     

 

Agreement between observers for determination of CFAE grade was tested with 

Cohen’s Kappa coefficient (к). 
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2.8 Methods for Chapter 5 

 

The methods for this chapter can be broken down into three overlapping stages: 

1) A computer model was established to simulate left atrial wall stress in 3D 

reconstructions of the LA from CT scans. This stage consisted of (i) a 

pilot phase, (ii) a working model phase, and (iii) exploring variation in the 

model, to see how challenging certain assumptions within the model 

affect the simulation.  

2) Electrophysiologic data were collected at the time of catheter ablation for 

persistent AF and compared to simulated wall stress data using a patient 

specific LA geometry derived from a pre-procedure CT scan. This 

allowed correlation between wall stress and electrophysiologic 

parameters, in particular areas of low voltage and CFAE. 

3) The importance of regions with high wall stress in maintaining AF was 

evaluated by examining how wall stress impacts on the response to 

CFAE ablation, as determined by change in AFCL.  

 

Study population  

The study population was comprised of patients who underwent first time 

catheter ablation of persistent AF at a single institution. This study was 

approved by East London and The City Research Ethics Committee, UK 

(reference number 09/H0703/6). All patients gave written informed consent. 

 

Electrophysiology study 

The peri-procedural management and equipment used has been discussed in 

the Section 2.5. A decapolar catheter (Viking, Bard EP, MA, USA) was inserted 
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into the coronary sinus and a hexapolar catheter (Supreme, St. Jude Medical, 

MN, USA) placed in the right atrial appendage. After double trans-septal 

puncture a 14 pole deflectable PV mapping catheter (Orbiter PV, Bard EP, MA, 

USA) and a 3.5 mm irrigated ablation catheter (Thermo-Cool Celsius, Biosense 

Webster, CA, USA) were introduced to the LA. Prior to any ablation a LA 

geometry was created using a 3D mapping system (Ensite NavX, St Jude, CA, 

USA).  

 

All patients underwent a gated 128 slice CT scan of the LA within 6 hours of the 

procedure. All patients were assessed as euvolaemic before scanning and had 

a mean central venous pressure between 0 and 15 mmHg at the start of the 

procedure subsequently. All patients were in rate controlled persistent AF with a 

resting ventricular rate below 100 beats per minute on 12 lead ECG prior to CT 

scanning. CT scans were segmented on proprietary software (Ensite Verismo, 

St Jude, CA, USA)  to create a 3D reconstruction of the LA, which was then 

registered with the geometry as described previously.232 CT imaging of the LA 

provides high quality reconstructions which can be registered to the LA 

geometry with an error of only 1-3 mm, regardless of whether CT scans and/or 

geometries are acquired in AF or sinus rhythm.232, 256 

 

Signal processing and waveform analysis 

The PV mapping catheter was moved around the LA to acquire electrograms at 

evenly spaced points, creating a map of electrophysiologic data prior to any 

ablation in AF. Catheter contact was verified using a combination of the 3D 

mapping system, the catheter shape on fluoroscopy and electrogram 

inspection. However, no catheter contact monitoring technology was used and it 
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is recognized that variation in contact force may change electrogram properties 

to some extent. Five second electrograms were recorded for analysis, since this 

has been shown to produce consistent results.246 The Ensite NavX software 

recognizes deflections in the waveform based on a number of criteria which can 

be varied by the user (as described in Chapter 3). Each deflection must have a 

minimum width to exclude noise and a blanking period to prevent double 

counting (20 ms and 30 ms respectively have been shown to correlate with 

visual assessment of electrograms). A minimum of 0.05 mV was used. The 

software tags deflections meeting these criteria on-screen, and uses algorithms 

to generate a score for: 

 

1. Electrogram voltage amplitude - the mean of the largest ‘peak to peak’ 

deflection in each electrogram complex.   

2. CFAE mean – the mean interval between deflections, or mean cycle length. 

This is a continuous variable with shorter mean cycle length taken to mean 

greater electrogram fractionation. However, for assessment of CFAE 

distribution < 120 ms was considered a CFAE. 

 

Therefore, for each electrophysiologic data point where a waveform was 

obtained, the mapping system ascribed a coordinate (in the same 3D space as 

the LA reconstruction) and calculated a value for each of these 2 parameters. 

 

Ablation 

The PVs were isolated by WACA, with lesions placed 1-2 cm outside the PV 

ostia to isolate them in ipsilateral pairs. Electrical isolation was confirmed using 

the PV mapping catheter, then this was placed in the LA appendage for 



112 

 

monitoring of LA AFCL. Next CFAE were systematically targeted throughout the 

left then right atria until sinus rhythm was restored or all CFAE were abolished. 

Radiofrequency energy was applied until electrogram amplitude was reduced 

by ≥ 80% or 60s of energy delivered.  If patients remained in AF after abolition 

of all CFAE, linear lesions were added at the mitral isthmus (between mitral 

valve and left inferior PV), the roof between left and right PVs, and the 

cavotricuspid isthmus in patients with a history of typical atrial flutter. If at any 

point AF organised into atrial tachycardia this was mapped and ablated. If sinus 

rhythm was not restored following these lesions the patient was cardioverted 

with a DC shock. 

 

Assessment of AFCL 

Mean AFCL was determined manually over 30 cycles from bipolar electrograms 

recorded at the apex of the left and right atrial appendages, where electrograms 

are high-voltage and hence AFCL is unambiguous, before and after ablation of 

each CFAE lesion. Baseline AFCL variability was measured over 10 successive 

segments of 30 cycles in all patients prior to any ablation. A change of ≥ mean + 

2 standard deviations of baseline variability was considered significant.  
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Stress Modelling (1): the pilot phase. 

Four CT scans were segmented using CARTOMERGE (Biosense Webster, 

Diamond Bar, CA, USA) to create 3D reconstructions of the LA as described 

previously.231 These reconstructions were exported from the mapping system 

and used to simulate wall stress distribution on proprietary software (Finite 

Element Analysis, ABAQUS Inc, Pawtucket, RI, USA). The LA and proximal 

PVs were essentially modelled as a homogenous linear elastic shell. The model 

was then improved by adding layers of complexity based on the assumptions 

below: 

1. Since the resolution of CT is approximately 1mm, this is insufficient to 

accurately determine regional differences in thickness of the LA wall (which 

varies from 1-5 mm) or the muscular sleeves at the PVs (which is 

approximately 1mm and tapers towards the first division of the PV).66 

Therefore the LA was assumed to have uniform thickness of 2mm. 

2. The wall thickness of the PVs were assumed to taper from 2 mm to 1 mm 

over a distance of 1 cm from the PV ostia.  The surface beyond the first 

division of the PVs was not included in the analysis.  

3.  The LA was considered suspended by the 4 PVs which were fixed in the 

model.  

4. The PVs were assumed to be open, and the mitral valve assumed to be 

shut. The mitral valve annulus was not included in the analysis. 

 

Values for LA physical properties including Young’s modulus (a measure of 

‘stiffness’) and Poisson’s ratio (a measure of the degree to which stress causes 

deformation parallel to and perpendicular to the force applied to a surface) were 
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adopted from the literature.257 Von Mises stress distribution was predicted for a 

trans-mural pressure difference of 20 mmHg. 

 

It had initially been planned to use this methodology for the whole study: using 

CARTOMERGE to segment CT scans and produce the LA reconstruction, and 

CARTO (Biosense Webster, Diamond Bar, CA, USA) for the clinical case to 

collect electroanatomic mapping and ablation data. However, this presented two 

problems: 

1.  Using CARTOMERGE, any electroanatomic data exists in the same 3D 

space as the geometry, but is not truly merged with it. The data extracted 

from CARTO therefore still requires some degree of registration between the 

electroanatomic data points and the nearest point on the 3D reconstruction 

of the LA to allow any comparison with wall stress values (which are 

simulated on the surface of the LA reconstruction). This registration process 

presented enormous difficulties from an engineering perspective and meant 

that comparison between wall stress data and electrophysiologic data might 

be limited to a visual comparison using a compartmentalised 3D model of 

the LA (it was initially planned to use the model in Figure 2.7).  

2. Electroanatomic data points can only be acquired at the tip of the ablation 

catheter one point at a time. This was thought to be a limitation for the 

acquisition of high density electroanatomic data. 

 

Therefore, although a working computer model was developed during this pilot 

phase, it was decided to change the methodology and use the Ensite NavX 

mapping system (St Jude Medical, CA, USA) for the clinical correlation and 

ablation studies. Using the Ensite Verismo software (St Jude Medical CA, USA) 
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for segmenting CTs, creating the 3D reconstruction of the LA and registering 

this with the geometry in the clinical case is comparable to using 

CARTOMERGE (as detailed above in Section 2.4). However, a subtle 

difference with Ensite Verismo is that the geometry is ‘stretched’ to fit the 

nearest parts of the 3D reconstruction of the LA, so that the exported 

electrophysiologic data points are projected onto the same 3D LA geometry that 

was used to simulate wall stress. This avoided a technically challenging 

procedure from an engineering standpoint with the added advantage that this 

registration process had already been shown to be accurate to within 

approximately 2 mm.232 Furthermore, the Ensite NavX system allowed 

acquisition of multiple electrophysiologic data points simultaneously, allowing a 

high density map to be created much more quickly. 

 

Stress Modelling (2): the working model phase. 

The LA reconstruction and electrophysiologic data were exported from the 

Ensite NavX mapping system and wall stress simulated as described in the pilot 

phase. The distribution of peaks in wall stress was assessed using the 22 

segment model of the LA shown in Figure 2.7. To assess the relationship 

between LA electrophysiology and wall stress, the values derived for each 

electrophysiologic data point (electrogram voltage amplitude and CFAE mean) 

were compared to simulated wall stress at the nearest point on the LA 

reconstruction.  

 

Stress modelling (3): Exploring variations of the model 

Although the accuracy of the geometry is the most important factor when 

simulating wall stress,258 the wall thickness and the transmural pressure 
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gradient are also very important. Hence, to ascertain whether the assumptions 

of the model were too simplistic to allow a meaningful wall stress simulation, the 

impact of varying these parameters on wall stress distribution was explored.  

 

The trans-mural pressure gradient is complex owing to extra-cardiac structures, 

changing intra-atrial pressure during the cardiac cycle and changing intra-

thoracic pressure during respiration. Although it is not possible to fully account 

for this regional and temporal variation, we addressed the impact of a uniform 

change in the transmural pressure gradient. Simulated wall stress values were 

compared when 10 mmHg and 20 mmHg trans-mural pressure gradients were 

used. The increase in wall stress resulting from this increase in pressure was 

evaluated by examining the mean percentage increase in stress for each 

element in the model. To examine whether the pattern of wall stress distribution 

was altered, the elements in the model were ranked from highest to lowest wall 

stress values in the 10 mmHg simulation, and the mean change in the 

percentile ranking for each element was assessed when the trans-mural 

pressure was increased to 20 mmHg. 

 

Although current imaging modalities do not permit regional assessment of wall 

thickness, it is recognized that certain areas of the LA are usually thicker, in 

particular the septum and the left atrial appendage.259 Therefore the simulation 

was repeated with a 3 mm wall thickness at these sites. The impact on wall 

stress at these sites and any resultant effect on the correlation with 

electrophysiologic parameters were evaluated.     
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Statistics 

Since this study was completely novel there was no pilot data available for 

sample size estimation. After 20 patients interim analysis was conducted to 

clarify sample size, but showed that key comparisons had reached statistical 

significance. 

 

Continuous variables are reported as mean ± standard deviation, or median 

(range) if not normally distributed. Correlation is inevitably affected by 

confounding factors including variation in catheter contact force and the small 

proportion of points which have poor contact. The electrophysiologic data points 

for each patient were therefore divided into quartiles based on wall stress at 

their location, with the median value taken as representative of each quartile to 

reduce the impact of outlying data. The changes in electrophysiologic 

parameters (voltage amplitude and CFAE mean) were therefore assessed 

across quartiles of wall stress for each patient (with a single median value per 

patient for each quartile of wall stress) using repeated measures analysis of 

variance (MANOVA). To assess any interaction between the effect of LA 

volume and wall stress on electrophysiologic parameters, LA volume was 

included as a covariate in the MANOVA design. To examine the relationship 

between electrogram voltage amplitude and CFAE (i.e. independent of wall 

stress), the effect on CFAE mean across quartiles of electrogram voltage for 

each patient was assessed in the same fashion. 

 

To evaluate the relationship between LA voltage and CFAE, the percentage of 

the LA occupied by CFAE in each patient was compared to (1) the median 

value for LA voltage and (2) the percentage of the LA meeting the criterion for 
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electrical scar (see definition below). Correlation was assessed using Pearson’s 

correlation coefficient, using a single value for each of these variables per 

patient.  

 

Receiver operating characteristic (ROC) analysis was used to assess whether 

high wall stress was associated with certain defined electrophysiologic 

abnormalities, and to determine whether a discrete threshold of wall stress 

precipitated such abnormalities:  

  

1. Fractionated electrograms (a CFAE mean <120ms),222  

2. Low voltage areas suggestive of abnormal conduction (<0.5mV),132, 136  

3. Electrical scar, i.e. very low voltage areas suggestive of scar, defined by 

others as absence of discernable deflections > 0.05 mV.132, 134, 136 

 

To compare the distribution of peaks in wall stress and the above 

electrophysiologic abnormalities, their presence or absence (and their 

concordance) was assessed in each region of the 22 segment model shown in 

Figure 2.7.  

 

To assess the impact on simulated wall stress of increasing wall thickness from 

2 to 3 mm at the septum and left atrial appendage, the median wall stress and 

the percentage of the surface meeting the criterion for a peak in wall stress at 

each wall thickness was compared using a paired t-test.  

 

The impact of wall stress on the proportion of CFAE lesions causing AFCL 

prolongation was assessed in 2 ways. Firstly, wall stress at sites where CFAE 



119 

 

ablation prolonged AFCL was compared to wall stress at sites where ablation 

did not prolong AFCL using the Mann-Whitney U test. Secondly, ROC analysis 

was used to determine whether wall stress predicted sites where CFAE ablation 

caused AFCL prolongation. 

 

2.9 Methods for Chapter 6 

 

All consecutive patients undergoing catheter ablation of AF between 1/4/02 and 

1/6/07 were included for analysis. All procedural data and baseline patient 

information were obtained from a prospective registry. Patients were defined as 

PAF or persistent AF according to ACC/ESC guidelines.260 Patients with long 

standing persistent AF have been included with persistent AF.  

 

Catheter ablation and follow-up 

The technique used for catheter ablation of AF has been described in Section 

2.5. In brief, PVI was by WACA with confirmation of electrical isolation. All 

patients with persistent AF had linear lesions added at the mitral isthmus, the 

roof between WACA rings, and the cavotricuspid isthmus in patients with a 

history of typical atrial flutter.  

