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Abstract

In this thesis the recently developed duality covariant approach to string and M-

theory is investigated. In this formalism the U-duality symmetry of M-theory or T-

duality symmetry of Type II string theory becomes manifest upon extending coordinates

that describe a background.

The effective potential of Double Field Theory is formulated only up to a bound-

ary term and thus does not capture possible topological effects that may come from a

boundary. By introducing a generalised normal we derive a manifestly duality covariant

boundary term that reproduces the known Gibbons-Hawking action of General Rela-

tivity, if the section condition is imposed. It is shown that the full potential can be

represented as a sum of the scalar potential of gauged supergravity and a topological

term that is a full derivative. The latter is written totally in terms of the geometric

f-flux and the non-geometric Q-flux integrated over the doubled torus.

Next we show that the Scherk-Schwarz reduction of M-theory extended geometry

successfully reproduces known structures of maximal gauged supergravities. Local sym-

metries of the extended space defined by a generalised Lie derivatives reduce to gauge

transformations and lead to the embedding tensor written in terms of twist matrices.

The scalar potential of maximal gauged supergravity that follows from the effective po-

tential is shown to be duality invariant with no need of section condition. Instead, this

condition, that assures the closure of the algebra of generalised diffeomorphisms, takes

the form of the quadratic constraints on the embedding tensor.
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CHAPTER 1

INTRODUCTION

1.1 Invitation to the topic

String theory is arguably the most developed candidate for a theory of everything.

It appeared as an attempt to describe strong interactions and dualities in scattering am-

plitudes. Soon it was rediscovered as a possible theory of quantum gravity [6]. It was

realised that the spectrum of a closed string contains excitations of spin 2 which were

then identified with gravitons, which caused the significant transition in the understand-

ing of strings from simply tubes between quarks to the most elementary constituents of

matter. This resulted in intense studying of fundamental strings and led to discovery of

five different consistent superstring theories that live in 10 dimension: Type I, Type IIA

and IIB, SO(32) and E8 heterotic strings. These theories differ by gauge symmetries,

set of fields, boundary conditions and realisation of supersymmetry.

The situation appeared to be very strange: after years of looking for a theory of ev-

erything one eventually ends up with five of them having no way to choose the correct

one. The way out of this trouble was tightly connected to the problem of extra dimen-

sions in string theories. Almost one hundred years before these events T. Kaluza and

F. Klein suggested one could consider the Maxwell field Aµ as a part of 5-dimensional

metric. Assuming, that the fifth dimension is compact with very small radius of com-

pactification they showed that General Relativity on such a background is equivalent

to the 4-dimensional theory of electromagnetic field interacting with gravity. The same

idea can be used to get rid of extra 6 dimensions of string theories.

For example one can choose a 6-dimensional torus T6 as an internal space. Since

the torus is flat it preserves reparametrisation invariance of the worldsheet and Virasoro

algebra, that is local. An amazing feature of Type IIA and Type IIB string theories

is that compactified on T1 they become equivalent on quantum level [7–9]. This is

a particular case of the so-called T-duality that is the oldest known duality in string

theory [10, 11]. It relates two heterotic string theories to each other as well.

T-duality is a perturbative symmetry and can be seen manifestly in the spectrum

of a closed string living on a background with compact directions. An example of a

non-perturbative symmetry is provided by S-duality of Type IIB string theory in 10
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dimensions, that is SL(2,Z). In addition, S-duality relates heterotic SO(32) strings to

Type I strings. Finally, type IIA theory in the strong coupling regime behaves as an 11-

dimensional theory whose low-energy limit is captured by 11-dimensional supergravity.

The same supergravity being compactified on a unit interval I = [0, 1] leads to the

low-energy limit of E8 heterotic theory.

The net of dualities that unifies all five string theories gives a hint that there should

exist a mother theory that gives all string theories in various limits and lives in 11

dimensions. Such theory is commonly referred to as M-theory and, although it has not

been understood in great details, a lot of is already known about its structure.

M-theory describes dynamics of 2- and 5-dimensional membranes (the so-called M2-

and M5-branes) and reduces to 11-dimensional supergravity in its low-energy limit.

Being compactified on a circle S1 M-theory is equivalent to Type IIA string theory. A

fundamental string then is associated to an M2-brane wrapped around the circle. The

other objects of Type IIA string theory like D2, D4 branes for example appear from the

fundamental objects of M-theory in a similar way [12–14].

On the other hand M-theory compactified on a torus T2 gives rise to Type IIB

string theory compactified on a circle S1. S-duality symmetry SL(2,Z) of Type IIB

theory becomes transparent in this picture and is just the modular group of the 2-

dimensional torus. Together S- and T-dualities are combined into a non-perturbative

set of symmetries of M-theory that is called U-duality [15].

These dualities provide a powerful instrument for studying string compactifications,

moduli stabilization, properties of string backgrounds, and were intensively studied for

many years (for review see [11, 16–18]). However, the partition function of a superstring

is not manifestly invariant under these transformations. In [19–21] the formulation of

the worldsheet action for a string where T-duality of a background is manifest was

proposed. The idea was to consider combinations of coordinates of a closed string

X = X+ + X− and X̃ = X+ − X− as independent variables. Then O(d, d) T-duality

symmetry becomes manifest if the action is rewritten in terms of 2d extended coordinates

X = (X, X̃). The Buscher procedure, described in details in further sections, gives a well

defined algorithm for gauging the isometry, integrating out gauge fields and obtaining

the T-dual sigma-model. This leads to the notion of the so-called generalised metric

that puts the space-time metric and the gauge fields on an equal footing and allows

one to consider diffeomorphisms and gauge transformations as a part of more general

transformations of extended space.

The duality invariant approach on which the thesis is focused, is an incredibly fas-

cinating construction. Among other applications, the most intriguing feature of this

approach is that both non-geometric and geometric backgrounds of string theory be-
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come geometric in terms of the extended space. Although geometry of the extended

space is still a mystery and very little is known about its structure, one already sees

useful applications such as gauged supergravities, studying non-geometric fluxes, SU(3)

structures, global properties of backgrounds and many others. Good pedagogical re-

views of this approach and its applications can be found in [22, 23].

1.2 Structure of thesis

The focus of this thesis is on the duality invariant approach in the context of string

and M-theory. In the next section we start with brief introduction to duality symmetries

in string and M-theory. It is explicitly demonstrated how the extended space and the

generalised metric follow from Duff’s procedure.

In Chapter 2 we investigate dimensional reduction of the extended space by U-duality

valued Scherk-Schwarz twist matrices. It is shown that this reduction successfully re-

produces the known structures of gauged supergravities, such as the embedding tensor,

scalar potential and gauge group. A brief introduction to gauged supergravities is pre-

sented in the beginning of this chapter. The most laborious calculations of this chapter

are contained in the Appendix.

Chapter 3 is devoted to boundary terms in the duality invariant formalism. The

potential for Double Field Theory, commonly written only up to a full derivative term,

acquires an extra duality invariant term that reduces to the known Gibbons-Hawking

term if the section condition is satisfied. This boundary term is written in terms of

a generalised normal. For backgrounds with non-trivial monodromy properties the

boundary term does not vanish as is shown explicitly for the example of the 52
2 exotic

brane.

1.3 Dualities in string and M-theory

The action for a string on a background defined by metric Gµν and the Kalb-Ramond

2-form field Bµν is given by the Howe-Tucker action for the 2-dimensional non-linear

sigma model [24, 25]

SP =

∫
dτdσ

(√
−hhabGµν + εabBµν

)
∂aX

µ∂bX
ν , (1.3.1)

here {τ, σ} are coordinates on the world-sheet of the string and hab is the world-sheet

metric. Embedding of the two-dimensional string world-sheet into the target space is

described by D functions Xµ(τ, σ), where the Greek indices run from 1 to D. The
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symmetries of the theory include the target space diffeomorphisms X ′µ = X ′µ(X), the

world-sheet reparamterizations σ′a = σ′a(σa) and the Weyl transformations h′ab(σ
a) =

eω(σ)hab(σ
a). The quantum corrections respect the Weyl symmetry only for certain

choices of the dimension D of the target space (the famous D = 26 for the bosonic

string and D = 10 for the superstring). For more details the reader is referred to the

classical textbooks on string theory [6, 26] and the lectures by David Tong [27].

In addition to the symmetries listed above there are number of non-manifest trans-

formations of fields involved in string theories that relate different theories to each other.

One example of this kind of dualities in string theory is presented by the target space

duality or T-duality [10].

1.3.1 Closed string spectrum

T-duality is usually better understood in the context of backgrounds consistent with

dimensional reduction by compactification. In the case of compactification on a torus

T-duality acts along cycles of the torus replacing a cycle with radius R by a cycle with

radius α′/R relating two different theories.

Consider a closed string and start with flat background with one compact direction

R1,D−2 × S1 of radius R and set the Kalb-Ramond field to be zero, Bµν = 0. Gauge

transformations represented by the worldsheet reparametrisations and the Weyl trans-

formation can be used to further simplify the worldsheet metric and bring it to diagonal

form ||hab|| = ||ηab|| ≡ diag[1,−1]. The resulting action is then given by

S =

∫
dτdσ ηab∂aX

µ∂bXµ. (1.3.2)

Variation of the action with respect to the fields Xµ reads

δS = −
∫
dτdσ ηabδXµ∂a∂bXµ +

∫
dτdσ∂a

(
ηabδXµ∂bXµ

)
= 0. (1.3.3)

Assuming that the variation δXµ(τ, σ) is an arbitrary function of σ and τ that van-

ishes as τ → ±∞, the first term gives rise to the known Klein-Gordon-type equation

∂a∂aX
µ = 0 while the second leads to boundary conditions. For a closed string the

boundary conditions will be

X α̂(τ, σ + 2π) = X α̂(τ, σ), for α̂ = 1, . . . , D − 1

θ(τ, σ + 2π) = θ(τ, σ) + 2πmR, m ∈ Z,
(1.3.4)

where the compact coordinate of the target space is denoted by θ. The integer number

m shows how many times the closed string is wrapped around the compact direction
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and is called the winding number.

Components of momentum of the string which correspond to the non-compact di-

rections α̂ = 1 . . . D− 1 give rise to the mass spectrum, while the remaining component

pθ becomes quantized and leads to the tower of states. This follows from the condition

that the string wave-function on the circle S1 should be uniquely defined. The action of

the vertex operator on the ground state of the string gives a general state of the string

|ζ, p〉 =

∫
dσΠ(ζ,Xµ)eipµX

µ |0〉, (1.3.5)

where Π(ζ,Xµ) is some combination of the polarization of the string ζµ1...µn and the

coordinates Xµ, whose explicit form is irrelevant for the discussion. The quantization

of the momentum follows from the phase factor in the exponent and states

pθ =
2πn

R
. (1.3.6)

Finally, this leads to the mass spectrum which depends both on the winding number m

and the translational mode number n

M2 =
n2

R2
+
m2R2

α′2
+ 2(N + Ñ − 2), (1.3.7)

where N and Ñ denote the standard number operator. One can immediately see that

the closed string mass spectrum is invariant under change of the radius R to α′/R with

additional replacing the winding modes by the translational modes

R←→ α′

R
, (1.3.8)

m←→ n. (1.3.9)

Hence, the equivalence of small and large circles from the point of view of a closed string

is shown in this simple example.

1.3.2 The Buscher rules

So far, the Kalb-Ramond field was set to be zero and the background metric was

taken to be flat for simplicity. Dropping these conditions reveals more complicated

structure of T-duality transformations that now involve not only inverting the radius R

but also non-trivial transformations of the metric Gµν and the 2-form field Bµν that are

known as the Buscher rules [28–30]. The procedure that derives the Buscher rules may

be referred to as a path integral approach, since it is concerned with Lagrange multipliers

and integrating out non-dynamical fields. Although in the further description of this
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procedure the path integral is not mentioned, since it does not change things drastically,

few comments on one-loop quantum effects are made in the end.

For further discussion it is useful to write the action (1.3.1) in the conformal gauge

and adopt the light cone world-sheet coordinates σ± = 1/2(τ ± σ)

S1[θ] =

∫
dσ(G+B)µν∂+X

µ∂−X
ν =

=

∫
dσ
(
Gθθ∂+θ∂−θ + Eα̂θ∂+X

α̂∂−θ + Eθα̂∂+θ∂−X
α̂+

+Eα̂β̂∂+X
α̂∂−X

β̂
)
,

(1.3.10)

where the notation Eµν = Gµν + Bµν was introduced. Since the coordinate θ is a

coordinate on the circle S1 this action is invariant under global U(1) transformations

θ′ = θ + ξ, where eiξ ∈ U(1). The idea is to make this symmetry local by introducing

covariant derivatives

Dθ = dθ +A, (1.3.11)

with the gauge field A = A+dσ
+ + A−dσ

−. The gauge field A should be fixed to be a

pure gauge so not to increase the number of degrees of freedom of the theory. This can

be done by making use of a Lagrange multiplier

S2[θ, λ] =

∫
dσ(G+B)µν∂+X

µ∂−X
ν =

=

∫
dσ
(
GθθD+θD−θ + Eα̂θ∂+X

α̂D−θ + Eθα̂D+θ∂−X
α̂+

+Eα̂β̂∂+X
α̂∂−X

β̂ + λF+−

)
.

(1.3.12)

Integrating over the Lagrange multiplier λ in the string path integral leads to the con-

dition F−+ = 0, whose solutions imply that the gauge field is a pure gauge

A+ = ∂+ϕ

A− = ∂−ϕ.
(1.3.13)

This condition reverts the action S2[θ, λ] back to the initial action S1[θ+ϕ] that is equal

to S1[θ] up to a field redefinition.

An alternative way to proceed is to leave the Lagrange multiplier λ but exclude the

gauge field A. Equations of motion of the gauge field are algebraic and thus can be
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easily solved providing

A+ =
1

Gθθ
∂+λ+

1

Gθθ
Eθα̂∂−X

α̂

A− = − 1

Gθθ
∂−λ+

1

Gθθ
Eα̂θ∂+X

α̂.

(1.3.14)

The action S2[θ, λ] with A+ and A− replaced according to these expressions becomes

S3[λ] =

∫
dσ
(
G′λλ∂+λ∂−λ+ E′α̂λ∂+X

α̂∂−λ+ E′λα̂∂+λ∂−X
α̂+

+E′
α̂β̂
∂+X

α̂∂−X
β̂
)
,

(1.3.15)

where the gauge was fixed by setting θ = 0. This action has the same form as S1[θ] but

the background is different

G′λλ =
1

Gθθ
,

E′λα̂ =
1

Gθθ
Eθα̂,

E′α̂λ = − 1

Gθθ
Eα̂θ,

E′
α̂β̂

= Eα̂β̂ − Eα̂θ
1

Gθθ
Eθβ̂.

(1.3.16)

These transformations are referred to as the Buscher rules and define the transforma-

tion of the background under T-duality. Both the actions S1 and S3 are equivalent to

the action S2, thus they are equivalent to each other and describe the same physics.

Transformations (1.3.16) are non-linear transformations that mix the metric Gµν and

the Kalb-Ramond field Bµν , thus mixing target space diffeomorphisms with gauge trans-

formations B′ = B + dΛ.

The procedure described above is pure classical and does not take into account

contribution from the dilaton measure. A correct one-loop calculation shows that in

addition to the T-duality transformations of the metric and the B-field listed above one

should consider the transformation of the dilaton

ϕ′ − 1

4
ln det g′ = ϕ− 1

4
ln det g (1.3.17)

providing the combination
√
ge−2ϕ is invariant.
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1.3.3 Duff’s procedure for the F1-string and the M2-brane

The so-called Duff’s procedure reveals another non-trivial feature of T-duality trans-

formations: hidden symmetry between equations of motion and the Bianchi identities

[21, 31]. Starting from this symmetry one can introduce a set of dual coordinates and

the so-called dual Lagrangian that governs the dual dynamics. The key point is that

equations of motion for the dual coordinates appear to be equivalent to Bianchi identi-

ties for the ordinary coordinates and vice versa. A relation between these coordinates

leads to the notion of the generalised metric.

Consider a bosonic string on a background given by the metric and the B-field

that do not depend on Xµ. The reason for this is that we have in mind toroidal

compactifications with Xµ the compactified coordinates. The equations of motion for

the field Xµ that follow from the action (1.3.1) have the form of the conservation law

∂aG̃aµ = 0 for some current

G̃aµ =
(√
−hhabGµν + εabBµν

)
∂bX

ν . (1.3.18)

Locally solutions of this equation can be represented by the Hodge dual of the full

derivative G̃aµ := εab∂bYµ of the would-be dual coordinates Yµ, that leads to the following

equation (√
−hhabGµν + εabBµν

)
∂bX

ν = εab∂bYµ. (1.3.19)

Hence, taking the derivative ∂a of this expression one obtains the equations of motion

for Xµ on the left hand side and the Bianchi identities εab∂a∂bYµ = 0 for the field Yµ

on the right hand side.

The equations of motion for the field Xµ can be equivalently derived from the first

order Lagrangian by introducing an extra independent field Uµa

Lx =
1

2
(
√
hhabGµν + εabBµν)Uµa U

ν
b − G̃aµUµa , (1.3.20)

where the current G̃aµ is written in terms of the field Xµ. Equations of motion for the

fields Uµa and Xµ that follow from this Lagrangian give an algebraic constraint on the

auxiliary field and the equation (1.3.19) respectively.

∂Lx
∂Uµa

= 0 =⇒ Uµa − ∂aXµ = 0,

∂a
∂Lx

∂ ∂aXµ
= 0 =⇒ ∂a

[
(
√
−hhabGµν + εabBµν)Uνb

]
= 0.

(1.3.21)

Solution of the first line, given by Uµa = ∂aX
µ, implies that the second line is exactly

(1.3.19).
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The dual Lagrangian for the field Yµ has exactly the same form as Lx but with G̃aµ
expressed in terms of Yµ

Ly =
1

2

(√
−hhabGµν + εabBµν

)
Uµa U

ν
b − εab∂aYµU

µ
b . (1.3.22)

The variation of the corresponding action with respect to Yµ gives the Bianchi identities

εab∂aU
µ
b ≡ ε

ab∂a∂bX
µ = 0 for the field Xµ while variation with respect to Uµa implies(√

−hhabGµν + εabBµν

)
Uνb = εab∂bYµ. (1.3.23)

It is straightforward to solve this equation with respect to Uµa and to write the solution

as

εabUMb =
(√
−hhabpµν + εabqµν

)
∂bYν , (1.3.24)

where pµν ≡ Gµν + BµαB
α
ν and pµαq

αν = Bµ
ν . This expression has exactly the

same form as (1.3.19), but with Xµ replaced by Yµ and the corresponding background

transformation, that is actually a T-duality rotation. Hence, the intermediate result

is that doubling of coordinates reveals hidden symmetry of equations of motion for a

bosonic string and the Bianchi identities.

To make this symmetry manifest it is useful to make the following definitions

Gaµ =
√
−hhab∂bYµ, Faµ =

√
−hhab∂bXµ,

G̃aµ = εab∂bYµ, F̃aµ = εab∂bX
µ,

(1.3.25)

and to rewrite two sets of equations (1.3.19) and (1.3.24) as

G̃aµ =GµνFaν +BµνF̃aν

F̃aµ =pµνGaν + qµν G̃aν .
(1.3.26)

The first equation here is just the equation (1.3.18), while the second one can be reduced

to (1.3.24) multiplying by pαµ. Structure of these equations suggests to combine indices

into one set introducing matrix notations

ηMN Φ̃iN = HMNΦiN , (1.3.27)

where the capital Latin indices M,N = 1 . . . 2n. Here the objects G and F were collected

into two 2n-rows

Φ̃iM =

[
F̃aµ

G̃aµ

]
, ΦiM =

[
Faν

Gaν

]
(1.3.28)
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and 2n× 2n matrices H and η are defined as

HMN =

[
Gαβ −BαρBρ

β −Bαν

Bµ
β Gµν

]
, ηMN =

[
0 δµν

δαβ 0

]
. (1.3.29)

Now the SO(n, n) symmetry of (1.3.27) becomes apparent. The objects Φ̃ and Φ trans-

form in the fundamental representation of SO(n, n), the matrix H transforms as a

2-tensor and the matrix ηMN is an SO(n, n) invariant tensor:

Φ′iM = OMNΦ′iN , H′MN = OMKHKLONL,

Φ̃′iM = OMN Φ̃′iN , ηMN = OMKηKLON
L.

(1.3.30)

Note that the last equation together with the explicit form of νMN implies that O ∈
SO(n, n).

The matrix HMN , that is the so-called generalised metric, allows to consider the or-

dinary metric G and the 2-form field B on an equal footing. Moreover, while T-duality

is realised by the non-linear transformations of the supergravity fields (1.3.16) the gen-

eralised metric transforms linearly (1.3.30). One can check that the linear SO(d, d)

transformations of HMN are precisely equivalent to the Buscher rules.

