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ABSTRACT

We consider the action of holomorphic correspondences or equally algebraic

functions acting on the Riemann sphere C and their limit sets: a holomorphic

correspondence is a polynomial relation, P (z, w) = 0 in z and w. A holomor-

phic correspondence P (z, w) = 0 is said to be an (n : m) correspondence if

the degrees of z and w in P are n and m respectively.

We identify a class of (2 : 2) holomorphic correspondences whose limit

set is a topological circle where on a component of the complement of the

limit set, the action of the correspondence is conjugate to the action of the

Modular group PSL(2,Z) on the upper half plane.

Further, we generalise these results to a class of (3 : 3) holomorphic

correspondences with analogous properties.
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1. INTRODUCTION AND PRELIMINARIES

1.1 An overview of holomorphic correspondences, and

conventions

A holomorphic correspondence (a correspondence for brevity), or an algebraic

function, is a polynomial relation P (z, w) = 0 where

P (z, w) = znAn(w) + zn−1An−1(w) . . .+ A0(w), n ∈ N and for each integer

i with 0 ≤ i ≤ n, Ai is a polynomial in w with coefficients in C.

By expressing P in homogeneous coordinates, that is by letting z = a
b

and w = c
d

one can make sense of the expressions such as P (∞, w) = 0 or

P (z,∞) = 0 as follows:

P (a
b
, c
d
) is of the form T (a,b,c,d)

bndm
where T is a polynomial in a, b, c and d, and n

and m are the degrees of z and w (in P (z, w)) respectively. We now define

P (∞, w) = 0 ⇐⇒ T (a, 0, c, d) = 0, and P (z,∞) = 0 ⇐⇒ T (a, b, c, 0) = 0.

Likewise, we set that P (∞,∞) = 0 if and only if T (a, 0, c, 0) = 0. In this

regard, we implicitly assume that a correspondence is expressed in homoge-

neous coordinates whenever we deal with the point at infinity.
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Moreover, in this thesis, we assume that all our correspondences satisfy

the following notions and conventions:

(1) all correspondences are assumed to have no repeated factors.

(2) if z0, w0 ∈ C ∪ {∞} = C, and P (z, w) = 0 is a correspondence then

the cardinalities of {w ∈ C : P (z0, w) = 0} and {z ∈ C : P (z, w0) = 0} are

finite. This ensures in particular that P (z, w) has no factors such as sz + t

or qw + r where s, q ∈ (C− {0}), and t, r ∈ C.

(3) we regard two correspondences P (z, w) = 0 and Q(z, w) = 0 being

the same if they have the same graph; that is,

{(z, w) ∈ C× C : P (z, w) = 0} = {(z, w) ∈ C× C : Q(z, w) = 0}.

(4) if P (z, w) = 0 is a correspondence, and n and m are the degrees of

z and w in P (z, w) respectively then we say that P (z, w) = 0 is an (n : m)

correspondence. Hence, for instance, if w0 ∈ C then z 7→ P (z, w0) has n

zeros, counting multiplicities.

(5) let P (z, w) = 0 be an (n : m) correspondence, and g and h be polyno-

mials with no common zeros. By replacing z in P (z, w) with g(z)
h(z)

the resulting

expression P ( g(z)
h(z)

, w) can be written as S(z,w)
hn(z)

for some polynomial S in z and

w. Now, we define P ( g(z)
h(z)

, w) = 0 if and only if S(z, w) = 0 : in this sense,

for brevity we shall continue to refer to P ( g(z)
h(z)

, w) = 0 as a correspondence

even though strictly speaking it is S(z, w) = 0 that we study. Note that,

S(z, w) = 0 is a (kn : m) correspondence where k is the degree of g
h
. The
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same discussion applies if we replace w by g(w)
h(w)

: in this case we obtain an

(n : km) correspondence.

In this thesis we primarily consider classes of (2 : 2) correspondences that

are generated by degree three rational maps, and show that limit sets of such

correspondences are topological circles. We further conjecture that these

limit sets are indeed quasicircles, and outline a method of proving this. The

complement (in the Riemann sphere, C) of the limit set of a correspondence

is called the regular set. If the said rational map has a critical point of order

two then we show that the action of the correspondence on a component

of the regular set is conjugate (in an appropriate sense) to the action of the

modular group PSL(2,Z) on the upper half plane of C. Analogous statements

are shown for degree four rational maps, in Chapter 4.

The study of correspondences can be thought of as a generalisation of

the study of finitely generated Kleinian groups, which are discrete subgroups

of PSL2(C), and the study of iterated rational functions on C, as described

below.

For, let G be a Kleinian group with generators ψ1

ϕ1
, ψ2

ϕ2
, . . . and ψn

ϕn
where

for each integer i with 1 ≤ i ≤ n, ψi(z) = aiz + bi and ϕi(z) = Aiz + Bi are

linear functions of z ∈ C for some constants Ai, Bi, ai and bi.

Then the relation
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P (z, w) = 0 ⇐⇒
n∏
i=1

(wϕi(z)− ψi(z)) = 0 (1.1)

is an (n : n) correspondence: in this case, we say that P represents G as a

correspondence.

We remark that representing G as a correspondence is not unique: for

instance, if we multiply (1.1) by (w − ψ1

ϕ1
◦ ψ2

ϕ2
(z)) then we obtain an

(n+ 1, n+ 1) correspondence, Q say, which is different from (1.1). However,

P and Q have the same grand orbits (cf. Sec. 1.2, Definition 1), and these

grand orbits coincide with the grand orbits of G. So, as far as grand orbits

are concerned, P and Q represent the same group G. Hence, whenever we

represent a Kleinian group as a correspondence our choice of representation

is dictated by purpose and context.

Finally, if f
g

is a rational map of degree d > 1, where f and g are polyno-

mials with no common zeros, then the relation

P (z, w) = 0 ⇐⇒ wg(z)− f(z) = 0 (1.2)

gives rise to a (d : 1) correspondence. Thus, the iterative behaviour of f
g

can

be studied as a correspondence.

If R is a rational map of degree at least two then the dynamics (the

iterative behaviour) of R partitions C into two completely invariant sets

called the Julia set (closed) and its complement, the Fatou set (open) [1].
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Here, the Fatou set is defined to be the largest (in the set theoretic sense)

open set where the iterates of R form a normal family or equivalently, where

the iterates are equicontinuous [1]. It turns out that Julia set is the smallest

(in the set theoretic sense) completely invariant closed set of cardinality at

least three; this follows from Montel’s theorem on normal families and is

referred to as Montel’s criterion.

The action of a Kleinian group G also exhibits a similar behaviour where

the action partitions C into two completely invariant disjoint sets, namely

the limit set which is closed and its complement the regular set or the dis-

continuity set [8].

The limit set of G consists of all points z ∈ C such that there exists

w ∈ C and a sequence of distinct elements {gn} of G for which gn(w)→ z as

n→∞.

If G is not an elementary group, that is the limit set of G has at least

three points, then as in the case of rational maps the limit set coincides with

the smallest G invariant closed set which has cardinality at least three. In

fact, in this instance G forms a normal family1 on its regular set.

Thus, if R is a rational map of degree at least two, or G a non-elementary

Kleinian group, then we can define the Julia set of R or the limit set of G

by Montel’s criterion. Ideally, for a holomorphic correspondence we would

1 Every Kleinian group is countable ( [8], P.8).
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like to define a Montel-like criterion which would enable us to recover the

corresponding Julia set or the limit set when the correspondence is obtained

from a rational map or a finitely generated Kleinian group respectively.

If this were possible then the study of the action of a holomorphic cor-

respondence would fully generalise the theory of iteration of rational maps

and the action of finitely generated Kleinian groups.

However, it seems that there is no such unifying criterion for the action

of correspondences [3]. In the absence of such a criterion we proceed to

generalise the definition of the regular set of a Kleinian group to that of the

regular set of a correspondence, as given in [3]. Thus, with this particular

choice of definition of the regular set, the study of correspondences will in-

clude that of finitely generated Kleinian groups. Even so, correspondences

should be treated in their own right as another type of complex dynami-

cal system which sometimes behaves like a Kleinian group, sometimes like a

rational map and sometimes something “in between”; we will later see ex-

amples of correspondences whose action exhibits both a group-like behaviour

and non-group-like behaviour on their regular set.

As expected, the regular set of a correspondence is open and as far as the

grand orbits are concerned we may regard the regular set as being analogous

to the Fatou set of a rational map. In some sense [3] the regular set of

a correspondence is the closest generalisation of the Fatou set of a rational
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map of degree at least two. We shall later give an example to show why the

definition of the regular set is not satisfactory when it comes to describing

the iteration of a rational map Q of degree at least two when the relation

Q(z) = w is considered as a correspondence.

1.2 The regular set and the limit set of a

correspondence

1.2.1 Forward and backward branches of a correspondence

Let P (z, w) = 0 be an (n : m) correspondence. Then, we define its forward

branch FP : C → 2C and backward branch F−1P : C → 2C, where 2C is the

set of all subsets of C, as follows:

FP (x) = {w ∈ C : P (x,w) = 0} and F−1P (x) = {z ∈ C : P (z, x) = 0}.

(1.3)

If U ⊆ C then its images under the forward branch and the backward

branch are defined as

FP (U) =
⋃
x∈U

FP (x) and F−1P (U) =
⋃
x∈U

F−1P (x). (1.4)

For convenience we shall write FP (or F−1P ) for the graph of FP (or F−1P ).

So, (z, w) ∈ FP (or F−1P ) if and only if w ∈ FP (z) (or z ∈ F−1P (w)). Whenever

P is clear from the context we shall just write F and F−1 for FP and F−1P
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respectively.

1.2.2 Iterates and grand orbits of a correspondence

Let X = {(s1, s2, . . . , sn) : n ∈ N, si ∈ {1,−1} where 1 ≤ i ≤ n} and P be a

correspondence with forward and backward branches F and F−1 respectively.

If s = (s1, s2, . . . , sn) ∈ X then we define

F s = F s1(F s2(F s3 . . . (F sn))) (1.5)

with the convention that F 1 stands for F, and GP = {F s : s ∈ X}.

Now, if x ∈ C then we let

F s(x) = F s1(F s2(F s3 . . . (F sn(x)))) (1.6)

where the right hand side of the expression is derived via (1.3). Likewise, for

U ⊂ C we let

F s(U) = F s1(F s2(F s3 . . . (F sn(U)))) (1.7)

which can be derived using (1.4).

For utility, we write F s (or F s1(F s2(F s3 . . . (F sn)))) to represent its graph

which is a subset of C× C.

Definition 1: (The grand orbit of a point)

If P is a correspondence and z ∈ C then we call {g(z) : g ∈ GP} the

grand orbit of z under the correspondence P. When the correspondence P is
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clear from the context we shall omit the phrase “ under the correspondence

P ” and simply refer to {g(z) : g ∈ GP} as the grand orbit of z.

Note 1: In this thesis we study a particular class of correspondences called

covering correspondences for which the forward branch and backward branch

are the same. Thus, the grand orbit of z is given by {F n(z) : n ∈ N}.

1.2.3 The regular and limit set of a correspondence

We now define the main objects which we wish to investigate for a given

correspondence P, namely the regular set and limit set of P.

Definition 2: [3] (The regular set and limit set of a correspondence)

Let P be a correspondence and F and F−1 be as above. We say that

the correspondence P acts discontinuously at z ∈ C if there is an open

neighbourhood U of z and N ∈ N so that

F s ∩ (U × U) ⊆
⋃
|m|≤N
m∈X

Fm ∀ s ∈ X . (1.8)

The set of all points where P acts discontinuously is said to be the regular

set Ω(P ) of P while Λ(P ) = C− Ω(P ) is said to be the limit set of P.

Remark 1: (i) Loosely speaking (1.8) states that there is a finite number of

words of F and F−1 under which the images of z return to U.
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(ii) It is clear from the definition that the regular set is open while the

limit set is closed, and together they form a (disjoint) partition of C. Fur-

thermore, it is shown in [3] that Ω(P ) and Λ(P ) are completely invariant

under F and F−1.

Definition 3: (Quasi-fuchsian correspondence)

A correspondence is said to be a quasi-fuchsian correspondence if its limit set

is a topological circle, and each component of the complement of the limit

set is invariant under forward and backward branches of the correspondence.

1.3 Correspondences and subgroups of PSL(2,C)

The regular set in Definition 2 has a close connection with the classical defi-

nition of the regular set of a subgroup G of PSL(2,C) in the following sense

[8]. We say that G acts discontinuously at z ∈ C if there is an open neigh-

bourhood U 6= ∅ of z such that for g ∈ G, g(U) ∩ U = ∅ for all but a finite

number of elements of G. The set of all such points is called the regular set

Ω(G) of G and Λ(G) = C−Ω(G) its limit set. In fact, the regular set is the

largest open set where G is a normal family. It can be shown (see [8]) that the

limit set can be described as the set of accumulation points of {g(z) : g ∈ G}

for any z ∈ C.

If G is generated by {φ1, φ2 . . . , φn} then by considering the action of G
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as the correspondence P (cf.(1.1)) one checks that Ω(G) = Ω(P ). Thus, with

the choice of Definition 2, the study of correspondences fully generalises that

of finitely generated subgroups of PSL(2,C).

We note that if z ∈ C, then the G− orbit of z, {g(z) : g ∈ G} coincides

with the grand orbit of z under the correspondence P : in other words,

{g(z) : g ∈ GP} and {g(z) : g ∈ G} are the same. This is still the case if we

multiply P by (w − f(z)) where f ∈ G.

Another interesting analogy between the action of a correspondence and

the action of a subgroup of PSL(2,C) (not necessarily finitely generated)

that follows as a consequence of Definition 2 is the following theorem.

Theorem 1: ([3]) Let P be a correspondence with regular set Ω(P ). Con-

sider the equivalence relation ∼ on Ω(P ) given by z ∼ w ⇐⇒ z ∈ g(w) for

some g ∈ GP , and denote the set of equivalence classes by Ω(P )/GP . Then,

Ω(P )/GP is Hausdorff with respect to the usual quotient topology.

The analogous result for subgroups of PSL(2,C) is:

Theorem 2: ([8], p16) If G is a subgroup of PSL(2,C) with regular set

Ω(G) then Ω(G)/G is a Hausdorff space with respect to the quotient topol-

ogy, where Ω(G)/G is the space of equivalence classes with respect to the

equivalence relation ∼ on Ω(G) given by z ∼ w ⇐⇒ z = g(w) for some

g ∈ G.



1. Introduction and preliminaries 20

1.4 Correspondences and iteration of rational maps

In the classical theory of iteration of a rational map R (or in general a

meromorphic map on a sub-domain of C) one is interested in the domain

where {Rn : n ∈ N} forms a normal family. In contrast, if we consider R

as a correspondence P say, where P (z, w) = 0 ⇐⇒ R(z) = w then we

are concerned with the regular set Ω(P ) of P which involves looking at the

family GP = {Rn : n ∈ Z}.

One of the disadvantages of the Definition 2 is that we are unable to fully

recover the Fatou set of R as Ω(P ). In fact, Ω(P ) is a subset of the Fatou

set of R.

For assume that there exists z0 in Ω(P ) ∩ J(R) where J(R) is the Julia set

of R. Now, from a standard result of the iteration of a rational map (see

[1]) we have that J(R) is the closure of ∪∞n=0R
−n(z0). Furthermore, since

J(R) is uncountable with no isolated points we conclude that there exists

w0 ∈ J(R)∩Ω(P ) such that w0 /∈
(
∪∞n=0 R

−n(z0)
)
∪
(
∪∞n=1 R

n(z0)
)
, in other

words, w0 is a limit point of ∪∞n=0R
−n(z0). Now, it follows from

Theorem 1 that there exist disjoint open sets U and V containing

{g(z0) : g ∈ G} and {g(w0) : g ∈ G} respectively; but then the inverse images

of U and V under the projection map Π : Ω → Ω(P )/G are disjoint open

sets in C, contradicting that w0 is a limit point of ∪∞n=0R
−n(z0). This proves
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that Ω(P ) is a subset of the Fatou set of R.

In fact, Ω(P ) consists of parabolic basins 2 and attractive basins3 of R

from which we remove the grand orbits of the attractive points under the

correspondence P . The following example illustrates why the basins of super-

attracting fixed points are disjoint from Ω(P ).

