
On Bar Recursive Interpretations of Analysis

A Dissertation

Submitted in Partial Fulfillment

of the Requirements of the

Degree of Doctor of Philosophy,

Queen Mary University of London

By

Thomas Rhidian John Powell

August 2013

ii

Abstract

This dissertation concerns the computational interpretation of analysis via proof interpre-

tations, and examines the variants of bar recursion that have been used to interpret the

axiom of choice. It consists of an applied and a theoretical component.

The applied part contains a series of case studies which address the issue of understand-

ing the meaning and behaviour of bar recursive programs extracted from proofs in analysis.

Taking as a starting point recent work of Escardó and Oliva on the product of selection

functions, solutions to Gödel’s functional interpretation of several well known theorems

of mathematics are given, and the semantics of the extracted programs described. In

particular, new game-theoretic computational interpretations are found for weak König’s

lemma for Σ0
1-trees and for the minimal-bad-sequence argument.

On the theoretical side several new definability results which relate various modes of

bar recursion are established. First, a hierarchy of fragments of system T based on finite

bar recursion are defined, and it is shown that these fragments are in one-to-one correspon-

dence with the usual fragments based on primitive recursion. Secondly, it is shown that

the so called ‘special’ variant of Spector’s bar recursion actually defines the general one.

Finally, it is proved that modified bar recursion (in the form of the implicitly controlled

product of selection functions), open recursion, update recursion and the Berardi-Bezem-

Coquand realizer for countable choice are all primitive recursively equivalent in the model

of continuous functionals.

iii

iv

Contents

Abstract iii

Acknowledgements ix

Preface xi

1 Introduction 1

1.1 The computational content of proofs in classical analysis 2

1.2 Comparing variants of bar recursion . 3

1.3 Overview of the dissertation . 4

1.4 List of publications . 5

I Background 7

2 Formal Theories 9

2.1 First order Heyting and Peano arithmetic 9

2.2 Extensional Heyting and Peano arithmetic in all finite types 11

2.3 Subsystems of analysis . 15

3 Proof Interpretations 17

3.1 The negative translation . 19

3.2 The functional interpretation . 20

3.3 Understanding the Dialectica interpretation 24

3.4 Modified realizability, and other proof interpretations 28

4 Spector’s Bar Recursion 31

4.1 Spector’s condition . 32

4.2 Spector’s computational interpretation of ACN 34

4.3 Howard’s computational interpretation of WKL 35

v

Contents

4.4 Models of GBR . 37

II The Constructive Content of Mathematical Analysis 39

5 The Semantics of Bar Recursive Functionals 41

5.1 The explicitly iterated product of selection functions 43

5.2 Sequential games and optimal strategies . 46

5.3 A game-theoretic computational interpretation of DC 48

5.4 Alternatives to Spector’s bar recursive interpretation of analysis 52

6 Arithmetical Comprehension 55

6.1 A game-theoretic interpretation of Σ0
1-CA 56

6.2 Fin-Σ0
1-CA as the fixpoint of an update procedure 58

7 Weak König’s Lemma for Undecidable Trees 65

7.1 A bar recursive interpretation of Σ0
1-WKL 67

7.2 The Bolzano-Weierstrass theorem . 72

7.3 Ramsey’s theorem for pairs . 75

7.4 An alternative to Howard’s realizer of WKL 82

8 The Minimal-Bad-Sequence Argument 85

8.1 The minimal bad sequence construction . 86

8.2 The functional interpretation of MBS . 90

8.3 Open induction and open recursion . 99

8.4 Higman’s lemma . 104

III The Equivalence of Variants of Bar Recursion 109

9 Extensions of Gödel’s system T 111

9.1 Primitive recursive definability . 113

9.2 Spector’s bar recursion and its variants . 114

9.3 Modified bar recursion and the implicitly controlled product of selection

functions . 116

9.4 The Berardi-Bezem-Coquand functional and update recursion 119

9.5 Open recursion . 122

9.6 Summary of interdefinability results . 123

10 Finite Bar Recursion and the Primitive Recursive Functionals 125

10.1 Finite bar recursion and its fragments . 126

vi

Contents

10.2 The equivalence of the fragments Pn and Tn+1. 129

10.3 Interpreting fragments of arithmetic. 133

11 On Spector’s ‘Special’ and ‘General’ Forms of Bar Recursion 137

11.1 The Kreisel/Howard trick via SBR . 137

11.2 Defining GBR from SBR . 139

12 Implicitly Controlled Bar Recursion and Open Recursion 143

12.1 Defining open recursion from IPS . 144

12.2 Defining UI and BBC from IPS . 150

12.3 Defining IPS from BBC . 151

A Omitted Proofs 161

vii

Contents

viii

Acknowledgements

First and foremost I am deeply grateful to my supervisors Paulo Oliva and Edmund

Robinson for their academic guidance, patience and support during my time as a research

student, without which this dissertation would not have been possible.

I am indebted to many people for stimulating mathematical discussions, in particular

Mart́ın Escardó, Ulrich Berger and Monika Seisenberger, who also invited me to visit them.

It was a great honour to have been examined by Max Kanovich and Ulrich Kohlenbach,

and I thank them for their many helpful comments.

Finally, I thank the EPSRC for funding my research for the last three and a half years.

ix

Contents

x

Preface

The last century has seen a sweeping change in the central goals of metamathematics.

Starting with Hilbert’s metamathematical program of the 1930s, which was broadly con-

cerned with providing a finitary justification for modern mathematical methods, logic and

proof theory have experienced a gradual shift of emphasis away from foundational prob-

lems and towards applications in mainstream mathematics and computer science. Today

this new direction is embodied by research programs such as the proof mining program,

or the formalisation of mathematics in theorem provers.

In line with this shift of emphasis is a change in the way that we view traditional

metamathematical tools and techniques. Good examples of this phenomenon are proof

interpretations such as Gödel’s functional interpretation: originally developed to establish

relative consistency results, they have since been reoriented to extract constructive infor-

mation from non-constructive proofs, leading in particular to new and improved results in

several areas of mathematics.

In this dissertation we study bar recursive functional interpretations of analysis. We

examine the meaning and behaviour of bar recursive programs extracted from proofs, and

clarify the relationship between the different variants of bar recursion. Our modest aim is

to acquire a better understanding of proof interpretations and their associated modes of

recursion, but in doing so we hope to take a small step towards making metamathematical

methods more accessible and applicable in mathematics itself.

xi

Contents

xii

CHAPTER

ONE

Introduction

Proof interpretations are powerful tools that allow us to make computational sense of non-

constructive ideas in mathematics. They have their origin in Hilbert’s program where they

were initially developed in order to obtain relative consistency proofs. However, in the

1950s Kreisel advocated the use of proof interpretations to systematically extract realizers

for existential theorems, through ‘unwinding’ computational information hidden in the

logical structure of their proofs. It is this feature that forms the basis of most modern

applications of proof interpretations, although their significance in this respect has only

become fully appreciated since the 1990s and the advent of the proof mining program, in

which refinements of Gödel’s functional interpretation have been applied to obtain new

quantitative results in several areas of mathematics, including numerical analysis and

ergodic theory.

Despite these achievements, in many ways we still understand surprisingly little about

the action of proof interpretations and what they tell us about the semantics of classical

proofs. Realizers extracted from all but the most trivial proofs are highly complex -

their meaning often obscured beneath a heavy layer of syntax. This is particularly true

when analysing proofs that involve choice or comprehension principles: these are typically

interpreted using some variant of bar recursion, and appreciating the resulting realizer on

a ‘mathematical’ level can be quite difficult.

The central theme that runs through this dissertation is to gain a better understanding

of bar recursion and its role in extracting computational content from proofs in mathe-

matical analysis. We organise our work into two parts. In the first part we present a

series of case studies in which we use Gödel’s functional interpretation extract and anal-

yse bar recursive realizers from several well-known non-constructive principles. Our aim

is to describe how these realizers work, and how they relate to the non-constructive ideas

they interpret. The second part is more abstract, and focuses on the relationship between

different variants of bar recursion. We establish a number of new definability results, and

1

Chapter 1. Introduction

combining these with existing research manage to classify most of the well-known known

modes of bar recursion used in proof theory into two main groups according to whether

they are equivalent to Spector’s bar recursion, or modified bar recursion.

1.1 The computational content of proofs in classical analysis

The computational meaning of non-constructive proofs is an issue that lies at the heart of

mathematical logic and theoretical computer science, and one which has been continually

studied in one form or another since the early twentieth century. By now there exists

a plethora of elegant solutions to this problem along with corresponding methods for

extracting computational content from classical proofs. These include traditional methods

such as cut elimination and Hilbert’s ε-calculus, more recent interpretations of classical

logic in terms of game semantics [8, 22], or learning procedures [3, 4], and last but not least

proof interpretations, which include Gödel’s functional interpretation combined with the

negative translation [37], and intuitionistic realizability combined with the A-translation

[34, 54].

In this dissertation we focus largely on just one of these methods, Gödel’s functional in-

terpretation, and in the context of its computational interpretation of full classical analysis.

A few years after the publication of Gödel’s original paper on the functional interpretation

of Peano arithmetic in the system T of primitive recursive functionals, Spector extended

the functional interpretation to classical analysis by adding to system T constants for bar

recursion, a new form of recursion over well-founded trees that solves the functional in-

terpretation of the double-negation shift, and therefore allows the interpretation of both

countable and countable dependent choice [86].

To date, relatively few concrete examples of program extraction involving Spector’s

bar recursion exist in the literature, and those that do (e.g. [49, 78]) are generally less

concerned with the semantics of these realizers and more with their contribution to the

complexity of bounds extracted for Π2-theorems. However, by making an effort to un-

derstand the semantics of bar recursion we create the opportunity to gain genuine insight

into the constructive meaning of the central principles of mathematical analysis.

Unfortunately, in practice, extracting meaningful computational content from non-

trivial proofs can pose quite a challenge. We are required to formalise a proof to some

extent before we can apply a proof interpretation, and in doing so we convert it from

intuitive day-to-day mathematical language to the more abstruse syntax of formal logic.

As a result, our extracted realizer often ends up as a complex higher-type term that reflects

this formal proof as opposed to the mathematical one. Identifying the salient features of

the realizer and ‘decoding’ it so that it can be read and understood as a constructive proof

in the language of mathematics is a difficult task, especially so when our realizer involves

non-trivial forms of recursion such as bar recursion.

2

1.2. Comparing variants of bar recursion

The first part of this dissertation concentrates on making sense, in qualitative terms,

of bar recursive realizers extracted from classical proofs, through a small collection of

case studies. Our main tool is to use Spector’s bar recursion in the form of the recently

developed product of selection functions [29, 30] which also computes optimal strategies

in a class of sequential games and allows us to impose onto our realizers an intuitive game

semantics.

In our first and shortest case study (Chapter 6) we analyse the simple bar recursive

realizer of arithmetic comprehension for Σ0
1-formulas. As well as making explicit the game

semantics of this realizer, we give a description of its operational behaviour and show that

it carries out an intuitive ‘learning process’ in the course of constructing an approximation

to the comprehension function.

We then move on to weak König’s lemma for Σ0
1-formulas (Chapter 7), and extract

realizers for this principle that can be clearly described in game-theoretic terms. As

an application we give intuitive computational interpretations to simple instances of the

Bolzano-Weierstrass theorem and Ramsey’s theorem for pairs, both of which have been

recently analysed in the context of proof mining [55, 57, 78].

Finally, in our most intricate case study (Chapter 8) we extract a new realizer for the

functional interpretation of the minimal-bad-sequence argument for arbitrary well-founded

relations, using symbols R< for transfinite recursion to interpret the least element principle.

We show that our realizer can be clearly understood as a finitary analogue of the minimal-

bad-sequence construction that implements backtracking and well-founded recursion to

build an approximation to a minimal bad sequence. We then recall Berger’s concise open

recursive solution to the realizability interpretation of the classically equivalent principle

of open induction, and discuss the possibility of devising a new form of open recursion

that realizes the functional interpretation of both open induction and the minimal-bad-

sequence argument. We conclude with an application in which we extract a new realizer

for Higman’s lemma.

1.2 Comparing variants of bar recursion

Following Spector’s fundamental work on bar recursion, several alternative forms of bar

recursion over well-founded trees have been developed, typically to give computational

interpretations to analysis in new situations. These variants of bar recursion differ in

interesting ways.

While Spector’s bar recursion involves an explicit stopping condition ϕ(ŝ) < |s|, vari-

ants of bar recursion given in [8] and [11] that witnesses realizability interpretations of

countable dependent choice are implicitly well-founded by a continuity argument. More

radical departures from bar recursion exist in the form of the so-called BBC functional

[8] which involves out a symmetric ‘demand driven’ algorithm, or Berger’s open recursion

3

Chapter 1. Introduction

[10] which carries out recursion over lexicographic orderings on sequences.

The theoretical part of the dissertation concerns the classification of modes of bar

recursion according to whether or not they are interdefinable. We establish several new

definability results.

Chapter 10 focuses on finite bar recursion and its relationship to Gödel’s primitive

recursive functionals. We define a hierarchy of fragments of system T based on finite bar

recursion and show that they are in one-to-one correspondence with the usual fragments

based on restricted primitive recursion.

In the original paper on bar recursion [86] Spector defines a general instance of bar

recursion GBR but points out that only a restricted form SBR is necessary to interpret

classical analysis. Chapter 11 contains a short proof that actually, SBR is strong enough

to primitive recursively define GBR, and so the two are equivalent over system T.

Our main contribution, in Chapter 12, is to prove that open recursion, update recursion

and the symmetric BBC functional are all primitive recursively equivalent to the implicitly

iterated product of selection functions, which as shown in [30] is equivalent to modified

bar recursion. These results are the first to relate the ‘sequential’ variants of bar recursion

which include modified bar recursion and the product of selection functions to the ‘open

recursive’ variants which include open recursion and the BBC functional.

1.3 Overview of the dissertation

We now give a concise map of the dissertation as a whole, and provide details of the col-

laborations involved in its authorship.

Part I consists of standard background material.

• Chapter 2 contains an outline of the formal systems of arithmetic and analysis used

in the dissertation and contains a list of our notational conventions.

• Chapter 3 forms a short introduction to Gödel’s functional interpretation, together

with some concrete illustrations.

• Chapter 4 contains several crucial results on Spector’s bar recursion that will be

needed in later chapters.

Part II contains our practical contributions on the extraction of realizers from proofs in

classical analysis.

• Chapter 5 reviews the product of selection functions as defined by Escardó and

Oliva. We introduce a new sequential variant of dependent choice that will be

required in Chapter 8 and show that it is naturally interpreted by the dependent

product of selection functions.

4

1.4. List of publications

• Chapter 6 is concerned with the functional interpretation of Σ0
1-arithmetical com-

prehension. We show that the usual bar recursive realizer of comprehension can be

characterised in terms of a learning-process.

• Chapter 7 focuses on the computational content of Σ0
1-WKL. We extract game-

theoretic realizers for the Bolzano-Weierstrass theorem and Ramsey’s theorem as

applications. This chapter was done jointly with Paulo Oliva and is published as

[68, 69].

• Chapter 8 examines the computational content of the minimal-bad-sequence argu-

ment. We extract a bar recursive realizer from its classical proof, and later consider

an new, direct realiser in terms of open recursion. We give a new computational in-

terpretation of Higman’s lemma as an application. This chapter forms an extended

version of [74].

Part III contains our theoretical contributions on the interdefinability of variants of bar

recursion.

• Chapter 9 provides a uniform presentation of the variants of bar recursion consid-

ered in subsequent chapters and summarises known definability results.

• Chapter 10 focuses on finite bar recursion. We define a hierarchy of fragments

of system T based on finite bar recursion and proves they are in one-to-one corre-

spondence with the usual fragments based on primitive recursion. We also calibrate

which fragments are needed to interpret bounded collection axioms. This chapter is

based on joint work with Mart́ın Escardó and Paulo Oliva published in [32].

• Chapter 11 consists of a proof that Spector’s general form of bar recursion GBR

can be defined from the special form SBR. This is result is joint work with Paulo

Oliva, and published in [70].

• Chapter 12 contains a proof that the BBC functional, update recursion, open recur-

sion and the product of selection functions IPS are primitive recursively equivalent

in the type-structures of continuous functionals. This amounts to showing that IPS

defines open recursion, and BBC defines IPS.

1.4 List of publications

The following publications contain some of the research reported in this dissertation.

[32] System T and the product of selection functions

Proceedings of Computer Science Logic (CSL’11), LIPIcs 12:233-247, 2011. (with

Mart́ın Escardó and Paulo Oliva)

5

Chapter 1. Introduction

[68] A constructive interpretation of Ramsey’s theorem via the product

of selection functions

To appear: Mathematical Structures in Computer Science, 2013. (with Paulo Oliva)

[69] A game-theoretic interpretation of proofs in classical analysis

To appear: Gentzen Centenary Volume, 2013. (with Paulo Oliva)

[70] On Spector’s bar recursion

Mathematical Logic Quarterly, 58(4-5):356-365, 2012. (with Paulo Oliva)

[74] Applying Gödel’s Dialectica interpretation to obtain a constructive

proof of Higman’s lemma

Proceedings of Classical Logic and Computation (CL&C’12), EPTCS 97:49-62, 2012.

6

I Background

7

CHAPTER

TWO

Formal Theories

We begin with a brief outline of the formal systems that are involved in this dissertation.

Everything in this chapter is entirely standard, and the reader is directed to e.g. [18, 48, 90]

for further details. Our main purpose here is to allow the reader to become familiar with

the specific notation and conventions that will be used in subsequent chapters.

2.1 First order Heyting and Peano arithmetic

The language L(HA) of intuitionistic, or Heyting arithmetic HA contains the standard

logical constants, along with number variables x, y, z, . . ., a non-logical constant 0, a unary

function symbol S and function symbols for all primitive recursive functions, along with

a binary predicate = for equality between numbers. The axioms and rules of HA consist

of the usual axioms and rules of intuitionistic logic, axioms for S and =, defining axioms

for the primitive recursive functions and finally the axiom schema of induction

IND : A(0) ∧ ∀m(A(m)→ A(m+ 1))→ ∀mA(m)

where A is any formula in L(HA). Classical, or Peano arithmetic PA is obtained from HA

by adding the law of excluded middle for arbitrary formulas.

Fragments of Peano arithmetic

One can construct a variety of fragments of arithmetic based on restricted induction or

restricted forms of other strong axioms. Alternatives to induction include the axiom

schema of finite choice

FAC : ∀i ≤ m∃xA(i, x)→ ∃s∀i ≤ mA(i, si),

9

Chapter 2. Formal Theories

where s is a finite sequence of numbers of length m + 1 (suitably encoded as a single

number), or the more widely used bounded collection axiom

BC : ∀i ≤ m∃xA(i, x)→ ∃t∀i ≤ m∃x ≤ tA(i, x).

The proof theory of Peano arithmetic and its fragments forms a rich and extensive area

of research (see [18] for an introduction). In this dissertation the fragments of arithmetic

will only feature in Chapter 10, and we restrict ourselves to presenting only some basic

facts here.

Definition 2.1. The class of bounded formulas ∆0 consists of all formulas that are quantifier-

free save for the bounded quantifiers ∀i ≤ t and ∃i ≤ t. The classes of Πn and Σn formulas

are defined inductively for all n ≥ 0 as follows:

(i) Π0 = Σ0 = ∆0;

(ii) Πn+1 consists of all formulas of the form ∀xA where A is a Σn-formula and x is a

possibly empty tuple of variables;

(iii) Σn+1 consists of all formulas of the form ∃xA where A is a Πn-formula and x is a

possibly empty tuple of variables.

Definition 2.2 (Fragments of arithmetic). The axiom schema Φ-IND denotes the axiom of

induction restricted to Φ-formulas, where Φ is any of the classes defined in Definition 2.1.

The axioms Φ-FAC and Φ-BC are defined similarly.

• A weak induction-free fragment of arithmetic PA0 is usually defined to contain only

some basic non-logical symbols 0, S, +, · and ≤ and their defining axioms, along

with ∆0-IND (there are various ways of formulating PA0 precisely, among the most

commonly used is Robinson’s theory Q [89]).

• For n ≥ 1 the theories IΣn, FΣn and BΣn consist of PA0 along with symbols and

defining axioms for all primitive recursive functions, plus the axiom Σn-IND, Σn-FAC

and Σn-BC respectively. The theories IΠn, FΠn and BΠn are defined analogously.

• Full Peano arithmetic PA consists of PA0 plus all primitive recursive functions, along

with induction for arbitrary formulas (or equivalently - by Theorem 2.3 - finite choice

or bounded collection for arbitrary formulas).

Theorem 2.3. Let S ⊆ T mean that every theorem of T is a theorem of S, and write

S = T if the converse also holds. Then IΣn = IΠn, FΣn+1 = FΠn and BΣn+1 = BΠn.

Moreover

(a) FΠn = BΠn,

10

2.2. Extensional Heyting and Peano arithmetic in all finite types

(b) BΠn ⊆ IΣn+1 but IΣn+1 * BΠn,

(c) IΣn ⊆ BΠn but BΠn * IΣn.

Proof. First proved in [71] and [72] (item (a) is due to [83]). See [18] for details.

Theorem 2.3 shows that PA contains two strictly interleaving hierarchies, those based

on induction and those based on finite choice/collection respectively.

PA0 IΣn
oo

OO

��

BΠn
oo

OO

��

FΠn
//oo

OO

��

IΣn+1
oo

OO

��

PAoo

IΠn BΣn+1
oo // FΣn+1 IΠn+1

Figure 2.1: Fragments of Peano arithmetic (where A→ B denotes A ⊇ B)

2.2 Extensional Heyting and Peano arithmetic in all finite types

In most of this dissertation we work in a standard higher-type extension of Peano arith-

metic. This enables us to properly formalize proofs in mathematics, and to describe and

reason about the higher-type forms of recursion needed to give these proofs a computa-

tional interpretation. The finite types are generated inductively as

types := N | ρ→ τ | ρ× τ | ρ∗

where ρ→ τ (which we may also write as τρ) is the type of functions mapping objects of

type ρ to objects of type τ , ρ× τ is the cartesian product of ρ and τ , and ρ∗ the type of

finite sequences whose elements have type ρ. We write xρ or x : ρ to denote that an object

x has type ρ. The degree deg(ρ) of the type ρ is defined inductively as

deg(N) := 0,

deg(ρ→ τ) := max{deg(ρ) + 1, deg(τ)}

deg(ρ× τ) := max{deg(ρ), deg(τ)},

deg(ρ∗) := deg(ρ)

It will be useful to also consider a type B of booleans, and to identify two subsets of the

finite types we which called the compact and discrete types, after [27]:

compact := B | compact× compact | discrete→ compact

discrete := B | N | discrete× discrete | discrete∗ | compact→ discrete.

11

Chapter 2. Formal Theories

The theory E-HAω of extensional Heyting arithmetic in all finite types is based on that

described in [48, 90]. The language of E-HAω contains variables xρ, yρ, zρ, . . . and quanti-

fiers ∀/∃xρ for each type ρ, along with the non-logical constants 0, SN→N and the usual

constructors including the projector Πρ,τ and combinator Σσ,ρ,τ , basic operations for prod-

uct and sequence types, the recursors Rρ, and a binary predicate =N for equality between

numbers. Equality between objects of compound type is not taken as primitive but is

defined inductively by

f =ρ→τ g :≡ ∀xρ(fx =τ gx),

〈x0, x1〉 =ρ×τ 〈y0, y1〉 :≡ (x0 =ρ y0 ∧ x1 =τ y1),

s =ρ∗ t :≡ (|s| = |t| ∧ ∀i < |s|(si =ρ ti)).

The axioms and rules of E-HAω contain the axioms and of rules of intuitionistic logic (in

all finite types), defining axioms for each of the non-logical constants - including axioms

for the recursor

Ry,zρ (0) =ρ y

Ry,zρ (n+ 1) =ρ zn(Ry,zρ (n)),

axioms for =N, the axiom schema of induction

A(0) ∧ ∀m(A(m)→ A(m+ 1))→ ∀mA(m).

for any formula A, and finally the axiom of extensionality:

EXTρ,τ : ∀tρ→τ , xρ, yρ(x =ρ y → tx =τ ty).

Extensional Peano arithmetic E-PAω is obtained from E-HAω by adding the law of excluded

middle

A ∨ ¬A

for arbitrary formulas.

Remark 2.4. We could have alternatively constructed E-HAω over minimal collection types

containing only N and function types ρ → τ , and encoded the types ρ × τ and ρ∗ as

secondary constructions.

Remark 2.5. Tuples of variables xρ0 , . . . , xρn will always we regarded as a single variable

x : ρ0 × . . .× ρn.

Remark 2.6. In the context of finite types Σm
n (Πm

n)-formulas are Σn(Πn)-formulas whose

quantifiers are of type degree at most m.

12

2.2. Extensional Heyting and Peano arithmetic in all finite types

Weakly extensional Heyting and Peano arithmetic

The weakly extensional variants WE-HAω (WE-PAω) of E-HAω (E-PAω) have the axiom of

extensionality EXT replaced by the following rule of extensionality

QF-ER :
A0 → s =ρ t

A0 → r[s/x] =τ r[t/x]

where A0 is quantifier-free and s, t, r are arbitrary terms.

Features of (W)E-HAω

For a detailed account of the properties of (W)E-HAω the reader is directed to [48, 90].

We recall that WE-HAω admits standard constructions such as λ-abstraction (via the

combinators Πρ,τ , Σσ,ρ,τ), definition by cases and bounded search. If A0(xρ) is a quantifier-

free formula in the language of WE-HAω with free variables x, then there exists a closed

term χ : ρ→ B such that

WE-HAω ` ∀x(χ(x) =B 0↔ A0(x)).

This means that quantifier-free formulas are decidable, and can be used - via their char-

acteristic functions - as clauses in function definitions by cases. We permit quantifier-

free formulas to contain bounded quantifiers ∀/∃x ≤ t, as these can be eliminated using

bounded search.

Our theory WE-HAω contains the following terms, formulas and abbreviations:

• For each type ρ constant functions nρ for n ∈ N, defined inductively by nN := n and

nρ→τ := λx.nτ (analogously for ρ× τ , ρ∗). The term 0ρ will be taken as a canonical

element of type ρ;

• Projections πi : ρ0×ρ1 → ρi and pairing functions 〈 , 〉 : ρ0 → (ρ1 → ρ0×ρ1) for each

pair types ρ0, ρ1. Given t : ρ0 × ρ1 we write ti := πit, and sometimes for sequences

α : (ρ0 × ρ1)N we write αi := λn.πiα(n);

• Functions | · | : ρ∗ → N and ∗ : ρ∗ × ρ∗ → ρ∗ for each ρ where |s| is the length of s

and s ∗ t the concatenation of s and t. We will also use ∗ to denote the function

ρ∗ × ρN → ρN where s ∗ α is the concatenation of s with the infinite sequence α.

• An overwrite function @ : ρ∗ × ρN → ρN defined by

(s @ α)(n) :=

si if n < |s|

α(n) if n ≥ |s|

13

Chapter 2. Formal Theories

• A bounded search operator µ : BN × N→ N satisfying

µ(α, n) :=

least i ≤ n(αi = 0) if it exists

0 otherwise.

• We write s ≺ t or s � t if s is a (proper) initial segment of t. We write s ≺ α if s is

an initial segment of the infinite sequence α.

• For α : ρN we define [α](n) := 〈α(0), . . . , α(n−1)〉 and for s : ρ∗ we define ŝ := s @ 0ρN .

We define α, n := [̂α](n).

• For a function q : ρN → N, we define qs : ρN → N by qs(α) := q(s ∗ α).

• For α : ρN we define tailkα := λn.α(k + n).

• The formula n ∈ [x, y) for n, x, y : N is an abbreviation for x ≤ n < y. We occasion-

ally quantify over [x, y) and write ∀/∃n ∈ [x, y), and analogously for (x, y), (x, y],

[x, y].

• The term ‘xρ if b’ of type ρ is an abbreviation for

x if b = 0

0ρ if b 6= 0.

Gödel’s System T

The terms of E-HAω are better known as the terms of Gödel’s system T, and the set-

theoretic functionals represented by the closed terms of E-HAω the primitive recursive

functionals in all finite types. Technically, the theory T as described in [37] corresponds to

a quantifier-free fragment of E-HAω, but here we will always use E-HAω to reason about

terms of T. The class Tn is the subset of T in which recursion is restricted to types of

degree ≤ n, and in particular the closed terms of T0 coincide with the ordinary primitive

recursive functions. System T substantially expands T0, the most well-known illustration

of this being the Ackermann function, which does not exist in T0 but can be easily defined

in T1.

Example 2.7 (Ackermann function). The Ackermann function A : N×N→ N has defining

equations

A(m,n)
N
:=


n+ 1 if m = 0

A(m− 1, 1) if m > 0 and n = 0

A(m− 1, A(m,n− 1)) if m > 0 and n > 0

14

2.3. Subsystems of analysis

It can be constructed using the recursor of type N→ N as follows. Using RN define

y(n) = n+ 1

z(m,F)(n) =


F (1) if n = 0

F (z(m,F)(n− 1)) if n > 0

.

Then it is easy to check that λm, n.RN→Nyzm(n) satisfies the defining equations of the

Ackermann function.

2.3 Subsystems of analysis

We now discuss the subsystems of mathematics in all finite types which we will used in

practise to formalise mathematical proofs. These will be obtained from Peano arithmetic

in finite types by adding various choice principles.

A base system of analysis

We obtain a good base system of mathematical analysis by adding to E-PAω or WE-PAω

the axiom schema of quantifier-free choice:

QF-ACρ,τ : ∀xρ∃yτA0(x, y)→ ∃fρ→τ∀xA0(x, fx)

for A0 quantifier-free. The theory E-PAω + QF-ACN,N already contains the well-known

subsystem of second order arithmetic RCA0 as defined in [84], and is in fact consider-

ably stronger since RCA0 only admits induction for Σ1-formulas (on the other hand, the

fragment of E-PAω + QF-ACN,N with induction restricted to Σ1-formulas and recursion

restricted to type 0 is a conservative extension of RCA0).

Unfortunately, full extensionality becomes problematic if we want a theory of analysis

that admits a computational interpretation (see [48, Chapter 8]). In this case, unless we

are able to eliminate extensionality in some way, we are forced to work in the weakly

extensional variants of our subsystems. In this dissertation we make an effort to formalise

proofs in the weakly extensional systems, although later on in Part III we allow ourselves

full extensionality to reason about modes of higher-type recursion.

A sizeable portion of mathematics can be formalised in WE-PAω + QF-AC. Note that

in particular we can construct the rational numbers Q and the real numbers R via suitable

encodings over N and N → N respectively, define the usual operations (=Q,≤Q, =R, ≤R

etc.) and prove basic properties about them. For full details of the formalization of Q
and R within WE-HAω see [48, Chapter 4]. Here we take for granted that our base theory

allows us to use a fairly expressive mathematical language. We occasionally treat Q, R,

QN, RN etc. as types on the assumption that these ‘types’ can be encoded by a suitable

member of the usual types.

15

Chapter 2. Formal Theories

Weak König’s lemma

A binary tree T is a predicate on sequences of Booleans B∗ that is prefix-closed:

∀sB∗ , tB∗(T (s ∗ t)→ T (s)).

If T (s) holds we say that s is a branch of T . Unless otherwise stated, we assume that T is

a decidable predicate. A tree is infinite if it contains branches of arbitrary length. Weak

König’s lemma is the statement that every infinite binary tree has an infinite branch,

given formally by the schema

WKL : ∀n∃s(|s| = n ∧ T (s))→ ∃αBN∀nT ([α](n)),

where T ranges over all decidable binary trees.

The importance of Weak König’s lemma lies in the fact that it allows us to construct

an ‘intermediate’ subsystem of analysis. The theory E-PAω + QF-ACN,N + WKL contains

the subsystem WKL0 central to the field of reverse mathematics, in which we are, for

instance, able to reason about Heine/Borel compactness but not sequential compactness

or completeness [84].

From the perspective of proof mining, WKL is significant because effective bounds

can still be extracted from proofs using WKL that are prima facie non-constructive (see

[48, 51]).

Full classical analysis

A strong theory of classical analysis can be achieved through the addition of the axiom

schema of countable dependent choice

DCρ : ∀n, xρ∃yρAn(x, y)→ ∀x0∃fN→ρ(f(0) = x0 ∧ ∀nAn(f(n), f(n+ 1))).

Weaker than DC is the axiom schema of countable choice

ACN,ρ : ∀n∃xρAn(x)→ ∃fN→ρ∀nAn(f(n)).

and in turn an instance of ACN,N proves the schema of full comprehension over numbers

CAN : ∃fN→N∀x(f(x)↔ A(x)).

Already E-PAω + QF-ACN,N→N + QF-ACN→N,N + CAN contains the whole of second order

arithmetic in the sense of [84], and is therefore capable of formalising most of classical

analysis. The special case of arithmetical comprehension over numbers is given by

CAar : ∃fN→N∀x(f(x)↔ Aar(x)).

where Aar is an arithmetical formula (containing only quantifiers of type level 0). The

theory E-PAω+QF-ACN,N+CAar contains the subsystem of second order arithmetic ACA0.

16

CHAPTER

THREE

Proof Interpretations

In this chapter we provide some basic background material on proof interpretations, our

main focus being on Gödel’s functional (or ‘Dialectica’) interpretation. The reader is

encouraged to consult [5, 48, 90] for details and a much more comprehensive treatment

than that given here.

Gödel’s functional interpretation belongs to a wider family of proof interpretations

(also including Kreisel’s modified realizability [54]) that consist of:

1. A mapping I : T → F from a theory T to a constructive system of higher-type

functionals F , under which formulas A in the language of T are mapped to formulas

of the form AI :≡ ∃xAI(x) in the language of F satisfying

A↔ ∃xAI(x)

over some reasonable theory;

2. A soundness proof for I which contains an algorithm for converting a proof p of A in

T to a constructive proof pI of AI in F , by providing a direct interpretation to the

axiom and rules of T and allowing us to unwind pI by recursion over the structure

of p. As a result, we obtain

T ` A⇒ F ` AI(t)

where t is a closed term of F that can be extracted from a given proof of A.

Gödel had devised his functional interpretation by 1941, although it was not published

until his paper of 1958 [37], in which it is shown that Heyting and Peano arithmetic have a

functional interpretation in the primitive recursive functionals of finite type, where in the

case of Peano arithmetic one pre-composes the functional interpretation with the negative

translation. A few years later Spector extended Gödel’s result to full classical analysis

17

Chapter 3. Proof Interpretations

by demonstrating that the negative translation of the axiom of choice has a Dialectica

interpretation in the so-called bar recursive functionals of finite type [86]. These results

can be easily adapted to incorporate the weakly-extensional higher-type subsystems of

analysis based on WE-PAω + QF-AC ([90]).

classical theory interpreting theory in all finite types

pure logic λ-calculus (+ basic recursive functionals)

arithmetic primitive recursive functionals

analysis bar recursive functionals

Table 3.1: Functional interpretation of subsystems of mathematics

Proof interpretations like the functional interpretation were originally designed to ob-

tain relative consistency proofs: If T is interpreted in F then the consistency of T follows

from that of F . However, since then they have found numerous applications in proof the-

ory and in the process have been extended and refined in quite sophisticated ways. Notable

applications include the establishment of conservation and closure results, the character-

isation of provably recursive functions and - perhaps most significantly - the systematic

unwinding computational content from non-constructive proofs.

The basic idea behind the latter of these applications is that the interpretation ∃xAI(x)

represents a reformulation of A that admits a direct computational interpretation (where

in particular the interpretation of Π2-formulas ∀x∃yA0(x, y) is given by ∃f∀xA0(x, fx)).

The soundness proof gives us a means of extracting an explicit witness t for ∃x from a proof

p of A. The complexity of this witness will be restricted according to exactly what was

used in the formalisation of p, and moreover because it has been extracted directly from

the translated proof pI its syntax and behaviour will mirror in some sense the structure

of p. In other words, t carries computational information about A that reflects the fact

that that it was proved by restricted means rather than that it is simply true. A witness t

can often be extracted even when the proof p involves ineffective principles, and it is this

use of proof interpretations to extract non-trivial constructive information subtly hidden

in classical proofs that forms the basis of the proof mining program, and also forms one

of the central themes of this dissertation.

In the present chapter we review Gödel’s functional interpretation of Peano arithmetic

in all finite types, while Spector’s interpretation of classical analysis will be dealt with in

Chapter 4. As well as defining the interpretation, we endeavour in Section 3.3 to provide

some insight into how the interpretation can be understood in intuitive terms. Finally, we

briefly discuss modified realizability and related interpretations in Section 3.4.

18

3.1. The negative translation

3.1 The negative translation

There are several ways of constructing negative translations from classical logic to intu-

itionistic logic. The first was given by Kolmogorov [52], although variants were discovered

independently by Gödel and Gentzen. In this chapter we give the version of Kuroda [60].

The reader is directed to [33] for more on the relationship between these different negative

translations. For proofs of the results in this section see e.g. [48, Chapter 10]. Note that

¬A :≡ A→ ⊥ as usual.

Definition 3.1 (Negative translation). Let A be a formula in a theory based on intuitionistic

logic in all finite types. The negative translation of A is defined as AN :≡ ¬¬A∗ where A∗

is defined recursively over the logical structure of A by

(i) A∗ :≡ A if A is prime,

(ii) (A�B)∗ :≡ A∗�B∗ where � ∈ {∧,∨,→},

(iii) (∃xρA)∗ :≡ ∃xρA∗,

(iv) (∀xρA)∗ :≡ ∀xρ¬¬A∗.

Proposition 3.2. For an arbitrary set of formulas ∆ in the language of (W)E-PAω we

have

(W)E-PAω + ∆ ` A⇒ (W)E-HAω + ∆N ` AN

where ∆N :=
{
BN : B ∈ ∆

}
.

Whenever the negative translation in used in practise it is useful to simplify it if possible

to avoid unnecessary double negations cluttering the formulas, and we assume familiarity

with standard laws of intuitionistic logic in this respect.

Remark 3.3. In particular, note that intuitionistic logic proves

(i) ¬¬(A→ B)↔ (A→ ¬¬B)↔ (¬¬A→ ¬¬B),

(ii) ¬¬∀x¬¬A(x)↔ ∀x¬¬A(x),

while WE-HAω proves

(iii) ¬¬A0 ↔ A0 for A0 quantifier-free.

The soundness of the negative translation can not be directly extended to our base

system WE-PAω + QF-AC because QF-ACN is not provable in WE-HAω + QF-AC. However,

QF-ACN can be derived in the semi-classical theory WE-HAω + QF-AC + MPω where MPω

is the Markov principle

MPω : ¬¬∃xρA0(x)→ ∃xA0(x)

for A0(x) quantifier-free.

19

Chapter 3. Proof Interpretations

Proposition 3.4. For an arbitrary set of formulas ∆ in the language of WE-HAω we have

WE-PAω + QF-AC + ∆ ` A⇒WE-HAω + QF-AC + MPω + ∆N ` AN

where ∆N := {BN : B ∈ ∆}. For the special case where ∆ contains only purely universal

formulas ∀xρB0(x) note that ∆N is equivalent to ∆ over WE-HAω.

3.2 The functional interpretation

Gödel’s functional interpretation, also widely known as the Dialectica interpretation, maps

formulas A to formulas of the form ∃x∀y|A|xy where x, y are (possibly empty) sequences

of variables and |A|xy is a quantifier-free formula whose free variables are x, y and the free

variables of A. We label x and y the witness and counterexample variables respectively.

The idea is that A is equivalent to ∃x∀y|A|xy , so that the functional interpretation carries

out a kind of Skolemisation. We now give the precise definition.

Definition 3.5 (Functional ‘Dialectica’ interpretation). To every formula A in the language

of WE-HAω we assign a formula AD :≡ ∃x∀y|A|xy , where |A|xy is a quantifier-free formula

defined by induction over the logical structure of A as follows.

(i) |A| :≡ A if A is prime,

(ii) |A ∧B|x,uy,v :≡ |A|xy ∧ |B|uv ,

(iii) |A ∨B|b,x,uy,v :≡ (b = 0→ |A|xy) ∧ (b 6= 0→ |B|uv),

(iv) |A→ B|U,Yx,v :≡ |A|xY xv → |B|Uxv ,

(v) |∃tρA(t)|z,xy :≡ |A(z)|xy ,

(vi) |∀tρA(t)|Xz,y :≡ |A(z)|Xzy .

The definition of the functional interpretation is straightforward apart from the treat-

ment of implication, which is essentially its characterising feature (see e.g. [67]). We travel

from ∃x∀y|A|xy → ∃u∀v|B|uv to ∃U, Y ∀x, v|A→ B|U,Yx,v via the following equivalences:

∃x∀y|A|xy → ∃u∀v|B|uv (3.1)

↔ ∀x(∀y|A|xy → ∃u∀v|B|uv) (3.2)

↔ ∀x∃u(∀y|A|xy → ∀v|B|uv) (3.3)

↔ ∀x∃u∀v(∀y|A|xy → |B|uv) (3.4)

↔ ∀x∃u∀v∃y(|A|xy → |B|uv) (3.5)

↔ ∃U, Y ∀x∀v(|A|xY xv → |B|Uxv). (3.6)

20

3.2. The functional interpretation

While this route is non-constructive - in particular the passage from (3.2) to (3.3) requires

independence of premise IPω∀ for universal formulas:

IPω∀ : (∀yC0(y)→ ∃uD(u))→ ∃u(∀yC0(y)→ D(u)),

(for C0 quantifier-free) while (3.4) to (3.5) requires Markov’s principle MPω - it is never-

theless the ‘least non-constructive’ Skolemisation of implication, which is precisely why it

was chosen by Gödel.

One way to visualise ∃x∀y|A|xy is as a game played between the quantifiers ∃loise

and ∀belard. The soundness theorem guarantees that whenever A is provable, ∃loise has

a winning strategy t satisfying ∀y|A|ty. In this sense, game representing the functional

interpretation of implication can be described as follows. First ∀belard plays a witness x

for the premise of |A|xy → |B|uv , challenging ∃loise to witness the conclusion. Once ∃loise

has responded with a witness u, ∀belard then attempts to invalidate this witness with

a counterexample v. Finally, ∃loise responds by trying to invalidate ∀belard’s original

witness with a counterexample y. The functional interpretation of implication is the

statement that ∃loise has a winning strategy U , Y in this game.

Remark 3.6. Sometimes for notational convenience we omit the final step in the functional

interpretation and give AD as a Π2 formula ∀y∃xA0(y, x) when technically AD is given by

∃X∀yA0(y,Xy).

Interpreting intuitionistic arithmetic

Gödel’s fundamental result of 1958 is that Heyting arithmetic has a functional interpre-

tation in the system T primitive recursive functionals of finite type. His soundness proof

remains valid we extend Heyting arithmetic with any new axioms which can be also be

interpreted in system T. Further details and full proofs for this section can be found in

e.g. [48, Chapters 8, 10].

Theorem 3.7 (Soundness theorem for Heyting arithmetic [37, 90]). Let ∆ be an arbitrary

set of purely universal sentences in L(WE-PAω), and A(a) be a formula in L(WE-PAω)

containing only a free. Then

WE-HAω + AC + IPω∀ + MPω + ∆ ` A(a)⇒WE-HAω + ∆ ` ∀y|A(a)|t(a)
y

where t is a closed term of WE-HAω which can be extracted from the proof of A.

Remark 3.8. Here, AC denotes the full axiom of choice in all types

∀xρ∃yτA(x, y)→ ∃fρ→τ∀xρA(x, fx)

so in particular includes QF-AC.

21

Chapter 3. Proof Interpretations

Remark 3.9. The Dialectica interpretation is not sound for fully extensional arithmetic

E-HAω, which is a consequence of the fact that it interprets MPω (see [48, p.126]).

Outline of the proof of Theorem 3.7. Induction over the derivation of A. We illustrate

only a few important cases. Firstly we note that only a typed λ-calculus (plus a few basic

recursive functionals) is required to interpret the logical axioms and rules of WE-HAω.

The most interesting case is the contraction axiom A→ A∧A. If A is interpreted as |A|xy
we must find terms t, t′ and s satisfying

∀x, v, v′(|A|xsxvv′ → |A|txv ∧ |A|t
′x
v′).

It is clear that t = t′ := λx.x and

sxvv′ :=

v if ¬|A|xv
v′ otherwise

.

do the trick. Note that we rely on the decidability of the quantifier-free formula |A|xv . This

makes extending the functional interpretation to systems where decidability of quantifier-

free formulas cannot be taken for granted quite problematic (see e.g. Burr [17] for an

extension of the functional interpretation to set theory).

Primitive recursion is required to interpret the induction. To start with we can replace

the induction axiom IND with the equivalent induction rule

A(0) ∧ ∀n(A(n)→ A(n+ 1))
IR∀nA(n)

which makes verifying the interpretation somewhat easier. Now, suppose we have inter-

preted the premise of the rule, namely we have t, Z and S satisfying

∀y|A(0)|ty
∀n, x, y(|A(n)|xSnxy → |A(n+ 1)|Znxy).

Then we define T0 := t and T (n+ 1) := Zn(Tn) via primitive recursion, and T satisfies

∀y|A(0)|T0
y

∀y|A(n)|Tny → ∀y|A(n+ 1)|T (n+1)
y .

By induction we see that ∀n, y|A(n)|Tny holds in WE-HAω, which is the functional inter-

pretation of the conclusion.

The remaining non-logical axioms and rules, including AC, IPω∀ and MPω, and any

additional universal sentences ∆, are trivially interpreted.

Remark 3.10. Gödel’s original soundess proof was carried out in the quantifier-free system

T as opposed to WE-HAω, his aim being to reduce the consistency of Heyting arithmetic

to the weakest system possible.

22

3.2. The functional interpretation

Interpreting classical arithmetic

The functional interpretation can be extended to classical arithmetic by precomposing the

functional interpretation proper with the negative translation. For example, by Theorem

3.7 combined with Proposition 3.2 we obtain

WE-PAω ` A⇒WE-HAω ` AN ⇒WE-HAω ` ∀y|AN|ty.

We refer to the two-step interpretation as the ND-interpretation, or sometimes just the

functional interpretation when it is clear that we are referring to its combination with the

negative translation.

Theorem 3.11 (Soundness theorem for classical arithmetic). Let ∆ be an arbitrary set of

purely universal sentences in L(WE-PAω), and A(a) be a formula in L(WE-PAω) containing

only a free. Then

WE-PAω + QF-AC + ∆ ` A(a)⇒WE-HAω + ∆ ` ∀y|A(a)N|t(a)
y

where t is a closed term of WE-HAω which can be extracted from the proof of A.

Proof. By Proposition 3.4

WE-PAω + QF-AC + ∆ ` A(a)⇒WE-HAω + QF-AC + MPω + ∆ ` A(a)N,

and therefore the result follows from Theorem 3.7 applied to A(a)N.

The following fundamental result confirms that the ND-interpretation can directly

extract programs from proofs of Π2-theorems, even when those proofs are non-constructive.

Theorem 3.12 (Program extraction theorem). Let ∆ be a set of purely universal sen-

tences in L(WE-PAω), and A0(xρ, yτ) a quantifier-free formula in L(WE-PAω) with free

variables x, y of arbitrary type. Then

WE-PAω + QF-AC + ∆ ` ∀xρ∃yτA0(x, y)⇒WE-HAω + ∆ ` ∀xA0(x, fx)

where f is a closed term of WE-HAω which can be extracted from the proof of ∀x∃yA0(x, y).