 

From 2005, after WACA and linear lesions if the patient remained in AF, CFAE 

were systematically targeted throughout the left then right atria. CFAE were 

identified visually with operators using a common consensus definition: 

electrograms with (i) prolonged complexes with continuous deflections from 

baseline (ii) a rapid cycle length (< 120ms) or (iii) complexes with multiple 
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deflections (without distinguishing between high and low amplitude signals). 

This is comparable to definitions used by other groups,171, 194, 222 and is arguably 

representative of conventional approaches of CFAE ablation. Notably, the work 

done to classify CFAE occurred after this cohort. If at any point AF organised 

into AT this was mapped and ablated. If sinus rhythm was not restored following 

these lesions the patient was cardioverted with a DC shock.  

 

Patients were discharged the day after the procedure, having stopped all 

antiarrhythmic medication. As early recurrences often settle spontaneously, a 3 

month blanking period was observed during which recurrences were managed 

medically.172, 238 Those with Persistent AF/AT or symptomatic PAF at 3 months 

were offered a repeat procedure. Anticoagulation was continued for a minimum 

of 3 months and ongoing anticoagulation advised if the CHADS2 score was ≥2 

(regardless of rhythm) as per current guidelines.189, 239    

 

Patients were followed up at 3 months, and again at 6 months if symptomatic 

initially, with a period of ambulatory monitoring of 2-7 days (83% were either 

monitored once since their last procedure or had AF/AT documented on ECG). 

There was open access to arrhythmia nurse specialists subsequently and 

further monitoring prompted by symptoms (29% underwent monitoring >8 

months after their last procedure). Late follow-up with an ECG was obtained 

from the referring physician for 96% of patients at a median of 18 months. 

Attempts were made to contact all patients for review between 1/9/09 and 

16/10/09 to determine any adverse events, recurrences of AF/AT, current 

medications and symptoms. Symptoms were assessed using the recent 

Canadian Cardiovascular Society Severity of AF (CCS-SAF) scale.261 As this 



121 

 

was not available pre-procedure no objective comparison with the pre-

procedure state is possible, so patients were asked for a subjective assessment 

of whether their symptoms were improved.  

 

Measures of success 

Success was defined as freedom from symptoms and/or documented AF/AT 

lasting >30s following the 3 month blanking period as per guidelines.189 

Success rates are reported after: 

(i) The first procedure, 

(ii) The first cluster of procedures (defined below),  

(iii) The last procedure,  

(iv) The last 6 months (to account for those whose symptoms settled with 

adjustment of medications subsequent to the blanking period).  

 

The end of the first cluster was defined as the point in time, whether after 1 

catheter ablation or several, when ablation was first considered a success as 

defined above (or the patient declined a repeat procedure). Late recurrence of 

AF/AT was analysed starting from the last procedure in the cluster, since 

analysis following the final procedure does not take into account late recurrence 

occurring prior to successful repeat procedures. 

 

Statistics 

Continuous variables are reported as mean ± standard deviation, or median 

(range) if not normally distributed. Continuous data were compared by Student’s 

t test. Kaplan-Meier curves were used to analyse AF free survival and curves 

were compared using the log rank test. Multivariate analysis of predictors of 
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recurrence was by Cox regression. Patient factors were analysed for their effect 

on final procedure success, whereas procedural factors were analysed for their 

effect on single procedure success.  
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Chapter 3 

 

 

 

Validation of a classification system to grade 

fractionation in AF and correlation with automated 

detection systems. 
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Abstract 

 

Introduction:  We tested application of a grading system describing complex 

fractionated atrial electrograms (CFAE) in AF and used it to validate automated 

CFAE detection (AUTO).  

Methods: 10s bipolar electrograms were classified by visual inspection (VI) 

during ablation of persistent AF and the result compared to offline manual 

measurement (MM) by a second blinded operator: Grade 1 uninterrupted 

fractionated activity (defined as segments ≥70ms) for ≥70% of recording and 

uninterrupted ≥1s;Grade 2 interrupted fractionated activity ≥70% of recording; 

Grade 3 intermittent fractionated activity 30-70%; Grade 4 discrete (<70ms) 

complex electrogram (≥5 direction changes); Grade 5 discrete simple 

electrograms (≤4 direction changes); Grade 6 scar.  

Results: Grade by VI and MM for 100 electrograms agreed in 89%. 500 

electrograms were graded on Carto and NavX by VI to validate AUTO in 1) 

detection of CFAE (grades 1-4 considered CFAE), and 2) assessing degree of 

fractionation by correlating grade and score by AUTO (data shown as 

sensitivity, specificity, r): NavX ‘CFAE mean’ 92%, 91%, 0.56; Carto ‘interval 

confidence level’ using factory settings 89%, 62%, -0.72, and other published 

settings 80%, 74%, -0.65; Carto ‘shortest confidence interval’ 74%, 70%, 0.43; 

Carto ‘average confidence interval’ 86%, 66%, 0.53.  

Conclusion: Grading CFAE by VI is accurate and correlates with AUTO.  

 

 

  



125 

 

Introduction 

Although PVI remains the cornerstone of catheter ablation for paroxysmal AF, 

persistent AF requires more extensive ablation to achieve acceptable clinical 

results.171, 191 Targeting CFAE in addition to PVI has improved results in some 

studies but not others. 64, 191, 220-225  Difficulty reproducing results with CFAE 

guided ablation may be due to the lack of a clear objective description of CFAE 

in the literature and resultant differences in what is being targeted in different 

studies. 171, 194, 222  Furthermore, there remains uncertainty as to whether CFAE 

are of real mechanistic importance in maintaining AF, or whether they are 

bystander phenomena. It remains possible that the termination of AF that 

sometimes occurs during CFAE ablation may simply be due to the de-bulking of 

atrial tissue. 

 

In order to test the hypothesis that certain CFAE morphologies are of greater 

importance in the maintenance of AF in Chapter 4, it was first necessary to (1) 

develop a classification system to grade degree of electrogram fractionation in 

AF, and (2) test the hypothesis that CFAE can be accurately characterised by 

rapid visual inspection using this grading system, by comparing classification of 

CFAE by visual inspection to detailed manual measurement offline. Although 

these were essential steps in this thesis, they were also important endeavours 

in their own right. If a validated system could be provided that allows operators 

to categorize CFAE live during cases, this would allow clinical trials to indicate 

more clearly what has been targeted and therefore allow the electrophysiology 

community to elucidate which CFAE are important in the catheter ablation of 

AF. 
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Attempts have been made to bring objectivity to CFAE ablation by applying 

automated algorithms on 3D mapping systems to analyse electrograms.93, 221, 

247, 249-251, 262, 263 Previous attempts to validate these algorithms have been 

limited by the lack of objective definition for CFAE and no means by which to 

grade the degree of fractionation.221, 250, 251, 264 Substrate modification guided by 

these algorithms has proved successful, although these studies have not 

compared this approach to alternative means for identifying and targeting 

CFAE.191, 221, 265 Pending successful development of a grading system for CFAE 

and validation of its application, a third aim for this chapter of the thesis was to 

validate commercial automated CFAE detection systems. The hypothesis for 

this sub-study was that automated CFAE detection is accurate and reflects 

degree of fractionation as assessed by visual inspection using the grading 

system.   
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Results 

 

Patient characteristics 

Electrograms were studied from a total of 20 patients. 15 were male with age 60 

± 8 years. 8 had hypertension, 2 had ischaemic heart disease, and 8 had left 

ventricular systolic dysfunction. Mean LA diameter was 4.6 ± 1.1 cm. Duration 

of continuous AF at the time of ablation was 26 (8-72) months. 

 

Application of the classification system 

100 electrograms recorded from 10 patients were examined. At detailed 

analysis the break-down of grades was as follows: 17% were grade 1; 15% 

grade 2; 42% grade 3; 17% grade 4; 9% grade 5 (no grade 6 electrograms were 

included for analysis). The numerical grade determined by rapid visual 

inspection agreed with that at manual measurement in 89%. The grade was in 

agreement within ± 1 grade in 99%. There was agreement in assessment of 

amplitude (i.e. ‘a’ or ‘b’) in 99%. There was agreement for both number and 

letter in 88% (к = 0.87).  

 

To test the consistency of fractionation and grade in shorter samples 100 

electrograms were analysed. The percentage of the sample that was 

fractionated was remarkably consistent, with less than 5% difference between 3 

and 10s (Table 3.1). The grade determined was also consistent with agreement 

between 10s and 3s in 85% (Table 3.1). 
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Table 3.1: Consistency of fractionated activity and grade. 

 

 

Seconds 

Analysed 

 

Absolute difference in % of 

sample fractionated from 10 

Seconds 

Grade agreement with 

10 Seconds (%) 

 

3 4.9 85 

4 4.2 87 

5 3.5 90 

6 3.0 90 

7 2.5 95 

8 1.7 98 

9 1.0 97 

 

 

Legend to Table 3.1: The percentage continuous fractionation and grade was 

determined by detailed manual measurement at 1 second increments from 3 up 

to 10 Seconds. Numbers show absolute difference in the percentage of the 

sample fractionated and the percentage agreement in grade by manual 

measurement for each time interval compared to 10 Seconds. 
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Validation of commercial automated detection systems 

500 electrograms over 5 cases were reviewed for each of Carto and Ensite 

NavX. To validate visual assessment of electrograms on the 3D mapping 

system, 100 electrograms were subjected to detailed manual analysis. The 

numerical grade determined by rapid visual inspection agreed with that at 

manual measurement in 93%. The grade was in agreement within ± 1 grade in 

100%. There was agreement in assessment of amplitude (i.e. ‘a’ or ‘b’) in 99%. 

There was agreement for both number and letter in 93% (к = 0.92).  

 

The automated score is shown plotted against grade for each algorithm in 

Figure 3.1. All algorithms show moderate correlation between score and grade, 

with ICL-FS showing the best correlation. 

 

Receiver operating characteristic analysis (shown in Figures 3.2 and 3.3) was 

used to determine optimal cut-off for each algorithm. Cut-offs for CFAE 

detection are shown in Table 3.3. Cut-offs for selecting highly fractionated 

signals were: ICL-FS ≥5, ICL-OS ≥6, ACI ≤99 ms, SCI ≤76ms, NavX CFAE 

Mean ≤80ms.  

 

Sensitivity and specificity of each algorithm for detecting CFAE using both the 

optimal cut-offs determined here and using cut-offs from other studies is shown 

in Table 3.2. Positive and negative predictive values are also shown for 

detection of CFAE and selection of highly fractionated signals in Table 3.3. 
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Figure 3.1: Correlation between grade and score by automated detection 

systems. 

 

 

 

Legend to Figure 3.1: Grade by visual inspection is shown plotted against 

automated score for each algorithm: (A) Interval Confidence Level on factory 

settings (ICL-FS), (B) Interval Confidence Level on previously published 

optimised settings (ICL-OS), (C) Average Complex Interval (ACI), (D) Shortest 

Complex Interval (SCI), (E) CFAE mean. Data is presented as mean values for 

categorical data (i.e. ICL score) or a scatter-plot for continuous data (all other 

scores). The Spearman Rank correlation coefficient is shown at the top right of 

each figure.  
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Figure 3.2: Receiver operating characteristic curves for detection of CFAE 

(defined as grades 1-4) by each algorithm. 

 

Legend to Figure 3.2: The point marked with the arrow shows the optimal 

value for detection of CFAE. The area under the curve (AUC) is shown at the 

bottom right of each figure with 95% confidence intervals in brackets. ROC 

curves are shown for (A) Interval Confidence Level using factory settings (ICL-

FS), (B) Interval Confidence Level using previously published optimised settings 

(ICL-OS), (C) Average Complex Interval (ACI), (D) Shortest Confidence Interval 

(SCI), (E) NavX CFAE mean. 

  

A 

Area under  
curve = 0.88 
 

Area under  
curve = 0.84 
 

B 

Area under  
curve = 0.76 
 

C 

Area under  
curve = 0.80 
 

D 

Area under  
curve = 0.93 
 

E 

CFAE 
mean 125 
ms 

ICL-FS 3 

ACI  
140 ms 
 

ICL-OS 2 

SCI 84 ms 
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Figure 3.3: Receiver operating characteristic curves for detection of highly 

fractionated electrograms (defined as grades 1-2) by each algorithm. 

 

Legend to Figure 3.3: The point marked with the arrow shows the optimal 

value for detection of CFAE. The area under the curve (AUC) is shown at the 

bottom right of each figure with 95% confidence intervals in brackets. ROC 

curves are shown for (A) Interval Confidence Level using factory settings (ICL-

FS), (B) Interval Confidence Level using previously published optimised settings 

(ICL-OS), (C) Average Complex Interval (ACI), (D) Shortest Confidence Interval 

(SCI), (E) NavX CFAE mean. 

Area under  
curve = 0.93 
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Area under  
curve = 0.90 
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Area under  
curve = 0.67 
 

Area under  
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Table 3.2: Accuracy of automated CFAE detection using published cut off 

values and using optimal values from ROC analysis. 

 

 

 Detection using ROC 

determined cut off 

 

Detection using previously 

published cut off 

 Cut off 

for 

CFAE 

Sensitivity 

(%) 

Specificity 

(%) 

Cut off 

for 

CFAE 

Sensitivity 

(%) 

Specificity 

(%) 

 

NavX 

 

≤125ms 

 

92 

 

91 

 

<120ms 

 

86 

 

91 

ICL-

FS 

≥3 79 86 ≥5 38 98 

ICL-

OS 

≥2 80 74 ≥5 41 96 

ACI ≤140ms 86 66 100≤ms 54 77 

SCI ≤84 ms 74 70 ≤120ms 96 36 

 

 

Legend to Table 3.2: Detection of CFAE, using values determined by receiver 

operating characteristic (ROC) analysis or using previously published values for 

NavX CFAE mean251, ICL250, ACI93, and SCI.93 
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Table 3.3: Accuracy of Automated CFAE detection. 

 

 Proportion 

of CFAE 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 

Accuracy 

(%) 

 

Detection of FE (grade >6) 

 

NavX 64 92 91 95 87 92 

ICL-FS 73 79 86 94 59 81 

ICL-OS 73 80 74 89 57 78 

ACI 73 86 66 88 62 81 

SCI 73 74 70 87 50 73 

 

Detection of highly fractionated electrograms (grade 1-2) 

 

NavX 32 91 91 82 96 91 

ICL-FS 24 92 83 63 97 85 

ICL-OS 24 85 86 67 95 86 

ACI 24 63 62 35 84 62 

SCI 24 76 70 45 90 71 

 

Legend to Table 3.3: The accuracy of algorithms used by Carto and NavX to 

detect CFAE is assessed using operator selected CFAE (utilizing the grading 

system described) as the gold standard.  
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Discussion 

Main findings 

This study provides the first clear definition for CFAE and a classification 

system to grade fractionation. This can be accurately applied visually in real 

time.  We have validated automated CFAE detection software and 

demonstrated that they are capable of accurately distinguishing CFAE from 

non-fractionated electrograms. Optimum values for detection of CFAE and 

selection of highly fractionated signals using these algorithms were also 

determined for the first time. 