This procedure is not a unique property of string theory and can be applied to

dynamics of extended objects of other dimensions. Consider M-theory that describes

dynamics of M2-branes together with M5-branes interacting with the three-form gauge

field C3. The bosonic part of the action for the theory can be written as follows:

S =

∫
d3ξ
√
−h
[

1

2
habGµν∂aX

µ∂bX
ν +

1

6
εabcCαµν∂aX

α∂bX
µ∂cX

ν − 1

2

]
, (1.3.31)

where the integration is performing over the M2-brane world-volume
√
hd3ξ that lives

in the bulk with the metric Gµν . The 3-form matter field couples to the brane in the

way that is a natural generalization of electromagnetic and Kalb-Ramond coupling:

Aµ∂τX
µ;

Bµνε
ab∂aX

µ∂bX
ν ,

(1.3.32)

corresponding to zero- and one-dimensional fundamental objects respectively. The M5-

branes are carriers for magnetic charge associated with the field strength F [C] = dC3.

Consider the specific case of SL(5) duality group that arises in T4 spatial reductions

of M-theory so that there are 4 commuting Killing vectors. The metric and 3-form

are still independent of the four coordinates Xµ associated with these Killing vectors.

Suppose in addition that there are no other directions in space-time in which the M2–
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brane is moving. Under such simplifications the equations of motion for the field Xµ

that follow from (1.3.31) have again the form of the conservation law ∂aG̃aµ = 0 with the

current defined as

G̃aµ(X) =
√
−hGµν∂aXν +

1

2
εabcCµνρ∂bX

ν∂cX
ρ. (1.3.33)

At least locally solutions of this equation can be written in the following form

G̃aµ(Y ) = εabc∂bX
ν∂cYµν , (1.3.34)

where the dual coordinate Yµν was naturally introduced. As in the case of the F1-string

the equations of motion for the dual coordinate that follow from the dual first order

Lagrangian are exactly the Bianchi identities for the field Xµ. We can write the first

order Lagrangian Lx and its dual Ly as

Lx =− 1

2

√
−hhijUµi U

ν
j Gµν −

1

3
εijkUµi U

ν
j U

α
k Cµνα + Uµi G

i
µ(X),

and

Ly =− 1

2

√
−hhijUµi U

ν
j Gµν −

1

3
εijkUµi U

ν
j U

α
k Cµνα + Uµi G

i
µ(Y ),

(1.3.35)

where the auxiliary field Uµi was introduced as before. Equations of motion for the

auxiliary field that follow from the Lagrangian Lx imply the algebraic constraint Uµi =

∂iX
µ, while the variation of the corresponding action with respect to the field Xµ gives

∂aG̃aµ = 0. The dual Lagrangian Ly gives the following equations of motion for the

auxiliary field

√
−hhijUνj Gµν + εijkUνj U

α
k Cµνα = Giµ(Y ) = εijk∂jX

ν∂kYµν . (1.3.36)

Variation of the dual action with respect to Yµν leads to the Bianchi identities εijk∂j∂kX
µ =

0 on the filed Xµ.

In analogy with Duff’s procedure for the F1-string one introduces the following

variables
Gaµν =

√
−hhab∂bYµν , Faµ =

√
−hhab∂bXµ,

G̃aµ = εabc∂bX
ν∂cYµν , F̃aµν = εabc∂bX

µ∂cX
ν .

(1.3.37)

The fields Gaµν and Faµ are straight derivatives of the coordinates and are therefore

rather like displacements, whereas G̃aµ and F̃aµν are rather like field strengths. These

allow to write equations that follow from the Lagrangians Lx and Ly in a simple form

G̃aµ =GµνFaν + CµνρF̃aνρ

F̃aµν =pµν,αβGaαβ + qµνρG̃aα.
(1.3.38)
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The fields pµν,ρσ and qµνρ that naturally appear here are defined by the following rela-

tions
pαβ,µνq

µνρ = −CαβγGµγ ,

pαβ,λθp
λθ,µν = δ[µ

α δ
ν]
α ,

pαβ,µν = Gα[µGν]β − CαβρCρµν ,

(1.3.39)

Introducing the generalised index M = {µ, αβ}, that runs from 1 to 10 labelling the

10 representation of SL(5), we can write the above equations in the following compact

form

ΦaM = MMN Φ̃a
N , (1.3.40)

where the matrix MMN is the desired generalised metric

MMN =


Gµν + 1

2C
µδγCνδγ

1√
2
Cµρσ

1√
2
Cναβ Gαβ,ρσ

 (1.3.41)

and the variables (1.3.37) were collected into the objects

ΦaM =

F
aµ

Gaαβ

 , Φ̃a
M =

 G̃
a
ν

F̃bρσ

 . (1.3.42)

The tensor Gµν,ρσ = 1
2(GµρGνσ −GµσGνρ) is used to lower and raise an antisymmetric

pair of indices. Finally, the Bianchi identities and the equations of motion can be unified

as ∂aΦ̃
a
M = 0.

1.4 Extended geometry and generalised metric

As it was shown in the previous section the generalised metric HMN naturally ap-

pears when considering theory of closed string on toroidal backgrounds. This metric

appeared in the early works on T-duality and defined the first quantized Hamiltonian

of a closed string on toroidal backgrounds [21, 32]. The Duff’s procedure reveals the

hidden O(n, n) symmetry of equations of motion for a closed string and the Bianchi

identities leading to the generalised metric transforming in a linear representation of

the duality group. The matrix HMN parametrizes the coset O(n, n)/O(n)×O(n) that

appears in toroidal reductions of supergravity.

In mathematical literature the concept of a generalised metric appears in generalisa-

tions of Calabi-Yau and symplectic manifolds and is usually referred to as the generalised

geometry [33–36]. This formalism is based on two ideas: the first is to replace the tan-
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gent bundle T of a manifold M by direct sum of the tangent and the cotangent bundles

T ⊕T ∗, the second is to replace the Lie bracket on sections of T by the Courant bracket

on sections of T ⊕ T ∗ [37].

Denoting tangent and cotangent vectors by Y and ξ respectively, elements of a fibre

Tp ⊕ T ∗p at the point p can be represented as a formal sum v = Y + ξ with the natural

inner product

(v, v) = (Y + ξ, Y + ξ) := iY ξ. (1.4.1)

Here iY ξ is the interior product or the evaluation ξ(Y ) that is just index contraction if

written in components

ιY ξ = Y aξa. (1.4.2)

The Courant bracket is defined as a generalisation of the ordinary Lie bracket of vector

fields [Y1, Y2]

[Y1 + ξ1, Y2 + ξ2] = [Y1, Y2] + LY1ξ2 + LY2ξ1 −
1

2
d(iY1ξ2 − iY2ξ1). (1.4.3)

Failure of the Courant bracket to satisfy the Jacobi identity is an important feature of

the algebra it defines. Indeed, for any sections u, v and w of the generalised tangent

bundle T ⊕ T ∗ the following is true

[[u, v], w] + [[w, u], v] + [[v, w], u] =
1

3
d (([u, v], w) + ([w, u], v) + ([v, w], u)) , (1.4.4)

which implies that the Courant bracket is not a bracket of any Lie algebra. Application

of the formalism of generalised geometry to string theory translates this aspect to the

so-called section condition that restricts dynamics of the system.

Although the generalised tangent space T ⊕ T ∗ has dimension doubled compared

to the conventional tangent space T , Hitchin’s generalised geometry does not introduce

extra coordinates. In other words the space M still remains the ordinary manifold. On

the contrary, in string or M-theory extended geometry dual coordinates enter the game.

The generalised metric introduced by Gualtieri [35] becomes now a conventional metric

defined on the extended space, that still does not admit the structure of a Riemann

manifold [38–43].

String moduli that enter the matrix HMN are the metric Gij and the NS-NS gauge

field Gij . It is known that the low energy effective action for a closed string is that of

the supergravity whose bosonic part is

Seff =

∫
dx
√
−Ge−2φ

(
R[G] + 4(∂φ)2 − 1

12
H2

)
. (1.4.5)
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Here R[G] is the Riemann curvature of the metric Gij , H = dB is the field strength of

the gauge field B = Bijdx
i∧dxj and the dilaton is denoted as φ. Although, the partition

function for string theory is invariant under the T-duality transformations (1.3.16), it is

very non-trivial to show this explicitly. Thus, the symmetry is not manifest or hidden.

The notion of generalised metric, that puts the metric and the 2-form field on equal

footing and transforms linearly under the action of T-duality, allows to rewrite the low

energy effective action in a duality covariant form. Moreover, the so-called extended

space that unifies translational and winding modes has to be introduced.

In the work by Kugo and Zwiebach [44] it was shown that a closed string on a

toroidal background considers translational and winding modes equally. E.g. they both

contribute to the mass spectrum of the closed string on the background given by the

torus S1 of radius R (1.3.7)

M =
n2

R2
+
m2R2

α′
+ (N + Ñ − 2), (1.4.6)

where n and m are the (discrete) translational momentum and the winding number.

The Z2 action of T-duality exchanges n and m and replaces R by its inverse.

The winding number can be thought of as a discrete momentum that is dual to the

ordinary momentum under the action of T-duality. The inverse Fourier transformation

turns the translational mode into the ordinary coordinate xi and the winding mode into

the so-called dual coordinate, that is denoted as x̃i. The theory is now considered as

living on a doubled torus Tn × T̃n with coordinates (xi, x̃i). It is convenient to double

not only the compact coordinates but other d = D − n coordinates as well introducing

a theory that has manifest O(D,D) invariance and lives on the extended space with 2D

dimensions.

The construction of the double field theory was developed by Hull, Hohm and

Zwiebach in [45–48]. The main feature of this formalism, in addition to the doubling of

coordinates, is a condition that restricts the extended space to a D-dimensional space

if satisfied. It originates from the Virasoro algebra constraint L0− L̄0 = 0 of the closed

string theory and states that all fields and all their products must be annihilated by the

operator ∂i∂̃
i (sum over i is understood).

The strong constraint can be written in an O(D,D) covariant form ∂M∂
M = 0 upon

collecting ordinary and dual coordinates into one object

XM =

[
x̃i

xi

]
, (1.4.7)

that represents coordinates on the extended space labelled by M = 1..2D. Using this
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notation it is straightforward to show that the strong constraint effectively reduces the

number of dimensions to D. Indeed, in the momentum representation section condition

reads

PMP
M = 0, (1.4.8)

where PM = (p̃i, pi) is the momentum corresponding to the coordinate XM . This implies

that momenta P and P ′ associated with Fourier components of any two fields should

be mutually orthogonal and isotropic

P · P ′ = 0, P · P = 0, P ′ · P ′ = 0. (1.4.9)

The maximal dimension of such isotropic subspace in the space of signature (D,D) is

D. Indeed, the equation P · P = 0 can be written as

pap̃
a =

1

4
(ka + qa)(k

a − qa) = 0, (1.4.10)

that has two solutions ka = ±qa. Here the new variables k = p + p̃ and q = p − p̃

were introduced. Different choices of this subspace correspond to picking a particular

T-duality frame.

Recall the explicit form of the generalised metric and the Buscher rules written in

the duality invariant formalism

HMN =

Gij −B
a
i Baj B k

i

−Bl
j Gkl

 , H′MN = OMKHKLOLN , (1.4.11)

where O is an element of the group O(D,D). The effective action can be expressed in

terms of the generalised metric in the duality covariant form [48]

S =

∫
dxdx̃e−2d

(
1

8
HMN∂MHKL∂NHKL −

1

2
HKL∂LHMN∂NHKM−

−2∂Md∂NHMN + 4HMN∂Md∂Nd

)
.

(1.4.12)

Here the dilaton φ and the determinant of the metric G = det ||Gmn|| are combined into

a single object called the duality invariant dilaton

d = φ− 1

4
logG. (1.4.13)

The capital Latin indices are raised and lowered by the O(D,D) invariant 2D × 2D
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constant metric

ηMN =

[
0 1D×D

1D×D 0

]
. (1.4.14)

Structure of the generalised metric implies that application of this rule to HMN gives

the inverse matrix

HMN = ηMKHKLηLN HMNHNK = δMK . (1.4.15)

This suggests to define a matrix SMN = HMN = ηMKHKN , that satisfies StηS = η

and thus is an element of O(D,D). The matrix S is what was initially defined as the

generalised metric in the mathematical literature.

In addition to the global invariance with respect to T-duality transformations, su-

pergravity action is invariant under local symmetries given by the diffeomorphisms and

gauge transformations of the Kalb-Ramond field. The formalism of the double field the-

ory allows to unify these transformations and write them in a T-duality (or equivalently

an O(D,D)) covariant form.

Consider a generalised gauge parameter ΣM that combines the vector field ξa, which

defines the diffeomorphisms, and ξ̃a that is the parameter of the gauge transformations

ΣM =

[
ξ̃a

ξa

]
. (1.4.16)

Then the duality covariant local transformation of an arbitrary generalised vector VM

consistent with diffeomorphisms and gauge transformations reads

δΣV
M = ΣN∂NV

M − V N∂NΣM + ∂MΣSV
S

= LΣV
M + YMK

RS∂KΣRV S .
(1.4.17)

It is convenient here to introduce the O(D,D) invariant tensor YMK
RS ≡ ηMKηRS

to emphasise that δΣV
M is a deformation of the ordinary Lie derivative LΣV

M . This

suggests to view the transformation (1.4.17) as the generalised Lie derivative and write

LΣV
M ≡ δΣV

M = LΣV
M + YMK

RS∂KΣRV S . (1.4.18)

The action of LΣ can be defined on any tensor TA1...An
B1...BM by processing each index

in the same pattern. In addition one consistently defines the transformation of the

dilation to be

δΣd = ΣM∂Md−
1

2
∂MΣM = LΣd−

1

2
∂MΣM . (1.4.19)

The generalised Lie derivatives of the O(D,D) metric ηMN and the Kronecker symbol
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δMN vanish explicitly:

LΣηMN ≡ 0, LΣδ
M
N ≡ 0. (1.4.20)

Algebra of the local transformations δΣ is closed only up to the section condition

∂M • ∂M• = 0. Indeed, consider commutator of two generalised Lie derivatives calcu-

lated on a generalised vector VM

[LΣ1 ,LΣ2 ]VM = −L[Σ1,Σ2]CVM + FM (Σ1,Σ2, V ), (1.4.21)

where [Σ1,Σ2]C that naturally appears here is the C-bracket which was introduced by

Siegel in [49] and is defined as [45]

[Σ1,Σ2]C
M = ΣN

[1∂NΣM
2] −

1

2
ΣP

[1∂
MΣ2]P . (1.4.22)

The extra term FM has the following form

FM (Σ1,Σ2, V ) = −1

2
Σ[1N∂

QΣ2]
N∂QVM + ∂QΣ[1M∂QΣ2]

PVP (1.4.23)

and is zero if the strong constraint ∂M • ∂M• = 0 is satisfied.

Although the generalised effective potential (1.4.12) is written in terms of the fields

HMN and d living on the extended space of dimension 2D, the strong constraint effec-

tively reduces the number of dimensions to D. As it will be explained further, in the

Scherk-Schwarz reduction of the extended space formalism the section condition can

be relaxed and turned into conditions on the so-called embedding tensor (or structure

constants). This relation between the extended space geometry and the deformations

of supergravities means that the extended space is more than a mathematical trick.

It is straightforward to investigate different solutions of the section condition. For

this purpose it is convenient to expand the duality invariant action (1.4.12) and write

it in terms of ∂i and ∂̃i that are derivatives with respect to the ordinary and the dual

coordinates. The natural form of this expansion suggested by the structure of the

effective action itself reads [47]

S = S(0) + S(1) + S(2) =

∫
dxdx̃

(
L(0) + L(1) + L(2)

)
, (1.4.24)

where the number in the superscript denotes the order of the dual derivative ∂̃i in the

corresponding expression. Hence, the first term contains no dual derivatives and thus
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has the form of the conventional supergravity action (up to boundary terms)

L(0) =e−2d

[
−1

4
Gij∂iG

kl∂jGkl +
1

2
Gij∂iG

kl∂jGkl + 2∂id∂jG
ij + 4Gij∂id∂jd−

1

12
H2

]
=e−2φ√−g

(
R[G] + 4(∂φ)2 − 1

12
H2

)
+ boundary terms.

(1.4.25)

Here H = dB is the field strength for the Kalb-Ramond field, R[G] is the Riemann

curvature for the metric Gkl and in the second line the explicit form of the invariant

dilaton d = φ− 1
4 logG was used.

Since the whole formalism is duality invariant and the term L(2) contains only dual

derivatives ∂̃i it has to be very similar to L(0) and T-dual to it. Introducing the field

Eij = gij + bij this term can be written as

L(2) = e−2d

[
−1

4
gikgjlgpq

(
EprEqs∂̃rEkl∂̃sEij − EirEjs∂̃rElp∂̃sEkq − EriEsj ∂̃rEpl∂̃sEqk

)
− gikgjl

(
EipEqj ∂̃pd∂̃qEkl + EpiEjq∂̃pd∂̃qElk

)
+ 4gijEikEjl∂̃kd∂̃ld

]
.

(1.4.26)

Starting from the O(D,D) transformations of the generalised metric HMN it can be

shown that the field Eij transforms as

E ′(X′) = (aE(X) + b)(cE(X) + d)−1, (1.4.27)

where a, b, c and d are D ×D blocks of an O(D,D) matrix

OMK =

[
a b

c d

]
(1.4.28)

with straightforward constraints on them following from OtηO = η. In the special case

when T-duality acts in all directions, i.e. a = 0, b = 1, c = 1 and d = 0 these relations

imply

E ′ = E−1, (1.4.29)

and the corresponding dual metric is g′kl = EkigijElj . Hence, the Lagrangian L(2) can

be obtained from L(0) using the following rules

Eij → E ′ij , gij → g′ij , ∂i → ∂̃i. (1.4.30)

Verification of T-duality between these two terms is straightforward and is provided in

details in [47]. Thus, the terms L(0) and L(2) give the same supergravity action written

in different T-duality frames. Namely, the first one corresponds to ∂̃i• = 0 solution of
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the strong constraint while the second survives if nothing depends on xi (alternatively

∂i• = 0).

Finally, the term L(1) has the following form

L(1) = e−2d

[
1

2
gikgjlgpq

(
Epr ∂̃rEkl ∂qEij − Elr ∂̃rEip ∂kEjq + Erl ∂̃rEpi ∂kEqj

)
+ gipgjq

(
Erq ∂pd ∂̃rEij − Epr ∂̃rd ∂qEij + Erp ∂̃rd ∂qEij − Eqr ∂pd ∂̃rEji

)
− 8gij Eik ∂̃kd ∂jd

]
.

(1.4.31)

and contributes to the action for such choices of T-duality frames that include both

dual and ordinary coordinates, for example ∂1 = 0 and ∂̃2, . . . ∂̃D = 0.

This decomposition of the effective action has very close relation to fluxes in type II

string theory. One can find reviews on fluxes in string theory [50–52], in supergravity [53]

and in application to extended geometry [54, 55]. In addition, recently some progress

has been made in this direction in [56–59]. The first and the most intuitive example of

a flux that is called the H-flux is given by the integration of H = dB over a 3-torus T3∫
T3

H. (1.4.32)

Starting with the Kalb-Ramond field with the only non-zero component Bxy = Nz,

where N ∈ Z the H-flux is given by the integer N . Using the Buscher rules one can

show that T-duality in the direction x leads to the following metric

ds2 = (dx+ fxyzzdy)2 + dy2 + dz2. (1.4.33)

Here fxyz = N is the so-called f-flux that is T-dual to the H-flux and the metric is that

of the twisted torus. Indeed, one can consider the torus T3 as a T2 fibration over a

circle S1 parametrized by the coordinate z. Then, going around the circle z ∼ z + 2π

one has to shift the coordinate x as x ∼ x + 2πfxyzy in order to have well defined

metric. Finally, T-dualities in the directions y and z turn f-flux into Q-flux and R-flux

respectively providing the following chain

Hxyz
Tx−→ fxyz

Ty−→ Qxyz
Tz−→ Rxyz. (1.4.34)

Q and R fluxes are non-geometric in the sense that the first one leads to non-commu-

tativity of the string coordinates and the second implies non-associativity [56]

[xa, xb] ∼ Qabcxc,

[xa, xb, xc] ∼ Rabc.
(1.4.35)
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These ideas naturally fit in the picture of the extended geometry. The solution

∂̃i = 0 of the section condition leaves only the term (1.4.25) that contains contribution

from the H-flux. T-duality in the direction x in this language means that the only

non-zero derivatives are now (∂̃1, ∂2, ∂3) and one has to include both L(1) and L(2) into

the consideration. After some algebra the effective action takes exactly the same form

Sf =

∫
dx̃1dx

2dx3

(
R[g′]− 1

12
H ′2
)

(1.4.36)

but the metric g′ now contains a contribution from the f-flux. Following the same

simple pattern it is straightforward to show that the Q and R fluxes correspond to the

coordinates (x̃1, x̃2, x
3) and (x̃1, x̃2, x̃3) respectively.