Proof. This follows from the crucial fact that the functional interpretation admits Markov’s

principle:

WE-PAω + QF-AC + ∆ ` ∀x∃yA0(x, y)

Prop.3.4⇒ WE-HAω + QF-AC + MPω + ∆ ` ∀x¬¬∃yA0(x, y)

MPω⇒ WE-HAω + QF-AC + MPω + ∆ ` ∀x∃yA0(x, y)

Thm.3.7⇒ WE-HAω + ∆ ` ∀xA0(x, fx).

23

Chapter 3. Proof Interpretations

3.3 Understanding the Dialectica interpretation

The functional interpretation of classical logic translates a formula A into a variant AND ≡
∃x∀y|AN|xy that is weak enough to admit a direct computational interpretation, but still

classically equivalent to A.

Theorem 3.13 (Characterisation theorem, Kreisel [54]). We have

WE-PAω + QF-AC ` A↔ ∃x∀y|AN|xy

for any formula A in the language of WE-PAω.

While Theorem 3.13 verifies that A and AND are provably equivalent, a more intuitive

understanding of this relationship can be quite difficult to attain. The combination of

negative translation and functional interpretation is a subtle interpretation that maps

even relatively simple theorems to abstruse higher-type functionals. The action of the ND

interpretation on Π2-formulas is straightforward enough to appreciate, but on the other

hand Π3-formulas of the form A ≡ ∀uσ∃vρ∀wτA0(u, v, w) are interpreted as

∃V σ×(ρ→τ)→ρ∀uσ, pρ→τA0(u, V up, p(V up)).

which even for arithmetical formulas already contains a functional V of degree 2. So how

can we characterise the functional interpretation of A? We consider this question in three

different contexts.

(a) Proof theoretic. Firstly we can try to appreciate why A and AND are logically equiva-

lent. Suppose, for contradiction, that ¬A holds. Then by QF-AC this is equivalent to

the statement

∃u, pρ→τ∀v¬A0(u, v, pv),

where we envisage p as a ‘counterexample function’ that refutes any candidate realiser

for ∃v∀wA0(u, v, w). Therefore A is equivalent to

¬∃u, pρ→τ∀v¬A0(u, v, pv)

which in turn is equivalent to

∀u, p∃vA0(u, v, pv).

The ND interpretation of A asks for a functional V that witnesses this statement. For

each parameter u, the role of V u is to refute arbitrary counterexample functions p for

∃v∀wA0(u, v, w). This rather intuitive ‘no-counterexample’ interpretation (n.c.i.) was

studied by Kreisel in [53], where arbitrary formulas of PA are interpreted in this way by

functionals of at most degree 2. The n.c.i. coincides with the functional interpretation

24

3.3. Understanding the Dialectica interpretation

for Π3-formulas, but the two diverge for formulas of higher complexity. Unfortunately

the restriction on types for the n.c.i. has the disadvantage in that its interpretation

of implication is too weak to achieve the nice modular behaviour enjoyed by the

functional interpretation (see [47]), although the intuition behind the n.c.i. is still

beneficial when discussing the functional interpretation of relatively simple formulas.

(b) Computational. Suppose that A is an ineffective lemma used in the proof of a Π0
2

statement i.e.

(∗) ∀u∃v∀wA0(u, v, w)→ B :≡ ∀xN∃yNB0(x, y).

The (partial) functional interpretation of (∗) given by

∀V ∃f∀x∃u, p(A0(u, V up, p(V up))→ B0(x, fx)),

describes a way of using the functional interpretation of the ineffective lemma A in

the construction of a realizer fV : N → N for B. The idea is that while A is needed

to derive B, only an ‘approximation’ of A is required to prove ∃yB0(x, y) for fixed x.

The functional V produces approximations to A whose ‘quality’ is determined by the

parameters u, p, and the full functional interpretation of (∗) consists of the realizer fV

along with realizers uV,x, pV,x that for each x calibrate the size of the approximation to

A necessary to validate B0(x, fV x). See also [48, p.171] for a more detailed discussion

of this particular instance of the ND interpretation of implication.

(c) Mathematical. The reading of AND as a finitary approximation to A has been shown

to be particularly illuminating in some mathematical contexts, in particular it has

been observed in [48] that the functional interpretation is closely related to so called

correspondence principle as discussed in [88]. This correspondence principle refers to

the process of finitizing a ‘soft’ statement in mathematical analysis involving qualita-

tive notions such as infinite or convergent to produce an equivalent ‘hard’ statement

involving quantitative notions such as large or metastable. Roughly speaking, the for-

mer represent formulas in which the relationship between the quantifiers is hidden,

the latter formulas in which this relationship is made explicit. In logical terms the

process of finitization is essentially a shuffling of quantifiers so that they become de-

pendent on one another - which is precisely what the ND interpretation does. The

ND interpretation of certain theorems has been shown to coincide with the finitary

versions of those theorems used in mathematics, albeit the former phrased in terms of

higher-type functionals and the latter in terms of well-behaved set-theoretic functions.

Generally, soft statements involve quantification over some compact space K which

becomes eliminated during the finitisation process. From a proof theoretic perspec-

tive this corresponds to the ability of the monotone functional interpretation extract

bounds for realizers that are uniform with respect to K. The relationship between the

25

Chapter 3. Proof Interpretations

monotone interpretation and the correspondence principle is discussed in more detail

in [36, 48].

We now illustrate our discussion of the functional interpretation with a well-known

example that has been widely studied in the context of applied proof theory.

Example 3.14 (Cauchy convergence). Suppose we have a classical proof that a sequence

(xi) is Cauchy convergent, which can be formally stated as the Π0
3 formula

∀k∃n∀i, j ≥ n(‖xi − xj‖ ≤ 2−k), (3.7)

or alternatively, absorbing the quantifiers ∀i, ∀j into one, as

∀k∃n∀l∀i, j ∈ [n, n+ l](‖xi − xj‖ ≤ 2−k). (3.8)

The ND interpretation of (3.8) is

∃NN×(N→N)→N∀k, pN→N∀i, j ∈ [Nk,p, Nk,p + p(Nk,p)](‖xi − xj‖ ≤ 2−k). (3.9)

Following our previous discussion, one can view Nk as a functional whose job is to refute

potential counterexample functions p which seek to disprove permanent stability within

the error 2−k by exhibiting, for each n, some i, j ≥ n with ‖xi − xj‖ > 2−k.

From a slightly different perspective Nk is a functional that serves as an approxima-

tion to permanent stability of (xi), for each k producing regions [Nk,p, Nk,p + p(Nk,p)] of

metastability within error 2−k. The statement (3.9) that such regions of metastability

exist for any specified error 2−k and for arbitrary p is fully equivalent to (3.8) and con-

stitutes a finitary reformulation of the Cauchy convergence property. It turns out that

this interpretation of Cauchy convergence plays a key role in ergodic theory, whereby one

obtains quantitative versions of convergence theorems by extracting explicit bounds on N

that are in some sense uniform with respect to sequences (xi).

A simple example of this phenomenon is the monotone convergence principle, which

states that any increasing sequence of rationals 0 ≤ x0 ≤ x1 ≤ . . . ≤ 1 is Cauchy conver-

gent. This is easily formalised using classical logic: suppose for contradiction that there

exists some k such that

∀n∃m(xn+m − xn > 2−k).

Then by QF-ACN,N there exists a function p satisfying

∀n(xn+p(n) − xn > 2−k).

Defining p̃(n) := n + p(n) we see that we must have xp̃(i+1)(0) − xp̃(i)(0) ≤ 2−k for some

i ≤ 2k else x
p̃(2k)(0)

> 1, and this contradicts the construction of p.

26

3.3. Understanding the Dialectica interpretation

It has been shown that in general there is no computable bound on the rate of con-

vergence of (xi) [85]. However, the ND interpretation (3.9) of the monotone convergence

principle is equivalent to

∃N∀k, p(xNk,p+p(Nk,p) − xNk,p ≤ 2−k), (3.10)

and from a quick inspection of our classical proof we obtain the computable bound Nk,p ≤
p̃2k(0). Furthermore, our bound on Nk,p is independent of the sequence (xi), so we can

eliminate the implicit quantification over infinite increasing sequences and replace it with

quantification over finite sequences of length Mk,p := p̃2k(0), yielding

∀k, p∀(0 ≤ x0 ≤ . . . ≤ xMk,p
≤ 1)∃n ≤ n+p(n) ≤Mk,p∀i, j ∈ [n, n+p(n)](|xi−xj | ≤ 2−k).

This is essentially an explicit version of the so called finite convergence principle considered

by Tao in [88]:

If k is a natural number, p : N → N a function and 0 ≤ x0 ≤ . . . ≤ xM ≤ 1

a finite sequence such that M is sufficiently large depending on k and p, then

there exists n with 0 ≤ n ≤ n + p(n) ≤ M such that |xi − xj | ≤ 2−k for all

n ≤ i, j ≤ p(n).

The finite convergence principle is an important principle in ergodic theory that lies behind,

for instance, the proof of the Szemeredi regularity lemma, and therefore in this case the

functional interpretation yields a finitary reformulation of a non-constructive theorem that

has genuine mathematical significance.

The extraction of uniform bounds for the functional interpretation of more complex

convergence theorems has been the subject of several papers in the intersection of proof

theory and ergodic theory. For instance, in [6] the functional interpretation is used to

develop a quantitative version of the mean ergodic theorem.

Remark 3.15 (Infinite pigeonhole principle). Let [k] denote the set {0, 1, . . . , k − 1} ⊂ N.

A finite colouring of the natural numbers with k colours is a function c : N → [k]. The

infinite pigeonhole principle (IPHP) states that any finite colouring uses at least one colour

infinitely often, or more formally

IPHP[k, c] : ∃i ≤ k∀n∃m(m ≥ n ∧ c(m) = i). (3.11)

One can show that there exist realizers for the functional interpretation of IPHP that

are uniform with respect to the compact space N → [k], and therefore similarly to the

previous example the functional interpretation can be used to produce a finitary form of

IPHP which one only needs to quantify over finite colourings. This finitization via the

functional interpretation is discussed in [48, Chapter 2]. Interestingly, a finitization of

IPHP ‘by hand’ without resorting to proof theoretic tools was also given by Tao in an

27

Chapter 3. Proof Interpretations

early version of [88]. This latter finitization turned out to be false, and was later corrected

in light of the functional interpretation. An account of the whole story and the precise

relationship between each of these finitizations in given in [36], which more generally forms

an interesting case study of the interplay between mathematics and proof theory.

3.4 Modified realizability, and other proof interpretations

While our main focus in this dissertation will be on the functional interpretation, many of

the issues we discuss pertain to proof interpretations in general. We conclude the chapter

with a brief mention of some other functional interpretations that feature in proof the-

ory. Because Chapter 8 involves a comparison between the functional interpretation and

Kreisel’s modified realizability [54], which has also been widely used in program extraction,

we take this opportunity to recall its definition.

Definition 3.16 (Modified realizability). To every formula A in the language of E-HAω

we assign a formula Amr :≡ ∃x(x mr A), where x mr A is a ∃-free formula defined by

induction over the logical structure of A as follows.

(i) x mr A :≡ A if A is prime,

(ii) x, y mr (A ∧B) :≡ x mr A ∧ y mr B,

(iii) b, x, y mr (A ∨B) :≡ (b = 0→ x mr A) ∧ (b 6= 0→ y mr B),

(iv) f mr (A→ B) :≡ ∀x(x mr A→ fx mr B),

(v) x mr (∀tA(t)) :≡ ∀t(xt mr A(t)),

(vi) z, x mr (∃tA(t)) :≡ x mr A(z).

Modified realizability differs from the functional interpretation most significantly in its

treatment of implication - which is closer to the natural BHK interpretation of implication

and somewhat easier to appreciate.

However, while E-HAω has a straightforward realizability interpretation in the primitive

recursive functionals analogous to Theorem 3.7 (see [48, Chapter 5]), in contrast to the

functional interpretation modified realizability does not assign any constructive content to

negated formulas. As a result, if we want to extend modified realizability to classical logic

it is not enough to simply compose it with the negative translation - the typical solution

to this has been to add Friedman’s A-translation as an intermediate step [34].

This combination of modified realizability and the A translation has several drawbacks

compared to the ND interpretation. In particular it loses modularity, and it is not even

sound for the weak quantifier-free rule of extensionality QF-ER. Nevertheless, many re-

finements and improvements of modified realizability have been proposed, and it is still

28

3.4. Modified realizability, and other proof interpretations

open whether or not there are situations in which modified realizability is better suited to

the functional interpretation in program extraction.

In addition to the functional interpretation and modified realizability, notable proof

interpretation include:

1. The Diller-Nahm interpretation. This hybrid of modified realizability and the func-

tional interpretation adjusts the functional interpretation’s treatment of implication

to

(A→ B)DN :≡ ∃U, Y ∀x, v(∀y < |Y xv|(|A|xy → |B|Uxv))

where Y now returns a finite sequence as opposed to a single element. This interpre-

tation can be viewed as a ‘Dialectica-like’ interpretation, which nevertheless shares

nice structural properties with modified realizability: in particular, we no longer

require decidability of formulas to interpret contraction. The Diller-Nahm interpre-

tation plays an important role in the categorical semantics of proof interpretations

given by the Dialectica categories (see [24]).

2. The bounded and monotone variants of interpretations. These interpretations ask for

bounds on witnesses as opposed to exact witnesses. For instance, while the Dialectica

interpretation extracts a term t satisfying ∀y|AN|ty, its monotone variant asks only

for a bound t∗ (or at higher types a majorant) satisfying

∃x(t∗ ≥ x ∧ ∀y|AN|xy).

These interpretations are central to the proof mining program because by relax-

ing their requirement for for a precise witness they are capable of interpreting a

wider range of non-constructive principles. For instance, WKL is trivially realized

by the monotone functional interpretation, and therefore contributes nothing to the

complexity of extracted bounds.

A uniform syntactic framework encompassing many of these interpretations has been

developed by Oliva in [67].

29

Chapter 3. Proof Interpretations

30

CHAPTER

FOUR

Spector’s Bar Recursion

The main result reviewed in the previous chapter was that classical arithmetic has an

ND interpretation in the primitive recursive functionals of finite type. However, primitive

recursion no longer suffices if we wish to expand the soundness theorem to incorporate

strong comprehension or choice principles. In a remarkable paper of 1962 [86], C. Spector

succeeded in extending Gödel’s functional interpretation to full classical analysis by adding

to system T constants for bar recursion in all finite types.

The bar recursive functional interpretation of classical analysis will be treated in de-

tail in Chapter 5 using the product of selection functions. In this introductory chapter

we simply prepare the way for later work by stating Spector’s result and proving some

important properties about bar recursion. We also mention Howard’s realizer of weak

König’s lemma using a restricted, binary form of GBR. Finally, we take the opportunity

to briefly introduce some well-known type structures of E-HAω + GBR.

Spector’s so called ‘general’ bar recursor GBRρ,τ where ρ, τ are arbitrary types has

defining axiom

GBRφ,q,ϕρ,τ (sρ
∗
)
τ

:=

q(s) if ϕ(ŝ) < |s|

φs(λx . GBRφ,q,ϕ(s ∗ x)) otherwise,
(4.1)

where the parameters of GBR have types ϕ : ρ∗ → ((ρ → τ) → τ), q : ρ∗ → τ and

ϕ : ρN → N. Note that the parameters in the superscript remain fixed in the defining

axiom, in future these are often omitted when there is no risk of ambiguity.

Bar recursion is fundamentally different from primitive recursion. The primitive re-

cursor R is well-defined by well-foundedness of the natural numbers: we assign a value to

R(0) and define R(n + 1) in terms of R(n). In contrast GBR(〈〉) is well-defined by well-

foundedness of the tree T (s) := ∀n < |s|(ϕ(s, n) ≥ n): we assign a value q(s) to GBR(s)

whenever s is a leaf of T , and otherwise decide GBR(s) based on its value at extensions of

s, or in other words in terms of the function λx . GBR(s ∗ x).

31

Chapter 4. Spector’s Bar Recursion

In the same way that primitive recursion is the computational analogue of the axiom

of induction, Spector’s bar recursion can be viewed as a computational analogue of the

axiom of bar induction. There are several formulations of the principle of bar induction

(which is of particular importance in intuitionistic mathematics, see e.g. [90]). Here we

use the schema of relativised bar induction, given by

BIρ :


S(〈〉)

∧∀α ∈ S∃nP ([α](n))

∧∀s ∈ S(∀x(S(s ∗ x)→ P (s ∗ x))→ P (s))

→ P (〈〉).

for P , S arbitrary formulas on ρ∗, where α ∈ S and s ∈ S are shorthand for ∀nS([α](n))

and S(s) respectively. The axiom schema of relativised quantifier-free bar induction QF-BI

is bar induction for P restricted to being quantifier-free. Note that bar induction is

intuitionistically acceptable only with either a decidability or a monotonicity condition on

S (otherwise it implies e.g. law of excluded middle for Π0
1-formulas - see [42]). In most

cases we will not need to relativise the bar induction at all, simply taking S(s) = true.

Spector’s bar recursion GBR is one of the most well known instances of recursion over

well-founded trees, although it is just one of many extensions of system T in the literature,

which also include modified bar recursion [11], the Berardi-Bezem-Coquand functional [8]

and open recursion [10]. Extensions of system T and their relationship to one another will

form the subject of Part III of this thesis.

4.1 Spector’s condition

A necessary condition for Spector’s bar recursion to exist in a model of E-HAω is that the

underlying tree over which the recursion is carried out is well-founded, or in more precise

terms the following principle is satisfied:

Spec : ∀ϕρN→N, αρ
N∃n(ϕ(α, n) < n). (4.2)

We refer to Spec as Spector’s condition. In fact the least n satisfying this condition can

be explicitly constructed in E-HAω + GBR.

Proposition 4.1 (Howard [39]1). Define θϕ,α : ρ∗ → N in E-HAω + GBR as

θϕ,α(s) :=

0 if ∃t � s(ϕ(t̂) < |t|)

1 + θϕ,α(s ∗ α(|s|)) otherwise.

Then provably in E-HAω + GBR we have

∃n ≤ θϕ,α(〈〉)(ϕ(α, n) < n),

1This is the standard reference, although Howard attributes the trick to Kreisel.

32

4.1. Spector’s condition

and therefore using bounded search can construct a term µSp(ϕ, α) in E-HAω + GBR sat-

isfying

E-HAω + GBR ` ϕ(α, µSp(ϕ, α)) < µSp(ϕ, α) ∧ (n < µSp(ϕ, α)→ ϕ(α, n) ≥ n).

Proof. Define βi := θϕ,α([α](i)). Then β satisfies

βi =

0 if ∃n ≤ i(ϕ(α, n) < n)

1 + β(i+ 1) otherwise.
(4.3)

and by (4.3) we have

(βi 6= 0 ∧ j ≤ i)→ βj = 1 + β(j + 1) (4.4)

and hence by induction from j = 0 to j = i− 1

βi 6= 0→ β0 = i+ βi. (4.5)

Setting i = β0 it follows from (4.5) that β(β0) = 0, and therefore by (4.3) we have

∃n ≤ β0(ϕ(α, n) < n).

But β0 = θϕ,α(〈〉) so we’re done.

We call µSp Spector’s search functional, as it finds the least number satisfying Spector’s

condition. It has been pointed out by Oliva that the search functional µSp is actually

definable, though not validated, in E-HAω.

Proposition 4.2. Define γϕ,α : ρN in E-HAω by

γϕ,α(i) :=

0ρ if ∃k ≤ i+ 1(ϕ(α, k) < k)

α(i) otherwise,

and define µ̃Sp(ϕ, α) as the least n ≤ ϕ(γϕ,α) + 1 satisfying ϕ(α, n) < n, or just 0 if none

exist. Then

E-HAω ` ϕ(α,N) < N → ϕ(α, µ̃Sp(ϕ, α)) < µ̃Sp(ϕ, α) ∧ (n < µ̃Sp(ϕ, α)→ ϕ(α, n) ≥ n).

Proof. Assuming ϕ(α,N) < N let m ≤ N be the least number satisfying Spector’s condi-

tion. Then for i < m− 1 we have γϕ,α(i) = α(i), and for i ≥ m− 1 we have γϕ,α(i) = 0ρ,

which implies that γϕ,α = α,m− 1. By minimality of m we must have ϕ(γϕ,α) ≥ m − 1

and hence m ≤ ϕ(γϕ,α) + 1, and the search bounded by µ̃Sp(ϕ, α) must find m.

33

Chapter 4. Spector’s Bar Recursion

4.2 Spector’s computational interpretation of ACN

Over intuitionistic logic the functional interpretation of the axiom of choice is trivial, but in

the presence of classical logic things become problematic because WE-PAω + QF-AC + ACN

is no longer closed under the negative translation. However, (ACN)
N

, which is equivalent

to

∀n¬¬∃xρAn(x)N → ¬¬∃f∀n(An(fn))N

is derivable in WE-HAω+ACN+DNS where DNS is the intuitionistically unprovable double

negation shift

DNS : ∀nN¬¬B(n)→ ¬¬∀nB(n).

Suppose that B(n)D = ∃xρ∀yτ |B(n)|xy . Then the Dialectica interpretation of DNS is given

by

∃f, p, n∀ε, q, ϕ
(
|B(n)|εnpp(εnp)

→ |B(ϕf)|f(ϕf)
qf

)
, (4.6)

where f : ρN, p : ρ → τ and n are dependent on ε : N → ((ρ → τ) → ρ), q : ρN → τ and

ϕ : ρN → N. Spector’s achievement was to solve DNSD using bar recursion. In fact, he

used a restricted form SBR of GBR which we call his ‘special’ variant of bar recursion. The

constant SBRρ for arbitrary ρ has defining axiom

SBRφ,ϕρ (sρ
∗
)
ρN
:= s @

0ρN if ϕ(ŝ) < |s|

SBRφ,ϕρ (s ∗ as) otherwise
(4.7)

where as := φs(λx . SBR(s ∗ x)), and the parameters have types φ : ρ∗ → ((ρ→ ρN)→ ρ),

ϕ : ρN → N respectively.

Theorem 4.3 (Spector [86]). Given ε, q and ϕ as above, define f : ρN and pn : ρ→ τ by

f := SBRφ
ε,ϕ
ρ (〈〉)

pn := λx . q(SBRφ
ε,ϕ
ρ ([f](n)))

where φε(P ρ→ρ
N
) := ε|s|(λx . q(P (x))). Then f and pn satisfy

fn = εnpn

pn(fn) = qf
(4.8)

for all n ≤ ϕf , and therefore in particular f , p := pϕf and n := ϕf witness the Dialectica

interpretation of DNS (4.6).

We prove Spector’s theorem under the guise of the product of selection functions in

Theorem 5.7, and cover its extension to dependent choice (which first appears in [61]) in

Theorem 5.13. A corollary of Theorem 4.3 is soundness of the functional interpretation

for classical analysis.

34

4.3. Howard’s computational interpretation of WKL

Theorem 4.4. Let A(a) be a formula in L(WE-PAω) containing only a free. Then

WE-PAω + QF-AC + ACN ` A(a)⇒WE-HAω + SBR ` ∀y|A(a)N|t(a)
y

where t is a closed term of WE-HAω + SBR which can be extracted from the proof of A.

Remark 4.5. By WE-HAω + SBR we of course mean WE-HAω extended with constants

SBRρ of each type along with their defining axioms.

Remark 4.6. That the conclusion of Theorem 4.4 can be verified in WE-HAω + SBR does

not in fact follow from Spector, who uses higher-type extensionality to validate his realizer.

This is pointed out in [61] where it is claimed that a constructive ω-rule is required, but

in fact a precise formalization of Spector’s proof is only given in [48, p.204], where it is

shown that a quantifier-free fragment of WE-HAω + SBR is sufficient for the verification.

4.3 Howard’s computational interpretation of WKL

In [41] Howard demonstrated that a simple, binary form of bar recursion was sufficient to

realize the ND interpretation of weak König’s lemma (see Section 2.3). We make use of

Howard’s realizer in Part II, so we state and prove his result here. Under the assumption

that T is a binary tree (i.e. satisfying T (s ∗ t)→ T (s)) can state WKL as

∀nT (hn)→ ∃α∀nT ([α](n))

where to eliminate the bounded quantifier ∃s ∈ Bn we have defined h as

hn := least code of an s ∈ Bn satisfying T (s) , 0Bn if none exist

for a suitable coding of Bn. The negative translation of WKL is then equivalent to

∀nT (hn)→ ¬¬∃α∀nT ([α](n)),

and therefore its functional interpretation is given by

∃α, n∀ϕ (T (hn)→ T ([α](ϕα))) . (4.9)

where α and n are now dependent on ϕ : BN → N.

Theorem 4.7 (Howard [40]). Define Kϕ : B∗ → N using GBRB,N as

Kϕ(s) :=

0 if ϕ(ŝ) < |s|

1 + max{Kϕ(s ∗ 0),Kϕ(s ∗ 1)} otherwise.
(4.10)

Then Nϕ := Kϕ(〈〉) and αϕ := û for least u � hNϕ satisfying ϕ(û) < |u| (or 〈〉 otherwise)

satisfy the ND interpretation of WKL (4.9).

35

Chapter 4. Spector’s Bar Recursion

Actually, in his original paper [40] Howard proves that n := Kϕ(〈〉) witnesses the

contrapositive of WKL in the form of the FAN principle:

∀ϕ(∀α¬T ([α](ϕα))→ ¬T (h(Kϕ(〈〉)))).

His proof uses bar induction and Proposition 4.1, and is outlined in considerable detail in

[77]. We give a slightly shorter verification that his realizer witnesses the ND interpretation

of WKL.

Proof of Theorem 4.7. We begin by proving that Kϕ(〈〉) is a uniform bound on the first

point at which binary sequences satisfy Spector’s condition:

∀s(|s| ≥ Kϕ(〈〉)→ ∃n ≤ |s|(ϕ(s, n) < n)).

For arbitrary s, suppose that

(∗) ∀n ≤ |s|(ϕ(s, n) ≥ n).

Then for n < |s| we have

Kϕ([s](n))
(∗)
= 1 + max{Kϕ([s](n) ∗ 0),Kϕ([s](n) ∗ 1)} ≥ 1 +Kϕ([s](n+ 1)).

By induction from n = 0 to n = |s| − 1 we obtain

Kϕ(〈〉) ≥ |s|+Kϕ(s),

and by (∗) for n = |s| we have Kϕ(s) > 0 and therefore

Kϕ(〈〉) > |s|.

This proves that Kϕ(〈〉) is a uniform bound, so setting Nϕ = Kϕ(〈〉) we know that there

is some u � h(Nϕ) satisfying ϕ(û) < |u| ≤ Nϕ. Setting αϕ = û we have

[αϕ](ϕ(αϕ)) = [û](ϕ(û))
ϕ(û)<|u|

= [u](ϕ(û)) ≺ u � h(Nϕ)

and therefore

T (h(Nϕ))→ T ([αϕ](ϕ(αϕ)))

by prefix closure of T , which is the ND interpretation of WKL.

Remark 4.8. Note that technically the full statement of weak König’s lemma must explic-

itly include the assumption that the predicate T is a binary tree i.e. ∀s, t(T (s∗t)→ T (s)),

and therefore its functional interpretation must calibrate exactly how, for each ϕ, we use

the tree property. We ignore the assumption here at it has no computational content, and

a quick inspection of preceding proof confirms that our realizer only requires closure for

prefixes of the branch hNϕ.

Corollary 4.9. Let A(a) be a formula in L(WE-PAω) containing only a free. Then

WE-PAω + QF-AC + WKL ` A(a)⇒WE-HAω + GBRB,N ` ∀y|A(a)N|t(a)
y

where t is a closed term of WE-HAω + GBRB,N which can be extracted from the proof of A.

36

4.4. Models of GBR

4.4 Models of GBR

An immediate corollary of the fact that E-HAω+GBR validates Spector’s condition (4.2) is

that the type structure of full set theoretic functionals S ω is not a model of bar recursion.

Define ϕ : NN → N by

ϕ(α) := i+ 1 for least i such that αi = 0 if it exists, else 0.

Then Spector’s condition fails for ϕ and α = λi.1 since ϕ(α, n) = n + 1 for all n. This

confirms that the theory E-HAω + GBR is a proper extension of E-HAω because S ω is a

model of E-HAω.

However, there are several important structures that do validate bar recursion.

4.4.1 Term models

Term models for bar recursion were first developed by Luckhardt [61] and Tait [87]. Strong

normalisation for bar recursive functionals without using infinite terms is proved in [14].

4.4.2 The continuous functionals

There are several equivalent ways of formulating the type stucture of continuous func-

tionals C ω, the most well-known being those of Kleene [45] (via associates) and Kreisel

[54] (via formal neighbourhoods). We direct the reader to e.g. Norman [65] for details of

these structures. It is a standard result that the continuous functionals are a model of bar

recursion.

Theorem 4.10. C ω is a model of E-HAω + GBR.

Theorem 4.10 was first proved by Scarpellini [79], who uses yet another formulation

of the continuous functionals, the so-called sequentially continuous functionals (which are

nevertheless shown to be equivalent to the usual Kleene continuous functionals in [43]).

One can alternatively justify bar recursion in the continuous functionals by appealing to

Ershov’s result [26] that C ω can be identified with the total elements of the model Ĉ ω of

partial continuous functionals - see [11].

Informally, Spector’s condition holds in C ω because it validates the axiom of continuity :

Cont : ∀F ρN→τ , αρN∃N∀βρN([α](N) =ρ∗ [β](N)→ F (α) =τ F (β)),

where the type τ is restricted to being discrete. To see this, note that for any ϕ : ρN → N
and α : ρN there exists, by Cont, a number N such that ϕ(α, n) = ϕ(α) for all n ≥ N .

Setting n = max{N,ϕ(α) + 1} we have

ϕ(α, n) = ϕ(α) < n.

37

Chapter 4. Spector’s Bar Recursion

4.4.3 The majorizable functionals

For many years bar recursion was only considered in the context of the continuous func-

tionals. However, in 1985 Bezem proved the remarkable fact that the strongly majorizable

functionals are a model of GBR, despite the fact that they include discontinuous function-

als.

The relation s-maj is defined inductively on the finite types byn∗ s-majN n :≡ n∗ ≥ n

f∗ s-majρ→τ f :≡ ∀x∗, x(x∗ s-majρ x→ f∗x∗ s-majτ f
∗x, fx).

(we omit details of how one could extend it to our enriched system of types). We say

that x : ρ is strongly majorizable if there exists some x∗ satisfying x∗ s-majρ x, and call

x∗ a majorant of x. The type structure M ω := 〈Mρ〉 of hereditarily strongly majorizable

functionals is defined inductively by M0 := N, and Mρ→τ is the space of all set-theoretic

functionals M
Mρ
τ which also have a majorant in M

Mρ
τ (see [15] or [48] for details).

Theorem 4.11 ([15]). M ω is a model of E-HAω + GBR.

While the full proof of this result is rather technical, to see that Spector’s condition

holds in M ω, suppose that ϕ∗ and α∗ are majorants of α and ϕ respectively. Then α∗ is also

a majorant of α, n for arbitrary n, so setting n = ϕ∗α∗ + 1 we have ϕ∗α∗ s-majN ϕ(α, n)

i.e.

ϕ(α, n) ≤ ϕ∗α∗ < n.

38

II The Constructive Content

of Mathematical Analysis

39

CHAPTER

FIVE

The Semantics of Bar Recursive Functionals

The first main contribution of this dissertation will be to present a series of case studies

in which we use Gödel’s functional interpretation to extract bar recursive programs from

proofs in classical analysis. Rather than merely stating the extracted programs in com-

puter code or abstruse logical syntax, our goal is to study the meaning and behaviour

of these rather complicated functionals so that they can be understood on a mathemati-

cal level as intuitive constructive analogues to non-constructive principles. Our primary

tool for interpreting choice principles will be Spector’s bar recursion in the form of the

product of selection functions. However, as part of our analysis we address the issue of

whether or not bar recursion is always best suited for obtaining illuminating programs

from proofs, and consider the possibility that alternatives to bar recursion, or at least new

descriptions of bar recursive realizers, might be more appropriate when interpreting cer-

tain non-constructive ideas. In broad terms our aim is that these case studies will provide

some insight into the constructive nature of classical analysis. In doing so we also hope to

highlight the functional interpretation as an elegant translation on proofs whose output

can be read and understood on mathematical terms - a feature that can often become

obscured beneath the formal language of logic.

∗ ∗ ∗

Realizers extracted from a classical proofs using proof interpretations can yield highly

non-trivial constructive information hidden deep in the logical structure of that proof.

This feature has been exploited in the proof mining program to obtain explicit numerical

information from non-constructive proofs, which has let to improved results in several

areas of mathematics.

However, realizing terms give us more that just numerical information. A functional

extracted from a non-constructive proof is ultimately a constructive reformulation of that

41

Chapter 5. The Semantics of Bar Recursive Functionals

proof, and an analysis of the behaviour of that functional can reveal insights into the com-

putational semantics of the proof. In recent years there has been an increasing interest in

applying proof theoretic techniques for the sole purpose of understanding the constructive

meaning of non-constructive principles, whether it is to explore a specific non-constructive

idea (such as the analysis of the minimal bad sequence argument in [82]) or to give classical

logic a general computational semantics (such as the learning-based realizability of [3]).

In many ways work of this kind forms a natural continuation of Hilbert’s program, and

while (outside of the proof mining program) the direct impact of this research on main-

stream mathematics may appear limited, there are complex links between proof theory

and mathematics - such as that between the functional interpretation and the correspon-

dence principle described in Section 3.3 - that lend force to the idea that understanding

the constructive meaning of non-constructive ideas has a relevance beyond the world of

computer science and logic.

Extracting computational content from proofs can be a difficult task. The soundness

theorems for the functional interpretation guarantee that we can extract realizers from a

large class of proofs and come equipped with an algorithm for doing so providing the proof

has been fully formalised, and in this sense program extraction is mathematically trivial:

it is a procedure that could be automated by a theorem prover. But aside even from

the laborious task of fully formalising a non-trivial proof, such a blind implementation

would yield little more than a ‘black box’, a complex higher-type term that mysteriously

works but provides little immediate insight into the proof it interprets. In reality, it often

requires a certain amount of work and the application of new ideas or techniques to obtain

constructive information that is useful or meaningful.

In this practical part of this dissertation our challenge is to use the functional interpre-

tation to analyse the constructive content of several important principles in mathematical

analysis, with the aim of obtaining programs whose behaviour and semantics can be clearly

understood. Our starting point is the recent work of Escardó and Oliva [29, 30, 31], who

have shown that Spector’s bar recursion is closely related to the so-called ‘explicitly it-

erated’ product of selection functions. This form of recursion can be intuitively viewed

as an operation that computes optimal plays in a class of unbounded sequential games,

and therefore realizers extracted using the product of selection functions come equipped

with a natural game semantics. We focus on giving a detailed description of exactly what

our realizers are attempting to do, and how their behaviour can be related to the non-

constructive ideas present in the original proof. In certain cases we suggest alternative

ways of viewing and constructing these realizers.

We have deliberately chosen to study well-known proofs in mathematics, and in what

follows we are generally not the first to analyse the computational content of these proofs.

The originality of work is that we give new realizers and more importantly new descrip-

tions of these realizers. However, in Chapter 8 we give an analysis of minimal-bad-sequence

42

5.1. The explicitly iterated product of selection functions

argument for arbitrary well-founded relations via transfinite recursion, which to our knowl-

edge constitutes one of the first applications of the functional interpretation in the theory

of well-quasi-orderings.

We adhere to an informal style of presentation and whenever possible write in a familiar

mathematical language. We make no attempt to give full details of how our realizers can be

formally obtained from proofs - in all cases they are extracted ‘by hand’, and this contrasts

from the more rigorous, syntactic approach often found elsewhere in the literature.

The remainder of this chapter is dedicated to providing technical background and

outlining the main ideas that will be used in the case studies that follow.

5.1 The explicitly iterated product of selection functions

We first introduce the product of selection functions and show that it can be viewed as a

functional that computes optimal strategies in unbounded sequential games. This section

is a survey of results due to Escardó and Oliva, which forms part of a larger body of

research by these authors on selection functions and game theory. In particular the reader

is referred to the original paper [30] and the more recent [31] for general background to

the work presented here.

A selection function is any element of type (ρ→ τ)→ ρ. As in [30] we abbreviate this

type to Jτρ. Closely related to the selection function ε : Jτρ is its corresponding quantifier

ε̄ : (ρ→ τ)→ τ defined by ε̄p := p(εp). The intuition is to view ε as a selector that given

a function p : ρ → τ picks a particular element of εp of ρ that attains its quantifier ε̄.

Selection functions and quantifiers are ubiquitous in mathematics and computer science,

as the following examples illustrate.

Example 5.1. (a) A canonical example of a selection function and its associated quantifier

arises when τ forms a set of truth values e.g. τ = B. Hilbert’s epsilon term ερ : JBρ of

type ρ is a selection function whose corresponding quantifier is just the usual existential

quantifier ∃ρ for predicates over type ρ, since classically we have

∃xρ p(x)⇔ p(ερp).

(b) By the mean value theorem there exists a selection function ε : J[0,1]R such that for

any continuous function p : [0, 1]→ R we have

p(εp) =

∫ 1

0
p(x)dx.

Its corresponding quantifier is the operator
∫ 1

0 .

(c) Assume we are given a position in a game where we have to pick a move in ρ. A

strategy for that position can be defined by a selection function ε : Jτρ that determines

43

Chapter 5. The Semantics of Bar Recursive Functionals

an optimal move for this position, given a mapping p : ρ → τ of possible moves x : ρ

to corresponding outcomes p(x) : τ .

There is a natural product operation ⊗ with which one can compose selection functions.

Definition 5.2 (Binary product of selection functions [30]). Given a selection function

ε : Jτρ, a family of selection functions δ : ρ→ Jτσ and a function q : ρ× σ → τ , let

A[xρ]
σ

:= δx(λy.q(x, y))

a
ρ

:= ε(λx.q(x,A[x])).

The binary product ε⊗ δ is another selection function, of type Jτ (ρ× σ), defined by

(ε⊗ δ)(q)
ρ×σ
:= 〈a,A[a]〉.

If δ is independent of x we call this the simple product of selection functions. The general

case is then sometimes referred to as the dependent product of selection functions.

Example 5.3. Continuing from Example 5.1:

(a) It is easy to show that the product of ε operators ερ ⊗ εσ is an epsilon operator of

type ρ× σ in the sense that

∃xρ∃yσq(x, y)⇔ q((ερ ⊗ εσ)(q)).

(b) Given a continuous function q : [0, 1]2 → R we have

q((ε⊗ ε)(q)) =

∫ 1

0

∫ 1

0
q(x, y) dxdy.

(c) Given strategies ε0, ε1 for each round in a two round sequential game with outcome

function q : ρ0 × ρ1 → τ , then (ε0 ⊗ ε1)(q) forms a strategy for the game which is

“compatible” with the local strategies ε0 and ε1. This key instance of the product is

discussed in more detail in Section 5.2.

Remark 5.4. The binary product also appears throughout applied proof theory, due to its

connection with the functional interpretation of finite choice principles (as elaborated in

Section 5.3). For example, it is implicitly used in e.g. [50, p.14].

The explicitly iterated product of selection functions EPS is an infinite iteration of the

binary product ⊗, controlled by a functional ϕ which stops the iteration once Spector’s

condition (4.2) is obtained. Note that the following definition differs from that given in e.g.

[31, Definition 15] (in that case the parameter q changes with each recursive call, whereas

we prefer to minimise the number of parameters that change as part of the defining axiom).

44

5.1. The explicitly iterated product of selection functions

Definition 5.5 (Explicitly iterated product of selection functions). The explicitly iterated

product of selection functions EPSρ,τ has defining equation

EPSε,q,ϕ(sρ
∗
)
ρN
= s @


0ρN if ϕ(ŝ) < |s|

EPSε,q,ϕ(s ∗ as) otherwise,

(5.1)

for as := εs(λx . q(EPSε,q,ϕ(s ∗ x))), where ε : ρ∗ → Jτρ is a family of selection functions,

q : ρN → τ is referred to as the outcome functional and ϕ : ρN → N is referred to as the

control functional.

Note that EPS is very similar to Spector’s special form of bar recursion SBR (4.7), the

key difference being the introduction of the outcome functional q. In fact, it is easy to see

that SBR is precisely the instance of EPS in which τ = ρN and q : ρN → ρN is the identity

functional. Conversely, EPS is definable from SBR: if we set ε̃qs(pρ→ρ
N
)
ρ
= εs(λx . q(px))

then SBRε̃
q ,ϕ satisfies the defining equation of EPSε,q,ϕ. EPS is precisely what we need

to solve Spector’s equations (4.8), a fact that we now prove in full. In what follows we

suppress the parameters of EPS when it is clear what we mean.

Lemma 5.6. Let α = EPSε,q,ϕ(s). Then for all n ≥ |s|,

α = EPSε,q,ϕ([α](n)). (5.2)

Proof. Induction on n. For n = |s| we have [α](n) = [EPS(s)](|s|) = s and therefore (5.2)

holds by definition. Now assume (5.2) holds for n ≥ |s|. There are two cases:

(a) If ϕ([̂α](n)) = ϕ(α, n) < n then

α
(IH)
= EPS([α](n)) = [α](n) @ 0 ≡ α, n.

But then ϕ(̂[α](n+ 1)) = ϕ(α, n+ 1) = ϕ(α, n) < n < n + 1 by extensionality, and

therefore EPS([α](n+ 1)) = [α](n+ 1) @ 0 = α, n+ 1 = α, n = α.

(b) Otherwise,

α
(IH)
= EPS([α](n)) = [α](n) @ EPS([α](n) ∗ a)

(∗)
= EPS([α](n) ∗ a)

where a = ε[α](n)(λx . q(EPS([α](n)∗x))). Note that (∗) holds because [α](n) is a prefix of

EPS([α](n) ∗ a). Now then α(n) = EPS([α](n) ∗ a)(n) = a and therefore α = EPS([α](n) ∗
α(n)) = EPS([α](n+ 1)).

This lemma is the building block behind the following fundamental theorem on EPS.

Theorem 5.7. Define α : ρN and ps : ρ→ τ by

α := EPSε,q,ϕρ,τ (〈〉)

ps := λx . q(EPSε,q,ϕρ,τ (s ∗ x)).

45

Chapter 5. The Semantics of Bar Recursive Functionals

Then for all n ≤ ϕα we have

α(n) = ε[α](n)(p[α](n))

p[α](n)(α(n)) = qα.
(5.3)

Proof. If n ≤ ϕα then we must have (∗) ϕ([̂α](n)) ≥ n. Otherwise, if ϕ([̂α](n)) < n then

by Lemma 5.6 (for s = 〈〉) we would have α = EPS([α](n)) = [α](n) @ 0 = [̂α](n), and

hence n ≤ ϕα = ϕ([̂α](n)) < n which is a contradiction. Therefore

α(n)
L5.6
= EPS([α](n))(n)

(∗)+(5.1)
= ([α](n) @ EPS([α](n) ∗ a[α](n)))(n)

(5.1)
= a[α](n)

and a[α](n) = ε[α](n)(λx . q(EPS([α](n) ∗ x))) = ε[α](n)(p[α](n)). For the second equality, we

have

qα
L5.6
= q(EPS([α](n+ 1)))

= q(EPS([α](n) ∗ α(n)))

= p[α](n)(α(n)).

Note that (5.3) is the dependent formulation of Spector’s equations (4.8). The signifi-

cance of the work done in [30, 31] regarding the product of selection functions lies in the

observation that Spector’s equations have a fundamental meaning that goes beyond the

functional interpretation of choice, and that this meaning is elegantly expressed in terms

of selection functions. In short, (5.3) characterise the product EPS as an operation that

computes a kind of sequential equilibrium between selection functions. Such equilibria ap-

pear naturally in a variety of contexts, and we now outline perhaps the most illuminating

of these contexts: the theory of sequential games.

5.2 Sequential games and optimal strategies

One of the most remarkable property of EPS is that it computes optimal strategies in a

certain class of sequential games. The reader is encouraged to consult [31] in conjunction

with the relatively concise discussion here (where in particular they discuss a more general

class of games).

Definition 5.8 (Sequential game of unbounded length). A sequential game G is defined by

a pair of types (ρ, τ) and a tuple of terms (ε, q, ϕ) described as follows.

(a) ρ is the type of possible moves at each round,

46

5.2. Sequential games and optimal strategies

(b) τ is the type of possible outcomes of the game,

(c) a finite sequence s : ρ∗ is thought of as a position in the game in representing moves

for the first |s| rounds, and an infinite sequence α : ρN is considered to be a play of

the game,

(d) q : ρN → τ determines the outcome of any given play α,

(e) ϕ : ρN → N determines the relevant part of a play,

(f) ε : ρ∗ → Jτρ defines a strategy for the game, where εs determines the optimal move at

position s given that the outcome of all potential moves ρ→ τ is known.

Given a play α, all moves α(n) for n ≤ ϕα are relevant moves. A position s is

called relevant if |s| ≤ ϕ(ŝ), i.e. if in a canonical extension of the current position s the

current move is considered a relevant move. We shall only consider infinite plays which

are obtained by some canonical extension of a finite play s. Therefore, we think of these

as finite games of unbounded length.

A strategy for the game is a function next : ρ∗ → ρ which determines for each position

s what the next move next(s) should be. To follow a strategy from position s means to

play all following moves according to the strategy, i.e. we obtain a sequence of moves

α(0), α(1), . . . as

α(n) = next(s ∗ [α](n)).

We call this the strategic extension of s. The strategic extension of the empty play is

called the strategic play.

Definition 5.9. Given a game G = (ε, q, ϕ), a strategy next is said to be optimal if the

move played at each relevant position s is the one recommended by the selection function

εs i.e.

next(s) = εs(λx . q(s ∗ x ∗ α))

where α is the strategic extension of s∗x. The strategic extension of the empty play when

our strategy is optimal is the optimal play of the game G.

The main result of [31] is that the product of selection functions computes optimal

strategies.

Theorem 5.10 ([31]). Given a game G = (ε, q, ϕ), the strategy

next(s) = EPSε,q,ϕ(s)(|s|) (5.4)

is optimal, and, moreover,

α = λn . EPSε,q,ϕ(s)(|s|+ n) (5.5)

is the strategic extension of s, i.e. α(n) = next(s ∗ [α](n)). In particular EPSε,q,ϕ(〈〉) is

the optimal play of G.

47

Chapter 5. The Semantics of Bar Recursive Functionals

Proof. We have that

α(n)
(5.5)
= EPS(s)(|s|+ n)

L5.6
= EPS(s ∗ [α](n))(|s|+ n)

(5.4)
= next(s ∗ [α](n)),

which proves the second claim (5.5). Note that the second equality follows from Lemma

5.6 because s ∗ α = EPS(s) and since |s|+ n ≥ |s| we have s ∗ α = EPS([s ∗ α](|s|+ n)) =

EPS(s ∗ [α](n)). Hence, assuming that s is a relevant position, i.e. (∗) ϕ(ŝ) ≥ |s| we have

next(s)
(5.4)
= EPS(s)(|s|)

(∗)+(5.1)
= (s @ EPS(s ∗ as))(|s|)

= as

= εs(λx . q(EPS(s ∗ x)))

= εs(λx . q(s ∗ x ∗ β))

where β := λn . EPS(s ∗ x)(|s| + 1 + n), and by the second claim (5.5) is the strategic

extension of s ∗ x.