 

Classification of electrograms 

Imprecise definition of CFAE may account for the difficulty in reproducing 

results with CFAE guided ablation of AF. Several features in electrograms have 

been described in the literature as fractionated, most notably continuous 

deflections from baseline, discrete complexes with multiple deflections and 

complexes with short cycle length, although the precise definition of these 

varies between studies. Proposed mechanisms underlying CFAE include pivot 

points, focal drivers (including rotors and rapidly discharging foci) and 

ganglionated plexi.90, 207, 208, 214, 216 Evidence from optical mapping has 

suggested that rapid deflections producing continuous fractionation may 

represent areas within a few millimetres of focal drivers where wave fronts 

collide and fail to propagate in a 1:1 fashion.207, 208 These phenomena may co-

exist but it is uncertain which electrogram appearance represents which 

pathophysiology, and which ought to be targeted for ablation. The classification 

system described is therefore based partly on pathophysiology and partly on 

clinical studies regarding efficacy.   
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During AF, targeting electrograms with a high proportion of fractionated activity 

(≥70% of recording), or areas with concentric activation have all been shown to 

produce a significant step up in AFCL.241, 255 Sites with uninterrupted 

fractionated activity lasting longer than 1 second have been shown to be more 

prevalent and more diffuse in patients with persistent AF than paroxysmal AF 

and hence this has been proposed as a target for ablation.216 We used these 

data in development of our CFAE classification, with these features used as 

criteria to describe highly fractionated electrograms (i.e. grades 1-2). Other 

features incorporated into the grading system were criteria used by Nademanee 

and others in clinical trials, such as less consistent fractionation and complex 

electrograms.191, 194 Evidence for targeting these electrograms is more limited, 

as they have only been targeted in combination with others to produce clinical 

outcomes. These features were incorporated into the less fractionated signals 

(grades 3-4). 

 

Application of classification and time intervals for analysis 

Application of the grading system was simple and accurate. Detailed manual 

analysis of electrograms showed that the percentage of a recording with 

continuous fractionation is relatively constant over time, with only 5% absolute 

difference between 3 and 10s. Accurate application of the classification system 

required 5 Seconds to give an accuracy of 90%.  

 

These data therefore validate the classification system in terms of its accurate 

application. It was essential to establish whether different CFAE morphologies 

could be accurately distinguished before attempting to study the impact of 
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ablating those different CFAE morphologies. These data therefore demonstrate 

the feasibility of this approach, with operators grading fractionated electrograms 

by eye and allowing CFAE morphologies to be targeted in a specific order live 

during a clinical case. Having performed this necessary validation step it was 

thought reasonable to proceed with the study comprising Chapter 4 of this 

thesis. 

  

Automated analysis of fractionated electrograms 

These results show that all of the algorithms tested are good at detecting CFAE 

and selecting highly fractionated signals. The Ensite NavX CFAE mean 

algorithm gave the best results in terms of CFAE detection. Of the Carto 

algorithms, the ICL algorithm using factory settings was marginally better than 

the others tested. There was moderate correlation between the grade 

determined and the score for each algorithm. The Carto ICL-FS algorithm 

showed the best correlation with grade (Figure 3.1). None of the algorithms 

distinguished well between grades 1 and 2, or grades 3 and 4. The CFAE mean 

algorithm was therefore the most accurate in terms of CFAE detection, whereas 

the ICL-FS score correlated best with the degree of electrogram fractionation.   

 

The few studies examining accuracy of automated CFAE detection have 

compared an operator’s visual assessment to the automated scores using an 

arbitrary cut off.221, 247, 250, 251 This is the first study to validate automated 

assessment of degree of fractionation or to determine optimal cut-off for CFAE 

detection. The studies examining the NavX CFAE mean algorithm found similar 

sensitivity and specificity to that presented here.221, 247  
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A study examining the Carto ICL algorithm found a sensitivity and specificity of 

58 and 64% respectively using factory settings, but improved this to 90 and 

91% respectively using their optimised settings (the settings used for the ICL-

OS group).251 A study comparing ICL and ACI found poor results for the ICL 

algorithm but a sensitivity and specificity both of 92% for ACI in detecting 

CFAE.250 Although no studies have assessed diagnostic accuracy of the SCI 

algorithm, retrospective application has shown that a low SCI predicted a 

significant increase in cycle length on ablation.93 Studies using automated 

detection systems to guide CFAE ablation have been ‘proof of concept’ as they 

have not compared this approach to alternative means of identifying CFAE.221, 

265, 266  

 

Limitations 

Although this classification system is based on previous evidence regarding 

what constitutes CFAE and which are important to target, it is recognised that 

this evidence remains week. However, the classification of CFAE on 

morphological grounds is a necessary first step before one can study the effect 

of ablating these different morphologies (which is explored further in the 

chapters that follow).    

 

The classification of electrograms by visual inspection to validate automated 

CFAE detection systems (rather than detailed manual assessment of all 

electrograms) is also a limitation. However, the initial step validating application 

of the grading system has demonstrated for the first time that this approach is 

accurate and hence reasonable to use as a surrogate for manual analysis. 

Previous studies examining automated CFAE detection have also used the 
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visual inspection method, as the volume of samples needed for meaningful 

validation precludes manual analysis.221, 247, 250, 251  

 

Conclusion 

For the first time a precise definition of different CFAE sub-types has been 

given. The classification system proposed can be quickly and accurately applied 

by eye to distinguish between different patterns of CFAE. Adopting this 

standardised description of CFAE will enable clinical trials of CFAE ablation to 

use reproducible methodology and thus allow meaningful comparison of results. 

Having validated the application of this classification system, further work 

studying the impact of targeting different CFAE morphologies now appears 

feasible. Use of this grading system has also allowed validation of the current 

Carto and NavX algorithms.   
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Chapter 4 

 

 

Characterization of fractionated atrial electrograms 

critical for maintenance of AF: a randomized controlled 

trial of ablation strategies (the CFAE AF trial). 
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Abstract 

 

Introduction: Whether ablation of complex fractionated atrial electrograms 

(CFAE) modifies AF by eliminating drivers or atrial de-bulking remains 

unknown. This randomised study aimed to determine the effect of ablating 

different CFAE morphologies compared to normal electrograms (i.e. de-bulking 

normal tissue) on the cycle length of persistent AF (AFCL). 

Methods: After pulmonary vein isolation left and right atrial CFAE were 

targeted, until termination of AF or abolition of CFAE prior to DC cardioversion. 

10s electrograms were classified according to a validated scale, with Grade 1 

being most fractionated and grade 5 normal. Patients were randomised to have 

CFAE grades eliminated sequentially, from grade 1 to 5 (group 1) or grade 5 to 

1 (group 2). An increase in AFCL (mean of left and right atrial appendage) ≥5 

ms following a lesion was regarded as significant.  

Results: 968 CFAE were targeted in 20 patients. AFCL increased after 

targeting 51 ± 35% of grade 1 CFAE, 30 ± 15% grade 2, 12 ± 5% grade 3, 33 ± 

12% grade 4, and 8 ± 15% grade 5 CFAE (p < 0.01 for grades 1, 2, and 4 

versus 5, 3 versus 5 not significant). The proportion of lesions causing AFCL 

prolongation was unaffected by the order in which CFAE were targeted.  

Conclusion: Targeting CFAE is not simply atrial de-bulking. Ablating certain 

grades of CFAE increases AFCL, suggesting they are more important in 

maintaining AF.  

 

Clinical Trial Registration Information: www.clinicaltrials.gov NCT00894400. 
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Introduction 

 

Although Nademanee demonstrated that CFAE ablation could eliminate AF,194 

there has been difficulty reproducing this success using CFAE ablation 

alone.222, 265, 267 Incremental benefit of CFAE ablation in addition to PVI has 

been demonstrated,191, 221, 222, 225 although not consistently.64, 224  

 

The variable definition of CFAE may partly explain these disparate results.194, 

267-269 It is uncertain what the various CFAE morphologies represent, and few 

studies have examined the importance of different electrogram characteristics 

of CFAE.241, 254 It therefore remains unclear whether CFAE are sites critical to 

the maintenance of AF or whether the slowing or termination of persistent AF is 

the inadvertent result of de-bulking electrically active atrial tissue.  

 

It was hypothesised that certain CFAE morphologies are more likely to 

represent drivers of AF. To prove this, the impact of targeting different CFAE 

morphologies on the cycle length of persistent AF was assessed, with ablation 

performed according to a strict protocol as part of a randomised controlled trial. 
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Results 

 

Patients and procedures 

The characteristics of the 20 patients randomised are shown in Table 4.1. All 

patients had persistent AF, and 90% of these were long lasting persistent AF 

(i.e. ≥ 1 year). Although the patients were older in group 2, the other baseline 

characteristics were well matched between groups. Procedural characteristics 

are shown in Table 4.2. There was no difference between groups in procedure 

time or fluoroscopy time (Table 4.2). The only procedural complication was 1 

groin haematoma, which did not require any intervention.  

 

Inter-operator variability 

The CFAE grade determined by rapid visual inspection for the 968 electrograms 

targeted agreed with that at off-line manual measurement in 92.7%. The grade 

was in agreement within ± 1 grade in 99.0%. There was agreement in 

assessment of amplitude (i.e. ‘a’ or ‘b’) in 99.1%. There was agreement for both 

number and letter in 91.9% (к = 0.91). Inter-operator variability for measurement 

of AFCL was 0.3 ± 0.2 ms.  
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Table 4.1: Patient Characteristics. 

 

 Group 1 

(grade order 1 to 5) 

Group 2 

(grade order 5 to 

1) 

p value 

Number 10 10 - 

Male 90% 80% 1.000 

Age  60 ± 7 66 ± 6 0.042 

Months of continuous AF 25 ± 19 20 ± 9 0.424 

NYHA class 2.1 ± 0.6 2.3 ± 0.5 0.407 

Hypertension 50% 50% 1.000 

Ischaemic heart disease 20% 40% 0.629 

Left atrial diameter  4.5 ± 0.8 4.6 ± 0.8 0.935 

Ejection fraction 51 ± 13 46 ± 15 0.379 

 

Legend to table 4.1: Data is presented as percentage of patients, or mean ± 

standard deviation.  
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Table 4.2: Procedural characteristics and success. 

 

 

 Group 1 

(grade order 1 to 5) 

Group 2 

(grade order 5 to 

1) 

p value 

Procedure time (mins) 300 305 (300-450) 0.327 

Time targeting CFAE 

(mins) 

90 (0-143) 96 (0-148) 0.500 

Fluoroscopy time (mins)   63 (35-114) 57.5 (28-78) 0.456 

CFAE lesions per patient 43 ± 16 68 ± 18 0.007 

Termination of AF by 

ablation 

30% 30% 1.000 

Single procedure success 40% 20% 0.629 

Recurrence due to AT/AF 4/2 3/5 0.592 

 

Legend to Table 4.2: Data is presented as percentage of patients, mean ± 

standard deviation, or median (range).  
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Definition of AFCL prolongation 

Baseline AFCL variability prior to any ablation over 10 successive cycles from 

each patient showed variation of 1.49 ± 1.74 ms. As mean + 2 standard 

deviations was 4.97 ms, ≥ 5.0 ms was subsequently regarded as significant 

AFCL prolongation. The impact of ablation on AFCL is shown in Figure 4.1, 

illustrating it’s potential value in monitoring response to ablation. 

 

Figure 4.1: Impact of ablation on AF cycle length. 

 

 

 

Legend to Figure 4.1: The mean (± standard deviation) change in AFCL from 

baseline is shown at each stage of the procedure. The progressive prolongation 

of AFCL was more marked in patients whom AF was terminated during ablation.  
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Distribution of CFAE  

Mean CFAE grade pre-PVI was lower in the LA than the right atrium (2.4 ± 1.1 

versus 3.7 ± 1.2, p < 0.001) reflecting decreased organisation in the LA. The 

most common sites for highly fractionated electrograms (grade 1-2 CFAE) in the 

LA were the PVs (55-75%), the LA appendage ridge (75%), the high and low 

left septum (80% and 70%), and the high and mid anterior wall (75% and 65%). 

The most common sites for highly fractionated electrograms in the RA were the 

mid and low right septum (both 38%), the roof/SVC (38%), and the high, mid 

and low lateral wall (31-38%). 

 

Impact of Ablation on CFAE grade 

All 40 PV pairs were successfully isolated by WACA, and 36 of 40 PV pairs 

contained at least 1 highly fractionated electrogram (grade 1-2 CFAE). AFCL 

prolongation occurred after isolation of 23 PV pairs. As 2 patients reverted to 

sinus rhythm during PVI and 1 during LA CFAE ablation, 18 patients had full 

maps of the LA pre-PVI, post-PVI, and during CFAE ablation, and 17 patients 

had maps of the right atrium pre-PVI and during CFAE ablation. Because all 4 

PVs were electrically silent post-PVI, in effect 18 LA and 16 right atrial 

segments were available for comparison with baseline maps (324 LA segments 

and 272 right atrial segments in total for each stage). PVI caused an increase in 

the mean grade of LA segments (representing increased organisation of 

electrograms) from 2.4 ± 1.1 to 3.2 ± 1.4 (p < 0.0001). During LA CFAE ablation 

there was a further increase in mean grade from 3.2 ± 1.4 to 3.6 ± 1.5 (p < 

0.0001). Similarly, during right atrial CFAE ablation there was an increase in 

grade from 3.6 ± 1.3 to 3.9 ± 1.4 (p = 0.002). The impact of ablation on mean 

CFAE grade in the left and right atria are summarised in Figure 4.2. 
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Figure 4.2: Impact of ablation on mean grade in the left and right atria. 

 

 

 

 

 

Legend to Figure 4.2: Mean CFAE grade in the left and right atrium at different 

stages of the procedure.   
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Impact of targeting different CFAE grades on AF cycle length 

There was a significant overall effect of CFAE grade on the mean proportion of 

lesions causing AFCL prolongation (p < 0.001; Figure 4.3A). The mean 

proportion of lesions which caused a significant increase in AFCL was 

significantly greater for grade 1, 2 and 4 CFAE compared to grade 5 (p < 0.01 

for each). There was no difference between grade 3 and 5 in the proportion of 

lesions affecting AFCL, with prolongation occurring no more often than during 

baseline variability testing (i.e. during no ablation). There was no effect of the 

order of ablation on the proportion of lesions causing AFCL prolongation (p = 

0.371), and no interaction between grade and the order of ablation (p = 0.449; 

Figure 4.3B).  

 

Analysis of the proportion of lesions causing AFCL prolongation pooled across 

all CFAE showed a similar pattern of response to ablation across grades 

(Figures 4.5A & 4.5B). Binary logistic regression confirmed the effect of grade 

on the proportion of lesions causing AFCL prolongation (p < 0.001), but showed 

no effect of group (p = 0.320), amplitude (p = 0.717; Figure 4.4A), or location in 

the left or right atrium (p = 0.987; Figure 4.4B).  

