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Abstract 6 

A reduced-order semi-analytic model of multiple zonal jets in the Southern Ocean is proposed 7 

based on the statistical approach and scale decomposition. By introducing two dominant scales in 8 

the vorticity equation, the model describes the large-scale and mesoscale dynamics using the 9 

explicit momentum dissipation in the horizontal and vertical directions. For validation and physical 10 

insights, the results of the reduced-order model are compared with solutions of two eddy-resolving 11 

ocean models: i) a realistic primitive-equation HYCOM (HYbrid Coordinate Ocean Model) 12 

simulation of the Southern Ocean and ii) an idealized quasi-geostrophic model of a shear-driven 13 

channel flow. 14 

1. Introduction 15 

Multiple zonal jets, oriented in the east-west direction while alternating in the latitudinal direction, 16 

are observed in different regions of the global oceans as reported from velocity observations and 17 

satellite altimetry data [1-4]. The emergence of zonal jets is similarly confirmed by numerical 18 

ocean models run in eddy-resolving regimes [5-9].  A similar persistent pattern of zonal jets is also 19 

observed in atmospheres of giant planets such as Jupiter and Saturn [10, 11]. In addition to visual 20 

resemblance, the analysis on energy spectra in these cases indicates the same underlying dynamics 21 

[12]. Development of physically insightful mathematical models of the structure and dynamics of 22 

zonal jets remains one of the active research directions in planetary sciences.  23 

Among other techniques, linear stability and nonlinear perturbation methods are popular tools to 24 

analyze the dynamics of zonal jets in the literature. For example, Kaspi and Flierl (2007) 25 

considered baroclinic instability and nonlinear interactions between eddies as the formation 26 

mechanism of jets in the atmosphere of gaseous planets using a nonlinear analytical model [13]. 27 

Farrel and Ioannou (2008) used the stochastic structural stability theory to study the interaction of 28 
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jets with turbulence for a two-layer baroclinic model and explain the physical mechanism behind 29 

the formation and maintenance of baroclinic jets [14]. Along a similar line of thought, Berloff et 30 

al. (2009) considered a two-stage development process of the formation of zonal jets [15]. First, 31 

the energy of the background flow is released to long meridional and short zonal length scales via 32 

a linear mechanism. Then a secondary instability occurs, which sets the meridional scale of the 33 

zonal jets [15]. Furthermore, Connaughton et al. (2010) studied modulational instability of 34 

geophysical Rossby and plasma drift waves as a formation mechanism of zonal jets both 35 

theoretically and numerically using Charney–Hasegawa–Mima model [16]. 36 

At the other end of the spectrum, there are statistical models of zonal jets such as those considering 37 

the inverse energy cascade in beta plane turbulence. The focus of these models tends to be in the 38 

zonal jet structure and their maintenance mechanism at an advanced stage once the jets reach the 39 

state of statistical stationarity. The key concept here pioneered by Rhines (1994) [17] is the so-40 

called halting length scale, which emerges from the analysis of the wavenumber spectrum for 41 

turbulence energy. This scale divides the beta plane turbulence into isotropic small scales and 42 

highly anisotropic large scales that form the zonal jets. The Rhines scale depends on r.m.s. velocity 43 

and the gradient of the Coriolis parameter. In a further study [18], the Rhines scale together with 44 

a second length-scale, which describes the forcing strength with respect to the background 45 

potential vorticity gradient, were reported to determine the structure of zonal jets. In the work by 46 

Danilov and Gurarie [19], Rhines’ theory was further extended to account for bottom friction 47 

effects. In addition, Nadiga (2006) related the development of zonal jets to a detention of the 48 

turbulent inverse-cascade of energy by free Rossby waves, which are subsequently redirected into 49 

zonal modes [20].  50 

A different approach was considered by Huang and Robinson (1998) [21] who showed that the 51 

persistent jets are mainly maintained by the shear-straining between small-scale eddies and large-52 

scale zonal jets. This work demonstrated an evident scale separation between the small eddy scale 53 

and the large jet scale. It was also shown that despite a similarity between the Rhines scale and the 54 

jet scale, they are not obviously linked statistically [21].  55 

The current work exploits the separation between the long scale of the background flow and the 56 

short jet scale to develop a close-form semi-analytical model, which is amenable to fast turn-57 

around solution ideally suitable for parametric studies. The goal of the model is to explicitly 58 
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capture interaction between spatial scales in a realistic flow regime with strong vertical shear and 59 

mixing and non-negligible vertical velocities. The balance at each scale is preserved due to 60 

viscosity, thereby explicitly illustrating the importance of momentum dissipation.  The balance 61 

serves as an equilibration mechanism for turbulence generated by large-scale forcing, which 62 

maintains zonal jets in a statistically stationary regime. Section 2 shows how the assumed scale 63 

separation allows to reduce the governing equations into two separate sets of equations, one for 64 

the large-scale background flow and the other for the small-scale zonal jets, each of which is solved 65 

semi-analytically. It is shown that the wind-stress forcing and the bottom friction dissipation 66 

mainly govern the large-scale vorticity dynamics, which can be solved separately from the zonal 67 

jets equation. The parameters of the semi-analytical statistical model are derived from the time- 68 

and zonally- averaged dynamics of the Southern Ocean as simulated by general circulation 69 

HYCOM model. In Section 3, the developed model is first validated in comparison with the 70 

HYCOM solution. To examine how robustly the semi-analytical model captures the fundamental 71 

underlying physics, the same calibration process is then further applied to the quasi-geostrophic 72 

solution of the zonal channel.  73 

2. Methodology 74 

2.1 Primitive equation model 75 

The governing equations for ocean dynamics in z-level coordinates can be described by the 76 

conservation laws for momentum, temperature, salinity and mass, as well as the equation of state: 77 
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where v  is the velocity vector, ( )0,0,= ω  is the Earth’s angular velocity, P  is pressure, g  is the 79 

gravitational acceleration and τ  is a stress tensor (which includes viscosity). T  and S  are 80 



4 

 

temperature and salinity with TF  and SF  being the corresponding source terms in their 81 

conservation equations,   is diffusivity tensor and   is the density. 82 

In this study, we use solutions from a general ocean circulation HYCOM (HYbrid Coordinate 83 

Ocean Model).  The model simulation results were downloaded from the HYCOM data portal 84 

(hycom.org), where they had been interpolated to z-level coordinates. The hybrid coordinates in 85 

the original simulation are isopycnal in the open, stratified ocean and smoothly transition to terrain-86 

following sigma-coordinates in shallow coastal regions and to z-level coordinates in the mixed 87 

layer and unstratified seas [22].  The advection of heat and salt was computed using the improved 88 

advection scheme MPDATA [23, 24]. Following Brydon et al. [25], an approximation of the 89 