5.3 A game-theoretic computational interpretation of DC

We now prove that the product of selection functions EPS give a computational interpre-

tation to dependent choice DC. This extends slightly the result from [30, 31] which is

restricted to the interpretation of countable choice ACN. In particular we define a variant

of DC that is very naturally interpreted by EPS. We also attempt to explain in detail the

link between the theory of selection functions and Gödel’s functional interpretation - in

particular the notion that optimal plays in a sequential games are somehow related to the

axiom of choice.

Suppose we are given a Σ2-theorem A ≡ ∃xρ∀yτA0(x, y) where A0 is quantifier-free.

The negative translation of A is equivalent to ¬¬∃x∀yA0(x, y), and therefore its functional

interpretation is given by

|AN|εp = A0(εp, p(εp)).

In other words, the functional interpretation eliminates double negations in front of a

Σ2-formula with a selection function ε : Jτρ. As discussed in section 3.3, p can be viewed

as a counterexample function attempting to disprove A, and therefore the constructive

interpretation of A is precisely a selection function ε that refutes arbitrary counterexample

functions.

Thus under the functional interpretation we have the following mapping:

Σ2-Theorems 7→ Selection functions.

48

5.3. A game-theoretic computational interpretation of DC

The elimination of double negations in AN for an arbitrary formula A is essentially a

(albeit complex) modular iteration of this process, suggesting that selection functions and

modes of recursion based on selection functions lie behind the functional interpretation in a

fundamental way. Most importantly, the product of selection functions directly interprets

the negative translation of the axiom of countable dependent choice.

For simplicity, let’s first consider AC for Π1-formulas:

Π1-AC : ∀n∃xρ∀yτAn(x, y)→ ∃fN→ρ∀n, yAn(fn, y)

where the An are quantifier-free. Its negative translation is intuitionistically equivalent to

∀n¬¬∃x∀yAn(x, y)→ ¬¬∃f∀n, yAn(fn, y),

and the (partial) functional interpretation of this is given by

∃F∀ε, q, ϕ(∀n, pAn(εnp, p(εnp))→ Ai(F (ϕF), qF)). (5.6)

This constructive interpretation of AC asks for a function F ε,q,ϕ approximating the choice

sequence f , given a sequence of selection functions εn which interpret each of the An.

By Theorem 5.7, F ε,q,ϕ := EPSε,q,ϕ(〈〉) does the job, indicating that under the functional

interpretation we have a mapping

Choice principles 7→ Product of selection functions.

At first glance it may seem strange that an operation that computes optimal strategies in

sequential games is related to the axiom of choice is this manner. But if we take a closer

look, the game theoretic semantics of (5.6) becomes clear. The selection functions εn which

realise the premise of (5.6) can be seen as a collection of strategies separately witnessing

the Σ2-formulas (An). The dialectica interpretation calls for a procedure that takes these

pointwise strategies and produces a co-operative selection function F that witnesses ∀nAn.

Such a procedure is provided naturally by the product of selection functions.

We now prove that more generally, EPS witnesses the functional interpretation of

countable dependent choice for arbitrary formulas. This is a slight reformulation of the

analogous result for Spector’s bar recursion first given in [61]. Dependent choice is usually

given in the following form:

DCρ : ∀n, xρ∃yρAn(x, y)→ ∀x0∃fN→ρ(f(0) = x0 ∧ ∀nAn(f(n), f(n+ 1))).

It turns out that EPS naturally interprets a variant of DC given by

DCρseq : ∀sρ∗∃xρAs(x)→ ∃fN→ρ∀nA[f](n)(fn).

This sequential formulation of dependent choice is similar to the one considered in [82]

and will be important in Chapter 8.

49

Chapter 5. The Semantics of Bar Recursive Functionals

Lemma 5.11. DC is equivalent to DCseq.

Proof. First we show that DCseq ⇒ DC. Define Bs(y) :≡ A|s|(s|s|−1, y) for |s| > 0 and

B〈〉(y) :≡ A0(x0, y). Then we have ∀n, xρ∃yAn(x, y)→ ∀s∃yBs(y) and therefore by DCseq

there exists fN→ρ satisfying

A0(x0, f(0)) ∧ ∀n > 0An(f(n− 1), fn).

Defining

f̃(n) :=

x0 if n = 0

f(n− 1) if n > 0

we clearly have ∀nAn(f̃(n), f̃(n+ 1)).

For DC⇒ DCseq, define

Bn(sρ
∗
, tρ
∗
) :≡ (|s| = n→ |t| = n+ 1 ∧ s ≺ t ∧As(tn)).

Then As(x)→ B|s|(s, s ∗ x)→ Bn(s, s ∗ x) and therefore

∀s∃xAs(x)→ ∀n, s∃tBn(s, t).

By DC for s0 = 〈〉

∀s∃xAs(x)→ ∃fN→ρ∗(f(0) = 〈〉 ∧ ∀nBn(f(n), f(n+ 1)))

where

Bn(f(n), f(n+1)) ≡ |f(n)| = n→ |f(n+1)| = n+1∧fn ≺ f(n+1)∧Af(n)(f(n+1)(n)).

By induction |f(n)| = n for all n, and therefore

∀s∃xAs(x)→ ∃f(f(0) = 〈〉 ∧ ∀n(|f(n+ 1)| = n+ 1∧ fn ≺ f(n+ 1)∧Af(n)(f(n+ 1)(n))).

Define the function f̃ : N→ ρ by f̃(n)
ρ

:= f(n+ 1)(n). Now, clearly [f̃](0) = 〈〉 = f(0) and

because for arbitrary n we have f(n) = [f(n+ 1)](n) it follows that

[f̃](n) = f(n)→ [f̃](n) = [f(n+ 1)](n)→ [f̃](n+ 1) = f(n+ 1)

and therefore by induction [f̃](n) = f(n) for all n. Therefore we obtain ∀nA[f̃](n)(f̃(n)).

Remark 5.12. While it is clear that the direction DCseq ⇒ DC can be formalised in

WE-PAω, as it stands our proof of DC ⇒ DCseq makes use of the extensionality axiom

to derive

[f̃](n) = f(n) ∧Af(n)(f(n+ 1)(n)))→ A[f̃](n)(f̃(n)).

While we don’t doubt that this need for extensionality can be eliminated with a little

effort, it does not concern us too much here as we are able to give a direct computational

interpretation to DCseq using EPS.

50

5.3. A game-theoretic computational interpretation of DC

Theorem 5.13. (a) The functional interpretation of the principle of dependent choice

DCseq : ∀sρ∗∃xρAs(x)→ ∃fN→ρ∀nA[f](n)(fn)

is realized by the dependent product of selection functions EPS.

(b) The functional interpretation of the principle of countable choice

ACN : ∀n∃xρAn(x)→ ∃fN→ρ∀nAn(f(n))

is realized by the simple product of selection functions.

(c) The functional interpretation of the principle of finite choice

FAC : ∀k(∀n ≤ k∃xρAn(x)→ ∃sρ∗∀n ≤ kAn(sn))

is realized by a finite product of selection functions.

Proof. We prove (a). Part (b) was first shown in [30], and in any rate follows directly from

(a). Part (c) will be discussed in Chapter 10.

Since As(x) is interpreted as ∃x̃ρ̃∀yτ |As(x)N|x̃y it suffices to interpret instances of DCseq

for Σ2-formulas:

∀sρ∗∃xρ, x̃ρ̃∀yτAs(x, x̃, y)→ ∃fN→ρ∀n∃x̃∀yA[f](n)(fn, x̃, y).

Moreover, by adding a dummy variable t of type ρ̃∗ this in turn follows directly from an

instance of Π1-DCseq:

Π1-DCseq : ∀sρ∗ , tρ̃∗∃x, x̃∀yAs,t(x, x̃, y)→ ∃fN→ρ, f̃N→ρ̃∀n, yA[f,f̃](n)(fn, f̃n, y).

Therefore it suffices to deal with Π1-DCseq in general i.e.

Π1-DCseq : ∀sρ∗∃xρ∀yτAs(x, y)→ ∃f∀n, yA[f](n)(fn, y).

where As is quantifier-free. This has negative translation equivalent to

∀s¬¬∃x∀yAs(x, y)→ ¬¬∃f∀n, yA[f](n)(fn, y).

and therefore its functional interpretation is given by

|Π1-DCN|f,p,sε,ϕ,q ≡ As(εsp, p(εsp))→ A[f](ϕf)(f(ϕf), qf), (5.7)

omitting, for the sake of readability, the parameters ε, ϕ and q on f, p and s. Let

f = EPSε,q,ϕ(〈〉)

ps = λx . q(EPSε,q,ϕ(s ∗ x)).

By Theorem 5.7 we have that f and p := p[f](ϕf) and s := [f](ϕf) satisfy εsp = f(ϕf)

and p(εsp) = qf , and hence, clearly witness |Π1-DCN|f,p,sε,ϕ,q.

51

Chapter 5. The Semantics of Bar Recursive Functionals

Theorem 5.14 (Soundness theorem for classical analysis using EPS). Let A(a) be a for-

mula in L(WE-PAω) containing only a free. Then

WE-PAω + QF-AC + DCseq ` A(a)⇒WE-HAω + EPS ` ∀y|A(a)N|t(a)
y

where t is a closed term of WE-HAω + EPS which can be extracted from the proof of A.

Proof. This follows directly from Theorem 3.11 and 5.13 (a), although technically here we

only prove that the conclusion can be verified in E-HAω + EPS, because full extensionality

is required for our proof of Lemma 5.6. However, this instance of extensionality can be

reduced to the quantifier-free rule by appealing to the trick of Kohlenbach [48, Lemma

11.5], allowing us to indeed verify the conclusion in WE-HAω + SBR (in fact a quantifier-

free fragment of WE-HAω suffices) and obtain a soundness theorem for dependent choice

analogous to [48, Theorem 11.9].

The significance of Theorem 5.13 in conjunction with Theorem 5.10 lies in the fact

that our realizer for choice also computes optimal strategies in sequential games, which

means that programs extracted using EPS can often be given an intuitive game-theoretic

semantics. To be more precise, given a proof that is based on an instance of countable

choice, we can informally identify the functional interpretation |AN| of the theorem A

with a partially defined sequential game GA (whose parameters arise from the interpreted

proof):

Classical theorem A // Partially defined game GA

and in this sense the constructive reformulation of A can be understood in terms of optimal

plays in GA.

5.4 Alternatives to Spector’s bar recursive interpretation of analysis

We have introduced a variant of Spector’s bar recursion with close links to game theory,

and in the following chapters we provide concrete examples of program extraction using

the product of selection functions that produce realizers with a natural game semantics.

However, we also address the issue of whether or not Spector’s bar recursion or the closely

related EPS are always best suited for extracting programs from proofs.

Spector devised bar recursion for foundational reasons - in order to extend Gödel’s

proof of the consistency of Peano arithmetic to classical analysis. Bar recursion is ideal

for this purpose as it provides a simple and elegant solution to the functional interpretation

of the double negation shift, and therefore to both countable and dependent choice.

However, its suitability as a device for extracting intuitive and readable realizers from

proofs is not so firmly established. This is particularly true when a proof makes use of

the choice axiom in the guise of a different principle A, where A might be arithmetical

52

5.4. Alternatives to Spector’s bar recursive interpretation of analysis

comprehension, the variants of König’s lemma, or the minimal-bad-sequence argument.

In this case, while we can certainly find a bar recursive realizer for A by interpreting

DC→ A, it may be better to search for a direct realizer for A that more naturally reflects

the computational content of A.

The idea of constructing new realizers to the axiom of choice and its variants for the

purpose of improved program extraction is not new, and has been explored in context of

the realizability interpretation of analysis in e.g. [8, 10, 11, 82]. However, few alternatives

for Spector’s bar recursion have been proposed for the functional interpretation of analysis.

In each of the subsequent case studies, not only do we attempt to understand the

bar recursive realizer extracted from our classical proof, but we consider the possibility of

replacing it with a more direct and intuitive realizer. In the case of arithmetic compre-

hension (Chapter 6) and Σ0
1-WKL (Chapter 7) we characterise the behaviour of our bar

recursive in terms of update procedures (similar to the learning-based realizers discussed

in [3]), and for minimal-bad-sequence argument (Chapter 8) we investigate the possibility

of constructing a realizer for its functional interpretation via open recursion, as done by

Berger in the context of modified realizability in [10].

53

Chapter 5. The Semantics of Bar Recursive Functionals

54

CHAPTER

SIX

Arithmetical Comprehension

This small chapter forms a note in which we examine the computational content of the

principle of arithmetical comprehension for Σ0
1-formulas (In fact, arithmetical comprehen-

sion CAN
ar for arbitrary formulas is derivable in WE-PAω + Σ0

1-CA, see [48]). As a warm up

for later chapters we give the bar recursive realizer for Σ0
1-CA in terms of EPS and outline

its game semantics. Then in the main part of the chapter we analyse the behaviour of this

realizer and characterise it as a fixpoint for an intuitive learning-process.

In informal set-theoretic language arithmetical comprehension for Σ0
1-formulas is given as

follows.

Arithmetical comprehension (Σ0
1-CA). Given an arbitrary Σ0

1-formulaB(n) :≡ ∃kNB0(n, k)

(for B0 quantifier-free) we can construct a set X ⊆ N such that n ∈ X ↔ B(n).

We identify subsets of N with their characteristic functions tX : N→ B. Written formally

in the language of WE-PAω, Σ0
1-CA becomes1

∃tN→B∀n(t(n) = 0↔ ∃kB0(n, k)). (6.1)

Our first observation is that we can eliminate the two way-implication, as (6.1) follows

directly from the formula

∃fN→N∀n(∃kB0(n, k)→ ∃i < f(n)B0(n, i)), (6.2)

1Note that since we can construct characteristic functions for quantifier-free formulas we could alterna-

tively write Σ0
1-CA as the single axiom

∀fN×N→N∃t∀n(t(n) = 0↔ ∃k(f(n, k) = 0))

55

Chapter 6. Arithmetical Comprehension

by setting

tf (n) :=

0 if ∃i < f(n)B0(n, i)

1 otherwise.

Note that, conversely, (6.2) follows from (6.1) using QF-AC. The bounded quantifier in

the conclusion of (6.2) is not strictly necessary, although in this and the following chapters

we sometimes prefer to work with bounded formulas because it makes the computational

interpretation slightly more intuitive, and more useful in applications. Now, (6.2) is equiv-

alent to

∃fN→N∀n, k(∃i < kB0(n, i)→ ∃i < f(n)B0(n, i)), (6.3)

and the ND interpretation of (6.3) is given by

∀q, ϕ∃f∀n ≤ ϕf(∃i < qfB0(n, i)→ ∃i < f(n)B0(n, i)) (6.4)

where q and ϕ have type NN → N. One can rephrase this interpretation of Σ0
1-CA as follows.

Finitary arithmetical comprehension (Fin-Σ0
1-CA). Given arbitrary functionals q, ϕ : NN →

N there exists a function f : N → N such that the set Yf :≡ {n | ∃i < f(n)B0(n, i)} ⊆ X

is an approximation to X relative to q, ϕ in the sense that for all n ≤ ϕf we have n ∈ Y
whenever ∃iB0(n, i) is witnessed for i < qf .

The idea behind this equivalent formulation of Σ0
1-CA is that Y ⊆ X is an approximation

to X whose ‘size’ and ‘depth’ are calibrated by the functionals ϕ and q respectively. The

existence of such approximations for arbitrary ϕ, q is classically equivalent to Σ0
1-CA.

However, while the comprehension set X cannot be effectively constructed, arbitrarily

good approximations Y can be computed using bar recursion.

6.1 A game-theoretic interpretation of Σ0
1-CA

We now extract directly from the classical proof of Σ0
1-CA a bar recursive realizer for

Fin-Σ0
1-CA in terms of the product of selection functions. Bar recursive interpretations of

comprehension are not new (see e.g. [48, Chapter 11.3]) - our aim here is to provide one in

terms of EPS that has a natural game-theoretic reading. One obtains Σ0
1-CA in the form

of (6.3) from a instance of ACN,N applied to

∀n∃l∀k(∃i < kB0(n, i)→ ∃i < lB0(n, i)) (6.5)

where (6.5) is a direct consequence of the law of excluded middle sometimes referred to

as the ‘drinkers paradox’. The functional interpretation of (6.5) asks for a sequence of

selection functions ε : JNN satisfying

∀n, pN→N(∃i < p(εnp)B0(n, i)→ ∃i < εnpB0(n, i)), (6.6)

56

6.1. A game-theoretic interpretation of Σ0
1-CA

and it is clear that

εn(p) :=

0 if ∀i < p(0)¬B0(n, i)

p(0) if ∃i < p(0)B0(n, i)
(6.7)

does the job. To see this, note that if ∀i < p(0)¬B0(n, i) then the premise of (6.6) is false

for εnp = 0, and otherwise the conclusion must be true for εnp = p(0). Now, to interpret

the instance of countable choice applied to (6.5) we define

fq,ϕ := EPSε,q,ϕ(〈〉).

By Theorem 5.7 we have εnpn = f(n) and qf = pn(εnpn) for all n ≤ ϕf (for pn := p[f](n)

as in Theorem 5.7), therefore by (6.6) we obtain

∀n ≤ ϕf(∃i < qfB0(n, i)→ ∃i < f(n)B0(n, i)), (6.8)

and so fq,ϕ is a realizer for Fin-Σ0
1-CA. We can attach the game-semantics of EPS to this

particular case, where Fin-Σ0
1-CA corresponds to a partially defined game G[q, ϕ] which

can be described in mathematical terms as follows.

(a) The move at round n is a natural number k which in this context should be viewed

as a potential bound for a witness of ∃iB0(n, i).

(b) An arbitrary play α determines a subset {n | ∃i < α(n)B0(n, i)} of X.

(c) The strategy for constructing an approximation to X is given by the selection func-

tions. At position s with |s| = n, provided ϕ(ŝ) ≥ n the selection function ε|s| defines

a policy for whether or not to include n in the approximation. By default it selects 0

and attempts to get away with omitting n from the approximation. However, if the

outcome q(s ∗ 0 ∗α) (where α is the strategic extension of s ∗ 0 in the sense of Section

5.2) bounds a witness for ∃iB0(n, i), εn accepts it must change its mind and includes

n in the approximation, stealing this bound as justification.

G[q, ϕ] Finitary arithmetical comprehension

εn decide whether to include n in approximation

EPSε construct approximation to X

ϕ, q determine size and depth of approximation respectively

Table 6.1: Functional interpretation of Σ0
1-CA

Under this correspondence between plays of G[q, ϕ] and subsets of X, we see that an

optimal play of G[q, ϕ] given by f = EPSε,q,ϕ(〈〉) is an approximation to X of depth and

size given by q and ϕ. This fact is clear in informal game theoretic terms: that fn is an

57

Chapter 6. Arithmetical Comprehension

optimal move at round n implies that fn = 0 only if q([f](n) ∗ 0 ∗α[f](n)∗0) = qf does not

bound a witness for ∃iB0(n, i), otherwise fn > 0 and must by definition bound a witness

for ∃iB0(n, i).

We have taken a non-constructive derivation of Σ0
1-CA and have quickly and easily

transformed it into a constructive proof of the functional interpretation of Σ0
1-CA that can

be clearly understood in mathematical terms by using the semantics of EPS.

6.2 Fin-Σ0
1-CA as the fixpoint of an update procedure

While EPS gives us an intuitive constructive proof of Fin-Σ0
1-CA, it is natural to ask whether

we can understand the actual computation that it carries out in more detail. How does the

specific instance EPSε with ε defined as in (6.7) behave? Can we give a more illuminating

characterisation of how our realizer computes approximations to Σ0
1-CA? In this section

we show that the bar recursive realizer EPSε(〈〉) is exactly the fixed point of a learning

process that keeps track of when the selection functions ‘change their mind’ and discover

non-trivial constructive information.

An informal description of the realizer

To begin with, let us give a rough simulation of how our realizer constructs an approxima-

tion to Fin-Σ0
1-CA. Given q and ϕ it computes the sequence f = EPSε,q,ϕ(〈〉), a procedure

in which each selection function εn picks a default value 0, and waits for the εm for m > n

to compute the strategic extension for this choice before it decides whether or not to

change its mind. The non-trivial steps in the procedure are precisely the points at which

the selection functions change their mind, as only in this case do they discover genuine

constructive information.

Initially, each selection function will test 0 in turn until we reach the first point N0

at which Spector’s condition holds i.e. ϕ(0N→N, N0) = ϕ(0) < N0. Clearly this point is

given by N0 = ϕ(0) + 1. EPS will then backtrack until it finds a point n0 < N0 such that

∃i < q(0)B0(n0, i) and εn0 is forced to change its mind. We have two possibilities:

(1) no such n0 exists, in which case f = EPS(〈〉) = 0N→N;

(2) εn0(p[0](n0)) = q(0) (for ps as defined in Theorem 5.7) where n0 ≤ ϕ(0) is the greatest

such that ∃i < q(0N→N)B0(n0, i).

In the case (2) let us define

u1 := [0N→N](n0) ∗ q(0N→N).

At this point in the calculation of f the εn are testing the default value 0 for all n < n0, and

it has been decided that next([0](n0)) = q(0), or in other words EPS([0](n0)) = EPS(u1).

58

6.2. Fin-Σ0
1-CA as the fixpoint of an update procedure

The computation continues by calculating the strategic extension of u1. We find the first

point N1 > n0 such that ϕ(̂[û1](N1)) = ϕ(û1) < N1. This time, either ϕ(û1) ≤ n0 in

which case N1 = n0 + 1, or ϕ(û1) > n0 and N1 = ϕ(û1) + 1.

Putting these cases together we get N1 = max{n0 + 1, ϕ(û1) + 1}. As before, EPS

backtracks until it finds a point n0 < n1 < N1 such that ∃i < q(û1)B0(n1, i). If no such

point exists we conclude that the strategic extension of u1 is 0N→N i.e. EPS(u1) = û1. The

backtracking then continues until a point n1 < n0 is found satisfying ∃i < q(û1)B0(n1, i).

Once more, overall there are two possibilities, according to whether or not a selection

function ends up changing its mind:

(1) no such n1 exists, in which case f = EPS(û1) = û1;

(2) εn1(p[û1](n1)) = q(û1) where n1 ≤ max{n0, ϕ(û1)} = max{|u1| − 1, ϕ(û1)} is the great-

est such that n1 6= n0 and ∃i < q(û1)B0(n1, i).

In the case (2) let us define

u2 := [û1](n1) ∗ q(û1).

We have reached the next non-trivial stage in the calculation of f , in which the selection

function at n1 has changed its mind and we have next([û1](n1)) = q(û1). Now the εn are

testing 0 for all n < n1 except for the point n = n0 if n0 < n1, as this will have already

been set to the value q(0). If n1 < n0, then we are now calculating the optimal extension

of a new position [0](n1) ∗ q(û1) and we forget the value that was previously assigned to

n0.

Either way we continue by calculating the strategic extension of u2, and the algorithm

follows the same pattern as before, backtracking from the point N2 = max{n1 +1, ϕ(û2)+

1} and checking whether or not the default value works at points n < N2 that are being

tested (i.e. n 6= n0, n1 if n0 < n1, else n 6= n1). Our claim is that the process continues in

this way, yielding a sequence of updates

u0 = 〈〉 7→ u1 7→ u2 7→ . . . 7→ um

where

uj+1 = [uj](nj) ∗ q(ûj)

for nj ≤ max{|uj | − 1, ϕ(ûj)} the greatest such that uj(nj) = 0 ∧ ∃i < q(ûj)B0(nj , i) (the

condition uj(n) = 0 indicating that εn is currently in the testing stage). This corresponds

to case (2) above. If no such nj exists we have uj+1 = uj , and this corresponds to case

(1) above. We claim that f = ûm where um is the fixpoint of this process.

The idea behind looking at the computation of EPS(〈〉) in this way is that our bar

recursive realizer for Fin-Σ0
1-CA can be characterised as a learning process in the sense of

[1, 2], the ‘learning’ in this case corresponding to a selection function changing its mind.

We now make this characterisation of our realizer precise.

59

Chapter 6. Arithmetical Comprehension

EPS as a learning process

Given a finite sequence u define dom(u) := {i < |u| | u(i) > 0} (note that we consider the

value 0 to be ‘undefined’). Now define an operation ? : N∗ × ((N× N) + {∅})→ N∗ by2

u ? 〈n, x〉 := [û](n) ∗ x

and u ? ∅ = u.

Definition 6.1. (a) An update procedure is a functional η : N∗ → (N× N + {∅}) satisfying

∀u, n, x(η(u) = 〈n, x〉 → n /∈ dom(u) ∧ x > 0).

(b) Given an update procedure η and a finite sequence of numbers s, the ?-learning process

Uη,s : (ρ∗)N generated by η and s is the sequence defined by

Uη,s0 := s Uη,si+1 := Uη,si ? η(Uη,si).

(c) The learning process Uη,s has a fixpoint if there exists some j such that Uη,sj+1 = Uη,sj .

We write fix(η, s) = Uη,sj .

Remark 6.2. Note that while our definition of an update procedure in similar to e.g. Avi-

gad’s [4] and others used in the literature, our definition of the learning process generated

by an update procedure is slightly different due to the fact the operation ? performs a

‘cut-off’ update as opposed to an update ⊕ in the usual sense. We elaborate on this

below.

Remark 6.3. Fixpoints of learning processes are unique, since if Uj is a fixpoint then

Ul = Uj for all l > j. Also Uj is a fixpoint iff η(Uj) = ∅. One direction is obvious, for

the other note that if η(Uj) 6= ∅ then η(Uj) = 〈n, x〉 with n /∈ dom(Uj) and x > 0 which

implies that Uj+1(n) = x and therefore n ∈ dom(Uj+1).

Theorem 6.4. Suppose that εn : JNN is defined as

εn(p) :=

0 if ¬Cn(p(0))

p(0) otherwise

where Cn is a decidable predicate satisfying ∀n¬Cn(0). Define the update procedure ηq,ϕ

by

ηq,ϕ(u) := 〈n, q(û)〉 for µ̃n ≤ max{|u| − 1, ϕ(û)}(n /∈ dom(u) ∧ Cn(q(û))), else ∅

where µ̃n ≤ mQ(n) is the bounded search operator returning the greatest element satisfying

Q(n) if it exists. Note that the condition on Cn(0) ensures that ηq,ϕ is indeed an update

2Here we casually extend our collection of finite types to include coproducts + and a null object ∅

60

6.2. Fin-Σ0
1-CA as the fixpoint of an update procedure

procedure. Then, provably in E-HAω +EPS+BI, the learning process Uηq,ϕ,〈〉 has a fixpoint

and
̂fix(ηq,ϕ, 〈〉) = EPSε,q,ϕ(〈〉).

Proof. For given q, ϕ we use bar induction on the statement P (s) that the learning process

Uη|s|,s has a fixpoint with ̂fix(η|s|, s) = EPSε,q,ϕ(s), for

ηm(u) := 〈n, q(û)〉 for µ̃n ∈ [m,max{|u| − 1, ϕ(û)}](n /∈ dom(u) ∧ Cn(q(û))), else ∅.

Clearly the theorem follows from P (〈〉). First we must establish that for any α : NN there

exists N with P ([α](N)). Now, provably in E-HAω+EPS there exists an N satisfying Spec-

tor’s condition ϕ(α,N) < N (this fact, usually given in terms of GBR, is proved for EPS in

Proposition 11.1). In this case max{N − 1, ϕ(α,N)} < N and therefore ηN ([α](N)) = ∅,
so U

ηN ,[α](N)
0 = [α](N) is a fixpoint of UηN ,[α](N), and

EPS([α](N)) = [α](N) @ 0 = ̂fix(ηN , [α](N)).

Now given s assume that P (s ∗ x) holds for all x. We must prove P (s). If ϕ(ŝ) < |s| then

P (s) holds by a similar argument to the one above, so we assume that ϕ(ŝ) ≥ |s|, in which

case by definition of EPS:

EPS(s) =

EPS(s ∗ 0) if ¬C|s|(q(EPS(s ∗ 0)))

EPS(s ∗ q(EPS(s ∗ 0))) otherwise.

Let us define ui := U
η|s|,s

i and vi := U
η|s|+1,s∗0
i . By the hypothesis P (s ∗ 0), (vi) has a

fixpoint: let j be the least with vj = vj+1. Now, we claim that for all i ≤ j:

(i) ûi = v̂i and therefore dom(ui) = dom(vi);

(ii) s ∗ 0 ≺ ûi so in particular |s| /∈ dom(ui),dom(vi);

(iii) |s| ≤ max{|ui| − 1, ϕ(ûi)};

(iv)
n ∈ [|s|+ 1,max{|ui| − 1, ϕ(ûi)}] ∧ n /∈ dom(ui) ∧ Cn(q(ûi))

↔ n ∈ [|s|+ 1,max{|vi| − 1, ϕ(v̂i)}] ∧ n /∈ dom(vi) ∧ Cn(q(v̂i)).

We use induction. Both (i) and (ii) are clearly true if i = 0 because u0 = s and v0 = s ∗ 0.

Furthermore, max{|u0| − 1, ϕ(û0)} = max{|v0| − 1, ϕ(v̂0)} ≥ |s| by our assumption that

ϕ(ŝ) ≥ |s|, from which (iii) and (iv) follow.

Assume the induction hypothesis for i < j, and note that η|s|+1(vi) 6= ∅ by minimality

of j. Now, using the fact that

(∗) µ̃n ∈ [|s|,K]Q(n) =


µ̃n ∈ [|s|+ 1,K]Q(n) if it exists

|s| if |s| ≤ K ∧Q(|s|)

∅ otherwise

61

Chapter 6. Arithmetical Comprehension

we must have

η|s|+1(vi) = 〈n, q(v̂i)〉
(i)
= 〈n, q(ûi)〉

(iv),(∗)
= η|s|(ui).

Therefore ui+1 = [ûi](n) ∗ q(ûi) = [v̂i](n) ∗ q(v̂i) = vi+1, so (i) and (iv) clearly hold for

i+ 1, by the fact that n ≥ |s|+ 1 (ii) and (iii) follow.

Now, for i = j we have η|s|+1(vj) = ∅, and by (∗), using (iv) along with (ii) (|s| /∈
dom(uj)) and (iii) we obtain

η|s|(uj) = 〈|s|, q(ûj)〉 if C|s|(q(ûj)) else ∅.

There are two possible scenarios:

Case (a): ¬C|s|(q(EPS(s ∗ 0))), which by the bar induction hypothesis

ûj
(ii)
= v̂j

P (s∗0)
= EPS(s ∗ 0)

is equivalent to ¬C|s|(q(ûj)). This implies that η|s|(uj) = ∅ and so Uη|s|,s has fixpoint uj

and

ûj = EPS(s ∗ 0) = EPS(s).

Case (b): C|s|(q(EPS(s ∗ 0))) which as before is equivalent to C|s|(q(ûj)). This time

η|s|(uj) = 〈|s|, q(ûj)〉, so

uj+1 = [ûj](|s|) ∗ q(ûj)
(ii)
= s ∗ q(ûj).

Define u′i := uj+1+i and wi := Uη|s|+1,s∗q(ûj). By the hypothesis P (s∗q(ûj)) we can assume

that wi has a fixpoint, so let k be the least with wk = wk+1. Now we use an analogous

but simpler argument to before, where we can claim that for all i ≤ k that:

(i) u′i = wi and therefore clearly

n ∈ [|s|+ 1,max{|u′i| − 1, ϕ(û′i)}] ∧ n /∈ dom(u′i) ∧ Cn(q(û′i))

↔ n ∈ [|s|+ 1,max{|wi| − 1, ϕ(ŵi)}] ∧ n /∈ dom(wi) ∧ Cn(q(ŵi)).

(ii) |s| ∈ dom(ui),dom(wi);

These are true for i = 0 since u′0 = s ∗ q(ûj) = w0. Assuming they hold for i < k, by

minimality of k we have

η|s|+1(wi) = 〈n, q(ŵi)〉
(i)
= 〈n, q(û′i)〉

(i),(∗)
= η|s|(u

′
i)

and therefore u′i+1 = [û′i](n) ∗ q(û′i) = [ŵi](n) ∗ q(ŵi) = wi+1 and (ii) follows because

n ≥ |s|+ 1.

62

6.2. Fin-Σ0
1-CA as the fixpoint of an update procedure

For i = k we have η|s|+1(wk) = ∅, and by (∗), using (iv) along with the fact that this

time (ii) (|s| ∈ dom(u′k)) we have η|s|(u
′
k) = η|s|(uj+1+k) = ∅ and therefore Uη|s|,s has

fixpoint uj+1+k and

ûj+1+k
(i)
= ŵk

P (s∗q(ûj))
= EPS(s ∗ q(ûj))

P (s∗0)
= EPS(s ∗ q(EPS(s ∗ 0))) = EPS(s).

This completes the bar induction, and hence the proof.

Setting Cn(x) := ∃i < xB0(n, i), Theorem 6.4 gives us an alternative characterisation

of our bar recursive realizer of Fin-Σ0
1-CA. The functional interpretation of Σ0

1-CA asks

for a finite approximation Yq,ϕ to the non-computable set X := {n | B(n)} on arbitrary

counterexample functions q, ϕ. The bar recursive realizer extracted to produce Y returns

the fixpoint of a learning process Uη,〈〉, which in set theoretic terms can be written as

∅ 7→ Y1 7→ Y2 7→ . . . 7→ Ym = Y.

where Yi := {n | ∃i < Û
η,〈〉
i (n)B0(n, i)}. This learning process starts with the empty

set and by a pattern of trial and correction picks up new elements until the process

terminates. It is clear from this description why our realizer works. We can informally

write Yi+1 = [Yi](ni) ∪ {ni} for ni ∈ X, therefore by induction Yi is a subset of the

non-computable set X for all i. In addition, η(Um) = ∅ implies that, setting f = Ûm,

∀n ≤ ϕf(n /∈ Ym → ∀i < qf¬B0(n, i)),

which is precisely the condition needed for Ym to be an approximation to X.

We note that inessential adjustments to the bar recursive realizer - for instance altering

the selection functions so that they play a default value 1 instead of 0, might lead to a

realizer that is slightly more difficult to describe in these terms, but would ultimately

behave in a broadly similar fashion.

Viewing the bar recursive interpretation of Σ0
1-CA as the fixpoint of a learning process

not only improves our understanding of how programs from proofs involving Σ0
1-CA behave,

but brings the ND interpretation and bar recursion closer to the world of learning-based

realizability that has been extensively explored in one sense or another in [2, 3, 4, 22]

to name just a few. It is not surprising in itself that Spector’s bar recursion can be

characterised in terms of learning - indeed it has been suggested that the concept of

learning underlies and unites all computational interpretations of classical logic (see e.g.

[2]). Nevertheless it is illuminating to be able to describe in more concrete terms the

variation on learning that specific computational interpretations implement, as we have

done in Theorem 6.4.

We will not go into any detail here on how the combination of negative translation

and functional interpretation compare with the more direct learning-based realizability

63

Chapter 6. Arithmetical Comprehension

interpretations of classical logic that have been produced in the last decade or so. We

point out that the learning process defined in this section is based on an operation ?

which only retains constructive information below the point at which we’re updating.

This ‘forgetful’ behaviour is an intrinsic feature of the backtracking implemented by bar

recursion. In contrast, learning in the sense of [3, 4] is based on an operation ⊕ is given

by

(α ⊕ 〈n, x〉)(m) :=

x if m = n

α(n) otherwise.

where α is a partial function of type N→ N. The operator ⊕ generates learning processes

that always retain any constructive information they find.

All this raises an interesting question of whether the functional interpretation is of

Σ0
1-CA is better witnessed directly using a different form of recursion based on learning

processes, not only to produce more expressive and intuitive realizers, but for the sake

of efficiency too. However, we leave a more detailed study of this rather subtle issue to

future work.

64

CHAPTER

SEVEN

Weak König’s Lemma for Undecidable Trees

In the previous chapter we gave a bar recursive computational interpretation of arith-

metical comprehension that could be understood in intuitive game-theoretic terms. In

this chapter we examine, from the same perspective, the computational content of weak

König’s lemma for Σ0
1-trees. We give some applications in mathematics, in each case

providing an informal game-theoretic description of the extracted realizers.

When we talk of weak König’s lemma in the context of reverse mathematics we usually

mean weak König’s lemma restricted to quantifier-free trees (as in Section 2.3). Weak

König’s lemma for undecidable Σ0
1-trees (Σ0

1-WKL) is considerably stronger and can be

used to conveniently formalise several important theorems of mathematics including the

Bolzano-Weierstrass theorem and the infinite Ramsey’s theorem, as has been done in [78]

and [57] respectively - bar recursive realizers for these principles also being extracted in

[78] and [56] respectively.

In this Chapter we focus on investigating the semantics of the general bar recursive in-

terpretation of Σ0
1-WKL, and as applications we aim to derive readable constructive proofs

of the finitizations of these two theorems given by the functional interpretation.

Weak König’s lemma for Σ0
1 trees (Σ0

1-WKL). Any infinite binary Σ0
1-tree T has an

infinite branch α.

We write T (sB
∗
) :≡ ∃kT0(s, k) where T0(s, i) is quantifier-free. Without loss of generality

we can insist on monotonicity in the second argument by setting T ′0(s, k) :≡ ∃i < kT0(s, i),

which will turn out to be quite convenient when extracting our realizer. For Σ0
1-trees, prefix

closure ∀s, t(T (s ∗ t) → T (s)) is no longer a purely universal statement, and our realizer

is constructed relative to a functional θ : B∗ × N → N that witnesses closure of T in the

following sense:

∀s, t, k(∃i < kT0(s ∗ t, i)→ ∃i < θ(s ∗ t, k)T0(s, i)). (7.1)

65

Chapter 7. Weak König’s Lemma for Undecidable Trees

We can write Σ0
1-WKL formally as

Σ0
1-WKL : ∀n∃s ∈ Bn, kT ′0(s, k)→ ∃αBN

, βN
N∀nT ′0([α](n), β(n)).

where in fact the conclusion is slightly strengthened through an application of QF-AC to

obtain the function β. As with WKL we can absorb the bounded quantifier ∃s ∈ Bn by

defining

hk(n) := µs ∈ Bn∃i < kT0(s, i) else 0

so that Σ0
1-WKL becomes

Σ0
1-WKL : ∀n∃kT ′0(hkn, k)→ ∃α, β∀nT ′0([α](n), β(n)).

Remark 7.1. As with Σ0
1-CA we could alternatively write Σ0

1-WKL as a single axiom i.e.∀f [∀s, t(∃k(f(s ∗ t, k) = 0)→ ∃k(f(s, k) = 0))

→ (∀n∃s, k(f(s, k) = 0)→ ∃α∀n∃k(f([α](n), k) = 0))]

This is (essentially) the form in which it is interpreted in e.g. [78]. The difference here

is that we interpret a rule form of Σ0
1-WKL in which we assume that the predicate T is

prefix closed. This is certainly sufficient for applications of Σ0
1-WKL to specific trees, and it

means that we have the luxury of a somewhat simpler program extraction. Note, however,

that by calibrating exactly where our realizers for the rule form use prefix closure, we could

easily regain a functional interpretation of the axiom form of Σ0
1-WKL.

It is easy to see that Σ0
1-WKL can be reduced to WKL by encoding finite branches

s : B∗ as natural numbers and using a single instance of Σ0
1-CA to produce a characteristic

function for T . We analyse the computational content of a slightly different reduction of

Σ0
1-WKL to WKL using bounded collection and Π0

1-AC.

Theorem 7.2. Σ0
1-WKL is instancewise provable from Π0

1-AC over WE-PAω + QF-AC +

WKL.

Proof. By the law of excluded middle we have

∀n∀sBn∃l∀k(∃i < kT0(s, i)→ ∃i < lT0(s, i)).

Applying bounded collection over the quantifier ∀s ∈ Bn we have

∀n∃L∀sBn , k(∃i < kT0(s, i)→ ∃i < LT0(s, i))

and therefore by Π0
1-AC there exists β : N→ N satisfying

∀s, k(∃i < kT0(s, i)→ ∃i < β(|s|)T0(s, i)). (7.2)

66

7.1. A bar recursive interpretation of Σ0
1-WKL

Observe that this is just a reformulation of (6.2) where we now have an instance of

bounded collection as an intermediate step. Now, if T is infinite, then by (7.2) T β(s) :≡
T ′0(s, β(|s|)) is an infinite quantifier-free tree. By WKL on T β there exists a α : BN satisfying

∀nT β([α](n)) or in other words

∀nT ′0([α](n), β(n))

which is the conclusion of Σ0
1-WKL.

7.1 A bar recursive interpretation of Σ0
1-WKL

Using MPω, the negative translation of Σ0
1-WKL is equivalent to

∀n∃kT ′0(hkn, k)→ ¬¬∃α, β∀nT ′0([α](n), β(n)),

so we will construct a realizer for the functional interpretation of

∃gNN∀nT ′0(hgnn, gn)→ ∀ω∃α, β∀n ≤ ωαβT ′0([α](n), β(n)) (7.3)

where ω : BN × NN → N, which will entail the extraction of α, β and n on parameters g,

ω and θ.

Remark 7.3. Note that technically the functional interpretation only requires us to realize

∃gNN∀nT ′0(hgnn, gn)→ ∀ω̃∃α, βT ′0([α](ω̃αβ), β(ω̃αβ)). (7.4)

However, bar recursion naturally provides us with a realizer for (7.3), and either way

a realizer for (7.3) is easily obtained from a realizer for (7.4) by setting ω̃αβ := µn ≤
ωαβ¬T ′0([α](n), β(n)).

One can rephrase (7.3) more naturally as follows

Finitary weak König’s lemma for Σ0
1 trees (Fin-Σ0

1-WKL). Suppose there exists a

function g : N→ N witnessing that the Σ0
1-tree T has branches of arbitrary length. Then

for any ω : BN × NN → N there exists a sequence α : BN along with a function β : NN wit-

nessing that α is an approximation to an infinite branch of T , in the sense that for all

n ≤ ωαβ, β(n) bounds a witness for [α](n) ∈ T .

We now extract from the classical proof of Σ0
1-WKL a constructive proof of (the full

functional interpretation of) Fin-Σ0
1-WKL. Our first step is the construction of an approx-

imation to the function β in (7.2) using the product of selection functions.

Lemma 7.4. For arbitrary q, ϕ : NN → N there exists βq,ϕ : N→ N satisfying

∀n ≤ ϕβ∀s ∈ Bn(T ′0(s, qβ)→ T ′0(s, βq,ϕn)).

67

Chapter 7. Weak König’s Lemma for Undecidable Trees

Proof. Define the selection functions εn : JNN by

εn(p) := p(i)(0) (7.5)

where i ≤ 2n is the least such that

∀s ∈ Bn(T ′0(s, p(i+1)(0))→ T ′0(s, p(i)(0))).

It is easy to see that εn is well-defined. If not, then we end up with a sequence s0, . . . , s2n

in Bn such that

∃i < p(j+1)(0)T0(sj , i) ∧ ∀i < p(j)(0)¬T0(sj , i),

for all j, which implies that the sj form 2n + 1 distinct elements of Bn - a contradiction.

Therefore the εn satisfy

∀n, p∀s ∈ Bn(T ′0(s, p(εnp))→ T ′0(s, εnp))

Now define βq,ϕ := EPSε,q,ϕ(〈〉). By the fact that EPS solves Spector’s equations (5.3) i.e.

βq,ϕn = εnpn and pn(εnpn) = qβq,ϕ for all n ≤ ϕβq,ϕ, we have

∀s ∈ Bn(T ′0(s, qβq,ϕ)→ T ′0(s, βq,ϕn))

for all n ≤ ϕβq,ϕ.

Finally, we use Howard’s computational interpretation of WKL (Section 4.3) in con-

junction with our approximation of β to witness Fin-Σ0
1-WKL. Informally, we assume the

existence of a non-computable function β satisfying

∀s, k(∃i < kT0(s, k)→ ∃i < β(|s|)T0(s, i))

and compute an approximation αβ to an infinite branch in the tree T β(s) ≡ ∃i <
β(|s|)T0(s, i) on the functional ωβ := λα.ωαβ. We then calibrate the size qω, ϕω of the

approximation to β necessary to validate our realizer. Of course, in pure logical terms this

is nothing more than the functional interpretation of implication. We (very informally)

illustrate the whole construction in Figure 7.1.

Theorem 7.5. Suppose we have a binary tree T , whose prefix closure is witnessed by θ

as in (7.1). Given parameters g : N → N and ω : BN × NN → N, for arbitrary β : N → N
define Kβ

ω using Howard’s binary bar recursion as

Kβ
ω(s) :=

0 if ω(ŝ, β) < |s|

1 + max{Kβ
ω(s ∗ 0),Kβ

ω(s ∗ 1)} otherwise.

68

7.1. A bar recursive interpretation of Σ0
1-WKL

Th. 4.7

λβ . |WKL[β]|αω,βωβ

L. 7.4

|Σ0
1-CA|βqω,ϕω

Th. 7.5
|Σ0

1-WKL|αβ ,βω

Figure 7.1: Constructive proof of finitary weak König’s lemma for Σ0
1-trees

Then define Nβ
ω := Kβ

ω(〈〉) and αβω,g := ûβω,g where uβω,g is the least u � h
gNβ

ω
Nβ
ω satisfying

ω(û, β) < |u| (which must exist by the proof of Theorem 4.7). Finally, abbreviate βω,g :=

βqω,g ,ϕω,g as in Lemma 7.4 where

qω,gβ := θ(h
gNβ

ω
Nβ
ω , gN

β
ω)

ϕω,gβ := ωαβω,gβ.

Then Nω,g := N
βω,g
ω , αω,g := α

βω,g
ω,g and βω,g witness the functional interpretation of (7.3)

i.e.

∀g, ω(T ′0(hgNω,gNω,g, gNω,g)→ ∀n ≤ ωαω,gβω,gT ′0([αω,g](n), βω,gn).

Proof. Let n ≤ ωαω,gβω,g. Then because αω,g = ûω,g where we abbreviate uω,g := u
βω,g
ω,g

we have,

[αω,g](n) � [αω,g](ωαω,gβω,g) = [ûω,g](ω(ûω,g, βω,g))
ω(û,β)<|u|
≺ uω,g � hgNω,gNω,g.

Therefore by prefix closure of T (witnessed by θ) and definition of qω,g,

T ′0(hgNω,gNω,g, gNω,g)→ T ′0([αω,g](n), θ(hgNω,gNω,g, gNω,g))→ T ′0([αω,g](n), qω,gβω,g).

Now by Lemma 7.4 and the fact that ωαω,gβω,g = ϕω,gβω,g, we have

∀n ≤ ωαω,gβω,g∀s ∈ Bn(T ′0(s, qω,gβω,g)→ T ′0(s, βω,gn)),

so setting s = [αω,g](n) we get

T ′0([αω,g](n), qω,gβω,g)→ T ′0([αω,g](n), βω,gn)

and putting these together we obtain

T ′0(hgNω,gNω,g, gNω,g)→ T ′0([αω,g](n), βω,gn)

for arbitrary n ≤ ωαω,gβω,g, and we’re done.