 

The CL of grade 4 CFAE was > the appendage CL of the atria in which it was 

located in 77% of cases , and this did not affect the proportion of lesions 

causing AFCL prolongation (31% when CL was shorter and 34% when CL was 

longer than that in the appendage CL, p = 0.683)   
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Figure 4.3: Mean proportion CFAE lesions causing AFCL prolongation.  

 

 

Legend to Figure 4.3: The mean percentage of lesions causing AFCL 

prolongation (A) by grade for all patients, and (B) divided for groups 1 and 2. 

Bars show 95% confidence intervals. 
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Figure 4.4: Proportion of CFAE lesions causing AFCL prolongation.  

 

 

Legend to Figure 4.4: The percentage of all lesions causing AFCL 

prolongation by grade, divided according to (A) amplitude (either high ‘a’ or low 

‘b’), and (B) location in the left or right atrium. 
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Location of CFAE targeted  

No CFAE were targeted inside the PVs (since they were electrically silent post 

WACA), or the vena cavae. Otherwise, pooling CFAE lesions from all patients, 

the proportion of lesions per region (divided as shown in Figure 4.1) was 

normally distributed with 3.0 ± 2.2% of lesions per region. The most targeted 

regions in the LA were the border of the LA appendage (7.3% of all lesions), the 

mid anterior wall (7.2%), the roof (7.1%), the lateral wall bordering the left atrial 

appendage (6.9%), the ridge between the left atrial appendage and the left PVs 

(6.0%), and the mid septum (5.9%). The most targeted regions in the right 

atrium were the high and mid lateral wall (5.7 and 3.3% of all lesions 

respectively), the high septum (5.1%), the roof bordering the SVC (3.6%), and 

the right atrial appendage (2.6%).  The proportion of lesions that prolonged 

AFCL was also normally distributed between regions (30 ± 11% of lesions). The 

number of lesions per region was insufficient to allow meaningful comparison of 

these small regional differences.    

 

Impact of order of ablation on the number of CFAE encountered  

There was a significant overall effect of the order of ablation on the mean 

number of CFAE targeted per patient for each grade (p < 0.01; Figure 4.5). 

Fewer grade 3 and 4 CFAE were encountered per patient in group 1 than group 

2 (both p < 0.05; Figure 4.5) suggesting that elimination of the most fractionated 

electrograms (grade 1 and 2) changed the degree of fractionation of 

electrograms at other sites. This translated to a lower total number of lesions 

per patient in group 1 (p < 0.01; Figure 4.5). There was no difference between 

groups in the number of grade 1 or 2 CFAE ablated, or the number of grade 5 

lesions created.  
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Figure 4.5: Impact of order of ablation on the number of CFAE subtypes. 

 

 

 

Legend to Figure 4.5: The mean number of CFAE targeted per patient in 

groups 1 and 2. Bars show 95% confidence intervals.  

 

Impact of order of CFAE ablation on outcome 

Three patients were ablated to sinus rhythm in each group (two via an atrial 

tachycardia in each group). In group 1, this occurred once during PVI, once 

during CFAE ablation, and once during linear lesions. In group 2, this occurred 

once during PVI, and twice during CFAE ablation. The number free from AF 

after a single procedure at 12 months off anti-arrhythmic drugs, and the 

proportion of recurrence due to AF/AT did not differ between groups (Table 4.2).  
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Discussion 

 

This study is the first to prospectively compare the effect of targeting different 

CFAE morphologies in persistent AF. The grading of CFAE using our 

classification system was easily applied, accurate, and reproducible, and 

enabled distinction between CFAE subtypes which produce a differential effect 

on AFCL when ablated. Importantly, targeting normal electrograms had no 

significant effect. PVI had an organising effect on electrograms in all locations. 

Ablation of highly fractionated electrograms first resulted in a reduction in the 

number of grade 3 and 4 CFAE encountered subsequently, and consequently a 

reduction in the total number of lesions delivered. 

 

Mapping studies have shown that targeting areas with concentric activation or 

slow conduction prolong AFCL, although these mechanisms may be difficult to 

infer from an ablation catheter electrogram.241, 255 Takahashi et al. analysed 

electrogram characteristics associated with AFCL prolongation during CFAE 

ablation.241 Although dominant frequency and electrogram amplitude had no 

effect, fractionated activity for ≥ 70% of the recording was associated with AFCL 

prolongation. Our study has confirmed this firstly by prospectively targeting 

CFAE with this characteristic, and secondly by varying the order of CFAE 

ablation to ensure this effect was not a result of targeting this characteristic first 

or last.  

  

Lin et al demonstrated improved outcomes after PVI with selective targeting of 

CFAE which were ‘consistent’, defined using an automated algorithm over a 1 

minute recording.225 Sites with uninterrupted fractionated activity ≥ 1 second 
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have been proposed as targets for ablation based on the observation that they 

are more prevalent and more diffuse in patients with persistent AF than 

paroxysmal AF.216 The current study has demonstrated the incremental 

importance of these sites over those with interrupted fractionation.  

 

Fractionated activity may represent areas within a few millimetres of focal 

drivers, whether they are rotors or rapidly discharging foci.207, 208 Ibutilide has 

been shown to limit re-entry in an animal model of AF using high density 

mapping, but did not affect focal sources.270 Similarly, procainamide has been 

shown to organise electrograms with either multiple deflections or limited 

fractionation in an animal model of AF, but had little effect on more fractionated 

signals.271 These authors concluded that continuous fractionated activity 

(perhaps analogous to grades 1 and 2 in the present study) may represent focal  

mechanisms, whereas less fractionated signals (more like grades 3 and 4) are 

more likely to represent re-entry.270, 271  

 

The results of the present study would be compatible with grade 1 and 2 CFAE 

representing such focal drivers. The increased efficacy when ablating areas 

with uninterrupted fractionated activity (grade 1 CFAE) may suggest greater 

proximity to these foci, or perhaps that the drivers are more stable spatially and 

temporally. We did not incorporate a grade for rapid regular electrograms 

because in Chapter 3 these were found to be invariably interspersed with 

fractionated activity, and hence met the criteria for other grades of CFAE. 

Therefore, more consistent CFAE (grade 1) may have had different 

organisational characteristics which were not discernable by eye.  
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An interesting finding was that an apparently less fractionated electrogram 

(grade 4) had a greater effect than a more fractionated electrogram (grade 3). 

We postulate that grade 3 electrograms are produced by passive wave front 

phenomena or superimposition of far-field and local electrograms, which are not 

critical for maintenance of AF. Grade 4 electrograms were not rapid, and in 

particular were not usually faster than the AFCL of the atria in which they were 

located. Therefore, whilst grade 4 CFAE are unlikely to be rapid drivers, they 

may represent other phenomena which facilitate AF, such as zones of slow 

conduction, pivot points, or wave-break.47, 214  

 

The optimal amplitude of CFAE to target is controversial. Whilst some authors 

consider only low amplitude signals (< 0.5 mV) to be CFAE,194 others disregard 

amplitude.268 Our data suggest that electrogram amplitude does not predict 

response to ablation.  

 

Ablation of right atrial CFAE is also controversial. Although a small randomised 

controlled trial showed that right atrial CFAE ablation in addition to PVI and LA 

CFAE did not improve outcome,272  another study demonstrated that in those 

with continuing AF despite PVI and LA CFAE ablation, right atrial CFAE ablation 

prolonged AFCL and terminated AF in 55%.273 This study suggests that 

targeting CFAE in the right atrium was equally efficacious as in the left. 

 

The lesions which caused AFCL prolongation were evenly distributed 

throughout the atria. A previous study which targeted CFAE in a randomised 

order of locations found no effect of ablation location on AFCL.241 However, it 
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remains possible that CFAE are surrogate markers for ganglionated plexi, since 

their anatomy is variable. 

 

The impact of PVI and CFAE ablation on electrogram organisation  

The reduction in LA CFAE burden after PVI has been demonstrated by 

others.202, 274 This may simply reflect the removal of PV drivers, although this 

would not fully account for (a) the impact at sites distant to the PV ostia, and (b) 

the impact on areas with continuous fractionation suggestive of focal drivers. 

 

Injection of epicardial fat pads with acetylcholine has been shown to cause 

continuous fractionation or rapid regular ‘rotor-like’ electrograms, both locally 

and at distant atrial sites due to a wider activation of the cardiac neural 

network.212 Targeting of ganglionated plexi eliminated these areas of continuous 

fractionation, both locally and at distant sites.212, 270 Hence, PVI may impact on 

atrial CFAE by reducing ganglionated plexi innervation. 

 

Significantly fewer CFAE were targeted in group 1, powered by the reduction in 

grade 3 and 4 CFAE. To some extent these grades may be epi-phenomena, 

with a greater functional component supported by the highly fractionated grade 

1 and 2 CFAE. The number of grade 1 and 2 CFAE were unaffected by prior 

ablation of grades 3 and 4, consistent with their proposed focal mechanisms.  

 

Limitations 

This mechanistic study was not designed to assess the impact of CFAE ablation 

on outcomes, nor was it intended or powered to demonstrate superiority of 

either targeting strategy in terms of clinical end-points. Nevertheless, by 
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studying the response to ablation of different CFAE morphologies we have 

clarified many key issues in CFAE ablation. Although this information could not 

have been gleaned from conventional randomised controlled trials looking at 

clinical outcomes, we recognise that such studies remain essential for 

determining the optimal approach to CFAE ablation.  

 

Although ablation to sinus rhythm is a hard end-point, this was achieved in a 

minority, and it is recognised that the alternative of elimination of all CFAE is 

more subjective. However, this cohort consisted mostly of patients with dilated 

atria and long-lasting persistent AF, and hence although the proportion ablated 

to sinus rhythm and the proportion free from AF at 1 year were disappointing, 

this was in keeping with reports for comparable cohorts.64, 182, 275  

 

Conclusion 

The differential effect of targeting different CFAE morphologies provides strong 

support for the hypothesis that certain CFAE represent focal drivers of AF. 

Therefore targeting of CFAE is not simply de-bulking the atria. These results 

support ablating certain CFAE morphologies whether in the left or right atria, 

and regardless of their amplitude. A selective strategy targeting only certain 

CFAE (grades 1, 2 and 4) and starting with the most fractionated (grades 1 and 

2) should minimize LA destruction and time spent targeting CFAE.       
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Chapter 5 

 

Left atrial wall stress distribution and its relationship to 

electrophysiologic remodelling in persistent atrial 

fibrillation. 
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Abstract 

 

Background: Atrial stretch causes remodelling that predisposes to atrial 

fibrillation (AF). We tested the hypothesis that peaks in left atrial (LA) wall stress 

are associated with focal remodelling.  

Methods: 19 patients underwent LA mapping prior to catheter ablation for 

persistent AF. Finite Element Analysis was used to predict wall stress 

distribution based on LA geometry from CT. The relationship was assessed 

between wall stress and (1) electrogram voltage, and (2) complex fractionated 

atrial electrograms (CFAE) using CFAE mean (the mean interval between 

deflections).  

Results: Wall stress varied widely within atria and between subjects (median 

36 kPa, IQR 26 – 51 kP). Peaks in wall stress (≥ 90th percentile) were common 

at the pulmonary vein (PV) ostia (93%), the appendage ridge (100%), the high 

posterior wall (84%), the anterior wall and septal regions (42-84%). Electrogram 

voltage showed an inverse relationship across quartiles for wall stress (19% 

difference across quartiles, p = 0.016). There was no effect on CFAE mean 

across quartiles of wall stress. ROC analysis showed high wall stress was 

associated with low voltage (i.e. < 0.5 mV) and electrical scar (i.e. < 0.05 mV; 

both p < 0.0001), and with absence of CFAE (i.e. CFAE mean < 120ms; p < 

0.0001). However, peaks in wall stress and CFAE were found at 88% of PV 

ostia.  

Conclusions: Peaks in wall stress were associated with areas of low voltage 

suggestive of focal remodelling. Although peaks in wall stress were not 

associated with LA CFAE, the PV ostia may respond differently. 
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Introduction 

Increased atrial stretch is a common aetiological factor in patients with AF.13 

Chronic stretch causes atrial dilatation and heterogenous changes in atrial 

architecture, including focal myocyte hypertrophy and fibrosis.134, 137, 139, 140  

Electrophysiologic sequelae of atrial stretch include slowing of conduction, 

prolongation of the effective refractory period, areas of low voltage and 

electrical scar, double potentials and fractionated electrograms, and increased 

inducibility of AF.94, 132-137, 139, 140  

 

Although PVI is a successful treatment for paroxysmal AF,191 additional 

substrate modification in some form or another appears to be necessary to 

achieve acceptable results for persistent AF. 191, 228 Greater understanding of the 

relationship between atrial stretch and remodelling may allow refinement of 

substrate modification. Computer modelling has been used to better understand 

complex processes such as excitation contraction coupling and mechanical 

function,276, 277 and may help understand how stretch is distributed in the walls 

of the LA and how this impacts on atrial remodelling. The relationship between 

this remodelling process and CFAE is of particular interest, since CFAE 

localising to foci of remodelling could feasibly be more mechanistically important 

in maintaining AF than those found in healthy tissue.    

 

We hypothesized that peaks in LA wall stress are associated with focal 

electrophysiologic remodelling which maintains AF. There were three stages 

required to address this, each dependent on the success of the preceding 

stage: 
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1) A computer model was established to simulate LA wall stress in 3D 

reconstructions of the LA from CT scans. 

2) Electrophysiologic data were collected at the time of catheter ablation for 

persistent AF and compared to simulated wall stress data using a patient 

specific LA geometry derived from a pre-procedure CT scan. This 

allowed correlation between wall stress and electrophysiologic 

parameters, in particular areas of low voltage and CFAE. 

3) The importance of regions with high wall stress in maintaining AF was 

evaluated by examining how wall stress impacts on the response to 

CFAE ablation, as determined by change in AFCL.  

 

 

Results 

 

Patients 

Although 20 patients were recruited, one patient had poor quality CT imaging 

and was excluded from the analysis Patient demographics for the 19 patients 

forming the study group are shown in Table 5.1. All patients had persistent AF, 

and 84% had long lasting persistent AF (i.e. ≥ 1 year). There was a high 

incidence of structural heart disease and LA were dilated. No patients had 

significant valvular heart disease.  
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Stress Distribution 

Figure 5.1 shows examples of wall stress distribution. Wall stress varied widely 

from region to region, with a median value of 36.4 kPa and an inter quartile 

range of 26.2 – 51.6 kPa. Figure 5.2 shows the proportion of patients who had 

peaks in wall stress over the different regions shown in Figure 5.1. Peaks in wall 

stress were particularly common around the ostia of the PVs (left PVs both 

100%, and right PVs 84 and 89%), the LA appendage ridge (100%), the high 

posterior wall and roof (84 and 47% respectively), the anterior wall regions (68-

84%), and the septal regions (42-74%). There was no significant correlation 

between LA volume and median wall stress (Pearson’s r = 0.184, p = 0.451). 