UNESCO equation of state was used. The Mellor-Yamada Level 2.5 turbulence closure algorithm 90 

was utilized to account for mixing from surface to bottom [26, 27]. The horizontal grid resolution 91 

was 1/12 degree in the longitude and latitude, and there were 41 vertical layers used.  92 

Of particular interest in this work is the HYCOM solution in a sector of the Southern Ocean 93 

between latitudes of 370 S to 600 S ( 1 .21622 = and 2 2.6182 =  radians in spherical coordinates94 

( ), ,r     used in the reduced-order model) and in the longitudes, approximately between Montagu 95 

Island to Tasmania (200 W to 1400 E i.e. 1 -0.3491 =  and 2  2.4435 =  radians). This sector is 96 

carefully selected to avoid the continental boundaries, the effect of which would be difficult to 97 

include in low fidelity models.  98 

Typical velocity solutions of HYCOM extracted over one-year period (January- December 2014) 99 

using five-day snapshots are shown in Fig.1. According to our analysis of HYCOM solution in a 100 

5-year period (January 2013-Decemvber 2018), main spatial characteristics of zonal jets, which 101 

are the focus of this study, do not change with longer averaging period. It can be noted that the 102 

HYCOM-simulated currents in the selected region of interest are nearly zonal and can be 103 

approximated by a zonally-re-entrant flow in a channel, which is discussed next. 104 

 105 

 106 

 107 
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 108 

Fig. 1 Top panel: instantaneous distribution of the top-layer zonal velocity (ms-1) in HYCOM, 109 

where the Southern Ocean region under study is shown in a box. Bottom panel: a schematic of the 110 

solution domain and the spherical coordinate system. 111 

 112 

2.2 Quasi-geostrophic model 113 

A quasi-geostrophic model was configured for a flow in a mid-latitude zonally re-entrant channel, 114 

with solid southern and northern walls and periodic conditions at west and east. The size of the 115 

computational domain corresponded to 3000km×12000km in latitudinal and longitudinal 116 

directions, respectively. The governing equations were the conservation of potential vorticity (PV) 117 

in the Cartesian coordinates for each of the three isopycnal layers considered. Dissipation was 118 

modeled by lateral viscosity and bottom friction in accordance with: 119 
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( ) 2
3, , 1,2,3,t i i i i i iq J q i     + =  −  =        (2) 120 

where 8 2 14.6 10 m s − −=   and 2 110 m s −=  are bottom friction and lateral viscosity coefficients, 121 

respectively. ij  is the Kronecker symbol, i is quasi-geostrophic stream function, iq  is the quasi-122 

geostrophic potential vorticity, and ( ), x y y xJ f g f g f g= − . The three horizontal isopycnal layers 123 

were dynamically coupled through interface displacements. The flow was decomposed into the 124 

large-scale uniform background flow iU  and perturbations [7, 8, 9], so that 125 

( ) ( ) ( ) ( )2
1 1 1 1 3 2 1 1 , 1,2,3,1 1i i i i i i i ii i i ii iq y S U U y S U U iy      − − + +   =  + − − − + − − − − + =−     126 

            (3) 127 

where 11 -1 -11.3 10 m s −=   is the Coriolis parameter gradient and the stratification parameters 1iS  128 

and 2iS  were selected so that the first and second Rossby deformation radii would be 1 20kmRd =  129 

and 2 12kmRd = , respectively. The depths of the layers were 1 300H = , 2 1100H =  and 3 2600 mH =  130 

numbered from the top and background velocities were 1
1 2 36, 3, 0 cmsU U U −= = = , respectively. 131 

On the zonal walls, no-slip boundary conditions were applied. The equations were numerically 132 

solved using the high-resolution CABARET scheme on a uniform Cartesian grid of 512×2048 133 

cells [28, 29].  134 

The results were obtained for a 10-year simulation after 4000 days of spinout time and stored every 135 

10 days for the subsequent analysis. For illustration, the computed instantaneous vorticity 136 

distribution in the top layer is shown in Fig. 2. 137 

 138 

Fig. 2 Quasi-geostrophic model of the shear-driven zonal channel: instantaneous distribution of 139 

potential vorticity (s-1) in the top layer. 140 
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2.3 Reduced-order model 141 

2.3.1 Governing equations and assumptions 142 

In this section, the reduced order model is derived from primitive equations, by first averaging 143 

the vorticity equation in time and in the zonal direction. The derivation process is then completed 144 

by formulating a closure model for the eddy viscosity and replacing the top and bottom boundary 145 

conditions with the equivalent body forces.  146 

Following Pedlosky [30], let us take the curl of the momentum equation in Eq. (1). This leads 147 

to elimination of pressure gradients and conservative body forces and results in the equation for 148 

the relative vorticity vector, ζ , 149 

( ) ( ) ( ) ( )
.

. 2 . . 2 . .
t 

  
+  +  = +  +  
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ζ τ
v ζ v ω ζ v ω v      (4) 150 

Here, spherical coordinates, ( ), ,r    are used where r  is the radial distance from the Earth’s center, 151 

and   and   are respectively co-latitudinal  (north to south) and azimuthal (west to east) angles 152 

as shown in Fig. 1. The velocity vector components in spherical coordinates are ( ), ,rv v v =v153 

.  154 

The continuity equation is given by 155 
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The radial component of Eq. 4 describes the evolution of the vertical vorticity component, 157 
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where the nonlinear term is 160 
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   (7) 161 

In Eq. 6, L
ha  and va  are horizontal and vertical viscosity coefficients which represent the effect of 162 

small-scale mixing processes, not explicitly resolved by the model. 163 

Next, Eq. 6 is integrated in time and in the zonal direction: 164 
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We then decompose the vorticity and all velocity components into the time- and zonal-mean and 166 

fluctuation parts denoted by the overbar and primes, respectively: 167 
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          (10) 170 

and the zonally averaged vorticity is expressed in terms of zonal velocity only 171 
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The difference between the time- and zonally averaged nonlinear term  173 
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and the nonlinear term calculated from time- and zonally averaged velocities ( )conv ,I v v   represents 175 

a contribution of the fluctuations (“eddies”) to the mean vorticity balance and is approximated 176 

using the turbulence eddy viscosity  177 

( ) ( )conv conv
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sin

T
ha I v v I v v

r
   




 

   
  = − 

     
      (13) 178 

where T
ha  is the turbulent eddy viscosity coefficient, which characterizes the effects of fluctuations 179 