1.5 Extended geometry for M-theory

Apart from fundamental strings that are one-dimensional, string theories contain

various excitations represented by extended objects. These are Dp-branes that appear

as p-dimensional subspace where strings endpoints can travel and D stands for Dirichlet

boundary conditions. Type IIA string theory contains even dimensional Dp-branes that

interact with p + 1 odd forms C(1), C(3), . . ., while even dimensional branes appear in

type IIB strings coupled to odd forms C(0), C(2), . . .. All these excitations along with

KK monopoles appear naturally from compactifications of an 11 dimensional quantum

theory whose fundamental objects are 2 dimensional M2 branes and their duals 5-

dimensional M5 branes. Lacking any better name this conjecture was called M-theory.

For a review see [12, 13] and [10].

1.5.1 M-theory and U-duality

M-theory that is formulated in 11 dimensions firstly appeared as a theory which

describes non-perturbative strong coupling limit of Type IIA string theory. The extra

compact dimension is generated dynamically in string theory and has radius R = lpg
2/3
s ,

where gs is the string coupling constant and lp denotes the 11d Planck length [60, 61]. In

the limit when the string coupling is large, the extra dimension becomes uncompactified.

Clearly, the relation between Type IIA string theory and M-theory is non-perturbative

and cannot be derived from analysis of the string spectrum. The proper tool to investi-

gate this correspondence is perturbative duality symmetries of string theories O(d, d,Z),

non-perturbative SL(2,Z) Schwarz and West symmetries of type IIB string theory [62]

and exceptional Ed(d)(Z) Cremmer-Julia symmetries of supergravity [63–65].

Relations between Type IIA string theories and 11-dimensional supergravities were
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known long time ago. Namely, upon compactification of 11-dimensional supergravity on

a circle S1 of radius R one obtains Type IIA 10-dimensional supergravity that appears

to be the low-energy limit of the corresponding string theory [66, 67]. The dimensional

reduction is carried by splitting the fundamental (bosonic) fields of 11d SUGRA, the

metric and the 3-form field Cmnk, into 10 dimensional metric, gauge fields and the

dilaton. The metric anzats is then given by

ds2
11 = e4φ/3

(
dx11 +Aµdx

µ
)2

+ e−2φ/3ds2
10 (1.5.1)

where the index µ = 1 . . . 10 labels 10 dimensions of the resulting theory, φ denotes the

dilaton and ds2
10 is the 10-dimensional interval. The vector field Aµ is the RR 1-form

gauge potential of the 10-dimensional theory. The 3-form field Cmnk gives rise to the

10-dimensional RR 3-form potential Cµνρ and the NS-NS 2-form Kalb-Ramond field

Bµν thus completing the bosonic sector of the theory:

NS-NS : gµν , Bµν , φ

RR : Aµ, Cµνρ.
(1.5.2)

Since, the 11-dimensional theory does not have dimensionless couplings the string cou-

pling gs is generated dynamically reading g2
s = e2φ. Hence, in order to relate M-theory

to Type IIA string theory by compactification on a circle one has to consider the 11-

dimensional supergravity as a low-energy limit of M-theory.

As it was discussed in the previous sections, Type IIB string theory compactified on

a circle of radius R is T-dual to Type IIA string theory compactified on a circle of radius

α′/R. The bosonic NS-NS sector of these two theories is the same and transformation of

the fields gµν , Bµν and φ under T-duality is given by the Buscher rules (1.3.16). These

Z2 transformation is a part of the full T-duality group O(d, d,Z). This allows us to

relate M-theory to Type IIB string theory.

In its turn, Type IIB string theory possesses a global SL(2,Z) symmetry that is

called S-duality [15]. It is instructive to consider the bosonic sector of Type IIB super-

gravity and its transformation properties. Two fields, the dilaton φ and the axion χ,

are naturally combined in a complex field

ρ = χ+ ie−ϕ (1.5.3)

under the action of S-duality that is given by

ρ −→ aρ+ b

cρ+ d
. (1.5.4)
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Here the integer numbers a, b, c and d compose the corresponding SL(2,Z) matrix with

ad−bc = 1. A pair of 2-form potentials that come from NS-NS and RR sector transform

as a doublet. The remained bosonic fields that are the graviton and the 4-form potential

are invariant under S-duality.

The non-perturbative S-duality symmetry of Type IIB string theory becomes man-

ifest in the approach of M-theory being a non-trivial remnant of 11-dimensional diffeo-

morphism invariance and U-duality. The duality group SL(2) is now a modular group

of the compact torus T2 and the complex field ρ defines modular parameter [68, 69].

On the other hand, Type IIB theory is T-dual to Type IIA theory. This symmetry

together with symmetries of a d-torus form the U-duality symmetry. These are given

by the known exceptional Cremmer-Julia symmetry groups Ed(d).

Although the S-duality part is manifest in M-theory and is originated from diffeo-

morphisms, the whole exceptional symmetry does not have such simple explanation. As

it was shown in the previous sections the extended geometry approach allows to write

the effective potential of Type II string theory in T-duality covariant variables, i.e. the

generalised metric HMN and the dilaton d. This section is a brief review of the same

approach to U-duality.

1.5.2 Duality invariant actions

In string theory extended geometry one introduces an O(d, d) covariant object, gen-

eralised metric HMN , that parametrizes coset O(d, d)/O(d) × O(d) and is written in

terms of the metric Gmn and the Kalb-Ramond 2-form field Bmn. In this formalism

2d coordinates of the extended space are associated to every string charge and to ev-

ery field. The usual space-time coordinates xa are associated to the metric, while the

dual coordinates x̃a are associated to the 2-form. Mathematically this is realised by

exploiting the Hitchin’s concept of generalised tangent bundle that is a direct sum of

the tangent and the cotangent bundles of the space-time M

TM ⊕ T ∗M. (1.5.5)

It is important that the base of this bundle is still a d-dimensional space M . The non-

trivial transition to the extended space occurs when one starts to think of fibres of the

generalised tangent bundle as tangent spaces to a 2d dimensional extended space M.

Although, a lot is known about covariant derivatives, curvature and infinitesimal tensor

transformations on this space its geometry is still unclear [38, 39, 41, 42, 70, 71].

In the generalization of this formalism to M-theory one considers U-duality group,

that is Ed for duality acting in d directions. Since fundamental objects of M-theory are
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represented by M2 and M5 branes, the corresponding extended space becomes slightly

more involved than in the case of T-duality where only winding modes of the F1 string

contribute. This gives rise to the ordinary coordinates xa, dual coordinates yab for the

M2 brane, zabcde for the M5 brane and so on. The generalised tangent bundle (1.5.5) is

replaced then by the following construction

TM ⊕ Λ2T ∗M ⊕ · · · (1.5.6)

As before, a typical fibre of this bundle over the ordinary space M is understood as a

generalised tangent space to the extended spaceM. The generalised metric, that unifies

the metric Gmn and the gauge fields, parametrises the coset

MMN ∈
Ed
Hd

, (1.5.7)

where Hd is a maximal compact subgroup of the U-duality group Ed.

To describe the extended space of M-theory one exploits the idea of non-linear reali-

sation of space-time symmetries that was known long ago [72–74]. Borisov and Ogievet-

sky showed that the theory of general relativity in four dimensions can be described in

terms of a non-linear realisation of the groups G = GL(4,R) n R4 and H = SO(3, 1).

Here the group G is the semi-direct product of the structure group GL(4,R) and the

group of space-time translations R4. The semi-direct product implies that generators of

the latter transform under the fundamental representation of the group GL(4,R). The

coset G/H is identified with space-time.

The same structure appears when one constructs a supergravity theory. The coset

of the super-Poincaré group with respect to the Lorentz group leads to the notion of su-

perspace [75]. However, this formalism does not include all symmetries of supergravity:

generators of U-duality transformations obviously are not in the super-Poincaré group.

It is known [76, 77] that eleven dimensional supergravity can be naturally formulated in

terms of a non-linear realisation of very extended algebra, that is commonly denoted as

E11. The suggested E11 covariant way to include both space-time generators Pa and du-

ality symmetry generators, was to collect them into the first fundamental representation

of E11 denoted by l1, that is infinite dimensional.

The theory in D dimensions with U-duality acting in d dimensions then can be

obtained by deleting a certain node in the Dynkin diagram of E11 . This corresponds

to taking a subalgebra GL(D)⊕Ed of the algebra E11 The factor GL(D) together with

space-time translations that are contained in l1 gives rise to gravity in D dimensions

as it should be. The remained factor Ed is the known Cremmer-Julia duality group of

maximal supergravity in D dimensions [63, 65, 78]. Thus these symmetries are naturally
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1 D 8 9 10

Figure 1.1: Dynkin diagram of the algebra E11 with node D deleted.

reproduced in the non-linear realisation of E11.

The representation l1 that contains an infinite number of generators

Pa, Za1a2 , Za1a2a3a4a5 , . . . (1.5.8)

is decomposed into representations of GL(D)⊕Ed. In addition to ordinary space-time

coordinates one finds an infinite number of coordinates that correspond to higher level

fields. Coordinates that are scalars with respect to GL(D) but transform under Ed are

in the 10, 16s, 27, 56 and 248⊕ 1 of SL(5), SO(5, 5), E6, E7 and E8 for d = 4, 5, 6, 7 and

8 respectively [79, 80]. A set of ordinary coordinates together with a certain number

d Global duality group Local duality group RV
1 SO(1, 1) 1 1
2 SL(2) SO(2) 3
3 SL(3)× SL(2) SO(3)× SO(2) 6
4 SL(5) SO(5) 10
5 SO(5, 5) SO(5)× SO(5) 16s

6 E6 USp(8) 27
7 E7 Sp(8) 56
8 E8 SO(16) 248⊕ 1

Table 1.1: Global and local duality groups and the representation RV .

of these scalar dual coordinates parametrizes the extended space of M-theory. The

corresponding set of generators transforms in the representation RV of Ed that is listed

in the table above..

The non-linear realisation leads not only to the extended space but allows one to

construct a generalised vielbein using the conventional vielbein and form fields. The

dynamics of strings and branes in the presence of background fields can be formulated

in terms of the non-linear realisation as well. The coordinates of the extended space

correspond to brane charges and momentum. It is instructive to go through a case

with a certain number of dimensions in more details. For a full analysis the reader is

referred to [81] that describes the geometry of the extended space in terms of brane

charges in the spirit of Hitchin’s’ generalised geometry, and to the papers [82] and [83],
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that construct duality invariant actions for M-theory using the Duff’s procedure and

the non-linear realisation briefly described above.

Consider the case where U-duality group is SL(5) that acts in 4 space dimensions.

Winding modes of 5-branes do not appear in the formalism and thus one has to include

only wrappings of 2-branes. This results in the generalised tangent space

TM ⊕ Λ2T ∗M, (1.5.9)

whose fibres are understood as tangent spaces to the 10-dimensional extended space

parametrized by the coordinates (xα, yαβ) with α, β = 1, . . . , 4. The coordinates xα

are associated with the metric and represent space-time coordinates, while yαβ = −yβα
are associated with the M2-brane charge and represent dual coordinates. Already this

simple example shows that in contrast to the case of T-duality, where each space-time

coordinate has its dual, here numbers of space-time and dual coordinates are not equal.

All ten coordinates of the extended space are combined in an object that transforms in

the representation 10 of the U-duality group SL(5)

XM =

[
xα

yαβ

]
. (1.5.10)

Capital Latin indices here and in all expressions in this thesis label the representa-

tion RV of the corresponding U-duality group. It is convenient to represent the 10-

dimensional index M as an antisymmetric pair of two indices in 5 using the following

identifications [84]

Xab =


X5α = xα,

Xα5 = −xα,

Xαβ =
1

2
εαβµνyµν ,

(1.5.11)

where small Latin indices run from 1 to 5 and εαβµν is the 4 dimensional alternating

symbol (ε1234 = 1). Generalised vectors V ab then carry indices labelling the representa-

tion 10 of SL(5). Tensors of other ranks may carry any number of small Latin indices,

even or odd.

As in the case of the O(d, d) geometry one constructs a generalised tangent bundle

whose fibre are the formal sums V = v + ρ, where v = vα∂α is a vector and ρ =

ραβdx
α ∧ dxβ is a 2-form. Structure group of this fibre bundle is SL(5,R), that can

be reduced to SO(5,R) upon introducing a generalised vielbein globally. The coset

SL(5)/SO(5) is parametrised by the metric gµν and the 3-form field Cµνρ, that are
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collected into the generalised metric

MMN =


gµν + 1

2CµαβCν
αβ 1√

2
Cνρσ

1√
2
Cγδµ gγδ,ρσ

 , (1.5.12)

where the object gµν,αβ = gµ[αgβ]ν is used to raise and lower antisymmetric pairs of

indices.

The generalised Lie derivative of a generalised vector VM in the U-duality invariant

formalism has exactly the same form as in the Double Field Theory (1.4.17)

δΣV
M = ΣN∂NV

M − V N∂NΣM + ∂MΣSV
S

= LΣV
M + YMK

RS∂KΣRV S

= LΣV,

(1.5.13)

but the invariant tensor YMN
KL is defined in a different way. Its exact form follows

from the condition that algebra of transformations (1.5.13) is closed upon the section

condition
[LV1 ,LV2 ] = L[V1,V2]C + F0,

YMN
KL ∂M • ∂N• = 0 =⇒ F0 = 0.

(1.5.14)

Substituting (1.5.13) into the closure condition one finds the following expressions for

the invariant tensor [85, 86]:

O(d, d)strings : YMN
PQ = ηMNηPQ, ,

SL(5) : YMN
PQ = εαMN εαPQ,

SO(5, 5) : YMN
PQ = 1

2(Γi)MN (Γi)PQ ,

E6(6) : YMN
PQ = 10dMNRdPQR ,

E7(7) : YMN
PQ = 12cMN

PQ + δ
(M
P δ

N)
Q + 1

2ε
MN εPQ .

(1.5.15)

Here the index α runs from 1 to 5 labelling the representation 5 of SL(5) and the index

i labels the 10-dimensional vector representation of SO(5, 5). The invariant metric on

O(d, d) is denoted by ηMN , εαMN = εα,βγ,δε is the SL(5) alternating tensor, SO(5, 5)

gamma-matrices ΓiMN are 16 × 16 gamma-matrices in Majorana-Weyl representation,

the tensors dMNK and cMN
KL are symmetric invariant tensors of E6 and E7 respectively.

The invariant tensor YMN
KL is subject to various important relations that will be used
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later [86]

Y
(MN
KL Y

L)R
PQ − Y

(MN
PQ δ

R)
K = 0 , for d ≤ 5,

YMN
KL = −αdPKML

N + βdδ
M
K δ

N
L + δML δ

N
K ,

YMA
KB Y BN

AL = (2− αd)YMN
KL + (nβd + αd)βdδ

M
K δ

N
L + (αd − 1)δML δ

N
K .

(1.5.16)

Here d = 11 − D is the number of compact directions and PA
B
C
D is the projector

on the adjoint representation of the corresponding duality group. It is defined as

PA
B
C
DPD

C
K
L = PA

B
K
L and PA

B
B
A = dim(adj). The coefficients αd and βd depend

on the duality group and for the cases in question take numerical values (α4, β4) = (3, 1
3),

(α5, β5) = (4, 1
4), (α6, β6) = (6, 1

3). The last line in (1.5.16) with n = δAA is a direct con-

sequence of the second relation and properties of the projector PA
B
C
D. The first line

is true only for d ≤ 5 and the relevant identity for E6(6) duality group reads

10PQ
(M

T
NPR

P )
S
T − PR(M

S
Nδ

P )
Q −

1

3
dMNPdQRS = 0. (1.5.17)

The generalised metric is a dynamical field of the theory and along with its deriva-

tives contributes to the effective potential. The explicit form of the potential for the

SL(5) case was found by D. Berman and M. Perry in [82] and has the following form

VSL(5) =
√
g

[
1

12
MMN (∂MMKL)(∂NM

KL)− 1

2
MMN (∂NM

KL)(∂LMMK) +

+
1

12
MMN (MKL∂MMKL)(MRS∂NMRS)− 1

4
(MRS∂KMRS)(∂LM

KL)

]
,

(1.5.18)

where g = det ||gµν || is the determinant of the four dimensional metric. It is easy to

show that g is always proportional to a certain power of det ||MMN ||.

The potential (1.5.18) is invariant under the transformations (1.5.13) up to the sec-

tion condition. Taking a special solution of the section condition ∂y = 0 that effectively

removes all dependence of the dual coordinate yµν , turns the effective potential to that

of the supergravity theory (the bosonic part) up to A boundary term:

VSL(5) →
√
g

(
R[g]− 1

48
F [C]2

)
, (1.5.19)

where R[g] is the curvature of the metric gµν and F = dC is the field strength of the

3-form field Cµνρ.

When considering duality transformations acting in more than 4 dimensions one

has to include coordinates associated with the M5-brane and the KK6-brane. The
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corresponding bundle is then

TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕ Λ6TM. (1.5.20)

The expression for the generalised Lie derivative (1.5.13) remains the same up to choos-

ing an appropriate Y -tensor (1.5.15). In four dimensions the last two terms do not

contribute since elements of say Λ5T ∗M are 5-forms that can’t be defined in four di-

mensions. The same is true for 5 dimensions and the term Λ6TM whose elements are

6-vectors. Finally, in dimensions d ≥ 6 one considers the full bundle [81, 83, 87].

In higher dimensions it is more convenient to introduce a generalised vielbein rather

giving an explicit expression for the generalised metric

MMN = EĀME
B̄
NMĀB̄, (1.5.21)

where the barred indices run from 1 to n labelling flat directions and MĀB̄ is diagonal.

Explicit expressions for the generalised vielbein in dimensions d = 5, 6, 7 and the effective

potential were found in [83] starting from the non-linear realisation of E11. These are

given in the next sections in application to Scherk-Schwarz reductions.

Finally, it is necessary to mention the work [88] that considers the reduction from

M-theory to type II string theory in the duality invariant formalism. It is shown that one

successfully reproduces the structures of O(3, 3) geometry starting from SL(5) invariant

theory. The DFT section condition naturally emerges from the SL(5)-covariant section

condition.
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CHAPTER 2

DIMENSIONAL REDUCTIONS

2.1 Introduction

The extended geometry formalism of string and M-theory encodes the low energy

limit of the theories in a manifestly T(U)-duality invariant way. The resulting theory

is formulated on a space that is parametrised by an enhanced set of coordinates both

ordinary and dual that correspond to momentum and winding modes. In this chapter we

show that Scherk-Schwarz reduction [89] of the extended space consistently reproduces

structures of gauged supergravities such as the scalar potential, the embedding tensor

and the gauge group.

Gauged supergravities appear as consistent supersymmetric deformations of toroidal

compactifications of 11-dimensional N = 1 supergravity (for review see [53]). These are

represented by the horizontal line on the Figure 2.1 where the general picture is sketched.

N = 1 D = 11 Supergravity

Ungauged supergravity Gauged supergravity
gauging

reduction
on torus
Tn

reduction in presence of
– p–form fluxes

∫
Σ
F (p) = CΣ

– torsion (geometric flux)
dea = T a

bce
b ∧ ec

– non-geometric flux

Figure 2.1: This diagram demonstrates relations between toroidal reductions of N = 1 D = 11
supergravity, gaugings and more complicated dimensional reductions.

Gauged supergravities were first constructed in [90] by incorporating the structure

of Yang-Mills theories to the maximal supergravity and then generalised to higher di-

mensions in [91, 92] and to other non-compact groups [93, 94]. The diagonal line on

the picture demonstrates the relation of gauged supergravities to flux compactifications

that was realised recently (for review see [55, 95, 96].
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Starting from the 11-dimensional supergravity one performs the Kaluza-Klein reduc-

tion on a simple n-dimensional torus and ends up with ungauged supergravity where

none of the matter fields is charged under gauge group U(1)nV . Here nV is the number

of vector multiplets that come from certain components of metric and 3-form field.

More complicated reductions on non-trivial n-dimensional manifolds like a sphere,

reductions in presence of torsion or non-zero fluxes of p-form fields (geometric fluxes),

or reductions with non-geometric fluxes lead to gauged supergravity. In these theo-

ries the matter fields transform under a gauge group that is a subgroup of the global

Ed(d) Cremmer-Julia duality group. The non-trivial geometry of the internal space typ-

ically allows one to introduce a scalar potential that supports an effective cosmological

constant and provides terms for moduli stabilization, leads to spontaneous symmetry

breaking etc. (see [17, 18, 50, 51] for review). A universal approach to gauged su-

pergravities is the embedding tensor which describes how gauge group generators are

embedded into the global symmetry group. Treated as a spurionic object the embedding

tensor provides a manifestly duality covariant description of gauged supergravities.