Example 1: For R(z) = z2, z = 0 is a super-attracting fixed point. Now, the

grand orbit of 0 under R, {R−n(0) : n ∈ Z} is just {0}. Thus, writing P (z, w)

for the polynomial w − z2, the grand orbit of 0 under the correspondence

P (z, w) = 0 is also {0}. If U is any open neighbourhood of 0 then U intersects

every grand orbit of points of {z : |z| < 1} under R and P since every point

of the open unit disc converges to 0 under the iteration of R. This together

with Theorem 1 shows that 0 /∈ Ω(P ).

2 see [1] for definition.
3 Fatou components containing points z such that Rn(z) = z and 0 < |(Rn)′(z)| < 1

for some integer n ≥ 1. Such points are called attracting periodic points of R.



1. Introduction and preliminaries 22

1.5 Basic definitions, and the statement of the main

theorem for (2 : 2) correspondences

Scheme

In this section we define the covering correspondence HR(z, w) = 0 of a

rational map R and state the basic properties of HR. We investigate (2 : 2)

Hecke correspondences HQ(z, φ(w)) = 0 where Q is a rational map of degree

three and φ is a Möbius involution. We show that if φ is chosen in a certain

way then HQ(z, φ(w)) = 0 is a quasi-fuchsian correspondence. The proof of

this requires several key steps as follows.

First, due to a property of covering correspondences it is sufficient to consider

Q in a certain form referred to as a normal form. The next piece of machin-

ery is to identify a class of Möbius involutions so that the correspondence

HQ(z, φ(w)) = 0 is of Hecke type. Finally, using the notion of a 3−chain

of discs which we introduce in Chapter 2, we show that HQ(z, φ(w)) = 0 is

quasi-fuchsian.

1.5.1 The covering correspondence HQ and its forward branch

FHQ

If Q is a rational map of degree d > 1 then the covering correspondence of

Q, HQ(z, w) = 0 is the correspondence obtained as “Q(z)−Q(w)
z−w = 0.” More
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precisely, Q can be written as f
g

for some polynomials f and g with no

common zeros. For z, w ∈ C, the expression f(z)g(w) − f(w)g(z) can be

written as (z − w)HQ(z, w) for some (d − 1 : d − 1) correspondence HQ :

we refer to HQ as the covering correspondence of Q. We note that HQ is

symmetric with respect to z and w; so, the forward branch and the backward

branch (cf. sec. 1.2) of HQ are the same, and we denote this common branch

by FHQ . In fact, if z ∈ C then FHQ(z) can be expressed as

z 7→ FHQ(z) =


Q−1{Q(z)} − {z} if z is not a critical point of Q

Q−1{Q(z)} otherwise.

(1.9)

We shall see later that on certain domains of C, z 7→ FHQ(z) consists of

d− 1 single valued analytic branches.

Remark 2: (i) Each grand orbit of HQ contains at most d points, and in

particular if FHQ(z) = U then the grand orbit of z is U ∪ {z}. For example,

consider Q(z) = z3. Then, HQ(z, w) = 0 if and only if z2 + w2 + wz = 0; so,

FHQ(z) = {w1 = ze
2πi
3 , w2 = ze

4πi
3 } and FHQ(FHQ(z)) = {w2, w1, z}.

Thus, in a dynamical point of view, z 7→ FHQ(z) is of little interest.

(ii) If z
Q−→ az2+bz+c

pz2+qz+r
is a rational map of degree two then z 7→ FHQ(z) is
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a Möbius involution. Indeed,

FHQ(z) =
z(cp− ar) + (cq − br)
z(aq − bp) + (ar − cp)

(1.10)

and if α and β are the critical points of Q (ie the solutions of z2(aq − pb) +

2z(ar − pc) + br − cq = 0) then (1.10) can be written as

FHQ(z) =
z(α + β)− 2αβ

2z − (α + β)
. (1.11)

1.5.2 Fundamental sets, analytic branches of FHQ and the contact

condition

Definition 4: (Fundamental sets) Let Q be a rational map of degree d > 1,

and U ⊂ C. Then, U is a fundamental set for Q if Q : U → C is a bijection.

It follows that for any such fundamental set U :

(i) U ∪ FHQ(U) = C and

(ii) if z ∈ U and w ∈ C such that HQ(z, w) = 0 then either w = z or

w /∈ U : in fact, the case w = z occurs only when z is a critical point of Q.

A fundamental set whose boundary consists of a union of Jordan arcs

can be obtained as follows. Let D be a simply connected domain obtained

from C by removing a finite number of Jordan arcs that connect the critical

values of Q. Then, the components of Q−1(D) are simply connected domains

with Jordan arcs as their boundaries. In fact, there are d number of such



1. Introduction and preliminaries 25

components say, D1, D2, . . . , Dd, and Q : Di → D is univalent. So, each Di

can be made into a fundamental set for Q by adjoining some of Di’s boundary

arcs to itself.

Example 2: (fundamental sets)

Let f(z) = z3− 3z. The set of critical points of f is {1,−1,∞} while the set

of critical values is {2,−2,∞}. Now, the complement of

f−1{{x ∈ R : x ≤ 2}∪{∞}} is a union of three disjoint Jordan domains say,

D1, D2 and D3. Let D1 be the domain that contains (2,∞); so, the boundary

of D1 consists of the Jordan arcs [1, 2],

B+ = {z ∈ f−1{(−∞,−2)} : Im(z) ≥ 0} ∪ {∞} and

B− = {z ∈ f−1{(−∞,−2)} : Im(z) ≤ 0} ∪ {∞}. It now follows that

D1 ∪B+ ∪ [1, 2] is a fundamental set for f.

Analytic branches of FHQ

Since Q (using the same set up as in the discussion of fundamental sets) is

injective on each Di, if z ∈ Di then FHQ(z) consists of d− 1 distinct points,

z1, z2, . . . , zd−1 such that each Dj where j 6= i contains one and only one of

zk where 1 ≤ k ≤ d − 1. Thus, if i 6= j then, the map FHQ : Di → Dj given

by z 7→ Q−1 ◦Q(z) is univalent, and surjective.

Hence, for instance, considering these univalent branches (each denoted by
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FHQ) the composition

D1

FH
Q−−→ D2

FH
Q−−→ D3

FH
Q−−→ D4 . . .

FH
Q−−→ Dd−1

FH
Q−−→ Dd

FH
Q−−→ D1

is the identity map of order d on D1. In particular, for any z ∈ Di, those

univalent branches of FHQ permute Q−1(Q(z)).

Hecke type correspondences

For an integer n > 2, an (n − 1 : n − 1) correspondence is of Hecke type

if it satisfies certain aspects of the Hecke group H(n) (that is, the group

generated by z
δ−→ −1

z
and z

ρ−→ −1
z+2 cos(π

n
)
) when the latter is considered as

an (n − 1 : n − 1) correspondence (cf. Proposition 3 (Chapter 4)). One

of those aspects is that δρ and δρ−1 have parabolic fixed points at ∞ and

0 respectively; these fixed points are interchanged by the involution δ while

ρ(∞) = 0 and ρ−1(0) =∞. So, when we represent4 H(n) (or a conjugate of it)

as a correspondence of the form Hz 7→zn(z, φ(w)) = 0 where φ is an involution

we require that Hz 7→zn(z, φ(z)) = 0 be in the form S(z)(z − p)2(z − q)2 = 0

for some non zero polynomial S and distinct points p and q : indeed, p and q

are the fixed points of the correspondence Hz 7→zn(z, φ(w)) = 0, and each of p

and q is a parabolic fixed point of Hz 7→zn(z, φ(z)) = 0. The correspondences

that we wish to study in this thesis bear this requirement of having two

4 See Proposition 3.
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parabolic fixed points, and those fixed point are the only fixed points of the

correspondence. However, this requirement on its own in general, does not

guarantee that the limit set of the correspondence is a topological circle (cf.

Comment 1 and 2, p.71 and p.85). So, as a way forward we formulate the

following definition: let Q be a rational map of degree d > 1 and consider

the (d − 1 : d − 1) correspondence HQ(z, φ(w)) = 0 where φ is the Möbius

involution FHR for some degree two rational map R (cf. Remark 2(ii)).

Definition 5: (Hecke type correspondences)

We say that HQ(z, φ(w)) = 0 is of Hecke type if there exist fundamental sets

TQ and Tφ of Q and R respectively having Jordan boundaries such that

Tφ ⊂ TQ, ∂TQ ∩ ∂Tφ ⊆ {z ∈ C : HQ(z, φ(z)) = 0}5, and ∂TQ ∩ ∂Tφ has

cardinality two. In this case, the two points of ∂TQ ∩ ∂Tφ are called the

contact points of HQ(z, φ(w)) = 0.

A note concerning Definition 5:

(i) The requirement for fundamental sets to have a Jordan boundary is not

essential however, we find them easy to work with so, there is no harm in

assuming so.

(ii) the points p and q are interchanged by φ while a single valued branch of

the multi-valued map z 7→ FHQ(z) maps one to the other, as reminiscent of

5 Note that HQ(z, φ(z)) = 0 is a polynomial of degree 2(d− 1).
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H(n).

(iii) The property Tφ ⊂ TQ implies that for any z ∈ C, its grand orbit under

HQ(z, φ(w)) = 0 intersects TQ. Thus, when dealing with grand orbits of

HQ(z, φ(w)) = 0 we need to consider only the grand orbits of points of TQ

instead of the whole of C.

1.5.3 Forward and backward branches of

HQ(z, φ(w)) = 0

Let HQ(z, φ(w)) = 0 be denoted by P (z, w) = 0, and FP and F−1P be the

forward and backward branches of P respectively. Now, if FHQ is the forward

branch of the covering correspondence HQ(z, w) = 0 then, for any z ∈ C we

have that FP (z) = φ(FHQ(z)) and F−1P (z) = FHQ(φ(z)) : we view these ex-

pressions as compositions of φ and FHQ , and denote the set all such arbitrary

finite compositions of {φ, FHQ} by C[φ, FHQ ].

Then {h(z) : h ∈ GP} = {h(z) : h ∈ C[φ, FHQ ]} (see sec. (1.2.2) for GP ).

Thus, when studying the properties of P (such as the limit set) there is

no loss of generality if we replace each of φ and FHQ by M ◦ φ ◦M−1 and

M(FHQ(M−1)) respectively where M is a Möbius map: this is the reason

that we restrict our attention to rational maps in normal forms as stated

below.
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1.5.4 Normal forms of rational maps

Consider the equivalence relation ∼, defined on the class of rational maps

by S ∼ R if and only if there exists Möbius maps K and M such that

S = M ◦R ◦K where S and R are rational maps. If S ∼ R then

(i) S and R have the same number of critical points with their multiplicities

preserved, and

(ii) S and R have the same number of critical values (the images of the

critical points).

However, these two properties are not sufficient to conclude that two rational

maps belong to the same equivalence class. For instance, suppose that S and

R satisfy the properties (i) and (ii), and that the critical points of S lie on a

line in C while the critical points of R do not lie on a line in C. Then, S and

R do not belong to the same equivalence class.

It turns out, as given in Lemma 1 that when studying correspondences of the

form HQ(z, φ(w)) = 06 it suffices to consider Q from each equivalence class of

∼: to this end, we select our Q conveniently so as to make the computations

simpler and a so chosen form of a map is called a normal form. We remark

that it is possible for infinitely many equivalence classes to have a map in the

form of a particular normal form. For instance, in the case of degree three

6 See also Appendix A3.
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rational maps there are infinitely many equivalence classes but there are only

three normal forms as follows:

(i) z 7→ z3 determines the equivalence class of maps with two distinct

critical points, each with order two 7

(ii) z 7→ z3 − 3z determines the equivalence class of maps having one

critical point of order two, and two distinct critical points (each of which

with order one)

(iii) any map with four distinct critical points (so, each of which has order

one) is equivalent to some z 7→ z2(z+b)
z+c

where b, c 6= 0, 9c2 + b2−10bc 6= 0 and

b+ 3c+ 2(1 + bc) = 0 : the later condition implies that the critical points of

z 7→ z2(z+b)
z+c

are 0, 1, bc and∞. Note that the images of critical points (critical

values) under z 7→ z2(z+b)
z+c

are distinct: so, there are four critical values.

So, every equivalence class of degree three rational maps with four distinct

critical points contains a map of the form (iii). For if 0, 1, ξ and∞ are distinct

points then a generic form of a map having those points as its critical points

is z
Q−→ a(abz3+b2z2+bcz+acξ)

Aabz3+Ab2z2+Babz+ξa2B
where A, a,B, b, c ∈ C and −2ab(1 + ξ) =

b2 + 3a2ξ. Now, if z
M−−→ −B(z− c

B
)

A(z− a
A
)

then M ◦Q(z) =
z2(z+ b

a
)

z+ ξa
b

as required.

Lemma 1: Let Q be a rational map of degree n > 1, and K be a Möbius

map. Then,

7 A map Q has a critical point of order n at w if dmQ(z)
dzm |z=w = 0 for m ≤ n, and

dn+1Q(z)
dzn+1 |z=w 6= 0.
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(i) HK◦Q(z, w) = 0 ⇐⇒ HQ(z, w) = 0. So, for all z ∈ C we have that

FQ(z) = FK◦Q(z) where FQ and FK◦Q are the forward branches of HQ and

HK◦Q respectively.

(ii) For all z ∈ C, FQ(K(z)) = K(FQ◦K(z)) or equivalently,

FQ◦K(z) = K−1(FQ(K(z))).

Proof: Let Q(z) = S(z)
T (z)

where S(z) =
∑n

i=0 siz
i and T (z) =

∑n
i=0 tiz

i

are polynomials (with si, ti ∈ C) with no common zeros, and K(z) = az+b
cz+d

be a Möbius map.

(i) As K ◦Q = aS+bT
cS+dT

we have for some λ 6= 0 that

λ(z−w)HK◦Q(z, w) = (aS+bT )(z)(cS+dT )(w)−(aS+bT )(w)(cS+dT )(z) =

(ad− bc)[S(z)T (w)− S(w)T (z)]. Since, S(z)T (w)− S(w)T (z) is of the form

µ(z − w)HQ(z, w) for some µ 6= 0, the claim follows.

(ii) Write f(z) = az + b and g(z) = cz + d, so, K = f
g
.

Now, since Q ◦K =
∑n
i=0 sif

ign−i∑n
i=0 tif

ign−i
it follows that

(
∑n

i=0 sif
ign−i(z))(

∑n
i=0 tif

ign−i(w))−(
∑n

i=0 sif
ign−i(w))(

∑n
i=0 tif

ign−i(z))

is in the form λ(z − w)HQ◦K(z, w) for some λ 6= 0.

Likewise, (
∑n

i=0 siz
i)(
∑n

i=0 tiw
i)− (

∑n
i=0 siw

i)(
∑n

i=0 tiw
i) can be written as

µ(z − w)HQ(z, w) for some µ 6= 0. By letting z = K(z) and w = K(w) in

HQ(z, w) = 0 we find that HQ(K(z), K(w)) = 0 ⇐⇒ HQ◦K(z, w) = 0.

Hence, w ∈ FQ(z) ⇐⇒ K−1(w) ∈ FQ◦K(K−1(z)), that is,
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FQ(z) = K(FQ◦K(K−1(z))) as required.

Note 2: Let φ be a Möbius involution, and R and Q be rational maps where

R = K ◦ Q ◦ M for some Möbius maps K and M. Then, from Lemma 1

it follows that HR(z, φ(w)) = 0 ⇐⇒ HQ(M(z),M(φ(w))) = 0. So, if Ω

and Λ are the regular and limit sets of HQ(z, φ(w)) = 0 respectively then

the regular and limit sets of HR(z, φ(w)) = 0 are M−1(Ω) and M−1(Λ)

respectively: this justifies restricting our consideration to normal forms in

studying the properties of HQ(z, φ(w)) = 0.

1.5.5 The statement and an overview of the main results

We now state the background to the main result of the thesis, viz.

Theorem 4 where we consider correspondences of the form HQ(z, φ(w)) = 0.

The motivation to study this particular class of correspondences is due to

Theorem 3: we begin with introducing some terminology.

Let G be a Kleinian group, freely generated by Möbius maps σ and ρ

which have orders two and n > 2 respectively; so G is isomorphic to the

cyclic group C2∗Cn. We may associate to G the (n−1 : n−1) correspondence

G(z, w) = 0 given by (w−σρ(z))(w−σρ2(z)) . . . (w−σρn−1(z)) = 0. It follows

that F−1G = σ ◦ FG ◦ σ, where FG and F−1G are the forward and backward

branches of G(z, w) = 0 respectively.
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Now, suppose that P (z, w) = 0 is any (n − 1 : n − 1) correspondence

equipped with a Möbius involution J such that F−1P = J ◦ FP ◦ J, where FP

and F−1P are the forward and backward branches of P (z, w) = 0 respectively.