(“eddies”) on the large-scale flow as observed in high-Reynolds eddy-resolving simulations [9]. 180 

This coefficient is approximated using the classical Smagorinsky model [31],  181 

( ) ( )
2 2

2 .T

h s s ij ija C S C S S=  =          (14) 182 

In the above, sC  is the standard dimensionless calibration parameter of the Smagorinsky model, 183 

ijS  is the rate of deformation tensor, which is an explicit function of velocity gradients, and ijS  is 184 

its time- and zonally-averaged value. The dynamic length scale   is used as the cut-off scale of 185 

the Smagorinsky model, which corresponds to the smallest scale explicitly resolved. The cut-off 186 

scale has been specifically adjusted for the considered ocean model. For example, if the velocity 187 

spectrum is dominated by a single meridional wavenumber K  i.e. ( )1iK R
kv A e 



 


−
 , the largest 188 

dominant length scale is equal to the corresponding wavelength  , which sets up the cut-off scale 189 

equal to / 2  [32],   190 
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         (15) 191 

where  6371 kmR =  is the Earth’s mean radius. Additionally, because the meridional geostrophic 192 

velocity is zero when averaged zonally above the topography and is generally much smaller than 193 

the zonal velocity in a channel configuration (Fig. 3), the former can be subsequently neglected. 194 

Given this and Eqs. 10, the nonlinear convection term ( )conv ,I v v   is approximately zero. Hence, 195 

using the eddy viscosity model of Eq. 14, the mean vorticity equation (Eq. 8) reduces to 196 
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or in an expanded form, 198 
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where bars are dropped for simplicity in presentation and L T
h h ha a a= + . 200 

Since the ocean depth is much smaller than the average radius of the Earth ( max 1
H

R
 ), Eq. (17) is 201 

simplified by neglecting the terms 4
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      (18) 203 

 204 

Fig. 3. Time, layer and zonally averaged profiles of the zonal and meridional velocity components 205 

in the HYCOM solution.  206 

 207 
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By filtering out zonal and temporal fluctuations, Eq. 18 describes the spatial structure of zonal- 208 

and time-mean relative vorticity subject to wind forcing and bottom friction. The Cartesian 209 

equivalent of Eq. 18 on a beta plane is derived in Appendix A highlighting the key differences of 210 

our model with the classical quasi-geostrophic equations. 211 

The above equation needs to be simplified further to make it amenable to fast-turn-around-time 212 

and physically insightful semi-analytical solution methods. As the first step, the top and bottom 213 

boundary conditions are incorporated thereby simplifying the original boundary value problem. 214 

The velocity strain term is approximated by the wind stress assuming that in the top oceanic surface 215 

the momentum stress is determined by the zonal wind stress  : 216 

| ,v r R

v
a

r


=


=


           (19) 217 

which corresponds to the surface sink/source of vorticity as follows: 218 

( )
1 1

| sin .
sin

v r Ra
r r
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 

=

   
=   

   
         (20) 219 

In the above equation va is taken to be 3 2 15 10 m s− − following the vertical diffusivity nominal value 220 

in HYCOM description [22] and 
max

1

2 1

cos2 
 

  
 

−
= −

−
with 

max

4 2 21 10 m s
− −=  derived from the 221 

NAVGEM (Navy Global Environmental Model) 0.5-degree simulations. Fig. 4 confirms that the 222 

balance is well preserved for the HYCOM solution for the period January- December 2014. 223 

Notably, the transfer of momentum from the wind acting on the surface to the ocean depth is 224 

governed by Ekman boundary layer. However, following [33] and similar low-resolution ocean 225 

models, the surface forcing is represented here by a body force Q  distributed over a depth of wH  226 

in the upper ocean  227 

( )
( )

1
sin , ,

sin
w

w

f r
Q r r R
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
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 

  
=    

  
        (21) 228 

where the top vertical profile function ( ) ( ) ( )wf r r R= −  is equal to unity in the interval wr r R  , 229 

with w wr R H= −  and 7.5 mwH = , and   denotes the Heaviside step function.  230 

 231 
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 232 

Fig. 4 Latitude profiles of the wind stress curl (NAVGEM 0.5 degree) and the vertical gradient of 233 

vorticity in the top layer from the HYCOM solution (units are in Nm-3). 234 

 235 

Similarly, the effect of the bottom friction boundary condition is approximated by a distributed 236 

bottom friction body force with a coefficient   non-zero in a certain depth range ( min br r r  ).  237 

With incorporating the boundary conditions as the source terms, Eq. 18 becomes 238 

( )
( )

2
2 2

2 2 2

2 cos
sin cot 0.

r
h

v

r v a
v a Q g r

r r r r r




   
   



       + + + + − − = 
        

    (22) 239 

Here the bottom vertical profile function ( ) ( ) ( )min bg r r r= −  is non-zero in the interval min br r r   240 

( min max max, , 5000, 2500 mb b br R H r R H H H= − = − = = ) and   is the Heaviside function.   241 

2.3.2 Scale separation 242 

The HYCOM solution is further analyzed next, with the goal to extract most significant features 243 

which will be amenable to reduced-order modelling. The scaling of parameters is derived directly 244 

from the HYCOM simulation.  245 
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First, as illustrated in Fig. 5, the time-, vertically (layer-), and zonally averaged zonal velocity 246 

component of the HYCOM solution reveals a structure with two leading meridional wavenumbers. 247 

By defining a normalized meridional wave number, 
( )2 1max

min

RK
k

K




 

 

 

−
= = = , where R  is the 248 

Earth’s mean radius,   is the corresponding wavelength in the meridional direction, min
max

2
K




= , 249 

and ( )max 2 1R  = − , the two leading wavenumbers of the velocity distribution correspond to a large 250 

scale component, 1k =  and a small-scale component, 10k = .  It can be remarked that the 251 

emergence of such a distinct structure with low leading wavenumbers is due the fact the Fourier 252 

transform is performed after averaging the flow in the time and zonal direction. Instantaneous 253 

snapshots of the wavenumber spectrum do not show the same leading wavenumbers.  Since the 254 

instantaneous flow field is noisier than the time-averaged one, a longer time averaging of the 255 

instantaneous wavenumber spectra would be required to obtain the same spectrum as by first 256 

applying the time averaging and then the spatial Fourier transform operation. 257 

 258 

(a)                                      (b)   (c) 259 

Fig. 5 Distributions of the zonal velocity from the HYCOM solution: (a) the time and vertically 260 