In addition to the global Ed(d) symmetry the toroidally reduced theories also posses

a global R+ scaling symmetry known as the trombone symmetry (this is an on-shell

symmetry for D 6= 2). This gives rise to a more general class of gaugings whereby a

subgroup of the full global duality group Ed(d) × R+ is promoted to a local symmetry.

The embedding tensor approach was extended to incorporate such trombone gaugings

in [97]. The embedding tensor Θ̂
α
M projects generators tα of the global duality group

En(n) ⊗ R+ to some subset XM = Θ̂M
αtα which generate the gauge group and enter

into covariant derivatives:

D = ∇− gAMXM . (2.1.1)

The index α of the embedding tensor is a multiindex which labels the adjoint represen-

tation of the duality group. According to its index structure the embedding tensor is

in the RV ×Radj representation. Here Radj is the adjoint representation of the global

duality group and RV is an nV -dimensional representation in which the vector fields

transform. In general the embedding tensor decomposes as

Θ̂M
α ∈ RV ⊗Radj = RV ⊕ . . . (2.1.2)

The preservation of supersymmetry gives a linear constraint restricting the embedding

tensor only to some representations, e.g. for the cases considered in further sections we
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have

Θ̂M
α ∈ 10⊕ 15⊕ 40, for D = 7

Θ̂M
α ∈ 16s ⊕ 144c, for D = 6

Θ̂M
α ∈ 27⊕ 351, for D = 5.

(2.1.3)

The trombone gauging that is always in the representation RV corresponds to the on-

shell symmetry and does not appear in the action. Hence, the scalar potentials written

further below do not include this gauging.

In this chapter Scherk-Schwarz compactifications of the extended geometry formal-

ism are considered. In what follows the extended space parametrized by the coordinates

XM represents the internal space. In other words coordinates of the d-dimensional in-

ternal space are extended while the external non-compact space is parametrised by

ordinary the coordinates x(D) with D = 11− d.

Dependence of any covariant object defined on the extended space is given by the

so-called Scherk-Schwarz twist matrices that act like a vielbein. With this anzats the

generalised diffeomorphism (1.5.13) turns into a gauge transformation generated by the

same algebra that one encounters in gauged supergravities. The corresponding group

appears to be a subgroup of the global duality group and the embedding tensor becomes

naturally written in terms of the twisting matrices. Hence, one connects geometric

properties of the extended space to the algebraic properties of the theory.

An important feature of the extended space formalism is that one needs a constraint

for closure of the algebra of generalised diffeomorphisms and to have an invariant effec-

tive potential (see (1.5.14)). In the generalised Scherk-Schwarz reduction this constraint

is promoted into the so-called quadratic constraint on the embedding tensor that is ba-

sically the condition of closure of the algebra

[XM , XN ] = XMN
KXK , (2.1.4)

where XM is a generator of the algebra and the structure constants XMN
K are written

in terms of the twist matrices and their first derivatives.

Therefore in this chapter we do not impose section condition. Rather we require

closure of the algebra of the generators XM . In general the functions XMN
K are not

necessarily constants, since one is free to choose the twist matrices almost in an arbi-

trarily way. The condition that XMN
K are indeed structure constants of an algebra

is promoted to a constraint on the twist matrices. In other words, since, the whole

extended space is considered to be internal, instead of projecting on a subspace by sec-

tion condition we choose it to be of a particular shape, defined by the twist matrices.
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In what follows we assume that there exist non-trivial twist matrices for each gauging,

however this has not been proved yet.

It is worth mentioning, that to ensure invariance of the effective action written in

the Scherk-Schwarz anzats one has to introduce an extra term of the form∫
dX YMN

KL∂ME
ÂK∂NE

L
Â

(2.1.5)

that is zero up to section condition. Here the generalised vielbein is denoted as EÂA
with hatted indices parametrising generalised tangent space (fiber indices). Although,

this term introduces extra degrees of freedom as it is not invariant under the local H

transformations this appears to be not an issue of the Scherk-Schwarz reduced action.

In this case the twisted vielbeins do not depend on XM and the derivatives in the extra

term act only on the twist matrices WA
B̄

.

The extra term allows to organise all terms in the twisted effective potential in

expressions that involve only the generators XMN
K and the twisted generalised metric.

The details of this procedure for the cases of SL(5), SO(5, 5) and E6(6) duality groups

is given in further sections.

2.2 Scalar sector of maximal gauged supergravity

In this section we briefly review the structure of the scalar sector of the maximal

gauged supergravities in D = 5, 6 and 7 and introduce expressions that we will need

further. Sections devoted to different dimensions D exploit their own conventions for

indices and fields, that should not be confused. Since the review is very brief and does

not cover all the details we refer the reader to the relevant papers [97–100] and [53].

2.2.1 D = 7 supergravity

The global symmetry group of the ungauged D = 7 maximal supergravity is E4(4) =

SL(5) whose generators can be expressed as

(T ba)ij = δiaδ
b
j −

1

5
δbaδ

i
j

(T ba)ijkl = 2(T ba)
[i
[kδ

j]
l] ,

(2.2.1)

in the representations 5 and 10 respectively. These generators are traceless, Tr(T ba) = 0

and obey a relation T aa = 0. Here small Latin indices run from 1 to 5 labelling the

fundamental representation. Commutation relations that define the algebra of SL(5)
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read

[T ba , T
d
c ] = δbcT

d
a − δdaT bc . (2.2.2)

Also we have

Tr5(T baT
d
c ) = −δdaδbc +

1

5
δbaδ

d
c . (2.2.3)

The embedding tensor for D = 7 gauged supergravity, with no trombone gauging,

is given by [100]:

Θmn,p
q = δq[mYn]p − 2εmnprsZ

rs,q (2.2.4)

with Ymn = Y(mn) in the 15 and Zrs,q = Z [rs],q in the 40 so that Z [rs,q] = 0. It is

traceless Θmn,p
p = 0 and hence the gauge group generators in the 5 and 10 are given

by

Xmn,p
q = Θmn,p

q , Xmn,pq
rs = 2Θmn,[p

[rδ
s]
q] . (2.2.5)

To incorporate the trombone gauging an extra generator (T0)qp = δqp corresponding

to the R+ is introduced and an ansatz is proposed (we follow exactly [97] where the

procedure is carried out for all the other exceptional groups)

Θ̂mn,0 = θmn ,

Θ̂mn,p
q = δq[mYn]p − 2εmnprsZ

rs,q + ζθij(T
q
p )ijmn , (2.2.6)

where θmn = θ[mn] is in the 10. Then the gauge generators in the fundamental are given

by

X̂mn,p
q = Θ̂mn,0(T0)qp + Θ̂mn,r

s(T sr )qp

= δq[m(Yn]p − 2ζθn]p)− 2εmnprsZ
rs,q +

1

5
(5− 2ζ)θmnδ

q
p, (2.2.7)

and in the 10 by

X̂mn,pq
rs = Θ̂mn,0(T0)rspq + Θ̂mn,a

b(T ab )rspq

= 2Θmn,[p
[rδ

s]
q] + 2θmnδ

[r
[pδ

s]
q] + ζθij(T

b
a)ijmn(T ba)rspq

= 2Θmn,[p
[rδ

s]
q] +

(
2 +

ζ

5

)
θmnδ

[r
[pδ

s]
q] + ζθpqδ

[r
[mδ

s]
n] −

1

4
ζθijε

ijrsaεamnpq

(2.2.8)
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One now calculates the symmetric part of the gauging

X̂mn,pq
rs + X̂pq,mn

rs = 2εamnpq

(
Zrs,a − ζ

4
εrsaijθij

)
+

+

(
2 +

6ζ

5

)(
θmnδ

[r
[pδ

s]
q] + θpqδ

[r
[mδ

s]
n]

)
.

(2.2.9)

The requirements of supersymmetry as explained in [97] are that this falls in the same

representation as without the trombone gauging hence we fix ζ = −5
3 . Although the

symmetric part of the gauging does not depend on Y note that the that the antisym-

metric part of the gauging depends on θ Z and Y .

The abelian vector fields Aα̂ab = Aα̂[ab] of ungauged supergravity transform in the

representation 10 of SL(5). These are turned into non-abelian fields by introducing a

deformation given by the embedding tensor Θmn,p
q that acts as structure constants.

The scalar fields of the theory are elements of the coset SL(5)/SO(5) and are most

conveniently described by an SL(5) valued matrix Vaṁṅ. It satisfies VaṁṅΩṁṅ and

transforms as [100]

V → GVH, G ∈ SL(5), H ∈ SO(5). (2.2.10)

Here the dotted Latin indices run from 1 to 4 labelling the fundamental representation

of USp(4) ' SO(5) and Ωṁṗ = Ω[ṁṗ] is the invariant symplectic form.

A coset representative is fixed by imposing a gauge condition with respect to the

local SO(5) invariance that result in a minimal parametrization of the coset space in

terms of the 24− 10 = 14 physical scalars

mab = VaṁṅVbṗq̇ΩṁṗΩṅq̇. (2.2.11)

The scalar potential of maximal gauged supergravity can be expressed totally in terms

of the unimodular USp(4) invariant matrix mab and the gaugings (except the on-shell

trombone gauging)

Vscalar =
1

64

(
3Xmn,r

sXpq,s
rmmpmnq −Xn

mp,qX
m
nr,sm

prmqs
)

+

+
1

96

(
Xmn,r

sXpq,t
ummpmnqmrtmsu +Xmp,q

nXnr,s
mmpqmrs

)
.

(2.2.12)

In further sections it will be shown that the generalised metric acts as the coset rep-

resentative (2.2.11) in Scherk-Schwarz reduction as it has precisely 14 components and

provides exactly the scalar potential of the maximal gauged supergravity.
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2.2.2 D = 6 supergravity

Maximal supergravity in six dimensions is invariant under the global duality group

SO(5, 5). The representation RV is now the spinorial representation 16s of SO(5, 5).

We let the capital Latin indices run from 1 to 16 labelling this representation and

the small Latin indices run from 1 to 10 labelling the 10 representation of SO(5, 5).

Then the components of the projected generators XM can be written in the spinorial

representation as

XMN
K = (XM )N

K = Θ̂M
ijtij = Θ̂M

ij(Γij)N
K , (2.2.13)

where Γij = Γ[iΓj] are the generators tij in the spinorial representation while Γi are

16× 16 gamma matrices in the Majorana representation. This means that they are real

and symmetric

Γi
MN = Γi

NM . (2.2.14)

As it was shown in [99] and [97] the gauge group generators are given by

XMN
K = −θiLΓjLM (Γij)N

K − 1

10
(Γij)M

L(Γij)N
KθL − θMδNK . (2.2.15)

The generators are only written in terms of the gauging θiM ∈ 144 and the trombone

gauging θM ∈ 16. The symmetric part ZMN
K = X(MN)

K then reads

ZMN
K = ΓiMN Ẑ

iM , ZiM = −θiM − 2

5
ΓiMNθN . (2.2.16)

Since the gauging θiM is in the 144 representation it satisfies the linear constraint

θiMΓiMN = 0.

Scalar fields of the theory are elements of the coset space SO(5, 5)/SO(5)× SO(5)

that can be conveniently parametrised by SO(5, 5) valued 16× 16 matrices VM
αα̇ [101].

its inverse is defined by

VM
αα̇V N

αα̇ = δM
N , VM

αα̇VM
ββ̇ = δαβ δ

α̇
β̇
. (2.2.17)

Here the dotted and the undotted small Greek indices run from 1 to 4 and label the

spinor representation 4 of each SO(5) in the coset.

In the absence of the trombone gauging the scalar potential can be written as

Vscalar = g2Tr

(
T âT̃ â − 1

2
T T̃

)
, (2.2.18)
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where tilde denotes transposition and the T -tensors are given by [99]

(T â)αα̇ = ViâθiMVMαα̇

(T
ˆ̇a)αα̇ = −Vi

ˆ̇aθiMVM
αα̇

T = T âγâ = −T ˆ̇aγ
ˆ̇a.

(2.2.19)

Here the hatted small Latin indices label the vector representation 5 of SO(5) and dots

again distinguish between two SO(5)’s in the coset. The gamma matrices γâ and γ
ˆ̇α are

4 × 4 chiral gamma matrices whose vector indices are contracted without raising and

lowering. The 10× 5 matrices V are defined as

Viâ =
1

16
VM

αα̇(γâ)α
βΓi

MNVNβα̇,

Vi
ˆ̇a = − 1

16
VM

αα̇(γ
ˆ̇a)α̇

β̇Γi
MNVNαβ̇.

(2.2.20)

According to the quadratic constraint the dotted and the undotted T tensors are not

independent and satisfy

T âαα̇T
â
ββ̇ = T

ˆ̇a
αα̇T

ˆ̇a
ββ̇. (2.2.21)

2.2.3 D = 5 supergravity

In five dimensions the global duality group of the maximal supergravity is E6(6) that

is the maximal real subgroup of the complexified E6 group. The representation RV in

this case is given by the 27 representation of E6(6) and the capital Latin indices run

from 1 to 27. The corresponding invariant tensor is a fully symmetric tensor dMNK

that satisfies the following identities

dMPQd
NPQ = δNM ,

dMRSd
SPTdTNUd

URQ =
1

10
δP(Mδ

Q
N) −

2

5
dMNRd

RQP ,

dMPSd
SQTdTRUd

UPV dV QWd
WRN = − 3

10
δNM .

(2.2.22)

The linear constraint implied by supersymmetry restricts the full embedding tensor

Θ̂M
α to the 27⊕ 351 representation of E6(6). In the absence of the trombone gauging

the embedding tensor reads

ΘM
α = ZPQ(tα)R

SdRKLdMNKdSQL. (2.2.23)
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The symmetric part of the gauge group generators ZMN
K = X(MN)

K is then given by

ZMN
K = dMNLẐ

KL, ẐKL = ZKL − 15

2
dKLMθM . (2.2.24)

A non-trivial relation among the generators of E6(6) that follows from the last line in

(1.5.16) is

(tα)M
K(tα)N

L =
1

18
δKMδ

L
N +

1

6
δLMδ

K
N −

5

3
dMNRd

RKL. (2.2.25)

Scalar fields of the theory live in the coset space E6(6)/USp(8) and can be paramet-

rised by the scalar matrix VMij with small Latin indices labelling the 8 representation

of USp(8). The scalar matrix VMij is antisymmetric in ij and satisfies VMijΩij = 0,

where Ωij = −Ωji is the symplectic invariant of USp(8). Thus, the scalar matrix has

27× 27 components and its inverse is defined as

VMijVijN = δNM

VijMVMkl = δij
kl − 1

8
ΩijΩ

kl.
(2.2.26)

The matrix V can be used to elevate the embedding tensor to the so-called T -tensor

that is USp(8) covariant field dependent tensor. We need this tensor since it appears

in the scalar potential. The convenient relation to be exploited below is [98]

XMN
P = VMmnVNklVijP

[
2δk

iT j lmn + T ijpqmnΩpkΩql

]
(2.2.27)

The tensor T klmnij belongs to the 315 representation while T ijlm is in the 36⊕315. It

is possible to write these two tensors in terms of two pseudoreal, symplectic traceless,

tensors A1
ij ∈ 35 and A2

i,jkl ∈ 315 as

T klmnij = 4A2
q,[klmδn]

[iΩj]q + 3A2
p,q[klΩmn]Ωp[iΩj]q,

Ti
jkl = −ΩimA2

(m,j)kl − Ωim

(
Ωm[kA1

l]j + Ωj[kA1
l]j +

1

4
ΩklA1

mj

)
.

(2.2.28)

Tensors A1 and A2 satisfy A1
[ij] = 0, A2

i,jkl = A2
i,[jkl] and A2

[i,jkl] = 0. The scalar

potential then can be written as

Vscalar = g2

[
3|A1

ij |2 − 1

3
|A2

i,jkl|2
]
, (2.2.29)

where | |2 stands for the contraction of all indices.
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2.3 Scherk-Schwarz reduction

In contrast to the Kaluza-Klein reduction here the dependence on internal coor-

dinates is hidden in so-called twist matrices WA
B̄(X) that are subject to various con-

straints. For the case at hand we consider the whole extended space as an internal space

and let the remained D-dimensional space to be whatever it wants to be [102, 103]:

V A(XM , x(D)) = WA
B̄(X)V B̄(x(D)), (2.3.1)

where V A is a generalised vector on extended space defined by its transformation (1.5.13)

and WA
B̄

is the Scherk-Schwarz generalised twisting matrix. The anzats for tensor of

higher rank is introduced in a similar way.

From now on we will not include the dependence on x(D) since it does not affect the

extended geometry formalism. The barred indices are the twisted ones (flat) and the

unbarred are the untwisted ones (curved). To simplify notation we will use the unbarred

indices for the flat space in cases where this does not cause confusion.

The important feature of the Scherk-Schwarz reduction is that it allows non-abelian

gauge groups. Substituting the anzatz (2.3.1) into the local transformations of the initial

theory that are given by the generalised Lie derivative (1.5.13) we obtain the following

transformation of the vector QA

δΣQ
A = (LΣQ)A = WA

B̄XK̄L̄
B̄ΣK̄QL̄. (2.3.2)

Here the coefficients XMN
K are defined as

XĀB̄
C̄ ≡ 2WC

C̄∂[ĀWB̄]
C + Y C̄D̄

M̄B̄WC
M̄∂D̄WĀ

C (2.3.3)

with the antisymmetrisation factor of 1/2, and are assumed to be constants. One

should note that in the case of extended geometry these “structure constants” are not

antisymmetric.

We recall the closure constraint (1.5.14)

L[X1,X2]CQ
M − [LX1 ,LX2 ]QM = −FM0 . (2.3.4)

Assuming that XMN
K is constant and substituting the twist anzats (2.3.1) and the

explicit from of F0 [83, 84] this implies

1

2

(
XĀB̄

C̄ −XĀB̄
C̄
)
XC̄Ē

Ḡ −XB̄Ē
C̄XĀC̄

Ḡ +XĀĒ
C̄XB̄C̄

Ḡ = 0 (2.3.5)
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for any X1 and X2. If we define XMN
K = (XM )N

K this can be written in the suggestive

form

[XĀ, XB̄] = −X[ĀB̄]
C̄XC̄ . (2.3.6)

This allows one to interpret the structure constants as the components of the generators

XM of the algebra of transformations

δΣQ
Ā = XK̄L̄

ĀΣK̄QL̄ (2.3.7)

in adjoin representation. By making use of the closure constraint (2.3.6) we find the

Jacobiator

[δΣ1 , [δΣ2 , δΣ3 ]]V F̄ + c.p. =(
X[ĀB̄]

ĒX[ĒC̄]
Ḡ +X[C̄Ā]

ĒX[ĒB̄]
Ḡ +X[B̄C̄]

ĒX[ĒĀ]
Ḡ
)
XḠD̄

F̄ΣĀ
1 ΣB̄

2 ΣC̄
3 V

D̄,
(2.3.8)

where c.p. denotes cyclic permutations. The right hand side of this equation is the

Jacobi identity of the antisymmetric part X[MN ]
K projected into the algebra genera-

tor. For the consistency of the algebra of transformations the right hand side should

vanish. We emphasise that the Jacobi identity for X[MN ]
K needs only to hold after the

projection.

We need XMN
K to be not only constants but also invariant objects under the local

symmetry transformations. As it will be shown later it is necessary so that the reduced

action does not depend on the internal coordinates and transforms as a scalar. As it

follows from the definition (2.3.2) the structure constants XMN
K should transform as

a generalised tensor

δΣXĀB̄
C̄ = ΣĒ

(
[XĒ , XĀ]B̄

C̄ +XĒĀ
D̄(XD̄)B̄

C̄
)
. (2.3.9)

This leads to the final quadratic constraint on the structure constants

[XĀ, XB̄] = −XĀB̄
C̄XC̄ . (2.3.10)

We conclude from this constraint that the symmetric part ZMN
K = X(MN)

K should

vanish when projected into a generator

ZĀB̄
C̄XC̄ = 0 . (2.3.11)

The quadratic constraint (2.3.10) on its own is enough to ensure that the Jacobiator

(2.3.8) vanishes and the algebra is closed. This can be seen by considering the Jacobi

identity for the commutator appearing in (2.3.10). Hence the closure condition can be
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M-theory

Extended geometry

N = 1 D = 11 Supegravity

Ungauged supergravity Gauged supergravity

sec
tio

n

conditio
n

low energy

gauging

Generalised
Scherk-Schwarz

reduction

reduction
on torus
Tn

reduction in presence of
– p–form fluxes

∫
Σ
F (p) = CΣ

– torsion (geometric flux)
dea = T a

bce
b ∧ ec

– non-geometric flux

Figure 2.2: This diagram demonstrates relations between reductions of N = 11 supergravity
and Scherk-Schwarz reductions in the extended geometry formalism.

relaxed from the section condition that restricts fields and their products to a condition

on the structure constants XMN
K that define the algebra of gauge transformations.