The distribution of peaks in wall stress in the areas shown in Figure 5.1 did not 

differ when comparing the 9 most dilated LA to the 9 smallest.  

Table 5.1: Patient Characteristics. 

Male 84% 

Age  64 ± 7 yrs 

Months of continuous AF 23 ± 16 

Hypertension 53% 

Ischaemic heart disease 32% 

Left atrial volume  159.0 ± 46.8 ml 

Ejection fraction 48 ± 14 % 

Legend to table 5.1: Data is presented as percentage of patients, or mean ± standard 

deviation.  
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Figure 5.1: Left atrial wall stress distribution. 

 

 

 

 

Legend to Figure 5.1: Colour coded maps of the left atrium showing wall stress 

distribution in 3 patients (A-C). The scale is kPa. 
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Figure 5.2: Distribution of peaks in wall stress and CFAE. 

 

 

 

Legend to Figure 5.2: The proportion of patients with peaks in wall stress 

(>90th percentile) and CFAE (CFAE mean < 120 ms) in each region of the left 

atrium. Abbreviations: PV, pulmonary vein; LAA, left atrial appendage; CS, 

coronary sinus; H, high; M, middle; L, low.  

 

 

Electrophysiologic data points  

A total of 8 214 data points were acquired. After removing points >5 mm from 

the LA shell, there were 6 770 points remaining for analysis, 356 ± 80 per 

patient. 
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Relationship between wall stress and electrophysiologic parameters 

Electrogram amplitude showed a linear inverse relationship across quartiles for 

wall stress meaning lower electrogram amplitude at sites of higher wall stress, 

with a 19% difference between the highest and lowest quartiles for wall stress 

(p = 0.016, Figure 5.3A). There was a trend towards higher CFAE mean 

(meaning less fractionated electrograms) at higher wall stress, but values for 

CFAE mean were highly variable between subjects, and this effect was not 

significant (p = 0.256, Figure 5.3B). 

 

Relationship between remodelling and CFAE 

There was a significant decrease in CFAE mean across quartiles of voltage 

amplitude (Figure 5.4; p < 0.0001). The lowest quartile for electrogram voltage 

had a markedly higher CFAE mean value (meaning less fractionated 

electrograms). The lowest quartile for electrogram voltage likely contained the 

most points with poor contact, and the absence of detected deflections at these 

points may therefore have artificially increased the CFAE mean score. 

However, even if the lowest quartile of electrogram voltage is discarded, the 

decrease across the remaining 3 quartiles was still significant (p < 0.0001). 

Notably the percentage of the LA that was occupied by CFAE correlated with 

median left atrial voltage for each patient the (Pearson’s r = 0.71, p < 0.001), 

and was inversely proportional to the percentage of the LA meeting the criterion 

for electrical scar (r = -0.54, p = 0.017).  
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Figure 5.3: Relationship between electrophysiology and wall stress. 

 

 

Legend to Figure 5.3: Figures show the effect on electrophysiologic 

parameters (mean and 95% confidence interval) across quartiles for wall stress 

(1 being lowest and 4 being highest), (4A) shows electrogram voltage amplitude 

and (4B) shows CFAE mean. Significance was tested using repeated measures 

ANOVA. 
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LA volume correlated with the percentage of the LA meeting the criterion for 

electrical scar (r = 0.46, p = 0.046), but did not correlate with the percentage of 

the LA occupied by CFAE (Pearson’s r = 0.07, p = 0.790). There was no 

significant interaction between the effects of LA volume and increasing wall 

stress on LA voltage (p = 0.587). 

 

ROC analysis 

There was an association between high wall stress and electrical scar: A wall 

stress value ≥ 39.6 kPa had a sensitivity of 56.1% and specificity 57.0% for 

predicting electrical scar (area under curve 0.574, p < 0.0001; Figure 5.4A). 

There was a modest association between high wall stress and low voltage, with 

a wall stress value ≥ 35.5 kPa there was a sensitivity and specificity both of 

54.0% for predicting low voltage (area under curve 0.550, p < 0.0001; Figure 

5.4B). High wall stress was associated with absence of CFAE (area under curve 

0.453, p < 0.0001; Figure 5.4C). 

 

Assessment of relationships by region 

Low voltage electrograms and electrical scar were present in all areas 

precluding meaningful analysis of any relationship by region. CFAE occurred in 

more discreet areas and the distribution is shown in Figure 3. CFAE and peaks 

in wall stress co-exist in certain areas but not others, and hence their 

‘agreement’ (both phenomena being present or absent) was variable. Since 

both phenomena were almost always present to some extent in the PVs, the 

agreement there was high (95-100% in the left PVs, and 79% in both right PVs). 

Overall agreement occurred in 61%.  
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 Figure 5.4: Relationship between high wall stress and electrophysiologic 

abnormalities. 
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Legend to Figure 5.4: Receiver operating characteristic curves demonstrating 

the relationship between high wall stress and electrophysiologic abnormalities: 

5A electrical scar (defined as voltage amplitude < 0.05 mV; 5B low voltage 

(defined as < 0.5 mV), and 5C CFAE (defined as CFAE mean < 120ms). Area 

under curve and confidence intervals (CI) are shown.  

 

Wall stress and response to ablation 

Baseline AFCL variability was 1.50 ± 1.75. Therefore AFCL prolongation ≥ 5.0 

ms was considered significant. In total 933 CFAE were targeted (49 ± 26 

lesions per patient). Of these, 614 were in the LA. The 425 LA lesions within 5 

mm of the left atrial shell were included for analysis. Of the 425 lesions, 108 

caused significant AFCL prolongation.  
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Wall stress values at sites where CFAE ablation caused AFCL prolongation was 

40.1 (27.7 – 58.4) kPa compared to 40.8 (27.9 – 67.0) kPa at sites where AFCL 

did not change (p = 0.408). Receiver operating characteristic analysis showed 

that wall stress could not be used to distinguish between areas that would and 

would not cause AFCL prolongation during CFAE ablation (area under curve 

0.530, p = 0.355).  

 

Impact of variations in the model 

The simulation was comprised of 57 276 ± 12 646 elements. An increase in the 

trans-mural pressure gradient from 10 to 20 mmHg caused a mean increase in 

wall stress of 83.6 ± 7.9% for each element. When elements were ranked based 

on their wall stress value, an increase in trans-mural pressure from 10 to 20 

mmHg caused a change in the mean percentile ranking of 2.9 ± 1.0%.  

 

The changes in wall stress distribution produced by an increase in wall 

thickness to 3mm at the left atrial appendage and the inter-atrial septum were 

largely confined to these areas. The median wall stress was reduced from 21.8 

± 4.8 kPa to 16.5 ± 4.3 kPa in the left atrial appendage (p < 0.0001), and 39.5 ± 

11.1 to 30.5 ± 9.9 kPa in the septum (p < 0.0001). The proportion of the septum 

occupied by peaks in wall stress was reduced from 9.3 ± 11.3 % to 2.7 ± 4.2 % 

(p = 0.002). There were no peaks in wall stress in the left atrial appendage at 

either wall thickness. 

 

When wall thickness at the left atrial appendage and the septum were increased 

to 3mm, the relationship with electrophysiologic parameters was preserved. The 

decreasing electrogram amplitude across quartiles of wall stress remained 
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evident (p = 0.009). The trend towards higher CFAE mean at higher wall stress 

was strengthened but remained non-significant (p = 0.058). ROC analysis 

showed that high wall stress was still associated with electrical scar (area under 

curve 0.579, 95% confidence intervals 0.548-0.610, p < 0.0001) and absence of 

CFAE (area under curve 0.469, 95% confidence intervals 0.453-0.485, p < 

0.0001).   

 

 

 

Discussion 

 

Major findings 

LA wall stress varies widely in different regions of the same LA, and also in the 

same regions between subjects. There was an inverse relationship between 

regional wall stress and electrogram voltage, and foci of high wall stress were 

associated with low voltage and electrical scar. Areas with high wall stress were 

less likely to support CFAE, although the PV ostia may be an exception in that 

they were consistently high stress and harboured CFAE. Following PV isolation, 

regional LA wall stress did not predict response to CFAE ablation.  

 

Cardiac modelling and wall stress 

Clearly, the first step in this study was to establish a working computer model to 

simulate wall stress. Increasingly complex ‘multi-scale models’ are being used 

to further understanding of complex interacting processes, such as excitation 

contraction coupling and mechanical function,276, 277 and the role of myocardial 

stretch in arrhythmia in the context of commotio cordis.278 This numerical model 
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predicted wall stress based purely on LA anatomy by assuming the LA to be a 

linear elastic shell. Since the anatomy of the LA is highly variable wall stress 

varied widely between subjects. Wall stress was raised at ‘saddle points’ where 

invagination of the LA surface occurred, for example at the PV ostia and the 

appendage ridge. More subtle examples include the imprint produced by the 

aortic root on the anterior wall, the septum, and the roof/high posterior wall 

(Figures 5.1 & 5.2).  

 

As this model was entirely novel it has necessarily taken a simplified view of LA 

biomechanics as the first step towards understanding LA wall stress distribution. 

Although the accuracy of the geometry is the most important factor in 

determining wall stress,258 two other important factors that are difficult to fully 

account for are: (i) regional differences in wall thickness (since this is beyond 

the resolution of current imaging technologies), and (ii) the complexities of 

regional and temporal variations in the trans-mural pressure gradient, which is 

influenced by extra-cardiac structures and changes over time with intra-cardiac 

pressure during the cardiac cycle and intra-thoracic pressure with respiration.  

 

Variations in the model were tested to evaluate the impact of these factors. 

Although doubling of the trans-mural pressure gradient from 10 to 20 mmHg 

caused a uniform increase in wall stress, there was only a minimal change in 

the percentile ranking of wall stress for each element, suggesting that the 

relative distribution of wall stress was effectively unchanged. Therefore, 

changes in trans-mural pressure which are relatively uniform (such as those 

caused by changing intra-atrial pressure and intra-thoracic pressure) would not 

be expected to significantly alter wall stress distribution. Another variation tested 
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was to increase the wall thickness at sites where the atrial wall was thought to 

be thicker, in particular the inter-atrial septum and the left atrial appendage.259 

Increasing wall thickness from 2 mm to 3 mm at these sites caused a small 

reduction in wall stress locally, although this did not affect the overall 

relationship with electrophysiologic parameters.        

 

LA structural and electrophysiologic response to stretch 

Increased atrial stretch is a consistent aetiological factor in the development of 

AF.13, 132-136 Chronic stretch causes LA dilatation, with heterogenous 

remodelling of atrial architecture including myocyte hypertrophy, fibrosis, and 

gap junction remodelling.134, 137, 139, 140, 279 Electrophysiologic effects include 

conduction heterogeneity and anisotropy, areas of low voltage and electrical 

scar, prolonged effective refractory period, a greater proportion of double 

potentials and CFAE, and greater inducibility of AF.94, 132-137, 139, 140  

 

Impact of wall stress on electrophysiology 

The second stage of this study was to investigate the relationship between wall 

stress and electrophysiology. Our results showed an inverse relationship 

between LA wall stress and electrogram amplitude. Similarly, the ROC analysis 

demonstrated an association between areas of high wall stress and low voltage 

and electrical scar. Such areas have been interpreted as evidence of 

remodelling in AF.194, 280, 281 Areas of low voltage and electrical scar in persistent 

AF correlate with areas of late gadolinium enhancement suggestive of scar on 

MRI and predict a poor outcome after catheter ablation of AF.280, 281 

Furthermore, low voltage may denote zones of slow conduction.282  
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Foci of high wall stress may induce remodelling by directly activating signalling 

pathways. Mechanical stretch of atrial tissue has been shown to cause 

upregulation of MMPs.144, 145 Likewise, mechanical stress can directly activate 

type 1 angiotensin II receptors by inducing a conformational change in the 

protein.152, 153 Stretch of ventricular cardiomyocytes increases superoxide anion 

production in vitro, suggesting a role for oxidative stress in this process.156 

Furthermore, inflammation plays a key role in atrial remodelling and could 

feasibly be affected by local stretch.124, 157, 158 However, the observation that an 

acute decrease in intra-atrial pressure can cause an immediate increase 

electrogram amplitude and conduction velocity suggests a possible role for focal 

activation of stretch activated ion channels. 132, 283  

 

It is also noteworthy that voltage is lower when assessed in AF compared to 

sinus rhythm,198, 203 and the extent to which areas of low voltage in AF 

correspond  to those in sinus rhythm is uncertain. 198, 203, 284 Proposed 

mechanisms by which voltage may be reduced in AF include propagation of 

wavefronts through partially repolarized tissue, a variable direction of wavefront 

propagation, and electrical dissociation of myocardial fibres reducing the 

summation of local potentials.198, 203  

 

Wall stress and CFAE 

There was a trend towards increasing CFAE mean across quartiles of wall 

stress (suggesting more organized and less rapid electrical activity at higher 

wall stress) although this did not reach significance. The ROC analysis showed 

that high wall stress was associated with absence of CFAE. This suggests a 
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weak relationship whereby high wall stress reduces the propensity of the atrial 

tissue to support at least some mechanisms of CFAE.  

 

Our data also showed an inverse correlation between CFAE mean and voltage, 

suggesting increased fractionation at higher voltage. Furthermore, the 

percentage of the LA occupied by CFAE was inversely proportional to the 

percentage occupied by scar, suggesting fewer CFAE in more remodelled atria. 

This is in keeping with other recent studies showing that CFAE are not 

associated with areas of low voltage198, 200-203 but is at odds with conventional 

wisdom.194  

 

Focal remodelling might be expected to contribute to zones of slow conduction, 

pivot points, or block,56 and resultant micro- or macro-reentry,271 but is less 

likely to bear any relationship to rotors or rapidly discharging foci which may be 

more dependent on autonomic drive and proximity to ganglionated plexi. 271 

Therefore, although atrial remodelling promotes AF,94, 132-137, 139, 140  peaks in 

wall stress and areas of remodelling are actually less likely to support CFAE. 

One plausible explanation is that stretch and remodelling might lengthen atrial 

refractoriness133-136, 139 which may limit localized reentry and automaticity.  

 

Peaks in wall stress and CFAE were found to coexist at the PV ostia. Although 

this may suggest an excitatory response there are numerous proposed 

mechanisms for CFAE at the PV ostia and they may simply reflect proximity to 

PV drivers. Stretch has been shown to increase the frequency of depolarization 

at the PVs without affecting the body of the LA.78, 285 This may owe to activation 

of stretch activated ion channels causing membrane depolarization, although it 
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is unclear why the muscular sleeves surrounding the proximal PVs should 

respond differently to LA myocardium. The PV ostia can dilate in response to 

chronic atrial stretch,286 potentially altering wall stress distribution and further 

exacerbating stretch at the ostia and proximal PVs. This therefore provides a 

rationale for the association between acutely and chronically elevated LA 

pressure and increased PV ectopy and initiation of AF.  