Definition 6: (Hecke conjugacy for correspondences)

Let U ⊂ C be invariant under FP and J, and let V ⊂ C be invariant under

FG (here G(z, w) = 0 is an (n − 1 : n − 1) correspondence as above) and σ

(as above). An analytic bijection ψ : U → V is called a conjugacy from FP

to G, compatible with J and σ, if FG = ψ ◦ FP ◦ ψ−1 and σ = ψ ◦ J ◦ ψ−1.

If such a conjugacy exists then we say that the action of P (z, w) = 0 on U

is Hecke conjugate to the action of G on V.

Theorem 3: ([4], Thm. 4.1) Suppose that P (z, w) = 0 is an (n− 1 : n− 1)

correspondence equipped with a Möbius involution J such that

F−1P = J ◦ FP ◦ J. Let G be a Kleinian group which is freely generated by

σ and ρ of orders two and n respectively. Now, let U and V be non empty

open sub sets of C and ψ : U → V be as in Definition 6. Then, there exists

a rational map Q of degree n such that HQ(z, J(w)) = 0 defines the same

correspondence as P (z, w) = 0 on C.

Note that, there are examples of quasi-fuchsian correspondences of the form

HQ(z, φ(w)) = 0 where HQ(z, φ(w)) = 0 is Hecke conjugate on both compo-

nents of the complement of the limit set (cf.Proposition 3 in Chapter 4).
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The statement of the main theorem, whose proof is given in Chapter 3 is as

follows:

Theorem 4: (1)(a). Let Q(z) = z3 − 3z. Then, there is a non-empty class

M of Möbius involutions so that for each φ ∈M, the (2 : 2) correspondence

HQ(z, φ(w)) = 0 which we denote by Pφ is quasi-fuchsian, say with the limit

set Λφ.

(b). If Ωφ is the component of C − Λφ containing the point at infinity

then the action of Pφ on Ωφ is Hecke conjugate to the action of

PSL(2,Z)8 on the upper half plane {z ∈ C : Im(z) > 0}.

(2) If R(z) = z2(z+b)
(z+c)

with all its critical points lie on a line in C then,

there exists a non empty class of Möbius involutions E so that for each ψ ∈ E

the correspondence HR(z, ψ(w)) = 0 is quasi-fuchsian.

In this case, the action of HR(z, ψ(w)) = 0 on any component of the

complement of the limit set is not Hecke conjugate to a Kleinian group.

The case Q(z) = z3, that is the normal form corresponding to degree

three maps having exactly two critical points, is treated in Proposition 3 in

Chapter 4.

8 The group generated by z 7→ −1
z and z 7→ −1

z+1 .



2. 3-CHAINS OF DISCS

2.1 The modular group and 3-chains of discs

In this chapter we introduce the notion of a 3−chain of discs and show that its

limit set is a topological circle. The notion of a 3−chain of discs is based on

observing how the action of the modular group PSL(2,Z) on a fundamental

domain tessellates C− R : we formalise this process as a 3−chain of discs.

Notations and terminology

(1) From now on, we shall use the symbol ∂ to denote the boundary of a set;

so for instance, ∂S or ∂(S) stands for the boundary of the set S.

(2) An open disc is the image of the open unit disc under a univalent

map. A Jordan domain is an open disc whose boundary is a closed Jordan

curve.

(3) If n is a positive integer, and h is a function then hn stands for the

n−th iterate of h, viz. h ◦ h ◦ . . . ◦ h.

(4) If f and h are maps then we shall write fh for f ◦ h whenever it is

convenient to do so. Likewise, if U ⊂ C or z ∈ C then we write from time to
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time, fg(U) and fg(z) for f(g(U)) and f(g(z)) respectively.

(5) The closure of a set S is denoted by S.

2.1.1 The model for a 3−chain of discs

Informally, a 3−chain of discs or in general an n−chain of discs where n

is an integer greater than two, can be visualised as a necklace of n pearls,

where each pearl is glued to exactly two pearls, thus creating a chain of

pearls without any gaps. This situation can be observed by considering the

modular group1 PSL(2,Z), that is the group generated by ψ(z) = −1
z

and

g(z) = −1
z+1

, with its action on a particular fundamental domain.

For, by considering the standard fundamental domain

D = {z ∈ C : −1
2
≤ Re(z) ≤ 1

2
and |z| ≥ 1} of PSL(2,Z) for its action on

the upper half plane, we see that

U = {z ∈ C : Re(z) >
1

2
or |z − 1| < 1} (2.1)

contains a copy of the fundamental domain for the action of PSL(2,Z) on

C in the sense that U intersects every grand orbit of the modular group:

the limit set of this action on U is R. Now, we can think of U, g(U) and

g2(U) as three pearls forming a chain of three pearls which we refer to as

1 Or more generally the Hecke group H(n), the group generated by ψ(z) = −1
z and

g(z) = −1
z+2cosπn

.
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a 3−chain of discs: pearl U is attached to the pearls g(U) and g2(U) at 0

and ∞ respectively, while g(U) and g2(U) are attached to each other at −1.

We now let PSL(2,Z) act on these three pearls and observe as to how our

necklace changes, as follows.

First, note that g(U) ∪ g2(U)− {0,∞} ⊂ ψ(U) and

∂(ψ(U)) ∩ ∂U = {0,∞}. Now, the images of g(U) and g2(U) under ψ lie

in U in such a way that we obtain a smaller necklace with four pearls,

g(U), g2(U), ψ(g(U)) and ψ(g2(U)). Taking the images of ψ(g(U)) and ψ(g2(U))

under g and g2 we obtain another necklace with six pearls namely,

ψ(g(U)), ψ(g2(U)), g(ψ(g(U))), g(ψ(g2(U))), g2(ψ(g(U))) and g2(ψ(g2(U))).

Next, we take the ψ images of g(ψ(g(U))), g(ψ(g2(U))), g2(ψ(g(U))) and

g2(ψ(g2(U))), and obtain a necklace with eight pearls and so on. As the

number of pearls increases, they become smaller and smaller. By repeating

the process ad infinitum we end up with a necklace whose pearls are nothing

more than points; in other words, we are left with the limit set of the modular

group.

We formalise this notion of a necklace with three pearls as a 3−chain of

discs, and define its limit set, which will be shown to be a topological circle.

Once this formalism is done, the modular group can be considered as an

example of a 3−chain of discs.
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Before we define a 3−chain of discs, we highlight a certain aspect of pearls

shrinking to a point.

First, we note that ψg and ψg2 have parabolic fixed points at ∞ and 0

respectively, and for n ∈ N we have that (ψg)n+1(U) ⊂ (ψg)n(U) ⊂ U and

(ψg2)n+1(U) ⊂ (ψg2)n(U) ⊂ U.

Moreover, we note that,
⋂∞
n=1(ψg)n(U) = {∞} and

⋂∞
n=1(ψg

2)n(U) = {0} :

we refer to this property as the shrinking condition.

In general, there is no certainty that a pair of maps satisfying all of the

above properties except the shrinking condition would automatically satisfy

the shrinking condition as well: to see this, consider the following counter

example which is due to A. Eremenko:

Let f(z) = z−1, and D be the compact, simply connected domain above

and including the graph y = tan−1(x). So, the boundary of D consists of the

graph y = tan−1(x) together with the point at infinity. Now, for any n ∈ N,

fn+1(D) ⊂ fn(D); but f does not satisfy the shrinking condition at infinity

since
⋂∞
n=1 f

n(D) is the compact half plane {x+ ıy : y ≥ π
2
}.

Thus, it is necessary to include the shrinking condition in our set up of a

3−chain of discs, and we state this formally as follows:

Definition 7: (shrinking condition)

Let U be a Jordan domain, and F : U → U be univalent2 (so F is analytic

2 F is analytic and injective.
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in a domain that contains U). Let a ∈ ∂U be the only fixed point of F in U.

Then, we say that F satisfies the shrinking property (at a) if

F (U − {a}) ⊂ U and
⋂
n∈N

F n(U) = {a}.

Later, in Lemma 4 we give some geometric conditions under which the

shrinking condition is satisfied.

2.1.2 3-chains of discs

Let V be an open disc, and φ and f be univalent maps on V with the following

properties:

(1) φ : φ(V )→ V is univalent and φ2(z) = z for all z in V ∪ φ(V )

(2) f : f(V ) → f 2(V ) and f : f 2(V ) → V are univalent and f 3(z) = z

for all z in V ∪ f(V ) ∪ f 2(V ).

Definition 8: (3−chain of discs)

We say that V, φ and f give rise to a 3−chain of discs if there exist

p, q ∈ ∂(V ) satisfying the following conditions:

(3) φ(V ) ∩ V = {p, q} where φ(p) = q

(4) f(V ) ∪ f 2(V )− {p, q} ⊂ φ(V )

(5) f(V ) ∩ V = {q}, f 2(V ) ∩ V = {p} and f 2(V ) ∩ f(V ) = {r} where

f(p) = q and f(q) = r
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(6) φf : V → V and φf 2 : V → V satisfy the shrinking condition at p

and q respectively.

We shall denote this 3−chain of discs by
〈
φ, f, V, p, q, r

〉
.

Remark 3: Since we have modelled our 3−chain of discs on the action of

the modular group with the fundamental set U (as given in (2.1)) it follows

that M =
〈
z

ψ−→ −1
z
, z

g−→ −1
z+1

, U,∞, 0,−1
〉

is a 3−chain of discs: we will

show later in Proposition 2 (in section 2.2.1) that M satisfies the shrinking

condition at 0 and ∞.

2.2 The limit set of a 3−chain of discs

Our next task is to define and show that the limit set of a 3−chain of discs

is a topological circle. We shall define the limit set of a 3−chain of discs to

be the closure of the the grand orbit of p under all compositions of φ and f :

we refer to the grand orbit of p as the set of “finite points”.

This notion of limit set of a 3−chain of discs is analogous to that of the

modular group where the limit set R is the closure of the grand orbit of 0 : the

grand orbit of 0 is in fact the set of rational numbers. Thus, for a 3−chain of

discs, we need to know what constitutes the counterpart of irrational numbers

of the limit set of modular group: we define (for a 3−chain of discs) those

points that correspond to irrational numbers as “infinite points”: we refer
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to them as infinite point since each such point is the intersection of a nested

sequence of compact sets, as set out in Lemma 2. Once, we prove Lemma 2,

it remains to show that the limit set is indeed equal to the union of infinite

points and finite points, and that the limit set is a topological circle.

In the Appendix A1, we give a direct proof that the limit set is a topo-

logical circle: this proof is based on identifying each infinite point with an

irrational point, and each finite point with a rational number.

Finite words and finite points of a 3−chain of discs

We first introduce the notations that we use for the remainder of this chapter.

For m ∈ N ∪ {∞} we denote by (ni)
m
i=1 the ordered m−tuple

(n1, n2, . . . , nk, . . .) whose entries are positive integers.

Now, let S(m) = {(ni)mi=1 : ni ∈ N} be the set of all m−tuples. Likewise,

let T (m) = {(ni)mi=1 : ni 6= ni+1, each ni is either 1 or 2} : so, an element of

T (m) has one of the forms (1, 2, 1, 2, 1, 2, . . .) or (2, 1, 2, 1, 2, 1 . . .). Note that

T (1) = {(1), (2)}.

Finite words of g1 and g2

Let g1 and g2 be a pair of distinct maps, and m be a positive integer.

For t = (ti)
m
i=1 ∈ T (m) and s = (ni)

m
i=1 ∈ S(m) we define the finite word

associated with the pair (t, s) with respect to the maps g1 and g2 as

W (t, s) = W ((ti)
m
i=1, (ni)

m
i=1) = g

n1
t1
◦ gn2

t2
◦ gn3

t3
. . . ◦ gnm−1

tm−1
◦ gnmtm . (2.2)
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For brevity, whenever it is clear from the context, we shall omit the

reference to the maps (in this case g1 and g2) when we talk about finite

words. The same convention will be used later when we consider infinite

words.

The set of all such finite words is denoted by C[g1, g2], that is

C[g1, g2] = {W (t, s) : m ∈ N, (t, s) ∈ T (m)× S(m)}. (2.3)

Definition 9: (Finite words and finite points of a 3−chain of discs)

Let H =
〈
φ, f, V, p, q, r

〉
be a 3−chain of discs, g1 = φf and g2 = φf 2.

Then, the set of finite words of H is defined as

FWords = C[g1, g2] ∪ {φh : h ∈ C[g1, g2]}. (2.4)

Likewise, the set of finite points FPoints of H is defined to be the grand orbit

of p under FWords, that is,

FPoints = {g(p) : g ∈ FWords}.3 (2.5)

Note 3: (i) FWords is a proper subset of C[f, φ], the set of all compositions

of φ and f : e.g., ν = (φf)n1 ◦ (φf 2)n2 ◦ (φf)n3 . . . (φf 2)nk ∈ FWords while

ν−1 = (fφ)nk ◦ (f 2φ)nk−1 . . . (fφ)n2 ◦ (f 2φ)n1

= f ◦
(

(φf)nk−1 ◦ (φf 2)nk−1 . . . (φf)n2 ◦ (φf 2)n1

)
◦ φ /∈ FWords.

3 Or equally FPoints = {g(q) : g ∈ FWords} since φf2(p) = φf(q).
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However, FPoints = {g(p) : g ∈ C[f, φ]}. For example,

ν−1(p) = f ◦
(

(φf)nk−1 ◦ (φf 2)nk−1 . . . (φf)n2

)
(q)

= f ◦
(

(φf)nk−1 ◦ (φf 2)nk−1 . . . (φf)n2

)
f(p)

= f ◦
(

(φf)nk−1 ◦ (φf 2)nk−1 . . . (φf)n2−1
)

(φf 2(p))

= φ ◦
(

(φf)nk ◦ (φf 2)nk−1 ◦ (φf)n2−1 ◦ (φf 2)
)

(p) ∈ FPoints.

Likewise, if θ = φ ◦
(
(φf)n1 ◦ (φf 2)n2 ◦ (φf)n3 . . . (φf 2)nk

)
then θ−1 is given

by f ◦
(

(φf)nk−1 ◦ (φf 2)nk−1 . . . (φf)n2 ◦ (φf 2)n1

)
thus

θ−1(p) = φ ◦
(

(φf)nk ◦ (φf 2)nk−1 . . . (φf)n2 ◦ (φf 2)n1

)
(p) ∈ FPoints.

(ii) If w1, w2 ∈ FWords then w−11 ◦ w2(p), w1 ◦ w−12 (p) ∈ FPoints.

For example, if w1 = (φf)n1 ◦ (φf 2)n2 ◦ (φf)n3 . . . (φf 2)nk and

w2 = (φf)m1 ◦ (φf 2)m2 ◦ (φf)m3 . . . (φf 2)ml then w−11 ◦ w2 is given by(
(fφ)nk◦(f 2φ)nk−1 . . . (fφ)n2◦(f 2φ)n1

)
◦
(

(φf)m1◦(φf 2)m2◦(φf)m3 . . . (φf 2)ml
)
.

Now, without loss of generality assume that n1 > m1 ≥ 0.4 Then,

4 Here, we have relaxed our original assumption that all mi’s are positive integers by

allowing m1 to be 0 : this deviation causes no ambiguity in this context.
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w−11 ◦ w2 =
(

(fφ)nk ◦ (f 2φ)nk−1 . . . (fφ)n2 ◦ (f 2φ)n1−m1

)
◦(

(φf 2)m2 ◦ (φf)m3 . . . (φf 2)ml
)

=
(

(fφ)nk ◦ (f 2φ)nk−1 . . . (fφ)n2 ◦ (f 2φ)n1−m1−1
)
◦

f ◦
(

(φf 2)m2−1 ◦ (φf)m3 . . . (φf 2)ml
)

= φ ◦
(

(φf)nk ◦ (φf 2)nk−1 . . . (φf)n2 ◦ (φf 2)n1−m1−1 ◦ (φf)
)
◦(

(φf 2)m2−1 ◦ (φf)m3 . . . (φf 2)ml
)
∈ FWords.

So, w−11 ◦ w2(p) ∈ FPoints as required.