(layer-) averaged zonal velocity (ms-1) within the solution domain, (b) the time-, zonally and layer-261 

averaged zonal velocity profile, and (c) the meridional wavenumber spectrum of the time-, zonally 262 

and layer-averaged zonal velocity anomaly. The time and vertical averaging corresponds to a one-263 

year period, using 5-day snapshots, and 41 ocean layers. 264 

 265 

A further detailed analysis of the vorticity and its meridional gradient shows the same two length 266 

scales in the meridional wavenumber spectra. The amplitude of the vorticity spectra of the small- 267 

and the large-scale peaks are of the same order of magnitude (Fig. 6, top panel). However, the peak 268 
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in the vorticity gradient spectra corresponding to the small scale is an order of magnitude larger 269 

than that of the large scale (Fig. 6, bottom panel). This is expected since small-scale vorticity varies 270 

more rapidly with respect to the meridional coordinate and, hence, has a larger derivative ( 10k =  271 

vs 1k =  in small-scale and large-scale components, respectively). Denoting the small-scale 272 

vorticity component by ( )l  and the large-scale component by ( )L , Fig. 6 results can be 273 

summarized as 274 

( ) ( )

( ) ( )

,

,

l L

L l

 

 


 

 

 

           (23) 275 

where  is 10-1 and reflects the ratio of wavenumbers ( k ) in the two vorticity components. 276 

 277 

Fig. 6 Two meridional scales emerging from vorticity in the HYCOM simulations. Top: time, layer 278 

and zonally averaged vorticity versus meridional coordinate (a) and the wavenumber spectrum of 279 

the same (b). Bottom: time, layer and zonally averaged values of the vorticity meridional gradient 280 

versus meridional coordinate (c) and its wavenumber spectrum (d). 281 

 282 

In addition, the vertical layer structure of the HYCOM solution reveals that the peak amplitude 283 

associated with the large-scale vorticity strongly depends on the layer (depth) while the peak 284 
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associated with the small-scale is nearly independent of the depth (Fig. 7). This suggests that the 285 

bottom friction is mostly affecting the large-scale component of the vorticity solution in 286 

comparison with its small-scale counterpart. The latter effect is a consequence of the linear bottom 287 

friction used in the HYCOM simulation [22]. As extracted from the numerical HYCOM solution, 288 

the difference between the values of the second-order vertical derivative in the small-scale and 289 

large-scale vorticity components is approximately one order of magnitude  290 

2 ( ) 2 ( )

2 2
,

l L

r r

 


 

 
          (24) 291 

where  is 10-1. 292 

 293 

Fig. 7 Dependence of the time and zonally-averaged vorticity spectrum on the model layer. 294 

 295 

Inspired by HYCOM simulations shown in Figs 5-7, we decompose the vorticity solution into a 296 

small-scale and a large-scale component  297 

( ) ( ),l L  = +            (25) 298 

and substitute Eq. (25) in Eq. (22). Eq. (22) is then rendered dimensionless as follows 299 

 

( )

( )
( )max

*2 *
2 2 2 *( ) *( ) 2 *( ) *( )

*

* *2 * 2 *2 *2 * *2 *

* *
2 *( ) 2 *( )

*

*2 *2 * *

2 1 2 cos 1
sin cot cot

1
sin

sin

l l L Lr
hr

v v v

l L
b

v

r vH V aHV H l l
v

a RZ a Z a R Rr r z l r

f rH HH

a Z l az z r







    
  

   

  


 

       
+ + + + + + 

      

    
+ + − −        

( )* * *( ) 0,L

v

g r  =

(26) 300 
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using the variable ( )min maxz r r r R H= − = − −  ( 1
z

R
) for depth and by introducing the following 301 

dimensionless variables  302 

( ) ( )

( ) ( ) ( ) ( )

* *

2 1 2 1* * * * *

( ) *( ) ( ) *( )

* * * *

* * *
max

, d dz ,

, d d d ,

, ,

, ,

, , ,

l l L L

w b

r r r

r Rr z H

R
r r l r

k k

Z Z

H H
f r f r g r g r

H H

v V v v V v

 

     

   
    

   

  

= =

− −
= = =

= =

= =

= = =

       (27) 303 

where, Z , V , rV  are maximum values of vorticity, meridional velocity and radial (vertical) 304 

velocity, respectively, H is a length scale in the vertical direction and l  is the meridional length 305 

scale of the zonal jets ( 10k = ). Here, we assume 3 2 1 2 1 7 15 10 m s , 118 m s , 10 sL
v ha a − − − − −=  = =  as 306 

provided by the HYCOM description [22]. The magnitudes of meridional velocity V  and vorticity 307 

V
Z

l

  (Eq. 11) are derived from the HYCOM solution. The magnitude of zonal velocity V  is also 308 

linked to wind forcing amplitude in NAVGEM solution by
top surface

max
v

w

a V

H


  (Eq. 19) where 309 

top surface

w

V H
V

H


 and we have 

*

*

1

k












. In addition, the vertical velocity magnitude is related to the 310 

meridional velocity magnitude through 
( )2 1

r VV

H R



 −
 according to the continuity equation in a 311 

periodic channel configuration (Eq. 5). It should be that V V  as previously shown in Fig. 3. 312 

Using the above definitions, the order of magnitude analysis of the coefficients in the governing 313 

vorticity equation (26) based on the maximum velocity, vorticity, and dissipation values delineates 314 

two groups of terms 315 

( )

( )

max 0

22
1

2

1
10 ,

22
10 .

b

v v

h r

v v v

H HH
O

a Z l k a

a H VH HV
O

a a Z a RZl







 

−

 


  

        (28) 316 
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The first group includes the dissipative term involving the second-order vorticity derivative in the 317 

vertical direction, the wind stress, and the bottom friction. The second group includes the Coriolis 318 

and meridional derivative terms. 319 

By combining all the above arguments and following the multiscale approach of [34, 35], the 320 

governing vorticity equation (22) is decomposed into two parts, the large-scale and the small-scale 321 

vorticity equations: 322 

( )

( )

max *

* *
2 *( )

*2

*
min

1 1
sin , ,

sin

0, ,

, ,

w
vL

b w

Lb
b

v

H
r r R

a Z l r

r r r
z

HH
r r r

a







 





  
   

 
 

=  
 

  



       (29) 323 

( )*2 *
2 2 2 *( ) *( ) 2 *( )

*

* *2 * 2 *2 *2 * *2

2 1 2 cos 1
sin cot 0.

l l lr
hr

v v v

r vH V a HHV l
v

a RZ a Z Rr r z a l r z




   
 

 