 

Wall stress and response to ablation 

It was initially uncertain whether it would be meaningful to study the impact of 

regional wall stress on the response to CFAE ablation. The results of Chapter 5 

suggested that CFAE are important in maintaining AF and that there is an acute 

response to ablation which is to some extent measurable using AFCL. The 

preceding stages of this chapter of the thesis had been successful, firstly in 

establishing the computer model to simulate wall stress distribution, and 

secondly that despite the model’s limitations a relationship had been 

demonstrated between regional wall stress and electrophysiology. Therefore, 

given that the response to CFAE ablation was quantifiable and the model was 

shown to have measurable electrophysiologic correlates, it was thought 

appropriate to proceed with this third line of investigation. However, local wall 

stress had no impact on whether CFAE ablation caused cycle length 

prolongation, suggesting that it is unlikely to be useful in guiding LA CFAE 

ablation. However, as LA CFAE ablation was always performed following wide 

area circumferential ablation, it remains uncertain whether the peaks in wall 

stress at the PV ostia were important in maintaining AF.  
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Limitations 

It is difficult to validate wall stress simulation by finite element analysis. 

However, it has been widely used in biomechanics and has produced results 

that correlate with both clinical findings287 and biophysical properties when 

direct testing is feasible.288 It is recognized that this novel model has necessarily 

taken a simplified view of LA biomechanics. Patient specific and site specific 

data on LA material properties were not available, although variation in these 

parameters has only a modest effect on predicted wall stress.258 The resolution 

of current imaging modalities does not allow regional differences in wall 

thickness to be incorporated into the model and this is accepted as a limitation. 

It is also difficult to account for the impact of temporal and regional variation in 

transmural pressure. However, the accuracy of the geometry is the main 

determinant of wall stress258 and although refinement of the model may alter the 

simulated wall stress distribution to some extent, the variations in the model that 

we have tested suggest these changes are likely to be small and are therefore 

more likely to clarify the relationship with electrophysiology than change it 

altogether.   

 

Although areas of low voltage and electrical scar in persistent AF are thought to 

represent atrial remodelling and correlate with areas suggestive of scar on MRI, 

194, 280, 281 it is recognized that such areas may not all represent scar. 198, 203 

Further exploration of the relationship between wall stress and areas of low 

voltage in sinus rhythm is warranted. 
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Conclusions 

The novel computer model described in this study has provided the first data on 

LA wall stress distribution. Peaks in LA wall stress were associated with areas 

of low voltage and electrical scar. Regional differences in wall stress may 

explain the heterogenous remodelling that results from elevated intra-atrial 

pressure and promotes AF. However, peaks in wall stress were associated with 

absence of CFAE and did not predict response to CFAE ablation, suggesting 

that foci of remodelling do not act as drivers of AF. The observation that the PV 

ostia had consistently high wall stress and harboured CFAE is compatible with 

the observations by others that stretch may elicit an excitatory response at the 

PV ostia without doing so elsewhere in the LA,78, 285 suggesting a potential 

mechanism by which elevated intra-atrial pressure might facilitate initiation of 

AF.  
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Chapter 6 

 

Long term efficacy of catheter ablation for AF: 

impact of additional targeting of fractionated 

electrograms. 
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Abstract 

Introduction: We investigated the long term efficacy of catheter ablation for AF 

and the impact of ablating complex or fractionated electrograms (CFAE) in 

addition to pulmonary vein isolation (PVI) and linear lesions in persistent AF.  

Methods: Consecutive cases from 2002-2007 were analysed. All patients 

underwent wide area circumferential ablation with confirmation of electrical 

isolation. For persistent AF linear lesions were added, with additional targeting 

of CFAE from 2005. Data were collected in a prospective database. Attempts 

were made to contact all patients for follow-up.  

Results: 285 patients underwent 530 procedures. Mean age was 57±11 years, 

75% male, 20% had structural heart disease and 53% paroxysmal AF. Mean 

number of procedures was 1.9 per patient (1.7 for PAF and 2.0 for persistent 

AF). Procedural complications included stroke or TIA in 0.6% and pericardial 

effusion requiring drainage in 1.7%. During 2.7 (0.2 to 7.4) years of follow-up 

from the last procedure, there were 7 deaths (unrelated to their ablation or AF) 

and 3 strokes or TIA (0.3% per year). Freedom from AF/AT was 86% for PAF 

and 68% for persistent AF. Late recurrence was 3/100 years of follow up after 

>3 years. Kaplan-Meier analysis showed CFAE ablation improved outcome for 

persistent AF after the first cluster of procedures (p=0.049), with a trend towards 

improved final outcome (p=0.130).  

Conclusion: Long term freedom from AF is achievable in the majority of 

patients with PAF and persistent AF with low rates of late recurrence. Additional 

targeting of CFAE improves outcome for persistent AF. Late adverse events 

including stroke are few.  
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Introduction 

Catheter ablation is now successful in restoring sinus rhythm for the majority of 

patients with paroxysmal and persistent AF in the short term, with studies 

typically reporting freedom from AF or other AT in 70-90% of patients up to a 

year.159, 167, 169, 171, 174, 191 However, follow-up is often short and success is 

usually reported after the last procedure, meaning patients with late recurrence 

who undergo successful repeat procedures are counted as successes. This 

may distort perception of success and patterns of recurrence.   

 

Most studies quote a marked difference in success rates for paroxysmal and 

persistent AF suggesting a need for further ablation beyond PVI, but some 

studies do not.174, 182, 289 There have been several randomised trials 

investigating the impact of CFAE ablation for AF (see Table 1.5 for summary). 

On balance, these suggest a positive impact when CFAE are ablated as an 

adjunct to PVI for persistent AF.290  However, these studies have typically 

examined outcome at approximately 1 year and there remains concern that the 

widespread scar created by CFAE ablation might be pro-arrhythmic over the 

long term. 

 

To address these issues it was hypothesised firstly that once sinus rhythm is 

successfully restored following catheter ablation of AF, late recurrence 

occurring more than a year later is uncommon, as is typically reported for final 

procedure success in the literature.169, 172, 291, 292 Secondly, it was hypothesised 

that long term freedom from arrhythmia is achieved in significantly fewer 

patients with persistent AF than with paroxysmal AF. A third hypothesis was 
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that catheter ablation of CFAE in addition to PVI and linear lesions improves 

long term freedom from arrhythmia for patients with persistent AF. 

 

To ascertain this, a prospective registry at St Bartholomew’s was analysed and 

patients followed up to determine long term freedom from AF. Catheter ablation 

of AF at St Bartholomew’s has consistently used wide area circumferential 

ablation (WACA) with confirmation of electrical isolation of the PVs as a 

procedural end-point since 2002.293 For persistent AF additional substrate 

modification has been performed. This was initially limited to linear lesions but 

has incorporated targeting of complex or fractionated electrograms (CFAE) 

since 2005. The introduction of CFAE ablation to an otherwise consistent lesion 

set therefore allowed a unique opportunity to study the impact of CFAE ablation 

on long term outcome. 

 

 

Results 

 

Patients & procedures 

Analysis included 285 patients aged 56.5 ± 10.5 years. 14% were over 65 years 

of age, 75% were male. 151 (53%) had PAF, 134 (47%) had persistent AF and 

the majority of these (84%) were long lasting persistent AF (i.e. continuous for 

>1 year). 20% had structural heart disease, 37% had hypertension, and 5% had 

prior stroke or TIA. Left atrial diameter was 4.3 ± 0.8cm and 17% had left 

ventricular systolic dysfunction (ejection fraction < 50%).  
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In total 530 procedures were performed, with a mean per patient of 1.9 ± 1 (1.7 

± 0.9 for PAF, 2.0 ± 1.0 for persistent AF). 122 patients had 1 CA, 105 had 2, 41 

had 3, 11 had 4, 5 had 5, and 1 had 6. Patients underwent 1.5 ± 0.7 procedures 

in their initial cluster, with a further 0.4 ablations for late recurrence. Mean time 

between procedures in the first cluster was 6.9 months. The mean period 

between the first cluster of procedures and ablation for late recurrence was 1.4 

years. Of those with recurrent arrhythmia 70% were AF, 29% were left atrial 

flutter, and 1% were typical right atrial flutter.  

 

Median procedure time was 240 (145 - 510) minutes, with fluoroscopy time 53 

(17 - 120) minutes. Ablation to sinus rhythm occurred in 12.5% of catheter 

ablations for persistent AF. Procedural complications (shown in Table 6.1) 

included stroke or TIA in 0.6% and pericardial effusion requiring drainage in 

1.7%, Of these 9 tamponades, 2 occurred during transseptal puncture, 1 

occurred after a pop heard whilst isolating the right sided veins, and 6 occurred 

late despite the absence of an effusion on the echocardiogram routinely 

performed after cases (5 within 12 hours and one presented to another hospital 

at 10 days).     

 

Follow up  

Of 285 patients 15 could not be traced and were excluded from the analysis, 

leaving 270 patients. Of these 125 (46%) had persistent AF and 145 (54%) had 

PAF. Patients were followed-up for a median of 3.3 (2.4-7.5) years from their 

first procedure, 3.1 (1.3-7.5) years from their initial cluster of procedures, and 

2.7 (0.2-7.4) years from their last procedure.  
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Table 6.1: Procedural complications of catheter ablation for AF. 

 

Procedural Complications Frequency of 

530 procedures 

% of 

procedures 

% of 

patients 

Procedural death 0 0 0 

TIA or stroke (all resolved) 3 0.6 1.1 

Tamponade 

(all drained without sequelae) 

 

9 

 

1.7 

 

3.0 

Symptomatic PV stenosis  3 0.6 1.1 

Groin haematoma 77 14.5 27.0 

Haematoma delaying discharge 

or causing readmission 

 

17 

 

3.2 

 

5.9 

Femoral pseudo-aneurysm 

(treated with thrombin injection) 

 

1 

 

0.2 

 

0.4 

 

Legend to Table 6.1: Procedural complications of catheter ablation  are given 

in total for the 530 procedures, as a percentage per procedure, and as a 

percentage overall per patient (assuming a mean of 1.9 procedures per patient).  

 

Adverse events during follow-up 

There were 7 deaths in the cohort, 2 of which were cardiac. One occurred at 27 

days post procedure due to myocardial infarction, the other was a sudden 

cardiac death in a patient with pre-existing heart failure and an ICD in situ more 

than 2 years post ablation. The non-cardiac deaths were due to 3 malignancies 

and 2 pneumonias complicating pre-existing pulmonary disease. Other adverse 

events during follow-up included 1 myocardial infarction, 2 TIAs and a stroke 
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which resolved without long term neurological deficit. There were no cases of 

new onset heart failure. 2 patients went on to have AV node ablation and 

pacemaker implantation. 

 

Freedom from AF  

Freedom from AF/AT with and without anti-arrhythmic medication is shown in 

Table 6.2. AF free survival was significantly better for PAF than PeAF following 

the first procedure, the initial cluster, and the final procedure (p < 0.001 for 

each; Figure 1). There was no difference in success for repeat procedures 

whether the recurrent arrhythmia was AF (53%) or left atrial tachycardia (47%). 

 

Table 6.2: Freedom from AF post catheter ablation. 

 

 All patients (%) PAF (%) Persistent AF (%) 

After first procedure  

(off drugs) 

32.3 

(30.0) 

40.6 

(38.5) 

22.5 

(20.0) 

After first cluster  

(off drugs) 

58.9 

(52.1) 

68.5 

(62.9) 

47.5 

(39.2) 

After last procedure (off 

drugs) 

77.9 

(70.3) 

86.0 

(79.0) 

68.3 

(60.0) 

Last 6 months 

(off drugs 

83.3 

(73.8) 

90.2 

(81.1) 

75.0 

(65.0) 

 

Legend to Table 6.2: Figures are percentage of patients free from any 

detected atrial tachyarrhythmia lasting >30 seconds. Numbers in brackets are 

those off any antiarrhythmic medication. The breakdown is shown for patients 

with PAF and persistent AF.  
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Figure 6.1: Long term outcome after catheter ablation of AF. 
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Legend to Figure 6.1: Kaplan-Meier curves showing AF free survival (A) 

following the first procedure, (B) following the first cluster of procedures, and (C) 

following the final procedure. Significance was assessed using the Log rank 

test. Late recurrence of AF/AT was analysed starting from the last procedure in 

the cluster (B), since recurrence of AF/AT following the final procedure (C) does 

not taken into account late recurrence occurring prior to successful repeat 

procedures. PAF denotes paroxysmal AF. PeAF denotes persistent AF. 
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Symptom severity assessed using the CCS-SAF scale is shown in Figure 6.2. 

Overall 95.1% of patients reported improved symptoms compared to pre-

ablation.  

 

Figure 6.2: Symptomatic benefit following catheter ablation of AF. 

 

 

 

Legend to Figure 6.2: This bar chart shows the symptomatology of patients at 

follow-up. Symptoms were assessed using the Canadian Cardiovascular 

Society Severity of AF (CCS-AF) scale. On this validated scale patient 

symptoms and limitation are scored from 0 (asymptomatic) to 4 (disabling 

symptoms).  PAF denotes paroxysmal AF. PeAF denotes persistent AF. 
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At final follow-up 24.4% of the cohort remained on antiarrhythmic drugs: 1.1% 

on amiodarone, 3.8% on digoxin, 5.7% on class 1 agents, 5.0% on sotalol, 11.0 

% on other ß-blockers, and 9.9% on rate controlling calcium channel blockers. 

  

Late recurrence  

Kaplan-Meier analysis showed that most recurrences occur within 1-2 years 

(Figure 6.1). Actuarial analysis of the rate of recurrence per 100 patient years of 

follow-up showed recurrence beyond 3 years in only 3%per year (Table 6.3). 

 

Multivariate analysis 

Patient factors predicting success after the final procedure are shown in Figure 

6.3A. Independent predictors of recurrence were persistent AF (p < 0.01), 

female gender (p < 0.05), and structural heart disease (p < 0.001), with a non 

significant trend towards an effect of time spent in AF (p = 0.148). No 

procedural factors analysed impacted significantly on first procedure success 

(Figure 6.3B). Analysing persistent AF cases alone, there was a trend towards 

improved first procedure success with the use of image integration (p = 0.059; 

Figure 6.3C). There was no independent effect of a later time of inclusion in the 

cohort. 
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Table 6.3: Actuarial analysis of recurrence of AF/AT following the first 

cluster of ablation procedures for AF. 