Similarly, if w1 = (φf)n1 ◦ (φf 2)n2 ◦ (φf)n3 . . . (φf 2)nk and

w2 = φ◦
(

(φf)m1 ◦ (φf 2)m2 ◦ (φf)m3 . . . (φf 2)ml
)

then w−11 ◦w2 ∈ FWords. For

w−11 ◦ w2 = f ◦
(

(φf)nk−1 ◦ (φf 2)nk−1 . . . (φf)n2 ◦ (φf 2)n1

)
◦(

(φf)m1 ◦ (φf 2)m2 ◦ (φf)m3 . . . (φf 2)ml
)

= φ ◦
(

(φf)nk ◦ (φf 2)nk−1 . . . (φf)n2 ◦ (φf 2)n1

)
◦(

(φf)m1 ◦ (φf 2)m2 ◦ (φf)m3 . . . (φf 2)ml
)
∈ FWords as required.

We now turn our attention to the limit points of FPoints : these limit

points consist of infinite points as in the following lemma.

Lemma 2: Let H =
〈
φ, f, V, p, q, r

〉
be a 3−chain of discs, and g1 = φf

and g2 = φf 2 be as in (2.2). Then whenever t = (ti)
∞
i=1 ∈ T (∞) and

s = (ni)
∞
i=1 ∈ S(∞),
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K(t, s) =
∞⋂
k=1

W
(

(ti)
k
i=1, (ni)

k
i=1

)
(V ) (2.6)

is a point. We refer to K(t, s) as the infinite point associated with (t, s).

Definition 10: (Infinite points of a 3−chain of discs)

We define the set of infinite points IPoints of H (using the same notation as

above) to be

IPoints = {K(t, s) : (t, s) ∈ T (∞)×S(∞)}∪{φ(K(t, s)) : (t, s) ∈ T (∞)×S(∞)}.

(2.7)

Note 4: Each K(t, s) ∈ V, and if h ∈ FWords then it follows that

h(K(t, s)) =
⋂∞
k=1 h◦W

(
(ti)

k
i=1, (ni)

k
i=1

)
(V ) is also a point. In fact, h(K(t, s))

is equal to either φ(K(t̃, s̃)) or K(t̃, s̃) for some (t̃, s̃) ∈ T (∞)× S(∞).

For the proof of Lemma 2 we need the following theorem concerning a

sequence of annuli:

An annulus (a doubly connected domain) is a univalent image of a stan-

dard annulus {z : r < |z| < R} for some 0 ≤ r and 0 < R ≤ ∞. For such

an annulus, the quantity ln(R
r
) is said to be its modulus, which is invariant

under univalent maps. When r = 0 or R =∞ the modulus of the annulus is

defined to be ∞.
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Theorem 5 ([11]): Let A be an annulus and {An}∞n=1 be a sequence of dis-

joint annuli in A. Let C1 and C2 be the components of C − A. If each Ai

separates C1 and C2, then

∞∑
n=1

mod(An) 6 mod(A)

where mod stands for the modulus of the annulus concerned.

Proof of Lemma 2. We first note that since
{
W
(

(ti)
2k
i=1, (ni)

2k
i=1

)
(V )
}∞
k=1

is a nested sequence of compact and connected sets, K(t, s) is non empty and

connected. Furthermore, K(t, s) lies in the interior of V.

Now, assume without loss of generality that t1 = 1, and as before let

g1 = φf and g2 = φf 2. Let Γ be a closed Jordan curve in V that separates

∂V and g1g2(V ) ∪K(t, s), and A be the annulus surrounded by ∂V and Γ.

Further, let Â be the component of C− A which lies in V.

We show that there is a sequence {An}∞n=1 of annuli having the same

modulus lying in V −K(t, s) as described in Theorem 5: hence,∑∞
n=1mod(An) = ∞ and so mod(V −K(t, s)) is infinite. This implies that

K(t, s) is a point.

There are four cases to consider: in all cases the construction of the

desired sequence of annuli is essentially the same as in Case 1 below.

We introduce the following terminology: If Q is an annulus with finite

modulus then we say that a set R is surrounded by Q if R ∩ Q = ∅ and R
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lies in the bounded component of C−Q.

Case 1. None of the n2i+1 equal to 1.

Let Fk = g1 ◦ g
n2k
2 ◦ gn2k+1−1

1 where k = 1, 2, . . . . Further, let G1 = F1 and

Gk+1 = Gk ◦ Fk+1 for each positive integer k. So K(t, s) can be written as

g
n1−1
1

(⋂∞
k=1Gk(V )

)
.

Now, by construction we have the following:

(i) for each k, Fk(A) ⊂ Â and Fk(A) is surrounded by A. So, for any

positive integers l and k, Fk ◦ Fl(A) is surrounded by Fk(A)

(ii) for each k,Gk(V ) is surrounded by A. So, for each k,Gk+1(A) is

surrounded by Gk(A). For, as Gk+1 = Gk ◦ Fk+1 and Fk+1(A) is surrounded

by A it follows that Gk ◦ Fk+1(A) is surrounded by Fk+1(A).

Thus, the sequence of annuli
{
g1 ◦Gk(A)

}∞
k=1

with each annulus lying in

V −K(t, s) satisfies the Theorem 5. So, we conclude that K(t, s) is a point.

Case 2. A non-zero finite number of the n2i+1 = 1 equal to 1.

In this case, K(t, s) = W
(

(ti)
2j
i=1, (ni)

2j
i=1

)(⋂∞
k=1W

(
(ti)

k
i=1, (n2j+i)

k
i=1

)
(V )
)

where j is chosen so that n2j+i 6= 1 for all i. So, using the Case 1 above we

see that
⋂∞
k=1W

(
(ti)

k
i=1, (n2j+i)

k
i=1

)
(V ) is a point and this in turn proves the

claim.

Case 3. All of the n2k+1 equal to 1.

In this case K(t, s) =
⋂∞
j=1W

(
(ti)

2j
i=1, (ni)

2j
i=1

)
(V ).

Here, for each positive integer l, g1g
l
2(A) is surrounded by A.
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So, for each positive integer k,W
(

(ti)
2(k+1)
i=1 , (ni)

2(k+1)
i=1

)
(A) is surrounded

by W
(

(ti)
2k
i=1, (ni)

2k
i=1

)
(A).

Thus, the sequence of annuli
{
W
(

(ti)
2j
i=1, (ni)

2j
i=1

)
(A)
}∞
j=1

where each an-

nulus lies in V −K(t, s) satisfies Theorem 5; so it follows that

mod(V −K(t, s)) is infinite, as desired.

Case 4 Infinitely many but not all of the n2i+1 = 1. So, assume that

{n2lk+1} is the proper infinite subsequence of {n2i+1} where n2lk+1 = 1 for

all k.

Let Fk = W ((ti)
2lk−2l1
i=1 , (ni)

2lk
i=n2l1+1

) for k = 2, 3, . . . .

So, K(t, s) = W ((ti)
n2l1
i=1 , (ni)

2l1
i=1)
(⋂∞

k=2 Fk(V )
)
.

Now, the sequence
{
Fk(A)

}∞
k=1

of annuli with each annulus lying in

V −K(t, s) satisfies Theorem 5; hence, mod(V −K(t, s)) =∞ as required.

Definition 11: (Limit set of a 3−chain of discs)

Let H =
〈
φ, f, V, p, q, r

〉
be a 3−chain of discs. Then, the limit set Λ of

H is the closure of the grand orbit of p : that is Λ = FPoints.

Corollary 1: If H =
〈
φ, f, V, p, q, r

〉
is a 3−chain of discs then,

(i) FPoints = FPoints ∪ IPoints.

(ii) Λ is invariant under φ and f. In particular, Λ is invariant under FWords.

Before proving Corollary 1 we make the following observation regarding

a 3−chain of discs:
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Let w1 and w2 be distinct maps in FWords. Then one and only one of the

following holds:

(i) w1(V ) ∩ w2(V ) = ∅

(ii) w1(V ) ∩ w2(V ) ∈ FPoints and w1(V ) ∩ w2(V ) = ∅

(iii) w1(V ) is contained in the interior of w2(V ) or vise versa

(iv) w1(V ) ⊂ w2(V ) (or w2(V ) ⊂ w1(V )) and ∂(w1(V ))∩∂(w2(V )) ∈ FPoints.

Proof:

(i) We first prove that FPoints ⊃ FPoints ∪ IPoints. With regard to Note 5 it

is enough to show that for any (t, s) ∈ T (∞) × S(∞), K(t, s) (cf. 2.6) is a

limit point of FPoints : for, let U be an open neighbourhood of

K(t, s) =
⋂∞
k=1W

(
(ti)

k
i=1, (ni)

k
i=1

)
(V ). Then, as a consequence of Lemma 2,

there is a positive integer m such that U contains the sequence of (distinct)

nested compact sets
{
W
(

(ti)
j
i=1, (ni)

j
i=1

)
(V )
}∞
j=m

. Hence,{
W
(

(ti)
j
i=1, (ni)

j
i=1

)
(p)
}∞
j=m

is a sequence of distinct points (all lying in U)

of FPoints converging to K(t, s) as m→∞, as required.

For the converse assume that z ∈ (FPoints −FPoints). Again, it is enough

to consider those z in V (cf. Note 4) and we show that z = K(t, s) for some

(t, s) ∈ T (∞)× S(∞).

Let {zm} be a sequence of finite points converging to z : so each zm is of the

form W ((ti(m))ki=1, (ni(m))ki=1)(p) for some k ∈ N. Without loss of generality

assume that t1(m) = 1 for all positive integers m.
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We claim that there is an infinite subsequence of {zm} such that

(a) k > 1 for all m

(b) there is a positive integer say n1 such that n1 = n1(m) for all m.

Proof:

(a) If k = 1 for infinitely many m then zm = p for infinitely many m

which is a contradiction since p 6= z.

(b) If not each positive integer is assumed by at most a finite number of

n1(m) : hence, there exists an (increasing) infinite sequence {li} of positive

integers such that n1(li)→∞ as i→∞. This implies that zli → p as i→∞

since g
n1(li)
1 (V )→ p as n1(li)→∞. This contradiction establishes the claim.

In fact we can say more: since gx1 ◦ g2(V ) ∩ gy1 ◦ g2(V ) = ∅ for all

positive integers x 6= y, and z is not a finite point, n1(m) is a constant say

n1 for all but finitely many m.

Now, let
{
Zl(1)

}
l∈N be a subsequence of

{
zm
}

satisfying the properties

(a) and (b) above, and for a positive integer N > 1 let S(N) be the statement

that there is an infinite subsequence
{
Zm(N)

}
m∈N of

{
Zl(N − 1)

}
l∈N such

that

(i) k > N for all m

(ii) there exists ti, ni where i = 1, 2, . . . N such that each Zm(N) has the

form W ((ti)
N
i=1, (ni)

N
i=1) ◦Wm(p) for some finite word Wm.

We prove by induction that S(N) is true for all positive integers greater
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than one:

Proof:

Base case : N = 2.

(i) For a contradiction assume that k = 2 for infinitely many {Zl(1)}.

In this case we have two cases to consider: either A = {n2(l) : l ∈ N} is

unbounded or there is a maximum element of A. If A is unbounded then

z = g
n1
1 (q) which is a contradiction as z is not a finite point. On the other

hand if A has a maximum element then a subsequence of {Zl(1)} converges

to a finite point (since a subsequence of {Zl(1)} consists of a particular finite

point) again a contradiction. Thus, we have established (i) when N = 2.

(ii) Now we pass to a subsequence of {Zl(1)} where k > 2 : each point

of this subsequence has the form g
n1
1 ◦ W ((ti(l))

2+i
i=2, (ni(l))

2+i
i=2)(p) for some

positive integer i.

Now, using the same argument used in the proof of (b) above but this

time with the sequence of points
{
W ((ti(l))

2+i
i=2, (ni(l))

2+i
i=2)(p)

}
l∈N we find a

positive integer say n2 such that n2 = n2(l) for infinitely many l. Thus, we

obtain a subsequence {Zm(2)} of {Zl(1)} with the properties stated.

Induction step: assume that S(N) is true for some integer N > 1. We

show that S(N + 1) is true. The proof is essentially analogous to the base

case.

We first show that k > N+1 for infinitely many points of {Zm(N)}. For a
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contradiction assume that k = N + 1 for infinitely many points of {Zm(N)},

and let B = {nN+1(m) : m ∈ N}. If B is unbounded then a subsequence of

{Zm(N)} converges to a finite point which is a contradiction

If B has a maximum element then infinitely many points of {Zm(N)}

equal to a single finite point which is a contradiction. So, we have shown

that there is a subsequence of {Zm(N)} having the property (i).

Now consider a subsequence of {Zm(N)} having the property (i).

Each point of this subsequence has the form

W ((ti)
N
i=1, (ni)

N
i=1) ◦W ((ti(m))N+1+k

i=N+1 , (ni(m))N+1+k
i=N+1 )(p) for some positive in-

teger k (which may depend on m) and for some finite word W ((ti)
N
i=1, (ni)

N
i=1)

which is fixed for each m by definition of {Zm(N)}.

We now apply the base case to the sequence{
W ((ti(m))N+1+k

i=N+1 , (ni(m))N+1+k
i=N+1 )(p)

}
m∈N to obtain {Zm(N + 1)} having the

property (ii): note that this sequence already satisfies the property (i) by

construction. This completes the proof of our claim.

Now, it follows from Lemma 2 that
⋂∞
k=1 Zk(k)(V ) is a point: in fact, this

point is z since, Zk(k)(p) converges to z as k →∞, as required.

(ii) Since, FPoints is invariant under φ and f it follows that Λ is also

invariant under φ and f.

Note 5: The reasoning in the proof of Corollary 1(i) shows that if z0 /∈ Λ
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then there exist an open neighbourhood O of z0, and n0 ∈ N so that for all

k ≥ n0 we have that O ∩W
(

(ti)
k
i=1, (ni)

k
i=1

)
(V ) = ∅ and

O∩φ◦W
(

(ti)
k
i=1, (ni)

k
i=1

)
(V ) = ∅. In fact, we can find such an O and n0 ∈ N

so that if m ≥ n0 and (t, s) ∈ T (m) × S(m) then, O ∩W
(
t, s
)
(V ) = ∅ and

O ∩ φ ◦W
(
t, s
)
(V ) = ∅

Proposition 1: Let P (z, w) = 0 be a correspondence, andH =
〈
φ, f, V, p, q, r

〉
be a 3−chain of discs with the limit set Λ. If

(i) each grand orbit of P intersects V , and

(ii) the forward branch FP of P restricted to V is the pair of maps

{φf, φf 2} while the backward branch F−1P of P restricted to φ(V ) is the

pair of maps {fφ, f 2φ} then, Λ is the limit set of P (z, w) = 0 in the sense of

Definition 2.

Proof:

It follows from (i) that, each grand orbit of P intersects φf(V ) ∪ φf 2(V );

thus, each grand orbit of P intersects V ∪ {p, q}. Now, let z0 ∈ V ∩ C − Λ.

From Note 5, we can find n0 ∈ N and an open neighbourhood O of z0 so that

whenever m ≥ n0, we have that Fm
P (V ) ∩O = ∅. Hence, the relation (1.8) is

satisfied with N = 2 +n0. This implies that the limit set of P is contained in

Λ. In order to show that Λ is indeed the limit set of P it suffices to show that

p is not in the regular set of P. For assume that p is in the regular set of P.
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So, there is an open neighbourhood U of p, and a positive integer N so that

the relation (1.8) holds. Now, let z be any point of U ∩ V. Since, φf satisfies

the shrinking condition at p there is a positive integer m such that if n ≥ m

then (φf)n(V ) ⊂ U ∪ {p}. Now, considering the left hand side of (1.8), we

have that (z, (φf)n(z)) ∈ F n
P ∩ (U × U) for all n ≥ m. But, (z, (φf)n(z)) is

not in the right hand side of (1.8) if n 6= N. This contradiction establishes

that p is a limit point of P, and so is the grand orbit of p. This in turn shows

that the closure of the grand orbit of p is the limit set of P : in other words,

Λ is the limit set of P.

Lemma 3: If H =
〈
φ, f, V, p, q, r

〉
is a 3−chain of discs then its limit set Λ

is a topological circle.

We give two proofs of Lemma 3: one utilising a continued fractions argument

(see Appendix A1), and the other using the following result.

Proposition 2: The modular group M =
〈
z

ψ−→ −1
z
, z

g−→ −1
z+1

, U,∞, 0,−1
〉

is a 3−chain of discs where U = {z ∈ C : Re(z) > 1
2

or |z − 1| < 1}.