69

Chapter 7. Weak König’s Lemma for Undecidable Trees

A game theoretic description of the realizer

We now make explicit the game semantics of our realizer for Fin-Σ0
1-WKL. The situation

is more complex than for arithmetical comprehension in the previous chapter, partly due

to the fact that we now have two instances of bar recursion. However, the most significant

component of the realizer is the single instance of EPS used in Lemma 7.4 to construct the

comprehension function β, and this behaves similarly to our realizer in Chapter 6, as the

selection functions (7.5) are just an iterative version of (6.7). Our constructive proof of

Fin-Σ0
1-WKL can be described in terms of a central sequential game G[ω, g] = (ε, qω,g, ϕω,g)

of type (N,N) parametrised by ω and g.

(a) A play β of G defines a subset T β = {s | ∃i < β(|s|)T0(s, i)} of the non-computable

tree T , where moves at round n are natural numbers that witness branches of length

n. Note that for arbitrary β the set T β need not be a tree itself.

(b) Under the assumption that g satisfies the premise of (7.3), for each play β we can

construct, via binary bar recursion, a branch αβω,g satisfying T ([αβω,g](ωα
β
ω,gβ)).

Now, the property ‘[αβω,g](ωα
β
ω,gβ) is a branch of T ’ is substantially weaker than [αβω,g](ωα

β
ω,gβ),

β being an approximation to an infinite branch in the sense of Fin-Σ0
1-WKL. For this, we

require that β also satisfies ∀n ≤ ωαβω,gβT ′0([αβω,g](n), βn), or in other words

∀n ≤ ωαβω,gβ([αβω,g](n) ∈ T β).

One way of looking at β is that it allows us to compute arbitrarily many witnesses that

in a sense converge to αβω,g.

The role of our main instance of EPS is to compute an optimal play βq,ϕ in G = (ε, q, ϕ)

that will form an approximation to the ideal characteristic function β in (7.2) relative to

given counterexample functions q and ϕ. We calibrate the size of this approximation in

terms of ω and g to ensure that T βq,ϕ contains [α
βq,ϕ
ω,g](n) for n ≤ ωαβq,ϕω,g βq,ϕ, and therefore

contains an approximation to an infinite branch.

(c) The selection functions ε defined in Lemma 7.4 build an approximation βq,ϕ relative

to some ϕ, q using the following strategy. At position tN
∗

with |t| = n and ϕ(t̂) ≥
n, the selection function εn decides which branches of length n to include in the

approximation. It plays a default value x0 = 0 and tries to get away with omitting all

branches in Bn from the approximation. If, however, the outcome p(0) = q(EPS(t ∗
0)) = q(t∗0∗α0) (where α0 is the optimal extension of t∗0) bounds a witness for T0(s, i)

for some s ∈ Bn, it changes its mind and updates x0 7→ x1 = q(t ∗ 0 ∗α0) to include all

such s in the approximation. It now repeats this step: if p(p(0)) = p(x1) = q(t∗x1∗α1)

(where α1 the optimal continuation of t ∗ x1) bounds a witness for any new branches

not already witnessed by x1, εn updates x1 7→ x2 = q(t ∗ x1 ∗ α1) and adds those new

70

7.1. A bar recursive interpretation of Σ0
1-WKL

branches to the approximation. It continues the process of trial and improvement at

most 2n times before it find some xj bounding a suitably large subset of Bn such that

∃i < q(t ∗ xj ∗ αj)T0(s, i)→ ∃i < xjT0(s, i)

for all s ∈ Bn.

An optimal play βq,ϕ in the game satisfies

n ≤ ϕβq,ϕ, ∀s ∈ Bn[∃i < qβq,ϕT0(s, i)→ ∃i < βq,ϕnT0(s, i)].

In other words, the set T βq,ϕ is an approximation to T of size ϕβq,ϕ and depth qβq,ϕ. Now,

given ω and g, specific parameters qω,g, ϕω,g for G[ω, g] are given as follows.

(d) The relevant part of a play β, which determines the size of the approximation to T ,

is given by ϕω,gβ := ωαβω,gβ to guarantee that the approximation covers the branches

[αβω,g](n) for n ≤ ωαβω,gβ.

(e) The outcome of a play β, which determines the ‘depth’ of the approximation to

T , is given by qω,gβ := θ(h
gNβ

ω
Nβ
ω , gN

β
ω), which guarantees that the approximation

also covers witnesses to [αβω,g](n) for all n ≤ ωαβω,gβ, since T ′0(h
gNβ

ω
Nβ
ω , gN

β
ω) implies

T ′0([αβω,g](n), qω,gβ).

Together, these imply that an optimal play βω,g = βqω,g ,ϕω,g of G[ω, g] satisfies

∃i < βω,gnT0([α
βω,g
ω,g](n), i)

for all n ≤ ωα
βω,g
ω,g βω,g and so forms an approximation to T β of sufficiently high quality

that it contains an approximation to an infinite branch of T relative to ω, hence realizing

the functional interpretation of Σ0
1-WKL.

The semantics of EPS give us a clear game-theoretic characterisation of our constructive

proof of Fin-Σ0
1-WKL, and one which nicely reflects the structure of the classical proof

it was extracted from. Our derivation of Σ0
1-WKL in Theorem 7.2 contains three key

ineffective steps: first a combination of the law of excluded middle and bounded collection

to construct a bound L for witnesses T (s) for s of fixed length, then an application of

Π0
1-AC to obtain a characteristic function β for T , and finally weak König’s lemma applied

to the quantifier-free tree T β.

These three steps correspond to the main components of the game G[ω, g]. Bounded

collection is interpreted by the selection functions εn which define a strategy for G[ω, g] that

entails approximately deciding which branches of length n lie in T , and their unbounded

product EPSε interprets Π0
1-AC to form an approximation to the characteristic function

β. Finally, the outcome and control functionals ϕω,g and qω,g constructed using binary

bar recursion interpret WKL and ensure that T β contains an approximation to an infinite

branch of T .

71

Chapter 7. Weak König’s Lemma for Undecidable Trees

classical proof sequential game G[ω, g]

LEM/bounded collection selection functions εn

countable choice unbounded product EPSε

weak König’s lemma outcome and control functionals qω,g, ϕω,g

Table 7.1: Functional interpretation of Σ0
1-WKL

Fin-Σ0
1-WKL as the fixpoint of an update procedure

We claim that the ideas from Section 6.2, in which the realizer for Σ0
1-CA was characterised

in terms of a learning process, are also valid for our realizer of Σ0
1-WKL whose selection

functions ε employ a similar strategy. Our approximation to T could be characterised as

the fixpoint of a ?-learning process

T0 = ∅ 7→ T1 7→ T2 7→ . . . 7→ Tm ⊇ [α](ωαβ)

where Ti+1 is obtained from Ti by adding (potentially several) new branches of length

n to Ti and erasing all branches of length greater than n. In contrast to the selection

functions defined in Chapter 6, our selection functions here test up to 2n values before

deciding on a move, suggesting that our update procedure would allow updated points to

be ‘improved’ finitely many times. It would be interesting to see an extension of Theorem

6.4 that incorporates our realizer for Σ0
1-WKL

7.2 The Bolzano-Weierstrass theorem

We now give the first of two applications in which we briefly illustrate how the game

semantics of our realizer of Σ0
1-WKL might be useful in practise to shed some light on the

computational content of well-known theorems in mathematics. The Bolzano-Weierstrass

principle (BW) follows directly from Σ0
1-WKL, and we give a straightforward computational

interpretation to BW for rational sequences in the unit interval. The reader is directed to

[78] for a comprehensive account of the computational content of the Bolzano-Weierstrass

principle. There a general bar recursive realizer for the ND interpretation of BW for se-

quences of reals in the product space Πn∈N[−kn, kn] is given, and a complexity analysis of

the realizer is carried out to calibrate the computational contribution of fixed instances of

BW used in proofs of Π2-theorems. However, the realizer given in [78] is rather intricate,

and we feel it is beneficial to present a realizer in terms of EPS for a simple instance of

BW and describe how it behaves.

Bolzano-Weierstrass principle for [0, 1]Q. Any sequence (xi) of rationals in the unit

interval [0, 1] contains a subsequence (xbi) converging to some a ∈ [0, 1].

72

7.2. The Bolzano-Weierstrass theorem

We can express this formally as

BW : ∀(xi)N→[0,1]Q∃αBN
, bN

N∀n(bn < b(n+ 1) ∧ xbn ∈ I[α](n)),

where for a finite sequence of booleans s we define the interval

Is :=

|s|−1∑
i=0

si
2i+1

,

|s|−1∑
i=0

si
2i+1

+
1

2|s|


for |s| > 0 and I〈〉 := [0, 1]. Note that x ∈ Is is decidable for x : Q. Intuitively we identify

α : BN with the real number a :=
∑∞

i=0
αi

2i+1 , so that xbn ∈ I[α](n) ↔ |xbn − a| ≤ 2−n and

therefore (xbi) converges to a (although a detailed formalisation of BW would require us

to make this intuition explicit relative to some appropriate encoding of the real numbers

- see [78] for details).

Theorem 7.6. BW is instancewise provable from Σ0
1-WKL over WE-PAω + QF-AC.

Proof. Fix the sequence (xi) and define

T (s) :≡ ∃i(|s| ≤ i ∧ (xi ∈ Is)︸ ︷︷ ︸
T0(s,i)

).

Observe that the functional θ witnessing prefix closure of T can be taken to be the identity

in this case, as T0(s ∗ t, i) → T0(s, i) for all s, t because Is∗t ⊆ Is. The tree T is infinite

because for any n there is some sequence s of length n such that the interval Is contains

the point xn. Therefore by Σ0
1-WKL there exists α : BN and β : NN satisfying

∀n∃i ∈ [n, β(n))(xi ∈ I[α](n)).

Now define bα,β : N→ N primitive recursively by

bα,β(0) := 0

bα,β(n+ 1) := µi ∈ [b(n) + 1, β(b(n) + 1))(xi ∈ I[α](b(n)+1)).

Then b(n) < b(n+1) by definition. Moreover, xb(0) ∈ I〈〉 and xb(n+1) ∈ I[α](bn+1) ⊆ I[α](n+1)

since bn+ 1 ≥ n+ 1. Therefore α and bα,β satisfy BW.

To solve the functional interpretation of BW we must produce a witness for α and b in

∀(xi), ψBN×NN→N∃α, b∀n ≤ ψ(α, b)(bn < b(n+ 1) ∧ xbn ∈ I[α](n)), (7.6)

a statement which can be rephrased as

73

Chapter 7. Weak König’s Lemma for Undecidable Trees

Finitary Bolzano-Weierstrass principle for [0, 1]Q (Fin-BW). Suppose (xi) is a se-

quence of rationals in [0, 1]. For an arbitrary functional ψ : BN × NN → N, there exists

α ∈ [0, 1] and a function b : N→ N such that xb0, xb1, . . . , xb(ψ(α,b)) is a finite subsequence

of (xi) satisfying |xbn − α| ≤ 2−n for all n ≤ ψ(α, b).

A realizer for this computational interpretation of BW can be easily constructed from our

realizer of Fin-Σ0
1-WKL.

Theorem 7.7. Given (xi) and ψ, primitive recursively define g : N → N and ωψ : BN ×
NN → N by

g(n) := n+ 1

ωψ(α, β) := bα,β(ψ(α, bα,β))

where bα,β is defined by

bα,β(0) := 0

bα,β(n+ 1) := µi ∈ [b(n) + 1, β(b(n) + 1))(xi ∈ I[α](b(n)+1)), else b(n) + 1.
.

Construct βψ := βωψ ,g and αψ := αωψ ,g as in Theorem 7.5. Then bψ := bαψ ,βψ and αψ

realize Fin-BW (7.6).

Proof. We have T0(hgnn, gn) for all n since xn lies in at least one Is for s : Bn. Therefore

by Theorem 7.5

∀n ≤ ωψ(αψ, βψ)∃i ∈ [n, βψ(n))(xi ∈ I[αψ](n)).

Clearly xbψ0 = x0 ∈ I〈〉, and n < ψ(αψ, bψ) implies that bψ(n) + 1 ≤ bψ(ψ(αψ, bψ)) =

ωψ(αψ, βψ) (since we have bψ(i) < bψ(i+ 1) by definition) and hence

∃i ∈ [bψ(n) + 1, β(bψ(n) + 1))(xi ∈ I[αψ](bψ(n)+1)).

This implies that xbψ(n+1) ∈ I[αψ](bψ(n)+1) ⊆ I[αψ](n+1) and we’re done.

Because our realizer for Fin-BW is constructed directly from that of Fin-Σ0
1-WKL, it

also inherits the game-semantics we have imposed on the latter, and its main component

is the computation of an optimal strategy in the game G[ωψ, g] for ωψ and g as defined

in Theorem 7.7. We will not reiterate in detail the description of our realizer given in

Section 7.1, although it is instructive to describe in a more informal manner the concrete

sequential game that arises in this case.

Intuitively, in this scenario objects α : BN represent real numbers in [0, 1] and objects

β : NN search for convergent subsequences of (xi): indeed, if α is an infinite branch of T

witnessed by β then the function bα,β yields a subsequence (xbi) that converges to α. In

order to construct an approximation xbψ0, . . . , xbψ(ψ(αψ ,bψ)) to a convergent subsequence we

74

7.3. Ramsey’s theorem for pairs

require an approximation αψ, βψ to an infinite branch of T of size ωψαψβψ = bψ(ψ(αψ, bψ))

for bψ = bαψ ,βψ : Because our g witnesses that T is infinite, the approximation satisfies

∀n ≤ bψ(ψ(αψ, bψ))∃i ∈ [n, βψ(n))(xi ∈ I[αψ](n)),

and in turn this guarantees that the construction bψ always satisfies xbψ(n) ∈ I[αψ](n)

for n ≤ ψ(αψ, bψ), and therefore provides us with a subsequence of length ψ(αψ, bψ)

approximately converging to αψ.

The main instance of EPS in our realizer for Σ0
1-WKL finds an optimal play in the game

in which the selection function εn is responsible for collecting information about which

intervals Is for |s| = n are inhabited by elements of (xi) for i ≥ n. Very roughly, the

backtracking implemented by EPS is based on the following idea: an initial segment of

a play β corresponds to a collection of candidates for the initial segment of a convergent

subsequence, and the bar recursion attempts to extend this collection to an approximation

to a convergent subsequence. If this extension lies outside of the intervals inhabited by

the initial collection, we update our initial collection with elements from this extension

and repeat the process.

Of course, further work is needed to make all this precise. However, at the very least

we have been able to characterise the basic mathematical meaning of the main components

of G[ωψ, g], which we summarise in Table 8.2.

G[ωψ, g] Finitary Bolzano-Weierstrass theorem

g(n) there is an interval in partition of size 2n that is inhabited by xn

εn find intervals in partition of size 2n that are inhabited by some xi for i ≥ n
EPSε construct approximation to convergent subsequence (via bα,β)

ωψ make sure length of resulting approximation is large enough relative to ψ

Table 7.2: Functional interpretation of BW

7.3 Ramsey’s theorem for pairs

We conclude this chapter with a computational interpretation of the proof of Ramsey’s

theorem for pairs by Erdős and Rado [25, Section 10.2]. Unsurprisingly, Ramsey’s theorem

has been extensively studied in logic, and several constructive interpretations have been

offered. A computational analysis of Ramsey’s theorem is given in e.g. [7, 21, 93], and also

in [56] where a realizer for its ND interpretation based on the Erdős-Rado proof is given,

even for RT2
<∞. However, our work here is directly inspired by that of Kohlenbach and

Kreuzer [57] who demonstrate that the Erdős-Rado proof can be formalised with Σ0
1-WKL.

Using a slightly different formalisation to theirs, we apply our realizer for Σ0
1-WKL to

75

Chapter 7. Weak König’s Lemma for Undecidable Trees

extract a new computational interpretation of Ramsey’s theorem in terms of the product

of selection functions. Note that the primary motivation of [57] is to establish conservation

results and bounds on the computational complexity of programs extracted from proofs

using Ramsey’s theorem (see also [55, 58]). Here we simply wish to gain some insight into

the constructive meaning of the well-known and proof theoretically non-trivial Erdős-Rado

construction.

A more thorough treatment of the interpretation of Ramsey’s theorem using the prod-

uct of selection functions is given by the author in [68]. Here, Howard’s realizer for WKL

is replaced by a binary product of selection functions (see Section 7.4), and using in addi-

tion the finite product of selection functions to interpret the infinite pigeonhole principle

a computational interpretation of Ramsey’s theorem is given purely in terms of three co-

ordinated games.

Ramsey’s theorem for pairs (RT2
n). For any n-colouring c : N(2) → [n] of pairs of

natural numbers, there exists an infinite set X ⊆ N that is pairwise monochromatic.

Pairwise monochromatic means that there exists some x < n such that c{i, j} = x for all

{i, j} ∈ X(2). In our analysis of Ramsey’s theorem we restrict ourselves to the two-colour

case RT2
2, although everything that follows can be directly extended to the general case

(we will indicate how as we go along) and the behaviour of the general program is largely

analogous to this special case. Written formally

RT2
2 : ∀cN(2)→[2]∃x < 2, FN→N∀n(Fn ≥ n ∧ ∀i, j ≤ n(Fi < Fj → c({Fi, Fj}) = x)).

(7.7)

Note that the infinite monochromatic set is encoded by F as X := {n | ∃k(Fk = n)}.

Notation. In the following it is more natural to encode c as a function c : N2 → [2] satis-

fying c(i, j) = c(j, i) for i < j and c(i, i) = 0.

The main idea behind the Erdős-Rado proof of RT2
n is to organise the natural numbers

into a tree (described as an ordering ≺ on N) whose branches are min-monochromatic,

in the sense that c(i, j) = c(i, k) for i ≺ j ≺ k. This is the so-called Erdős-Rado

(E/R) tree. The E/R tree is finitely branching, and therefore contains an infinite min-

monochromatic branch a : NN. By the infinite pigeonhole principle applied to the colour-

ing ca(i) = c(a(i), a(i + 1)) there exists an infinite subset of this branch that is pairwise

monochromatic. By encoding branches of the E/R tree as branches of a binary Σ0
1-tree,

we show that Ramsey’s theorem can be derived from Σ0
1-WKL.

It is important to remark why - as in [57] - the Erdös-Rado proof is preferred to Ram-

sey’s seemingly simpler proof in [75]. Ramsey constructs an infinite min-monochromatic

76

7.3. Ramsey’s theorem for pairs

branch directly using dependent choice: First we define a0 = 0, then we use IPHP to

produce an infinite set A1 ⊆ N\0 that is monochromatic under c0(i) = c(0, i) and define

a(1) = minA1. Next use IPHP to produce an infinite set A2 ⊆ A1\a(1) that is monochro-

matic under ca(1)(i) = c(a(1), i) and define a(2) = minA2 and so on. It is easy to see that

the resulting a is min-monochromatic. However, Ramsey’s construction uses dependent

choice of type 1 (and cannot even be formalised in the subsystem ACA0 [84]), therefore

its computational interpretation would seemingly involve bar recursion of level 1. Our

interpretation of the Erdős-Rado proof, on the other hand, makes use of the product of

selection functions of lowest type only, meaning that our construction is computationally

simpler.

Definition 7.8 (Erdős/Rado tree). Given a colouring c : N2 → [2], define a partial order ≺
on N recursively as follows:

1. 0 ≺ 1

2. Given that ≺ is already defined on the initial segment of the natural numbers [m],

for i < m define

i ≺ m iff c(k, i) = c(k,m), for all k ≺ i.

Note that ≺ is a suborder of ≤, and also that ≺ is decidable.

It is not too hard to show that ≺ is transitive, and also that i ≺ j iff i < j for

i, j ∈ pd(m). Therefore ≺ defines a tree on N, the so-called Erdős/Rado tree, whose

branches are min-monochromatic i.e. c(k, i) = c(k, j) for k ≺ i ≺ j. Moreover, this tree is

binary branching because i and j are distinct successors of k if and only if c(k, i) 6= c(k, j)

(for the general n-colour case the E/R-tree is n-branching). For proofs of these facts see

[57, Section 4].

Lemma 7.9. The tree ≺ has an infinite branch, or in other words there exists a : N→ N
satisfying

∀n(n ≤ an ∧ ∀i, j, k < n(ak < ai ∧ ak < aj → c(ak, ai) = c(ak, aj))), (7.8)

provably in WE-PAω + QF-AC + Σ0
1-WKL.

Proof. Define the Σ0
1 tree T by

T (s) :≡ ∃k(|s| ≤ k ∧ ∀i < |s|(si = 0↔ i ≺ k)︸ ︷︷ ︸
T0(s,k)

),

Note that T (s ∗ t, k) → T (s, k). If a binary sequence s belongs to T then it is the

characteristic function of a proper initial segment of a branch in the E/R tree. Clearly T

77

Chapter 7. Weak König’s Lemma for Undecidable Trees

has branches of arbitrary length: for any n we have T0(s, n) where s is the branch of length

n defined by si = 0 ↔ i ≺ n, i.e. s is the characteristic function of pd(n). Therefore by

Σ0
1-WKL there exist α, β satisfying

∀n∃k ∈ [n, β(n))∀i < n(α(i) = 0↔ i ≺ k). (7.9)

We must now show that α encodes an infinite min-monochromatic branch. Let us construct

the function aα,β : N→ N as

a(n) =


0 if n = 0

µi ∈ [n, β(2)(n)) such that α(i) = 0, else n if n > 0.

(7.10)

We claim that a satisfies α(a(n)) = 0 for all n. If this is so, then a also satisfies (7.8), since

a(n) ≥ n by definition, and if ak < ai < aj then setting n = aj + 1 in (7.9) gives some k′

such that ai, aj, ak ≺ k′ and therefore ak ≺ ai ≺ aj and hence c(ak, ai) = c(ak, aj).

Clearly α(a(0)) = α(0) = 0 since 0 ≺ k for all k. To prove the claim for n > 0,

suppose for contradiction that α(i) 6= 0 for all i ∈ [n, β(2)(n)). Let j < n be the largest

such that α(j) = 0 (this exists since 0 ≺ k for all k). By (7.9) let k0 ∈ [n, β(n)) be the

least satisfying ∀i < n(α(i) = 0 ↔ i ≺ k0). Then k0 is an immediate successor of j,

otherwise if j ≺ x ≺ k0 then x ≥ n by maximality of j, contradicting minimality of k0.

Next, define k1 ∈ [β(n), β(2)(n)) to be the least satisfying ∀i < β(n)(α(i) = 0 ↔ i ≺ k1).

By assumption, j is the greatest number < β(n) with α(j) = 0, therefore k1 is also an

immediate successor of j. But there exists k2 ≥ β(2)(n) satisfying ∀i < β(2)(n)(α(i) =

0 ↔ i ≺ k2). Because k0 < k1 < k2 and j ≺ k2, by the fact that the E/R tree is

binary branching we must have ki ≺ k2 and therefore α(ki) = 0 for i = 0 or 1. But

ki ∈ [n, β(2)(n)), a contradiction.

Remark 7.10. In generalising the proof of Lemma 7.9 for m-colours we would need to

define a(n) = µk ∈ [n, β(m)) . . . to reflect the fact that the E/R-tree is m-branching.

Remark 7.11. The formalisation of Ramsey’s theorem in [57] is based on a slightly different

Σ0
1-tree whose branches represent colourings of branches of the E/R tree as opposed to

characteristic functions of those branches. There the priority is a formalisation that is

optimal with respect to the amount of induction used, here we have no such concerns and

prefer a formalisation in which branches of T directly encode branches of the E/R tree.

Theorem 7.12. RT2
2 is instancewise provable from Σ0

1-WKL, over WE-PAω + QF-AC.

Proof. We use Lemma 7.9 along with IPHP, which we recall states that for any colouring

c : N→ [k] there exists x ≤ k such that

∀n∃m(m ≥ n ∧ c(m) = x).

78

7.3. Ramsey’s theorem for pairs

Define the colouring ca : N→ [2] as ca(n) := c(a(n), a(a(n)+1)) for a as defined in Lemma

7.9. Then by QF-AC there exists x < 2 and p : N→ N such that p(n) ≥ n for all n and

x = ca(pi) = c(a(pi), a(a(pi) + 1))
(7.8)
= c(a(pi), a(pj))

for any i, j with a(pi) < a(pj). Hence setting F (n) := a(pn) we have

F (n) ≥ n ∧ ∀i, j ≤ n(Fi < Fj → c(Fi, F j) = x),

for arbitrary n, and therefore F and x satisfy (7.7).

7.3.1 A bar recursive interpretation of RT2
2

The functional interpretation of RT2
2 is given by

∀c, η[2]×NN→N∃x, F∀n ≤ ηxF (Fn ≥ n ∧ ∀i, j ≤ n(Fi < Fj → c(Fi, Fj) = x)). (7.11)

which can be informally stated as

Finitary Ramsey’s theorem for pairs (Fin-RT2
2). Given a colouring c : N(2) → [2] and

a functional η : [2]× NN → N there exists x < 2 and a function F such that the finite set

X := {Fk | k ≤ ηxF} is pairwise monochromatic.

Here X forms a finite approximation to an infinite monochromatic set. Note that by defin-

ing F̃ by F̃ (0) = F (0) and F̃ (n+1) = F (F̃ (n)+1) and setting η̃xF := maxi≤ηxF̃ (F̃ (i)+1)

we obtain

∀c, η[2]×NN→N∃x, F̃∀m < n ≤ ηxF̃ (F̃ (m) < F̃ (n) ∧ c(F̃ (m), F̃ (n)) = x)

from (7.11), and so we can always produce an approximation F̃ of size ηxF̃ .

The following lemma is the computational interpretation of Lemma 7.9.

Lemma 7.13. Given an arbitrary functional ψ : NN → N define g : N → N and ω : BN ×
NN → N by

g(n) := n+ 1

ωψ(α, β) := max
i≤ψ(aα,β)

(max{i, β(i), β(2)(i)})

where aα,β is as in Lemma 7.9. Construct βψ = βωψ ,g and αψ = αωψ ,g as in Theorem 7.5.

Then aψ = aαψ ,βψ satisfies

∀n ≤ ψaψ(n ≤ aψn ∧ ∀i, j, k ≤ n(aψk < aψi ∧ aψk < aψj → c(aψk, aψi) = c(aψk, aψj))).

(7.12)

79

Chapter 7. Weak König’s Lemma for Undecidable Trees

Proof. We have T0(s, n) for the branch s ∈ B(n) given by si = 0 ↔ i ≺ n, therefore we

have T ′0(hnn, gn) for all n. Then by Theorem 7.5 we have

∀n ≤ ωψ(αψ, βψ)∃k ∈ [n, βψ(n))∀i < n(αψ(i) = 0↔ i ≺ k). (7.13)

Now, aψn ≥ n by definition. Next, we can show that α(aψ(n)) = 0 for all n ≤ ψ(aψ) by

definition of ωψ and (7.13), using the same argument as in the proof of Lemma 7.9.

Finally, for i, j, k ≤ ψaψ with (w.l.o.g) aψk < aψi < aψj, by (7.13) for n = aψj + 1 ≤
β

(2)
ψ (j) ≤ ωψ(αψ, βψ) and the fact that αψ(aψi) = αψ(aψj) = αψ(aψk) = 0 there is

some k′ such that aψk, aψi, aψj ≺ k′ and therefore aψk ≺ aψi ≺ aψj, so we must have

c(aψk, aψi) = c(aψk, aψj) by definition of ≺. Thus aψ satisfies (7.12).

Now we interpret the instance of IPHP in the proof of RT2
2. One can very naturally

interpret IPHP using a finite form of bar recursion such as the finite product of selection

functions (see [66], [31, Section 7] for a general solution). In this instance we only require

the binary product ⊗ (see Definition 5.2), while the n-colour case will involve the finite

product of length n. We give the construction directly without further explanation, as it

forms only a minor part of the overall realizer.

Lemma 7.14. Suppose we have a colouring d : N→ [2] and a functional δ : [2]×NN → N.

Then there exists x < 2 and p : N→ N dependent on d and δ satisfying

∀i ≤ δxp(pi ≥ i ∧ d(pi) = x). (7.14)

Proof. Define δ̃xp := µi ≤ δxp¬(pi ≥ i ∧ d(pi) = x) and let 〈a0, a1〉 = (δ̃0 ⊗ δ̃1)(max) and

N = max{a0, a1}. Then we have

a0 = δ̃0p0 a1 = δ̃1p1 N = p0(a0) = p1(a1)

where p1 := λy.max{a0, y} and p0 := λx.max{x, δ̃1(λy.max{x, y})} (these are just Spec-

tor’s equations (5.3) for the binary product of selection functions). Let xd,δ = d(N) and

pd,δ = pxd,δ . Then x and px satisfy (7.14) because (suppressing parameters) px(δ̃xpx) =

px(ax) = N ≥ ax = δ̃xpx and d(px(δ̃xpx)) = d(px(ax)) = d(N) = x. Therefore

px(δ̃xpx) ≥ δ̃xpx ∧ d(px(δ̃xpx)) = x

and so (7.14) must hold by definition of δ̃i.

We are now ready to construct our realizer for Fin-RT2
2.

Theorem 7.15. Suppose we are given η : [2] × NN → N and c : N2 → [2]. Suppressing

these parameters, for arbitrary a : N→ N define δa : [2]×NN → N by δaxp:=ηx(a◦p), define

80

7.3. Ramsey’s theorem for pairs

the colouring ca(i) := c(a(i), a(a(i) + 1)) and let xa : [2], pa : N → N be constructed as in

Lemma 7.14 on parameters ca, δa so that they satisfy

∀i ≤ ηxa(a ◦ pa)(pa(i) ≥ i ∧ ca(pa(i)) = xa). (7.15)

Now define ψa := maxi≤ηxa (a◦pa)(max{pa(i), a(pa(i)) + 1}) and define aψ as in Lemma

7.13 so that it satisfies

n ≤ aψn ∧ ∀i, j, k ≤ n(aψk < aψi ∧ aψk < aψj → c(aψk, aψi) = c(aψk, aψj)) (7.16)

for all n ≤ ψaψ. Then Fη,c = aψ ◦ paψ and xη,c = xaψ satisfy the functional interpretation

of RT2
2(c):

∀n ≤ ηxη,cFη,c(Fη,cn ≥ n ∧ ∀i, j ≤ n(Fη,ci < Fη,cj → c(Fη,ci, Fη,cj) = xη,c)).

Proof. For n ≤ ηxF = ηxaψ (aψ ◦ paψ) we have

Fn = aψ(paψn)
(7.16)

≥ paψn
(7.15)

≥ n,

and for i, j ≤ ηxaψ (aψ ◦ paψ) and Fi < Fj we have

xaψ
(7.15)

= caψ(paψ(i)) = c(aψ(paψ(i)), aψ(aψ(paψ(i)) + 1))
(7.16)

= c(aψ(paψ(i))︸ ︷︷ ︸
Fi

, aψ(paψ(j))︸ ︷︷ ︸
Fj

)

where note that for the last step we have pa(i), pa(j), a(pa(i)) + 1 ≤ ψa and a(pa(i)) <

a(a(pa(i)) + 1) ∧ a(pa(i)) < a(pa(j)). This completes the proof.

A map of the whole construction is given in Figure 7.2.

L. 7.14

λa . |IPHP[ca]N|pa,xaδa

Th. 7.5

|Σ0
1-WKL|αψ ,βψωψ

Lem. 7.13
|E/R(c)|aψψη

Th. 7.15

|RT2
2(c)|

aψ◦paψ ,xaψ
η

Figure 7.2: Constructive proof of Fin-RT2
2(c).

Once more, we will briefly describe the specific sequential game that arises from our

computational interpretation of RT2
2(2).

Branches s of our Σ0
1-tree T represent proper initial segments of branches of the Erdős-

Rado tree via their characteristic functions, and as proved in Lemma 7.9, infinite branches

α of T encode infinite branches of the E/R tree, the witnessing function β allowing us to

recursively find zeroes of the sequence α via the function aα,β.

81

Chapter 7. Weak König’s Lemma for Undecidable Trees

In order to construct an approximation aψ to an infinite branch of the E/R tree of size

ψ we require an approximation αψ, βψ to an infinite branch of our original tree T of size

ωψαψβψ = maxi≤ψaψ(max{i, βψ(i), β
(2)
ψ (i)}). This approximation satisfies

∀n ≤ ωψ(αψ, βψ)∃k ∈ [n, βψ(n))∀i < n(αψ(i) = 0↔ i ≺ k)

and this is sufficient to ensure that aψ = aαψ ,βψ always picks out an element of a min-

monochromatic branch for n ≤ ψ(aψ), as proved in Lemma 7.13.

Now in turn, to obtain an approximation F to an infinite pairwise monochromatic

set of size η, we require an approximation aψη to an E/R branch of size ψη (as defined

in Theorem 7.15), where ψη is constructed using finite bar recursion to interpret IPHP

(Lemma 7.14). This ensures that our approximation aψη to an infinite branch of the

E/R tree is large enough to also contain an approximation to an min-monochromatic set

relative to η. While the definitions of ωψ and ψη may seem quite complex, their purpose

is simply to ensure that our approximation to α, β propagates through the constructions

aα,β and pa to an approximation of F of sufficient quality.

The main instance of EPS in our realizer forms a sequential game in which the role

of the selection function εn is to collect information about which branches of length n

represent proper initial segments branches of the E/R tree, so in other words discover

information about how the initial segment of the natural numbers [n] is arranged in the

E/R tree. By working together they are able to compute an approximation to an infinite

branch of the E/R tree, and the backtracking implemented by EPS roughly corresponds

to a backtracking along the E/R tree itself.

G[ωψη , g] Finitary Ramsey’s theorem

g(n) there is a proper i.s. of a branch of the E/R tree in [n] given by pd(n)

εn find proper i.s.’s t of the E/R tree in [n] s.t. t ≺ pd(k) for k ≥ n
EPSε construct an approximation to infinite branch of E/R tree

ωψη ensure approximation contains infinite monochromatic set relative to η

Table 7.3: Functional interpretation of RT2
2

7.4 An alternative to Howard’s realizer of WKL

We have focused thus far on making clear the game-theoretic intuition behind the main

instance of bar recursion in the realizer of Σ0
1-WKL. However, it is also possible to replace

Howard’s realizer for WKL via a binary form of GBR with a binary version of EPS instead,

giving us a game-theoretic computational interpretation of WKL as well.

82

7.4. An alternative to Howard’s realizer of WKL

Notation. Given a decidable binary tree T , let us define the tree Ts(t) := T (s ∗ t). We

write Depthn(T) :≡ ∃s(|s| = n ∧ T (s)).

Lemma 7.16. The selection function ε : B∗ → JNB given by

εs(p)
B

:=

0 if Depthp(0)+1(Ts)→ Depthp(0)(Ts∗0)

1 otherwise
(7.17)

satisfies

∀s, p(Depthp(εsp)+1(Ts)→ Depthp(εsp)(Ts∗εsp)).

Proof. If Depthp(0)+1(Ts) → Depthp(0)(Ts∗0) then εsp = 0 and (7.17) is clearly true. So

let us assume that Depthp(0)+1(Ts) ∧ ¬Depthp(0)(Ts∗0) so that εsp = 1, and suppose that

the premise of (7.17) i.e. Depthp(1)+1(Ts) is true. We want to show that Depthp(1)(Ts∗1).

There are two cases to consider.

Case (a): p(0) ≥ p(1), and we have

Depthp(0)+1(Ts) ∧ ¬Depthp(0)(Ts∗0)→ Depthp(0)(Ts∗1)→ Depthp(1)(Ts∗1).

Case (b): p(0) < p(1), and we have ¬Depthp(0)(Ts∗0)→ ¬Depthp(1)(Ts∗0). But Depthp(1)+1(Ts),

and therefore Depthp(1)(Ts∗1).

Theorem 7.17. Given ϕ : BN → N, define αϕ := EPSε,q
ϕ,ϕ

B,N where ε is defined as in Lemma

7.16, and qϕ(α) := ϕα− k − 1 for the least k < ϕα refuting

∀k < ϕα(Depthϕα−k(T[α](k))→ Depthϕα−k−1(T[α](k+1))). (7.18)

Then αϕ and nϕ := ϕαϕ satisfy

∃s(|s| = n ∧ T (s))→ T ([α](ϕα))

and therefore realize the functional interpretation of WKL.

Proof. Suppressing the parameter on αϕ, by Spector’s equations, substituting s = [α](ϕα−
qϕα− 1), p = ps into (7.17) we have

Depthqϕα+1(T[α](ϕα−qϕα−1))→ Depthqϕα(T[α](ϕα−qϕα)).

But this implies (7.18) must hold by definition of qϕ. Now ∃s(|s| = nϕ ∧ T (s)) →
Depthϕα(T〈〉), and by induction on (7.18) from k = 0 to k = ϕ− 1 we have

Depthϕα(T〈〉)→ Depth0(T[α](ϕα)).

But Depth0(T[α](ϕα))→ T ([α](ϕα)) and we’re done.

83

Chapter 7. Weak König’s Lemma for Undecidable Trees

This computational interpretation of WKL corresponds to a binary game. The strategy

εs at position s defined by the selection functions given in Lemma 7.16 is to pick a boolean

b such that if s extends to a branch in T of length |s|+ p(b) + 1 then s ∗ b also extends to

a branch of length |s|+ p(b) + 1.

Given ϕ, by choosing qϕ suitably as in Theorem 7.17, the optimal play of the game

determined by the εn is a sequence αϕ such that for all k ≤ ϕαϕ, whenever [αϕ](k) extends

to a branch of length ϕαϕ, so does [αϕ](k+ 1). If T is infinite then 〈〉 extends to a branch

of length ϕαϕ. Hence, by induction the relevant part [αϕ](ϕαϕ) of this optimal play must

be in T β, and is therefore an approximation to an infinite branch.

This interpretation of WKL is certainly more complex than Howard’s realizer, and in

particular to verify that it works one makes use of the property that T is prefix closed

in several places (which means that using it in our realizer for Σ0
1-WKL would require

a more carefully calibrated approximation to the characteristic function β). However, it

has the advantage that when used instead of the usual binary bar recursion one obtains

computational interpretations of Σ0
1-WKL and therefore also Bolzano-Weierstrass theorem

and Ramsey’s theorem that can be described purely in terms of sequential games. For the

latter in particular, given that the finite product of selection functions is used to interpret

IPHP, we obtain the correspondence

Π0
1-countable choice 7→ EPSN,N (unbounded sequential game)

weak König’s lemma 7→ EPSB,N (binary unbounded sequential game)

infinite pigeonhole principle 7→ EPSfin
N,N (finite sequential game)

and so we are able to produce a realizer for the functional interpretation of RT2
n purely

in terms of three symbiotic games, each representing one of the non-trivial axioms in its

formal proof. This construction, along with a description of the realizer, is given in full in

[68].

84

CHAPTER

EIGHT

The Minimal-Bad-Sequence Argument

In our final case study we investigate the computational content of the ‘minimal-bad-

sequence’ argument, a consequence of dependent choice best known for its use in Nash-

Williams’ proof of Higman’s lemma and Kruskal’s theorem [64]. Our main contribution

is the construction of a bar recursive realizer for Gödel’s functional interpretation of the

minimal-bad-sequence argument over arbitrary well-founded relations. We analyse the

behaviour of our program, and then suggest a different approach based on Berger’s realiz-

ability interpretation of the classically equivalent principle of open induction. We conclude

by applying our realizer to extract a new bound for Higman’s lemma.

The minimal-bad-sequence argument (MBS) is of central importance in the theory of

well-quasi-orders, and as such has become a focal point of research into computational

aspects of classical reasoning used in combinatorics. The constructive content of the

minimal-bad-sequence argument has been widely analysed (see for instance [20, 91]), and

programs have been extracted from its classical proof using a variety of formal methods

including the A-translation [63] and inductive definitions [23]. An extensive study of MBS

has been carried out by Berger and Seisenberger [13, 82], who extend and improve the

aforementioned techniques and implement them in the Minlog proof assistant. We make

no effort to provide an exhaustive list of the research that has been done in this area (for a

more detailed account see [82]), but we must be careful to highlight the motivating factors

behind the work in this chapter.

To begin with, our constructive proof of the minimal-bad-sequence argument is new,

and the first based on Gödel’s functional interpretation. Moreover, to our knowledge it

constitutes one of the first applications of the functional interpretation in the theory of

well-quasi-orderings, and as such our interpretation may pave the way for new applica-

tions of proof theory in combinatorics - although admittedly this is not our primary goal.

Nevertheless, we give a practical illustration of how our realizer can be used to witness

Higman’s lemma and bound the length of bad sequences of words over arbitrary decidable

85

Chapter 8. The Minimal-Bad-Sequence Argument

well-quasi-orders.

More importantly, as in previous chapters our aim is to produce a realizer that can

be feasibly understood on a human level and which provides us with genuine insight into

the constructive meaning of mathematical proofs. The substantial logical complexity of

the minimal-bad-sequence argument (which in the language of second order arithmetic

is equivalent to Π1
1-CA0 [62]) means that such practical program extraction poses quite a

challenge. Indeed, many existing case studies are essentially a formalisation of the proof of

the minimal-bad-sequence argument, the program extraction itself being carried out with

the help of a proof assistant. This approach often results in output that is not easy to

comprehend (one of the first realizers obtained by Murthy [63] ran to 12MB of computer

code). In contrast, our interpretation is carried out by hand and yields a realizer in terms

of the product of selection functions that is somewhat easier to describe in qualitative

terms.

The minimal-bad-sequence argument is an interesting case study for the extraction of

programs from proofs because it is classically equivalent to the principle of open induction:

induction over the lexicographic ordering on sequences restricted to open predicates. As

demonstrated by Berger [10], a concise realizability interpretation of open induction is

naturally given by open recursion over the lexicographic ordering, and this provides us

with a direct alternative means of extracting programs from classical proofs based on MBS

with which we can avoid the route through dependent choice and bar recursion. We discuss

the possibility of a similar technique in the context of the functional interpretation, and

suggest an alternative to Spector’s bar recursion based on open recursion that can be used

when interpreting proofs based on the minimal-bad-sequence argument.

8.1 The minimal bad sequence construction

Suppose that we are given a decidable binary relation < : ρ × ρ → B that is provably

well-founded - in other words the schema of transfinite induction TI< over <

TI< : ∀yρ(∀z < yA(z)→ A(y))→ ∀xA(x)

for arbitrary A is valid in our formal system. Note that transfinite induction is classically

equivalent to the least element principle over < given by

LEP< : ∃xA(x)→ ∃y(A(y) ∧ ∀z < y¬A(z))

The lexicographic ordering over < is a binary relation on infinite sequences of type ρN

defined by

u<lexv :≡ ∃n([u](n) = [v](n) ∧ u(n) < v(n)).

While the relation <lex is neither decidable nor well-founded (apart from trivial cases),

transfinite induction over <lex is valid provided we restrict ourselves to a certain class of

86

8.1. The minimal bad sequence construction

formulas called the open formulas. In the presence of classical logic, an open formula is a

predicate on sequences of type ρN that is equivalent to one of the form

B(u) ≡ ∀nC([u](n))→ ∃nD([u](n))

for C and D arbitrary predicates on ρ∗. The schema of open induction is given by

OIρ,< : ∀vρN(∀w<lexvB(w)→ B(v))→ ∀uB(u)

where B ranges over open formulas. Open induction was formulated by Raoult in [76],

and is investigated from an intuitionistic perspective in [10, 20], where one typically has to

work with a restricted definition of open formulas: for instance in [20] an open formula is

simply defined to be a predicate of the form B(u) ≡ ∃nB0([u](n)) where B0 is a decidable.

Example 8.1. The open predicate on sequences of words which we use in Section 8.4 to

prove Higman’s lemma is given by

B(u(X∗)N) :≡ ∃n(∃i < j < n(ui ≤X∗ uj)︸ ︷︷ ︸
B0([u](n))

)

for some well-quasi-ordering (X,≤X).

We call a sequence u bad relative to an open predicate B if ¬B(u) holds (and good

otherwise). Open induction is classically equivalent to the so-called minimal bad sequence

argument

MBSρ,< : ∃u¬B(u)→ ∃v(¬B(v) ∧ ∀w<lexvB(w))

which is the statement that whenever a bad sequence u exists, then a minimal bad sequence

v exists relative to <lex. The existence of a minimal bad sequence follows classically from

LEP< and dependent choice, via a famous construction due to Nash-Williams.

Theorem 8.2 (Nash-Williams [64]). Dependent choice proves the minimal-bad-sequence

argument.

Proof. Suppose that B(u) = ∀nC([u](n)) → ∃nD([u](n)) is open, and that there exists a

bad sequence u (i.e. satisfying ¬B(u)). Construct a sequence v recursively as follows:

1. By the least element principle on <, choose a minimal element v0 : ρ such that v0

extends to a bad sequence, but all sequences extending y for y < v0 are good.

2. Given v0, . . . , vn−1, choose vn such that v0, . . . , vn−1, vn extends to a bad sequence,

but all sequences extending v0, . . . , vn−1, y for y < vn are good.

By dependent choice we obtain an infinite sequence v such that w is good for any w<lexv.

But for each n, [v](n) extends to a bad sequence, so by classical logic we must have

in particular C([v](n)) ∧ ¬D([v](n)), and therefore ∀n(C([v](n)) ∧ ¬D([v](n))) which is

equivalent to ¬B(v), so v itself is a bad sequence.

87

Chapter 8. The Minimal-Bad-Sequence Argument

In the main part of this chapter we extract bar recursive realizers for the functional

interpretation of MBS by analysing the computational content of Nash-Williams’ proof.

Our first step is to restate Nash-Williams’ construction in a more logically explicit form,

which we give as Theorem 8.4. Note that we do not consider this to be a full formalisa-

tion of the minimal-bad-sequence construction (in the sense of e.g. [82]) - this would be

unnecessary here as we extract our realizer ‘by hand’. Our formalisation acts only as a

guide for how to proceed in the program extraction.

Remark 8.3. (i) Because we impose no restriction on the type ρ in OIρ,<, for higher-

types ρ the predicate <lex contains additional quantifiers belonging to =ρ∗ (this is

slightly different to the situation in [10, 82] who work in a neutral variant of PAω

where higher-type equality is taken as primitive). To address this, we note that over

E-HAω we have

∀w<lexvB(w)↔ [∀w, n(w(n) < v(n)→ B([v](n) @ w))]

so we will reformulate MBS as

∃u¬B(u)→ ∃v(¬B(v) ∧ ∀w, n(w(n) < v(n)→ B([v](n) @ w))).

(ii) We extract a realizer for MBS for the restricted class of open predicates defined in

[20] to be those of the form B(u) ≡ ∃nB0([u](n)) for B0 quantifier-free. This form

of MBS is sufficient for many applications, including Higman’s lemma (see Section

8.4).

(iii) In our formal proof we will use the sequential variant of dependent choice DCseq

introduced in Section 5.3.

Theorem 8.4. WE-PAω + QF-AC + DCseq ` MBSρ,< for any decidable relation such that

TI< is provable in WE-PAω + QF-AC + DCseq.

Proof. There are three main parts to our formalisation of the minimal-bad-sequence con-

struction: 1. Establishing the inductive step via the least element principle; 2. Using

dependent choice to construct a minimal bad sequence; 3. Verifying that this sequence

has the required properties.