 

 

 0-1 years 1-2 years 2-3 years >3 years 

All AF 

(patient years studied) 

30.0% 

(270) 

6.4% 

(267) 

4.0% 

(200) 

3.0% 

(164) 

PAF 

(patient years studied) 

24.1%* 

(145) 

4.2% 

(143) 

2.8% 

(109) 

4.2% 

(72) 

Persistent AF  

(patient years studied) 

36.8% 

(125) 

8.9% 

(123) 

5.5% 

(91) 

2.2% 

(93) 

Persistent AF - CFAE targeted 

(patient years studied) 

34.2% 

(73) 

7.0% 

(72) 

2.2% 

(46) 

0% 

(16) 

Persistent AF - CFAE not targeted 

(patient years studied) 

40.2% 

(52) 

11.6% 

(52) 

8.8%
A
 

(45) 

2.6% 

(77) 

 

 

Legend to Table 6.3: Figures show number of recurrences of AF/AT following 

the first cluster of procedures per 100 years of patient follow-up. This eliminates 

the effect of diminished numbers followed up on the apparent recurrence rate. 

The figure in brackets show the number of patient years of follow-up studied. * 

denotes significant difference for PAF versus persistent AF. A denotes trend 

towards significance with p = 0.086. 
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Figure 6.3: Multivariate analysis of factors predicting recurrence of AF. 
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Legend to Figure 6.3: Figures show hazard ratios for recurrence of AF derived 

from Cox regression analysis, with p values shown to the right. (A) shows 

patient factors predicting recurrence after the final procedure. (B) shows 

procedural factors affecting recurrence after a single procedure. (C) shows 

procedural factors affecting recurrence for patients with persistent AF after a 

single procedure.  
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Impact of CFAE ablation on outcome 

AF free survival was assessed according to whether patients had CFAE 

targeted during their first procedure (49% of cohort, Figure 6.4A), whether they 

had CFAE targeted in at least one procedure in their first cluster (59% of cohort, 

Figure 6.4B), and whether CFAE were targeted at least once in any of their 

procedures (65% of cohort, Figure 6.4C). Since CFAE were targeted only from 

2005 onwards, those who did not have CFAE targeted were followed up longer. 

To avoid temporal bias the log rank test was calculated for follow-up truncated 

at 3 years. Although there was no effect of CFAE ablation on single procedure 

outcome, there was a 21.6% absolute increase in success after the first cluster 

of procedures (p = 0.049). This translated to a non-significant trend towards 

improved final outcome with CFAE ablation (13.4% absolute difference; p = 

0.130). There was also a non significant trend towards reduced late recurrence 

with CFAE ablation (p = 0.086 for recurrences between 2 and 3 years; Table 

6.3). There was no difference in the procedure time or the number of 

procedures (in the first cluster or in total). CFAE ablation did not affect the 

proportion of recurrences after the first procedure due to left atrial tachycardia 

(22.0% in those who had CFAE targeted versus 17.5% in those who did not; not 

significant).   
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Figure 6.4: Impact of additional CFAE ablation on outcome after persistent 

AF. 
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Legend to Figure 6.4: Kaplan-Meier curves showing AF free survival (A) 

following the first procedure, (B) following the first cluster of procedures (i.e. 

when AF is first eliminated whether after 1 catheter ablation or several), and (C) 

following the final procedure. The cohort has been divided according to whether 

patients had CFAE targeted during their first procedure (A), whether they had 

CFAE targeted in at least one procedure in their first cluster (B), and whether 

CFAE were targeted at least once in any of their procedures (C). Significance 

was assessed using the Log rank test. Since CFAE were targeted only from 

2005 onwards, those who did not have CFAE targeted were followed up longer. 

To avoid temporal bias the log rank test was calculated for follow-up truncated 

at 3 years. 
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Discussion  

Main findings 

Long term freedom from AF is achievable in a majority of patients after catheter 

ablation. Recurrence occurs mostly in the first year, with an annual recurrence 

rate of approximately 3-5% from 1-3 years, falling to 3% per year thereafter. 

The success rate was significantly higher for patients with paroxysmal AF than 

persistent AF (86% off AADs for paroxysmal AF versus 68% for persistent AF).  

Despite conflicting evidence previously, we have demonstrated incremental 

benefit in targeting CFAE in persistent AF. This benefit was maintained at long 

term follow up without any excess of late recurrence of AF or AT in those 

undergoing CFAE ablation.  

 

Efficacy of catheter ablation for AF 

The final procedure success was comparable to other high turnover centres, 

typically in the region of 70-90%.167, 169, 174, 191 The low CCS-SAF scores 

suggest that those with recurrent AF may still have derived symptomatic benefit, 

indeed 95% of patients reported improved symptoms. 

 

The single procedure efficacy of catheter ablation for persistent AF was 

disappointing, but in keeping with other reports.64, 168, 182, 191, 267 A recent study 

reported excellent long term single procedure success. Their use of intra-

cardiac echo to monitor tissue contact may have reduced PV reconnection.174 

However, 5 year outcome reported by the Bordeaux group suggest a low single 

procedure success rate more in keeping with these data. 182  New technologies 

such as robotic navigation to improve catheter stability, catheters that allow 
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monitoring of tissue contact, or advanced mapping techniques that allow 

targeting of rotors may improve outcomes.  

 

Multivariate analysis of patient factors impacting on outcome identified structural 

heart disease, persistent AF and female gender as independent predictors of 

recurrent arrhythmia. The impact of gender has been noted previously and may 

relate to subtle differences in cardiac anatomy or possibly more non-PV 

triggers.174, 294 However, it has also been noted that fewer women are referred 

for ablation and that they generally seem to be referred later in their disease 

process, having been in AF longer and failed more antiarrhythmic drugs than 

male patients referred for ablation.294 This gender bias in referral patterns may 

therefore mean that women presenting for ablation have more remodelled atria 

than male patients. LA size was not an independent predictor of recurrence 

despite being identified by others previously, perhaps as there is a relationship 

between this and time spent in AF.174  

 

A multivariate analysis of procedural factors impacting on outcome showed no 

discernable effect of technologies introduced over the course of the study 

period. In particular the use of steerable sheaths, irrigated catheters, and image 

integration for mapping systems had no effect. 

 

Patterns of recurrence 

Studies report flattening of the AF free survival curve after 1-3 years.169, 172, 291, 

292 However, this effect may be artificial due to diminished numbers at longer 

follow-up, and re-listing patients with late recurrence preventing them counting 

as failures. To circumvent these issues we examined recurrence following the 
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initial cluster of procedures, with late recurrences counted as failures. Most 

recurrences occurred by 1 year. Kaplan-Meier curves flattened by 3 years, with 

only 3 recurrences/100 years of follow-up subsequently (i.e. 3% per year).  

 

Impact of CFAE ablation 

There has been difficulty reproducing Nademanee’s early success using CFAE 

ablation alone.265, 267 Incremental benefit of CFAE ablation in addition to PV 

isolation has been demonstrated over the short term,191, 221, 225 although not 

consistently.64, 224  

 

The lack of benefit following a single procedure in this study may reflect the fact 

that most early recurrence is associated with PV reconnection.226 Once AF was 

eliminated following the first cluster of procedures, CFAE ablation resulted in a 

21.6% absolute increase in the number maintaining sinus rhythm long term. 

Hence the decreased ability of the modified atrial substrate to initiate and 

sustain AF may not become apparent until PV triggers/drivers are removed.   

 

Although Kaplan-Meier analysis showed an early benefit of CFAE ablation, 

there was also a trend towards reduced late recurrence. CFAE ablation did not 

affect the proportion of recurrence due to AF and AT, suggesting fears over 

increased propensity to macro-reentry are unfounded. Notably there was only a 

trend towards improved final outcome with CFAE ablation (13.4% absolute 

difference). However, many patients with late recurrence had additional CFAE 

ablation at their repeat procedure, meaning that the majority of patients with 

recurrent arrhythmias would have crossed over into the CFAE ablation group. 

This artefact may have obscured any benefit derived by CFAE ablation 
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Safety of catheter ablation of AF 

The 3.1% major complication rate is comparable to that reported by other high 

turnover centres (typically 2-3%), and consisted mostly of stroke/TIA and 

tamponade.167-169, 172, 191, 194, 267 Stroke/TIA was infrequent (0.6%) and all 

resolved. However, our aggressive anticoagulation policy may have resulted in 

a slightly higher tamponade rate of 1.7% (0.4-1.3% in other large series), 

although all were drained without sequelae.159, 170, 174 Two thirds of tamponades 

were late, emphasizing the need for vigilance post procedure. The 3 PV 

stenoses occurred in the first 50 cases, and with more caution to avoid the PV 

ostia there were none subsequently.  

 

Over 3.3 years the 7 deaths were unrelated to CA or AF. The CHADS2 score 

for the cohort was 0.8 with an expected stroke rate of 2-3% (1% if 

anticoagulated).239 The rate of 0.3% per year confirms the low stroke rate after 

catheter ablation of AF.167, 169, 174    

 

Limitations 

Aggressive screening has revealed that a proportion of apparently cured 

patients have episodes of asymptomatic AF.295 Although patients underwent 

ambulatory monitoring, it is recognised that further screening may uncover an 

increment in asymptomatic recurrent AF. However, the extent to which 

asymptomatic patients were screened for arrhythmia was comparable to that 

reported for many other registries and trials.64, 159, 167-169, 224, 225 
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Over the 5 years of this cohort it is possible that factors other than CFAE 

ablation have improved outcome in later patients. However, (i) the procedure 

has been consistent throughout other than the addition of CFAE ablation, (ii) 

multivariate analysis did not show a significant effect of any procedural factors, 

and (iii) inclusion of time as a covariate showed no benefit of later inclusion in 

the cohort. Nevertheless we acknowledge that registry data can be flawed and it 

is possible there may have been some confounding due to this.   

 

Conclusion 

Catheter ablation of AF can achieve long term sinus rhythm for a majority of 

patients. As most recurrences occur within a year, trials reporting efficacy of 

catheter ablation for AF should perhaps consider this a minimum for reporting 

results. The success rate following catheter ablation of persistent AF is still 

significantly lower than for paroxysmal AF. The addition of CFAE ablation to PVI 

may improve long term outcome for those with persistent AF. Importantly, CFAE 

ablation does not appear to be pro-arrhythmic over the long term and does not 

increase rates of late recurrence with AF or AT.  
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Conclusions 

 

The first essential part of this thesis was to establish a detailed definition and 

classification of CFAE which could be applied in real time live during cases. The 

description provided for each grade of CFAE was broad enough that all 

electrograms met the criteria for one grade or another and detailed enough that 

it could be reproducibly applied during clinical cases. This was a crucial part of 

this thesis, as clearly it was necessary to accurately distinguish between 

different CFAE morphologies in order to target them separately and study the 

effect of ablating them.  

 

Although this was the primary purpose of this chapter of the thesis, it has 

provided further useful information in two respects. Firstly, this classification has 

provided a framework that other operators and clinical trialists could use to 

ensure reproducibility in the targeting CFAE, and indeed allow others to 

interpret their clinical results with a fuller understanding of exactly what they 

targeted. Secondly, it was possible to use this grading of fractionation to 

validate automated CFAE detection algorithms on the two commonly used 3D 

mapping systems, not only in terms of the accuracy of detection, but also in 

assessing the degree of electrogram fractionation. The CFAE mean algorithm 

on the Ensite NavX system and the ICL algorithm on Carto both fared well with 

similar accuracy, but the other algorithms on Carto such as the ACI and SCI 

were not as accurate. Although other studies have looked at the accuracy of 

these algorithms with similar conclusions, 221, 247, 250, 251 this study was the first to 

investigate how well they quantify electrogram fractionation. This is clinically 

useful, since CFAE burden can be high in some patients covering most of the 
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atria. Some groups therefore elect to begin by targeting only the most 

fractionated electrograms on a CFAE map and then remapping before ablating 

more widely.221, 296 

 

During the course of this work, other descriptions of CFAE have been 

published. Kremen et al,264 categorized electrograms as either (1) normal, (2) 

mildly fractionated, (3) moderately fractionated, or (4) severely fractionated. 

Although they demonstrated a low inter-observer variability, they did not fully 

define the characteristics of these 4 categories and hence it would be difficult 

for other centres to adopt the system in a reproducible manner. A physiological 

classification of CFAE has also been described by Narayan et al, who 

measured monophasic action potential recordings at CFAE sites and showed 

that a small proportion of these sites have evidence of rapid depolarisations 

suggestive of drivers.217 These sites of rapid depolarisation were associated 

with more continuous electrical activity, a shorter cycle length and a lower 

voltage amplitude. Although this work was physiologically interesting and 

broadly supports the notion of targeting rapid electrograms or those with 

continuous fractionation, the classification could not be translated directly into 

the clinical setting due to its reliance on special equipment. 

 

After establishing that CFAE could be accurately classified using this system, it 

was then possible to study the effect of ablating different CFAE morphologies. 

There are a limited number of ways to assess the impact of ablation. Arguably 

the most definitive effect of ablation is the termination of AF. However, this 

usually occurs no more than once in a procedure and indeed occurred in only 

30% of the patients comprising chapter 4 of this thesis. For this reason, others 
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have used AFCL prolongation as a marker of response to ablation. 241, 254, 255  

Although this is a surrogate end-point, it has been shown to correlate with 

clinical outcome and there is computer modelling which suggests that it may 

reflect elimination of drivers. 63, 253  

 

It is also recognised that there is a cumulative effect of ablation on AF cycle 

length, 63 hence it was thought necessary to vary the order in which the different 

CFAE morphologies were targeted.  The order could have been completely 

randomised, but instead patients were randomised to targeting of CFAE starting 

with the most fractionated grade first (i.e. grades 1 to 5), or starting with the 

least fractionated first (i.e. grades 5 to 1). This made it possible to study the 

effect of ablating CFAE in two distinct orders. 

 

The data from ‘The CFAE AF trial’ in chapter 4 of this thesis showed that certain 

CFAE morphologies were more likely to cause AFCL prolongation than others. 

In particular, ablating CFAE with fractionation for ≥ 70% of the sample, 

especially when there were segments of continuous electrical activity lasting ≥ 1 

second (i.e. grade 1 & 2 CFAE), were more likely to prolong AFCL than ablation 

of normal electrograms. Ablation of less fractionated electrograms (≤ 70% of the 

sample, i.e. grade 3 CFAE) was no more likely to prolong AFCL than ablation of 

normal electrograms. Interestingly, ablation of more organised electrograms 

with multiple deflections (grade 4 CFAE) also caused cycle length prolongation 

compared to normal electrograms. These data strongly suggest that areas 

where certain CFAE morphologies are recorded are important in maintaining 

AF.  
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This was not a mapping study aimed at elucidating the underlying physiology at 

CFAE sites. The intention was to prove that certain CFAE morphologies are 

more likely to represent drivers of AF. The differential effect of targeting different 

CFAE morphologies certainly supports this hypothesis. However, several 

questions still remain. Since uncertainty remains as to how AF is maintained, 

these drivers could be a rotors, focal sources with radial activation, zones of 

slow conduction, or possibly other phenomena. Until these phenomena can be 

reliably distinguished it will not be possible to compare electrogram properties 

for each, and it therefore remains uncertain exactly what each CFAE 

morphology represents. Nevertheless, the classification of CFAE should be 

clinically useful as it allows an operator to distinguish which CFAE morphologies 

are important to target. At the time of writing, there have been no other studies 

prospectively evaluating the effect of targeting different CFAE morphologies. 