2.4 Algebraic structure

The general form of the structure constants XAB
C is always the same and is given

by (2.3.3). Under a particular U-duality group these split into certain representations

that depend on the duality group and are identified with gaugings. In this section we

give an explicit derivation of the embedding tensor and all gaugings starting from XAB
C

in its general form.

2.4.1 SL(5): reduction to 7 dimensions

The extended space formalism introduced in [82] starts with 4 compact dimensions

and rewrites the low energy action in an SL(5) invariant form. The generalised metric

parametrises the coset SL(5)/SO(5) and has 14 components, given by the metric and

the 3-form field in 4 dimensions. In Section 1.5 it was shown in details that the ordinary

coordinates xµ and the dual ones yαβ can be collected into an SL(5)-covariant extended

coordinate

Xab =

[
X5µ

Xµν

]
=

[
xµ

1
2ε
µναβyαβ

]
, (2.4.1)
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where εµναβ (ε1234 = 1) is the 4-dimensional alternating symbol. Then the generalised

Scherk-Schwarz twisting (2.3.1) takes the following form

Qab(Xmn, x(D)) = W ab
c̄d̄ (X)Qc̄d̄(x(D)). (2.4.2)

The twisting matrix W ab
c̄d̄

is written in the representation 10 of SL(5) and can be

decomposed into a product of two matrices V a
c̄ in the fundamental representation

W ab
c̄d̄ =

1

2

(
V a
c̄ V

b
d̄ − V

a
d̄ V

b
c̄

)
. (2.4.3)

Recall the explicit form of the invariant tensor YMN
KL from the table (1.5.15) where

all relevant cases are collected

YMN
PQ = εaMN εaPQ =⇒ 1

8
εamnklεapqrs, (2.4.4)

where each antisymmetric pair of indices M = [ab] that will be a dummy index in

XMN
K carries a factor of one half. Then the would-be structure constants written in

terms of the twist matrices read

Xc̄d̄,ēf̄
āb̄ =

1

2

(
W āb̄
mn∂c̄d̄W

mn
ēf̄ −W

āb̄
mn∂ēf̄W

mn
c̄d̄ +

1

4
εāb̄̄ij̄k̄εk̄p̄q̄c̄d̄W

p̄q̄
mn∂īj̄W

mn
āb̄

)
=

1

2
W āb̄
mnW

pq

c̄d̄
∂pqW

mn
ēf̄ +

1

2
δāb̄ēf̄∂mnW

mn
c̄d̄ + 2W āb̄

mnW
mp

ēf̄
∂pqW

qn

c̄d̄
.

We encounter our first constraint on the Scherk–Schwarz twist element which is that

these objects are constant. However, an immediate difference to the O(d, d) case is that

these “structure constants” are not anti-symmetric in their lower indices – to correct

this misnomer we shall refer to them as gaugings rather than structure constants. By

making use of the invariance of the epsilon tensor and the decomposition (2.4.3), the

symmetric part of the gaugings can be extracted as

Xc̄d̄,ēf̄
āb̄ +Xēf̄ ,c̄d̄

āb̄ =
1

8
ε̄ic̄d̄ēf̄ ε

j̄m̄n̄āb̄V ī
p∂m̄n̄V

p
j̄
. (2.4.5)

To see the full content of the gauging it is in fact helpful to decompose according (2.4.3).

One finds that

Xc̄d̄,ēf̄
āb̄ = 2Xc̄d̄,[ē

[āδ
b̄]

f̄ ]
, (2.4.6)

with

Xc̄d̄,ē
ā =

1

2
V ā
m∂c̄d̄V

m
ē + (T p̄q̄ )m̄n̄r̄[c̄

(
V r̄
t ∂m̄n̄V

t
d̄]

)
(T q̄p̄ )āē −

1

10
δāēV

m̄
t ∂m̄[c̄V

t
d̄] , (2.4.7)

in which (T q̄p̄ )āē and (T p̄q̄ )m̄n̄r̄c̄ are the SL(5) generators in the 5 and 10 respectively (see
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appendix). This result can be expressed as

Xc̄d̄,ē
ā = δā[c̄Yd̄]ē −

10

3
δā[c̄θd̄]ē − 2εc̄d̄ēm̄n̄Z

m̄n̄,ā +
1

3
θc̄d̄δ

ā
ē , (2.4.8)

where Yc̄d̄ = Yd̄c̄ is in the 15 and is given by

Yc̄d̄ = V m̄
t ∂m̄(c̄V

t
d̄) , (2.4.9)

and Zm̄n̄,p̄ = −Z n̄m̄,p̄ is in the 40 such that Z [m̄n̄,p̄] = 0 is given by

Zm̄n̄,p̄ = − 1

24

(
εm̄n̄īj̄k̄V p̄

t ∂īj̄V
t
k̄ + V

[m̄
t ∂īj̄V

|t|
k̄
εn̄]̄ij̄k̄p̄

)
, (2.4.10)

and θc̄d̄ = −θd̄c̄ is in the 10 and is given by

θc̄d̄ =
1

10

(
V m̄
t ∂c̄d̄V

t
m̄ − V m̄

t ∂m̄[c̄V
t
d̄]

)
. (2.4.11)

It is note worthy that although 10⊗ 24 = 10⊕ 15⊕ 40⊕ 175 the 175 makes no

appearance in the gaugings produced by Scherk–Schwarz reduction.

2.4.2 SO(5, 5): reduction to 6 dimensions

Maximal supergravity in 6 dimensions possesses a global duality group E5(5) =

SO(5, 5). The local group of the theory is SO(5) × SO(5). Thus the target space of

scalar fields of the theory is given by the coset

SO(5, 5)

SO(5)× SO(5)
. (2.4.12)

The corresponding extended space of the Berman-Perry formalism has 16 dimensions

and the representation RV appears to be the spinorial representation of SO(5, 5).

The invariant tensor of the duality group is given by the contraction of two gamma

matrices in the Majorana representation

YMN
KL =

1

2
ΓiMNΓiKL, (2.4.13)

that are thus symmetric and real. Here capital Latin indices run from 1 to 16 and small

Latin indices run from 1 to 10 labelling the vector representation of SO(5, 5). Since

the generators tα of the duality group in the spinorial representation are given by Γij ,

where the multiindex α is represented by the antisymmetric pair of vector indices, the
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projector with correct normalisation is defined as

PN
M
L
K = − 1

32
(Γij)N

M (Γij)L
K . (2.4.14)

All gaugings of the maximal supergravity appear as components of the structure

constants (or the embedding tensor). Start with the trace part of the structure constants

(2.3.3)

XM̄N̄
N̄ = 4∂CW

C
M̄ +W C̄

C ∂M̄W
C
C̄ =: −16θM̄ . (2.4.15)

By making use of the algebra of gamma matrices the symmetric part of the gaugings

can be extracted as

X(AB)
C = ΓiABZ

iC ,

Z īC̄ =
1

4
Γj̄C̄D̄Gj̄

i∂D̄Gi
ī,

(2.4.16)

where the twist matrices in the vector representation Gi
j̄ are defined as

ΓiABGi
j̄ = Γj̄C̄D̄WC̄

AWD̄
B. (2.4.17)

According to its indices the gauging ZiB is in the 16⊗ 10 = 16⊕ 144 representation

of SO(5, 5). Separating the 16 part of the gauging we obtain the trombone gauging θM

ZiMΓiMN = −4θN . (2.4.18)

What is left lives in the 144 representation and is defined as

θiM = −ZiM − 2

5
ΓiMNθN . (2.4.19)

After some algebra (see Appendix A) the structure constants can be rewritten in terms

of only these objects

XMN
K = −θiLΓjLM (Γij)N

K − 1

10
(Γij)M

L(Γij)N
KθL − δKN θM . (2.4.20)

This has the same structure as the embedding tensor of the maximal supergravity in 6

dimensions

XMN
K ∈ 16⊕ 144. (2.4.21)

with gaugings explicitly written in terms of the twist matrices as

θīM̄ = −1

4
Γj̄M̄D̄Gj̄

i∂D̄Gi
ī − 2

5
ΓīM̄N̄θN ,

θN̄ = − 1

16
ΓĀD̄īΓj̄ĀN̄Gī

i∂D̄Gi
ī.

(2.4.22)

49



It is straightforward to check that the second line here is the same as (2.4.15) using the

definition of Gi
ī and the relation

Gj̄
j∂ĀGj

ī =
1

8
ΓB̄K̄īΓj̄C̄K̄WC

C̄∂ĀWB̄
C . (2.4.23)

2.4.3 E6(6): reduction to 5 dimensions

In five dimensions vector fields of maximal supergravity transform in the 27 repre-

sentation of the global duality group E6(6). The scalar fields transform non-linearly and

are parametrised by elements of the coset

E6(6)

USp(8)
. (2.4.24)

The group USp(8) is the R-symmetry group of the theory.

The U-duality invariant formalism of the extended geometry provides the extended

space to be 27 dimensional and the generalised vector indices A,B . . . label the 27

representation of E6(6). The invariant tensor is given by the E6(6) symmetric invariant

tensor dMNK

YMN
RS = 10dMNKdKRS , (2.4.25)

that is subject to the following useful identities

dMPQd
NPQ = δNM ,

dMRSd
SPTdTNUd

URQ =
1

10
δP(Mδ

Q
N) −

2

5
dMNRd

RQP ,

dMPSd
SQTdTRUd

UPV dV QWd
WRN = − 3

10
δNM .

(2.4.26)

The trace part of the structure constant is identified with the trombone gauging θM

and reads

XM̄N̄
N̄ = 9∂CW

C
M̄ +W C̄

C ∂M̄W
C
C̄ = −27θM̄ . (2.4.27)

The intertwining tensor is given by the symmetric part of the structure constant ZMN
K =

X(MN)
K and is parametrised by the tensor ẐMN in the 27⊕ 351

ZMN
K = dMNRẐ

RK (2.4.28)

Taking the symmetric part of (2.3.3) and by making use of the identities (2.4.26) we

have for the symmetric part

ẐM̄N̄ = 5dM̄K̄L̄WC
L̄ ∂K̄W

N̄
C (2.4.29)
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that has the same structure as (2.4.16) if one notices that

WM
M̄ dM̄K̄L̄ = dMKLW K̄

KW
L̄
L (2.4.30)

since the twist matrices interpolate between the barred and the unbarred indices.

Subtracting the part of the tensor (2.4.29) that is symmetric in MN we are left with

the gauging in the 351 and the trombone gauging

ZMN = ẐMN +
15

2
dMNKθK ,

θN̄ = 5 dM̄B̄L̄dM̄N̄K̄W
L
L̄ ∂B̄W

N̄
L .

(2.4.31)

Thus the structure constant XMN
K is in the 27⊕ 351 representation of E6(6).

2.5 Scalar potential

The effective potential V = V (MAB, ∂KMAB) that depends on the generalised met-

ric MAB and its derivatives after twisting should become the scalar potential for the

appropriate gauged SUGRA. It appears that one must add an extra term of type

Y AB
MN∂AEΞ

M∂BEΘ
NδΞΘ, (2.5.1)

where EΞ
M is a generalised vielbein and δΞΘ is the Kronecker delta. It can be always

added to the action since it is zero up to the section condition. This term is necessary

for two major reasons. Firstly, this term allows to write the action in terms of the

structure constants XMN
K . Secondly, this terms provides the action that is invariant

under gauge transformations (2.3.7). Not to be confused, one should think of this term

as a term that has always been in the action but has usually been dropped because of

the section condition. After the section condition is relaxed it is important to add this

term since it provides the invariance of the action.

2.5.1 D = 7 supergravity

The effective potential that defines the SL(5) covariant dynamics has the following

form

V =
√
g

(
1

2
V1 −

1

2
V2 +

1

4
V3 +

1

12
V4 + V5

)
(2.5.2)
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where

V1 = MMN∂MM
KL∂NMKL, V2 = MMN∂MM

KL∂KMNL ,

V3 = −∂MMMP
(
MRS∂PMRS

)
, V4 = MMN

(
MRS∂MMRS

) (
MKL∂NMKL

)
V5 = εaMN εaPQE

Â
RM

RSEB̂S ∂ME
P
Â
∂NE

Q

B̂
,

(2.5.3)

with the generalised metric (see Section 1.5) and the vielbein EÂM where the hatted

Latin indices label flat coordinates

MMN =


gµν + 1

2CµαβCν
αβ 1√

2
Cνρσ

1√
2
Cγδµ gγδ,ρσ

 , MMN = EÂMδÂB̂E
B̂
N . (2.5.4)

We now apply the Scherk–Schwarz ansatz to the terms in the action to find the

reduced theory. We will find it convenient to work not with the 10 × 10 matrix big

MMN but instead with the 5× 5 little mmn defined by

MMN = Mmn,pq = mmpmnq −mmqmpq ,

MMN = Mmn,pq = mmpmnq −mmqmpq .
(2.5.5)

The metric in the fundamental representation is given by

mmn =

(
g−1/2gµν Vν

Vµ det g1/2(1 + VµVνg
µν)

)
(2.5.6)

where V µ = 1
6ε
µνρσCνρσ and εµνρσ is the alternating tensor. This object has determinant

detmmn = det g−
1
2 . In terms of little m the terms in the potential reads1

V1 =
3

2
mprmqs∂pqm

mn∂rsmmn −
1

2
mprmqsTr(m−1∂pqm)Tr(m−1∂mnm) ,

V2 = mprmqs∂pqm
kl∂ksmrl − ∂pqmpk∂klm

lq ,

V3 = 4mmqmij∂pqmij∂mkm
kp,

V4 = 8mprmqsTr(m−1∂pqm)Tr(m−1∂mnm) . (2.5.7)

For little m the Scherk–Schwarz ansatz is then

mmn = V ā
mmāb̄V

b̄
n . (2.5.8)

1We found the computer algebra package Cadabra [104, 105] a useful tool for verifying some of the
more laborious manipulations in this section
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Let us introduce some notation:

Λāb̄c̄d̄ = V ā
m∂b̄c̄V

m
d̄ , Λāb̄c̄ā = χb̄c̄ , Λāāb̄c̄ = ψb̄c̄ . (2.5.9)

Assuming that ∂mnmāβ = 0 we obtain

V1 = −māb̄mc̄d̄
[
3Λēāc̄f̄Λf̄ b̄d̄ē + 2χāc̄χb̄d̄ + 3mēf̄m

ḡh̄Λēāc̄ḡΛ
f̄
b̄d̄h̄

]
V2 = −māb̄mc̄d̄

[
2Λēf̄ āc̄Λ

f̄
d̄b̄ē + Λēf̄ āc̄Λ

f̄
ēb̄d̄ − Λēf̄ āb̄Λ

f̄
ēc̄d̄ + 2ψēc̄Λ

ē
d̄āb̄ − ψāc̄ψb̄d̄

]
−māb̄mc̄d̄

[
mēf̄m

ḡh̄Λēāc̄ḡΛ
f̄
h̄d̄b̄

]
V3 = −8māb̄mc̄d̄

[
χēāΛ

ē
b̄c̄d̄ + χb̄c̄ψād̄

]
V4 = 32māb̄mc̄d̄χāc̄χb̄d̄ (2.5.10)

for the original terms in the action. For the extra term (which vanishes upon the strong

constraint) we find

V5 = −εāb̄c̄d̄ēεāf̄ ḡh̄ī
(
mp̄̄imq̄ḡ

)
Λf̄ b̄c̄p̄Λ

h̄
d̄ēq̄

= −4(ψāb̄m
āb̄)2 + 4māb̄mc̄d̄

[
ψāc̄ψb̄d̄ + 2ψēc̄Λ

ē
d̄āb̄ + Λēf̄ āb̄Λ

f̄
ēc̄d̄ − Λēf̄ ād̄Λ

f̄
ēc̄b̄

]
.

(2.5.11)

To proceed we shall simplify matters by assuming

det g = 1 , detm = 1 , detV = 1 , (2.5.12)

and further that the trombone gauging vanishes. Then we have the following identifi-

cations:

χāb̄ = 0 , ψ[āb̄] = 0 , , Yāb̄ = ψ(āb̄) , Z b̄c̄,ā = − 1

16
Λād̄ēf̄ ε

d̄ēf̄ b̄c̄ . (2.5.13)

Using the invariance of the ε-tensor we then find the following relations:

64Z āb̄,c̄Z d̄ēf̄mād̄mb̄ēmc̄f̄ =Λāb̄c̄d̄Λ
ē
f̄ ḡh̄māēm

b̄f̄mc̄ḡmd̄h̄ − 2Λāb̄c̄d̄Λ
ē
f̄ ḡh̄māēm

b̄f̄mc̄h̄md̄ḡ

64Z āb̄,c̄Z d̄ēf̄mād̄mb̄c̄mēf̄ =Λāb̄c̄d̄Λ
b̄
āēf̄m

c̄f̄md̄ē − 1

2
Λāb̄c̄d̄Λ

d̄
ēf̄ ām

b̄ēmc̄f̄

− Λāb̄c̄d̄Λ
b̄
āēf̄m

c̄ēmd̄f̄ − 2Λāb̄c̄d̄Λ
b̄
ēf̄ ām

c̄ēmd̄f̄

+
1

2
Λāb̄c̄d̄Λ

ē
f̄ ḡh̄māēm

b̄f̄mc̄ḡmd̄h̄ − Λāb̄c̄d̄Λ
ē
f̄ ḡh̄māēm

b̄f̄mc̄h̄md̄ḡ .

(2.5.14)
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Putting things together we then find that

1

12
V1 −

1

2
V2 −

1

8
V5 = −32Vgauged + Λāb̄c̄d̄Λ

b̄
āēf̄

(
mc̄ēmd̄f̄ −mc̄d̄mēf̄

)
(2.5.15)

where Vgauged is the known potential for the scalars in gauged supergravity given by

[100]:

Vgauged =
1

64

(
2māb̄Yb̄c̄m

c̄d̄Yd̄ā − (māb̄Yāb̄)
2
)

+ Z āb̄,c̄Z d̄ē,f̄
(
mād̄mb̄ēmc̄f̄ −mād̄mb̄c̄mēf̄

)
.

(2.5.16)

That is to say we have reproduced exactly the potential for the scalar fields expected

for gauged supergravity up to the term

Λāb̄c̄d̄Λ
b̄
āēf̄

(
mc̄ēmd̄f̄ −mc̄d̄mēf̄

)
, (2.5.17)

which, however, is a total derivative and after some algebra can be written as

2∂kl

(
mpkmq̄l̄V

[q
q̄ ∂pqV

l]

l̄

)
. (2.5.18)

It is worth remarking that the additional term in the Lagrangian V5 was vital to achieve

correct cancellations and contributions to this result.

It is natural to ask whether the assumption that the trombone gauging vanishes

is actually necessary; could one obtain an action principle for a trombone gauged su-

pergravity? From the above considerations it seem likely that an appropriate a scalar

potential could be deduced. However, the trombone symmetry is only an on-shell sym-

metry of the full supergravity action and so to make such a conclusion it would be vital

to include the other supergravity fields (i.e. the gauge and gravity sectors) in a duality

symmetric fashion.

Now we perform a variation of the action under a generalised diffeomorphism to find

δV = G0 + . . . (2.5.19)

in which the ellipsis indicates total derivative terms and G0 vanishes upon invoking the

section condition.

By substituting the Scherk–Schwarz ansatz to the action we obtain the action for

the gauged supergravity (2.5.16). This can be written in terms of Xmn,k
l as follows

Vgauged =
1

64

(
3Xmn,r

sXpq,s
rmmpmnq −Xn

mp,qX
m
nr,sm

prmqs
)

+

+
1

96

(
Xmn,r

sXpq,t
ummpmnqmrtmsu +Xmp,q

nXnr,s
mmpqmrs

)
.

(2.5.20)
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Since we understand Xmn as a generator of the algebra it does not transform under

gauge variation while the transformation of the metric mab reads

δξm
ab = (Xkl,m

ammb +Xkl,m
bmam)ξkl. (2.5.21)

Thus we find the gauge transformation of the action to be

δξV =
1

24
Xa[b,c]

dXdm,n
aXkl,p

bmcpmmnξkl. (2.5.22)

The action of the gauged supergravity transforms as a scalar under generalised gauged

transformation if θmn = 0. Indeed, the expression above becomes

δξV =− 1

12
εabcpqZ

pq,dδa[dYm]nXkl,p
bmcpmmnξkl =

= − 1

24

(
εabcpqZ

pq,aYmnm
mn − εabcpqZpq,dYdnman

)
Xkl,p

bmcpξkl = 0.

(2.5.23)

The first term here is zero due to Z [ab,c] = 0 and the second is zero because of the

quadratic constraint

Zmn,pYpq = 0. (2.5.24)

Hence, the generalised gauge transformation of the action is zero if one drops the

trombone gauging. The trombone gauging does not leave the action invariant as it

should do since it corresponds to the on–shell symmetry.