For the inductive step, suppose we are given a finite sequence s : ρ∗. Define As(v
ρN) :≡

¬B(s @ v), which denotes that s @ v is a bad extension of s. Then by LEP<|s| applied to

As, where w <|s| v :≡ w(|s|) < v(|s|) we have

∃rAs(r)→ ∃v(As(v) ∧ ∀w <|s| v¬As(w))

from which we obtain (quantifying over s),

∀s, r∃v(As(r)→ As(v) ∧ ∀w <|s| v¬As(w)︸ ︷︷ ︸
Cs,r(v)

).

88

8.1. The minimal bad sequence construction

Note that < well-founded clearly implies that <|s| is well-founded, and we could have

alternatively used LEP< applied to the formula Ãs(x) = ∃v¬B(s ∗ x @ v). Written out

fully, Cs,r(v) is equivalent to

¬B(s @ r)→ ¬B(s @ v) ∧ ∀w(w(|s|) < v(|s|)→ B(s @ w)), (8.1)

and denotes that whenever s has a bad extension r, it also has a minimal bad extension

v. Now, to construct a minimal bad sequence from an initial bad sequence u : ρN, define

the predicate C̃u on (ρN)∗ × ρN by

C̃u〈t0,...,tn−1〉(v) :≡ (n = 0→ C〈〉,u(v)) ∧ (n > 0→ C〈t0(0),...,tn−1(n−1)〉,tn−1
(v)).

It is clear that ∀s, r∃vCs,r(v)→ ∀t∃vC̃ut (v), and by DCseq applied to C̃u we have

∃vsN→ρ
N∀nC̃u[vs](n)(vsn)

Therefore there exists vs such that, defining v̄ :=ρN λn . vsn(n),

∀n(¬B([v̄](n) @ vsn−1)→ ¬B([v̄](n) @ vsn)∧∀w(w(n) < v̄(n)→ B([v̄](n) @ w))).

using the convention vs−1 := u. Finally, we want to verify that v̄ is a minimal bad

sequence. We use induction to show that we have

¬B(u)→ ∀n[¬B([v̄](n) @ vsn) ∧ ∀w(w(n) < v̄(n)→ B([v̄](n) @ w))︸ ︷︷ ︸
D(n)

].

We have ¬B(u)→ D(0), and because [v̄](n) @ vsn = [v̄](n)∗ v̄(n) @ vsn = [v̄](n+1) @ vsn

we derive
D(n)→ ¬B([v̄](n) @ vsn)

→ ¬B([v̄](n+ 1) @ vsn)

→ D(n+ 1)

where the last implication follows from C[v](n+1),vsn(vsn+1). Therefore ¬B(u)→ ∀nD(n),

or equivalently

¬B(u)→ ∀n¬B([v̄](n) @ vsn) ∧ ∀n,w(w(n) < v̄(n)→ B([v̄](n) @ w)).

Now, using the fact that B(w) = ∃kB0([w](k)) is open we have

∀n¬B([v̄](n) @ vsn)→ ∀n, k¬B0([[v̄](n) @ vsn](k))

→ ∀n¬B0([[v̄](n) @ vsn](n))

→ ∀n¬B0([v̄](n))

→ ¬B(v̄)

89

Chapter 8. The Minimal-Bad-Sequence Argument

and therefore

¬B(u)→ ¬B̄(v̄) ∧ ∀n,w(w(n) < v̄(n)→ B([v̄](n) @ w)).

from which we obtain

∃u¬B(u)→ ∃v(¬B(v) ∧ ∀n,w(w(n) < v(n)→ B([v](n) @ w))).

8.2 The functional interpretation of MBS

We now extract a realizer for the functional interpretation of MBS. To avoid nested

expressions like [[v](n) @ w](k) we use the abbreviation B̄0(u, k) :≡ B0([u](k)), and so

B(u) = ∃kB̄0(u, k). With all the quantifiers made explicit, the negative translation of

MBS is equivalent (over MPω) to

(∗) ∃u∀k¬B̄0(u, k)→ ¬¬∃v(∀k¬B̄0(v, k) ∧

C[v]︷ ︸︸ ︷
∀w, n(w(n) < v(n)→ ∃kB̄0([v](n) @ w, k)).

The functional interpretation of C[v] is given by

|C[v]|γn,w ≡ w(n) < v(n)→ B̄0([v](n) @ w, γnw)

for γ : N× ρN → N, and therefore the conclusion of (∗) is equivalent to

¬¬∃v, γ∀k, n, w(¬B̄0(v, k) ∧ |C[v]|γn,w)

which is partially interpreted as

∀F,N,W∃v, γ(¬B̄0(v, Fvγ) ∧ |C[v]|γNvγ ,Wvγ
)

for F : κ → N, N : κ → N and W : κ → ρN, where κ :≡ ρN × (N × ρN → N). This means

that the functional interpretation of (∗) is given by

|MBSN|Φ,V,Γu,F,N,W :≡ ¬B̄0(u,Φu)→ ¬B̄0(Vu, FVuΓu) ∧ |C[Vu]|ΓuNVuΓu ,WVuΓu

for Φ: κ′ → N, V : κ′ → ρN and Γ: κ′ → (N×ρN → N) where κ′ is the type of 〈u, F,N,W 〉.
Note that in the preceding formula and throughout we suppress the full dependencies on

Φ, V and Γ, so by Vu we mean Vu,F,V,Γ. Written fully, |MBSN|Φ,V,Γu,F,N,W becomes¬B̄0(u,Φu)→ ¬B̄0(Vu, FVuΓu) ∧ (WVuΓu(NVuΓu) < Vu(NVuΓu)

→ B̄0([Vu](NVuΓu) @WVuΓu ,ΓuNVuΓuWVuΓu)).

Roughly speaking, this states that for a proposed bad sequence u there exists an approx-

imation Vu to a minimal bad sequence whose minimality is witnessed by Γu, where the

90

8.2. The functional interpretation of MBS

counterexample F challenges that Vu is approximately bad, while N and W challenge

it being approximately minimal, calibrating in a sense the ‘length’ and ‘depth’ of the

approximation respectively.

Our task is to construct terms Φ, V and Γ parametrised by u, F , V and Γ (and of

course implicitly by the characteristic function tB0 for the quantifier-free formula B0), that

satisfy |MBSN|Φ,V,Γu,F,W,N .

The functional interpretation of the least element principle

The minimal-bad-sequence argument contains two non-trivial classical principles: depen-

dent choice and the least element principle. We can interpret the former using the product

of selection functions as described in Chapter 5, but it remains to determine how we can

interpret the latter. We now solve the ND interpretation of LEP<, recalling that LEP< is

given by

∃xρA(x)→ ∃y(A(y) ∧ ∀z < y¬A(z)).

To do so we introduce a symbol R(ρ,<),σ for transfinite recursion of type σ over (ρ,<) with

defining equation

Rg<(xρ)
σ

:= gx(λy . Rg<(y) if y < x).

where as usual ‘ if y < x’ is shorthand for if y < x, else 0σ’ (note that for the usual or-

dering (N, <) on natural numbers R(N,<),σ is equivalent to the primitive recursor Rσ). A

similar approach is used by Schwichtenberg in [81] where transfinite recursion is used to

solve the functional interpretation of the rule of transfinite induction, and we imagine that

his realizer is somewhat similar to ours. We restrict ourselves to instances of LEP< over

Π1-formulas as this is sufficient for our application of the least element principle.

Remark 8.5. In fact, it is also sufficient for the general case: Suppose that A(x) has ND

interpretation ∃aρ̃∀bσ|A(x)N|ab . Then the least element principle for A is equivalent to

∃xρ, aρ̃∀bσ|A(x)N|ab → ∃y, a(∀b|A(y)N|ab ∧ ∀z < y∀a∃b¬|A(z)N|ab)

which is just the least element principle for the Π1-formula Ã(xρ, aρ̃) :≡ ∀bσ|A(x)N|ab on

the well-founded order 〈x, a〉<̃〈y, a′〉 :≡ x < y.

Let A(x) ≡ ∀kA0(x, k). We want to realize the negative translation of LEP<, which is

equivalent to

∃xρ∀kA0(x, k)→ ¬¬∃y(∀kA0(y, k) ∧ ∀z < y∃k¬A0(z, k)). (8.2)

Partially interpreting the conclusion gives us

∃x∀kA0(x, k)→ ∀p∃y, g(A0(y, p0yg) ∧ (p1yg < y → ¬A0(p1yg, g(p1yg))))

91

Chapter 8. The Minimal-Bad-Sequence Argument

where p : σ → τ × ρ for σ := ρ× (ρ→ τ). Finally, we have

|LEPN< |ε,Kx,p ≡


A0(x,Kxp)→

A0(ε0
x(p), p0(εxp)) ∧ (p1(εxp) < ε0

x(p)→ ¬A0(p1(εxp), ε
1
xp(p

1(εxp))))︸ ︷︷ ︸
Dεx,p

.

where ε : ρ× (σ → τ × ρ)→ σ and K : ρ× (σ → τ × ρ)→ τ .

Lemma 8.6. Given u and p, define εx : Jτ×ρσ via transfinite recursion as

εx(pσ→τ×ρ)
σ

:=

〈x, f
p
x〉 if φ(p, x)

εp1(x,fpx)(p) otherwise,

where φ is the quantifier-free formula defined by

φ(p, x) :≡ p1(x, fpx) < x→ ¬A0(p1(x, fpx), fpx(p1(x, fpx)))

and fpx : ρ→ τ is also defined via transfinite recursion as

fpx := λy . p0(y, fpy) if y < x.

Note that εx is well-defined since ¬φ(p, x) → p1(x, fpx) < x. Finally, define Kxp :=

p0(x, fpx). Then ε and K satisfy ∀x, p|LEPN< |
ε,K
x,p , or more specifically, the formula ∀x, pEε,Kx,p

where

Eε,Kx,p :≡

 (φ(p, x)→ |LEPN< |
ε,K
x,p)∧

(¬φ(p, x)→ Dε
x,p)

(for Dε
x,p the conclusion of |LEPN< |

ε,K
x,p as defined above) which clearly implies ∀x, p|LEPN< |

ε,K
x,p .

Remark 8.7. We show that our realizer for LEP< satisfies a seemingly stronger formula

Eε,Kx,p . This formula makes explicit the fact that our realizer only uses the premise for

|LEPN< |
ε,K
x,p in the first case that φ(p, x) holds, where 〈x, fpx〉 already suffices to solve it.

This property will become useful when it comes to verifying inductively that our main

realizer, which is a product of selection functions εxp corresponding to instances of LEP<,

forms a minimal-bad-sequence - as we will require the conclusion of one instance of |LEPN< |
to form the premise of the next. This ‘short-cut’ allows us to suppress additional formalism

that would be present in a rigid extraction from a fully formal proof.

Proof of Lemma 8.6. For arbitrary fixed p we use (quantifier-free) transfinite induction on

Eε,Kx,p to prove ∀xEε,Kx,p . All we need to do is show that Eε,Kx,p is progressive i.e. that for

each x we have

∀y < xEε,Ky,p → Eε,Kx,p .

92

8.2. The functional interpretation of MBS

We must deal with two cases.

(a) φ(p, x) holds, in which case εxp = 〈x, fpx〉. Then we have

A0(x, p0(x, fpx))→ A0(x, p0(x, fpx)) ∧ φ(p, x)

which is equivalent to |LEPN< |
ε,K
x,p .

(b) φ(p, x) fails, and therefore p1(x, fpx) < x ∧ A0(p1(x, fpx), fpx(p1(x, fpx))) and εxp = εyp

for y = p1(x, fpx) < x. Then by hypothesis we have Eε,Ky,p and hence |LEPN< |
ε,K
y,p , which is

A0(y, p0(y, fpy))→ Dε
y,p. (8.3)

ButA0(p1(x, fpx), fx(p1(x, fpx))) is equivalent toA0(y, p0(y, fpy)) since fx(p1(x, fpx)) = fx(y) =

p0(y, fpy). This is the premise of (8.3), so Dε
y,p, and therefore Dε

x,p holds since εxp = εyp

implies Dε
x,p ↔ Dε

y,p.

Realizing ∀u, F,W,N |MBSN|Φ,V,Γu,F,W,N

We are now ready to extract a realizer from Nash-Williams’ proof of the minimal-bad-

sequence argument. Each of the following results correspond intuitively to one of the

main steps in our formalisation of the proof. Our first step is to interpret the instance of

the least element principle used in the classical construction of the minimal bad sequence

(8.1).

Lemma 8.8. Define the selection function εs,v : JN×ρNσ, where σ := ρN × (ρN → N) via

transfinite recursion on <|s|, where as before v′ <|s| v :≡ v′(|s|) < v(|s|), as

εs,v(p
σ→N×ρN)

σ
:=

〈v, f
p
|s|,v〉 if φ(s, v, p)

εs,p1(v,fp|s|,v)(p) otherwise

where

φ(s, v, p) :≡ p1(v, fp|s|,v)(|s|) < v(|s|)→ B̄0(s @ p1(v, fp|s|,v), f
p
|s|,v(p

1(v, fp|s|,v))))

and fp|s|,v is defined using transfinite recursion on <|s| as

fp|s|,v := λw . p0(w, fp|s|,w) if w(|s|) < v(|s|).

Define Ks,vp := p0(v, fp|s|,v). Then we have ∀s, v, pEε,Ks,v,p where Eε,Ks,v,p is defined as in

Lemma 8.6 by

Eε,Ks,v,p :≡

 (φ(s, v, p)→ (¬B̄0(s @ v,Ks,vp)→ Dε
s,v,p))∧

(¬φ(s, v, p)→ Dε
s,v,p)

93

Chapter 8. The Minimal-Bad-Sequence Argument

for

¬B̄0(s @ ε0
s,vp, p

0(εs,vp)) ∧ (p1(εs,vp)(|s|) < ε0
s,vp(|s|)→ B̄0(s @ p1(εs,vp), ε

1
s,vp(p

1(εs,vp))))︸ ︷︷ ︸
Dεs,v,p

Proof. This is entirely analogous to the proof of Lemma 8.6, setting<:≡<|s| andA0(v, k) :≡
¬B̄0(s @ v, k). As before, we note that TI<|s| follows from TI<, and similarly R<|s| is easily

definable from R<.

The formula Eε,Ks,v,p is a computational interpretation of the statement that if s has a bad

extension v, then it has a bad extension that is minimal with respect to <|s|. The formula

Dε
s,v,p says that the term ε0

s,vp represents an approximation to this minimal extension

with ε1
s,vp witnessing its minimality, all relative to the counterexample p. The term Ks,vp

indicates how we use the assumption that s @ v is bad to construct the approximation -

in particular this assumption is not required at all if ¬φ(s, v, p) holds, which is the case if

we find an approximate bad extension to s less than v (cf. Remark 8.7).

Now, we use EPS to interpret the instance of DCseq used to construct the minimal-bad-

sequence itself. Our selection functions are capable of constructing minimal bad extensions

at each point, so their unbounded product gives us an approximation to a bad sequence

approximately minimal over all points.

Lemma 8.9. Define ε̃u : σ∗ → JN×ρNσ parametrised by u : ρN as

ε̃u
Tσ∗ (p

σ→N×ρN)
σ

:=

ε〈〉,u(p) if |T | = 0

ε〈π0T0(0),...,π0Tn−1(n−1)〉,π0Tn−1
(p) if |T | > 0.

where the type σ and the selection function εs,v are defined as in Lemma 8.6. Note that

π0T is analogous to the variable t in the formal proof, while π1T represents a sequence of

functionals witnessing minimality that are hidden in the formal proof. Now given q : σN →
N× ρN and ϕ : σN → N define

vsu
(ρN)N

:= π0EPSε̃
u,q,ϕ(〈〉)

fsu
(ρN→N)N

:= π1EPSε̃
u,q,ϕ(〈〉).

Then by Theorem 5.7, using the abbreviation vu :≡ λn.vsun(n) and the convention vsu−1 :≡
u, and setting pn = p[vsun,fs

u
n](n) as defined as in Theorem 5.7, for all n ≤ ϕ(vsu, fsu) we

have

〈vsun, fs
u
n〉 = ε̃u[vsu,fsu](n)(pn) = 〈ε0

[vu](n),vsun−1
(pn), ε1

[vu](n),vsun−1
(pn)〉

pn(ε[vu](n),vsun−1
(pn)) = q(vsu, fsu)

94

8.2. The functional interpretation of MBS

This implies that for all n ≤ ϕ(vsu, fsu), vsu and fsu satisfy (suppressing the parameter

u) φ([v](n), vsn−1, pn)→ (¬B̄0([v](n) @ vsn−1,K[v](n),vsn−1
pn)→ D̃vs,fs

n,q)

¬φ([v](n), vsn−1, pn)→ D̃vs,fs
n,q

where K is defined as in Lemma 8.6 and

D̃vs,fs
n,q :≡

¬B̄0([v](n) @ vsn, q
0(vs, fs))∧

(q1(vs, fs)(n) < v(n)→ B̄0([v](n) @ q1(vs, fs), fsn(q1(vs, fs)))).

Proof. The lemma follows by substituting, for each n ≤ ϕ(vsu, fsu), s = [vu](n), v = vn−1

and p = pn into Lemma 8.8. We have

D̃vsu,fsu

n,q ↔ Dε
[vu](n),vsn−1,pn

by Spector’s equations.

Now we verify by induction that from our initial assumption that if u is bad the

diagonal sequence v is minimal bad. The next lemma is the constructive analogue of the

statement that ¬B(u)→ ∀nD(n) in the formal proof.

Lemma 8.10. Given u, q and ϕ let everything be defined as in Lemma 8.9. Then

¬B̄0(u, q0(vsu, fsu))→ ∀n ≤ ϕ(vsu, fsu)D̃vsu,fsu

n,q .

Proof. This is done by Lemma 8.9 and induction on D̃vsu,fsu
n,q . First we show that (sup-

pressing the parameter u in vs, fs)

¬B̄0(u, q0(vs, fs))→ D̃vs,fs
0,q .

This follows from Lemma 8.9 for n = 0. Assume that φ(〈〉, u, p0) (if not then we get

D̃vs,fs
0,q anyway). Then by definition ε〈〉,u(p0) = 〈u, fp0

0,u〉, which implies that K〈〉,up0 =

p0
0(ε〈〉,u(p0)) = q0(vs, fs) and so

¬B̄0(u, q0(vs, fs))→ ¬B̄0(u,K〈〉,up0)→ D̃vs,fs
0,q .

Now for n < ϕ(vs, fs) we show that

D̃vs,fs
n,q → D̃vs,fs

n+1,q.

First, since [v](n) @ vsn = [v](n+ 1) @ vsn we have

D̃vs,fs
n,q → ¬B̄0([v](n) @ vsn, q

0(vs, fs))→ ¬B̄0([v](n+ 1) @ vsn, q
0(vs, fs)).

95

Chapter 8. The Minimal-Bad-Sequence Argument

Now, by Lemma 8.9, assuming that φ([v](n + 1), vsn, pn+1) (otherwise we get D̃vs,fs
n+1,q

anyway) we have ε[v](n+1),vsn(pn+1) = 〈vsn, f
pn+1

n+1,vsn
〉 and therefore K[v](n+1),vsnpn+1 =

p0
n+1(ε[v](n+1),vsn(pn+1)) = q0(vs, fs) and so

¬B̄0([v](n+ 1) @ vsn, q
0(vs, fs))→ ¬B̄0([v](n+ 1) @ vsn,K[v](n+1),vsnpn+1)→ D̃vs,fs

n+1,q.

Therefore by induction from n = 0 to n = ϕ(vsu, fsu) − 1 we get D̃vs,fs
0,q → ∀n ≤

ϕ(vsu, fsu)D̃vs,fs
n,q , and the result follows.

Finally, we define q and ϕ in terms of the counterexample functionals F , W and N in

order to complete the construction.

Theorem 8.11. Suppose we have an arbitrary sequence u : ρN and functionals F : κ→ N,

N : κ → N and W : κ → ρN where κ : ρN × (N × ρN → N). Define qF,W , and ϕF,N on

〈vs, fs〉 : (ρN)N × (ρN → N)N ∼= σN by

qF,W (vs, fs)
N×ρN
:= 〈F (v, fs),W (v, fs)〉

ϕF,N (vs, fs)
N
:= max{F (v, fs), N(v, fs)}

where v := λn . vsn(n). Finally, define vsu
(ρN)N

:= π0EPSε̃
u,qF,W ,ϕF,N (〈〉), fsu

(ρN→N)N
=

π1EPSε̃
u,qF,W ,ϕF,N (〈〉) and vu := λn . vsun(n), for ε̃ defined as in Lemma 8.9. Then

ΦF,N,Wu := F (vu, fsu)

ΓF,N,W,u := fsu

VF,N,W,u := vu

satisfy |MBSN|Φ,V,Γu,F,W,N .

Proof. By Lemma 8.10 we have (suppressing dependencies F , N and W)

¬B0(u,Φu)→ ∀n ≤ max{FVuΓu , NVuΓu}D̃
vsu,Γu
n,qF,W

.

Firstly, setting n = FVuΓu yields

¬B̄0(u,Φu)→ D̃vsu,Γu
FVuΓu ,q

F,W → ¬B̄0([Vu](FVuΓu) @ vsuFVuΓu
, FVuΓu)→ ¬B̄0(Vu, FVuΓu)

where for the last implication we use [[Vu](n) @ v](n) = [Vu](n). Secondly, setting n =

NVuΓu yields

¬B̄0(u,Φu)→ D̃vsu,Γu
NVuΓu ,q

F,W

→WVuΓu(NVuΓu) < Vu(NVuΓu)→ B̄0([Vu](NVuΓu) @WVuΓu ,Γu(NVuΓu ,WVuΓu)).

Combining the two yields¬B̄0(u,Φu)→ ¬B̄0(Vu, FVuΓu) ∧ (WVuΓu(NVuΓu) < Vu(NVuΓu)

→ B̄0([Vu](NVuΓu) @WVuΓu ,Γu(NVuΓu ,WVuΓu)))

which is |MBSN|Φ,V,Γu,F,W,N .

96

8.2. The functional interpretation of MBS

An analysis of our bar recursive realizer

Having carried out the formal construction of our realizer, we now aim to describe in more

intuitive terms how it behaves, and to demonstrate that it forms a clear computational

analogue to the minimal-bad-sequence construction of Nash-Williams. As before we can

use the semantics of EPS to identify various parts of the realizer with game-theoretic

concepts, associating our computational interpretation of MBS with a single partially

defined sequential game G[u, F,N,W].

The functional interpretation of MBS asks for an approximation of the minimal bad

sequence construction. Given an initial bad sequence u we must construct a bad sequence

Vu and a functional Γu witnessing its minimality relative to counterexample functionals

F , N and W , and must also produce a point Φu such that all this can be verified from

¬B0([u](Φu)).

The basic idea. We build Vu and Γu as optimal plays in the sequential game whose selection

functions are given by ε̃u. Moves in this game consist of a sequence v : ρN and a functional

f : ρN → N. The idea is that for an optimal play 〈vsu, fsu〉 of type (ρN)N × (ρN → N)N,

setting vu := λn.vsun(n) the sequence vsun represents a minimal bad extension of [vu](n)

whose minimality is witnessed by λw.fsunw, and therefore Vu = vu represents a minimal-

bad-sequence whose minimality as a whole is witnessed by Γu = λn,w.fsunw.

The role of the selection functions is to interpret pointwise instances of LEP< in the

minimal-bad-sequence construction and produce approximations to minimal bad exten-

sions of [Vu](n) in the construction relative to ‘local’ counterexample functions p. The

product of selection functions enables us to construct a whole sequence Vu that is minimal

bad relative to the global counterexample functions q and ϕ, which are in turn defined in

terms of the F , N and W so that Vu is an approximation of sufficient quality to ensure

that it is ‘bad’ at point FVuΓu and approximately minimal at pointNVuΓu relative toWVuΓu .

classical proof sequential game G[u, F,N,W]

least element principle selection functions ε̃u

minimal bad sequence unbounded product EPSε̃
u,qF,W ,ϕF,N

Table 8.1: Functional interpretation of MBS

How the realizer works. The behaviour of our realizer mimics the classical construction of

the minimal bad sequence. It is based on a main instance of bar recursion which interprets

the overall construction, each step in the bar recursion involving an instance of transfinite

recursion implemented by the selection functions to interpret the least element principle.

Given that we have computed a proposed initial segment 〈vsu0 , fs
u
0〉, . . . , 〈vsun−1, fs

u
n−1〉

97

Chapter 8. The Minimal-Bad-Sequence Argument

for our minimal-bad-sequence, where vsun−1 is an approximately bad extension of [vu](n)

relative to F , the selection function ε[vu](n),vsun−1
picks an extension v of [vu](n) and a

functional f satisfying

¬B̄0([vu](n) @ v, Fαv,f) ∧ (Wαv,f (n) < v(n)→ B̄0([vu](n) @Wαv,f , f(Wαv,f))

where αv,f is obtained from the optimal extension that results from choosing 〈v, f〉 at

round n. Then [v̄u](n) ∗ v(n) extends the our approximation by one element, and f wit-

nesses its minimality at point n relative to W . The selection function ε[vu](n),vun−1
computes

v and f by first trying as default 〈v, f〉 = 〈vsun−1, f
pn
n,vsun−1

〉, depending on whether or not

φ([v̄u](n), vsun−1, pn) holds. Testing this condition corresponds to testing whether or not

(approximate) minimality of [vu](n) ∗ vsun−1(n) is satisfied. If it is, the computation ter-

minates, with the truth of ¬B̄0([vu](n) @ v, Fαv,f) relying on the assumption that vsn−1 is

approximately bad relative to the global counterexample function F . Otherwise the selec-

tion function changes its mind and chooses 〈v, f〉 = 〈t, fpnn,t〉 where t := W (αvsun−1,f
pn
n,vun−1

).

This time, if 〈t, fpnn,t〉 is chosen then ¬B̄0([vu](n) @ v, Fαv,f) is guaranteed by the fail-

ure of minimality of vsun−1, since this implies ¬B̄0([vu](n) @ t, fpnn,vsun−1
(t)) and we have

fpnn,vsun−1
(t) = p0

n(t, fpnn,t) = Fαv,f . The selection function now tests minimality of 〈t, fpnn,t〉,
and if this fails the whole procedure repeats until a suitable minimal extension of [vu](n)

is finally found. Termination of the search is guaranteed by well-foundedness of <.

The product of selection functions implements a backtracking procedure over these

selection functions that constructs an approximation to the whole minimal-bad-sequence,

comprising a constructive analogue of the inductive procedure carried out in the classical

proof. On a global level we claim the functionals fpnn,v are essentially devices that make

recursive calls over the lexicographic ordering, and therefore one could potentially char-

acterise our bar recursive realizer as an algorithm that implements some kind of open

recursion (see Section 8.3 below), although making this intuition precise would involve a

much more detailed analysis of the realizer.

The functional Φ. One important component of our realizer that we have ignored so far is

the functional Φ, which interprets the assumption that the initial sequence u is bad and

is crucial to enabling us to carry out the first step in the computation. In Lemma 8.10

and Theorem 8.11 we show that if Φ(u) = FVu,Γu then ¬B0(u,Φu) guarantees that our

minimal bad sequence Vu is satisfies ¬B0(Vu, FVu,Γu). However, actually we only require

that ¬B0(u,Φu) holds in the case that φ(n, vsun−1, pn) is true for sufficiently many steps in

the computation. The failure of this condition is the constructive analogue of discovering

a new bad sequence lexicographically less than u, which means that we no longer require

the assumption that u is bad. While our construction of Vu and Γu seems quite natural,

our definition of Φu is in fact rather crude, and it would be instructive to give a more

intelligent reformulation of Φu based on a more careful logical analysis of the classical

98

8.3. Open induction and open recursion

proof. However, in this dissertation we will not go into any more details on potential

computational inefficiencies in our realizers. For now we are satisfied to have obtained

an intuitive constructive analogue of Nash-Williams’ proof of the minimal-bad-sequence

argument in terms of the product of selection functions.

8.3 Open induction and open recursion

As we pointed out in Section 8.1, the minimal-bad-sequence argument is classically equiv-

alent to the principle of open induction, which for our restricted form of open predicate is

written fully as

(∗)
D︷ ︸︸ ︷

∀v(∀w, n(w(n) < v(n)→ ∃kB̄0([v](n) @ w, k)︸ ︷︷ ︸
C[v]

)→ ∃kB̄0(v, k))→ ∀u∃kB̄0(u, k).

From an intuitionistic point of view, the two principles behave quite differently. The

computational content of open induction is explored by Berger in [10], who demonstrates

that unlike dependent choice or MBS, open induction is closed under the negative and

A-translations, and can be given a direct realizability interpretation using the schema of

open recursion defined by:

ORF (u)
N
:= Fu(λn, v . ORF ([u](n) @ v) if v(n) < u(n)).

This offers a simple and elegant alternative to program extraction from classical proofs

involving the minimal-bad-sequence argument without having to go through the usual bar

recursive interpretation of dependent choice. We quickly sketch Berger’s idea, although

the reader is encouraged to consult [10] for details. The formula C[v] (defined in (∗) above)

has modified realizability interpretation

γ mr C[v] ≡ ∀n,w(w(n) < v(n)→ B̄0([v](n) @ w, γnw))

↔ ∀n,w|C[v]|γn,w,

where γ : N× ρN → N, and therefore the subformula D (cf. (∗)) is interpreted as

F mr D ≡ ∀v, γ(γ mr C[v]→ B̄0(v, Fvγ))

where F : ρN × (N× ρN → N)→ N. Finally, Φ mr OI ≡ ∀F (F mr D → ∀uB̄0(u,ΦFu)), or

alternatively:

Φ mr OI ≡ ∀F (∀v, γ(∀n,w|C[v]|γn,w → B̄0(v, Fvγ))→ ∀uB̄0(u,ΦFu)).

where Φ: (ρN × (N× ρN → N)→ N)× ρN → N.

Theorem 8.12 (Berger [10]). E-HAω + Cont + OI + OR ` Φ mr OI where Φ is a closed

term of E-HAω + OR.

99

Chapter 8. The Minimal-Bad-Sequence Argument

Proof. In [10] this theorem holds generally for open predicates of the form ∀nC([u](n))→
∃nB([u](n)) for C arbitrary and B a Σ-formula (∀, → free and only containing predicates

ranging over variables of type level 0). In our restricted case of Σ0
1-open formulas, Φ := OR

does the trick. To see this, suppose that F mr D - we must show that ∀uB̄0(u,ORF (u)).

Now assuming continuity, the truth of predicate P (u) :≡ B̄0(u,ORF (u)) depends only on

a initial segment of u, which means that P is equivalent to an open predicate, so we can

use open induction on P (u). Given v, suppose by the induction hypothesis that P (w)

holds for all w<lexv i.e. ∀n,w(w(n) < v(n)→ B̄0([v](n) @ w,ORF ([v](n) @ w))). Then

γ = λn,w . ORF ([v](n) @ w) if w(n) < v(n)

realizes C[v], and therefore since F mr D we have B̄0(v, Fvγ) ≡ B̄0(v,ORF (v)) which is

P (v). This verifies progressiveness of P , and so we have ∀uP (u) and we’re done.

‘Explicitly controlled’ open recursion

It is not difficult to show that open induction is equivalent to its negative translation over

QF-AC + MPω, and therefore by the soundness theorems for the ND interpretation and

the fact that open induction is classically provable from dependent choice a direct realizer

for its functional interpretation can be found1. In fact, the functional interpretation of

OI coincides with the ND interpretation of its contrapositive MBS, so our bar recursive

realizer for MBS also realizes OI. However, it is natural to ask whether an analogue to

Theorem 8.12 can be found, whereby a direct realizer for the functional interpretation

of open induction can be given in terms of open recursion as opposed to bar recursion.

For the functional interpretation, in light of Spector’s soundness proof we would expect

to be able to construct a form of open recursion that is ‘explicitly’ well-founded using

Spector’s condition as opposed to implicitly relying on continuity, and would therefore

be computationally weaker than full open recursion in the same way that Spector’s bar

recursion is weaker than modified bar recursion (see Chapter 9).

This short section contains some preliminary results and ideas in the spirit of [10]

that explore the idea of whether an alternative to Spector’s bar recursion based on open

recursion can be devised to extract witnesses for the functional interpretation of proofs

involving open induction or the minimal-bad-sequence argument. What follows should be

considered nothing more than a starting point for future research, and many details below

are merely sketched or left as conjectures. Our aim is simply to design, in an informal

manner, a procedure that directly realizes the functional interpretation of open induction

and perhaps reflects the computational content of this principle more naturally than our

bar recursive realizer would.
1Note that the prima facie existence of a bar recursive realizer for OI is already implicitly established in

[10, 20] in which it is shown that OI follows from bar induction. Similarly, in [44, 92] it is shown directly

that open induction on the Cantor space follows from the double negation shift and Markov’s principle.

100

8.3. Open induction and open recursion

Let us first establish some notation. For a functional Φ: ρN → N and a sequence ρN,

define Φ{u} : ρN × (ρN → N)N by

Φ{u} := 〈u;λn,w . Φ([u](n) @ w) if w(n) < u(n)〉

so Φ{u} consists of the sequence u along with the functional Φ restricted to arguments

lexicographically less than u. In this way we can concisely write the defining equation of

open recursion as

ORF (u) = F (ORF {u}).

Now, treating Φ{u} as a sequence of type σN for σ := ρ× (ρN → N), we have

Φ{u},M σN
= 〈u,M ;λn < M,w . Φ([u](n) @ w) if w(n) < u(n)〉.

where (λn < M.fn)(m) = 0 for m ≥M . Given a functional ϕ : σN → N let

Φ{u}ϕ
σN
:= Φ{u}, µSp(Φ{u}, ϕ)

where M := µSp(Φ{u}, ϕ) is the least number satisfying ϕ(Φ{u},M) < M . Note that

Φ{u}ϕ is primitive recursively definable in Φ: for arbitrary α : σN we can write

αϕ(i) :=

0σ if ∃k ≤ i(ϕ(α, k) < k)

α(i) otherwise

and we obtain αϕ = α, µSp(ϕ, α) provably in Spec, which we need to confirm the existence

of µSp(ϕ, α) (cf. Proposition 4.2). Let us now define a variant of open recursion EOR that

is explicitly controlled by the functional ϕ:

EORF,ϕ(u) = F (EORF,ϕ{u}ϕ).

While open recursion OR in the sense of Berger is implicitly well-founded by open induction

and continuity of F (see Chapter 9 or [10] for the proof that OR is total), EOR is explicitly

well-founded because we specify, via ϕ, the finite portion of u we wish to use and therefore

totality of EORF,ϕ is by definition an open property on u.

Remark 8.13. While the functional EOR is definable from OR, we conjecture that EOR is

in fact of the same computational strength as Spector’s bar recursion, whereas as we show

in Chapter 12, full open recursion is equivalent to the stronger modified bar recursion.

A partial functional interpretation of OI, in which we do not extract realizers for v and

γ, is given by

(†) ∃Φ∀u, F,N,W (∀v, γ(|C[v]|γNvγ ,Wvγ
→ B̄0(v, Fvγ))→ B̄0(u,Φ(u))

which of course differs from the modified realizability interpretation in that the quanti-

fiers ∀n,w, not permitted by the functional interpretation, are eliminated in favour of

counterexample functionals N and W . We show that (†) can be realized using EOR.

101

Chapter 8. The Minimal-Bad-Sequence Argument

Proposition 8.14. Define ϕN,F : σN → N by ϕN,F vγ := max{Fvγ , Nvγ}. Then ΦF,N (u) :=

EORϕ,F (u) realizes (†), provably in Spec + OI.

Proof. We suppress the parameters on ϕN,F . Fix F , N and W and assume that

(+) ∀v, γ(|C[v]|γNvγ ,Wvγ
→ B̄0(v, Fvγ))

holds. We use open induction on the open predicate P (u) := B̄0(u,EORF,ϕ(u)) (P is

open because by definition EOR only looks at a finite initial segment of u). To establish

progressiveness, let’s assume that P (w) holds for all w lexicographically less than u. Now,

define
〈v, γ〉 := EORF,ϕ{u}ϕ

= 〈u,M ;λn < M,w . EORF,ϕ([u](n) @ w) if w(n) < u(n)〉

where (assuming Spec) M = µSp(EORF,ϕ{u}, ϕ) and therefore ϕvγ < M . Using that

Nvγ ≤ ϕvγ < M we see that |C[v]|γNvγ ,Wvγ
is equivalent to

Wvγ(Nvγ) < u(Nvγ)→ B̄0([u](Nvγ) @Wvγ ,EORF,ϕ([u](Nvγ) @Wvγ))

which is true by P ([u](Nvγ) @Wvγ). By (+) this implies B̄0(v, Fvγ) which by Fvγ ≤
ϕvγ < M and the fact that EORF,ϕ(u) = Fvγ implies B̄0(u,EORF,ϕ(u)). Therefore by

open induction we have (+)→ ∀uB̄0(u,EORF,ϕ(u)), from which (†) follows.

For the full functional interpretation of OI, given by

|OI|Φ,V,Γu,F,W,N ≡ (|C[Vu]|ΓuNVuΓu ,WVuΓu
→ B̄0(Vu, FVuΓu))→ B̄0(u,Φ(u))

(which is equivalent to |MBSN|Φ,V,Γu,F,W,N), we must also extract realizers Vu,F,W,N and Γu,F,W,N

for v and γ in (†). Let Φu,F,W,N := EORϕ
N,F ,F (u) as before, and (suppressing fixed pa-

rameters F , W and N on Φ, V , Γ and ϕ) and let us define candidates for Vu and Γu

recursively on <lex by

〈Vu,Γu〉
σN
:=

Φ{u}ϕ if |C[π0Φ{u}ϕ]|π1Φ{u}ϕ
NΦ{u}ϕ ,WΦ{u}ϕ

〈Vt,Γt〉 otherwise

for t := [π0Φ{u}ϕ](NΦ{u}ϕ) @WΦ{u}ϕ . One argues that 〈Vu,Γu〉 is well-defined by open

induction and Spec. Note that Φ{u}ϕ = Φ{u},M for M = µSp(Φ{u}, ϕ) so by the fact

that NΦ{u}ϕ ≤ ϕ(Φ{u}ϕ) < M we have t := [u](NΦ{u}ϕ) @WΦ{u}ϕ , and we only make a

recursive call on t in the case that WΦ{u}ϕ(NΦ{u}ϕ) < u(NΦ{u}ϕ). Therefore if 〈Vt,Γt〉 is

well-defined for all t<lexu then so is 〈Vu,Γu〉. The statement that 〈Vu,Γu〉 is well-defined

is an open property, since 〈Vu,Γu〉 depends only on u,M .

Proposition 8.15. Φ, V and Γ as defined above satisfy ∀u, F,W,N |OI|Φ,V,Γu,F,W,N , provably

in Spec + OI.

102

8.3. Open induction and open recursion

Proof. For arbitrary F , W and N we use open induction on the open predicate P (u) =

|OI|Φ,V,Γu,F,W,N . We have only to prove progressiveness. Let us assume that (suppressing the

fixed parameters F , W and N as before)

(++) |C[Vu]|ΓuNVuΓu ,WVuΓu
→ B̄0(Vu, FVuΓu)

holds. We want to derive B̄0(u,Φ(u)). There are two cases to consider.

Case (a) |C[π0Φ{u}ϕ]|π1Φ{u}ϕ
NΦ{u}ϕ ,WΦ{u}ϕ

holds. Then 〈Vu,Γu〉 = Φ{u}ϕ and |C[Vu]|ΓuNVuΓu ,WVuΓu

holds, so by (++) we have B̄0(u,M,FΦ{u}ϕ) (for M = µSp(Φ{u}, ϕ). But Φ(u) =

EORϕ
N,F ,F (u) = FΦ{u}ϕ and FΦ{u}ϕ ≤ ϕ(Φ{u}ϕ) < M , and therefore we get B̄0(u,Φ(u)).

Case (b) |C[π0Φ{u}ϕ]|π1Φ{u}ϕ
NΦ{u}ϕ ,WΦ{u}ϕ

fails, which implies:

(i) 〈Vu,Γu〉 = 〈Vt,Γt〉 for t = [π0Φ{u}ϕ](NΦ{u}ϕ) @WΦ{u}ϕ
NΦ{u}ϕ<Mu

= [u](NΦ{u}ϕ) @WΦ{u}ϕ
with t(NΦ{u}ϕ) < u(NΦ{u}ϕ);

(ii) ¬B̄0(t, π1Φ{u}ϕNΦ{u}ϕWΦ{u}ϕ) and therefore ¬B̄0(t,Φ(t)) since

π1Φ{u}ϕNΦ{u}ϕWΦ{u}ϕ
NΦ{u}ϕ<M

= π1Φ{u}NΦ{u}ϕWΦ{u}ϕ
W (N)<u(N)

= Φ([u](NΦ{u}ϕ) @WΦ{u}ϕ)

= Φ(t).

We can assume P (t) = |OI|Φ,V,Γt,F,W,N by hypothesis, and by 〈Vu,Γu〉 = 〈Vt,Γt〉 and (++) we

see that the premise of |OI|Φ,V,Γt,F,W,N is true, and therefore we obtain B̄0(t,Φ(t)). But this

contradicts (ii).

Remark 8.16. We tentatively put forward the idea that this computational interpretation

of OI is analogous to the computational interpretation of TI< (given via its contrapositive

LEP<) in Lemma 8.6, where in some sense we can identifyKxp defined via transfinite recur-

sion with EORF (u) defined via open recursion, and also εx(p) with Vu(FNW),Γu(FNW).

We reiterate that this section is only an informal illustration that alternative modes of

recursion could potentially be used instead of Spector’s bar recursion for obtaining more

intuitive programs from classical proofs involving the minimal-bad-sequence argument.

However, there are many factors to consider before one can claim in any sense that a

mode of recursion is ‘better’ than Spector’s bar recursion for interpreting principles in

mathematical analysis, and we leave a more detailed study of the relationship between

bar recursion and open recursion to future work.

103

Chapter 8. The Minimal-Bad-Sequence Argument

8.4 Higman’s lemma

The minimal bad sequence argument is best known in mathematics for its role in the

theory of well-quasi-orders. We call a preorder (X,≤X) a well-quasi-order (WQO) if any

infinite sequence (xi) in X has the property that xi ≤X xj for some i < j. The theory

of WQOs contains several results which state that certain constructions on WQOs inherit

well-quasi-orderedness, the most famous being Kruskal’s tree theorem [59]. A special case

of this theorem is what is colloquially known as Higman’s lemma:

Theorem 8.17 (Higman, [38]). If (X,≤X) is a WQO, then so is the set (X∗,≤X∗) of

words in X under the embeddability relation ≤X∗, where 〈x0, . . . , xm−1〉 ≤X∗ 〈x′0, . . . , x′n−1〉
iff there is a strictly increasing map f : [m]→ [n] with xi ≤X x′fi for all i < m.

Nash-Williams used the minimal-bad-sequence argument to give elegant proofs of both

Higman’s lemma and Kruskal’s theorem [64], and many proof-theoretic investigations into

the minimal-bad-sequence argument tend to focus specifically on its role WQO theory.

We conclude this chapter by demonstrating how one obtains a bound for Higman’s

lemma from the ND interpretation of the minimal-bad-sequence argument (or equivalently

the functional interpretation open induction). By substituting in our realizer from Section

8.2 we obtain an explicit bar recursive term that finds an embedded pair in sequences of

words over arbitrary WQOs. We do not claim to derive any new quantitave bounds for

Higman’s lemma (optimal bounds in certain cases are given in [19, 80]), but we believe that

on a qualitative level at least our algorithm, the first based on the functional interpretation,

is quite different to those discovered previously.

Formalising Higman’s lemma

Let us assume that a WQO (X,≤X) can be encoded as by type of level 0, and that ≤X
and therefore also ≤X∗ are decidable. We call a sequence u : XN good if ui ≤X uj for some

i < j, and bad if it is not good. The statement that u is good can be written as the open

predicate B(u) := ∃kB0([u](k)) where

B0(s) :≡ ∃i < j < |s|(si ≤X sj).

The set X is a WQO if it satisfies the predicate WQO[X] :≡ ∀uXN
B(u). In Nash-Williams’

proof of Higman’s lemma the hypothesis WQO[X] used in the following, alternative form:

Lemma 8.18. The property WQO[X] is classically equivalent to the property MonSeq[X],

where

MonSeq[X] :≡ ∀u∃gN→N∀k∀i < j ≤ k(gi < gj ∧ ugi ≤X ugj).

In other words, X is a WQO if and only if every infinite sequence contains an infinite

increasing subsequence.

104

8.4. Higman’s lemma

Proof. One direction is clear. The other direction WQO[X] → MonSeq[X] is an easy

consequence of Ramsey’s theorem for pairs, applied to the colouring

c(i, j) := 0 if ui ≤X uj , else 1.

Let g be the increasing function that defines a pairwise monochromatic set i.e. c(gi, gj) = b

for all i < j. If b = 1 then this would contradict the fact that X is a WQO, therefore

b = 0 and g defines a monotone sequence. Note that in special case that X is finite the

result is is provable using the infinite pigeonhole principle and can therefore be formalised

in WE-PAω + QF-AC.

Theorem 8.19. WE-PAω + QF-AC + MBS ` MonSeq[X]→WQO[X∗].

Proof (Nash-Williams). We use the minimal-bad-sequence argument of type (X∗,≺) where

≺ denotes the prefix relation on words:

xX
∗ ≺ y :≡ |x| < |y| ∧ ∀i < |x|(xi = yi).

Note that ≺ is decidable by our assumption that X has type level 0, and is provably

well-founded in WE-HAω, so that in particular R≺ is primitive recursively definable. We

use the following notation: that for x = 〈x0, . . . , xm−1〉 : X∗ with m > 0

x̃
X∗
:= 〈x0, . . . , xm−2〉 x̄

X
:= xm−1

and for x = 〈〉 we have x̃ = 〈〉, x̄ = 0X .

Let us assume for contradiction that MonSeq[X] holds but WQO[X∗] is not true,

and that we have a bad sequence u satisfying ∀n¬B0([u](n)) where B0(s) :≡ ∃i < j <

|s|(si ≤X∗ sj). Then by MBS(X∗,≺) there exists a minimal bad sequence v with respect

to ≺. We show that v cannot be bad, and therefore our original sequence u was good,

contradicting ¬WQO[X∗].

First, by MonSeq[X] applied to the sequence (v̄i) there exists monotone g such that

v̄gi ≤X v̄gj for all i < j. Now consider the sequence w := [v](g0) ∗ (λi.ṽgi). Either vg0 = 〈〉
in which case w is trivially good, or ṽg0 ≺ vg0 and therefore w is lexicographically less

than v at point g0, and is good by minimality of v.

But if w is good then v must also be good: it is easy to show that if wi ≤X∗ wj for some

i < j < n i.e. B0([w](n)), then vi′ ≤X∗ vj′ for some i′ < j′ < g(n)+1 i.e. B0([v](g(n)+1)).

This is obvious if i < g(0). Otherwise we have ṽgi ≤X∗ ṽgj for i < j < n − g0 ≤ n, in

which case vgi ≤X∗ vgj follows from v̄gi ≤X v̄gj , unless |vgi| = 1 and vgj = 〈〉. But in this

case vgj ≤X∗ vgj+1.

105

Chapter 8. The Minimal-Bad-Sequence Argument

Extracting a realizer for WQO[X∗]

The functional interpretation of MonSeq[X] (now using the symbol x for the variable u)

is given by

∃G∀x, ωNN→N∀i < j ≤ ωGx,ω(Gx,ωi < Gx,ωj ∧ xGx,ωi ≤X xGx,ωj) (8.4)

for G : XN × (NN → N) → (N → N). The computational challenge we face is that given

G witnessing (8.4), and an arbitrary sequence of words u, we must extract xG,u, ωG,u

and ΦG,u such that (8.4) applied to xG,u, ωG,u implies B0([u](ΦG,u)). We show that this

can be done using the functional interpretation of MBS given in the previous section, by

constructing suitable counterexample functionals F , N , Y and W .