      
+ + + + = 

     

  (30) 324 

Reverting the large-scale and small-scale equations back to their dimensional forms, the following 325 

equations can be obtained 326 

( )
2 ( )

2
( )

min

1 1
sin , , ( )

sin

0, , ( )

, , ( )

w
wL

v b w

L
b

r r R a
rH

a r r r b
r

r r r c


 





  
    

 
=  

 
 



      (31) 327 

( )2
2 ( ) ( ) 2 ( )

2 2 2

2 cos
sin cot 0.

l l lr
h

v

r v a
v a

r r r r r


   
 



       + + + + = 
        

     (32) 328 

Equation (31) states that the vertical dissipation of the relative vorticity is balanced by the vorticity 329 

input from surface winds and bottom friction. The equation is solved by integration in the vertical 330 

direction. For integration, a factorization ( ) ( ) ( )( ) ,L
L Lr R r  =   is applied where the meridional 331 

function ( )L   is assumed to be the same as in the wind stress curl and is, thus, derived from the 332 

NAVGEM solution (see Eqs. 20-21 and Fig. 4). This substitution reduces the governing problem 333 

to an ordinary differential equation in the vertical direction, which can be integrated numerically 334 

using the boundary conditions in accordance with the NAVGEM model. 335 
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The small-scale vorticity equation (32) involves advection of planetary vorticity, vertical 336 

stretching and small-scale vorticity dissipation. From a technical point of view, the solution of (32) 337 

is more complicated than the solution of the large-scale balance. It requires solving the non-338 

homogeneous partial differential equation 339 

2 ( ) ( ) 2 ( )

2 2 2
cot ,

l l l
h

v

a
a F

r r

  




   
+ + = 

   
         (33) 340 

representing a traditional linear vorticity balance where the term 341 

1 2,F F F= +             (33a) 342 

includes the advection of planetary vorticity (beta-term), 1

2 sin v
F

r


= −  and the vertical stretching 343 

term, 
( )2

2 2

2 cos rr v
F

rr

 
= −


.   344 

It should be noted that the latter source term includes important non quasi-geostrophic effects, 345 

which result in additional fine-scale mixing. The effects of mixing will be balanced by viscous 346 

dissipation, as will be discussed in the numerical results section.  347 

To eliminate the radial velocity component from the equation, the latter term can be rewritten in 348 

terms of the meridional velocity v , 
( )

2

sin2 cot v
F

r






=


, using the continuity equation (5) in a 349 

zonally averaged periodic channel. 350 

First, to find a solution to the homogenous part of Eq. 33, we use separation of variables  351 

( ) ( ) ( )( ) ,l
l lr R r  =   to obtain 352 

( )2
cot 0.h

l l l l v l l

a
R R a R

r
   +  +  =          (34) 353 

After a rearrangement, (34) reduces to 354 

 
2 2

cot 1
.h l l l

l lv

a R

Ra r





   + 
= − = −


    (35) 355 

The resulting solution components ( )lR r  and ( )l   satisfy the ordinary differential equations as 356 

follows: 357 



19 

 

( )2 2
cot 0,h v

l l l

a a

r



  +  +  =          (36) 358 

2

1
0,l lR R


 − =            (37) 359 

where the constant parameter   is computed by fitting the exponential function to the vertical 360 

distribution obtained from the small-scale vorticity component in the HYCOM simulations,  361 

( )
.

r R
l lR R e

 −
=             (38) 362 

By substituting (38) into the small-scale equation (33) the latter is rearranged to an ordinary 363 

differential form, 364 

2 ( ) ( )
( )

2 2 2
cot .

l l
lh va a

F
r

 
 

 

  
+ + = 

  
        (39) 365 

Since ha  is a non-linear function of the zonal velocity gradient, using Eq. 11, the vorticity equation 366 

(39) is rearranged in terms of the single dependent variable ( )l
v  for solution, 367 

( ) ( )

( )
( )

( )
( )

( )
3 2

2

3 3 2 3 2

cos
2cot 2 cot cot .

sin

l l l l
l lh v

v v v va a
v v F

r r

   
 


  

    

      
  + − + + + + =
    

   

   (40) 368 

Once the term F is known from HYCOM data, the resulting ordinary differential equation (40) is 369 

solved numerically as an initial-value problem using the 5th order Runge-Kutta scheme.  370 

In the solution process, the northern boundary condition corresponds to an inflection point where 371 

( )
( )

1 1

2

2
| | 0

l
lv

v


    


= =


= =


 and the first-order derivative 

( )

1
|

l
v

 


=




 is evaluated from the small-scale 372 

vorticity component of the HYCOM solution. 373 

Notably, equation (40) permits harmonic-type solutions similar to the meridionally distributed 374 

alternating jets shown in Fig. 5b. Such alternating zonal jets were observed in shear driven channel 375 

flows in the previous literature [7, 8, 9].  376 
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The solutions to equations 31 and 40 are obtained by multiplying corresponding r  and   functions 377 

following separation of variables ( ( ) ( ) ( )( ) ,L
L Lr R r  =   and ( ) ( ) ( )( ) ,l

l lr R r  =  ) and finally need to 378 

be superposed to obtain the total vorticity (Eq. 25). 379 

To summarize, guided by the scale separation observed in the spectral analysis of HYCOM 380 

solution and using scale analysis, we derived equations 31 and 40 from the vorticity equation (Eq 381 

18) for large- and small-scale vorticity components. To complete the two-scale model, coupling 382 

of the large- and the small-scale components is achieved through the nonlinear eddy viscosity 383 

closure for T

ha , which involves the total velocity (Eq. 14, ( ) ( )L l

ij ij ijS S S= +  and ( ) ( )L l

ij ijS S ). Hence, 384 

the small-scale zonal jets described by (40) are coupled to the background large-scale flow through 385 

eddy viscosity.  386 

3. Numerical Results 387 

3.1.Comparison with HYCOM simulations 388 

First, the semi-analytical solution for the large-scale vorticity component (31) is compared with 389 

the distribution of the first peak in the vorticity wavenumber spectrum as a function of depth 390 

extracted from HYCOM simulations. Fig. 8 shows in all three depth regions the reduced-order 391 

model is in good agreement with the HYCOM data. 392 

 393 

Fig. 8 The large-scale vorticity as a function of depth in the reduced-order model and 394 

HYCOM simulations. 395 
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Next, Eq.40 is solved where the source terms, 1

2 sin v
F

r


= −  and 

( )
2

sin2 cot v
F

r






=


 are 396 

computed from the time and zonally averaged meridional velocity v  of the HYCOM solution 397 