Proof of Proposition 2: It is easy to see that M satisfies all the require-

ments of a 3−chain of discs: the fact that ψg and ψg2 satisfy the shrinking

condition at ∞ and 0 respectively is done in Appendix (cf. A2).

Proof of Lemma 3: Our proof is based on homeomorphically identifying

the limit points of H with the corresponding limit points (that is R ∪ {∞})
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of M =
〈
z

ψ−→ −1
z
, z

g−→ −1
z+1

, U,∞, 0,−1
〉

(cf. Proposition 2). Indeed, it

suffices to show that there is a bijective mapping h : Λ → R ∪ {∞} such

that h−1 is continuous. First, since we are dealing here with limit sets of two

3−chain of discs we introduce the following notation: if t = (ti)
m
i=1 ∈ T (m)

and s = (ni)
m
i=1 ∈ S(m) then we shall denote the composition (2.2) associated

withM by WM(t, s) where g1 = ψg and g2 = ψg2 while retaining the original

notation of (2.2) for those pertaining to H.

Now, for k ∈ N, and ((ti)
k
i=1, (ni)

k
i=1) ∈ T (k) × S(k) let h be the bijection

given by

h(x) =



⋂∞
k=1WM

(
(ti)

k
i=1, (ni)

k
i=1

)
(U) if x =

⋂∞
k=1W

(
(ti)

k
i=1, (ni)

k
i=1

)
(V )

∞ if x = p

0 if x = q

WM
(
(ti)

k
i=1, (ni)

k
i=1

)
(∞) if x = W

(
(ti)

k
i=1, (ni)

k
i=1

)
(p)

ψ(
⋂∞
k=1WM

(
(ti)

k
i=1, (ni)

k
i=1

)
(U)) if x = φ(

⋂∞
k=1W

(
(ti)

k
i=1, (ni)

k
i=1

)
(V ))

ψ(WM
(
(ti)

k
i=1, (ni)

k
i=1

)
(∞)) if x = φ(W

(
(ti)

k
i=1, (ni)

k
i=1

)
(p)).

Note that b = WM
(
(ti)

k
i=1, (ni)

k
i=1

)
(∞) and ψ(b) are rational numbers

while a =
⋂∞
k=1WM

(
(ti)

k
i=1, (ni)

k
i=1

)
(U) and ψ(a) are irrational numbers.

We now proceed to show that h−1 : R ∪ {∞} → Λ is continuous where

there are two cases to consider:
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Case 1: h−1 is continuous at points of the form a =
⋂∞
k=1WM

(
(ti)

k
i=1, (ni)

k
i=1

)
(U).

Case 2: Continuity of h−1 at points having the form b = WM
(
(ti)

k
i=1, (ni)

k
i=1

)
(∞).

Proof of Case 1:

Let O be an open neighbourhood of h−1(a). Then, (as seen in the proof of

Lemma 2) there is m ∈ N such that W
(
(ti)

k
i=1, (ni)

k
i=1

)
(V ) ⊂ O for all k ≥ m.

Now, Ô, the interior of WM
(
(ti)

m+2
i=1 , (ni)

m+2
i=1

)
(U) is an open neighbourhood

of a and h−1(Ô ∩ R) ⊂ O as required.

Proof of Case 2:

We first show that h−1 is continuous at ∞. For, let {zn} be a sequence of

reals such that zn →∞ as n→∞, and O1 be an open neighbourhood of p.

So, there is m1 ∈ N such that whenever k ≥ m1 we have that (φf)k(V )∪ φ ◦

(φf 2)k(V ) ⊂ O1. Now, since I = R∩
(

(ψg)m1(U)∪ψ◦(ψg2)m1(U)
)

is a closed

interval containing the point at infinity, there is m2 ∈ N such that if n ≥ m2

then zn ∈ I : that is, each zn lies in either of (ψg)m1(U) or ψ ◦ (ψg2)m1(U).

Thus, if n ≥ m2 then h−1(zn) ∈ (φf)m1(V )∪φ◦(φf 2)m1(V ) ⊂ O1 as required.

Now, the continuity of h−1 at a point of the form b = WM
(
(ti)

k
i=1, (ni)

k
i=1

)
(∞)

is proved as follows: let {zn} be a sequence of reals converging to b as n→∞.

Since, ζ = WM
(
(ti)

k
i=1, (ni)

k
i=1

)
is a continuous map in C, {ζ−1(zn)} is a se-

quence converging to∞ as n→∞. Now, as detailed in Note 3, each ζ−1(zn)

is either a finite point or an infinite point of M, so, {ζ−1(zn)} is a sequence

of reals. Thus, using the continuity of h−1 at ∞, and the continuity of
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W
(
(ti)

k
i=1, (ni)

k
i=1

)
at p we conclude that h−1 is continuous at b.

2.2.1 Sufficient conditions for the shrinking property

In our applications of 3−chains of discs (or n−chains of discs in general) we

are concerned with maps of the form z 7→ a + (z − a) + b(z − a)2 + . . . for

some constants a and b with b 6= 0. Such maps have just one attracting petal

at a and the following two theorems set out the behaviour of the map on an

attracting petal.

Theorem 6 ([1], P.122): Let f(z) = z + azn+1 + bzn+2 . . . be analytic in a

neighbourhood of zero, and a 6= 0. Then in a neighbourhood of zero, f is

conjugate to an analytic function of the form g(z) = z − zn+1 + O(z2n+1).

That is, near 0, g = ϕfϕ−1 for some univalent map ϕ with ϕ(0) = 0.

Theorem 7 ([1], P.116): Let g(z) = z − zn+1 + O(z2n+1) be analytic near

zero. Then,

(a) for all sufficiently small t > 0, g maps each petal

P (j, t) = {reiβ : rn < t(1 + cos(nβ)), |β − 2jπ
n
| < π

n
, r > 0} to itself where

j ∈ {0, 1, 2, . . . , n− 1}.

(b) gk(z)→ 0 uniformly on each petal as k →∞.

(c) If z ∈ P (j, t) then arg(gk(z)) → 2πj
n

locally uniformly as k → ∞

where j ∈ {0, 1, 2, . . . , n− 1}.
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Remark 4: (1) For each petal P (j, t), the ray with argument 2πj
n

is called

the axis of P (j, t) or the attracting direction in P (j, t).

It follows that the attracting directions of f in Theorem 6 are the rays with

arguments θk = −arg(a)
n

+ π(1+2k)
n

where k = 0, 1, . . . n− 1 ([5], P.40).

(2) Since each P (j, t) is invariant under g it follows that g(P (j, t)) is also

a petal for g at 0 with the same attracting direction as P (j, t). Thus, by

a petal of g (at 0) we mean any open domain satisfying the conclusion of

Theorem 7.

Lemma 4: (Sufficient condition for shrinking property)

Let U be a Jordan domain, a ∈ ∂U and f : U → U ∪ {a} be analytic on

U with f(a) = a. Suppose further that f has no fixed points in U, and near

a, f has the Taylor series f(z) = z + b(z − a)N+1 + O(z − a) where N ∈ N,

and b 6= 0. So, f has a parabolic fixed point at a, viz, f ′(a) = 1.

If there exist a positive integer q, an open petal P of f at a and an open

neighbourhood D of a such that D∩f q(U) ⊂ P∪{a} then
⋂
n∈N f

n(U) = {a}.

For the proof of Lemma 4 we need the following result:

Theorem 8 ([2]): Let G be a domain in C and f : G → G be meromorphic.

If the iterates of f form a normal family in G then one and only one of the

following holds:



2. 3-chains of discs 59

(a) There exists w ∈ G such that f(w) = w and fn(z)→ w locally uniformly

as n→∞ for all z ∈ G. If w 6=∞ then | f ′(w) | < 1.

(b) dist( fn(z), ∂G ) → 0 locally uniformly in G as n → ∞. That

is, if K is a compact subset of G then there exists l ∈ N such that for all

n ≥ l, n ∈ N we have that fn(K)∩K = ∅. Here, dist(.) is the usual spherical

distance between two sets in C, and ∂G is the boundary of G.

(c) f : G → G is univalent and surjective in G.

Proof of Lemma 4:

We first note that f : U → U satisfies Theorem 8(b). Now, suppose that

D, q and an open petal P exist so that D ∩ f q(U) ⊂ P ∪ {a}. Let K be the

compact set (C − D) ∩ f q(U). So, by Theorem 8 there is n0 ∈ N such that

whenever n > n0 we have that fn(K)∩K = ∅ : thus, fn(K) ⊂ D ∩P ∪ {a}.

Now, using the uniform convergence of {fk : k ∈ N} on P, we deduce that

for all sufficiently large integers k, fk(U) ⊂ D∩ (P ∪{a}). This in turn shows

that if D̂ is any open neighbourhood of a that is contained in D then for all

large k, fk(U) ⊂ D̂ ∩ (P ∪ {a}) as required.

Note 6: In the simplest situations the condition in Lemma 4 can be satisfied

by establishing that near a, the boundary curve of U lies in P ∪{a} for some

petal P. In particular, if f has just one attracting petal and the boundary

curve of U near a is smooth then a sufficient requirement for the shrinking
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Fig. 2.1:

condition is that the tangent line to U at a is not parallel to the petal axis

of f at a. In this regard we note that the following scenario (see fig. 2.2) is

not a possibility even though the tangent line to U and the petal axis are

not parallel: suppose that P is a petal of f at a where a is an interior point

of P ∪ U. Then, P ∪ U is a domain which is invariant under f. Hence, by

Theorem 8(a) we conclude that a is an attracting fixed point of f, that is

|f ′(a)| < 1, which is a contradiction.



3. APPLICATION OF 3−CHAINS OF DISCS TO

HOLOMORPHIC (2:2) CORRESPONDENCES

We now proceed to prove Theorem 4 using the notion of a 3−chains of discs.

We first recall the statement of Theorem 4:

Theorem 4 (1)(a). Let Q(z) = z3−3z. Then, there is a non-empty class

M of Möbius involutions so that for each φ ∈M, the (2 : 2) correspondence

HQ(z, φ(w)) = 0 which we denote by Pφ is quasi-fuchsian, say with the limit

set Λφ.

(b). If Ωφ is the component of C − Λφ containing the point at infinity

then the action of Pφ on Ωφ is Hecke conjugate1 to the action of

PSL(2,Z)2 on the upper half plane {z ∈ C : Im(z) > 0}.

(2) If R(z) = z2(z+b)
(z+c)

with all its critical points lie on a line in C then,

there exists a non empty class of Möbius involutions E so that for each ψ ∈ E

the correspondence HR(z, ψ(w)) = 0 is quasi-fuchsian.

In this case, the action of HR(z, ψ(w)) = 0 on any component of the

1 cf. Definition 6.
2 The group generated by z 7→ −1

z and z 7→ −1
z+1 .
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complement of the limit set is not Hecke conjugate to a Kleinian group.

The scheme of the proof of Theorem 4(1)3 is as follows:

Step 1.

Identify M so that for each φ ∈ M, Pφ(z, w) = 0 satisfies the contact

condition for some fundamental sets Tφ and TQ (such that Tφ ⊂ Tφ) with

contact points say, p and q. Recall that for such Tφ and TQ we have:

(i) each grand orbit of Pφ(z, w) = 0 intersects Tφ

(ii) FPφ(Tφ) ⊂ Tφ and F−1Pφ
(Tφ) = C where FPφ = φ ◦ FHQ and

F−1Pφ
= FHQ ◦ φ.

Step 2.

For each φ ∈M we show that there exists a Jordan domain V in Tφ \ [−2, 2]

such that:

(i) ∂V ∩ ∂Tφ consists of the contact points {p, q} of Pφ, and every grand

orbit of Pφ intersects V

(ii) The boundaries of V and Tφ are tangent to each other at p and q

(iii)
〈
φ, f, V, p, q, f(q)

〉
4 is a 3−chain of discs

Before carrying out these steps we describe the consequences of the above

construction.

3 We shall implement a similar argument for the proof of Theorem 4(2).
4 See Appendix A3 for how the limit set behaves when we replace of Q by an equivalent

map in normal form.
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Note that on such V , z → FHQ(z) is a pair of univalent maps,

g(z) = −z+
√
12−3z2
2

and f(z) = −z−
√
12−3z2
2

: in fact, z 7→ f(z) = w and

z 7→ g(z) = w are the solution of HQ(z, w) = 0 ⇐⇒ z2 + w2 + zw − 3 = 0

satisfying f(f(z)) = g(z) and f 3(z) = z for all z ∈ V . We distinguish these

solutions by letting f(p) = q and g(q) = p. With this identification, we have

that f(V ) ∩ g(V ) = {f(q)}, f(V ) ∩ V = {q} and g(V ) ∩ V = {p}.

Finally, using Proposition 1 (cf. Step 2) we conclude that the limit set of

Pφ(z, w) = 0 coincides with the limit set of
〈
φ, f, V, p, q, f(q)

〉
.

We remark that the forward branch FPφ of Pφ(z, w) = 0 consists of the pair

of maps {φf, φg} while the backward branch F−1Pφ
of Pφ(z, w) = 0 is given by

the pair of maps {fφ, gφ}.

Proof of Theorem 4(1):

Part (a).

Let the class of involutions be

M =
{
z 7→ (a+ b)z − 2ab

2z − (a+ b)
: a2+b2−14ab+48 = 0, a ∈ (R−[−1, 1]), ab > 7

}
.

(3.1)

Note that if φ ∈M with φ(z) = (a+b)z−2ab
2z−(a+b) then φ has fixed points at a and b

and for a ∈ (R− [−1, 1]) the other fixed point b for which ab > 7 is obtained

by solving a2 + b2 − 14ab+ 48 = 0 as follows:
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b =



7a+ 4
√

3
√
a2 − 1 if 1 < a ≤ 7

7a± 4
√

3
√
a2 − 1 if a > 7

7a− 4
√

3
√
a2 − 1 if −7 ≤ a < −1

7a± 4
√

3
√
a2 − 1 if a < −7.

(3.2)

The condition a2+b2−14ab+48 = 0 imposes that the degree four polyno-

mial HQ(φ(z), z) = 0 has only two solutions say, p and q where each of which

has multiplicity two. In fact, p and q are the contact points of Pφ(z, w) = 0

and specifically we let p := (a+b
8
,

√
3(ab−7)
2

) and q := (a+b
8
,−
√

3(ab−7)
2

).

We now construct the fundamental sets TQ and Tφ for which Pφ(z, w) = 0

satisfies the contact condition with contact points p and q as follows.

Firstly, it is easy to see that

Tφ =
{
z ∈ C : |z−a+ b

2
| < |a− b

2
| or |z−a+ b

2
| = |a− b

2
| where Im(z) ≥ 0

}
(3.3)

is a fundamental set for φ and the boundary ∂Tφ of Tφ is given by

{(x+ iy) ∈ C : x2 + y2 + ab− x(a+ b) = 0}.

As for TQ, considering the three-to-one covering map

Q : C−Q−1({x : x ≤ 2} ∪ {∞})→ {x : x ≤ 2} ∪ {∞}

we find that C−Q−1({x : x ≤ 2}∪{∞}) is a union of three pairwise disjoint

simply connected domains and one of which say D, has [1, 2] as one of its
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boundary curves.

It follows that B := D∪ [1, 2]∪{z ∈ Q−1({x : x ≤ −2}) : Im(z) > 0}∪ {∞}

is a fundamental set for Q and we let (with respect to the fixed point a)

TQ =


B if a > 1

{−z : z ∈ B} if a < −1.

(3.4)

The boundary of TQ is as follows

∂TQ =


{z = (x+ iy) ∈ C : 3x2 − y2 − 3 = 0, x ≥ 1} ∪ {∞} if a > 1

{z = (x+ iy) ∈ C : 3x2 − y2 − 3 = 0, x ≤ −1} ∪ {∞} if a < −1.

We remark that the boundaries of TQ and Tφ are tangent to each other

at p and q.

It now follows that Pφ(z, w) = 0 satisfies Step 1 with respect to the

fundamental sets given in (3.3) and (3.4) and the set of contact points of

Pφ(z, w) = 0 is ∂TQ ∩ ∂Tφ = {p, q}.

We now proceed to show that Pφ(z, w) = 0 satisfies Step 2(ii) for the

case where a > 1 and we omit the proof when a < −1 since the two proofs

are analogous.

The construction of V is done under the following three cases arising as

to whether 2 is outside, on the boundary or inside of Tφ.