Theorem 8.20. Suppose we are given G (dependent on x and ω) satisfying (8.4). Define

xv and ωv,γ parametrised by variables v : (X∗)N, γ : N× (X∗)N → N as

xv
XN
:= (v̄i),

ωvγ
NN→N

:= λg . γ(g0, [0(X∗)N](g0) ∗ (λi.ṽgi)).

Now let Gvγ := Gxv ,ωv,γ and define functionals F : κ→ N, N : κ→ N and W : κ→ N (for

κ = (X∗)N × (N× (X∗)N → N) by

FGvγ
N
:= Gvγ(ωvγGvγ) + 1,

NG
vγ

N
:= Gvγ0,

WG
vγ

(X∗)N

:= [0](Gvγ0) ∗ (λi.ṽGvγ i).

Then whenever Φ, V and Γ satisfy |MBSN|Φ,V,Γ
FG,NG,WG,u

, we have that

∀i < j ≤ ωV ΓGV Γ(GV Γi < GV Γj ∧ V̄GV Γi ≤X V̄GV Γj)

for V = VFG,NG,WG,u, Γ = ΓFG,NG,WG,u implies

∃i < j < ΦFG,NG,WG,u(ui ≤X∗ uj).

Proof. Let Φ abbreviate ΦFG,NG,WG,u and V , Γ similarly. Then by |MBSN|Φ,V,Γ
FG,NG,WG,u

(in

its contrapositive form) applied to B0 as in the proof of Theorem 8.19, we have

(∗)

[(WVΓ(NV Γ) ≺ V (NV Γ)→ B̄0([V](NV Γ) @WV Γ,ΓNV ΓWV Γ))

→ B̄0(V, FV Γ)]→ B̄0(u,Φ)

and so it suffices to prove the premise of (∗), which substituting definitions of F , N and

W is

(ṼGV Γ0 ≺ VGV Γ0 → B̄0([V](GV Γ0) ∗ (λi.ṼGV Γi), ωV ΓGV Γ)︸ ︷︷ ︸
C

)→ B̄0(V,GV Γ(ωV ΓGV Γ) + 1).

106

8.4. Higman’s lemma

Now, we use that GV Γ satisfies

(†) ∀i < j ≤ ωV ΓGV Γ(GV Γi < GV Γj ∧ V̄GV Γi ≤X V̄GV Γj)

Assuming C, there are two cases: either VGV Γ0 = 〈〉 which implies B̄0(V,GV Γ(ωV ΓGV Γ)+1)

since GV Γ0 ≤ GV Γ(ωV ΓGV Γ) by (†), or ṼGV Γ0 ≺ VGV Γ0.

In the second case we have B̄0([V](GV Γ0) ∗ (λi.ṼGV Γi), ωV ΓGV Γ), and using (†) it is

straightforward to show, as in the proof of Theorem 8.19, that this implies

B̄0(V,GV Γ(ωV ΓGV Γ) + 1).

This proves the premise of (∗), so we’re done.

Remark 8.21. By combining Theorem 8.20 with Theorem 8.11 we are able to extract an

explicit bar recursive realizer in G that bounds the length of bad sequences in X∗. In

individual cases the complexity of G will depend on the underlying well-quasi-ordering X.

For the case where X = [m] one proves using the infinite pigeonhole principle that any

sequence (xi) of type XN contains an infinite subsequence xg0 = xg1 = . . ., and therefore

G can be constructed as usual using finite bar recursion (see Lemma 7.14, [67]).

Remark 8.22. Nash-Williams’ proof would still work if we carried out the minimal bad

sequence argument on the weaker relation |x| < |y|, which is decidable even if we allow X

to range over higher-type objects (although we still need to insist on ≤X being decidable).

Remark 8.23. Higman’s lemma provides us with a good opportunity to analyse the be-

haviour of our realizers for MBS in more detail. In this context, the role of our bar

recursive realizer from Section 8.2 would be to attempt the construction of a minimal-bad-

sequence to obtain a contradiction, from which we can infer that the initial assumption

¬B̄0(u,Φu,FG,NG,WG) is false, and therefore Φu is a bound for Higman’s lemma.

G[u, FG, NF ,WG] Nash-Williams’ proof of Higman’s lemma

ε̃un find least prefix extending to a bad sequence

EPSε attempt to construct a minimal bad sequence

FG, NG,WG contradict construction of minimal bad sequence

Φ(u) contradict hypothesis ¬B(u)

Table 8.2: Functional interpretation of Higman’s lemma

On the other hand, if instead of our bar recursive realizer we use the open recursor

ΦG := λu . EORF
G,ϕ(u) as in Section 8.3 we end up with an intuitive inductive algorithm

that computes the bound Φ(u) in terms of Φ(w) for w<lexu, the functionals FG, NG and

WG using G to validate well-foundedness of the algorithm.

107

Chapter 8. The Minimal-Bad-Sequence Argument

It would of course be illuminating to give a more detailed description of our realizers,

even just for simple cases, and compare them to other programs for Higman’s lemma in

the literature, but we leave this to future work.

108

III The Equivalence of

Variants of Bar Recursion

109

CHAPTER

NINE

Extensions of Gödel’s system T

The second main part of this dissertation is concerned with establishing definability results

for variants of bar recursion and related extensions of system T.

In the preceding chapters we encountered Spector’s variants of bar recursion GBR

and SBR, along with the explicitly iterated product of selection functions EPS. In the

remainder of this dissertation the term bar recursion refers to a more general class of

functionals that can be informally described by the scheme

BT (s) =

G(s) if s is a leaf of T

H(s, λx . BT (s ∗ x)) otherwise

where T is some well-founded tree. Spector’s bar recursion is just a specific instance of

this type of recursion, over the well-founded tree T (s) :≡ ∀t ≺ s(|t| ≤ ϕ(t̂)). A somewhat

different instance of bar recursion is the Γ functional of Gandy and Hyland [35]:

Γq(sN
∗
)

N
:= q(s ∗ 0 ∗ λn . Γq(s ∗ (n+ 1)))

which rather than appealing to an explicit stopping condition as in Spector’s bar recursion,

is well-founded by assuming continuity of q, and as such its underlying tree is given

implicitly via the points of continuity of q. Generalisations of the Γ functional to higher

types have been considered in the context of proof theory in order to give a realizability

interpretation to the axiom of dependent choice - these include modified bar recursion

[11, 12] and more recently the implicitly iterated product of selection functions

IPSε,q(sρ
∗
) := s @ λn . εtn(λx . q(IPSε,q(tn ∗ x)))

for tn = [IPSε,q(s)](n). A key feature shared by all these variants of bar recursion is that

the recursion is carried out ‘backwards’ over finite sequences, each recursive call extending

111

Chapter 9. Extensions of Gödel’s system T

the current sequence with one more piece of information. An interesting ‘demand driven’

alternative to bar recursion is the so-called BBC functional:

BBCε,q(u) := u @ λn . εn(λx . q(BBCε,q(uxn))),

devised in [8] to give a more efficient computational interpretation to countable choice.

The BBC functional takes as input finite partial functions u and makes recursive calls

on updates uxn of u. As demonstrated by Berger [10], the BBC functional belongs to a

family of extensions of system T that seem more closely related to open recursion over

lexicographic orderings (as discussed in Chapter 8) than bar recursion in the usual sense.

In recent decades a several advances have been made in the computability theory of

bar recursion and its variants, particularly in clarifying the relationship between these

modes of recursion. In the late 1980s Bezem confirmed that several different formulations

of Spector’s bar recursion GBR that had been considered in the literature were indeed

equivalent [16], while on the other hand Kohenbach devised an interesting a variant of

GBR based on a novel stopping condition that could no longer be defined from GBR

[46]. Later, Berger and Oliva proved that their modified bar recursion is strictly stronger

than Spector’s bar recursion due to the fact that the latter is S1-S9 computable in the

total continuous functionals C ω while the former S1-S9 defines the FAN functional, which

is known to be non-computable in C ω. Recently, Escardó and Oliva [28] have given a

detailed account of the relationship between bar recursion and the products of selection

functions. However, many questions on the interdefinability of variants of bar recursion

remain unanswered.

In this dissertation we address some of these open questions. Our contributions are

divided into three parts. We begin with a study of finite bar recursion, in which we

construct a hierarchy of fragments of system T based on restricted finite bar recursion

and prove that they are in one-to-one correspondence with the usual fragments based on

restricted primitive recursion (Chapter 10). Next, we show that Spector’s ‘special’ and

‘general’ form of bar recursion are in fact primitive recursively equivalent (Chapter 11).

Finally, we succeed in relating extensions of system T based on open recursion with those

based on bar recursion, and prove that over the continuous functionals the BBC functional

and open recursion are equivalent to the implicitly iterated product of selection functions

(Chapter 12).

In the present chapter we acquaint the reader with some important definitions, and

provide a short summary of known facts about extensions of system T in order to put our

results in context. Our account is very concise, and the reader is encouraged to consult the

original sources where indicated and also e.g. [65] for general background on bar recursion

and computability theory in the type structures of continuous functionals.

112

9.1. Primitive recursive definability

9.1 Primitive recursive definability

Suppose we state a defining equation F(~x) := Ω(F, ~x) for some mode of recursion F, which

contains free variables ~x for the parameters of F. By F[Φ] we mean that the term Φ satisfies

the defining equation of F i.e.

F[Φ] :≡ ∀~x(Φ(~x) = Ω(Φ, ~x)).

We consider F to be an abstract symbol representing a mode of recursion, and technically

when we extend some theory S with the functional F, we mean that we add to S a constant

Φ along with the axiom F[Φ], although usually we implicitly identify Φ with the symbol

F.

Definition 9.1. Let S be some theory and ∆ a (possibly empty) set of additional axioms

in the language of S.

(a) The functional G is S-definable from F (G ≤S F) over ∆ if there exists a closed term

t ∈ S such that

S + ∆ + F[Ψ] ` G[t(Ψ)].

(b) More generally, if we are given defining equations for two collections of functionals

F ≡ (Fρ1,...,ρk), G ≡ (Gσ1,...,σl) where ρi, σj range over some subsets Xi, Yj of the

finite types respectively, then G is S-definable from F (G ≤S F) over ∆ if for any

σ1, . . . , σl : ΠjYj there exists ρ1(σ1, . . . , σl), . . . , ρk(σ1, . . . , σl) : ΠiXi such that

Gσ1,...,σl ≤S Fρ1(σ1,...,σl),...,ρk(σ1,...,σl)

If ∆ is empty then we simply say that G is S-definable from F. If G ≤S F and F ≤S G

over ∆ then F and G are S-equivalent over ∆ and we write F =S G.

Definition 9.2 (Primitive recursive definability). We say that G is primitive recursively

definable from F over ∆ if it is E-HAω-definable from F over ∆. We will usually write ≤T

instead of the more cumbersome ≤E-HAω .

Remark 9.3. In many cases, when G ≤T F it turns out that we actually only use a very

weak (essentially recursion-free) fragment of E-HAω to construct G from F. However, we

don’t make any effort to calibrate the weakest theory in which the construction can be

done.

The definability relation ≤S over fixed ∆ is clearly transitive. Suppose we are given

F ≡ (Fρ1....,ρk), G ≡ (Gσ1....,σl) and H ≡ (Hκ1....,κm) with G ≤S F and H ≤S G. Then H ≤S G

tells us that

S + ∆ + Gσ1,...,σl [Φ] ` Hκ1,...,κm [t0(Φ)]

113

Chapter 9. Extensions of Gödel’s system T

for some t0 ∈ S and σi(κ1, . . . , κm), and G ≤S F tells us that

S + ∆ + Fρ1,...,ρk [Ψ] ` Gσ1,...,σl [t1(Ψ)]

for some t1 ∈ S and ρi(σ1, . . . , σl). Putting these together and setting Φ := t1(Ψ) we

obtain

S + ∆ + Fρ1,...,ρk [Ψ] ` Hκ1,...,κm [(t0 ◦ t1)(Ψ))]

for ρi(κ1, . . . , κm) = ρi(σ1(κ1, . . . , κm), . . . , σl(κ1, . . . , κm)). A consequence of this is that

the relation =S is an equivalence relation.

Note that the notion of definability is model independent, although we can talk of

definability in a particular model as follows.

Definition 9.4. LetM be some a model of S. Then G is S-definable from F inM if G ≤S F

over ∆ where ∆ is valid in M.

In Chapter 12 we shall require ∆ :≡ QF-BI+Cont to prove that certain implicitly well-

founded modes of recursion are primitive recursively equivalent, and so our definability

results will in particular be valid in the model C ω of continuous functionals.

9.2 Spector’s bar recursion and its variants

In Section 9.3 we introduce, for the first time in this dissertation, some modes of bar

recursion which, unlike Spector’s bar recursion, do not come with an explicitly defined

stopping condition. Before doing so we survey some of the relevant known definability

and non-definability results concerning variants of Spector’s bar recursion. Let us quickly

recall the main definitions from Part II. Spector’s general bar recursor GBRρ,τ has defining

equation

GBRφ,q,ϕρ,τ (sρ
∗
)
τ

:=

q(s) if ϕ(ŝ) < |s|

φs(λx . GBRφ,q,ϕ(s ∗ x)) otherwise,

while his special bar recursor SBRρ is defined by

SBRφ,ϕρ (sρ
∗
)
ρN
:= s @

0ρN if ϕ(ŝ) < |s|

SBRφ,ϕρ (s ∗ as) otherwise

where as := φs(λx . SBR(s ∗ x)). Finally, the explicitly iterated product of selection

functions EPSρ,τ is defined as

EPSε,q,ϕ(sρ
∗
)
ρN
= s @


0ρN if ϕ(ŝ) < |s|

EPSε,q,ϕ(s ∗ as) otherwise,

for as := εs(λx . q(EPS(s ∗ x))). In the above definitions, ρ and τ range over all finite

types.

114

9.2. Spector’s bar recursion and its variants

Example 9.5. It is easy to see that EPS is primitive recursively equivalent to SBR, which

we prove now as a warm-up example. First we show that SBR ≤T EPS. Let

Φρ := t(EPSρ,ρN) = λφ, ϕ, s . EPSφ,id,ϕ
ρ,ρN

(s).

Note that we technically we mean to define Φ = t(Ψ) for some variable Ψ satisfying

EPSρ,ρN [Ψ], but for readability we identify Ψ with the symbol EPS. It is easy to see

that E-HAω proves that SBRρ[Φ], and therefore SBRρ ≤T EPSρ,ρN . If ϕ(ŝ) < |s| then

Φφ,ϕ(s) = s @ 0, and if ϕ(ŝ) ≥ |s| then

Φφ,ϕ(s) = s @ EPSφ,id,ϕ(s ∗ as)

= s @ Φφ,ϕ(s ∗ as)

where as = φs(λx . id(EPSφ,id,ϕ(s ∗ x))) = φs(λx . Φφ,ϕ(s ∗ x)). Conversely, to prove that

EPSρ,τ ≤T SBRρ, let

Φρ,τ := t(SBRρ) = λερ
∗→Jτρ, q, ϕ, s . SBRφ

ε,q ,ϕ
ρ (s)

where φε,qs (pρ→ρ
N
)
ρ

:= εs(λx . q(p(x))). Then ϕ(ŝ) < |s| implies that Φε,q,ϕ(s) = s @ 0, and

ϕ(ŝ) ≥ |s| implies

Φε,q,ϕ(s) = s @ SBRφ
ε,q ,ϕ(s ∗ as)

= s @ Φ(s ∗ as)

where as = φs(λx . SBR(s ∗ x)) = εs(λx . q(Φ(s ∗ x))). Therefore EPSρ,τ [Φ] is provable in

E-HAω, from which we conclude SBR =T EPS.

Definability between modes of recursion in all finite types may appear to be quite a

weak property, in the sense that we impose no restriction on the level of types. To prove

that SBR ≤T EPS we could have equally well demonstrated that EPSρN,(ρN)N defines SBRρ,

even though EPSρ,ρN suffices. However, primitive recursive definability is indeed a non-

trivial and subtle property that yields interesting insights into the relationship between

extensions of system T. A variant of ‘explicitly controlled’ bar recursion was given by

Kohenbach in [46], which has defining equation

KBRφ,q,ϕρ,τ (sρ
∗
)
τ

:=

q(s) if ϕ(ŝ) = ϕ(š)

φs(λx . KBRφ,q,ϕρ,τ (s ∗ x)) otherwise

and is based on a novel stopping condition ϕ(ŝ) = ϕ(š) (where š := s @ 1ρN). It turns out

that while KBR defines GBR, this adjustment of the stopping condition means that the

converse is not true, and KBRρ,τ cannot be defined from GBRρ′,τ ′ for any types ρ′, τ ′. This

is due to the fact that a term Φ satisfying GBR[Φ] exists in the majorizable functionals

M ω, but this is not the case for KBR. For all this see [46]. Note that while KBR will

not feature in later chapters here, it plays an important role in the definability results of

[11, 12].

115

Chapter 9. Extensions of Gödel’s system T

Theorem 9.6. (a) SBR is primitive recursively equivalent to EPS.

(b) GBR primitive recursively defines SBR.

(c) KBR primitive recursively defines GBR, but the converse does not hold.

Proof. Part (a) is proved in Example 9.5, (b) is similarly straightforward, and for (c) see

[46].

In Chapter 11 we improve Theorem 9.6 by proving the converse of (b), that GBR

is primitive recursively definable from SBR. An important property of these explicitly

well-founded modes of bar recursion is that they are computable in the total continuous

functionals (see [12] for details).

Theorem 9.7. Each of SBR, GBR and KBR are S1-S9 computable in the total continuous

functionals C ω.

Finally, we note that while SBR in general is not primitive recursively definable, the

special finite instance of SBR given by setting the control functional ϕ to be constant:

SBRε,q(s) := s @

0 if n < |s|

SBR(s ∗ as) otherwise.

is primitive recursive. Finite bar recursion and its relationship with Gödel’s primitive

recursor is the main topic of Chapter 10.

9.3 Modified bar recursion and the implicitly controlled product of se-

lection functions

Variants of bar recursion which, rather than relying on a stopping condition as in Spector’s

bar recursion, are ‘implicitly’ well-founded by a continuity argument have been used in

proof theory to give a modified realizability interpretation to countable dependent choice.

Modified bar recursion, developed in [11, 12] (and in turn based on a form of bar recursion

considered in [8]), is given by the defining equation

MBRψ,qρ,τ (sρ
∗
)
τ

:= q(s @ ψs(λx
ρ . MBR(s ∗ x)))

for ψ : ρ∗ → ((ρ → τ) → ρN) and q : ρN → τ . Provided τ is restricted to being a discrete

type, MBR exists in the model of continuous functionals C ω by the continuity principle

Cont (see [11]). In what follows we focus on an alternative formulation of implicitly

controlled bar recursion considered by Escardó and Oliva called the implicitly controlled

product of selection functions, given by the defining equation

IPSε,qρ,τ (sρ
∗
)
ρN
:= s @ IPSε,qρ,τ (s ∗ as) (9.1)

116

9.3. Modified bar recursion and the implicitly controlled product of selection functions

for as := εs(λx . q(IPSε,qρ,τ (s ∗ x))), where ε : ρ∗ → Jτρ, q : ρN → τ and τ is restricted

to being discrete. It is shown in [28] that IPS is equivalent to MBR, although IPS has

the advantage of providing us with a uniform transition between explicitly and implicitly

defined bar recursion in that it is essentially EPS without the stopping condition. As such

it also satisfies a useful analogue of Theorem 5.7.

Lemma 9.8. Let α = IPSε,q(s). Then for all n ≥ |s|,

α = IPSε,q([α](n)). (9.2)

Proof. Induction on n. For n = |s| we have [α](n) = [IPS(s)](|s|) = s by definition, and

therefore (9.2) holds by definition. Now assume that (9.2) holds for n ≥ |s|. Then

α
IH
= IPS([α](n)) = [α](n) @ IPS([α](n) ∗ a)

(∗)
= IPS([α](n) ∗ a)

where a = ε[α](n)(λx . q(IPS([α](n) ∗ x))) and (∗) holds because [α](n) is a prefix of

IPS([α](n) ∗a). Now α(n) = IPS([α](n) ∗a)(n) = a and therefore α = IPS([α](n) ∗α(n)) =

IPS([α](n+ 1)).

Theorem 9.9. Define α : ρN and ps : ρ→ τ by

α := IPSε,qρ,τ (〈〉)

ps := λx . q(IPSε,qρ,τ (s ∗ x)).
.

Then for all n we have

α(n) = ε[α](n)(p[α](n))

p[α](n)(α(n)) = q(α).
(9.3)

Proof. For the first inequality we have

α(n)
L9.8
= IPS([α](n))(n)

(9.1)
= ([α](n) @ IPS([α](n) ∗ a[α](n)))(n)

(9.1)
= a[α](n)

where a[α](n) = ε[α](n)(λx . q(IPS([α](n) ∗ x))) = ε[α](n)(p[α](n)). For the second, we have

qα
L9.8
= q(IPS([α](n+ 1)))

= q(IPS([α](n) ∗ α(n)))

= p[α](n)(α(n)).

117

Chapter 9. Extensions of Gödel’s system T

The equations (9.3) are of course analogous to Spector’s equations for EPS. A class

of sequential games for which IPS computes optimal strategies is discussed in [31]. In

the remaining chapters we are no longer concerned with the semantics of the products of

selection functions, but Lemma 9.8 and Theorem 9.9 will be used in Chapter 12 to prove

that IPS defines open recursion.

If we unwind the definition of IPS we can view it in an alternative form in which it is

given using course of values recursion.

Proposition 9.10. The product of selection functions IPS can be equivalently defined by

the equation

IPSε,q(s) := s @ λn . εtn(λx . q(IPSε,q(tn ∗ x))) (9.4)

where tn := [IPS(s)](n).

Proof. Technically what we mean is that any functional Φ satisfying (9.1) also satisfies

(9.4), and vice-versa, provably in E-HAω. The proof of this fact is straightforward and can

be found in Appendix A.

While it is easy to verify that IPS defines a total continuous functional by the continuity

axiom applied to q (recalling that the outcome type τ of q is restricted to being discrete),

it turns out that it is not S1-S9 computable in the total continuous functionals C ω. This

follows from the equivalent fact that MBR is not S1-S9 definable in C ω, which was proved

in [11] using properties of the FAN functional. The FAN functional is a functional of type

(BN → N)→ N that computes a point of uniform continuity for continuous functionals on

on the Cantor space, i.e. has defining axiom

FAN[Φ] : ∀qBN→N, α, β([α](Φ(q)) = [β](Φ(q))→ q(α) = q(β)).

While FAN exists in C ω, it is well-known that the FAN functional is not S1-S9 computable

in the total continuous functionals (see [35, 65]).

Theorem 9.11 (Berger/Oliva [11, 12]). The FAN functional is primitive recursively de-

finable from KBR+MBR in Cont+QF-BI, and therefore by Theorem 9.7 is S1-S9 definable

from MBR in C ω. But this means that MBR is not S1-S9 computable in C ω.

We now summarise the known definability results concerning MBR and IPS in the

following theorem.

Theorem 9.12. (a) IPS and MBR are primitive recursively equivalent over QF-BI+Cont.

(b) Both IPS and MBR primitive recursively define GBR over QF-BI + Cont.

(c) MBR does not define KBR.

118

9.4. The Berardi-Bezem-Coquand functional and update recursion

(d) None of SBR, GBR or KBR primitive recursively define IPS or MBR over QF-BI+Cont

or any theory validated by C ω.

Proof. (a) This is proved in [28] using a slightly different formulation sIPS of IPS. We

confirm in Appendix A that sIPS and IPS are equivalent over QF-BI + Cont.

(b) Definability of GBR from MBR is given in [12]. Definability of GBR from IPS follows

from part (a) or is proven directly in [28].

(c) Proved in [12] by the fact that MBR exists in M ω.

(d) By Theorem 9.11 and the fact that S1-S9 computable functionals in C ω are closed

under primitive recursion, MBR is not definable from any S1-S9 computable functional

over any theory ∆ validated by C ω, so the result follows by Theorem 9.7. See [12] for

details. An analogous result follows for IPS (and indeed any functional that defines

MBR over C ω).

9.4 The Berardi-Bezem-Coquand functional and update recursion

In [8], Berardi, Bezem and Coquand consider two different computational interpretations

of choice, for AC and DC respectively. The latter is the basis of modified bar recursion as

formalised in [11]. The former, on the other hand, is a remarkable form of recursion that

constructs a sequence using a demand-driven, symmetric algorithm that is quite different

to bar recursion. We call this the BBC functional.

In order to define BBC we require a few preliminary definitions. We view the type

ρ̄N where ρ̄ :≡ B × ρ as the type of partial sequences over ρ. A partial sequence u : ρ̄N is

defined at n, or n is in the domain of u, if and only if u(n)0 = 1. We define the decidable

predicates n ∈ dom(u) :≡ (u(n)0=1) and n /∈ dom(u) :≡ ¬(n ∈ dom(u)) ↔ (u(n)0 = 0).

If n ∈ dom(u) then the value of u at n is u(n)1 : ρ. We define u[n] :≡ u(n)1. We

redefine the overwrite operator @ in the context of partial sequences as the functional

@ : ρ̄N × ρN → ρN defined by

(u @ α)(n)
ρ

:=

u[n] if n ∈ dom(u)

α(n) otherwise.

It will always be clear from the context which @ we are using. Finally, given a partial

sequence u : ρ̄N and x : ρ, the partial sequence uxn is defined by

uxn(m)
ρ̄

:=

(1, x) if m = n

u(m) otherwise.

119

Chapter 9. Extensions of Gödel’s system T

We say that uxn is an update of u whenever n /∈ dom(u). The functional BBCρ,τ is given

by the defining equation

BBCε,qρ,τ (uρ̄
N
)
ρN
:= u @ λn . εn(λxρ . q(BBCε,q(uxn))),

where ε : N → Jτρ, q : ρN → τ and τ is restricted to being discrete. Originally, BBC was

defined in a slightly different form sBBC.

Proposition 9.13. The functional BBCρ,τ is primitive recursively equivalent to sBBCρ,τ

defined by

sBBCε,qρ,τ (u)
τ

:= q(u @ λn . εn(λx . sBBCε,q(uxn))).

Proof. Define Φε,q(u) := q(BBCε,q(u)). Then sBBC[Φ] follows because

Φε,q(u) = q(u @ λn . εn(λx . q(BBCε,q(uxn))))

= q(u @ λn . εn(λx . Φε,q(uxn))).

Conversely, by defining Φε,q(u) := u @ λn . εn(λx . sBBCε,q(uxn)) one obtains a functional

satisfying BBC[Φ]:

Φε,q(u) = u @ λn . εn(λx . q(uxn @ λm . εm(λy . sBBCε,q((uxn)ym))))

= u @ λn . εn(λx . q(Φε,q(uxn))).

Remark 9.14. Whenever u has finite domain, the computation of BBC(u) only ever makes

recursive calls on partial sequences with finite domain - in particular BBC(〈〉) is defined

in terms of BBC restricted to arguments with finite domain. In fact BBC was originally

defined purely in terms of partial sequences with finite domain (see [8, 9]) which can be

encoded as finite sequences of type (N×ρ)∗. Thus our definition of BBC is slightly different

to some definitions found in the literature (notably the original paper [8] itself), although

both formulations are discussed in [9, 10].

Berger demonstrated that BBC is easier to understand and its totality elegantly proven

when it is viewed as a special instance of update recursion. Update recursion is the

computational content of the principle of update induction UI, which is defined in [10] as

the schema

UI : ∀wρ̄N(∀w<upvB(w)→ B(v))→ ∀uB(u)

where B ranges over open predicates (cf. Chapter 8) on partial sequences of type ρ̄N and

w<upv iff w is an update of v. Accordingly, update recursion has defining equations

URGρ,τ (uρ̄
N
)
τ

:= Gu(λn, xρ . URG(uxn) if n /∈ dom(u))

where G : ρ̄N × (N× ρ→ τ)→ τ and τ is restricted to being discrete.

120

9.4. The Berardi-Bezem-Coquand functional and update recursion

Theorem 9.15 (Berger [10]). Update recursion exists in the total continuous functionals

C ω.

Proof. Update recursion can be defined in the partial continuous functionals Ĉ ω as a

suitable fixpoint. To prove totality of UR in Ĉ ω (and therefore the existence of UR in C ω),

the basic idea is that given total G, the predicate ‘u total→ URG(u) total’ is equivalent to

an open predicate B(u) by the continuity axiom. Now clearly B(u) is update progressive

by definition of UR, therefore by update induction we have that URG must be total.

In [10] it is shown that UI implies ACN, and moreover that the update-recursive program

extracted from this proof is essentially the BBC functional, so in particular UR defines the

BBC functional.

Proposition 9.16. The BBC functional is primitive recursively definable from UR.

Proof. Define Φε,q(u) := URG
ε,q

ρ,τ (u) where

Gε,qu (PN×ρ→τ)
τ

:= q(u @ λn . εn(λx . Pnx)).

Then we have sBBCρ,τ [Φ] because

Φε,q(u) = Gε,qu (λn, x . URG
ε,q

(uxn) if n /∈ dom(u))

(∗)
= q(u @ λn . εn(λx . URG

ε,q
(uxn)))

= q(u @ λn . εn(λx . Φε,q(uxn))),

where (∗) follows from the fact that u @ λn . εn(λx . URG
ε,q

(uxn)) only makes recursive

calls on URG
ε,q

(uxn) for n /∈ dom(u).

Corollary 9.17. The BBC functional exists in the total continuous functionals C ω.

Remark 9.18. The defining equations for BBC are similar to those of IPS, but the two

functionals differ in a fundamental way. The product of selection functions makes recursive

calls in sequential manner - the value of IPS(s)(n) depends on IPS(s)(m) for all m < n. On

the other hand, BBC makes recursive calls symmetrically, so that for m 6= n, BBC(u)(n)

and BBC(u)(m) are computed independently over distinct computation trees.

However, the order of computation is essentially the only way in which they differ.

Indeed, both arise from the same construction - which we illustrate very informally as fol-

lows. Suppose that ≺ organises N into a well-founded tree i.e. the set pd(n) of predecessors

of n is finite and well-ordered, and define F≺ on ≺-closed partial functions u : N→ ρ by

Fε,q≺ (u)
ρN
:= u @ λn . εn,Sn(λx . q(F≺(u @ (Sn ∪ 〈n, x〉)))

where Sn := {〈m,F≺(u)(m)〉 | m ∈ pd(n)} and the partial function Sn ∪ 〈n, x〉 is defined

in the obvious sense.

121

Chapter 9. Extensions of Gödel’s system T

Then when ≺ is the usual order <, we can identify <-closed partial functions with

finite sequences ρ∗, Sn with tn = [F<(s)](n) and s @ (tn ∪ {n, x}) = tn ∗ x for n ≥ |s|, so

the defining equations of F are essentially those for IPS.

Similarly, when ≺ is the discrete order •, <-closed partial functions are just partial

functions in the usual sense, Sn is empty, and u @ (∅ ∪ {n, x}) = uxn for n /∈ dom(u), so

the defining equation for • is the defining equation for BBC.

9.5 Open recursion

The final form of recursion that we study in this part of the dissertation is open recursion,

which has already been discussed in Chapter 8 in terms of the computational content of

open induction. It is given by the defining equation

ORF(ρ,<),τ (uρ
N
)
τ

:= Fu(λn, y, v . ORF ([u](n) ∗ y @ v) if y < u(n))

where F : ρN × (N × ρ × ρN → τ) → τ , τ is discrete and < is a decidable well-founded

relation on ρ (note that unlike Chapter 8 we make the variable y explicit, so that now OI

is exactly as defined in [10]).

Theorem 9.19 (Berger [10]). Open recursion exists in the total continuous functionals

C ω.

Proof. See [10, Proposition 5.1]. This follows in analogous fashion to the proof that update

induction is total, although this time we appeal to open induction.

It is easily seen (as pointed out in [10]) that update induction is an instance of open

induction on sequences of type ρ̄N with the well-founded relation (a, x) < (b, y) :≡ (a =

1 ∧ b = 0). It follows immediately from this observation that update recursion is an

instance of open recursion.

Proposition 9.20. Update recursion is primitive recursively definable from open recur-

sion.

Proof. Given G : ρ̄N × (N× ρ→ τ)→ τ define

FGu (PN×ρ̄×ρ̄N→τ)
τ

:= Gu(λn, x . Pn(1, x)u).

Then ΦG(u) := ORF
G

ρ̄,τ,<(u) where < is defined as above satisfies URρ,τ [Φ] because

ΦG(u) = FGu (λn, y, v . ORF
G

([u](n) ∗ y @ v) if y < u(n))

= Gu(λn, x . ORF
G

([u](n) ∗ (1, x) @ u) if (1, x) < u(n))

(∗)
= Gu(λn, x . ORF

G
(uxn) if n /∈ dom(u))

= Gu(λn, x . ΦG(uxn) if n /∈ dom(u)).

Note that we have (∗) because (1, x) < u(n) ↔ u(n)0 = 0 ↔ n /∈ dom(u) and [u](n) ∗
(1, x) @ u = uxn (note that here @ denotes overwrite on sequences).

122

9.6. Summary of interdefinability results

9.6 Summary of interdefinability results

Figure 9.1 summarises the known definability results between the extensions of system

T discussed in this section, and highlights the new results that will be presented in the

following chapters with dotted lines. Here ∆ :≡ QF-BI + Cont. We prove that:

• Finite bar recursion fPn of type level n is equivalent to Gödel’s primitive recursion

Rn+1 of type level n+ 1 (Chapter 10);

• Spector’s special bar recursion SBR defines his general bar recursion GBR, and so

the two are in fact equivalent (Chapter 11);

• The implicitly iterated product of selection functions defines open recursion, and

conversely the BBC functional defines IPS, both over ∆ (Chapter 12). This means

that IPS, MBR, OR, UR and BBC all lie in the same equivalence class over ∆.

OR // UR

��
MBR oo ∆ //

∆

��

:

xx

IPS

∆ Ch. 12

OO

BBC
∆

Ch. 12oo

KBR
,,

∆:

88

GBR�ll
,,

∆_

JJ

SBR
Ch. 11

ll oo // EPS

��
Rn+1

oo
Ch. 10

// fPn

∆_

TT

Figure 9.1: Summary of definability results

123

Chapter 9. Extensions of Gödel’s system T

124

CHAPTER

TEN

Finite Bar Recursion and the Primitive Recursive Functionals

In [66] Oliva demonstrated that an elegant description of the primitive recursive realizer for

the functional interpretation of the infinite pigeonhole principle IPHP is given by a finite

form of Spector’s bar recursion. The reason for this is that the infinite pigeonhole principle

is a direct consequence of the axiom of bounded collection, whose negative translation

follows from the finite double negation shift - a principle naturally interpreted by finite

bar recursion.

In this chapter we study finite bar recursion and its relationship to Gödel’s primitive

recursion. It is clear that unlike the usual bar recursion, finite bar recursion is primitive

recursively definable. We prove the converse: that finite bar recursion defines, essentially

over the λ-calculus, all primitive recursive functionals. More specifically we define a hi-

erarchy Pn of fragments of system T based on finite bar recursors of restricted type, and

show that these fragments are in one-to-one correspondence with the usual fragments Tn+1

based on primitive recursion.

We then clarify how finite bar recursion can be used to interpret fragments of arithmetic

based on bounded collection or finite choice principles. Parsons demonstrated that the

induction based fragment of arithmetic IΣn has a functional interpretation in the fragment

Tn−1 of system T [73]. We provide an analogous result for choice-based fragments of

arithmetic and bar recursive fragments of T.

We believe that our alternative construction of system T has several key benefits.

1. Finite bar recursion is equivalent to a finite product of selection functions which

can be viewed as a functional that computes optimal strategies in finite sequential

games. This correspondence gives us an illuminating characterisation of the primitive

recursive functionals. In particular the fragment Pn, equivalent to Tn+1, is built from

functionals that compute optimal strategies in sequential games whose moves have

type level n.

125

Chapter 10. Finite Bar Recursion and the Primitive Recursive Functionals

2. Finite bar recursion can be used as an alternative to (or in conjunction with) prim-

itive recursion in order to extract readable and intuitive programs from proofs in

arithmetic that involve bounded collection or finite choice principles.

3. The equivalence of the finite product with the recursor allows for a smooth transi-

tion from the functional interpretation of arithmetic (product with a fixed number

of iterations) to that of analysis (product with a finite but unbounded number of

iterations). Therefore, we obtain the correspondence

Finite product of selection functions

Arithmetic
=

Unbounded product of selection functions

Analysis

10.1 Finite bar recursion and its fragments

We begin by constructing a new hierarchy of fragments of T based on finite bar recursion.

First, let’s recall the standard hierarchy based on primitive recursion.

Definition 10.1. System T consists of the terms of E-HAω. The fragment Tn consists the

subclass of T with recursion Rρ restricted to types with deg(ρ) ≤ n.

Definability results between primitive recursive functionals will be officially carried out

in the lowest fragment T0 of T as we require basic recursive operations on sequences and

definition by cases, although it is clear that a weak fragment of T0 suffices for all the

constructions that follow. Similarly, we allow ourselves the whole of E-HAω to verify our

results and make no effort to establish the weakest fragment of Heyting arithmetic over

which they can be proved.

The finite bar recursor fBρ has defining equation

fBφ,nρ (sρ
∗
)
ρ∗

:= s @

〈〉 if |s| > n

fBφ,n(s ∗ as) if |s| ≤ n

for as := φs(λx . fBφ,n(s ∗ x)), where φ : ρ∗ → Jρ∗ρ.

Definition 10.2. The fragment Pn of T consists of T0 extended with the finite bar recursor

fBρ restricted to types with deg(ρ) ≤ n.

Similarly to fBρ, the finite product of selection functions fPρ,τ has defining equation

fPε,q,nρ,τ (s)
ρ∗

:= s @

〈〉 if |s| > n

fPε,q,n(s ∗ as) if |s| ≤ n

for as := εs(λx . q(fP(s ∗ x))), where ε : ρ∗ → Jτρ and q : ρ∗ → τ .

126

10.1. Finite bar recursion and its fragments

Proposition 10.3. The finite bar recursor fBρ defines fPρ,τ for arbitrary τ , and conse-

quently the fragment Pn contains fPρ,τ for τ arbitrary and deg(ρ) ≤ n. Conversely the

finite product fPρ,ρ∗ defines fBρ, therefore one can alternatively define Pn as T0 plus fPρ,τ

for deg(ρ) ≤ n.

Proof. This follows entirely analogously from the equivalence of the corresponding un-

bounded bar recursors (see Example 9.5).

By Proposition 10.3 we will use fBρ and fPρ,τ interchangeably in the remainder of this

Chapter. From a straightforward adaptation of Theorem 5.7 one easily derives a finitary

analogue for the main theorem on EPS for fP and fB.

Proposition 10.4. If s = fPε,q,n(〈〉) and pt = λx . q(fPε,q,n(t ∗ x)) then for all i ≤ n we

have

si = ε[s](i)(p[s](i))

p[s](i)(si) = q(s).

Because fBφ,nρ is just fPφ,id,nρ,ρ∗ , note that if s = fBφ,n(〈〉) and pt = λx . fBφ,n(t ∗ x) then

similarly

si = φ[s](i)(p[s](i))

p[s](i)(si) = s.

for i ≤ n.

Finite bar recursion was originally defined slightly differently in [66], as a functional

sfB with defining equation

sfBε,∆,nρ,τ (s)
ρ∗

:=

〈〉 if |s| > n

Xs ∗ sfB(s ∗Xs) if |s| ≤ n

for Xs := ε|s|(λx . ∆|s|(s∗x∗ sfB(s∗x))), where ε : N→ Jτρ and ∆: N→ (ρ∗ → τ). While

quite similar to fPρ,τ , it differs in the (obviously inessential) fact that it only returns the

tail of the recursion, and more significantly in that the selection functions are not allowed

access to previously computed values s. Since finite bar recursion has often been given in

this form in the literature, we include the following result.

Proposition 10.5. fBρ defines sfBρ,τ for arbitrary τ , and conversely sfBρ,ρ∗ defines fBρ.

Proof. Firstly, define Φε,∆,n(s) := tail|s|(fBφ
ε,∆,n
ρ (s)) where tailn(t) denotes the finite se-

quence t without its first n elements (or just 〈〉 whenever |t| ≤ n) and

φε,∆s (pρ→ρ
∗
) := ε|s|(λx . ∆|s|(Px)).

127

Chapter 10. Finite Bar Recursion and the Primitive Recursive Functionals

Then we have sfBρ,τ [Φ]. If |s| > n then Φε,∆,n(s) = tail|s|(s) = 〈〉, and otherwise (sup-

pressing parameters)

Φ(s) = tail|s|(s @ fB(s ∗ as))

= as ∗ tail|s|+1(fB(s ∗ as))
(∗)
= Xs ∗ tail|s|+1(fB(s ∗Xs))

= Xs ∗ Φ(s ∗Xs)

where for (∗) we have

as = φε,∆s (λx . fB(s ∗ x))

= ε|s|(λx . ∆|s|(fB(s ∗ x)))

= ε|s|(λx . ∆|s|(s ∗ x ∗ tail|s|+1(fB(s ∗ x))))

= ε|s|(λx . ∆|s|(s ∗ x ∗ Φ(s ∗ x)))

= Xs.

For the converse, define Φφ,n(s) := s ∗ sfBε
φ,∆
ρ,ρ∗ (s) where ∆n

ρ∗→ρ∗
:= id and

εn(pρ→ρ
∗
) := φ[p(0)](n)(p).

Then we have fBρ[Φ]. If |s| > n then Φ(s) = s ∗ 〈〉, and otherwise

Φ(s) = s ∗Xs ∗ sfB(s ∗Xs)

(∗)
= s ∗ as ∗ sfB(s ∗ as)

= s @ Φ(s ∗ as)

where for (∗) we have

Xs = ε|s|(λx . s ∗ x ∗ sfB(s ∗ x))

= φ[s∗x∗sfB(s∗0)](|s|)(λx . s ∗ x ∗ sfB(s ∗ x))

= φs(λx . Φ(s ∗ x))

Characterising the terms of Pn

The recursor Rρ can be viewed as an object that implements computations on a infinite

array of type ρN. It assigns a value Rρ(0) := y to position 0, and proceeds to write values

sequentially along the whole array, where Rρ(n) := zn(Rρ(0), . . . ,Rρ(n− 1)) is determined

by the function zn which can make its decision based on the values of (potentially all)

previous positions on the array.

The finite bar recursor fBρ carries out computations along the same array ρN. However,

having already assigned values 〈s0, . . . , sn−1〉 to the first n positions, the value at n is given

128

10.2. The equivalence of the fragments Pn and Tn+1.

by fBρ(s) := φs(λx . fB(s∗x)). Not only does fB have access to previously computed values,

but it can test the outcome of playing potential values x at |s| courtesy of the function

λx . fB(s ∗ x).

This suggests that fBρ is a stronger form of recursion than Rρ. In the next section we

make this precise by demonstrating that fBρ is capable of not only defining the primitive

recursive functionals of level deg(ρ), but all primitive recursive functionals of level deg(ρ)+

1.

10.2 The equivalence of the fragments Pn and Tn+1.

Notation. Given two fragments X and Y of system T, we write X ⇒ Y if all terms in Y

can be defined in X.

It is clear that finite bar recursion is primitive recursively definable. More specifically:

Theorem 10.6. The recursor Rρ∗→ρ∗ defines fBρ, and therefore Tn+1 ⇒ Pn.

Proof. It is apparent from its defining equations that fBφ,nρ is just a standard recursion of

type ρ∗ → ρ∗ in which the quantity1 n+ 1− |s| decreases until it reaches 0. Define

y := λs . s

zφ,ni (F ρ
∗→ρ∗) := λs . s @ F (s ∗ as)

where as := φ[F (s)](n−i)(λx . F (s ∗ x)). Define Φφ,n(s) := Ry,z
φ,n

ρ∗→ρ∗(n + 1 − |s|)(s). Then

fBρ[Φ] holds. For |s| > n we have

Φ(s) = R(0)(s) = y(s) = s,

and for |s| ≤ n:

Φ(s) = R(n+ 1− |s|)(s)

= zn−|s|(R(n− |s|))(s)

= s @ R(n− |s|)(s ∗ as)

= s @ Φ(s ∗ as)

where
as = φ[R(n−|s|)(s)](n−n+|s|)(λx . R(n− |s|)(s ∗ x))

= φs(λx . Φ(s ∗ x)).

Before we prove the converse to Theorem 10.6, let us first show how fBρ easily defines

Rρ without any kind of backtracking.

1By ‘−’ we always mean truncated subtraction, with n− i = 0 for i ≥ n.

129

Chapter 10. Finite Bar Recursion and the Primitive Recursive Functionals

Proposition 10.7. The finite bar recursor fBρ defines Rρ, and therefore Pn ⇒ Tn.

Proof. Define φy,zs as the constant function

φy,zs (pρ→ρ
∗
)
ρ

:=

y if |s| = 0

z|s|−1(s|s|−1) if |s| > 0

and let Φy,z(n):=fBφ
y,z ,n
ρ (〈〉)n. We have Rρ[Φ] because

Φ(0) = fBφ,0(〈〉)0 = φ〈〉(λx . fBφ,0(〈x〉)) = y

and for n > 0

Φ(n+ 1) = fBφ,n(〈〉)n
P.10.4

= φ[fBφ,n(〈〉)](n)(λx . [fBφ,n(〈〉)](n) ∗ x)

= zn−1(fBφ,n(〈〉)n−1)

(∗)
= zn−1(fBφ,n−1(〈〉)n−1)

= zn−1(Φ(n− 1)).

For (φ) we need to verify that fBφ,n(〈〉)n−1 = fBφ,n−1(〈〉)n−1, which is easily done by

induction on fBφ,n(〈〉)i = fBφ,n−1(〈〉)i.

Already we get the following key result.

Corollary 10.8. Gödel’s system T can be equivalently defined by using the finite bar

recursors fB instead of the primitive recursors R.

However, if we appeal to the full power of fB and allow backtracking, we strengthen

Proposition 10.7.

Theorem 10.9. The finite bar recursor fBρ defines Rρ→ρ.

Proof. Given y : ρ→ ρ, z : N→ (ρ→ ρ) and an argument a : ρ, define φn,a,y,zs by

φn,a,y,zs (pρ→ρ
∗
)
ρ

:=



zn−1(λx . p(x)1)(a) if |s| = 0

zn−|s|−1(λx . p(x)|s|+1)(|s||s|−1) if 0 < |s| < n

y(s|s|−1) if |s| = n

0ρ otherwise

for n > 0, and

φ0,a,y,z
s (pρ→ρ

∗
)
ρ

:=

y(p(a)0) if |s| = 0

0ρ otherwise.

130

10.2. The equivalence of the fragments Pn and Tn+1.

Note that technically for the ε to be well defined we should add

p(x)i := p(x) if i < |p(x)|, else 0ρ.