2.5.2 D = 6 supergravity

The effective potential in six dimensions is given by [83]

Veff =
1

16
MMN∂MM

KL∂NMKL −
1

2
MMN∂NM

KL∂LMNK+

+
11

1728
MMN (MKL∂MMKL)(MRS∂NMRS) + 2YMN

KL ∂MEΘ
K∂NEΞ

LδΞΘ,

(2.5.25)

where the extra term is included. Here the 16×16 matrix MKL is the generalised metric

and it is written in terms of the metric gµν and the RR 3-form field Cµαβ

M =
1
√
g


gµν + 1

2Cµ
ρσCνρσ + 1

16XµXν
1√
2
Cµ

ν1ν2 + 1
4
√

2
XµV

ν1ν2 1
4g
−1/2Xµ

1√
2
Cµ1µ2

ν + 1
4
√

2
V µ1µ2Xν gµ1µ2,ν1ν2 + 1

2V
µ1µ2V ν1ν2 1√

2
g−1/2V µ1µ2

1
4g
−1/2Xν

1√
2
g−1/2V ν1ν2 g−1

 ,

(2.5.26)
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where the small Greek letters here run from 1 to 5 labelling 5 compact directions and

V ρσ =
1

3!
ερσµνωCµνω, Xµ = CµνρV

νρ. (2.5.27)

The matrix EΞ
K is the vielbein for MMN = EΘ

MEΞ
NδΘΞ and the capital Greek

indices run from 1 to 16 labelling flat spinorial indices.

For the convenience of notations we define the object

fĀB̄
C̄ = WC

C̄∂ĀW
C
B̄, (2.5.28)

where WC
B̄ is the twist matrix introduced in (2.3.1). Then using the definition (2.3.3)

the structure constant can be written as

XMN
K = fMN

K − fNMK + Y KL
BN fLM

B, (2.5.29)

that us true for the extended geometry formalism in any dimension.

From now on we assume that the trombone gauging vanishes and that the matrix

MMN is unimodular. The latter can be always arranged by rescaling the generalised

metric by g = det(gµν). The only effect this has on the potential is change in the

coefficients of the terms proportional to derivatives of the determinant. Summarising

we have

θM = 0, detW = 1,

fAB
A = 0, fAB

B = 0,

∂CW
C
B̄ = 0.

(2.5.30)

In cases when it does not confuse the reader the bar notation is dropped to make

expression less heavy. In all expressions which include terms with both barred and

unbarred indices these are treated carefully. One should remember that such quantities

like XMN
K , fMN

K or gaugings always have flat barred indices and not be confused if

they appear without bar. Taking this into account, the effective potential is given by

Veff = V1 + V2 + V3 + SC, (2.5.31)
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where

V1 = −1

8
MMNfNP

LfML
P +MMNfMP

LfLN
P ,

V2 =
1

2
MMNfPM

LfLN
P ,

V3 = MMNMKLMRS

(
1

8
fMK

RfNL
S − 1

2
fKM

RfNL
S

)
,

SC =
1

2
YMN
KL fMR

KfNS
LMRS .

(2.5.32)

By integrating ∂P and ∂L by part in V2 it can be shown that this term is zero up to a

full derivative. To proceed further and to be able to use gamma matrices algebra we

need to define objects in the vector representation

fAj
i =

1

8
(Γj

i)K
LfAK

L,

mīj̄Γ
j̄ĀB̄ = ΓīR̄S̄M

R̄ĀM S̄B̄,

XMi
j =

1

8
(Γi

j)K
LXML

K

(2.5.33)

By making use of these definitions the part V3 can be written as

V3 =
1

4
(ΓbΓ

n)NLfKi
jfNm

bmimmjnM
KL =

1

16
XMi

jXNk
lMMNmikmjl =

1

32
XMR

KXNS
LMMNMRSMKL.

(2.5.34)

Indeed, the first two lines of (2.5.33) imply that

fMK
RfNL

SMRSM
MNMKL = 2fMi

jfNm
nMMNmnjm

mi,

fKM
RfNL

SMRSM
MNMKL =

1

2
(Γnb)

N
LfKi

jfNm
bmimmjnM

KL.
(2.5.35)

These two equalities lead to the first line in (2.5.34). The definitions (2.5.28) and (2.3.3)

together with the condition θM = 0 allow to write the structure constants XMN
K in

terms of fAB
L

4ZiC = ΓiABfAB
C ,

XMN
K =

1

4
ΓiABΓjLM (Γij)N

KfAB
L.

(2.5.36)

Note, that this relation can not be inverted i.e. it is impossible to write fAB
C in terms

of XMN
K and just substitute it into the potential. Basically, this follows from the first

line of the equation above, that includes only symmetric part. Finally, substituting the

last line of the equation (2.5.33) into the second line of (2.5.34) and using the identities

above one exactly recovers the first line in (2.5.34).
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To obtain the term V1 + SC one may use the following relations

Y RL
SMXKR

S = −3XKM
L,

Y RL
SMfKR

S = −3fKM
L,

(2.5.37)

that follow from the explicit form of the structure constant (2.4.20), relation between

XMN
K and fMN

K (2.5.29), identities (1.5.16) involving the invariant tensor Y KL
MN and

the condition θM = 0. Then the term V1 + SC of the effective potential can be written

as

V1 + SC = −1

8
XMK

LXNL
KMMN . (2.5.38)

Indeed, substituting (2.5.29) into the expression above one encounters exactly V1 + SC

plus a term, proportional to V2, that is a full derivative.

Finally, the effective potential can be recast in the following form

Veff = −1

8
XMK

LXNL
KMMN +

1

32
XMR

KXNS
LMMNMRSMKL. (2.5.39)

This expression reproduces exactly the scalar potential for maximal gauged supergravity

in D = 6 dimensions up to a prefactor

Veff = 6Tr

[
T âT̃ â − 1

2
T T̃

]
= 6Vscalar. (2.5.40)

The details of this calculation are provided in Appendix B.1.

The effective potential (2.5.39) is invariant under transformations (2.3.7) because of

the quadratic constraint (2.3.10) (see Appendix B).

2.5.3 D = 5 supergravity

The low energy effective potential for the E6(6) invariant M-theory has the same

form as in the SO(5, 5) case up to coefficients [83]

Veff =
1

24
MMN∂MM

KL∂NMKL −
1

2
MMN∂NM

KL∂LMNK+

+
19

9720
MMN (MKL∂MMKL)(MRS∂NMRS)− 1

2
YMN
KL ∂MEΘ

K∂NEΞ
LδΞΘ.

(2.5.41)
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We again add the term proportional to the section condition that includes the vielbein

EΘ
M = (dete)−1/2


eµ
i − 1√

2
eµ
jCji1i2

1
2eµ

i3U + 1
4eν

i3CµjkV
νjk

0 eµ1
[i1e

µ2
i2] − 1√

2
eµ1

j1e
µ2
j2V

j1j2i3

0 0 (dete)−1ei3µ3

 , (2.5.42)

where the capital Greek letters now run from 1 to 27, the small Latin and Greek indices

run from 1 to 6 labelling curved and flat space respectively. The fields U and V ijk are

defined as

U =
1

6
εijklmnCijklmn,

V ikl =
1

3!
εiklmnjCmnj .

(2.5.43)

Here the 6-form field Cijklmn is a new field that was not present in the previous example

because the dimension was lower than 6.

Using the same notations for fMN
K as in the previous subsection and setting

detM = 1 and θM = 0 we have for the twisted effective potential

Veff = V1 + V2 + V3 + SC, (2.5.44)

with

V1 = − 1

12
MMNfNP

LfML
P +MMNfMP

LfLN
P ,

V2 =
1

2
MMNfPM

LfLN
P ,

V3 = MMNMKLMRS

(
1

12
fMK

RfNL
S − 1

2
fKM

RfNL
S

)
,

SC =
1

2
YMN
KL fMR

KfNS
LMRS .

(2.5.45)

Again the part V2 is the full derivative and can be dropped.

It is straightforward to check the following identities

Y RL
SMXKR

S = −5XKM
L,

Y RL
SMfKR

S = −5fKM
L,

Y KA
BL XAN

B = XLN
K + 4XNL

K ,

(2.5.46)

that can be derived exactly in the same fashion as (2.5.37). The analogue of the second

line of (2.5.33) is

MM̄N̄d
N̄K̄L̄ = dM̄N̄R̄M

N̄K̄M R̄L̄ (2.5.47)
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and implies that the indices of the invariant tensor are raised and lowered by the gen-

eralised metric. This is in agreement with the definition of the unimodular matrix

MMN = VMijVNklΩikΩjl (2.5.48)

and the following representation of the invariant tensor [99]

dMNK = VMijVNklVKmnΩjkΩlmΩni (2.5.49)

if one takes into account the condition VMijΩij = 0.

Using the identities (2.5.46), the definition (2.5.47) and the last line of (1.5.16) we

deduce for the effective potential

Veff =− 1

12
XMK

LXNL
KMMN +

1

12
XMR

KXNS
LMMNMRSMKL+

+
1

10
XRM

KXNS
LMMNMRSMKL.

(2.5.50)

The first term can be verified using the same technique as in the previous section.

Namely, substituting the structure constant XMN
K from (2.5.29) and taking into ac-

count the identities (2.5.46) one obtains that the first term in the equation above is

V1 + SC plus a full derivative term.

The derivation of the second and the third term is longer but straightforward. Lets

sketch the idea here on the example of the second term XMR
KXNS

LMMNMRSMKL.

Substituting here the expression (2.5.29) and expanding the brackets one obtains terms

of the types

fMR
KfNS

LMMNMRSMKL, fRM
KfNS

LMMNMRSMKL

fMR
KY LA

BNfAS
BMMNMRSMKL, fRM

KY LA
BNfAS

BMMNMRSMKL,

Y KQ
MP fQR

PY LA
BNfAS

BMMNMRSMKL.

(2.5.51)

Lets show that the third term in the second line is exactly proportional to the second

term in the first line. Substituting the invariant tensor YMN
KL = 10dMNPdPKL as using

the relation (2.5.47) two times one can verify the following identities

fRM
KY LA

BNfAS
BMMNMRSMKL = 10fRM

KdCLAdCBNfAS
BMMNMRSMKL =

10fRM
KdCBNfAS

BdKPQM
CPMAQMMNMRS =

10fRM
KfAS

BdPMJMJBdKPQM
AQMRS = fRM

KfAS
BYMJ

KQMABM
AQMRS =

− 5fRQ
JfAS

BMJBM
AQMRS ,

(2.5.52)

where the identity (2.5.46) was used in the last line. Using the same idea one simplifies
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the last line in (2.5.51). Finally, the contributions like the first term in the second line

of (2.5.51) coming from two last terms in (2.5.50) precisely cancel each other.

After long algebraic calculations it can be derived that the expression (2.5.50) is

up to a prefactor equal to the scalar potential of maximal gauged supergravity in 5

dimensions

Veff =
9

2
|Aij1 |

2 − 1

2
|Ai,jkl2 |2 =

3

2
Vscalar, (2.5.53)

where the | |2 stands for the contraction of all indices. To show this one expresses

the potential in terms of the T -tensor by making use the relation (2.2.27). Finally,

rewriting the T -tensor in terms of the A-tensor as (2.2.28) and using the properties

of the A-tensors one obtains the scalar potential of the maximal gauged supergravity.2

We refer the reader to Appendix B for the proof that the potential (2.5.50) is invariant

under gauge transformations (2.3.7).

2.6 Summary

The above results show that the idea of Scherk-Schwarz reduction works in detail

for D = 5, 6 and 7. The most interesting point to mention here is that geometry of the

extended space plays an important role in the picture presented above. It is not just a

Kaluza-Klein reduction where fields does not depend on internal coordinates. The ex-

tended space should be an extended geometry analogue of a parallelisable space so the

dependence on the dual coordinates should be of a particular form. These constraints

match the quadratic constraint on the embedding tensor of gauged supergravity. Al-

though there are many papers [41, 42, 85] considering geometry of the extended space

it is not fully understood how to describe this object. In this work we investigate a very

particular situation but we hope it may contribute to the full picture of the extended

geometry.

2These results were verified with the help of the computer algebra system Cadabra [104, 105]
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CHAPTER 3

BOUNDARY TERMS IN EXTENDED

GEOMETRY

3.1 Gibbons–Hawking formalism

The example of General Relativity where one first encounters a non-trivial contri-

bution from boundary terms, teaches us that the action is not just a simple way of

writing the equations of motion. In gravity the famous Gibbons-Hawking term that

results from ambiguity in variations of the canonical fields in the action, encodes the

thermodynamics of solutions. As an introductory example the Gibbons-Hawking term

of General Relativity that allows us to describe thermodynamics of black holes is taken.

An important feature of General Relativity that differentiates it from say a vector field

theory is that the boundary term cannot be written in terms of the canonical variables

of the theory (bulk metric). Instead it is defined in terms of geometric properties of the

boundary, i.e. the extrinsic curvature, which is related to the black hole entropy.

In this chapter we show that a similar situation takes place for the case of duality

invariant formulations of string theory. Firstly, the corresponding boundary term can

be written in terms of a normal to the boundary and the induced metric. Interestingly,

by making use of the semi-covariant derivative this expression can be written exactly in

the form of the (generalised) extrinsic curvature.

In the path integral approach to quantized fields one expresses the amplitude to go

from the field with configuration ϕ1 at time t1 to ϕ2 at t2 as

〈ϕ2, t2|ϕ1, t1〉 =

∫ ϕ(t2)=ϕ2

ϕ(t1)=ϕ1

DϕeiI[ϕ], (3.1.1)

where the integral is over all field configurations that take the values ϕ1 at time t1 and

ϕ2 at time t2. On the other hand the same quantity can be written in the following way

using the Hamiltonian (operator of evolution)

〈ϕ2, t2|ϕ1, t1〉 = 〈ϕ2|e−iH(t2−t1)|ϕ1〉. (3.1.2)

After rotation to imaginary time t2 − t1 = −iβ and taking the trace (sum over all
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ϕ = ϕ1 = ϕ2) one obtains:

Tr exp(−βH) =

∫
DϕeI[ϕ], (3.1.3)

where the path integral is now taken over all fields that are periodic with period β in

imaginary time. In a sense this integral describes quantum field system in a space with

one compact dimension.

An important observation is that the left-hand side of (3.1.3) is just the partition

function Z for the canonical ensemble consisting of the fields ϕ at temperature T = β−1.

Thus, one can describe thermodynamics of field-theoretical systems and define such

quantities as entropy and free energy.

The object that connects classical and quantum gravity is the black hole. On the

one hand it is a macroscopic object since it appears as a solution of the GR equations.

On the other hand a black hole produces quantum effects, e.g. the Hawking radiation.

According to Bekenstein and Hawking, this object has entropy proportional to the area

of the black hole [106]:

S =
1

4
A. (3.1.4)

This entropy was introduced to explain the phenomenon of Hawking radiation that is

basically a flux of particles emitted by a black hole. It is a pure quantum effect and

a black hole evaporates during this process. The spectrum of the radiated particles is

described by the black body spectrum. In the Hawking description of this process one

assumes that the mass of the black hole slowly changes adiabatically slowly i.e. there

is no back-reaction. This means that at every moment of time the radiation and the

black hole are (nearly) in thermodynamic equilibrium and that the black hole should

have well defined temperature.

Thermodynamics defines temperature as a measure of how energy changes with the

number of microstates corresponding to the given macrostate. Applying this definition

to black hole radiation, one encounters a paradox since according to the no-hair theorem

any black hole has only one microstate. This implies zero entropy in contradiction to

the Bekenstein formula.

String theory as a quantum theory of gravity has suggested a few ways of resolving

such paradoxes of black holes. For example the contradiction stated above coul be re-

solved by the proposition made by Strominger and Vafa in [107]. They have shown that

one may count microscopic configurations of strings and branes to obtain the Beken-

stein entropy. Another interesting approach that could explain black hole entropy is

Loop Quantum Gravity. In this approach one assumes that the space-time is funda-

mentally triangulated, i.e. consists of the simplest objects, triangles. In certain sense
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this solves the information paradox by identifying one macroscopic configuration of the

space-time with many different triangulations. These correspond to microstates in the

thermodynamical state [108, 109]. Finally, to resolve the information loss paradox in

the framework of AdS/CFT correspondence one suggests that all information about an

initial state of a collapsing object is returned by the Hawking radiation [110]. For a

review of the black hole thermodynamics see [111].

Going back to General Relativity one could calculate the black hole temperature

using (3.1.3). However, substituting the black hole solution to (3.1.3) one immediately

acquires a problem: the usual Einstein-Hilbert action for gravity

IEH =

∫ √
−gR (3.1.5)

equals zero for empty-space solutions (including black hole). This is a reflection of the

gauge nature of General Relativity and the same behaviour is observed in YM theories.

To resolve this difficulty one recalls that the action of general relativity contains

second derivatives of the metric gµν , that require us to set not only δgµν = 0 on the

boundary but also ∂αδgµν = 0. To fit the extra conditions to the conventional Euler-

Lagrange procedure a boundary term has to be added to the action.

It is useful to illustrate how this works in the simplest case of classical mechanics

[112]. Consider a particle moving in one dimensional space, parametrised by a coordi-

nate q, whose action is given by

I = −
∫
dtqq̈. (3.1.6)

Variation of the action leads to the following expression

δI = −
∫
dt (q̈δq + qδq̈) . (3.1.7)

Usually at this step the second term is integrated by part two times and the boundary

terms are neglected. However, the boundary condition δq̇ = 0 does not follow from

δq = 0. More accurately the variation is written as:

δI = −
∫
dt

[
q̈δq +

d

dt
(qδq̇)− q̇δq̇

]
= −

∫
dt

[
2q̈δq +

d

dt
(qδq̇)− d

dt
(q̇δq)

]
.

(3.1.8)

To end up with the ordinary equation of motion q̈ = 0, the second term should be
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somehow excluded. It can be compensated by introducing the following boundary term

Itot = −
∫
dtqq̈ +

∫
dt
d

dt
(qq̇). (3.1.9)

It is easy to check that now the variation of this action has the very familiar form:

δItot = −2

∫
dtq̈δq + 2(q̇δq)

∣∣t2
t1
, (3.1.10)

which after fixing δq = 0 on the boundary gives q̈ = 0.

An important feature of theories of this kind is that the action (3.1.9) can be written

in canonical variables

Itot = 2

∫
dtq̇q̇ (3.1.11)

with no second derivatives. On the contrary in the case of the Einstein-Hilbert action

the Gibbons-Hawking boundary term cannot be written in terms of canonical variables

in a covariant way. Instead it is written in terms of surface properties (first and second

fundamental form). And the total action for GR cannot be written nicely in the same

way as (3.1.11).

Let us show that the full action for GR has the following form

I[g] = IEH [g] + IB[g], (3.1.12)

where

IEH =

∫
M
d4x
√
gR;

IB = 2

∮
∂M

d3y
√
hK.

(3.1.13)

Here h is the metric on the boundary ∂M, K is the second quadratic form (extrinsic

curvature) of the boundary. Indeed, variation of the Einstein-Hilbert action gives (for

details see [113])

δIEH =

∫
M

√
−gd4x

[
Rµν −

1

2
Rgµν

]
+

∮
∂M

√
−hd3y

(
δ̄vµnµ

)
, (3.1.14)

where δ̄vµ is defined as:

δ̄vµ = gαβδΓµαβ − g
αµδΓβαβ (3.1.15)

and

gµνδRµν = δ̄vµ;µ. (3.1.16)

The “bar” notation was introduced to emphasize that δ̄vµ is not a variation of some
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quantity vµ. Finally, the vector nµ is the unit normal to the boundary ∂M.

Varying the boundary term we obtain

δIB =

∮
∂M

hαβδgαβ,µn
µ
√
−hd3y. (3.1.17)

Finally, taking into account that the following equality is true on the boundary

nµδ̄vµ = −hαβδgαβ,µnµ (3.1.18)

we end up with the familiar Einstein equations:

Rµν −
1

2
Rgµν = Tµν . (3.1.19)

Hence, we have shown that in general one has to add the Gibbons-Hawking boundary

term to the Einstein-Hilbert action for General Relativity. This term allows us to derive

equations of motion for the metric gµν consistently by the conventional Euler-Lagrange

procedure. An important implication of the boundary term is that the total action

(3.1.12) does not vanish for empty-space solutions like the black hole. Instead, it implies

that termodynamics of black holes is governed totally by the boundary term [106].

3.2 Black holes thermodynamics

Black holes are solutions of Einstein equations in the absence of matter Tµν = 0.