Case 1. a > 2 with b = 7a+ 4
√

3
√
a2 − 1 : so, b > 2.

Case 2. a = 26 and b = 2 : this is the case if we let b = 7a− 4
√

3
√
a2 − 1.
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Case 3. (i). 1 < a < 2 and b = 7a + 4
√

3
√
a2 − 1. Here we have that

7 < b < 26.

(ii). 7 < a < 26 and b = 7a− 4
√

3
√
a2 − 1, thus 1 < b < 2.

In Case 1 and Case 2, we let V = φ(C− TQ).

As for the Case 3, we consider only the part (i) and whose proof is anal-

ogous to that of part (ii).

We first note that for our choice of a and b as given in (3.2) we have that

φ(−1) > 2.

Now, there are three possibilities (A), (B) and (C) to consider:

(A). φ(C− TQ) ∩ {2} = ∅.

In this case, we let V be the interior of φ(C− TQ).

(B). 2 is on the boundary of φ(C− TQ).

Here, φ(FHQ(φ(C− TQ))) is a union of two closed discs say, S1 and S1

(with Jordan curves as boundaries) whose intersection is {φ(−1), φ(f(q))}.

Now, since (S1∪S2) ⊂ Tφ and 2 /∈ (S1∪S2) (2 is in the unbounded component

of C− (S1 ∪ S2)) we let V be any Jordan domain in Tφ \ [−2, 2] such that

(S1 ∪S2)−{p, q} ⊂ V, ∂V ∩ ∂Tφ = {p, q} and the boundary curves of V near

p and q are tangent to the boundary curves of Tφ near p and q respectively.

(C). 2 is in the interior of φ(C− TQ) : this occurs when φ(1) < 2.

In this case, we claim that there is n ∈ N so that, 2 /∈ (φ ◦ FHQ)n(φ(C− TQ)).

Note that if such an n exists then the claim is also true for any integer m > n.
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For a contradiction assume that 2 ∈ (φ ◦ FHQ)n(φ(C− TQ)) for all

n ∈ N. This implies that for some single valued analytic branch say, β of

z → FHQ(z) we have that sn = (φβ)n(φ(1)) < 2. Since, sn is an increasing

sequence of points it has a limit point say, s ≤ 2. Now, if s < 2 then we have

that s = φ(β(s)) : this implies that s is a solution of HQ(φ(z), z) = 0 which

is a contradiction as the solutions of HQ(φ(z), z) = 0 are p and q.

On the other hand, if s = 2 then we consider φ(sn) = β((φβ)n(φ(1))) and

obtain a contradiction as follows: since, φ(−1) > 2, φ(sn) tends to a limit

µ > −1 while β((φβ)n(φ(1))) tends to −1 which is a contradiction. Thus,

there is an integer n for which 2 /∈ (φ ◦ FHQ)n(φ(C− TQ)).

So, let V be any Jordan domain in Tφ \ [−2, 2] such that

(φ ◦ FHQ)n(φ(C− TQ))− {p, q} ⊂ V, ∂V ∩ ∂Tφ = {p, q} and the boundary

curves of V near p and q are tangent to the boundary curves of Tφ near p

and q respectively.

We now discuss Step 2 (iii) of the proof where we show that φf and

φg satisfy the shrinking condition (cf. Definition 7) at p and q respectively:

this concludes the proof that
〈
φ, f, V, p, q, r

〉
is a 3−chain of discs. Here, we

consider only5 the case of φf at p; it suffices to show (cf.Note 6 ) that the

petal axis of φf at p is not parallel to the tangent to V at p.

First, by construction, the boundary of V at p and q is tangent to the

5 The proof of the other case is analogous.
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boundary of Tφ at p and q respectively. If χ is the angle (measured from the

X−axis ) of the tangent line to V at p then tan(χ) = 3(a+b)

4
√

3(ab−7)
6= 1, 0.

We now show that if τ is the attracting direction (or the argument of

the petal axis) of φf at p then tan(τ) = −1
tan(χ)

: hence, the petal axis is

perpendicular to the tangent to V at p. This, shows that φf satisfies the

shrinking condition at p thereby completing the proof of Step 2 (iii).

For consider the Taylor series of φf near p : that is,

φf(z) = p+ a0(z − p) + a1(z − p)2 +O(z − p)3.

Now, since p and q are the solutions (each of which is of order two) of

HQ(φ(z), z) = 0 ⇐⇒ φ(z)2 + z2 + zφ(z)− 3 = 0, it follows that φf(z)− z

has a zero of order two at p. Thus, a0 = 1 and a1 6= 0, and by Remark 4(2)

we have that τ = π − arg(a1).

We now find an expression for tan(arg(a1)) as follows:

for 2a1 = φ
′′
(q)(f

′
(p))2 + f

′′
(p)φ

′
(q) and using the identities

z2 + f 2(z) + zf(z)− 3 = 0, φ
′
(z) = (a+b)−φ(z)

2z−(a+b) , φ
′′
(z) = −4φ′ (z)

2z−(a+b) ,

f
′
(p) = −(f(p)+2p)

2f(p)+p
= −(q+2p)

2q+p
and f

′′
(p) = −2(1+f ′ (p)+(f

′
(p))2)

2f(p)+p
= −2(1+f ′ (p)+(f

′
(p))2)

2q+p

we obtain that a1 = −162×8µ2(3(a+b)+i8µ)
(9(a+b)2+64µ2)2

where µ =

√
3(ab−7)
2

.

Thus, tan(τ) = − tan(arg(a1)) = −8µ
3(a+b)

= −1
tan(χ)

as required.

This completes the proof that HQ(z, φ(w)) = 0 is quasi-fuchsian.

Part (b):

First note that f and φ are univalent maps of Ωφ onto itself



3. Application of 3−chains of discs to holomorphic (2:2) correspondences 69

(cf.Corollary 1(ii)) and let ψ be a Riemann map from Ωφ to the upper half

plane H+. Thus, σ = ψ ◦ φ ◦ ψ−1 and ρ = ψ ◦ f ◦ ψ−1 are Möbius maps

of order two and three respectively, from H+ onto itself. Now, consider the

(2 : 2) correspondence G(z, w) = 0 ⇐⇒ (w−σρ(z))(w−σρ2(z)) = 0. So, G

represents PSL(2,Z) as a correspondence, since, their grand orbits coincide.

It follows that ψ is a conjugacy from FPφ to PSL(2,Z), compatible with

φ and σ, in the sense of Definition 6, as required.

Proof of Theorem 4(2):

We highlight only the key points of the proof since the idea and the

methodology are essentially the same as our previous case.

First, recall that 0, 1, λ = bc and∞ are the critical points of z
R−−→ z2(z+b)

z+c
,

where b and c satisfy the conditions 9c2 + b2 − 10bc 6= 0 and

b+ 3c+ 2(1 + bc) = 0. Now, if λ ∈ C−{0, 1} then there are two choices for c

namely,
−(λ+1)+

√
(λ2−λ+1)

3
and

−(λ+1)−
√

(λ2−λ+1)

3
for which the critical points

of R are 0, 1, λ and ∞. It is clear from the discussion on the normal forms,

and Note 2 that it suffices to prove the theorem in the case where all the

critical points of R are on R. In this case we have that λ ∈ R− {0, 1}.

Out of two choices we have for c we consider c =
−(λ+1)+

√
(λ2−λ+1)

3
, and the

proof of the other case is analogous.

The scheme of the proof is as follows:

Step 1 (i) we find fundamental sets, T1(R), T2(R) and T3(R) of R and
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corresponding classes of involutions, E1, E2 and E3 so that if ψ ∈ Ei where

i = 1, 2, 3 then HR(z, ψ(w)) = 0 is of Hecke type correspondence with respect

to the fundamental sets Ti(R) and the fundamental set Ti(ψ) of ψ.

Step 2

For each HR(z, ψ(w)) = 0 as in step 1, if p and q are the contact points

then we show that there is a domain V in Ti(ψ) such that

(i) ∂V ∩ ∂Ti(ψ) = {p, q}

(ii) each grand orbit of HR(z, ψ(w)) = 0 intersects V , and on V ,

z 7→ FHR(z) is a pair of univalent maps say, f and g

(iii) if we set f(p) = q and g(q) = p then,
〈
ψ, f, V, p, q, f(q)

〉
is a 3−chain

of discs.

Proof of Step 1(i)

Let d =
√
λ2 − λ+ 1, µ = d− (λ− 1) and δ = d+ λ− 1. Then,

R−1(R(λ)) = {λ, µ} and R−1(R(1)) = {1, δ}.

We construct TR according to the values of λ viz, λ < 0, 0 < λ < 1 and

λ > 1.

Case 1: λ < 0

Here we have that Q(1) < 0 < Q(λ) and λ < −c < δ < 0 < 1 < −b < µ.

Now, Q−1(C− [−∞, Q(λ)]) consists of three simply connected domains, and

let D1 be the component of Q−1(C− [−∞, Q(λ)]) that intersects (µ,∞). The

boundary of D1 consists of
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{
(x, y) ∈ R× R : y2 =

2x(x− 1)(x− λ)

−2x+ c− b
, x > 1

}
(3.5)

and [1, µ]. Now, we let

T1(R) = D1∪ [1, µ]∪
{

(x, y) ∈ R×R : y2 = 2x(x−1)(x−λ)
−2x+c−b , x > 1, y > 0

}
∪{∞}.

Case 2: 0 < λ < 1

If 0 < λ < 1 then Q(1) < Q(λ) < 0 and 0 < −c < δ < λ < 1 < µ < −b. Now,

if D2 is the component of Q−1(C− [−∞, 0]) that intersects [−b,∞] then let

T2(R) = D2∪[1,−b]∪
{

(x, y) ∈ R×R : y2 = 2x(x−1)(x−λ)
−2x+c−b , x > 1, y > 0

}
∪{∞}.

Case 3: 1 < λ

When 1 < λ we have that 0 < −c < µ < 1 < λ < δ < −b and

Q(λ) < Q(1) < 0. Now, let D3 be the component of Q−1(C− [−∞, 0]) that

intersects [−b,∞], and let

T3(R) = D3∪[λ,−b]∪
{

(x, y) ∈ R×R : y2 = 2x(x−1)(x−λ)
−2x+c−b , x > λ, y > 0

}
∪{∞}.

Finding the classes of involutions, E1, E2 and E3.

If ψ(z) = (α+β)z−2αβ
2z−(α+β) then HR(z, ψ(z)) = 0 is of the form (z− p)2(z− q)2 = 0

where p 6= q if and only if α and β satisfy the relation

A(β)α2+B(β)α+E(β) = 0 where A(β) = 3(2β+b−c)2
4

, E(β) = 3(β(b−c)+2λ)2

4
and

B(β) = (−4d−2−2λ)β2+ 2β
3

(8d(1+λ)+(1+5λ+λ2))−2λ(1+2d+λ). It is easy

to see that A(β)α2+B(β)α+E(β) = 0 is symmetric with respect to α and β :

so, if α+ and α−, where α− < α+ are the roots of A(β)α2+B(β)α+E(β) = 0
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for some β then, β is a solution of A(α+)α2 + B(α+)α + E(α+) = 0 and

A(α−)α2 +B(α−)α + E(α−) = 0.

We note that the discriminant 72βc(c2 − λ)(β − 1)(β − λ) of

A(β)α2 +B(β)α + E(β) = 0 is positive for the following three cases:

(i) if λ < 0 and β > 1

(ii) if 0 < λ < 1 and β > 1

(iii) if λ > 1 and β > λ.

Now, let

E1 =
{
z

ψ−→ (α++β)z−2α+β

2z−(α++β)
: A(β)α2

+ +B(β)α+ + E(β) = 0, 1 < β < c−b
2

}
,

E2 =
{
z

ψ−→ (α++β)z−2α+β

2z−(α++β)
: A(β)α2

+ +B(β)α+ +E(β) = 0, 1 < β < c−b
2

}
and

E3 =
{
z

ψ−→ (α++β)z−2α+β

2z−(α++β)
: A(β)α2

+ +B(β)α+ + E(β) = 0, λ < β < c−b
2

}
.

Fundamental sets T1(ψ), T2(ψ) and T3(ψ).

If ψ(z) = (α+β)z−2αβ
2z−(α+β) is in Ei where i = 1, 2, 3 then let

Ti(ψ) =
{
z ∈ C : |z − α+β

2
| < |α−β

2
| or |z − α+β

2
| = |α−β

2
|, Im(z) ≥ 0

}
.

Step 2

It follows that if ψ ∈ Ei then with respect to the fundamental sets Ti(ψ) and

Ti(R), HR(z, ψ(w)) = 0 is a Hecke type correspondence whose contact points

are given by p =
(
x,
√

2x(x−1)(x−λ)
−2x+c−b

)
and q =

(
x,−

√
2x(x−1)(x−λ)
−2x+c−b

)
where

x = −(2λ−2ρ+ν(b−c))
4(2c+ν)

. Now, the construction of V is done in the same way as

in the previous proof, and we now proceed to show that
〈
ψ, f, V, p, q, f(q)

〉
is a 3−chain of discs by showing that ψf satisfies the shrinking condition at
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p. First, using the identities f 2(z)(z+ c) + f(z)(z+ c)(z+ b) + zc(z+ b) = 0,

ψ′(z) = α+β−ψ(z)
2z−(α+β) , ψ

′′(z) = −4ψ′(z)
2z−(α+β) and (ψf)′′(p) = ψ′′(q)(f ′(p))2+ψ′(q)f ′′(p)

we have (ψf)′′(p) = −2
(α+β)2−4αβ

{
2(α+β−2(x−iy))− T

(3x+b)(x+c)+y2+ıy(2x+b−c)

}
where p = x+ iy and

T = c((α2 + β2 + 8(x2 − y2) + 6αβ)− (α− β)2(2x+ b)− 8(α+ β)(cx+ y2).

Now if θ1 is the argument of the attracting direction of the petal of ψf at p

then θ = −arg((ψf)′′(p)), and tan(θ) =
y{4(t21+t22)+T (2x+b−c)}
Tt1−2(α+β−2x)(t21+t22)

where

t1 = (3x+ b)(x+ c) + y2 and t2 = y(2x+ b− c).

Since the gradient to ∂Ti(ψ) at p is ξ = α+β−2x
2y

it follows that ξ tan(θ) = −1

which in turn shows that the petal axis is perpendicular to ∂Ti(ψ) at p; so, ψf

satisfies the shrinking condition at p. Likewise, one checks that ψg satisfies

the shrinking at q, there by completing the proof that
〈
ψ, f, V, p, q, f(q)

〉
is

a 3-chain of discs.

Comment 1: behaviour of HQ(z, φ(w)) = 0 when ab < 7

The reason for the condition ab > 7 in (3.1) is that if ab < 7, then the

“contact points” p and q are both real (provided that a ∈ R and b ∈ R) since

p and q are the solutions of 4z2 − z(a + b) + 4(ab − 6) = 0. In this case, we

still have p and q as “parabolic fixed points” of the correspondence yet we

do not obtain a 3−chain of discs, and the limit set of the correspondence is

not a topological circle. This is why we have formulated the notion of Hecke

correspondence (cf.Definition 5) in a rather restrictive manner.
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We now discuss the behaviour of HQ(z, φ(w)) = 0 where the fixed points

of φ are given by a and b = 7a − 4
√

3
√
a2 − 1 6 with 1 < a < 7; so,

ab < 7. First, when a = 2 we have that b = 2, which does not result in an

involution, hence we have excluded this scenario. Let p = (a+b)+4
√
3
√
7−ab

8
and

q = (a+b)−4
√
3
√
7−ab

8
be the solutions of 4z2− z(a+ b) + 4(ab− 6) = 0 : both p

and q are real, and there is an analytic branch say f of FHQ that maps p to

q. Likewise, let g be the other branch of FHQ and set r = g(p).

One checks that p ∈ (1, 2), r ∈ (−2,−1) and q ∈ (−1, 1) : so, q lies outside

of the closure of TQ (cf.(3.4) with a > 1) while p lies in the interior of Tφ

(cf.(3.3) with a > 1). Now, let D = φ(FHQ(TQ)). So, D is a closed Jordan disc

whose boundary meets the positive real axis at φ(1) and a+b
2
. Furthermore,

D intersects every grand orbit of HQ(z, φ(w)) = 0, and by Definition 2 it

follows that Λ = ∩∞n=1(φ(FHQ(D)))n(D) ∪ φ
(
∩∞n=1 (φ(FHQ(D)))n(D)

)
is the

limit set of HQ(z, φ(w)) = 0.