(Fig. 3). Notably, the direct computation of v






 in the 2F term involves numerical differentiation 398 

of a small-amplitude quantity ( v v  ), which is a noisy operation due to the fine scales involved. 399 

The noise occurs due to the insufficient vertical resolution of the HYCOM solution, which was 400 

interpolated into z-level coordinates while varying locally in the zonal and meridional directions 401 

depending on the bottom topography.  402 

To counteract the fine-scale vertical stretching term 2F  in the framework of the reduced-order 403 

model, the coefficients va  and ha  are adjusted so that the viscous balance is explicitly preserved.  404 

Specifically, we represent the source term F by a random noise forcing with the variance extracted 405 

from the meridional velocity distribution in the HYCOM data and this reduces Eq.40 to a Langevin 406 

model. The latter model was originally developed to describe the Brownian motion of particles in 407 

viscous liquids, where the balance of deterministic dissipation and random fluctuation due to 408 

particle-particle collisions fully determines how the variance of the particle coordinate evolves in 409 

time [36]. In the present case, the meridional ocean coordinate is used as the homogeneous 410 

evolution variable of the Langevin equation instead of time and the small-scale vorticity is used 411 

instead of the particle coordinate. Then the values of dissipation coefficients va  and ha , which are 412 

required to preserve the desired meridional variance of vorticity in accordance with the HYCOM 413 

data, are evaluated following the Langevin theory (see details in the Appendix). After this, the 414 

computed dissipation coefficients va  and ha  are substituted in Eq (40), which is integrated 415 

numerically with the Runge-Kutta method as outlined in Section 2.3.2.  416 

Figs. 9 and 10 compare results of the two-scale model (31) and (40), using the turbulence eddy 417 

viscosity coefficient 0.2sC = , with the HYCOM solution. Fig.9a shows the time-, vertically- and 418 

zonally- averaged zonal velocity profiles and Fig. 9b shows the wavenumber spectra of the velocity 419 

fluctuations for the reduced-order model and the reference HYCOM solution. The fluctuations are 420 

calculated with respect to the mean flow (i.e. the meridional average). Figs. 10 show the same 421 

comparisons as Figs. 9 but for the vorticity. Figs 11 and 12 present time- and zonally averaged 422 
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profiles and wavenumber spectra for the zonal velocity and vorticity in the top layer in comparison 423 

with the corresponding solution components of the HYCOM dataset. 424 

It can be noted that the velocity and vorticity profiles predicted by the reduced-order model are in 425 

good agreement with the HYCOM simulations. Furthermore, the first peak, corresponding to the 426 

large-scale solution component, and the 10th peak, corresponding to the small-scale solution 427 

component (wavelength of 256 km), in the velocity and vorticity spectra of the reduced-order 428 

model are in excellent agreement with reference HYCOM data. 429 

Good agreement for the velocity and vorticity distributions in the top layer between the model 430 

predictions and the HYCOM data also confirms that the dissipation coefficients ha  and va  and 431 

boundary conditions in Eq.40 have been defined consistently. 432 

 433 

 434 

(a)        (b) 435 

Fig. 9 Comparison of the reduced-order model solutions with the HYCOM data for the time-, 436 

vertically- and zonally averaged zonal velocity (a) and the corresponding wavenumber spectrum 437 

(b).  438 
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 439 

(a)        (b) 440 

Fig. 10 Comparison of the reduced-order model solutions with the HYCOM data for the time-, 441 

vertically- and zonally averaged vorticity profile (a) and the corresponding wavenumber spectrum 442 

(b).  443 

 444 

(a)        (b) 445 

Fig. 11 Comparison of the reduced-order model solutions with the HYCOM data for the time- and 446 

zonally averaged zonal velocity (a) and the corresponding wavenumber spectrum (b) in the top 447 

layer.  448 

 449 
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 450 

(a)        (b) 451 

Fig. 12 Comparison of the reduced-order model solutions with the HYCOM data for the time- and 452 

zonally averaged vorticity (a) and the corresponding wavenumber spectrum (b) in the top layer. 453 

 454 

 455 

3.2. Comparison with the quasi-geostrophic model of the zonal channel 456 

To test the robustness of the suggested reduced-order model as well as obtain further insights into 457 

the importance of non quasi-geostrophic effects such as those included in the large vertical 458 

stretching term extracted from the HYCOM simulation, the same model is also applied to 459 

reconstruct the solution of an idealized quasi-geostrophic model. In contrast to the HYCOM 460 

model, the quasi-geostrophic model considers an idealized flow domain corresponding to a shear-461 

driven zonal re-entrant channel. As outlined in Section 2.2, the quasi-geostrophic model includes 462 

three vertical layers and a flat bottom topography and is designed to represent main features of the 463 

flow in the HYCOM simulations.  464 

Specifically, large-scale forcing in the quasi-geostrophic model was imposed by a background 465 

shear rather than wind stress. This background flow corresponds to the large-scale zonal velocity 466 

in the reduced order-model, ( )
constant

L
v = , and hence Eq. 31 is not required in this case. In addition, 467 

the quasi-geostrophic model simulates zonal jets (Fig. 2) that are similar to their counterparts in 468 

the more complex HYCOM model. With a suitable recalibration of parameters, the small-scale 469 
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equation in the reduced order model (Eq. 40) can describe the zonal jet structure in the quasi-470 

geostrophic model as well as HYCOM. 471 

To solve Eq. 40, L
ha is directly replaced by the lateral viscosity parameter -12m10 sv =  in Eq. 2 and 472 

the turbulence eddy viscosity coefficient is adjusted to 0.75sC = . Similar to the HYCOM case, the 473 

eddy viscosity term couples the small-scale equation to the background constant flow.  The 474 

advection of planetary vorticity 
1F  and the vertical stretching term 

2F are computed from the time 475 

and zonally averaged meridional velocity v  and its meridional gradient as well as the constant 476 

11 -1 -11.3 10 m s −=  in the quasi-geostrophic model. Consistent with the flat bottom topography in 477 

the quasi-geostrophic model, the zonal mean meridional velocity and the 1F  term are almost zero. 478 

The magnitude of the vertical velocity is also less than 
RoV H

L


 (where Ro  is the Rossby number) 479 

and hence the zonal-mean vertical stretching term 2F  is much smaller than in the HYCOM solution. 480 

As a result, no fine-scale Langevin adjustment of the effective viscosity parameters is applied to 481 

the viscous balance of the quasi-geostrophic effects.  482 

Similar to the procedure used for the analysis of the HYCOM simulations, the vertical distribution 483 

parameter   is computed by matching the solution of the quasi-geostrophic model as shown in 484 