 

Another remaining question is whether these data prove that CFAE ablation is 

not simply de-bulking atrial tissue. Targeting different CFAE morphologies 

certainly had a differential effect on AFCL, and targeting highly fractionated 

electrograms first organised the less fractionated electrograms meaning that 

fewer CFAE were targeted in total. Nevertheless, it could be argued that CFAE 

simply represent diseased tissue necessary for the maintenance of AF rather 

than physiologically active drivers. However, these data do not support this. 

Electrogram amplitude did not predict the response to ablation, meaning that 

ablation of low amplitude CFAE suggestive of scar tissue were no more likely to 

cause cycle length prolongation than ablation of high amplitude CFAE. By 

mapping the same patients in AF and in sinus rhythm, others have shown that 

areas where CFAE are recorded in AF do not correspond to fractionated or low 
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amplitude electrograms in sinus rhythm.199, 252, 297, 298 Furthermore, CFAE do not 

correspond to areas of scar on magnetic resonance imaging.252 Taken in 

conjunction with the data in chapter 4 of this thesis, these data suggest that 

CFAE are functional phenomena rather than representing a fixed structural 

lesion. Ablation of certain CFAE morphologies therefore destroys functional 

phenomena important in maintaining AF rather than de-bulking unhealthy 

tissue.  

 

In chapter 5, a novel computer model to simulate left atrial wall stress was 

described. This model, built in collaboration with biomedical engineers, 

simulated LA wall stress based on contour and geometry using a patient 

specific geometry from CT. By comparing this simulated wall stress data to 

electrophysiologic data recorded at the time of catheter ablation of AF, it was 

possible to firstly explore the relationship between wall stress and LA 

electrophysiologic remodelling, and secondly to test the importance of peaks in 

wall stress by assessing the response to ablation there. 

 

It was found that peaks in LA wall stress were associated with areas of low 

voltage and electrical scar. There was also a trend towards less fractionated 

electrograms at peaks of wall stress. Furthermore, CFAE were found to be less 

likely to occur in areas of low voltage than elsewhere. Left atrial CFAE burden 

was actually inversely proportional to both the median LA voltage and the 

degree of LA scarring. This is in keeping with the findings of others discussed 

above, that CFAE do not correspond with areas of low voltage or scar on 

magnetic resonance imaging. 199, 252, 297, 298   

 



208 

 

To evaluate the importance of peaks in wall stress in maintaining AF and to 

assess whether the computer model might have a role in guiding CFAE 

ablation, the impact of CFAE ablation on AFCL was assessed as a function of 

the local wall stress. Although the model remained simplistic, the above 

correlation with electrophysiologic data provided some internal validation for the 

wall stress simulation, suggesting that further analysis along these lines was 

reasonable. Furthermore, the results of Chapter 4 suggested that CFAE 

ablation is not simply de-bulking the atria and that some CFAE are important in 

maintaining AF, and hence that there is potential to refine CFAE ablation. It was 

also demonstrated that the acute effect of CFAE ablation can be quantified to 

some extent using AFCL.  

 

However, there was found to be no difference between wall stress at sites 

where CFAE ablation caused cycle length prolongation compared to sites 

where it did not. Furthermore, receiver operating characteristic analysis showed 

that wall stress could not be used to distinguish between areas that would and 

would not cause AF cycle length prolongation during CFAE ablation.  

 

Although these data do not suggest that peaks in wall stress are important in 

maintaining AF, nor do they entirely refute the hypothesis. It is possible that the 

model is too basic to elucidate such a relationship, although given that there 

was a demonstrable relationship between wall stress and electrophysiology, this 

ought not to have been the case. The distribution of peaks in wall stress was in 

many cases concentrated at the pulmonary vein ostia. As these were isolated 

by WACA prior to CFAE ablation, the impact of ablating here was not assessed. 

Furthermore, others have demonstrated an excitatory response with mechanical 
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stretch at the pulmonary vein ostia which is not elicited elsewhere in the atria.78, 

285 There may therefore be important differences in the response to stretch at 

the pulmonary vein ostia where we did not observe the impact of ablation. 

Lastly, although AFCL may be a reasonable measure of the response to 

ablation, it is thought to gage whether drivers are being eliminated and is 

ultimately a surrogate end-point. The real end point of interest is the impact of 

ablation on long term maintenance of sinus rhythm. Rather than evaluating the 

impact of wall stress on response to ablation of CFAE, it may be that a more 

refined model could be used to target areas of advanced remodelling for 

ablation and that a procedure aiming to homogenise atrial scar might be 

successful regardless of the short term impact on AFCL. 

 

As this model was entirely novel it necessarily took a simplified view of LA 

biomechanics as the first step towards understanding wall stress distribution. 

Although the accuracy of the geometry is the most important factor in 

determining wall stress,258 two other important factors that are difficult to fully 

account for are: (i) regional differences in wall thickness, and (ii) the regional 

and temporal variations in the trans-mural pressure gradient.  

 

The impact of small changes in regional wall thickness and of changes in the 

global trans-mural pressure gradient were explored in Chapter 5 and appeared 

to have a very limited effect on the relative distribution of wall stress. However, 

the scale of the complexities in vivo are far greater. The anatomical 

complexities are not limited simply to differences in regional wall thickness, but 

also differences in fibre orientation and layering. Furthermore, changes in the 

trans-mural pressure gradient are not uniform and are impacted by extra-
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cardiac structures and changes over time with intra-cardiac pressure during the 

cardiac cycle and intra-thoracic pressure with respiration. 

 

The fact that there was a demonstrable relationship between simulated LA wall 

stress and left atrial electrophysiology provides some internal validation for this 

model. Nevertheless it is recognised that the model is at an early stage and 

needs further work to enrich it and make it more realistic. Further work plans to 

derive generic LA anatomical data from cadaveric specimens, so that data on 

regional wall thickness, fibre layering and orientation can be included in the 

model. Furthermore, we plan to record intra-atrial pressures and regional 

pericardial pressures in patients undergoing catheter ablation for ventricular 

tachycardia to determine regional atrial transmural pressure gradients for 

inclusion in the model.  

 

Other than refinements of the model, there are other methodological differences 

that might be incorporated into further work. The intention of the study 

comprising Chapter 5 of the thesis was not just to establish the wall stress 

model and to examine the relationship with left atrial electrophysiology, but to 

examine the importance of regions with high wall stress in maintaining AF, and 

ultimately whether wall stress might be useful in guiding CFAE ablation. Clearly 

this is several steps at once. Further work will focus on better defining the 

relationship between LA wall stress and electrophysiology in the first instance.  

In particular, there is now evidence that electrogram voltage amplitude in AF 

may not correlate very well with that in sinus rhythm. 198, 203  It would therefore 

be useful to re-examine the relationship between wall stress and electrogram 

voltage in sinus rhythm. This would also allow assessment of the impact on 
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conduction velocity and refractory periods. Furthermore, the current study used 

a pulmonary vein mapping catheter to acquire electroanatomic mapping data 

points as several can be acquired simultaneously. However, this inevitably 

means that some of the points assumed to be low voltage or electrical scar 

were in fact just poor contact between the electrodes and the myocardium. 

Future studies will therefore use point by point data collection. Since this data 

was acquired, catheters capable of measuring contact force have also become 

available. Using a catheter to collect data points one by one with a pre-specified 

contact force will be the ideal way to collect further data. 

 

Chapter 6 of this thesis examined the long term outcome after catheter ablation 

of AF, the rates of late recurrence, and the difference in outcomes for 

paroxysmal and persistent AF. This enabled an assessment of how CFAE 

ablation impacts on long term outcome in patients with persistent AF, 

complementing the work in the other chapters of this thesis examining the acute 

effects of CFAE ablation. 

 

Other studies examining long term outcome after catheter ablation of AF are 

summarised in Table 1.4. The data presented in Chapter 6 still represents one 

of the longest follow-up studies to date following catheter ablation of AF. The 

dataset has been expanded subsequently as part of other studies examining 

long term outcome,299-301 and have recently been included in a meta-analysis.289 

These data show that the long term outcome after catheter ablation remains 

relatively poor after a single procedure, particularly for persistent AF. However 

the outcome after repeated procedures (a mean of 1.7 procedures for 

paroxysmal AF or 2.0 for persistent AF) was actually much better, with sinus 
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rhythm maintained in 86% for paroxysmal AF and 68% for persistent AF off anti 

arrhythmic drugs at 2.7 years from the last ablation procedure. Late recurrence 

at greater than 3 years following the last procedure was uncommon at 

approximately 3% per year. These data remain an important part of the 

literature on outcome after catheter ablation of AF. Much of the long term follow 

up data following catheter ablation of AF has been published by the Natale 

group, who quote much higher success rates with few repeat procedures and 

only very rare complications.174, 289 The data from the current study therefore 

forms part of an important counterbalance to the literature and may arguably 

better reflects the experience of many other centres.160  

 

These registry data pre-date the work in Chapters 3-5 aiming to refine CFAE 

ablation. Chapter 6 therefore examines the clinical impact of a conventional 

approach to CFAE ablation. Although there was no impact of targeting CFAE in 

persistent AF after a single procedure, there was a 22% absolute increase in 

the success rate following repeat procedures. It is unclear why this effect was 

evident only after repeated procedures. It is possible that many of the early 

recurrences were due to pulmonary vein reconnection, and that the impact of 

CFAE ablation may not be evident until after lasting PVI has been achieved. 

Table 1.4 summarizes randomised controlled trials investigating the efficacy of 

CFAE ablation for AF. The majority of these studies support CFAE ablation for 

persistent AF, and a recent meta-analysis also concluded that this was the 

case.290 The data from Chapter 6 of this thesis also suggest a positive impact of 

CFAE ablation on long term outcome and add to the literature in two respects. 

Firstly, CFAE ablation was performed as an adjunct to both PVI and linear 

lesions, whereas the majority of previous studies evaluated CFAE ablation as 
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an adjunct to PVI alone. Secondly, follow up for previous studies were typically 

up to 1 year, with concern from some quarters that long term outcome might be 

poor due to LA scar post CFAE ablation. The current study provides the longest 

follow up to date following CFAE ablation at 3.3 years. These data are therefore 

reassuring in that the rates of late recurrence (AF or AT) are certainly no higher 

after CFAE ablation, and may actually be lower than the control group.  

 

The main limitation of the data comprising Chapter 6 is that it is a single centre 

retrospective study. Outcome was examined before and after the incorporation 

of CFAE ablation into an otherwise consistent lesion set. Nevertheless, it is 

possible that other factors which changed over this time period may have 

influenced the results. Although a multivariate analysis did not show a 

significant effect of any of these other changes, and in particular inclusion of 

time as a covariate did not show any benefit of later inclusion in the cohort, it is 

difficult to fully account for these factors and there may be a degree of 

confounding relating to this.  

 

When this thesis was originally conceived, Nademanee’s work showing high 

success rates with CFAE ablation as a standalone strategy for AF had recently 

been published. The Morady group had also published their experience with 

CFAE ablation, showing much the opposite. There was therefore immense 

interest and controversy surrounding CFAE ablation. Over the subsequent 

years the randomised studies summarised in Tale 1.5 were published. There 

remains controversy, but meta-analysis suggests that CFAE ablation improves 

outcomes when performed in addition to PVI for persistent AF.290 Unfortunately, 
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there has arguably been little other progress in the field of CFAE ablation, with 

few publications on how CFAE ablation might be refined. 

 

Although performing CFAE ablation as an adjunct to PVI and linear lesions may 

improve outcomes, the technique as it stands has significant draw backs. It is 

not an ideal way of targeting drivers, since many patients remain in AF following 

elimination of CFAE, and ablation of many CFAE produces no impact whilst 

causing unnecessary scarring. CFAE are therefore not terribly sensitive or 

specific markers of drivers in AF. At the time of writing there is ongoing work by 

others attempting to refine CFAE ablation.  

 

The Selective CFAE targeting for AF (SELECT AF) study is currently 

randomising 80 patients with AF to PVI followed by either conventional targeting 

of CFAE to eliminate all CFAE, or targeting of only CFAE with continuous 

electrical activity.296 The primary end-point is freedom from AF at 1 year. This 

will demonstrate whether targeting a limited number of CFAE can achieve the 

same clinical results without destroying so much atrial tissue leaving scar that is 

potentially pro-arrhythmic. Similarly, the Modified Ablation Guided by Ibutilide in 

Chronic AF (MAGIC AF) study is currently enrolling and is randomising 200 

patients with persistent AF to PVI followed by either conventional CFAE ablation 

or CFAE ablation after administration of Ibutilide.302 The hope is that Ibutilide 

administration may organise AF, reduce CFAE burden and thereby limit the 

amount of ablation required to eliminate important drivers, with the primary end-

point being freedom from AF at 1 year. Data from these studies will help refine 

CFAE ablation, maximising efficacy whilst minimising collateral damage to the 

atria. However, data from this thesis and elsewhere suggest that CFAE ablation 
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is likely to remain an imprecise way of targeting drivers in AF. Ultimately it may 

be that these drivers can be mapped directly,48, 49, 303 perhaps dispensing with 

the need for ablation of surrogates such as CFAE at all.   

 

In conclusion, these data demonstrate that it is possible to reliably discern 

different CFAE morphologies by eye. Furthermore, ablation of certain CFAE 

morphologies are more likely to prolong AFCL, suggesting firstly that CFAE 

ablation is not simply de-bulking the atria, and secondly that these CFAE are 

important in maintaining AF. However, targeting CFAE remains an imprecise 

process and ablation should be limited to those CFAE most likely to have an 

effect. Correlating electrophysiologic data with simulated wall stress 

demonstrated a relationship between peaks in wall stress and areas of low 

voltage areas and electrical scar, suggesting that peaks in wall stress may 

directly induce foci of remodelling. However, peaks in wall stress did not cause 

CFAE and there was in fact a weak relationship whereby less fractionated 

electrogram were found in areas of higher wall stress. These preliminary data 

do not suggest that these foci of remodelling act as drivers maintaining AF, and 

furthermore do not suggest a role for wall stress simulation in guiding or refining 

CFAE ablation. These data confirm that there remains a difference in long term 

outcomes following catheter ablation of paroxysmal and persistent AF, but that 

CFAE ablation in addition to PVI and linear lesions improves outcomes for 

persistent AF. Importantly, the rate of late recurrence due to AF or AT was not 

higher with CFAE ablation, suggesting that the widespread scar that can be 

created by CFAE ablation did not seem to be proarrhythmic over the long term. 

Although these data support conventional targeting of CFAE when it is 

performed as an adjunct to PVI and linear lesions for persistent AF, selective 



216 

 

targeting of CFAE based on electrogram morphology may help limit 

unnecessary damage to the atria. Further refinement of CFAE ablation, or 

ultimately its replacement by a more precise means of targeting mechanisms 

sustaining AF remains desirable.    
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