It is clear that Λ is compact, and Λ 6= ∅ since for instance the grand orbit of

p is in Λ.

We show that Λ ∩ (R ∪ {∞}) ⊂ (r, q) ∪ (p, φ(r)).

We first note that 2 ∈ (φ(FHQ(D)))n(D) for each positive integer n. If not,

there is m ∈ N so that 2 is not in V = (φ(FHQ(D)))m(D). So, on V the

branches of FHQ , f and g are univalent. So, φ ◦ f maps V into the interior of

6 The other case of b (cf. (3.2)) is similar.
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V while fixing p. Thus, using Theorem 8 we obtain a contradiction that p is

an attracting fixed point of φ ◦ f : by our construction (φ ◦ f)
′
(p) = 1. Thus,

we deduce that 2 is in every (φ(FHQ(D)))n(D), and in particular 2 ∈ Λ. Now,

since 2 ∈ (φ(FHQ(D)))n(D) for each n, the boundary of (φ(FHQ(D)))n(D)

is a topological circle which cuts the positive real axis 7 at (φf)n(φ(1)) and

(φg)n(φ(1)) where (φf)n(φ(1)) < (φg)n(φ(1)). As p ∈ Λ we must have that

(φf)n(φ(1)) < p. Now, consider the increasing sequence zn = (φf)n(φ(1))

where n ∈ N; since, zn = (φf)(zn−1), if zn converges to a point w 6= p then

we have that w = φf(w) which is a contradiction as p is the only fixed

point of the correspondence that lies in Tφ. Thus, zn converges to p, so, the

interval [1, p) is not in the limit set Λ. This implies that [−2, r)∪ [1, q) * Λ. A

similar reasoning shows that (φg)n(φ(1)) converges to φ(r), thus the interval

(φ(r), a+b
2

] is outside of Λ.

Now, since (a+b
2
,∞] is outside of D it follows that the interval (φ(r),∞]

does not intersect Λ. This in turn shows that [−∞, r) is outside of Λ, which

concludes the proof.

We note that

(i) The above discussion shows that r, p, q and φ(r) are not interior points

(if any) of Λ . Also, Λ contains non real points, for instance f(φ(r)) and

g(φ(r)).

7 Note that 1 < φ(1) < 2 and φ(−1) > 2.
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(ii) It is interesting to know whether Λ can have interior points, or indeed

whether Λ is a cantor set.

Finally, we remark that the same situation occurs in Theorem 4(2) when-

ever the “contact points” are real with respect to the real fixed points: this

occurs for instance by taking the root α− in each of the cases we have studied.



4. GENERALISATION OF 3-CHAINS OF DISCS.

Here, we generalise the notion of a 3−chain of discs to an n−chain of discs

and show that its limit set is a topological circle. The limit points are defined

in similar manner except there is somewhat a longer list of limit points arising

from finite words; nonetheless, the picture one should keep in the mind is

that of a 3−chain of discs. Finally, we explore some examples of (3 : 3)

quasi-fuchsian correspondences.

4.0.2 n−chains of discs

Let V be an open disc, f and φ be univalent maps on V , and n ∈ N−{1, 2}

with the following properties:

(1) φ : φ(V )→ V is univalent and φ2(z) = z for all z ∈ V ∪ φ(V ).

(2) for each k ∈ N such that 1 ≤ k ≤ n − 1, f : fk(V ) → fk+1(V ) is

univalent where fn(V ) = V and fn(z) = z for all z ∈
⋃n
i=1 f

i(V ).

(3) there is r1 ∈ ∂V, and if k, l ∈ N such that 1 ≤ k, l ≤ n− 1 then
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

fk(V ) ∩ f l(V ) = ∅ if |k − l| 6= 1

f(V ) ∩ V = {r1}

fk(V ) ∩ fk+1(V ) = {fk(r1)} if 1 ≤ k ≤ n− 1.

We shall denote fk(r1) by rk+1 where 1 ≤ k ≤ n− 1. Note that it follows

from property (2) that f(rn) = r1.

Definition 12: We say that V, φ and f form an n−chain of discs if in addition

to the above three properties the following properties are satisfied:

(4) φ(V ) ∩ V = {r1, rn} and φ(r1) = rn. So, {r1, rn} ⊂ ∂V.

(5)
(⋃n−1

k=1 f
k(V )

)
− {r1, rn} ⊂ φ(V ).

(6) φf : V → V and φfn−1 : V → V satisfy the shrinking condition at rn

and r1 respectively.

We denote this n−chain of discs by
〈
φ, f, V,

(
ri
)n
i=1

〉
.

We view an n−chain of discs being modelled on the Hecke group H(n),

that is, the group generated by ψ(z) = −1
z

and g(z) = −1
z+2cosπ

n
. For, if

U = {z ∈ C : Re(z) > cosπ
n
} ∪ {z ∈ C : |z − 1

2cosπ
n
| < 1

2cosπ
n
},

r1 = 0 and rk+1 = gk(0) where 1 ≤ k ≤ n − 1 then
〈
ψ, g, U,

(
ri
)n
i=1

〉
is an

n−chain of discs: it is easy to see that the properties from 1 to 5 are satisfied.

We outline the proof of property 6 as follows: at rn =∞,

ψg(z) = z− 2z2cosπ
n
. . . ; so, the petal axis is perpendicular to the imaginary



4. Generalisation of 3-chains of discs. 79

axis. Since, the boundary of U at ∞ is perpendicular the real axis we con-

clude that ψg satisfies the shrinking condition at ∞. The proof that ψgn−1

satisfies the shrinking condition at r1 = 0 is similar.

Next, we define the limit set of an n−chain of discs in such a way that

there is a choice of fundamental sets for the action of H(n) on C which

provides an example of an n−chain of discs.

4.0.3 Limit set of an n−chain of discs

Finite words and finite points of an n−chain of discs

The concept of finite words and finite points of an n−chain of discs is

reminiscent of what we have already seen in section (2.2), and before defining

them we begin by introducing the notations as follows.

For m ∈ N∪{∞}, let (ni)
m
i=1 stand for the ordered m−tuple (n1, n2, . . . ..).

Now, let S(m) = {(ni)mi=1 : ni ∈ N} and

P (m) = {(ai)mi=1 : ai ∈ N, ai 6= a1+i and 1 ≤ aj ≤ n− 1 for 1 ≤ j ≤ m}.

If
〈
φ, f, V,

(
ri
)n
i=1

〉
is an n−chain of discs, Am = (ai)

m
i=1 ∈ P (m),

Bm = (ni)
m
i=1 ∈ S(m) and gi = φfai where 1 ≤ i ≤ m then we define the

finite word W (Am, Bm), associated with Am and Bm by

W (Am, Bm) = gn1
1 ◦ gn2

2 ◦ gn3
3 . . . ◦ gnm−1

m−1 ◦ gnmm . (4.1)
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Note that two such words W (Am, Bm) and W (Âm, B̂m) are equal if and only

if Am = Âm and Bm = B̂m.

Definition 13: (Finite words and finite points)

Suppose that
〈
φ, f, V,

(
ri
)n
i=1

〉
is an n−chain of discs. We define its set of

finite words FWords by

{φ(W (Am, Bm)),W (Am, Bm) : m ∈ N, Am ∈ P (m), and Bm ∈ S(m)} and

the set of finite points FPoints by {h(r1) : h ∈ FWords}.

We note that FPoints is the set of images of r1 under all compositions of

φ and f.

As in the case of a 3−chain of discs we have the following Lemma whose

proof we omit since it is essentially the same proof as of Lemma 2 .

Lemma 5: (Infinite points)

If
〈
φ, f, V,

(
ri
)n
i=1

〉
is an n−chain of discs, A∞ = (ai)

∞
i=1 ∈ P (∞) and

B∞ = (ni)
∞
i=1 ∈ S(∞) then

W (A∞, B∞) =
∞⋂
k=1

W
(
(ai)

k
i=1,

(
ni
)k
i=1

)
(V ) (4.2)

is a point, which we regard as an infinite point of
〈
φ, f, V,

(
ri
)n
i=1

〉
.

The set of infinite points IPoints of
〈
φ, f, V,

(
ri
)n
i=1

〉
is defined as

{φ(W (A∞, B∞)),W (A∞, B∞) : A∞ ∈ P (∞), B∞ ∈ S(∞)}.
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We note that two infinite points W (A∞, B∞) and W (Â∞, B̂∞) are equal if

and only if A∞ = Â∞ and B∞ = B̂∞.

Definition 14: (Limit set)

If
〈
φ, f, V,

(
ri
)n
i=1

〉
is an n−chain of discs then its limit set Λ is defined to

be FPoints, the closure of FPoints.

As in the Corollary 1 the analogous statement for an n−chain of discs is:

Corollary 2: For an n−chain of discs the following holds:

(1) FPoints = FPoints ∪ IPoints.

(2) Limit set is invariant under φ and f ; in particular, the limit set is

invariant under FWords.

Note 7: Analogous statements of Note 5 and Proposition 1 hold for an

n−chain of discs; we omit these proofs as they are nothing more than re-

tracing the same notions.

Likewise, the proof that the limit set of an n−chain of discs is a topological

circle is done by constructing a homeomorphism h between Λ = FPoints and

R = R ∪ {∞} which is the limit set of the Hecke group,1

H(n) =
〈
z

ψ−→ −1
z
, z

g−→ −1
z+2cosπ

n
, U,
(
qi
)n
i=1

〉
(cf. section 4.0.2). Before

1 We abuse the notation of Hecke group to denote both the Hecke group itself and the

correspondence associated with Hecke group.
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defining h, let us agree that, the expressions (4.1) and (4.2) that arise with

respect to H(n) be denoted by WH(Am, Bm) and WH(A∞, B∞) respectively,

while we retain the original notation for those expressions pertaining to〈
φ, f, V,

(
ri
)n
i=1

〉
.

Now, for (Am, Bm) ∈
⋃
m∈N P (m)×S(m), and (A∞, B∞) ∈ P (∞)×S(∞)

define h : Λ→ R as

h(x) =



WH(A∞, B∞) if x = W (A∞, B∞)

qn if x = rn

q1 if x = r1

WH

(
Am, Bm)(q1) if x = W (Am, Bm)(r1)

ψ(WH(A∞, B∞)) if x = φ(W (A∞, B∞))

ψ(WH(Am, Bm)(q1)) if x = φ(W (Am, Bm)(r1)).

By following the same argument of the proof of Lemma 3 we see that h is a

homeomorphism and this in turn proves that:

Lemma 6: The limit set of an n−chain of discs is a topological circle.

4.1 Applications of n-chains of discs

As discussed in Note 2 (sec. 1.5.4), when studying correspondences of the

form HQ(z, φ(w)) = 0 where Q is a rational maps of degree at least three,

and φ is an involution, it suffices to consider a normal form of Q. Thus, the
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statements of the following results remain true for any rational map of the

form M ◦Q ◦K where M and K are Möbius maps.

The proofs of the following results follow a similar pattern to that of

Theorem 4: so, we state claims without their proofs if those proofs are anal-

ogous in nature to what we have already done in the proof of Theorem 4.

Proposition 3: (Hecke group case)

(i) If n is an integer greater than or equal to three, and

Q(z) = zn then there is a class I of Möbius involutions so that for each

φ ∈ I, HQ(z, φ(w)) = 0 is a quasi-fuchsian correspondence.

In fact, HQ(z, φ(w)) = 0 represents a conjugate of the Hecke group 2 H(n),

the group generated by z 7→ −1
z

and z 7→ −1
z+2cosπ

n
.

Proof: First note that,

HQ(z, w) = 0 ⇐⇒ zn−1 + wzn−2 + w2zn−3 . . .+ wn−2z + wn−1 = 0, and the

forward branch z 7→ FHQ(z) of HQ(z, w) = 0 is given by

{z exp(2πik
n

) : k = 1, 2, . . . , n− 1}. So, if f(z) = z exp(2πi
n

) then fn(z) = z for

all z ∈ C. Thus, for a suitably chosen involution φ, the group generated by

φ and f is conjugate to the Hecke group of order n. Indeed,

I =
{
z

φ−→ (a+b)z−2ab
2z−(a+b) : a, b ∈ C, (a+ b)2(1 + exp(2πi

n
))2 − 16ab exp(2πi

n
) = 0

}
is such a collection of involutions:

2 See (1.1) regarding representing H(n) as a correspondence.



4. Generalisation of 3-chains of discs. 84

the condition (a + b)2(1 + exp(2πi
n

))2 − 16ab exp(2πi
n

) = 0 imposes that φf

(and φfn−1) has just one fixed point, in fact, it is a parabolic fixed point.

In particular, if a and b are positive then we can obtain an n-chains of discs

as follows. We first choose fundamental sets Tφ and TQ of φ ∈ I and Q

respectively so that HQ(z, φ(w)) = 0 satisfies the contact condition. For let

Tφ =
{
z ∈ C : |z − a+b

2
| < |a−b

2
|
}
∪
{
z ∈ C : |z − a+b

2
| = |a−b

2
|, Im(z) ≥ 0

}
and TQ =

{
z ∈ C : −π

n
< arg(z) ≤ π

n

}
∪ ∞. So, the contact points

of HQ(z, φ(w)) = 0 are r1 = a+b
2 sec2 π

n
+ i a+b

2 sec2 π
n

tan π
n

and rn = a+b
2 sec2 π

n
−

i a+b
2 sec2 π

n
tan π

n
. These contact points are the fixed points of φf and φfn−1

respectively. It is easy to see that
〈
φ, f, V,

(
ri
)n
i=1

〉
is an n−chain of discs

where V = {z ∈ C : |z− a+b
2
| < |a−b

2
|}, and fk(r1) = rk+1 for 1 ≤ k ≤ n− 1 :

we sketch the proof that φf satisfies the shrinking condition at rn. For, if β

is the argument of the petal axis of φf at rn then

tan β = − tan(arg((φf)′′(rn))) = − tan(4π
n
− 3 arg(2r1− (a+ b))) = 1

tan π
n
. So,

the petal axis is perpendicular to the tangent line to V at rn : this in turn

proves the claim. In the same manner, one shows that φfn−1 satisfies the

shrinking condition at r1.

Theorem 9: (i) If Q(z) = z4 − 2a2z2 where a > 0 then there exists a class

of Möbius involutions I, such that for each φ ∈ I, HQ(z, φ(w)) = 0 is a

quasi-fuchsian correspondence.
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(ii) If Λφ is the limit set of HQ(z, φ(w)) = 0, and Ωφ is the component of

C − Λφ containing the point at infinity then the action of HQ(z, φ(w)) = 0

on Ωφ is Hecke conjugate3 to the action of H(4) on the upper half plane.

Note that Q has four critical points (at∞, 0, a and −a where∞ has order

three while the other critical points have order one each) and three critical

values at 0,−a4 and ∞.

We take Q as the normal form representing maps of the form M ◦ Q ◦ N

for Möbius maps M and N. Notice that M ◦ Q ◦ N is not an even map in

general, thus, M ◦Q ◦N may assume four critical values.

Proof:(i) We first identify I and then for z
φ−→ (α+β)z−2αβ

2z−(α+β) in I we construct

a fundamental set Tφ of φ.

Now since HQ(z, w) = 0 ⇐⇒ (z+w)(z2+w2−2a2) = 0, z2+φ(z)2−2a2 = 0

has exactly two roots, each with order two if and only if

(α + β)2 − 8αβ + 8a2 = 0. So, we let

I =
{
z

φ−→ (α + β)z − 2αβ

2z − (α + β)
: (α+β)2−8αβ+8a2 = 0, α ∈ (a,∞)∪(−∞,−a), αβ > 3a2

}
:

note that I 6= ∅, for instance the involution with fixed points α > a and

β = 3α + 2
√

(2)
√

(α2 − a2) is in I. If φ ∈ I then let its fundamental set

be Tφ =
{
z : |z − α+β

2
| < |α−β

2
|
}
∪
{
z : |z − α+β

2
| = |α−β

2
|, Im(z) ≥ 0

}
.

We now construct TQ a fundamental set for Q so that HQ(z, φ(w)) = 0 is

3 cf. Definition 6.
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of Hecke type if z
φ−→ (α+β)z−2αβ

2z−(α+β) is in I : for if D is the component of

Q−1{C− (−∞, 0]} that intersects (a
√

2,∞), and

E = D ∪ {∞} ∪ [a, a
√

2] ∪ {x+ iy : x2 − y2 = a2, x > a, y > 0} then let

TQ =


E if α ∈ (a,∞)

{z : −z ∈ E} if α ∈ (−∞,−a).