Now, define Φy,z(n)
ρ→ρ
:= λa . fBφ

n,a,y,z ,n(〈〉)0. Then we have Rρ→ρ[Φ]. For n = 0

Φ(0)(a) = fBφ
0,a,0(〈〉) P.10.4

= φ0,a
〈〉 (λx . fBφ

0,a,0(〈x〉)) = y(fBφ
0,a,0(〈a〉)0) = y(a)

and therefore Φ(0) = y. For n > 0 we have

Φ(n)(a) = fBφ
n,a,n(〈〉)0

= φn,a〈〉 (λx . fBφ
n,a,n(〈x〉))

= zn−1(λx . fBφ
n,a,n(〈x〉)1)(a)

(∗)
= zn−1(λx . fBφ

n−1,x,n−1(〈〉)0)(a)

= zn−1(Φ(n− 1))(a)

and therefore Φ(n) = zn−1(Φ(n− 1)). The main content of the proof is the verification of

(∗), in which we carry out finite bar induction on the formula

P (s) :≡ fBφ
n,a,n(〈x〉 ∗ s)|s|+1 = fBφ

n−1,x,n−1(s)|s|.

Then λ-abstracting from P (〈〉) we obtain

(∗) λx . fBφ
n,a,n(〈x〉)1 = λx . fBφ

n−1,x,n−1(〈〉)0.

First note that by Proposition 10.4, for |s| ≤ n− 1 the formula P (s) is equivalent to

φn,a〈x〉∗s(λx
′ . fBφ

n,a,n(〈x〉 ∗ s ∗ x′)) = φn−1,a
s (λx′ . fBφ

n−1,x,n−1(s ∗ x′))

Now, inspecting the definition of φs we see P (s) clearly holds for |s| = n− 1 by

y((〈x〉 ∗ s)n−1) = y(sn−2).

To establish the bar induction step there are two cases to deal with. For 0 < |s| < n− 1

P (s) follows by

zn−|〈x〉∗s|−1(λx′ . fBφ
n,a,n(〈x〉 ∗ s ∗ x′)|〈x〉∗s|+1)((〈x〉 ∗ s)|〈x〉∗s|−1)

B.I.H.
= zn−|s|−2(λx′ . fBφ

n−1,x,n−1(s ∗ x′)|s|+1)(s|s|−1)

and finally for |s| = 0 by

zn−2(λx′ . fBφ
n,a,n(〈x〉 ∗ x′)2)(〈x〉0)

B.I.H.
= zn−2(λx′ . fBφ

n−1,x,n−1(x′)1)(x)

which completes the proof.

131

Chapter 10. Finite Bar Recursion and the Primitive Recursive Functionals

Corollary 10.10. Pn ⇔ Tn+1

Proof. This follows immediately from Theorems 10.6 and 10.9. For the direction Pn ⇒
Tn+1 note that using the product type any type σ of degree n + 1 is equivalent to one

of the form ρ → N where deg(ρ) = n, which can clearly be encoded in the type ρ → ρ.

Therefore Rσ can be defined from Rρ→ρ and hence from fBρ.

A consequence of Theorem 10.9 is that the Ackermann function can be defined from

finite bar recursion of lowest type, and moreover by inspection we can construct it explicitly

in terms of fBN.

Example 10.11 (Ackermann function in P0). Given natural numbers a and n, define φn,as

by

φn,as (pN→N∗)
N
:=



(λx . p(x)1)(a+1)(1) if |s| = 0

(λx . p(x)|s|+1)(s|s|−1+1)(1) if 0 < |s| < n

s|s|−1 + 1 if |s| = n

0 otherwise

for n > 0, and

φ0,a
s (p)

N
:=

a+ 1 if |s| = 0

0 otherwise,

where f (i) is defined in T0 as usual by f (0)(x) = x and f (i+1)(x) = f(f (i)(x)). Then by

Theorem 10.9,

A(n, a)
N
:= fBφ

n,a,n
N (〈〉)0

satisfies the defining equations of the Ackermann function (cf. Example 2.7). To see this,

132

10.3. Interpreting fragments of arithmetic.

note that (using (∗) from the proof of Theorem 10.9)

A(0, a) = ϕ0,a
〈〉 (λx . fBφ

0,a,0(〈x〉))

= a+ 1;

A(n, 0) = φn,0〈〉 (λx . fBφ
n,0,n(〈x〉))

= (λx . fBφ
n,0,n(〈x〉)1)(1)

= fBφ
n,0,n(〈1〉)1

(∗)
= fBφ

n−1,1,n−1(〈〉)0

= A(n− 1, 1)

A(n, a) = φn,a〈〉 (λx . fBφ
n,a,n(〈x〉))

= (λx . fBφ
n,a,n(〈x〉)1)(a+1)(1)

= fBφ
n,a,n(〈(λx . fBφ

n,a,n(〈x〉)1)(a)(1)〉)1

(∗)
= fBφ

n−1,b,n−1(〈〉)0

= A(n− 1, b)

where b = (λx . fBφ
n,a,n(〈x〉)1)(a)(1). But by (∗) we have

fBφ
n,a,n(〈x〉)1 = fBφ

n−1,x,n−1(〈〉)0 = fBφ
n,a−1,n(〈x〉)1

and therefore
b = (λx . fBφ

n,a−1,n(〈x〉)1)(a)(1)

= φn,a−1
〈〉 (λx . fBφ

n,a−1,n(〈x〉))

= fBφ
n,a−1,n(〈〉)0

= A(n, a− 1)

This construction of the Ackermann function using fBN gives us an intuitive way of visu-

alising the function as a backtracking procedure over sequences of natural numbers. For

example, we sketch the computation of A(3, a) using fBφ
3,a,3 below:

fB(〈x0, x1, x2〉)3 = φ〈x0,x1,x2〉(λx . 〈x0, x1, x2, x〉3) = x2 + 1;

fB(〈x0, x1〉)2 = φ〈x0,x1〉(λx . fB(〈x0, x1, x〉)2) = (λx . x+ 1)(x1+1)(1) = x1 + 2;

fB(〈x0〉)1 = φ〈x0〉(λx . fB(〈x0, x〉)2) = (λx . x+ 2)x0+1(1) = 2x0 + 3

fB(〈〉)0 = φ〈〉(λx . fB(〈x〉)1) = (λx . 2x+ 3)(a+1)(1) = 2(a+3) − 3.

10.3 Interpreting fragments of arithmetic.

We conclude by calibrating which fragments of finite bar recursion are necessary for inter-

preting fragments of arithmetic based on bounded collection, or equivalently finite choice.

133

Chapter 10. Finite Bar Recursion and the Primitive Recursive Functionals

In fact the latter is most naturally interpreted using finite bar recursion, so we focus

purely on this principle (the functional interpretation of bounded collection using finite

bar recursion is discussed in e.g. [31]). We begin with a standard result.

Lemma 10.12. A formula A in the language of Peano arithmetic PA has ND interpreta-

tion |AN|xy where x and y are (tuples of) variables in the language of all finite types. For

n > 1:

(a) If A is a Π0
n formula then the tuple x contains variables of type degree at most n− 1

and the tuple y contains variables of type degree at most n− 2;

(b) If A is a Σ0
n formula then the tuple x contains variables of type degree at most n and

the tuple y contains variables of degree at most n− 1.

Proof. Straightforward induction on n, although we always eliminate unnecessary nega-

tions. In the case that A is Π0
n it is clear that AN ↔ A∗ using the intuitionistic law

¬¬∀x¬¬A(x)↔ ∀x¬¬A(x).

C. Parsons uses this lemma to extend Gödel’s functional interpretation to the induction

based fragments of arithmetic.

Theorem 10.13 (Parsons [73]). The functional interpretation of Πn-IND requires only

the recursor Rρ of type level deg(ρ) = n − 1. Therefore IΠn (or equivalently IΣn) has a

functional interpretation is Tn−1.

We now provide an analogue of Parsons’ result for the principle of finite choice.

Definition 10.14. Let P̃n be the subset of Pn containing the finite product fPρ,τ restricted

to simple selection functions (i.e. those with εs = ε|s| only dependent on the length of s)

and with deg(ρ) ≤ n and deg(τ) ≤ n− 1.

Remark 10.15. Note that it is not clear whether fBρ for deg(ρ) = n lies in P̃n as its

construction in Proposition 10.3 depends on fPρ,ρ∗ .

Theorem 10.16. (a) The functional interpretation of Π1-FAC requires only the finite

product of selection functions fPN,N of lowest type. Therefore FΠ1 (or equivalently

FΣ2, BΠ1 etc.) has a functional interpretation in P0.

(b) The functional interpretation of Πn-FAC for n > 1 requires only the finite product

of simple selection functions fPρ,τ of type level deg(ρ) = n − 1 and deg(τ) = n − 2.

Therefore FΠn (or equivalently FΣn+1, BΠn etc.) has a functional interpretation in

P̃n−1 ⊆ Pn−1.

Proof. The negative translation of finite choice

∀i ≤ m∃xNAi(x)→ ∃sN∗∀i ≤ mAi(si)

134

10.3. Interpreting fragments of arithmetic.

for a Π0
n formula Ai(x) is equivalent to the formula

∀i ≤ m¬¬∃xAi(x)N → ¬¬∃s∀i ≤ mAi(si)N,

which is partially interpreted as

∀i ≤ m¬¬∃xN, x̃ρ∀ỹτ |Ai(x)N|x̃ỹ → ¬¬∃sN
∗
, s̃ρ̃
∗∀i ≤ m, ỹ|Ai(si)N|s̃iỹ

Relabelling variables and setting Bi(x, y) := |Ai(x0)N|x1
y this is equivalent to

∀i ≤ m¬¬∃xρ∀yτBi(x, y)→ ¬¬∃sρ∗∀i ≤ m, yBi(si, y)

where (assuming n > 1) by Lemma 10.12, deg(ρ) = n − 1 and deg(τ) = n − 2. But this

has functional interpretation equivalent to

∀ε, q, ϕ∃s, p, i((i ≤ m→ Bi(εip, p(εip)))→ (ϕ(s) ≤ m→ Bϕ(s)(sϕ(s), q(s)))).

which can be solved by s := fPε,q,mρ,τ (〈〉), i := ϕ(s) and p := λx . q(fPε,qρ,τ,m([s](i) ∗ x)), since

by Proposition 10.4 for ϕ(s) ≤ m we have sϕ(s) = εi(p) and p(εip) = q(s).

For the case n = 1 we have ∃xNAi(x)N ≡ ∃xN∀yNAi(x, y), and therefore by an analo-

gous argument the functional interpretation of Π1-FAC can be solved by the finite product

fPN,N of lowest type.

We sketch the results of this Chapter (in conjunction with those in [71, 72, 73]) in

Figure 10.1.

IΣ1

��

FΠ1
oo

��

IΣn
oo

��

FΠn
oo

Th.10.16
��

IΣn+1
oo

��

PAoo

��

P̃n−1

��
T0 P0

ks Tn−1
oo Pn−1

Prop. 10.7
ks Tn+3

Th. 10.6, 10.9
ks Too

Figure 10.1: Fragments of Peano arithmetic and corresponding fragments of system T.

Remark 10.17. Our work in this section is nowhere near as extensive as Parsons’ work on

the induction fragments [72, 73]. Here, among other things, a more refined result is given

for the functional interpretation of fragments based on the induction rule, and also a proof

that the interpretation of IΣn in Tn−1 is faithful, from which we can calibrate precisely

the provably recursive functions of IΣn as those of Tn−1.

135

Chapter 10. Finite Bar Recursion and the Primitive Recursive Functionals

Remark 10.18. We leave open the question of whether P̃n−1 is weaker than Pn−1 (and

hence Tn). If not, then it is still possible that FΠn could be interpreted in a weaker

fragment of T. For the case of FΠ1 it is completely open whether or not Π1-FAC can be

interpreted in some system F strictly between T0 and T1.

Remark 10.19. Finally, we observe that Theorem 10.16 can be easily adapted to show that

the full, dependent product of selection functions interprets the following finite analogue

of dependent choice:

FDC : ∀i ≤ m,x∃yAi(x, y)→ ∃s∀i ≤ mAi(si, si+1).

Kreuzer [55, Chapter 4.2] points out that FDC for Π0
1 formulas is, unlike Π1-FAC, equivalent

to Σ2-IND, which implies that fPN,N (or equivalently fBN,N) defines all provably recursive

functions of IΣ2. In particular this yields an alternative proof that fBN,N defines the

Ackermann function, although of course we are able to give an explicit construction here.

136

CHAPTER

ELEVEN

On Spector’s ‘Special’ and ‘General’ Forms of Bar Recursion

In his original paper on the computational interpretation of analysis [86], Spector intro-

duces a general scheme of bar recursion GBR but draws attention to the fact that only a

‘special’ form of bar recursion SBR is required to interpret countable choice (cf. Chapter

4).

It is clear that SBR is definable from GBR. In this short chapter we prove the converse,

namely that SBR is actually strong enough to primitive recursively define GBR over system

T. This result follows firstly from the fact that the Kreisel/Howard trick for defining

Spector’s search functional µSp using GBR (Proposition 4.1) can in fact be carried out using

SBR, and secondly from the result that a bound for the search functional when it exists

can be defined in system T (Proposition 4.2). This allows us to define an intermediate

form of ‘finite but unbounded’ bar recursion FBR, which is capable of defining full bar

recursion GBR.

11.1 The Kreisel/Howard trick via SBR

The first part of the proof involves adapting the Kreisel/Howard construction of Spector’s

search functional µSp using SBR. This uses ideas from the previous chapter, in which

bar recursion was viewed as a device that carries out backtracking computations along an

array of type ρN (see Section 10.1).

Proposition 11.1. For any type ρ there exists a term t of E-HAω + SBR such that

∃n ≤ tϕ,α(ϕ(α, n) < n) (11.1)

for any ϕ : ρN → N, α : ρN. Therefore Spector’s search term µSp(ϕ, α) that finds the least

n satisfying Spector’s condition can be defined in E-HAω + SBR.

Proof. Without loss of generality assume that ρ = σ → N and let nρ denote the constant

functional λxσ . n of type ρ (and just the natural number n if ρ = N). Furthermore,

137

Chapter 11. On Spector’s ‘Special’ and ‘General’ Forms of Bar Recursion

given f : ρ let nρ + f denote the functional λxσ . n+ fx. Define the sequence of selection

functions φϕ,α : N→ JρNρ by

φϕ,αi (pρ→ρ
N
)
ρ

:=

0ρ if ∃n ≤ i(ϕ(α, n) < n)

1ρ + p(αi)i+1 otherwise

and let β(i)
N
:= SBRφ

ϕ,α,id,ϕ
ρ ([α](i))i(0σ) where ρ = σ → N (or just β(i)

N
:= SBRφ

ϕ,α,id,ϕ
ρ ([α](i))i

if ρ = N). We claim that β satisfies

βi =

0 if ∃n ≤ i(ϕ(α, n) < n)

1 + β(i+ 1) otherwise,

then from this we are able to show that ∃n ≤ β(0)(ϕ(α, n) < n) as in the proof of

Proposition 4.1, and so t := β(0) satisfies (11.1). It remains to prove the claim.

If ∃n ≤ i(ϕ(α, n) < n) then either ϕ(α, i) < i, in which case

βi = EPS([α](i))i(0σ) = 0ρ(0σ) = 0

or ϕ(α, i) ≥ i and ∃n < i(ϕ(α, n) < n), in which case

βi = SBR([α](i))i(0σ) = φi(λx . SBR([α](i) ∗ x))(0σ) = 0ρ(0σ) = 0.

On the other hand, if ∀n ≤ i(ϕ(α, n) ≥ n) we must have

βi = SBR([α](i))i(0)σ)

= φi(λx . SBR([α](i) ∗ x))(0σ)

= (1ρ + SBR([α](i+ 1))i+1)(0σ)

= 1 + SBR([α](i+ 1))i+1(0σ)

= 1 + β(i+ 1).

Corollary 11.2. For each k there is a term µ̃kSp of E-HAω such that, provably in E-HAω +

SBR, µ̃kSp(ϕ, α) is the least integer N > k satisfying Spector’s condition ϕ(α,N) < N .

Proof. Define µ̃0
Sp := µ̃Sp as in Proposition 4.2. Then analogous to the proof of Proposition

4.2, but this time using Proposition 11.1, we can show that

E-HAω + SBR ` ϕ(α, µ̃0
Sp(ϕ, α)) < µ̃0

Sp(ϕ, α) ∧ (n < µ̃0
Sp(ϕ, α)→ ϕ(α, n) ≥ n).

It is easy to see that µ̃kSp is definable from µ̃0
Sp for any k > 0. Simply set

µ̃kSp(ϕ, α) := µ̃0
Sp(λβ . ϕ([α](k) ∗ β)− k︸ ︷︷ ︸

ϕ̃

, tailk(α))

138

11.2. Defining GBR from SBR

where we recall that tailk removes the first k entries of α. Then noting that

ϕ̃(tailk(α), N) = ϕ([α](k) ∗ tailk(α), N)− k = ϕ(α, k +N)− k

we see that the leastN satisfying ϕ̃(tailk(α), N) < N is also the least satisfying ϕ(α, k +N) <

k +N .

11.2 Defining GBR from SBR

The primitive recursive definability of µSp allows us to devise a variant of Spector’s special

bar recursion which embodies the stopping condition: returning a finite instead of infinite

sequence. The constant FBRρ has defining equation

FBRφ,ϕρ (s)
ρ∗

:= s @

〈〉 if ϕ(ŝ) < |s|

FBRφ,ϕ(s ∗ as) otherwise

for as := φs(λx . FBR(s ∗ x)), where φ : ρ∗ → Jρ∗ρ and ϕ : ρN → N.

Lemma 11.3. SBR primitive recursively defines FBR.

Proof. Given parameters φ, ϕ for FBR, define φ̃ : ρ∗ → JρNρ by

φ̃s(p
ρ→ρN)

ρ
:= φs(λx . [p(x)](Np(x),|s|))

where Nα,k := µ̃k−1
Sp (ϕ, α) i.e. Nα,k ≥ k is the least satisfying ϕ(α,Nα,k) < Nα,k (provably

in E-HAω + SBR). Then the term Φφ,ϕ(s)
ρ∗

:= [SBRφ̃,ϕ(s)](N
SBRφ̃,ϕ(s),|s|) satisfies FBRρ[Φ].

For ϕ(ŝ) < |s| we have NSBR(s),|s| = |s| and therefore

Φ(s) = [SBR(s)](|s|) = s.

On the other hand, if ϕ(ŝ) > |s| then NSBR(s),|s| = NSBR(s),|s|+1 and

Φ(s) = [SBR(s)](NSBR(s),|s|+1)

= [SBR(s ∗ ãs)](NSBR(s∗ãs),|s|+1)

(∗)
= [SBR(s ∗ as)](NSBR(s∗as),|s|+1)

= Φ(s ∗ as)

where for (∗) we have

ãs = φ̃s(λx . SBR(s ∗ x))

= φs(λx . [SBR(s ∗ x)](NSBR(s∗x),|s|)

= φs(λx . [SBR(s ∗ x)](NSBR(s∗x),|s|+1)

= φs(λx . Φ(s ∗ x))

= as.

139

Chapter 11. On Spector’s ‘Special’ and ‘General’ Forms of Bar Recursion

We now have everything we need to prove our main theorem. The intuition behind

the proof is as follows. Spector’s general bar recursion assigns a value Vs := Y (s) to the

nodes of the tree defined by Spector’s condition, and computes the value Zs(λx . Vs∗x) at

intermediate nodes by querying the value of its children nodes. The special form of bar

recursion involves the particular case where the value Vs is an infinite path extending s.

We simulate GBR using FBR by encoding the value Vs as the first element in the path

extending s. While this tactic would have been impossible using SBR, we can search for

this value using FBR because here path extensions are always finite.

Theorem 11.4. A single instance of FBR primitive recursively defines GBR.

Notation. We need to extend E-HAω to contain sum types ρ+τ (which are easily definable

from the usual types). Given a : ρ and b : τ define [a]ρ : ρ+τ , [b]τ : ρ+τ to be the standard

injections into ρ + τ , and assume we have predicates x ∈ ρ and x ∈ τ that allow us to

decide which type x : ρ+ τ belongs to. Finally:

• Let š : (ρ+ τ)∗ denote the embedding of s : ρ∗ in ρ+ τ ;

• Given α : (ρ+ τ)N, define α̃ : ρN as

α̃(i)
ρ

:=

0ρ if α(i) ∈ τ

α(i) if α(i) ∈ ρ.

Define s̃ : ρ∗ for s : (ρ+ τ)∗ similarly

Proof of Theorem 11.4. Given parameters Z : ρ∗ → ((ρ → τ) → τ), Y : ρ∗ → τ and

ϕ : ρN → N, primitive recursively define φ : (ρ+ τ)∗ → J(ρ+τ)∗(ρ+ τ), q : (ρ+ τ)∗ → τ and

ϕ̃ : (ρ+ τ)N → N by

φs(p
(ρ+τ)→(ρ+τ)∗)

ρ+τ
:= [Zs̃(λx

ρ . q(p([x]ρ)))]τ

q(s)
τ

:=

Y (s̃) if ∀i < |s|(si ∈ ρ)

si for least i < |s| such that si ∈ τ .

ϕ̃(α)
τ

:= ϕ(α̃)

We claim that Φ(s)
τ

:= q(FBRφ,qρ+τ (š)) satisfies GBRZ,Y,ϕρ,τ [Φ]. Noting that

(†) ϕ(ŝ) < |s| ↔ ϕ̃(ˆ̌s) < |š|,

for ϕ(ŝ) < |s| we have

Φ(s) = q(š) = Y (s),

140

11.2. Defining GBR from SBR

and for ϕ(ŝ) ≥ |s|
Φ(s) = q(š ∗ [aš]τ @ FBR(š ∗ aš))

= aš

= φš(λx
ρ+τ . FBR(s ∗ x))

= Zs(λx
ρ . q(FBR(š ∗ [x]ρ)))

= Zs(λx
ρ . q(FBR(ˇs ∗ x)))

= Zs(λx
ρ . Φ(s ∗ x)).

Corollary 11.5. GBR, FBR and SBR are all primitive recursively equivalent.

Remark 11.6. The functional FBR is of interest in its own right as it forms a powerful

equivalent formulation of the usual SBR in that it embodies Spector’s search functional

µSp, which can be defined as

µSp(ϕ, α) := |FBRε
α,ϕ
ρ (〈〉)|

for εs(p) := p(α(|s|)).

Remark 11.7. While we have shown that Spector’s ‘special’ bar recursion is in fact as

general as his ‘general’ bar recursion in terms of T-definability, Spector was nevertheless

correct to single out the fact that his solution to the functional interpretation of the

double negation shift only makes use of SBR. In particular we know that SBRN (which

is definable from GBRN,NN) suffices to solve the functional interpretation of arithmetical

comprehension, and despite our equivalence result this still does not follow from the fact

that GBRN,NN also suffices to interpret arithmetic comprehension. This is because to define

GBRN,NN we need SBRNN , which is stronger than SBRN and in fact also capable of defining

GBRNN,NN (see [70, Remark 5.4]). This point demonstrates quite nicely that while primitive

recursive definability is a non-trivial relation between modes of recursion in all finite types,

it leaves completely open the relative strength of equivalent modes of recursion at the level

of types.

141

Chapter 11. On Spector’s ‘Special’ and ‘General’ Forms of Bar Recursion

142

CHAPTER

TWELVE

Implicitly Controlled Bar Recursion and Open Recursion

The final chapter of this dissertation contains the main results of Part III, where we prove

that modified bar recursion, the implicitly controlled product of selection functions, update

recursion, open recursion and the BBC functional are all primitive recursively equivalent.

The equivalence of IPS and MBR (along with several other definability results) is

established in [28], where it is also shown that IPS is equivalent to the so-called simple

product ips in which selection functions εs = ε|s| can only depend on the length of s.

Moreover (as we recalled in Chapter 9) Berger [10] shows that BBC is definable from UR,

which is in turn an instance of OR. The difficulty that lies ahead is in relating these

two groups of functionals, namely those based on bar recursion proper (IPS, MBR) with

those based on open recursion (BBC, UR, OR). We manage to do this in both directions,

proving that OR< is definable from IPS (whenever the transfinite recursor R< can be

defined in system T), and conversely that the ‘weakest’ variant of open recursion, the BBC

functional, defines ips. Combined with the results just stated, these complete the chain of

equivalences.

Unlike previous chapters, we seem to require ∆ :≡ Cont + QF-BI in order to verify our

constructions (this has also been the case for previous results involving the equivalence of

implicit forms of bar recursion [12, 28]), so our equivalence results only holds in models

that validate ∆. Of course ∆ is admitted in the standard type structure C ω of total

continuous functionals, so we believe that our dependence on ∆ is reasonable. We leave

open whether it is indeed possible to modify our definability results so that they are valid

in type structures that do not satisfy Cont such as the strongly majorizable functionals.

We make no claims that our constructions are optimal at the level of types. For

instance, it may well be that either in special cases, or even in general, our definition

of OR from IPS can be done using a weaker instance of IPS than the one we have used.

Optimality in this sense is a secondary concern here, and is of course not necessary at all

to establish primitive recursive definability. However we believe that beneath the abstruse

143

Chapter 12. Implicitly Controlled Bar Recursion and Open Recursion

syntax that is inevitable for these kinds of result, our constructions are based on intuitive

ideas. We define OR from IPS using a minimal bad sequence style algorithm (similar to,

but simpler than the instance of EPS given in Chapter 8), and in turn ips is defined from

BBC using a natural diagonal computation over infinite arrays of partial functions.

There are several factors that have motivated the research presented in this chapter.

Each of the forms of recursion considered below have been used to give computational

interpretations to variants of the axiom of choice, and so by comparing these forms of

recursion we are able to give some insight into the differences between programs extracted

using these forms of recursion. However, our main goal has been to continue the work

carried out by various authors in the last few years ([11, 12, 30]) on establishing and classi-

fying the known variants of recursion according to whether or not they are interdefinable.

Our results are the first to relate bar recursive functionals with open recursive functionals

in this sense.

The organisation of this chapter is rather straightforward. We begin in Section 12.1 by

proving that IPS defines open recursion, and then outline the special case that IPS defines

BBC in Section 12.2. Finally, we prove that BBC defines ips in Section 12.3.

12.1 Defining open recursion from IPS

We show that we can primitive recursively construct the open recursor ORρ,τ,< from IPS

for any decidable, well-founded relation on arbitrary type ρ, provided that we have access

to the transfinite recursor R(ρ,<),σ over < of arbitrary type σ, which we recall is defined as

Rg(ρ,<),σ(x)
σ

:= gx(λy . Rg<(y) if y < x)

(note that here, as always, ‘ if y < x’ is shorthand for if y < x, else 0σ). Whenever R<

is definable in T, it follows that ORρ,τ,< is primitive recursively definable from IPS. We

motivate our construction by sketching it in the simple case of open recursion on the

Cantor space.

Illustration: Open recursion on the Cantor space BN

The following discussion will be deliberately informal. In order to define open recursion

ORB,N,< on the Cantor space (that is sequences of booleans, lexicographically ordered on

the relation 0 < 1), we want to construct a term Φ := t(IPS) of type (BN × (N × BN →
N)→ N)→ (BN → N) which satisfies the following equation:

ΦF (u)
N
:= Fu(λn,w . ΦF ([u](n) ∗ 0 @ w) if u(n) = 1).

Our basic idea is to use an instance of IPSu of type σ := BN × (BN → N) (for some ε, q

parametrised by u, F) to construct a sequence IPSu(〈〉) = 〈vsu0 , fs
u
0〉, 〈vsu1 , fs

u
1〉, . . . where

〈vsun, fs
u
n〉 : σ.

144

12.1. Defining open recursion from IPS

(a) Each vsun will represent a copy of u,

(b) Whenever u(n) = 1 the function fsun will represent the function λw . ΦF ([u](n)∗0 @ w)

(and will just be the zero functional otherwise).

We construct parameters for IPSu so that vsu and fsu satisfy (a) and (b). First, define

qF : σN → N by

qF (vs(BN)N , fs(BN→N)N) := Fṽs(λn,w . fsnw).

where ṽs is the diagonal sequence λn . vsun(n). Secondly, given s : B∗ and v : BN, define

the selection function εs,v : (σ → N)→ σ by

εs,v(p
σ→N)

BN×(BN→N)
:=

〈v, λw . p(s ∗ 0 @ w, 0BN→N)〉 if v(|s|) = 1

〈v, 0〉 otherwise,

and from this define the dependent selection function ε̃u : σ∗ → JNσ by

ε̃u〈〉(p) := ε〈〉,u(p)

ε̃u〈v0,f0〉,...,〈vn−1,fn−1〉(p) := ε〈v0(0),...,vn−1(n−1)〉,vn−1
(p).

Then we claim that we can define Φ(u) := qF (IPSε̃
u,qF (〈〉)). Let 〈vsu, fsu〉 = IPSε̃

u,qF (〈〉).
By the characterising equations for IPS (9.3) vsu0 = u and vsun = vsun−1 for all n > 0,

therefore by induction we must have vsun = u for all n and in particular ṽsu = u, which

means that

Φ(u) = qF (vsu, fsu) = Fu(λn,w . fsnw)

Now we want to show that whenever u(n) = 1, we have fsnw = Φ([u](n) ∗ 0 @ w). By

the second characterising equation (9.3), and the fact that u(n) = 1→ vsn−1(n) = 1 and

〈vs0(0), . . . , vsn−1(n− 1)〉 = [u](n) we have

fsnw = qF (IPSε̃
u,qF ([vsu, fsu](n) ∗ 〈[u](n) ∗ 0 @ w, 0〉)).

Our main claim is that (using the abbreviation t = [u](n) ∗ 0 @ w)

(†) qF (IPSε̃
u,qF ([vsu, fsu](n) ∗ 〈t, 0〉)) = qF (IPSε̃

t,qF ([vst, fst](n) ∗ 〈t, 0〉))

where 〈vst, fst〉 σN
:= IPSε̃

t,qF (〈〉). If we can prove (†), then the result follows, since by

the first characteristic equation and the fact that vstn−1(n) = t(n) = 0 we clearly have

〈vstn, fs
t
n〉 = 〈t, 0〉, so that (by Lemma 9.8)

qF (IPSε̃
t,qF ([vst, fst](n) ∗ 〈t, 0〉)) = qF (IPSε̃

t,qF ([vst, fst](n+ 1))) = qF (IPSε̃
t,qF (〈〉))

and therefore fsnw = Φ(t) = Φ([u](n) ∗ 0 @ w). The claim (†) is by no means obvious, but

it is intuitively true for the following reasons. Firstly, if we assume inductively that

fsumw
′ = Φ([u](m) ∗ 0 @ w′) if u(m) = 1 fstmw

′ = Φ([t](m) ∗ 0 @ w′) if t(m) = 1

145

Chapter 12. Implicitly Controlled Bar Recursion and Open Recursion

for m < n and arbitrary w′ then we can equate fsum and fstm since [u](m+ 1) = [t](m+ 1),

and thereby reduce (†) to

(††) qF (IPSε̃
u,qF ([vsu, fsu](n) ∗ 〈t, 0〉)) = qF (IPSε̃

t,qF ([vst, fsu](n) ∗ 〈t, 0〉))

Now the two sides of the (††) are evaluated by computing optimal extensions to the

sequences [vsu, fsu](n)∗〈t, 0〉 and [vst, fsu](n)∗〈t, 0〉 respectively. The crucial point is that

to do this qF , ε̃t and ε̃u only ever look at the first m values of vsum and vstm respectively,

and [vsum](m) = [vstm](m) for all m < n. Therefore the two sides must be equal.

We note that this reasoning only works in the continuous type-structures. In non-

continuous structures the two sides of (††) could well be interpreted as different elements,

despite that fact that they satisfy the same recursive equations. We require Cont to ensure

that they evaluate to the same thing.

Now we give the full definability result. We generalise our construction so that it works

for arbitrary types and well-founded relations, and give a detailed proof of the correctness

of our term (unlike the rather sketchy illustration above). Unsurprisingly, the proof of our

claim (†) involves a fairly lengthy induction argument, which we separate from the main

proof as Lemma 12.2.

The general construction

We define the type σρ,τ := ρN × (ρ× ρN → τ).

Theorem 12.1. Let ρ be an arbitrary type, and τ a discrete type. Then OR(ρ,<),τ is

T + R< definable from IPSσρ,τ ,τ , provably in Cont + QF-BI.

Proof. Suppose that F : ρN × (N × ρ × ρN → τ) → τ is a parameter for open recursion.

We define qF : σN → τ by

qF (vs, fs)
τ

:= Fṽs(λn, y, v . fsnyv).

for vs : (ρN)N and fs : (ρ× ρN → τ)N, where ṽs
ρN
:= λn . vsn(n). For the selection functions,

first define εs,v : Jτσ for s : ρ∗, v : ρN by

εs,v(p
σ→τ)

σ
:= 〈v, fp,sv(|s|)〉

where fp,s is defined as in Chapter 8 using R(ρ,<),ρ×ρN→τ as

fp,sx
ρ×ρN→τ

:= λy, v . p(s ∗ y @ v, fp,sy) if y < x.

Note that if x is minimal with respect to < then fp,sx = 0. Then we can define, for u : ρN,

ε̃u : σ∗ → Jτσ by

ε̃u〈〉(p) := ε〈〉,u(p)

ε̃u〈〈v0,f0〉...,〈fn−1,vn−1〉〉(p) := ε〈v0(0),...,vn−1(n−1)〉,vn−1
(p).

146

12.1. Defining open recursion from IPS

Finally, let us define

ΦF (u) := qF (IPSε̃
u,qF

σ,τ (〈〉)).

We claim that OR(ρ,<),τ [Φ]. Let us use the abbreviation 〈vsu, fsu〉 σ
N

= IPSε̃
u,qF (〈〉) where

vsu : (ρN)N and fsu : (ρ× ρN → τ)N. First we prove that

(a) for arbitrary u, we have vsun = u and so in particular ṽsu = u.

This is easily verified by induction and the characterising equations (9.3). First, let us use

the notation

pn,u = p[vsu,fsu](n) := λ〈w, g〉σ . qF (IPSε̃
u,qF ([vsu, fsu](n) ∗ 〈w, g〉)).

Then by (9.3) vsu0 = ε̃u〈〉(p0,u)0 = u, and vsun = ε̃u[vsu,fsu](n)(pn,u)0 = vsun−1 for n > 0, so we

have vsun = u for all n. Secondly, we wish to prove

(b) fsunyv = qF (IPSε̃
[u](n)∗y @ v ,qF (〈〉)) if y < u(n).

The result then follows, because

ΦF (u) = qF (vsu, fsu)

= Fṽsu(λn, y, v . fsunyv)

(a),(b)
= Fu(λn, y, v . qF (IPSε̃

[u](n)∗y @ v ,qF (〈〉)) if y < u(n))

= Fu(λn, y, v . Φ([u](n) ∗ y @ v) if y < u(n)).

The main difficulty of the proof lies in establishing (b), for which we need the following

additional claim:

(c) whenever [u](n) = [t](n) for arbitrary u, t we have pn,u = pn,t.

This is proved as Lemma 12.2 below. Continuing for now, by (9.3) and (a) again we have

fsu0 = ε̃u〈〉(p0,u)1 = f
p0,u,〈〉
u(0) fsun = ε̃u[vsu,fsu](n)(pn,u)1 = ε̃u[u](n),u(pn,u) = f

pn,u,[u](n)
u(n)

therefore for arbitrary arguments y, v we have

fsunyv = f
pn,u,[u](n)
u(n) yv

= pn,u([u](n) ∗ y @ v, f
pn,u,[u](n)
y) if y < u(n)

Lem.12.2
= pn,[u](n)∗y @ v([u](n) ∗ y @ v, f

pn,[u](n)∗y @ v ,[u](n)
y) if y < u(n)

= pn,t(t, f
pn,t,[t](n)
t(n)) if t(n) < u(n)

where for the last equation we substitute the abbreviation t := [u](n) ∗ y @ v. If we had

n = 0, then

p0,t(t, f
p0,t,[t](0)

t(0)) = p0,t(ε̃
t
〈〉(p0,t))

(9.3)
= qF (vst, fst)

147

Chapter 12. Implicitly Controlled Bar Recursion and Open Recursion

and otherwise

pn,t(t, f
pn,t,[t](n)
t(n)) = pn,t(ε[t](n),t(pn,t))

(a)
= pn,t(ε̃

t
[vst,fst](n)

(pn,t))

(9.3)
= qF (vst, fst).

Therefore we have established pn,t(t, f
pn,t,[t](n)
t(n)) = qF (vst, fst) = qF (vs [u](n)∗y @ v, fs [u](n)∗y @ v)

for all n, y and v, and therefore

fsunyv = qF (IPSε̃
[u](n)∗y @ v ,qF (〈〉)) if y < u(n).

It remains to prove (c), and then we’re done. This involves a lengthy, but fairly

routine proof by combined induction and bar induction. It is here that we seem to require

continuity.

Lemma 12.2. For arbitrary sequences u, t of type ρN, whenever [u](n) = [t](n) we have

pn,u = pn,t, provably in Cont + QF-BI.

Proof. The proof is by induction on the formula

A(n) :≡ ∀u, t([u](n) = [t](n)→ pn,u = pn,t).

To establish A(0) we must show that p0,u = p0,t for arbitrary u, t. Given arguments g, w,

we run bar induction of type σ on the quantifier-free formula

P 0(〈ws, gs〉σ∗) :≡ (qF (IPSε̃
u,qF (〈w, g〉 ∗ 〈ws, gs〉) τ

= qF (IPSε̃
t,qF (〈w, g〉 ∗ 〈ws, gs〉)),

then P (〈〉) yields p0,uwg = p0,twg. Given 〈vs, fs〉 : σN, by Cont applied to q〈w,g〉 :=

λ〈vs, fs〉 . q(〈w, g〉 ∗ 〈vs, fs〉) there exists N such that

q(IPSε
u
(〈w, g〉 ∗ [vs, fs](N))) = q(〈w, g〉 ∗ [vs, fs](N) @ IPSε̃

u
(〈w, g〉 ∗ [vs, fs](N)))

Cont
= q(〈w, g〉 ∗ [vs, fs](N) @ IPSε̃

t
(〈w, g〉 ∗ [vs, fs](N)))

= q(IPSε
t
(〈w, g〉 ∗ [vs, fs](N)))

and for the bar induction step we have

qF (IPSε
u
(〈w, g〉 ∗ 〈ws, gs〉)) = qF (IPSε̃

u
(〈w, g〉 ∗ 〈ws, gs〉 ∗ au))

(∗)
= qF (IPSε̃

u
(〈w, g〉 ∗ 〈ws, gs〉 ∗ at))

B.I.H.
= qF (IPSε̃

t
(〈w, g〉 ∗ 〈ws, gs〉 ∗ at))

L.9.8
= qF (IPSε̃

t
(〈w, g〉 ∗ 〈ws, gs〉))

148

12.1. Defining open recursion from IPS

where for (∗) we have

au = ε̃u〈w,g〉∗〈ws,gs〉(λb
σ . q(IPSε̃

u
(〈w, g〉 ∗ 〈ws, gs〉 ∗ b)))

B.I.H.
= ε〈w(0),ws0(1),...,wsm−1(m)〉,wsm−1

(λbσ . q(IPSε̃
t
(〈w, g〉 ∗ 〈ws, gs〉 ∗ b)))

= ε̃t〈w,g〉∗〈ws,gs〉(λb
σ . q(IPSε̃

t
(〈w, g〉 ∗ 〈ws, gs〉 ∗ b)))

= at,

where m = |ws| and for m = 0 we replace wsm−1 by w. Therefore, by bar induction we

have A(0). The main induction step follows a similar pattern. For n > 0 we derive A(n),

assuming that A(m) holds for all m < n.

Suppose that [u](n) = [t](n). For arbitrary w, g we run bar induction on the formulaPn(〈ws, gs〉) :≡

(qF (IPSε̃
u,qF ([vsu, fsu](n) ∗ 〈w, g〉 ∗ 〈ws, gs〉) τ

= qF (IPSε̃
t,qF ([vst, fst](n) ∗ 〈w, g〉 ∗ 〈ws, gs〉)),

then Pn(〈〉) yields pn,uwg = pn,twg. The main induction hypothesis is used to verify that

fsum = fstm for all m < n. To see this, note that for 0 < m < n

fsum = ε̃u[vsu,fsu](m)(pm,u)1

= ε〈vsu0 (0),...,vsum−1(m−1)〉,vsum−1
(pm,u)1

(a)
= f

pm,u,[u](m)
u(m)

I.H.
= f

pm,t,[t](m)
t(m)

(a)
= ε〈vst0(0),...,vstm−1(m−1)〉,vstm−1

(pm,t)1

= ε̃t
[vst,fst](m)

(pm,t)1

= fstm.

Similarly for m = 0 we get fsu0 = ε〈〉,u(p0,u)1 = f
p0,u,〈〉
u(0)

I.H.
= f

p0,t,〈〉
t(0) = fst0. Now we continue

as before. Given 〈vs, fs〉 : σ, by Cont applied to q[vsu,fsu](n)∗〈w,g〉 there exists N such that

qF (IPSε̃
u,qF ([vsu, fsu](n) ∗ 〈w, g〉 ∗ [vs, fs](N)))

= qF ([vsu, fsu](n) ∗ 〈w, g〉 ∗ [vs, fs](N) @ IPSε̃
u,qF ([vsu, fsu](n) ∗ 〈w, g〉 ∗ [vs, fs](N)))

Cont
= qF ([vsu, fsu](n) ∗ 〈w, g〉 ∗ [vs, fs](N) @ IPSε̃

t,qF ([vst, fst](n) ∗ 〈w, g〉 ∗ [vs, fs](N)))

= F ˜[vsu](n)∗w∗[vs](N) @ vs′
([fsu](n) ∗ g ∗ [fs](N) @ fs ′)

(†)
= F ˜[vst](n)∗w∗[vs](N) @ vs′

([fst](n) ∗ g ∗ [fs](N) @ fs ′)

= qF ([vst, fst](n) ∗ 〈w, g〉 ∗ [vs, fs](N) @ IPSε̃
t,qF ([vst, fst](n) ∗ 〈w, g〉 ∗ [vs, fs](N)))

= qF (IPSε̃
t,qF ([vst, fst](n) ∗ 〈w, g〉 ∗ [vs, fs](N))),

149

Chapter 12. Implicitly Controlled Bar Recursion and Open Recursion

where we abbreviate 〈vs ′, fs ′〉 = IPSε̃
t,qF ([vst, fst](n)∗〈w, g〉∗ [vs, fs](N)), and (†) holds be-

cause [fsu](n) = [fst](n) and because for m < n we have vsum(m) = u(m) = t(m) = vstm(m)

(by (a) as in Theorem 12.1) and therefore ˜[vsu](n) = ˜[vst](n). So we have established that

for all 〈vs, fs〉 there exists N such that Pn([vs, fs](N)) holds.

The bar induction step is routine:

qF (IPSε̃
u
([vsu, fsu](n) ∗ 〈w, g〉 ∗ 〈ws, gs〉))

= qF (IPSε̃
u
([vsu, fsu](n) ∗ 〈w, g〉 ∗ 〈ws, gs〉 ∗ au))

(∗)
= qF (IPSε̃

u
([vsu, fsu](n) ∗ 〈w, g〉 ∗ 〈ws, gs〉 ∗ at))

B.I.H.
= qF (IPSε̃

t
([vst, fst](n) ∗ 〈w, g〉 ∗ 〈ws, gs〉 ∗ at))

= qF (IPSε̃
t
([vst, fst](n) ∗ 〈w, g〉 ∗ 〈ws, gs〉))

where for (∗) we have

au = ε̃u[vsu,fsu](n)∗〈w,g〉∗〈ws,gs〉(λb . q
F (IPSε̃

u
([vsu, fsu](n) ∗ 〈w, g〉 ∗ 〈ws, gs〉 ∗ b))

= ε ˜[vsu](n)∗w∗ws,wsm−1
(λb . qF (IPSε̃

u
([vsu, fsu](n) ∗ 〈w, g〉 ∗ 〈ws, gs〉 ∗ b))

B.I.H.
= ε ˜[vsu](n)∗w∗ws,wsm−1

(λb . qF (IPSε̃
t
([vst, fst](n) ∗ 〈w, g〉 ∗ 〈ws, gs〉 ∗ b))

(∗∗)
= ε ˜[vst](n)∗w∗ws,wsm−1

(λb . qF (IPSε̃
t
([vst, fst](n) ∗ 〈w, g〉 ∗ 〈ws, gs〉 ∗ b))

= ε̃t
[vst,fst](n)∗〈w,g〉∗〈ws,gs〉(λb . q

F (IPSε̃
t
([vst, fst](n) ∗ 〈w, g〉 ∗ 〈ws, gs〉 ∗ b))

= at

where of course (∗∗) follows because ˜[vsu](n) = ˜[vst](n), and as before m = |ws|, with

wsm−1 replaced by w for m = 0. This completes the bar induction, and therefore we

obtain ∀m < nA(m) → A(n), and so by induction we have ∀nA(n), which completes the

proof.

12.2 Defining UI and BBC from IPS

An immediate consequence of the previous section is the following.

Theorem 12.3. Both update recursion and the BBC functional are primitive recursively

definable from IPS, over Cont + QF-BI.

Proof. By Proposition 9.20, URρ,τ is definable from an instance of OR(ρ̄,<),τ on the relation

(a, xρ) < (b, y) :≡ (a = 1 ∧ b = 0). Clearly in this case R< is trivially definable in T,

therefore by Theorem 12.1 URρ,τ is primitive recursively definable from an instance of

IPSσρ̄,τ ,τ . By Proposition 9.16, an instance of IPS of the same type defines BBCρ,τ .

150

12.3. Defining IPS from BBC

Moreover by combining the proofs of these definability results we obtain an explicit

construction of UR and BBC from IPS. We state the construction of the latter below.

Given parameters q : ρN → τ and ε : N→ Jτρ for BBC, for σ := ρ̄N × (ρ̄× ρ̄N → τ), define

q : σN → τ and ε̃ : ρ̄N → (σ∗ → Jτσ) by

q̃(vs, fs)
τ

:= q(ṽs @ λn . εn(λx . fsn(1, x)ṽs))

ε̃u〈〉(p)
σ

:=

〈u, fp,〈〉〉 if 0 /∈ dom(u)

〈u, 0〉 otherwise.

ε̃u〈v0,f0〉,...,〈vn−1,fn−1〉(p)
σ

:=

〈vn−1, f
p,〈v0(0),...,vn−1(n−1)〉〉 if n /∈ dom(vn−1)

〈vn−1, 0〉 otherwise.

where fp,s := λy, v . p(s∗(1, y) @ v, 0). Then Φε,q(u) := q̃(IPSε̃
u,q̃(〈〉)) satisfies sBBCρ,τ [Φ].

Following the proof of Theorem 12.1 we see that

Φε,q(u) = q̃(vsu, fsu)

= q(ṽsu @ λn . εn(λx . fsun(1, x)ṽsu))

(a)
= q(u @ λn . εn(λx . fsun(1, x)u))

(b)
= q(u @ λn . εn(λx . Φ([u](n) ∗ (1, x) @ u)))

= q(u @ λn . εn(λx . Φ(uxn)))

and (b) follows because whenever n /∈ dom(u)

fsun(1, x)u = fpn,u,[u](n)(1, x)u

= pn,u([u](n) ∗ (1, x) @ u, 0)

L.12.2
= pn,uxn(uxn, 0)

= pn,uxn(ε̃
uxn
[vsu

x
n ,fsu

x
n](n)

(pn,uxn))

= q(vsu
x
n , fsu

x
n)

= Φ(uxn).