Fig. 13 from which the effective length scale 400m =  is obtained. In the quasi-geostrophic 485 

model, the dependence of zonal jets on parameters such as bottom friction and background velocity 486 

[9] is agglomerated in the parameter . Furthermore, since the vertical dissipation term does not 487 

enter the quasi-geostrophic governing equation, the corresponding coefficient is assumed to have 488 

the same value as in HYCOM, 2 -135 m s10va −=  . Notably, the same value of the coefficient was 489 

also reported in other primitive equation models [33]. 490 

After the recalibration of the parameters of the semi-analytical model (Eq. 40) for the quasi-491 

geostrophic zonal channel case, it is solved numerically using Runge-Kutta method as for the 492 

HYCOM model previously. Results of the semi-analytical model for the quasi-geostrophic zonal 493 

channel are shown in Figs. 14 and 15. It can be noted that the solution of the reduced-order model 494 

captures the meridional structure of zonal jets of the quasi-geostrophic model very well. In 495 

particular, the reduced-order model accurately predicts the dominant peaks of the velocity and 496 

vorticity spectra.  497 
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 498 

Fig. 13. Validation of the reduced-order model for the small-scale vorticity solution versus depth 499 

in comparison with the quasi-geostrophic model. 500 

 501 

(a)        (b) 502 

Fig. 14. Comparison of the reduced-order model solutions with the quasi-geostrophic model for 503 

the time, layer and zonally-averaged zonal velocity profile (a) and the corresponding wavenumber 504 

spectrum (b).  505 
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 506 

(a)        (b) 507 

Fig. 15. Comparison of the reduced-order model solutions with the quasi-geostrophic model for 508 

the time, layer and zonally-averaged vorticity profile (a) and the corresponding wavenumber 509 

spectrum (b).  510 

 511 

 512 

4. Conclusion 513 

Time- and zonally averaged properties of multiple zonal jets in the Southern Ocean are examined 514 

through developing a semi-analytical model that is based on the two-scale flow decomposition 515 

approach. The development of the model is informed by a high-fidelity HYCOM numerical 516 

simulation of the Southern Ocean region. The results of the semi-analytic model are further 517 

compared with an idealized quasi-geostrophic model configured for the same ocean region. The 518 

semi-analytical quasi-linear model captures the main two features of the flow: the large-scale zonal 519 

current and multiple alternating zonal jets. To implicitly represent nonlinear effects in the HYCOM 520 

model, the suggested two-scale model uses a combination of suitably calibrated Smagorinsky 521 

eddy-viscosity and Langevin dissipation model. The latter is especially important for capturing 522 

non-quasi-geostrophic effects such as those due to the vertical stretching term. 523 

This framework allows preserving important features of the simulated flow such as the spatial 524 

distribution of zonal jets and their wavenumber spectra in a semi-analytical model ideally suitable 525 

for parametric studies. To probe the robustness of the suggested semi-analytical model and obtain 526 
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physical insights on the importance of non-quasi-geostrophic effects, the reduced-order model is 527 

further applied to a quasi-geostrophic model of the same oceanic region. Despite significant 528 

differences between assumptions and numerical approximations used in HYCOM and the quasi-529 

geostrophic channel model, the current reduced-order model can capture pertinent features of the 530 

zonal jets and elucidate the viscous balance in each case. 531 

In contrast to several existing dynamical models of zonal jets based on idealized linear and 532 

nonlinear dynamics [13-15, 37] the suggested semi-analytical model is derived from full solutions. 533 

It combines correlated large-scale and uncorrelated small-scale forcing to explicitly consider the 534 

viscous balance at each scale, which is required to maintain zonal jets in a statistically stationary 535 

regime. Following this approach, it is shown that, despite complexity of the underlying physics, 536 

zonal jets effectively exhibit a quasi-linear harmonic behavior, where the advection of planetary 537 

vorticity and the vertical stretching term are balanced by horizontal and vertical viscous mixing. 538 

This results in a viscous balance driven by both quasi-geostrophic effects, such as those induced 539 

by the large-scale wind forcing and non quasi geostrophic effects, due to the vertical motions and 540 

dissipation. 541 

In future work, the suggested reduced-order model may be extended to elucidate the importance 542 

of viscous effects at different spatial scales in closed or semi-closed ocean basins, such as the 543 

Pacific Ocean where zonal jets coexist with gyre circulations. 544 
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 621 

Appendix A: A Cartesian representation of the reduced-order model in beta plane 622 

Here, we present the reduced-order governing equations in the Cartesian coordinate system ( ), ,x y z  623 

attached to the local beta-plane encompassing x  (west to east) and y  (south to north) directions 624 

and perpendicular to the vertical axis z  . The z  coordinate is related to the radial coordinate in 625 

spherical coordinate system according to ( )min maxz r r r R H= − = − − . The velocity vector 626 

components are given by ( ), ,u v w=v satisfying the continuity equation 627 
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0.
u v w

x y z

  
+ + =

  
          (A1) 628 

The evolution of the vertical vorticity component, 
v u

x y


 
= −
 

, is given by the z  component of 629 

Eq. 4 according to 630 

( )
2 2 2

conv

2 2 2

2
sin 2 cos , ,L

h v

w
v I u v a a

t r z x y z

   
 

      
= − +  + + + + 

      
     (A2) 631 

where the nonlinear term is ( )conv ,I u v u v
x y

  
= − −

 
 and L

ha  and va  are the horizontal and vertical 632 

viscosity coefficients. Using the variable change 
2


 = −  for the latitudinal angle and linearizing 633 

the trigonometric terms around the midlatitude, Eq. A2 can be written as 634 

( )
2 2 2

0 2 2 2
,L

h v

w
v f y u v a a

t z x y x y z

     
 

       
= − + + − − + + + 

        
     (A3) 635 

where 
2

R



= , 0 02 sinf =  and 

( )1 2
0

2

  


− +
= .  636 

Despite similarities with the quasi-geostrophic formulation such as the low Rossby number 637 

assumption, we do not consider any restriction on vertical velocity in Eq. A3 and hence the term638 

w
y

z





is not neglected in the equation. Eq. A3 also has a vertical dissipation term 

2

2va
z




 which is 639 

not typically considered in the quasigeostrophic model while it agglomerates nonlinear effects in 640 

the term T
ha . Eq. 3 allows for smooth derivatives in the vertical direction and is neither barotropic 641 

nor stratified. Notably, our original formulation in spherical coordinates does restrict the 642 

meridional size of the domain in contrast to beta-plane approximation which is one of the key 643 

idealizations in the quasigeostrophic model.  644 

Eq. A3 is next integrated in time and in the zonal direction x : 645 

( )
2 2 2

0 2 2 2
d d 0,

L
h v

w
v f y u v a a x t

t z x y x y z

     
 