It follows that the contact points of HQ(z, φ(w)) = 0 are r4 = α+β
4

+

i

√
αβ−3a2√

2
and r1 = α+β

4
− i
√
αβ−3a2√

2
.

The next step is to show that (see the proof of Theorem 4) there is a Jordan

domain V such that on V , z 7→ FHQ(z) consists of three univalent maps f, g

and h where f(r4) = r1, g = f 2 and h = f 3 : hence, f 4 is the identity map

on V . For, if α ∈ [a
√

2,∞) ∪ (−∞,−a
√

2] then let V be the interior of Tφ.

On the other hand, if α ∈ (a, a
√

2) (or α ∈ (−a
√

2,−a)) then there is n ∈ N

so that, a
√

2 /∈ (φ ◦ FHQ)n(φ(C− E)) (or −a
√

2 /∈ (φ ◦ FHQ)n(φ(C− Ê)).

For such V, it follows that
〈
φ, f, V,

(
ri
)n
i=1

〉
is an n−chain of discs where

r2 = f(r1) and r3 = f 2(r1) : among the properties concerning an n−chain of

discs we sketch the proof that φf satisfies the shrinking condition at r4. For,

since (φf)′′(r4) = 2(a2−r1r4)
r4r21

, if τ is the argument of the petal axis of φf at r4

then tan τ =
−4
√
αβ−3a2√

2(α+β)
. Now, if θ is the angle made by the tangent line to V

at r4 then we have that tan θ = −1
tan τ

; so, the petal axis of φf is not tangential

to V at r4, as required. One shows in a similar manner that φf 2 satisfies the

shrinking condition at r1. Thus, we have shown that HQ(z, φ(w)) = 0 is a
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quasi-fuchsian correspondence.

Finally, we omit the proof of part (ii) since it is analogous to the proof of

Theorem 4.

Comment 2.

As in the case of Theorem 4 (cf. Comment 1), when αβ < 3a2 the limit set

of the resulting correspondence is not a topological circle, and its limit set is

given by
(
∩∞n=1 (φ ◦ FHQ)n(TQ)

)
∪ φ
(
∩∞n=1 (φ ◦ FHQ)n(TQ)

)
.



5. APPENDIX (INCLUDING COMMENTS AND

CONJECTURES)

Here we pose some questions and conjectures which are of some interest.

For some conjectures we propose a strategy together with the obstacles that

needed to overcome in order to make our argument into a proof. In this

regard, where necessary we will make certain definitions, and state relevant

results for clarity and completeness.

• Hecke type correspondences

As we have seen, in some cases if Q is a rational map of degree at least

three then there is a class of involutions I so that if φ ∈ I then HQ(z, φ(z))

has a factor (z − p)2(z − q)2 where p 6= q. Note that this is certainly the

case if Q is of degree three or Q is of degree four and an even map, that

is Q(z) = Q(−z) for all z. In general, it is not clear whether such a class

of involutions exists for a given Q. If such an I exists then we were able

to identify a subset J 1 of I so that whenever φ ∈ J , HQ(z, φ(w)) = 0 is

1 So, the cases mentioned in Comments 1 and 2 do not occur.
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a Hecke type correspondence (cf.Definition 5), and indeed a quasi-fuchsian

correspondence whose proof is based on the notion of an n−chain of discs.

The drawback of our methodology of showing that a correspondence is quasi-

fuchsian is twofold: first there is a geometric condition2 where we require the

existence of a pair of fundamental sets TQ and Tφ for Q and φ respectively

so that ∂TQ ∩ ∂Tφ consists of the two contact points, and the other being

rather technical in nature concerning the shrinking condition. It seems that

the existence of such fundamental sets is the hardest to check in practice.

Recall from Comment 1 and 2 that the existence of I does not guarantee that

the correspondence is quasi-fuchsian. So, it is of interest to know whether

every Hecke type correspondence is a quasi-fuchsian correspondence: failing

this means that either there is no open set V as mentioned in the proof of

Theorem 4 or the correspondence fails to satisfy the shrinking condition.

• α−plane

Keeping the same set up as above, let the α−plane Aα ⊂ C be defined by

β ∈ Aα if and only if there is φβ ∈ I such that φβ(β) = β, and

HQ(z, φβ(w)) = 0 is quasi-fuchsian: we denote this correspondence by Pβ,

and its limit set by Λβ. In the cases we have considered it was shown that Aα

is a union of open intervals of the real line; so, the question is that if β ∈ Aα

is given can one “generate” an open (in C) neighbourhood U of β so that

2 cf. Definition 5.
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U ⊂ Aα?

Conjecture 1: Aα is an open set in C.

We outline two possible approaches for proving this conjecture:

Approach 1. For each β ∈ Aα there corresponds a Hecke type correspon-

dence which is equipped with a pair of fundamental sets satisfying Definition

5. Since, each contact point is given by an analytic function of β, if one can

perturb the original pair of fundamental sets so as to retain the conditions

of Definition 5 then the resulting correspondence is of Hecke type. Now,

using the fact that petal axis moves analytically on β we deduce that the so

obtained correspondence is a quasi-fuchsian correspondence: this shows that

Aα is open in C.

Approach 2. If β ∈ Aα then there is an open set V (such as in the

proof of Theorem 4 or 9) such that every grand orbit of Pβ(z, w) = 0 ⇐⇒

HQ(z, φβ(w)) = 0 intersects V . Now, put an ellipse field say µ on V : the

correspondence Pβ then distributes µ to an ellipse field of C. Then, there

is a quasi conformal map hβ on C that straightens µ into a circle field.

Let Fβ and F−1β be the forward and backward branches of Pβ, and consider

gβ = hβ ◦ Fβ ◦ h−1β and g−1β = hβ ◦ F−1β ◦ h
−1
β . It follows that gβ and g−1β are

forward and backward branches of a correspondence say, Gβ. So, Gβ and Pβ

are topologically conjugate to each other, and a branch of gβ ◦ g−1β ◦ gβ is an
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involution say ψβ. Now, at this stage one requires to show the following:

(i). Gβ(z, w) = 0 ⇐⇒ HQ(z, ψβ(w)) = 0. Note that it is important that we

have the “same Q”. Indeed, we have already noted3 that if HQ(z, φ(w)) = 0

is quasi-fuchsian then so is HM◦Q◦K(z,K−1 ◦ φ ◦K(w)) = 0 where K and M

are Möbius maps.

(ii). assuming that (i) holds, as µ varies the set of corresponding β gives rise

to an open (in C) neighbourhood of β.

Here we have to ascertain that we find a class of “new” involutions other

than what we have already obtained through our construction of Hecke type

correspondences.

Conjecture 2: If β ∈ Aα then there is a neighbourhood D of β so that for

each γ ∈ D, Λγ is a quasi conformal image of Λβ.

The above assertion is true if Aα is open in C. For if Aα is open and β ∈ Aα

then there is a neighbourhood D1 of β such that D1 ⊂ Aα. Now, if pβ is the

contact point that corresponds to rn (see Definition 12) in Pβ then there is

a neighbourhood D ⊂ D1 of β, and an analytic map h : D → C such that

h(β) = pβ. For each γ ∈ Aα let Wγ denote a generic expression in (4.1) and

Fγ be the set of finite points of Pγ : so, each element of Fγ is of the form

Wγ(pβ) or φγ◦Wγ(pβ), and the closure of Fγ is the limit set Λγ. Then the map

3 cf. Appendix A3.
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f : D ×Fβ → C given by (z, x) 7→


Wγ ◦ h(z) if x = Wβ(pβ)

φγ ◦Wγ ◦ h(z) if x = φγ ◦Wβ(pβ)

is a holomorphic motion4 of Fβ. So, by λ− Lemma it follows that if γ ∈ D

then Λγ is a quasi conformal image of Λβ.

The following conjecture is particularly interesting if the correspondence

is Hecke conjugate as in Definition 6:

Conjecture 3: The limit set Λφ of HQ(z, φ(w)) = 0 is a quasi-circle: that

is, Λφ is a quasi-conformal image of R ∪ {∞}.

Conjecture 4: A result analogous to Theorem 4(2) holds if the critical

points of R do not lie on a line in C.

Appendix

A1 (Another proof of Lemma 3): Let [n1;n2, n3, . . .] stand for the con-

tinued fraction

n1 +
1

n2 + 1
n3+

1
n4
...

where n1 ∈ N ∪ {0} and ni ∈ N for all i ≥ 2. An infinite continued fraction,

that is when there are infinitely many n′is, converges to an irrational number,

and each irrational number can be expressed as a unique continued fraction

[9]. On the other hand, a finite continued fraction [n1;n2, n3, . . . , nk] is a

4 See the Appendix A4 for the definition and the λ− Lemma.
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rational number and vise versa. Moreover, each rational number has two

different continued fraction expressions namely,

[n1;n2, n3, . . . , nk, 1] = [n1;n2, n3, . . . , nk + 1].

Now, let H =
〈
φ, f, V, p, q, r

〉
be a 3−chain of discs with limit set Λ.

Using the usual notation of (2.2) with g1 = φf and g2 = φf 2, and that of

Lemma 2, define h : R ∪ {∞} → Λ as follows:

h(x) =



p if x =∞⋂∞
k=1W

(
(ti)

k
i=1, (ni)

k
i=1

)
(V ) where t1 = 1 if x = [n1;n2, . . .]

where n1 6= 0⋂∞
k=1W

(
(ti)

k
i=1, (ni)

k
i=1

)
(V ) where t1 = 2 if x = [0;n1, n2, . . .]

(φf)n1 ◦ (φf 2)n2 ◦ . . . ◦ (φf)n2k−1 ◦ (φf 2)n2k(p) if x = [n1;n2, . . . , n2k]

(φf)n1 ◦ (φf 2)n2 ◦ . . . ◦ (φf 2)n2k ◦ (φf)n2k+1(q) if x = [n1;n2, . . . , n2k+1]

q if x = 0

φ
(⋂∞

k=1W
(
(ti)

k
i=1, (ni)

k
i=1

)
(V )
)

where t1 = 1 if x = −[0;n1, n2, n3, . . .]

φ
(⋂∞

k=1W
(
(ti)

k
i=1, (ni)

k
i=1

)
(V )
)

where t1 = 2 if x = −[n1;n2, n3, . . .]

where n1 6= 0

φ
(

(φf 2)n1 ◦ (φf)n2 ◦ . . . ◦ (φf 2)n2k−1 ◦ (φf)n2k(q)
)

if x = −[n1;n2, . . . , n2k]

φ
(

(φf 2)n1 ◦ (φf)n2 ◦ . . . ◦ (φf)n2k ◦ (φf 2)n2k+1(p)
)

if x = −[n1;n2, . . . , n2k+1].

It is clear that h is well defined at irrational numbers, and we show that h

is well defined at rational numbers. For let x = [n1;n2, . . . , n2k]. If n2k 6= 1
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then x can also be written as [n1;n2, . . . , n2k − 1, 1]. So,

h([n1;n2, . . . , n2k − 1, 1]) = (φf)n1 ◦ (φf 2)n2 ◦ . . . ◦ (φf 2)n2k−1 ◦ (φf)(q)

= (φf)n1 ◦ (φf 2)n2 ◦ . . . ◦ (φf 2)n2k−1 ◦ (φf)(f(p))

= (φf)n1 ◦ (φf 2)n2 ◦ . . . ◦ (φf 2)n2k−1 ◦ (φf 2)(p)

= (φf)n1 ◦ (φf 2)n2 ◦ . . . ◦ (φf 2)n2k(p)

= h([n1;n2, . . . , n2k]) as required.

The cases where n2k = 1 or x = [n1;n2, . . . , n2k+1 ] are dealt with analogously.

Furthermore, it is clear that h is a bijective map. We now show that h is a

continuous map as follows:

Case 1 continuity of h at irrational points.

Let x = [n1;n2, n3, . . . , ] and without loss of generality assume that n1 6= 0.

We first note that for any k ≥ 1, [n1;n2, . . . , n2k+1] < x < [n1;n2, . . . , n2k].

Moreover, {[n1;n2, . . . , n2k+1]}∞k is an increasing sequence converging to x

while {[n1;n2, . . . , n2k]}∞k is a decreasing sequence converging to x (see [9]

for example). Now, let U be an open neighbourhood of h(x). Then (as

seen in the proof of Lemma 2) there is some k0 so that if k ≥ k0 then

W
(
(ti)

k
i=1, (ni)

k
i=1

)
(V ) is an open neighbourhood of h(x) where

W
(
(ti)

k
i=1, (ni)

k
i=1

)
(V ) ⊂ U. We show that there is an open neighbourhood

(a, b) of x such that h((a, b)) ⊂ U. Indeed, let a = [n1;n2, n3, . . . , n2k0+1]

and b = [n1;n2, n3, . . . , n2k0
]. Since, every y ∈ (a, b) has a continued fraction
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expansion of the form [n1;n2, n3, . . . , n2k0
, . . .] we conclude that h(y) ∈ U.

Case 2. continuity of h at rational points.

It suffices to show that h is continuous at ∞, since if x is a rational number

then h(x) is a finite point which is a continuous image of p. In fact, h(x) is

given by W
(
(ti)

k
i=1, (ni)

k
i=1

)
(p) or φ(W

(
(ti)

k
i=1, (ni)

k
i=1

)
(p)).

Now, let U be an open neighbourhood of p. Then, by the shrinking condition

at p and q, there is k0 ∈ N so that whenever n ≥ k0, (φf)n(V ) ⊂ U and

φ ◦ (φf 2)n(V ) ⊂ U. Now, if y ∈ (k0,∞) then y has a continued fraction

of the form [n; . . . ..] where n ≥ k0. So, h(y) ∈ (φf)n(V ) ⊂ U. Likewise, if

y ∈ (−∞,−k0) then y has a continued fraction of the form −[n; . . . ..] where

n ≥ k0, and so h(y) ∈ φ◦ (φf 2)n(V ) ⊂ U. These two facts together show that

h is continuous at ∞ as claimed.

Remark 5: To generalise the above proof for an n−chain of discs with n > 3,

one would need to generalise the notion of continued fractions.

A2 (Shrinking condition for Proposition 2) We note that it is easy

to see that the properties 1 to 5 of Definition 8 are satisfied by M, and we

show that the shrinking condition is satisfied. For at infinity, ψ(g(z)) = z+1

has the Taylor series z− z2 + z3 + . . . which is valid near 0. So, the argument

of the petal axis of ψg near ∞ is π − arg(−1) = 0 : hence, the petal axis

is perpendicular to the imaginary axis which is tangent to U at ∞ and this
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proves that ψg satisfies the shrinking condition at ∞.

Similarly, one can show that ψg2 satisfies the shrinking condition at 0.

A3

Let
〈
φ, f, V, p, q, f(q)

〉
be the 3−chain of discs associated with the rational

map Q (such as in the proof of Theorem 4).

Now, if R = K ◦Q ◦M for some Möbius maps K and M then〈
M−1 ◦ φ ◦ M,M−1 ◦ f ◦ M,M−1(V ),M−1(p),M−1(q),M−1(f(q))

〉
is the

3−chain of discs associated with R. The situation is the same if Q is of

degree n > 3, and in that case we would be dealing with an n−chain of

discs. Thus, it suffices to consider a normal form in studying Hecke type

correspondences.

A4 (Holomorphic motion)

Definition 15: [6, 7] Let A ⊆ C be any non empty set and D be the open

unit disc5 in C. A holomorphic motion of A with respect to the base point 0

is a map f : D × A→ C such that

(i) for any fixed a ∈ A, f(z, a) is analytic in z. That is f : D × {a} → C

is analytic.

(ii) for any fixed z0 ∈ D, f : {z0} × A→ C is injective. Thus,

f(z0, w1) = f(z0, w2)⇒ w1 = w2.

(iii) f : {0} × A → C is the identity map on A. That is f(0, w) = w for all

5 In practice we can replace D by any other domain.
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w ∈ A.

Theorem 10 ([6, 10]): Let f : D × A → C be a holomorphic motion of A.

Then,

(i) f has a unique extension F in the sense that F : D × A → C is a

holomorphic motion of A and the restriction of F to D×A is identical to f.

(ii) for each z0 ∈ D,F (z0, w) : C → C is a quasi-conformal with respect to

w. In particular, for any z0 ∈ D,F (z0, w) : A→ C is a quasi-conformal map

in w.
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