12.3 Defining IPS from BBC

Having proved that IPS defines BBC, we now establish the converse. The problem we

face is to capture the dependency implicit in IPS with BBC, which constructs a sequence

symmetrically, each element computed independently of the others. Due to a result of

Escardó and Oliva we can at least eliminate the dependency in the selection functions of

IPS, by reducing IPS to the simple product of selection functions ips. Given a family of

simple selection functions ε : N→ Jτρ, define the functional ipsρ,τ by

ipsε,q(s) := s @ ipsε,q(s ∗ as)

151

Chapter 12. Implicitly Controlled Bar Recursion and Open Recursion

where as := ε|s|(λx . q(ipsε,q(s∗x))). Note that as with IPS, ips can be equivalently defined

as

ipsε,q(s) := s @ λn . εn(λx . q(ipsε,q(tn ∗ x)))

where tn := [ips(s)](n). It turns out that the simple product of selection functions ips

actually defines the general product IPS.

Proposition 12.4 ([28]). IPS and ips are primitive recursively equivalent over Cont +

QF-BI.

Note that technically this result is proved for variants sIPS, sips of IPS and ips. We

confirm that our variants are equivalent to these in Appendix A.

Illustration: finite bar recursion

We now give a short and very informal illustration in the finite case, and show how we

can simulate the finite product fPε,q,3N,N of length three with a finite variant of BBC. We ab-

breviate elements of N̄ as (0, x) = ⊥ and (1, x) = x. Note that fPε,q = 〈X,Y [X], Z[X,Y]〉
where

X = ε0(λx . q(x, Y [x], Z[x, Y [x]])

Y [x] = ε1(λy . q(x, y, Z[x, y])

Z[x, y] = ε2(λz . q(x, y, z)

We can similarly define a finite variant fBBC3 of the BBC functional as

fBBCε,q,3ρ,N (uρ̄
(3)

)
ρ(3)

:= u @ (ε0(p0), ε1(p1), ε2(p2))

where pi = λxρ.q(fBBC(uxi)). We define fPε,qN,N with an instance fBBCε̃,q̃ρ,N of fBBC type

ρ = N̄(3), which outputs a 3×3 matrix (c0, c1, c2) (where ci denotes the ith column) whose

entries lie in N̄, and takes as input a partial (and potentially empty) list of columns of this

matrix. Note that in this instance of fBBC, there are two kinds of ‘undefined’: individual

entries in a column can be undefined (and we write ⊥), and also columns themselves can

be undefined (which we write as ⊥c). We define parameters for fBBC as

ε̃i(p)
N(3)

= λn < 3 . εn(λx . p(〈[ε̃i(p)](n) ∗ x〉))

q̃(c0, c1, c2)
N
:= q(d(c0, c1, c2))

d(c0, c1, c2)
N(3)

:= λn < 3 .

cn,m for least m ≤ n with n 6= ⊥

0 if no such m exists.

Note that for the first equation to type-check, technically ε̃i(p) should be viewed as a total

element of N̄(3), and also the finite sequence [ε̃i(p)](n) ∗x is extended using ⊥ to a column

N̄(3) if necessary.

152

12.3. Defining IPS from BBC

We claim that fPε,q(〈〉) = d(fBBCε̃,q̃(⊥c,⊥c,⊥c)). Writing fBBC(⊥c,⊥c,⊥c) = (c0, c1, c2)

we get d(c0, c1, c2) = c0 (since c0 = ε̃0(p0) is total) where

c0,0 = ε0(λx . q(d(fBBC(〈x,⊥,⊥〉,⊥c,⊥c)))

c1,0 = ε1(λy . q(d(fBBC(〈c0,0, y,⊥〉,⊥c,⊥c)))

c2.0 = ε2(λz . q(d(fBBC(〈c0,0, c1,0, z〉,⊥c,⊥c))).

Now, c2,0 = ε2(λz . q(c0,0, c1,0, z)) = Z[c0,0, c1,0]. To evaluate c1,0 must evaluate

d(fBBC(〈c0,0, y,⊥〉,⊥c,⊥c)) = d(〈c0,0, y,⊥〉 @ (c′0, c
′
1, c
′
2)) = 〈c0,0, y, c

′
2,1〉

where

c′2,1 = ε2(λz . q(d(fBBC(〈c0,0, y,⊥〉, 〈c′0,1, c′1,1, z〉,⊥c)))))

= ε2(λz . q(〈c0,0, y, z〉))

= Z[c0,0, y].

Therefore we have c1,0 = ε1(λy . q(〈c0,0, y, Z[c0,0, y]〉)) = Y [c0,0]. Finally, we must evaluate

d(fBBC(〈x,⊥,⊥〉,⊥c,⊥c)) = d(〈x,⊥,⊥〉 @ (c′′0, c
′′
1, c
′′
2)) = 〈x, c′′1,1, c′′2,1〉.

Similar calculations give us

c′′2,1 = ε2(λz . q(d(fBBC(〈x,⊥,⊥〉, 〈c′′0,1, c′′1,1, z〉,⊥c)))

= ε2(λz . q(〈x, c′′1,1, z〉)))

= Z[x, c′′1,1]

c′′1,1 = ε1(λy . q(d(fBBC(〈x,⊥,⊥〉, 〈c′′0,1, y,⊥〉,⊥c))))
(∗)
= ε1(λy . q(〈x, y, d2,2〉))

= ε1(λy . q(〈x, y, Z[x, y]〉)

= Y [x]

where for (∗) we have fBBC(〈x,⊥,⊥〉, 〈c′′0,1, y,⊥〉,⊥c) = 〈x,⊥,⊥〉, 〈c′′0,1, y,⊥〉 @ 〈d0, d1, d2〉.
Backtracking, we obtain c0,0 = ε0(λx . q(〈x, Y [x], Z[x, y]〉)) = X, and therefore c1,0 =

Y [X] and c2,0 = Z[X,Y [X]]. We illustrate the whole computation below.

153

Chapter 12. Implicitly Controlled Bar Recursion and Open Recursion

x

⊥
⊥

 7→
x c′′0,1

⊥ y

⊥ ⊥

 7→
x c′′0,1 d0,2

⊥ y d1,2

⊥ ⊥ z

 ε27→

x c′′0,1 d0,2

⊥ y d2,1

⊥ ⊥ Z[x, y]


ε17→

x c′′0,1

⊥ Y [x]

⊥



7→

x c′′0,1

⊥ Y [x]

⊥ z

 ε27→

x c′′0,1

⊥ Y [x]

⊥ Z[x, Y [x]]


ε07→

X


7→

Xy
⊥

 7→
X c′0,1

y c′1,1

⊥ z

 ε27→

X c′0,1

y c′1,1

⊥ Z[X, y]


ε17→

 X

Y [X]



7→

 X

Y [X]

z

 ε27→

 X

Y [X]

Z[X,Y [X]]


The idea behind the construction is that fBBC computes fP using a matrix. Whenever

fP is ‘testing’ a variable in a column via a selection function, it carries the computation over

to the column on the right. Once it has decided on this value, it continues the computation

in the original column. In this sense it simulates a variant of fP3
0 which comes equipped

with markers indicating whether or not a variable is being checked, and the functional d

can be viewed as an operation which removes those markers.

We can clearly extend our idea to a matrix of arbitrary size and type, and therefore

simulate the general finite product fPnρ using a finite form of BBC over an n × n matrix.

The main result that follows is that our construction works just as well in an unbounded

matrix, and that the unbounded product ips can be defined from an instance of BBC that

computes an infinite array of partial functions.

The general construction

First we need some notation. Given a finite sequence s : ρ∗ let {s} : ρ̄N its standard em-

bedding into the partial sequences i.e.

{s}(n) :=

(1, sn) if n < |s|

(0, 0ρ) otherwise.

154

12.3. Defining IPS from BBC

In the following we will often use a slight abuse of notation and just write s when it is

obvious that we’re treating it as an element of ρ̄N.

Theorem 12.5. Let ρ be an arbitrary type and τ a discrete type. Then ipsρ,τ is primitive

recursively definable from BBCρ̄N,τ , provably in Cont + QF-BI.

Proof. Suppose we are given ε : N→ Jτρ and q : ρN → τ . First, define q̃ : (ρ̄N)N → τ by

q̃(γ) := q(d(γ))

where the map d : (ρ̄N)N → ρN is defined by

d(γ)(n)
ρ

:=

γm[n] for least m ≤ n with n ∈ dom(γm)

0ρ if no such m exists.

Second, using the primitive recursor Rρ define the selection function ε̃ : Jτ ρ̄
N as

ε̃(pρ̄
N→τ)

ρ̄N
:= λk . (1, εk(λx

ρ . p({t̃k ∗ x})))

where t̃0 = 〈〉 and t̃k
ρ∗

:= 〈ε̃(p)[0], . . . , ε̃(p)[k − 1]〉. We extend this to a family of identical

selection functions ε̃n := ε̃. Now define

Φε,q(sρ
∗
)
ρN
:=

d(BBCε̃,q̃(〈〉)) if s = 〈〉

d(BBCε̃,q̃({〈{s}〉})) otherwise

We claim that ipsρ,τ [Φ]. Note that to cut down on excessive syntax, given a sequence

〈sρ
∗

0 , . . . , sk−1〉 of finite sequences we write BBC(〈s0, . . . , sk−1〉) when we implicitly mean

BBC applied to the partial array Γ := {〈{s0}, . . . , {sk−1}〉} : (ρ̄N)
N

defined by

Γm
B×ρ̄N

=

(1, {sm}) if m < k

(0, 0ρ̄N) otherwise.

Now we prove the claim. For s = 〈〉 we have (suppressing parameters on Φ and BBC)

Φ(〈〉) (∗)
= λn . ε̃0(λv . q̃(BBC(〈〉v0))︸ ︷︷ ︸

p

)[n]

= λn . εn(λx . q̃(BBC(〈〉{t̃n∗x}0)))

= λn . εn(λx . q(d(BBC(〈t̃n ∗ x〉))))
(∗∗)
= λn . εn(λx . q(Φ(tn ∗ x)))

where (∗∗) we have t̃n = 〈ε̃0(p)[0], . . . , ε̃0(p)[n − 1]〉 = [Φ(〈〉)](n) = tn. Note that (∗)
follows because n ∈ dom(BBC(〈〉)0) for all n and therefore d(BBC(〈〉))(n) = BBC(〈〉)0[n].

155

Chapter 12. Implicitly Controlled Bar Recursion and Open Recursion

Now, for |s| > 0 we have

Φ(s)
(∗)
= s @ λn . ε̃1(λv . q̃(BBC(〈s〉v1))︸ ︷︷ ︸

p

)[n]

= s @ λn . εn(λx . q̃(BBC(〈s〉{t̃n∗x}1)))

= s @ λn . εn(λx . q(d(BBC(〈s, t̃n ∗ x〉)))
(†)
= s @ λn . εn(λx . q(d(BBC(〈s @ (t̃n ∗ x)〉)))

= s @ λn . εn(λx . q(Φ(s @ (t̃n ∗ x))))

(∗∗)
= s @ λn . εn(λx . q(Φ(tn ∗ x)))

where for (∗∗) we have (for n ≥ |s|)

s @ (t̃n ∗ x) = s @ (〈ε̃1(p)[0], . . . , ε̃1(p)[n− 1]〉 ∗ x)

= s ∗ 〈ε̃1(p)[|s|], . . . , ε̃1(p)[n− 1]〉 ∗ x

= [Φ(s)](n) ∗ x

= tn ∗ x.

Note that (∗) follows because n ∈ dom(BBC(〈s〉)0) iff n < |s|, but n ∈ dom(BBC(〈s〉)1) =

dom(ε̃1(. . .)) for all n. Therefore

d(BBC(〈s〉))(n) =

{s}[n] = sn if n < |s|

ε̃1(p)[n] if n ≥ |s|.

Note that ε̃1(p)[n] is always included in the bounded search since n ≥ |s| implies n ≥ 1.

It remains to justify (†), which follows from the claim that whenever 0 < |s| < |t| we have

q̃(BBC(〈s, t〉)) = q̃(BBC(〈s @ t〉)).

Written informally, we’re asserting that

q̃(BBC



...

⊥
tj

...
...

⊥ ti+1

si ti
...

...

s0 t0 . . .


) = q̃(BBC



...

⊥
tj
...

ti+1

si
...

s0 . . .


)

This intuitively follows because q̃ never looks at the elements below the cut-off diagonal

d, so in particular ignores 〈t0, . . . , ti〉. We now prove the claim, using bar induction on

sequences u : (ρ∗)∗ relativised to those consisting only of non-empty sequences i.e. S(u) :≡

156

12.3. Defining IPS from BBC

∀i < |u|(|ui| > 0). Given such a sequence, define u•, u◦ : (ρ∗)∗ with |u•| = |u◦| = |u|
primitive recursively in BBC as

u•i
ρ∗

:= [π1ε̃(λv . q̃(BBC(〈s, t, u•0, . . . , u•i−1, v〉))](ki) ∗ ui

u◦i
ρ∗

:= [π1ε̃(λv . q̃(BBC(〈s @ t, u◦0, . . . , u
◦
i−1, v〉))](ki) ∗ ui

where as before we implicitly mean embeddings in ρ̄N of s, t, u•i , u
◦
i (and in turn 〈s, t, u•0, . . . , u•i−1, v〉

is embedded as a partial sequence over ρ̄N) in the arguments of BBC, and ki := |t| +∑i−1
j=0 |uj | for i < |u|. The purpose of these constructions is actually to simplify the bar

induction: The first ki entries of u•i (similarly u◦i) represent ‘dummy’ values that would be

computed by BBC(〈s, t, u•0, . . . , u•i−1, v〉) but never seen by the outcome functional q̃, and

so should not affect the value of q̃(BBC(〈s, t〉 ∗ u•)). We carry out bar induction on the

quantifier-free predicate

P (u) :≡ q̃(BBC(〈s, t〉 ∗ u•)) = q̃(BBC(〈s @ t〉 ∗ u◦)).

which we can informally visualise as

q̃(BBC



...

un−1,ln−1

...

un−1,0

•
...

...

u1,l1−1

...

u1,0

u0,l0−1 •
...

...
...

⊥ u0,0

tj •
...

...
...

⊥ ti+1

si ti
...

...
...

...
...

...

s0 t0 •︸︷︷︸
u•
0

•︸︷︷︸
u•
1

. . . •︸︷︷︸
u•
n−1



) = q̃(BBC



...

un−1,ln−1

...

un−1,0

◦
...

...

u1,l1−1

...

u1,0

u0,l0−1 ◦
...

...
...

⊥ u0,0

tj ◦
...

...

ti+1

si
...

...
...

...
...

s0 ◦︸︷︷︸
u◦
0

◦︸︷︷︸
u◦
1

. . . ◦︸︷︷︸
u◦
n−1



)

The claim then follows from P (〈〉) since 〈〉• = 〈〉◦ = 〈〉. First, to establish the bar, suppose

that α : (ρ∗)N is an infinite sequence of non-empty sequences, and let N be the point of

continuity of qs @ t on α̃ : ρN defined by

α̃(n)=αi(n− li) for least i ≤ n(li ≤ n < li+1) (12.1)

157

Chapter 12. Implicitly Controlled Bar Recursion and Open Recursion

for l0 = 0 and li :=
∑i−1

j=0 |αj |. Note that α̃ is just α0 ∗α1 ∗α2 . . ., and because|αi| > 0 for

all i we must have [α̃](N) ≺ α0 ∗ α1 ∗ . . . ∗ αN−1. Now,

d(BBC(〈s, t〉 ∗ [α](N)•)︸ ︷︷ ︸
γ

)
ρN
= (s @ t) ∗ α0 ∗ . . . ∗ αN−1 @

This follows because n ∈ dom(γ0) ↔ n < |s|, n ∈ dom(γ1) ↔ n < |t| and for i < N ,

n ∈ dom(γi+2) ↔ n ∈ dom({[α](N)•i }) ↔ n < ki + |αi| = |t| + li+1, and therefore (for

ki = |t|+ li)

d(γ)(n) =



γ0[n] = sn if n < |s|

γ1[n] = tn if |s| ≤ n < |t|

γi+2[n] = αi(n− li − |t|) if i < N ∧ ki ≤ n < ki+1

. . . otherwise

(note that we always have i + 2 ≤ |t| + li < n so γi+2 is included in the bounded search

performed by d). By an analogous argument we see that

d(BBC(〈s @ t〉 ∗ [α](N)◦)) = (s @ t) ∗ α0 ∗ . . . ∗ αN−1 @ . . .

and therefore by continuity

q̃(BBC(〈s, t〉 ∗ [α](N)•)) = qs @ t([α̃](N) @ . . .) = q̃(BBC(〈s @ t〉 ∗ [α](N)◦)),

which establishes P ([α](N)), and therefore we have ∀α ∈ S∃nP ([α](n)).

For the induction step we prove P (u) assuming that each ui is non-empty. Setting

ki = |t|+ li = |t|+
∑i−1

j=0 |uj | and m = |u|, as before we have

d(BBC(〈s, t〉 ∗ u•)︸ ︷︷ ︸
γ

) = (s @ t) ∗ u0 ∗ . . . ∗ um−1 ∗ β

where β(n) = γm+2(km + n). This follows as before because n ∈ dom(γ0)↔ n < |s|, n ∈
dom(γ1)↔ n < |t|, and for i < m, n ∈ dom(γi+2)↔ n ∈ dom(u•i)↔ n < ki + |ui| = ki+1.

Finally, we have n ∈ dom(γm+2) = dom(ε̃m+2(. . .)) for all n, therefore

d(γ)(n) =



γ0[n] = sn if n < |s|

γ1[n] = tn if |s| ≤ n < |t|

γi+2[n] = ui(n− ki) if i < m ∧ ki ≤ n < ki+1

γm+2[n] = β(n− km) if km ≤ n.

Now,

β(n) = ε̃m+2(λv . q̃(BBC((〈s, t〉 ∗ u•)vm+2)︸ ︷︷ ︸
p

)[km + n]

= εkm+n(λx . q̃(BBC((〈s, t〉 ∗ u• ∗ 〈t̃km+n ∗ρ x〉)))
(+)
= εkm+n(λx . q̃(BBC((〈s, t〉 ∗ (u ∗ 〈[β](n) ∗ρ x〉)•))).

158

12.3. Defining IPS from BBC

Note that in the latter two formulas concatenation of type ρ∗ is not to be confused with

concatenation of type ρ, which we carefully highlight. For (+) we clearly have u•i =

(u∗〈[β](n)∗ρx〉)•i for i < m since the operation (−)• is carried out recursively on sequences,

and

t̃km+n ∗ x = 〈ε̃(p)[0], . . . , ε̃(p)[km − 1]〉 ∗ 〈ε̃(p)[km], . . . , ε̃(p)[km + n− 1]〉 ∗ x

= [π1ε̃(λv . q̃(BBC(〈s, t, u•0, . . . , u•m−1, v〉)))](km) ∗ [β](n) ∗ x

= (u ∗ 〈[β](n) ∗ρ x〉)•m

By an analogous argument we have

d(BBC(〈s @ t〉 ∗ u◦)) = (s @ t) ∗ u0 ∗ . . . ∗ um−1 ∗ β′

where β′(n) = εkm+n(λx . q̃(BBC(〈s @ t〉 ∗ (u ∗ 〈[β′](n) ∗ρ x〉)◦)). We can now use the bar

induction hypothesis to prove that β(n) = β′(n) for all n. Assume by normal induction

that β(m) = β′(m) for m < n. Then

β(n) = εkm+n(λx . q̃(BBC((〈s, t〉 ∗ (u ∗ 〈[β](n) ∗ρ x〉)•)))
B.I.H.

= εkm+n(λx . q̃(BBC((〈s @ t〉 ∗ (u ∗ 〈[β](n) ∗ρ x〉)◦)))
I.H.
= εkm+n(λx . q̃(BBC((〈s @ t〉 ∗ (u ∗ 〈[β′](n) ∗ρ x〉)◦)))

= β′(n).

Finally, then, we have

q̃(BBC(〈s, t〉 ∗ u•)) = q((s @ t) ∗ u0 ∗ . . . um−1 ∗ β)

β=β′
= q((s @ t) ∗ u0 ∗ . . . ∗ um−1 ∗ β′)

= q̃(BBC(〈s @ t〉 ∗ u◦))

and we complete the induction step, and hence the proof.

Remark 12.6. We conjecture that the above instance of BBC naturally defines a variant

of ips0 of ips which is augmented to include boolean markers which indicate whether or

not points are being ‘tested’ by selection functions, given by

ipsε,q0 (〈b, s〉(B×ρ)∗)
(B×ρ)N

:= 〈b, s〉 @ ips0(〈b, s〉 ∗ 〈1, as〉)

where as := ε|s|(λx . q̄(ips0(〈b, s〉 ∗ 〈0, x〉))), q̄(α) := q(π1α) and the parameters have type

εn : Jτρ, q : ρN → τ . The idea is that the 0-marker would coincide with a ‘shift’ to the

column on the right. Given a sequence 〈b, s〉 with zeroes bn0 = . . . = bnm−1 = 0, and

assuming w.l.o.g. that the last element of 〈b, s〉 has marker 0, we claim the one could

define

ipsε,q0 (〈b, s〉) = BBCε̃,q̃(u•)

159

Chapter 12. Implicitly Controlled Bar Recursion and Open Recursion

where u0 := 〈s0, . . . , sn0〉, ui := 〈sni+1, . . . , sni+1〉 and u• is defined as in the preceding

proof (but without the initial entries s and t). Then, the bar induction (and reliance of

Cont) would simply be needed to show that the value of q̄(ips0(〈b, s〉)) is independent of

the markers b (and therefore ips0 defines ips), and thus one could adapt our proof to show

that BBC defines ips0 in E-HAω alone.

Theorem 12.7. IPS, OR, UR and BBC are all primitive recursively equivalent over Cont+

QF-BI.

Proof. We have the following chain of definability results:

IPS
Thm. 12.1
≥ OR

Prop. 9.20
≥ UR

Prop. 9.16
≥ BBC

Thm. 12.5
≥ ips

Prop. 12.4
≥ IPS.

Remark 12.8. In fact, by inspection one will notice that each of these results is true

instance-wise, so IPS, OR, UR and BBC are also instance-wise equivalent.

160

APPENDIX

A

Omitted Proofs

Proposition A.1. Let IPS be defined by

IPSε,qρ,τ (sρ
∗
)
ρN
:= s @ IPSε,qρ,τ (s ∗ as)

where as := εs(λx . q(IPS(s ∗ x))) and ĨPS be defined by

ĨPS
ε,q

(s) := s @ λn . εtn(λx . q(ĨPS
ε,q

(tn ∗ x)))

where tn := [ĨPS(s)](n). Then E-HAω + IPS[Φ] ` ĨPS[Φ] and E-HAω + ĨPS[Φ] ` IPS[Φ].

Proof. We first show that ĨPS[IPS]. By definition IPSε,q(s)(n) = sn for all n < |s|, and for

n ≥ |s| we have

IPS(s)(n)
L.9.8
= IPS(tn)(n)

= (tn @ IPS(tn ∗ atn))(n)

= atn

= εtn(λx . q(IPS(tn ∗ x))).

Conversely, to show that IPS[ĨPS], we use course of values induction on tn = t̃n where

tn = [ĨPS(s)](n) and t̃n = [ĨPS(s∗as)](n), and then the result immediately follows. Clearly

this is true for n = |s|. Now

ĨPS(s)(|s|) = εs(λx . q(ĨPS(s ∗ x))) = as = ĨPS(s ∗ as)(|s|)

and therefore t|s|+1 = t̃|s|+1. For the induction step, assume that tn = t̃n for n ≥ |s| + 1.

Then

ĨPS(s)(n) = εtn(λx . q(ĨPS(tn ∗ x)))
I.H.
= εt̃n(λx . q(ĨPS(t̃n ∗ x))) = ĨPS(s ∗ as)(n)

and therefore tn+1 = tn ∗ ĨPS(s)(n)
I.H.
= t̃n ∗ ĨPS(s ∗ as)(n) = t̃n+1, which completes the

induction, and the result follows.

161

Appendix A. Omitted Proofs

Equivalence of our products of selection functions and those of Escardó and

Oliva

In much of the existing literature [28, 29, 30] products of selection functions are constructed

slightly differently to ours. In particular, the implicit product of selection functions is

defined as

sIPSερ,τ (q)(s)
ρN
:= λn . εs∗tn(λx . qtn∗x(sIPSε(qtn∗x)(s ∗ tn ∗ x))),

where tn := [sIPSε(q)(s)](n) and qs(α) := q(s ∗ α), while the simple product is given by

sipsερ,τ (q)(m)
ρN
:= λn . εm+n(λx . qtn∗x(sipsε(qtn∗x)(m+ n+ 1))).

where tn := [sipsε(q)(m)](n). Here there are two essential differences, namely that the

function q updates with computes values, and only the tail end of the product is given

as output. However, these versions are easily (though rather tediously) shown to be

equivalent to our formulation in the continuous functionals.

Proposition A.2. IPS, sIPS, ips and sips are all primitive recursively equivalent over

Cont + QF-BI.

Proof. In [28, Theorem 4.5] it is proved that sIPS =T sips over E-HAω. To complete the

proof we show that IPS ≥T ips, sIPS ≥T IPS and ips ≥T sips. The first of these is trivial,

and the second is not much more difficult. Defining Φε,q(s) := s ∗ sIPSερ,τ (qs)(s) we see

that IPSρ,τ [Φ]: For n < |s| we have Φ(s)(k) = sk, and for n = |s|+ k we have

Φ(s)(n) = s ∗ sIPS(qs)(s)(|s|+ k)

= εs∗tk(λx . (qs)tn∗x(sIPS((qs)tk∗x)(s ∗ tk ∗ x)))

= εs∗tk(λx . q(s ∗ tn ∗ x ∗ sIPS(qs∗tk∗x)(s ∗ tk ∗ x)))

= εs∗tk(λx . q(Φ(s ∗ tk ∗ x)))

(∗)
= εt̃n(λx . q(Φ(t̃n ∗ x)))

where for (∗) we have

s ∗ tk = s ∗ [sIPS(qs)(s)](k) = [Φ(s)](|s|+ k) = t̃n.

To show ips ≥ sips requires a little more effort, as seems to always be the case going

between bar recursion where computed values remain as parameters (as in ips) and bar

recursion where computes values are encoded in the outcome function (as in sips). We

define Φε(q)(m) := tailm(ipsε,q
m

ρ,τ (0m)) where qm(α) := q(tailm(α)) and 0m := [0ρN](m).

162

Then sipsρ,τ [Φ]:

Φ(q)(m)(n) = tailm(ipsq
m

(0m))(n)

= ipsq
m

(0m)(m+ n)

= εm+n(λx . qm(ipsq
m

(tm+n ∗ x)))

= εm+n(λx . qm(tm+n ∗ x ∗ tailm+n+1(ipsq
m

(tm+n ∗ x))))

(∗)
= εm+n(λx . qm(0m ∗ t̃n ∗ x ∗ tailm+n+1(ipsq

m
(0m ∗ t̃n ∗ x))))

= εm+n(λx . qt̃n∗x(tailm+n+1(ipsq
m

(0m ∗ t̃n ∗ x))))

(+)
= εm+n(λx . qt̃n∗x(tailm+n+1(ips(qt̃n∗x)m+n+1

(0m+n+1))))

= εm+n(λx . qt̃n∗x(Φ(qt̃n∗x)(m+ n+ 1)))

where for (∗) we have

tm+n = [ipsq
m

(0m)](m+ n) = 0m ∗ [tailm(ipsq
m

(0m))](n) = 0m ∗ [Φ(q)(m)](n) = 0m ∗ t̃m

and (+) follows from P (〈〉) which is proved using Cont + QF-BI, where

P (r) :≡ qt(tailm+n+1(ipsq
m

(0m ∗ t ∗ r))) = qt(tailm+n+1(ips(qt)m+n+1
(0m+n+1 ∗ r)))

for t := t̃n ∗ x. Let N be the point of continuity of qt on α. Then

qt(tailm+n+1(ipsq
m

(0m ∗ t ∗ [α](N)))) = qt([α](N) @ . . .)

= qt(tailm+n+1(ips(qt)m+n+1
(0m+n+1 ∗ [α](N))))

which establishes the bar, and assuming ∀yP (r ∗ y) we have (using the alternative formu-

lation of ips)

qt(tailm+n+1(ipsq
m

(0m ∗ t ∗ r))) = qt(tailm+n+1(ipsq
m

(0m ∗ t ∗ r ∗ a)))

B.I.H.
= qt(tailm+n+1(ips(qt)m+n+1

(0m+n+1 ∗ r ∗ a)))

(∗)
= qt(tailm+n+1(ips(qt)m+n+1

(0m+n+1 ∗ r ∗ ã)))

= qt(tailm+n+1(ips(qt)m+n+1
(0m+n+1 ∗ r)))

where for (∗) we have

a = εm+n+1+|r|(λy . q
m(ipsq

m
(0m ∗ t ∗ r ∗ y))

= εm+n+1+|r|(λy . qt(tailm+n+1(ipsq
m

(0m ∗ t ∗ r ∗ y)))

B.I.H.
= εm+n+1+|r|(λy . qt(tailm+n+1(ips(qt)m+n+1

(0m+n+1 ∗ r ∗ y))))

= εm+n+1+|r|(λy . (qt)
m+n+1(ips(qt)m+n+1

(0m+n+1 ∗ r ∗ y)))

= ã.

163

Appendix A. Omitted Proofs

164

Bibliography

[1] F. Aschieri. Learning, Realizability and Games in Classical Arithmetic. PhD thesis,

Universita degli Studi di Torino and Queen Mary, University of London, 2011.

[2] F. Aschieri. Transfinite update procedures for predicative systems of analysis. In

Computer Science Logic (CSL’11), volume 12 of Leibniz International Proceedings in

Informatics, pages 1–15, 2011.

[3] F. Aschieri and S. Berardi. Interactive learning-based realizability for Heyting arith-

metic with EM1. Logical Methods in Computer Science, 6(3), 2010.

[4] J. Avigad. Update procedures and the 1-consistency of arithmetic. Mathematical

Logic Quarterly, 48(1):3–13, 2002.

[5] J. Avigad and S. Feferman. Gödel’s functional (“Dialectica”) interpretation. In S. R.

Buss, editor, Handbook of Proof Theory, volume 137 of Studies in Logic and the

Foundations of Mathematics, pages 337–405. North Holland, Amsterdam, 1998.

[6] J. Avigad, P. Gerhardy, and H. Towsner. Local stability of ergodic averages. Trans-

actions of the American Mathematical Society, 362:261–288, 2010.

[7] G. Bellin. Ramsey interpreted: a parametric version of Ramsey’s theorem. In Logic

and computation (Pittsburgh, PA, 1987), volume 106, pages 17–37. Amer. Math. Soc.,

Providence, RI, 1990.

[8] S. Berardi, M. Bezem, and T. Coquand. On the computational content of the axiom

of choice. Journal of Symbolic Logic, 63(2):600–622, 1998.

[9] U. Berger. The Berardi-Bezem-Coquand functional in a domain-theoretic setting.

Unpublished note, available from author’s webpage, 2002.

[10] U. Berger. A computational interpretation of open induction. In F. Titsworth, ed-

itor, Proceedings of the Nineteenth Annual IEEE Symposium on Logic in Computer

Science, pages 326–334. IEEE Computer Society, 2004.

165

Bibliography

[11] U. Berger and P. Oliva. Modified bar recursion and classical dependent choice. Lecture

Notes in Logic, 20:89–107, 2005.

[12] U. Berger and P. Oliva. Modified bar recursion. Mathematical Structures in Computer

Science, 16(2):163–183, 2006.

[13] U. Berger and M. Seisenberger. Applications of inductive definitions and choice princi-

ples to program synthesis. In From Sets and Types to Topology and Analysis Towards

Practicable Foundations for Constructive Mathematics, volume 48 of Oxford Logic

Guides, pages 137–148. Oxford University Press, 2005.

[14] M. Bezem. Strong normalization of bar recursive terms without using infinite terms.

Arch. Math. Log. Grundlagenforsch, 25:175–181, 1985.

[15] M. Bezem. Strongly majorizable functionals of finite type: A model for bar recursion

containing discontinuous functionals. Journal of Symbolic Logic, 50:652–660, 1985.

[16] M. Bezem. Equivalence of bar recursors in the theory of functionals of finite type.

Archive for Mathematical Logic, 27:149–160, 1988.

[17] W. Burr. Functionals in Set Theory and Arithmetic. PhD thesis, Westfälische

Wilhelms-Universität Münster, 1998.

[18] S. R. Buss. First-order proof theory of arithmetic. In S. R. Buss, editor, Handbook of

Proof Theory, volume 137 of Studies in Logic and the Foundations of Mathematics,

pages 79–147. North Holland, Amsterdam, 1998.

[19] E. A. Cichon and E. Tahhan-Bittar. Ordinal recursive bounds for Higman’s theorem.

Theoretical Computer Science, 201(1–2):63–84, 1998.

[20] T. Coquand. Constructive topology and combinatorics. In Constructivity in Computer

Science, volume 613 of LNCS, pages 159–164, 1991.

[21] T. Coquand. An analysis of Ramsey’s theorem. Information and Computation,

110(2):297–304, 1994.

[22] T. Coquand. A semantics of evidence for classical arithmetic. Journal of Symbolic

Logic, 60:325–337, 1995.

[23] T. Coquand and D. Fridlender. A proof of Higman’s lemma by structural induction.

Unpublished Manuscript, available from authors’ webpage, 1993.

[24] V. de Paiva. The Dialectica Categories. PhD thesis, University of Cambridge, 1991.

Published as Technical Report 213, Computer Laboratory, University of Cambridge.

166

Bibliography

[25] P. Erdős, A. Hajnal, A. Máté, and R. Rado. Combinatorial Set Theory: Partition

Relations for Cardinals, volume 106 of Studies in Logic and the Foundations of Math-

ematics. North-Holland Publishing Company, 1984.

[26] Y. L. Ershov. Model C of partial continuous functionals. In Logic Colloquium, pages

455–467. North Holland, Amsterdam, 1977.

[27] M. Escardó. Exhaustible sets in higher-type computation. Logical Methods in Com-

puter Science, 4(3):1–37, 2008.

[28] M. Escardó and P. Oliva. Bar recursion and products of selection functions. Preprint,

available from authors’ webpage, 2010.

[29] M. Escardó and P. Oliva. Computational interpretation of analysis via the products

of selection functions. In Proceedings of CiE 2010, volume 6158 of LNCS, pages

141–150. 2010.

[30] M. Escardó and P. Oliva. Selection functions, bar recursion and backward induction.

Mathematical Structures in Computer Science, 20(2):127–168, 2010.

[31] M. Escardó and P. Oliva. Sequential games and optimal strategies. Royal Society

Proceedings A, 467:1519–1545, 2011.

[32] M. Escardó, P. Oliva, and T. Powell. System T and the product of selection functions.

In M. Bezem, editor, Computer Science Logic (CSL’11), volume 12 of LIPIcs, pages

233–247, 2011.

[33] G. Ferreira and P. Oliva. On the relation between various negative translations. In

Logic, Construction, Computation, volume 3 of Onton-Verlag Mathematical Logic,

pages 227–258. 2012.

[34] H. Friedman. Classical and intuitionistically provable recursive functions. In Higher

Set Theory, volume 669 of LNM, pages 21–27. Springer, 1978.

[35] R. Gandy and M. Hyland. Computable and recursively countable functionals of higher

type. In R. Gandy and M. Hyland, editors, Logic Colloquium 1976, pages 407–438.

North-Holland, Amsterdam, 1977.

[36] J. Gaspar and U. Kohlenbach. On Tao’s “finitary” infinite pigeonhole principle.

Journal of Symbolic Logic, 75(1):355–371, 2010.

[37] K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.

dialectica, 12:280–287, 1958.

167

Bibliography

[38] G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the London

Mathematical Society, 2:326–336, 1952.

[39] W. A. Howard. Functional interpretation of bar induction by bar recursion. Compo-

sitio Mathematica, 20:107–124, 1968.

[40] W. A. Howard. Ordinal analysis of bar recursion of type zero. Compositio Mathe-

matica, 42:105–119, 1981.

[41] W. A. Howard. Ordinal analysis of simple cases of bar recursion. Journal of Symbolic

Logic, 46:17–31, 1981.

[42] W. A. Howard and G. Kreisel. Transfinite induction and bar induction of typesnzero

and one, and the role of continuity in intuitionistic analysis. Journal of Symbolic

Logic, 31:325–358, 1966.

[43] J. M. E. Hyland. Filter spaces and continuous functionals. Annals of Mathematical

Logic, 16:101–143, 1979.

[44] D. Ilik and K. Nakata. A direct constructive proof of open induction on cantor space.

Preprint, available at http://arxiv.org/abs/1209.2229, 2012.

[45] S. C. Kleene. Countable functionals. In A. Heyting, editor, Constructivity in Mathe-

matics, pages 81–100. North-Holland, Amsterdam, 1959.

[46] U. Kohlenbach. Theory of Majorizable and Continuous Functionals and their Use for

the Extraction of Bounds from Non-Constructive Proofs: Effective Moduli of Unique-

ness for Best Approximations from Ineffective Proofs of Uniqueness (German). PhD

thesis, Frankfurt, 1990.

[47] U. Kohlenbach. On the no-counterexample interpretation. Journal of Symbolic Logic,

64:1491–1511, 1999.

[48] U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Math-

ematics. Monographs in Mathematics. Springer, 2008.

[49] U. Kohlenbach. Gödel functional interpretation and weak compactness. Annals of

Pure and Applied Logic, 163:1560–1579, 2012.

[50] U. Kohlenbach. A uniform quantitative form of sequential weak compactness and

Baillon’s nonlinear ergodic theorem. Communications in Contemporary Mathematics,

14, 20 pp., 2012.

[51] U. Kohlenbach and P. Oliva. A systematic way of analyzing proofs in mathematics.

Proceedings of the Steklov Institute of Mathematics, 242:136–164, 2003.

168

Bibliography

[52] A.N. Kolmogorov. On the principles of the excluded middle (Russian). Matematich-

eskii Sbornik, 32:646–667, 1925.

[53] G. Kreisel. On the interpretation of non-finitist proofs, Part I. Journal of Symbolic

Logic, 16:241–267, 1951.

[54] G. Kreisel. Interpretation of analysis by means of functionals of finite type. In

A. Heyting, editor, Constructivity in Mathematics, pages 101–128. North-Holland,

Amsterdam, 1959.

[55] A. Kreuzer. Proof mining and Combinatorics : Program Extraction for Ramsey’s

Theorem for Pairs. PhD thesis, TU Darmstadt, 2012.

[56] A. Kreuzer. Der Satz von Ramsey für Paare und beweisbar rekursive Funktionen.

Diploma thesis, February 2009.

[57] A. Kreuzer and U. Kohlenbach. Ramsey’s theorem for pairs and provably recursive

functions. Notre Dame Journal of Formal Logic, 50:427–444, 2009.

[58] A. Kreuzer and U. Kohlenbach. Term extraction and Ramsey’s theorem for pairs.

Journal of Symbolic Logic, 77(3):853–895, 2012.

[59] J. B. Kruskal. Well-quasi-ordering, the tree theorem, and Vázsonyi’s conjecture.

Transactions of the American Mathematical Society, 95:210–225, 1960.

[60] S. Kuroda. Intuitionistische Untersuchungen der formalistischen Logik. Nagoya Math-

ematical Journal, 3:35–47, 1951.

[61] H. Luckhardt. Extensional Gödel Functional Interpretation, volume 306 of Springer

Lecture Notes in Mathematics. 1973.

[62] A. Marcone. On the logical strength of Nash-Williams’ theorem on transfinite se-

quences. In W. Hodges, M. Hyland, C. Steinhorn, and J. Truss, editors, Logic: From

Foundations to Applications, Keele 1993, Oxford Science Publications, pages 327–351.

Oxford University Press, 1996.

[63] C. R. Murthy. Extracting Constructive Content from Classical Proofs. PhD thesis,

Ithaca, New York, 1990.

[64] C. St. J. A. Nash-Williams. On well-quasi-ordering finite trees. Proceedings of the

Cambridge Philosophical Society, 59:833–835, 1963.

[65] D. Normann. The continuous functionals. In S. Abramsky, S. Artemov, R. A. Shore,

and A. S. Troelstra, editors, Handbook of Computability Theory, volume 140 of Stud-

ies in Logic and the Foundations of Mathematics, pages 251–275. North Holland,

Amsterdam, 1999.

169

Bibliography

[66] P. Oliva. Understanding and using Spector’s bar recursive interpretation of classical

analysis. In A. Beckmann, U. Berger, B. Löwe, and J. V. Tucker, editors, Proceedings

of CiE’2006, volume 3988 of LNCS, pages 423–234, 2006.

[67] P. Oliva. Unifying functional interpretations. Notre Dame Journal of Formal Logic,

47(2):263–290, 2006.

[68] P. Oliva and T. Powell. A constructive interpretation of Ramsey’s theorem via the

product of selection functions. To appear: Mathematical Structures in Computer

Science, 2012. Preprint available at http://arxiv.org/abs/1204.5631.

[69] P. Oliva and T. Powell. A game-theoretic computational interpretation of proofs in

classical analysis. To appear: Gentzen Centenary volume, 2012. Preprint available at

http://arxiv.org/abs/1204.5244.

[70] P. Oliva and T. Powell. On Spector’s bar recursion. Mathematical Logic Quarterly,

58:356–365, 2012.

[71] J. B. Paris and L. A. S. Kirby. Σn-collection schemas in arithmetic. In Logic Collo-

quium ’77, pages 199–210. North Holland, Amserdam, 1978.

[72] C. Parsons. On a number theoretic choice schema and its relation to induction.

In A. Kino, J. Myhill, and R. E. Vesley, editors, Intuitionism and Proof Theory:

Proceedings of the Summer Conference at Buffalo, N.Y. 1968, pages 459–473. North

Holland, Amserdam, 1970.

[73] C. Parsons. On n-quantifier induction. The Journal of Symbolic Logic, 37:466–482,

1972.

[74] T. Powell. Applying Gödel’s Dialectica interpretation to obtain a constructive proof

of Higman’s lemma. In Proceedings of Classical Logic and Computation, volume 97

of EPTCS, pages 49–62, 2012.

[75] F. Ramsey. On a problem of formal logic. Proceedings of the London Mathematical

Society, s2-30(1):264–286, 1930.

[76] J.-C. Raoult. Proving open properties by induction. Information Processing Letters,

29:19–23, 1988.

[77] P. Safarik. The interpretation of the Bolzano-Weierstrass principle using bar recur-

sion. Master’s thesis, TU Darmstadt, 2010.

[78] P. Safarik and U. Kohlenbach. On the interpretation of the Bolzano-Weierstrass

principles. Mathematical Logic Quarterly, 56(5):508–532, 2010.

170

Bibliography

[79] B. Scarpellini. A model for bar recursion of higher types. Compositio Mathematica,

23:132–153, 1971.

[80] S. Schmitz and P. Schnoebelen. Multiply-recursive upper bounds with Higman’s

lemma. In Automata, Languages and Programming, volume 6756 of LNCS, pages

441–452. 2011.

[81] H. Schwichtenberg. Dialectica interpretation of well-founded induction. Mathematical

Logic Quarterly, 54(3):229–239, 2008.

[82] M. Seisenberger. On the Constructive Content of Proofs. PhD thesis, LudwigMaxi-

miliansUniversität München, 2003.

[83] W. Sieg. Fragments of arithmetic. Annals of Pure and Applied Logic, 28:33–71, 1985.

[84] S. G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Mathematical

Logic. Springer, Berlin, 1999.

[85] E. Specker. Nicht konstruktiv beweisbare Sätze der Analysis. Journal of Symbolic

Logic, 14:145–158, 1949.

[86] C. Spector. Provably recursive functionals of analysis: a consistency proof of analysis

by an extension of principles in current intuitionistic mathematics. In F. D. E. Dekker,

editor, Recursive Function Theory: Proc. Symposia in Pure Mathematics, volume 5,

pages 1–27. American Mathematical Society, Providence, Rhode Island, 1962.

[87] W. W. Tait. Normal form theorem for bar recursive functions of finite type. In

Proceedings of 2nd Scandinavian Logic Symposium, pages 353–367. North Holland,

1971.

[88] T. Tao. Soft analysis, hard analysis, and the finite convergence princi-

ple. Essay, published as Ch. 1.3 of [?], original version available on-

line at http://terrytao.wordpress.com/2007/05/23/soft-analysis-hard-analysis-and-

the-finite-convergence-principle/, 2008.

[89] A. Tarski, A. Mostowski, and R. M. Robinson. Undecidable Theories. North-Holland,

Amsterdam, 1953.

[90] A. S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and

Analysis, volume 344 of Lecture Notes in Mathematics. Springer, Berlin, 1973.

[91] W. Veldman. An intuitionistic proof of Kruskal’s theorem. Archive for Mathematical

Logic, 43(2):215–264, 2004.

171

Bibliography

[92] W. Veldman. The principle of open induction on the unit interval [0, 1] and some of

its equivalents. Slides from a presentation, May 2010.

[93] W. Veldman and M. Bezem. Ramsey’s theorem and the pigeonhole principle in

intuitionistic mathematics. Journal of the London Mathematical Society, 2(47):193–

211, 1993.

172

Index

Ackermann function, 26

arithmetical comprehension, 28, 67

bad sequence, 99

Berardi-Bezem-Coquand functional (BBC),

132

Bolzano-Weierstrass theorem, 84

bounded collection axiom (BC), 22

choice

countable (AC), 28

dependent (DC), 28, 61

quantifier-free (QF-AC), 27

continuity axiom (Cont), 49

definability, 125

double negation shift (DNS), 46

extensionality axiom, 24

extensionality rule, 25

finite choice axiom (FAC), 21

finite types

compact, 23

degree, 23

discrete, 23

finitization, 37

formula

Πn-formula, 22

Σn-formula, 22

arithmetical, 28

open, 99

fragments of arithmetic, 21

functional interpretation, 32–40, 60–64

Heyting arithmetic, 21

Heyting arithmetic in all finite types, 24

induction axiom (IND), 21

infinite pigeonhole principle (IPHP), 39

learning process, 72

least element principle (LEP<), 98

lexicographic ordering, 98

majorizable functionals, 50

Markov principle (MPω), 31

minimal-bad-sequence argument, 99

modified bar recursion (MBR), 128

modified realizability, 40

negative translation, 31–32

open recursion (OR), 111, 134

Peano arithmetic, 21

Peano arithmetic in all finite types, 24

Primitive recursive definability (≤T), 125

products of selection functions

explicitly iterated (EPS), 57, 126

implicitly iterated (IPS), 128

Ramsey’s theorem for pairs, 88

recursor, 24

selection function, 55

173

Index

sequential games, 58

Spector’s bar recursion

general form (GBR), 43, 126

special form (SBR), 46, 126

Spector’s condition, 44

Spector’s equations, 46, 58

Spector’s search functional µSp, 45

system T, 26

transfinite induction (TI<), 98

update procedure, 72

update recursion (UR), 132

weak König’s lemma

for Σ0
1-trees, 77

for decidable trees, 28

weakly extensional arithmetic, 25

174