These objects are point-like and have a horizon, that is a boundary in the space-time

of external observer that does not allow anything to get out from the black hole. The

simplest example of such a solution is the Schwarzschild black hole described by the

following metric

ds2 = −
(

1− 2M

r

)
dt2 +

1

1− 2M
r

dr2 + r2dΩ2. (3.2.1)

This solution is stationary and spherically symmetric and describes a space-time with a

source at the point r = 0. For an external observer the horizon is given by the surface

r = 2M .

According to the no-hair theorem, a black hole could only be characterized by

three parameters: mass, angular momentum and charge. These correspond to the

Schwarzschild, Kerr (rotating) and Reissner–Nordström (charged) black holes [114].

The most general stationary metric for rotating charged black hole is the Kerr-Newmann

solution.
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To follow the analogy with M-theory consider the Reissner–Nordström solution char-

acterized by a charge Q

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2dΩ2. (3.2.2)

In this case the action for the electromagnetic field should be added:

I[A] = −
∫ √
−gd4xFµνF

µν . (3.2.3)

For a solution of the Maxwell equations, ∂µF
µν = 0 the integrand can be written as a

divergence:

F 2 = (2FµνAµ);ν (3.2.4)

and the action takes the same form as the Gibbons–Hawking term i.e. integral over the

boundary

−2

∮
FµνAµdΣν . (3.2.5)

From the previous section we known that on empty space solutions the total action

becomes just a boundary term. Thus the combined gravitational and electromagnetic

actions can be written as [115]

I = I[g] + I[A] = 2

∮
KdΣ−

∫ √
−gd4xFµνF

µν

= i16π2k−1(M −QΦ),

(3.2.6)

where the gauge transformed electromagnetic vector potential is taken to be Aa =

(Qr−1 − Φ)t;a and Φ = Qr−1
g is the scalar potential on the horizon. The integral in

(3.2.6) is taken over the surface near the horizon and κ = (4M)−1 is the surface gravity

of the black hole solution. The imaginary unit i comes from the factor
√
−g in the

surface measure.

Now returning to (3.1.3) we can study the thermodynamics of our black hole. At

first, let us mention the fact that the dominant contribution to the path integral comes

from such configurations of the metric g and the matter field φ which are close to

classical solutions (background) g0 and φ0. Expanding the action in Taylor series near

the background g0 and φ0 one obtains for the partition function

logZ = iI[g0, φ0] + log

∫
Dg̃ exp

(
iI2[g̃]

)
+ log

∫
Dφ̃ exp

(
iI2[φ̃]

)
, (3.2.7)

where I2[g̃] and I2[φ̃] are quadratic in the fluctuations g̃ and φ̃.

Thermodynamics teaches us that for the canonical ensemble logZ = −WT−1, where
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W is the thermodynamic potential of a system. Thus one can identify −iI[g0, φ0]T

with background contribution to thermodynamic potential and the other terms with

contributions of thermal gravitons and matter quanta.

Thus from (3.2.6) it follows that W = 1
2(M−ΦQ) and the temperature T = κ(2π)−1.

From the fact that W = M − TS − ΦQ one obtains that

1

2
M = TS +

1

2
QΦ. (3.2.8)

And finally using the generalised Smarr formula M = 2κA+QΦ we obtain:

S =
1

4
A. (3.2.9)

This famous Hawking formula introduces the notion of entropy and temperature for a

black hole. This allows us to speak about black hole thermodynamics.

These formulae connect gravity with thermodynamics in some strange way using

(3.1.3). But they give the correct answer that is used in construction of “true” black

hole thermodynamics with counting states inside a black hole. Thus it can shed some

light on the quantum gravity and string theory.

3.3 Duality invariant topological terms

3.3.1 Double Field Theory

In Double Field Theory which provides a duality covariant description of string the-

ory backgrounds and was introduced in Section 1.4 one encounters a constraint (1.5.14)

ηMN∂M • ∂N• = 0, (3.3.1)

that effectively restricts the extended space to some subspace if satisfied. Here the

2d×2d constant matrix ηMN is the flat O(d, d) invariant metric. This closure condition

can be solved by imposing two natural constraints on all fields defined on the extended

space

∂x̃ = 0 or its dual ∂x = 0 , (3.3.2)

that correspond to particular T-duality frames. Taking the first choice so that all fields

are taken to be independent of the winding coordinates x̃i the duality covariant action
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(1.4.12)

S =

∫
dxdx̃e−2d

(
1

8
HMN∂MHKL∂NHKL −

1

2
HKL∂LHMN∂NHKM−

−2∂Md∂NHMN + 4HMN∂Md∂Nd

)
.

(3.3.3)

reduces to the bosonic part of the supergravity action (1.4.25)

S =

∫
ddx e−2d

[
−1

4
gij∂ig

kl∂jgkl +
1

2
gij∂ig

kl∂jgkl + 2∂id∂jg
ij + 4gij∂id∂jd−

1

12
H2

]
=

∫
ddx e−2φ√−g

(
R[g] + 4(∂φ)2 − 1

12
H2

)
+ boundary terms.

(3.3.4)

The boundary terms are usually dropped in this formalism, however imposing the strong

constraint but keeping the boundary terms we can write the following

S =

∫
ddx
√
ge−2φ

(
R[g] + 4(∂φ)2 − 1

12
H2

)
−

−
∫
∂m

[
e−2φ√ggnbgmc∂ngbc − e−2φ√ggmcgnb∂cgnb

]
.

(3.3.5)

It is then natural to combine the total derivative term in the above with the Gibbons-

Hawking term (modified by the dilaton). In the previous section it was shown that

the Gibbons-Hawking boundary contribution can be written in terms of the surface

curvature [115]

SGH = 2

∮ √
he−2φK = 2

∮ √
he−2φhab (∂anb − Γmabnm)

= 2

∮ √
he−2φhab∂anb −

∮ √
he−2φhabhmn(2∂ahnb − ∂nhab)nm

(3.3.6)

where K = ∇ini is the second fundamental form for the boundary, na and hab are the

normal and metric on the boundary respectively.

Comparing (3.3.5) and (3.3.6) (and with the replacement of g by h) one obtains:∫
√
ge−2φ

(
R[g] + 4(∂φ)2 − 1

12
H2

)
+ SGH = S +

∮ √
he−2φ(2habna,b − nchab∂bhac).

(3.3.7)

It is well known that in gravity (in contrast to other field theories) it is impossible to

write the action with the GH term in a covariant form (without introducing a boundary).

In other words, the additional term cannot be written as just a full derivative.

We now wish to write the boundary term on the right hand side of (3.3.7) in an
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O(d, d) covariant form by recasting it in terms of the generalised metric. This produces

Stot = S +

∮
∂
e−2d

[
2HAB∂ANB +NA∂BHAB

]
. (3.3.8)

The normal NA is now the unit normal to the boundary in the doubled space. At the

moment it is not clear how to define such a normal since the notion of the extended

space itself is not well-defined. In the next section we show that the boundary term

actually reflects topological properties of the internal manifold such as monodromy. For

example this receives a contribution from exotic branes [116]. Finally, it is important

to mention that the expression (3.3.8) is O(d, d) covariant and should be true in any

duality frame.

In order for the generalised boundary term (3.3.8) to match the boundary term in

(3.3.7) (after a duality frame is chosen to give the usual bulk action) we require that

the possible boundary in the doubled space is restricted to be of the form:

NA =

 0

na

 , NA =

−b
i
jni

na

 . (3.3.9)

This normal is such that the normalization condition does not imply any constraints to

the dynamical fields gij and bij :

NANBHAB = 1 =⇒ nan
a = 1. (3.3.10)

The fact that the normal is only allowed components along the xi directions is due

to the fact that we chose the particular duality frame where the fields are independent

of x̃i. A direct consequence of this is that there could be no boundary located in x̃i

in the chosen duality frame as this would break x̃i translation invariance. Of course, if

we chose the T-dual frame where fields are independent of xi then we would have to

choose the opposite condition on the boundary normal. A natural conjecture is that

the general restriction on the boundary normal follows from the constraint which has

its origins in the level matching condition so that in general we require that

NAηABN
B = 0 (3.3.11)

and the normal vector has components in both ordinary and dual directions

NA =

[
ña

νa

]
. (3.3.12)

70



In order to satisfy the normalisation condition HABNANB = 1 without introducing

extra constraints on the gauge field bij the component νa has to be defined as

νa = na + babñ
b. (3.3.13)

Then the normalisation constraint and section condition imply

HABNANB = 1 =⇒ ñ2 + n2 = 1,

ηABNANB = 0 =⇒ ñan
a = 0.

(3.3.14)

3.3.2 SL(5) covariant geometry.

In Section 1.5 it was shown that low-energy effective dynamics of M-theory can

be described in terms of U-duality covariant fields by extending the internal space in

a particular way. In this section we consider the case of SL(5) duality group that

corresponds to 4 toroidal directions. Recall the effective action (1.5.18)

V =
√
g

[
1

12
MMN (∂MMKL)(∂NM

KL)− 1

2
MMN (∂NM

KL)(∂LMMK) +

+
1

12
MMN (MKL∂MMKL)(MRS∂NMRS)− 1

4
(MRS∂KMRS)(∂LM

KL)

]
,

(3.3.15)

where ∂M = ( ∂
∂xα ,

∂
∂yαβ

) and the generalised metric MMN is given by (1.3.41). The

section condition YMN
KL∂M • ∂N• = 0, where YMN

KL = εiMN εiKL is a duality in-

variant tensor (1.5.15), effectively restricts the extended space to its physical subspace.

As before the capital Latin indices run from 1 to 10 labelling the 10 representation of

SL(5), small Greek indices are the ordinary tensor indices and run from 1 to 4, small

Latin indices label the 5 representation of SL(5).

The section condition is written in the form of a differential equation on all fields

living on the extended space. It can be solved by restricting these fields in various ways

with a natural solution being ∂y = 0. This solution implies that no fields depend on

the dual coordinate yµν and turns the effective action V to the ordinary supergravity

action (1.5.19) modulo boundary terms.

In the natural duality frame given by the solution ∂y = 0 the effective potential V

with all boundary terms included takes the following form∫
V =

∫
√
g

(
R(g)− 1

48
F (C)2

)
−

−
∫
∂µ

[√
ggνβgµα∂νgβα −

√
ggµαgνβ∂αgνβ

]
. (3.3.16)
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Comparing this expression with the Gibbons-Hawking term (3.3.6) one obtains∫
√
g

(
R(g)− 1

48
F (C)2

)
+ SGH =

∫
V +

∮ √
h(2hαβnα,β − nµhαβ∂βhαµ). (3.3.17)

As before the extra term can not be written without referring to a boundary and intro-

ducing a normal explicitly. To write the expression above in a duality covariant form

one needs to define a generalised normal, that in general should have the form:

NM =


nµ

νρσ −
1√
2
Cαρσnα

 . (3.3.18)

As before the form of the normal is determined by the simple requirement that the

normalization MABN
ANB = 1 should not imply any constraint either on C or g. Thus,

we have for the norm

MABN
ANB = |n|2 + |ν|2. (3.3.19)

Finally, repeating calculations of the previous section one finds that (3.3.17) can be

written in the following form:∫
V +

∮ √
h
(
2MAB∂ANB +NA∂BM

AB
)
. (3.3.20)

Hence, the extra term can be written in a duality covariant form by introducing a

generalised normal.

3.4 Summary

In this chapter it was shown that for consistency one should add a boundary term

to the known Hohm-Zwiebach or Berman-Perry actions. Then the full effective action

successfully reproduces all the terms in the Einstein-Hilbert action without need of

integrating by parts. Moreover, the Gibbons-Hawking term, which captures the ther-

modynamics of empty-space solutions, follows from the full effective action as well. An

important remark is that the Gibbons-Hawking boundary term that is always present in

General Relativity is related to thermodynamic properties of black branes and basically

to the topology of the space. A similar idea stands behind the results shown in the

sections above.

In all the expressions of this chapter we do not specify the boundary since the

geometry of the extended space is still unclear. However in the following chapter we

explicitly show that the derived boundary term actually feels the non-trivial topology
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of string theory backgrounds generated by exotic branes with non-zero non-geometric

Q-flux. It is demonstrated, that two contributions from these fluxes are T-dual to each

other providing the full boundary term is T-duality invariant as it should be.
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CHAPTER 4

NON-GEOMETRY IN DOUBLE FIELD

THEORY

4.1 Exotic branes and monodromy

The Gibbons-Hawking term in general relativity is relevant for backgrounds gener-

ated by objects with a horizon, such as black holes or black branes, and the horizon

is related to the boundary. In string or M-theory one may meet even more fascinating

situations when a consistent background is not defined globally. Instead, local patches

are glued by duality transformations leading to non-trivial cycles. Encircling these cy-

cles results in transformation of the metric and gauge fields, that in general mixes these

objects, hence the name of non-geometric background.

A example of such background is provided by the twisted torus already mentioned

in section 1.4. This geometry appears in Type II string theory compactified on a torus

T2. Consider an NS5-brane extending along six dimensions not wrapping the internal

2-torus. T-duality along one of cycles of the 2-torus turns the NS5 brane into the

Kaluza-Klein monopole (or the 51
2-brane in another notations, for a review see [116]).

Further action of T-duality along the remained cycle of the internal torus results in a

non-geometric background generated by the so-called 52
2-brane that carries a non-zero

Q-flux. This duality chain can be represented by the following table.

1 2 3 4 5 6 7 8 9

NS5 × × × × × · ·
KKM × × × × × � ·

52
2 × × × × × � �

Table 4.1: Under T-dualities an NS5-brane stretched in directions marked by × turns
into a Kaluza-Klein monopole and a 52

2-brane. Dotted circles denote special cycles along
which T-duality acts.

In the supergravity description the metric for a 51
2 brane (a KK monopole) wrapped

on compact 3,4,5,6,7 directions, placed at x = xp in the transverse space R3
129 is given
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by [116]

ds2 = ds2
034567 +Hds2

129 +H−1(dx8 + ω)2,

B(2) = 0, ds2
129 = dr2 + r2dθ2 + (dx9)2,

H = 1 +
∑
p

Hp, Hp =
R8

2|x− xp|

(4.1.1)

where B(2) is the Kalb-Ramond 2-form field, ω is a 1-form and R9 is the radius of the

x9 direction.

In order to T-dualize this solution along the direction x9 we consider a set of KK

monopoles with centres arrayed along x9 at intervals of 2πR̃9. Hence, the function H

becomes divergent

H = 1 +
∑
n∈Z

R8

2
√
r2 + (x9 − 2πR̃9n)2

≈ 1 + σ log
Λ +
√
r2 + Λ2

r
, (4.1.2)

where the sum was approximated by an integral and a cut-off Λ was introduced. The

constant σ is defined as σ = R8/2πR̃9 = R8R9/2πα
′.

The log divergence of this kind is common for a co-dimension two object and imply

that it is ill-defined as a stand-alone object. Instead, one considers a configuration

where at long distances this divergence is compensated by contributions from another

co-dimension two objects. Hence one considers a regularised form of the function

H(r) = h0 + σ log
µ

r
, (4.1.3)

where the radius r ∈ [0,Λ]. To have asymptotically flat space, i.e. H(r = ∞) = 1 we

rewrite H in the following form

H(r) = 1− σ log
r

Λ
. (4.1.4)

For this choice of the function H the 1-form ω can be written as ω = −σθdx9 and

one immediately see that encircling the cycle θ → θ + 2π results in twisting the special

2-torus as
x8 → x8 − 2πσx9,

x9 → x9.
(4.1.5)

This transformation glues the tori T2 at the points θ and θ+ 2π defining a monodromy

group around the cycle. Since the monodromy is a diffeomorphism the KKM background

is geometric, i.e. the metric do not mix with the B-field. This background carries a non-

zero f-flux f8
9θ = −σ
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An example of a non-geometric background is provided by the 52
2 brane. Its metric

can be derived by T-dualizing the remained x9 coordinate of the special 2-torus in

(4.1.1). Straightforward application of the Buscher rules (1.3.16) gives the following

expression

ds2 = H(dr2 + r2dθ2) +
H

H2 + σ2θ2
ds2

89 + ds2
034567,

B(2) =
σθ

H2 + σ2θ2
dx8 ∧ dx9,

e−2φ =
H

H2 + σ2θ2
,

(4.1.6)

where φ denotes the dilaton.

For this configuration the monodromy around the circle θ → θ + 2π is not a dif-

feomorphism, it mixes the metric and the B-field acting as a T-duality transformation.

Namely, the size of the special 2-torus does not come back to itself

θ = 0 : G88 = G99 = H−1,

θ = 2π : G88 = G99 =
H

H2 + (2πσ)2
.

(4.1.7)

The resulting transformation can be most clearly written in terms of Double Field

Theory. Let us focus on the (8, 9) part of the metric that corresponds to the special

torus. From the point of view of transverse space the corresponding generalised metric

encodes scalar moduli and has the following form (see Section 1.4)

HMN =

[
G−1 G−1B

−BG−1 G−BG−1B

]
. (4.1.8)

In this notation the monodromy θ → θ + 2π takes the form of an O(2, 2) rotation

H(θ′ = θ + 2π) = OtrH(θ)O, (4.1.9)

where the matrix O encodes the non-geometric β-transform

O =

[
12 0

β(θ′) 12

]
. (4.1.10)

We will see in further sections, that although the bivector β is usually understood as

a sign of non-geometry, it is not the only source of Q-flux. In the DFT formulation

the Q-flux becomes written in terms of derivatives of the vielbein with respect to dual

coordinates and does not vanish even if β = 0.

To switch on the Q-flux with the section condition imposed, i.e. when there is no

dependence on dual coordinates, one need the bivector to be non-zero. For the case of
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a 52
2 exotic brane the bivector has only one component [96]

β = β89 ∂

∂x8
∧ ∂

∂x9
, β89 = σθ. (4.1.11)

The explicit form of the Q-flux is then given by one component Qθ
89 = −σ.

It is more natural to write the metric for non-geometric backgrounds in the so-called

non-geometric frame, where the generalised metric is just a beta-transform of (4.1.8)

by the matrix (4.1.10). In this frame the bivector β replaces the Kalb-Ramond field in

the generalised metric H̃MN

H̃MN =

[
G−1 − βGβ βG

−βG G

]
. (4.1.12)

In further sections we derive the explicit form of the corresponding generalised vielbein.

in this frame the metric for a 52
2 brane is written in a suggestive form

ds2 = H(dr2 + r2dθ2) +H−1ds2
89 + ds2

034567,

β = β89 ∂

∂x8
∧ ∂

∂x9
.

(4.1.13)

Since the monodromy (4.1.10) glues the space at the point θ and θ+2π, the generalised

metric appears to be written in different frames at these points. This observation is

of crucial importance for further sections, where the topological contribution becomes

proportional to the monodromy.

4.2 Gauged Doubled Field Theory

To introduce a setup for further sections we briefly repeat the calculation of [103] here

with all necessary details included. For a more detailed description of the generalised

Scherk-Schwarz reductions the reader is referred to the Chapter 2.

In the manifestly T-duality covariant low-energy formalism for string theory, there

is an object called the generalised metric, which appears to be a metric on the so-called

extended space. The background, given by the direct product of an external manifold

M and the internal torus Td, is replaced by the direct product of the external manifold

and the doubled torus Td× T̃d. Coordinates YM parametrising the doubled torus unify

the coordinates corresponding to all string charges

YM =

[
ya

ỹa

]
, (4.2.1)
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where the small Latin indices run from 1 to d, and the capital Latin indices run from 1

to 2d. The O(d, d) covariant dynamics is formulated in terms of the generalised metric

by introducing the following effective action that is invariant with respect to (1.4.17)

up to the section condition [47]

S =

∫
√
g dX e−2d

(
1

8
HM̂N̂∂M̂H

K̂L̂∂N̂HK̂L̂ −
1

2
HK̂L̂∂L̂H

M̂N̂∂N̂HK̂M̂−

−2∂M̂d∂N̂H
M̂N̂ + 4HM̂N̂∂M̂d∂N̂d

)
.

(4.2.2)

Here the internal coordinates YM = (ya, ỹa) on the doubled torus and the external

coordinates xµ are collected into one object XM̂ = (xµ,YM ), where the hatted Latin

indices run from 1 to 2d + n. Measure on the external space is given by
√
gdnx =√

det ||gµν ||dnx where the Greek indices run from 1 to n. Then the generalised metric

HM̂N̂ can be represented in the block-diagonal form

HM̂N̂ =

[
gµν 0

0 HMN

]
, (4.2.3)

while the doubled dilaton d is written in terms of the usual dilaton φ

e−2d =
√
Ge−2φ . (4.2.4)

An important aspect of the formalism is that explicit solutions of the section condition

correspond to certain choices of T-duality frame. In each frame the effective action

takes the form of the Type II supergravity action (bosonic part)

S →
∫ √

Ĝdz e−2ϕ

(
R[g] + 4(∂φ)2 − 1

12
H2

)
, (4.2.5)

where Ĝ is the metric on the whole (d + n)-dimensional space parametrised by the

coordinates z and H = dB is the field strength for the Kalb-Ramond field. Explicit

relationship of the coordinates z to the coordinates x and Y depends on the duality frame

chosen. A natural choice is to drop all dependence on the dual coordinates ỹa and end

up with z = (xµ, ya). The choice z = (xµ, ỹ1, y
2, . . . , yd) is equivalent to performing a

T-duality transformation along the y1 coordinate.