      
− + + =

      

   
+ + + − −   

   
     646 

 (A4) 647 
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and the vorticity and all velocity components are decomposed into the time- and zonal-mean and 648 

fluctuation parts denoted by the overbar and primes, respectively: 649 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , , , , , , , , , , , , , , , , .x y z t y z x y z t v x y z t v y z v x y z t u x y z t u y z u x y z t     = + = + = +   (A5) 650 

By definition, the mean fields satisfy   651 

0,

0,

u v

t t t

u v

x x x





  
= = =

  

  
= = =

  

          (A6) 652 

and the zonally averaged vorticity is expressed in terms of zonal velocity only 
u

y



= −


. 653 

The difference between the time- and zonally averaged nonlinear term ( )conv ,I u v u v
x y

  
= − −

 
 and 654 

( )conv ,I u v  is approximated using the turbulence eddy viscosity 655 

( ) ( )
2

conv conv

2
, , ,T

ha I u v I u v
y

 
= − 

  
         (A7) 656 

where T
ha  is the turbulent eddy viscosity coefficient computed using the classical Smagorinsky 657 

model [31] (see Eqs. 14 and 15).  658 

Given Eqs. A6 and the small value of the zonal-mean meridional velocity in comparison with the 659 

zonal velocity in a periodic channel configuration (Fig. 3), ( )conv ,I u v  is neglected. Hence, the mean 660 

vorticity equation (Eq. A3) reduces to 661 

( ) ( )
2 2

0 2 2
0,L T

h h v

w
v f y a a a

z y z

 
 

  
− + + + + + =

  
       (A8) 662 

where bars are dropped for simplicity in presentation. 663 

With incorporating surface and bottom boundary conditions as body forces, Eq A8 becomes 664 

( ) ( ) ( )
2 2

0 2 2
0,L T

h h v

w
v f y a a a Q g z

z y z

 
   

  
− + + + + + − − =

  
     (A9) 665 
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where 
( ) x

w

f z
Q

H y

 
=


 is the surface wind forcing, x  is the wind stress in zonal direction, 666 

( ) ( ) ( )max maxwf z H H H= − −  is the top vertical profile function in the interval max maxwH H z H−   (667 

max 5000, 7.5 mwH H= = ), and   denotes the Heaviside step function.   is the bottom friction 668 

coefficient and ( ) ( ) ( )0 bg z H= −  is the bottom vertical profile function in the interval 0 bz H   (669 

2500 mbH = ). 670 

Inspired by the scale separation in the spectral analysis of HYCOM solution and using an order of 671 

magnitude analysis as detailed in section 2.3.2, Eq. A9 can be decomposed into two governing 672 

equations for large-scale ( ( )L ) and small-scale ( ( )l ) vorticity components as below: 673 

max max

2 ( )

max2
( )

1
, , ( )

0, , ( )

, 0 , ( )

x
w

wL

v b w

L
b

H H z H a
H y

a H z H H b
z

z H c








−   

 
=   −

 
 



      (A10) 674 

( )
2 ( ) 2 ( )

0 1 22 2
,

l l

h v

w
a a v f y F F

zy z

 
 

  
+ = − + = +

 
       (A11) 675 

where L T
h h ha a a= + . 676 

Appendix B: A Langevin model of the effective dissipation for the small-scale vorticity 677 

distribution  678 

By assuming that the multiple jet structure in the  –direction is quasi-periodic, the second-order 679 

vorticity derivative is approximated by  
2 ( )

2 ( )

2

l
lm







 −


. With this approximation, Eq. 33 becomes 680 

( )
2 ( ) ( )

2 2
cot ,

l
l lh va a

m F
r


  

 

 
− + + = 
  

        (B1) 681 

which can be expressed in terms of 
2


 = −  as 682 

( )
2 ( ) ( )

2 2
tan .

l
l lh va a

m F
r


  

 

 
− − + = 
  

        (B2) 683 
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Equation B2 can be re-arranged to the Langevin equation form, 684 

( )
( )

1 ,
l

l f


 



= − +


          (B3) 685 

where 
2

2
1 2

cot 0v

h

a r
m

a
 



 
= −  
 
 

 and 
2 cot

h

r
f F

a


= − , wherein F  is given by (33a).  686 

According to the Langevin model, the first term, ( )
1

l − corresponds to the energy dissipation and 687 

the second term, f  corresponds to the stochastic forcing, which generates energy to be balanced 688 

by the dissipation.  689 

In accordance with HYCOM data, the random forcing has approximately zero mean, ( ) 0f  =  690 

and is uncorrelated, i.e. ( ) ( ) ( )f f     =  −  with   being the strength of the Langevin force 691 

term. 692 

Following [36], the solution of Eq. (B3) is  693 

( ) ( )1 1 1( ) ( )
0

0
,l l e e e f d


         

− −  = +             (B4) 694 

where ( )( ) ( )
00l l =  corresponds to vorticity at 1 1

2


  = = − and the variance of ( )( )l   is given by 695 

( )
2

1
2

2( ) ( )
0

1 1

.
2 2

l l e
   

 

−  
= − +  
 

                    (B5) 696 

To ensure that ( )
2

( )l  is bounded, the condition 
2( )

1 02 l  =  must be satisfied. This means that, 697 

in equilibrium, the strength of the fluctuating force is balanced by the dissipation according to 698 

( )2( )
0 2 2

2

2 2

var

2 cot

l

h v

h

F

a a r
m

r a






=
  

−       

.                                                     (B6) 699 

Notably, to obtain the meridional vorticity variance in accordance with the HYCOM dataset, the 700 

denominator in (B6) needs to be adjusted accordingly. It follows that the ratio of dissipation 701 

parameters, 
v

h

a

a
 can be kept the same as in the HYCOM description [22] while simultaneously 702 
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scaling va  and ha   to attain the same vorticity variance as the HYCOM data. The scaling of ha703 

applies to both linear and nonlinear parts L
ha  and T

ha . 704 

The dissipation coefficient value ha   which is needed to balance the effect of the forcing 1 2F F F= +  705 

in the solution of the small-scale vorticity equation (33) is then given by 706 

( )
2( ) 2

20
4 2

var
.

2 cot

h
l

v

h

F
a

a r
m

r a






=
 

− 
 
 

         (B7) 707 