It was shown in [103] that the Scherk-Schwarz dimensional reduction of the described

O(d, d) invariant formalism completely reproduces the structure of the scalar sector of

gauged supergravity. The reduction is performed by introducing the twisting matrices
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UMM̄ (Y) that encode all of the dependence on the internal extended space coordinates

TA1...Am(x,Y) ≡ UA1
Ā1

(Y) · · ·UAm Ām(Y)T Ā1...Ām(x),

d(x,Y) ≡ d̄(x) + λ(Y),
(4.2.6)

where the barred indices denote twisted directions and TA1...Am is a rank m generalised

tensor on the extended space.

Substituting this anzatz into the definition of the generalised Lie derivative (1.4.17)

one recovers the following expression

LV1V
M

2 = UMM̄ (Y)F M̄ K̄L̄V
K̄

1 (x)V L̄
2 (x),

F ĀB̄C̄ = 2U ĀMU[B̄
N∂NUC̄]

M − U ĀMYMN
KL∂NU[B̄

KUC̄]
L,

(4.2.7)

where the coefficients F M̄ K̄L̄ are taken to be constants. This leads to tructure of an

algebra

[XM̄ , XN̄ ] = F ĀM̄N̄XĀ (4.2.8)

with generatorsXĀ defined by their matrix form in the adjoint representation (XĀ)M̄ N̄ ≡
F M̄ ĀN̄ .

The structure constants can be split into irreducible representations of the corre-

sponding duality group implying that the algebra is an O(d, d) (or Ed)-graded algebra.

This is in accordance with the structure of gauged supergravities where F M̄ K̄L̄ is called

the embedding tensor. From the point of view of the external space the structure con-

stants encode all geometric and non-geometric fluxes [16] (for details see Section 4.5).

An important but straightforward consequence of Scherk-Schwarz anzatz is that one

does not need the section condition for closure of the algebra. Instead, the structure

constants (the embedding tensor) should satisfy a set of constraints, quadratic and

linear [53]. The anzatz (4.2.6) then allows to rewrite the action (4.2.2) in terms of the

gaugings F M̄ K̄L̄

SG =

∫
ddYe−2λ(Y)

∫
dnxe−2d̄ (R+Rf ) , (4.2.9)

where Rf is the gauged part of the action

Rf =− 1

2
F ĀB̄C̄HB̄D̄HC̄Ē∂D̄HĀĒ −

1

12
F ĀB̄C̄F

D̄
ĒFHĀD̄HB̄ĒHC̄F

− 1

4
F ĀB̄C̄F

B̄
ĀD̄HC̄D̄ − 2FĀ∂B̄HĀB̄ + 4FĀHĀB̄∂B̄ d̄− FĀFB̄HĀB̄ .

(4.2.10)

The twisted derivative is defined as ∂M̄ ≡ UMM̄∂M and the additional gauging reads

FĀ = ∂M (U−1)MĀ − 2(U−1)MĀ∂Mλ (4.2.11)
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To write the gauged action consistently in terms of the gaugings F ĀM̄N̄ and FM̄ one

has to supply the action (4.2.2) by an additional full-derivative term and a term that is

zero up to the section condition

SC ∼
∫
dxdYYMN

KL∂ME
K
KE

L
LHKL, (4.2.12)

where we denote flat indices by underlined Latin letters. At the moment one should not

confuse underlined and barred indices since they refer to different types of vielbeins E

and U . In the section 4.5 these will be identified.

4.3 Full Double Field Theory action

The action (4.2.9) that gives the scalar potential of supergravity differs from the

effective potential (4.2.2) by a full derivative and a term that is zero up to the section

condition.

SG = S + SC +

∫
M
dxdY∂M̂

[
e−2d(4HM̂N̂∂N̂d− ∂N̂H

M̂N̂ )
]
. (4.3.1)

The integration is taken over some region of the extended spaceM' Rn×Td× T̃d that

may have non-trivial topological properties (see discussion in the next section). The

generalised metric HMN and the extended coordinates XM̂ = (xµ,YM ) are defined as

HMN =

Gij −B
a
i Baj B k

i

−Bl
j Gkl

 , YM =

[
ỹm

ym

]
. (4.3.2)

Here the hatted indices label all coordinates, including flat coordinates xµ of the space

that is not doubled, and M̂ = 1, . . . , 2d . . . 2d + n. Capital Latin indices without hat

label only coordinates of the doubled space and run from 1 to 2d.

On the other hand we have the action that gives the full SUGRA action with the

Gibbons-Hawking term. It differs from the Hohm-Zwiebach action by a boundary term

that can be written in the duality invariant form [1]

SFull = SHZ +

∮
∂
e−2d

[
2HÂB̂∂ÂNB̂ +NÂ∂B̂H

ÂB̂
]
. (4.3.3)

In what follows this action is referred to as ’the full action’.

Substituting the form of the action SHZ given by (4.3.1) to (4.3.3) the full action

becomes equal to the action SG plus a term that is an integral over a boundary ∂ of a
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full derivative

SFull = SG + 2

∮
∂
∂Â

(
e−2dHÂB̂NB̂

)
. (4.3.4)

Although the integrand in the second term can be represented in a from of a total

derivative the integral is in general non-zero. The extra term vanishes only if the

expression in brackets in (4.3.4) can be defined globally meaning that the spaceM has

trivial topology.

In the particular T-duality frame defined by the solution ∂̃i = 0 of the section

condition when ña = 0 reflecting the translational invariance along ỹm, the boundary

term in (4.3.4) can be written in the following way

2

∮
∂
∂A

(
e−2dHABNB

)
−→ 2

∮
∂
dS K. (4.3.5)

Here K = gab∇anb is the extrinsic curvature of the boundary,∇a is the ordinary covari-

ant derivative with Levi-Civita connection and dS =
√
−g dd−1x is the area element of

the boundary.

The boundary term can be rewritten in the very same form in any T-duality frame

using the semi-covariant formalism developed in [40, 117, 118]. The semi-covariant

derivative is defined as

∇CTA1A2...AN = ∂CTA1A2...AN − ωTΓBBCTA1A2...AN +
N∑
i=1

ΓCAi
BTA1...Ai−1BAi+1...AN ,

(4.3.6)

where the weight ωT is non-zero only for the dilaton d, that is by definition covari-

antly constant ∇Cd = 0. Using these definitions, the boundary term readily takes the

following form

2

∮
∂
∂A

(
e−2dHABNB

)
dΣ = 2

∮
∂
dΣ e−2dK, (4.3.7)

where K = HABKAB and KAB = ∇ANB. The quantity K can be identified with the

extrinsic curvature of the generalised boundary. Although, the form of the boundary

term looks very familiar it is not clear how the generalised area element dΣ is defined.

4.4 Topology of extended space

The form (4.3.4) of the boundary term does not manifestly specify the boundary

∂. To understand its geometry it is convenient to focus only on terms that can be

represented as an integral of a full derivative

Sfull = SGrana + 2

∮
∂
dΣ ∂ÂNB̂H

ÂB̂e−2d + 2

∫
M

√
−gdnxdY∂Â

(
∂B̂H

ÂB̂e−2d
)
. (4.4.1)
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As was mentioned in the previous sections in the DFT formalism the space M can

be represented as the flat manifold Rn (parametrized by xµ) times the doubled torus

Td× T̃d parametrized by YM . Terms that involve boundaries in flat directions have the

following form ∫
∂
∂µNνg

µνdσ +

∫
dY
∫ √

−gdnx∂α
(
∂βg

αβe−2d
)
, (4.4.2)

where small Greek indices run from 1 to n labelling the flat space coordinates, the area

element has the transparent meaning dσ =
√
−hdn−1x and h is an induced metric on

the boundary.

We choose the coordinates xµ to label the space Rn that do not have any boundary

or non-trivial topology. Then all terms that have derivatives with respect to xµ become

zero. The second term in (4.4.2) is zero according to the Poincaré lemma since it is

a full derivative. The first term would not appear in our consideration from the very

beginning since there is no boundary and the normal cannot be defined. Alternatively,

one can cut the space Rn introducing two boundaries ∂1 and ∂2 by hand. This results

Rn

∂1

∂2

Figure 4.1: Contributions from the boundaries ∂1 and ∂2 in Rn cancel each other

in two terms each involving an integral over the corresponding boundary. Since all

fields are well defined when crossing this kind of boundaries in the flat directions, these

contributions cancel each other:∫
∂
∂µNνg

µνdσ =

∫
∂1

∂µN
(1)
ν gµνdσ +

∫
∂2

∂µN
(2)
ν gµνdσ

=

∫
∂1

∂µN
(1)
ν gµνdσ −

∫
∂2

∂µN
(1)
ν gµνdσ = 0.

(4.4.3)

In the second line it was used that the boundaries ∂1 and ∂2 are virtually the same

surface with the normal N
(1)
M = −N (2)

M .

The same reasoning does not work for the doubled torus Td × T̃d in the presence

of fluxes, both geometric or non-geometric. In this case the doubled torus becomes a

fibration with non-trivial monodromy properties that result in a non-zero contribution.

Before we proceed in this direction it is suggestive to consider the classical monopole

solution, which demonstrates the similar behaviour [119].
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The monopole appears as a topologically non-trivial configuration of a gauge field

given by a 1-form A. The flux of the corresponding field strength through a 2-sphere is

then defined as ∫
S2

F =

∫
S2

dA =

∫
UN

dAN +

∫
US

dAS . (4.4.4)

Here the sphere is split into two charts each carrying gauge potentials AN and AS

related by a gauge transformation AN = AS + dλ. Using Stoke’s theorem each term

S2 UN

US

S1

AN

AS

λ ∈ U(1)

Figure 4.2: Gauge field A is not defined globally on the sphere S2. Two patches UN
and US carry the potentials AN and AS related by a gauge transformation.

can be written as integration over boundaries of UN,S that are virtually the same with

the curve with topology of a circle S1∫
UN

dAN +

∫
US

dAS =

∫
∂UN

dλ =

∫
S1

dλ. (4.4.5)

The situation here is in certain sense similar to what we have had before. Naively, one

could say that this integral should be zero since there is no boundary. However, the

gauge parameter λ is an element of U(1) and thus has non-trivial monodromy when

going around the circle. It acquires a shift when going around the circle.

Explicitly, one can cut the circle, introducing a coordinate θ that runs from 0 to 2π.

Then the integral becomes∫
S1

dλ =

∫ 2π

0
dθ ∂θλ(θ) = λ(θ)

∣∣∣∣θ=2π

θ=0

= λ(2π)− λ(0) ∼ n ∈ Z (4.4.6)

providing quantization of monopole charge.

Going back to the boundary term in (4.3.4) consider only terms that involve deriva-

tives along YM ∫ √
−gdnx

∫
dY∂A

(
e−2d∂BHAB

)
. (4.4.7)

The internal torus Td can be represented as a torus fibration over a circle S1 with a

fibre Td−1. For backgrounds with non-zero geometric f-flux or non-geometric fluxes one
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acquires a non-zero holonomy around the circle θ → θ+ 2π. Fibres at θ = 0 and θ = 2π

are glued by a T-duality transformation that in general mixes metric and gauge fields,

hence the name of non-geometric background. An example of such a situation is the

twisted torus that describes a background with f-flux [52].

ya

ỹa Ña

Na

Td−1
0 Td−1

2π

θ

θ = 2π
θ = 0

T

Figure 4.3: The boundaries Td−1 × T̃d and Td × T̃d−1 are obtained by cutting the base
S1 of the corresponding torus fibrations Td−1 × S1 × T̃d and Td × T̃d−1 × S̃1.

We conjecture that the same is true for the dual torus meaning there is a non-trivial

monodromy around the circle S̃1 parametrised by the dual coordinate θ̃. Taking this

into account the expression above can be written as follows

∫ √
−gdnx

∫
Td−1
θ ×T̃d

Na

(
e−2d∂BHaB

) ∣∣∣∣θ=2π

θ=0

+

+

∫ √
−gdnx

∫
Td×T̃d−1

θ̃

Ña
(
e−2d∂BHaB

) ∣∣∣∣θ̃=2π

θ̃=0

. (4.4.8)

Where we integrated out the cycle S1 in the first term and the dual cycle S̃1 in the

second term. The normal Na and the dual normal Ña here have only components in

the directions θ and θ̃ respectively.

The full action (4.3.4) is then written as a sum SFull = SG+SB where the boundary

term has the following form

SB =

∫ √
−gdnx

∫
Td−1
θ ×T̃d

∂B

(
Nae

−2dHaB
) ∣∣∣∣θ=2π

θ=0

+

+

∫ √
−gdnx

∫
Td×T̃d−1

θ̃

∂B

(
Ñae−2dHaB

) ∣∣∣∣θ̃=2π

θ̃=0

.

(4.4.9)

It is important to mention that SB is T-duality invariant since the second term is exactly

T-dual of the first term. As in the case of monopole discussed above, this expression

is non-zero in general, depending on monodromy properties of the background. In this
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sense it is analogous to the term ∫
S1

dλ 6= 0. (4.4.10)

In the next section we show that the boundary term involves fluxes and thus probes

global properties of the boundary, exactly as the gauge parameter λ.

4.5 Duality invariant formulation of fluxes

Dimensional reductions of effective theories that appear as low-energy limits of string

theory are characterised by certain charges H, f , Q and R, also known as fluxes. The

geometric flux Habc is related to the 2-form Kalb-Ramond field B = Bmndy
m ∧ dyn as

H = dB. A T-duality transformation along one of cycles of the internal torus turns the

geometric H-flux into the geometric f -flux. Under this transformations the becomes

twisted, with torsion defined by

deā = −1

2
f āb̄c̄e

b̄ ∧ ec̄, (4.5.1)

where barred indices are used for flat directions and eā = eāadx
a is a 1-form that defines

vielbein. This equation can be written in an equivalent form by making use of the Lie

bracket of two vector fields

[eā, eb̄] = f āb̄c̄eā. (4.5.2)

Here the inverse vielbein is a vector field eā = eaā ∂a and f ām̄n̄ = 2eāre
b
[m̄∂be

r
n̄].

Further T-duality transformations along the remaining two 1-cycles of the 3-torus

lead to the non-geometric fluxes Q and R respectively [52]. Hence, one may think of the

geometric f -flux as of structure constants defined by the algebra of vector fields (4.5.2).

It was suggested in [16] to generalise the construction (4.5.2) to the case of Double

Field Theory using the C-bracket (1.4.22) that is a natural multiplication of generalised

vectors in Double Field Theory

[EĀ, EB̄]C = F C̄ B̄C̄EC̄ , (4.5.3)

where the barred indices denote flat directions and EB
B̄

is a generalised vielbein defined

as

HMN = EMM̄E
N
N̄H

M̄N̄ . (4.5.4)

The diagonal form of the flat generalised metric HĀB̄ = diag[hāb̄, h
āb̄] corresponds to
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two natural gauge choices for the generalised vielbein

ÊMĀ =

 emā 0

ekāBnk eb̄n

 , ÊĀM =

 eām 0

ekāBnk en
b̄

 ,

ẼMA =

e
m
ā eb̄kβ

mn

0 eb̄n

 , ẼMA =

e
ā
m eb̄kβ

mn

0 en
b̄

 .
(4.5.5)

Although usually the 2-vector βmn is considered a sign of non-geometry it is not the

only source of the non-geometric Q and R fluxes. As it will be shown further, the

dual space parametrised by the coordinates ỹi itself generates non-geometric fluxes. In

other words, even if βmn = 0 the flux Qāb̄c̄ is non-zero and is written in terms of dual

derivatives ∂̃m of the fields.

One can think of the generalised vielbein as Scherk-Schwarz twist matrices [103]

and the structure constants F ĀB̄C̄ are thus gaugings of the corresponding supergravity

[120]. Recall the explicit expression for gaugings (4.2.7) written now in term of the

generalised vielbein

F ĀB̄C̄ = 2EĀME
N
[B̄∂NE

M
C̄] − E

Ā
MY

MN
KL∂NE

K
[B̄E

L
C̄] (4.5.6)

The components of the generalised flux F C̄
ĀB̄

in the hatted frame when the generalised

vielbein is chosen to be ÊM
Ā

have the following form

F ām̄n̄ = f ām̄n̄ + 2Bbke
ā
re
k
[m̄∂̃

bern̄] + eāre
k
m̄e

l
n̄∂̃

rBkl ≡ F ām̄n̄,

Fām̄n̄ = 3ebm̄e
k
n̄e
r
āHbrk − 3ek[āe

r
m̄e

l
n̄]Bbk∂̃

bBrl ≡ Hām̄n̄,

F ām̄n̄ = 2e[m̄
p eā]

q ∂̃
peqn̄ ≡ Qām̄n̄,

F ām̄n̄ = 0,

(4.5.7)

where f ām̄n̄ = 2eāre
b
[m̄∂be

r
n̄], Hbrk = ∂[bBrk] and all antisymmetrisations of n indices

include the factor 1/n!.

The generalised vielbein (4.5.5) can be written in compact notations by making use

of the natural basis on the generalised tangent space {∂a, ∂̃a}

Êā = Êāa∂a + Êāa ∂̃
a = eāa∂̃

a = eā,

Êā = Êaā∂a + Êāa∂̃
a = eaā∂a + ebāBab∂̃

a = eā − ieāB,
(4.5.8)

where iXω denotes the intrinsic multiplication of a vector X and a form ω. Written

in this notation the expression (4.5.3) defines the fluxes F , H and Q that contain
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the ordinary fluxes f , H and Q and terms with derivatives with respect to the dual

coordinates x̃i:

[Êā, Êb̄] = F c̄āb̄Êc̄ +Hāb̄c̄Ê c̄,

[Êā, Êb̄] = F āb̄c̄Ê c̄ +Qc̄āb̄Êc̄,

[Êā, Ê b̄] = Qāb̄c̄Ê c̄.

(4.5.9)

It is useful to show the derivation of these expressions explicitly on an example. Consider

the bracket [Eā, Eb̄] that can be written in the natural basis as

[Eā, Eb̄] = [Eā, Eb̄]
a∂a + [Eā, Eb̄]a∂̃

a. (4.5.10)

Taking into account (4.5.3) this generalised vector reads

[Êā, Êb̄] = F c̄āb̄Ê
a
c̄ ∂a + F c̄āb̄Êc̄a∂̃

a + Fc̄āb̄Ê
c̄
a∂̃

a

= F c̄āb̄

(
Êac̄ ∂a + Êc̄a∂̃

a
)

+ Fc̄āb̄Ê
c̄
a∂̃

a

= F c̄āb̄Êc̄ + Fc̄āb̄Ê
c̄.

(4.5.11)

In the tilde gauge where the Kalb-Ramond field is zero Bmn = 0 but the two-vector

βmn is non-zero the situation is very similar. The components of the generalised flux

then have the following form

F ām̄n̄ = f ām̄n̄ ≡ F ām̄n̄,

F ām̄n̄ = 2e[ā
p e

bm
q ∂̃qepn̄ + 2e[ā

r e
m̄]
m ∂be

r
n̄β

bm − eārem̄mebn̄∂bβrm ≡ Qām̄n̄,

F ām̄n̄ = −3eāre
m̄
me

n̄
n∂̃

[aβmn] + 3eāre
m̄
me

n̄
nβ

bm∂bβ
rn ≡ Rām̄n̄,

Fām̄n̄ = 0.

(4.5.12)

Then the corresponding commutation relations involving the components of the gener-

alised vielbein in the tilde gauge read

[Ẽā, Ẽb̄] = F c̄āb̄Ẽc̄,

[Ẽā, Ẽb̄] = F āb̄c̄Ẽ c̄ +Qc̄āb̄Ẽc̄,

[Êā, Ê b̄] = Qāb̄c̄Ẽ c̄ +Rāb̄c̄Ẽc̄.

(4.5.13)

The above expressions show that the natural frames correspond to backgrounds with

various fluxes. It is worth mentioning that the bivector βmn is not the only sign of non-

geometry as the fluxes Q and R are non-zero even for vanishing β. Dependence of the

background on the dual coordinates itself leads to non-zero non-geometric fluxes.
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4.5.1 Monodromy and fluxes

In the vielbein formalism the action SG is written totally in terms of the gaugings

FĀB̄C̄ and FĀ. The latter is defined as [103]

fĀ = e2λ∂M

(
EMĀ e

−2λ
)
, (4.5.14)

where the invariant dilaton d(x,Y) = d̄(x)+λ(Y) was split according to Scherk-Schwarz

reduction. The full action with the extra term (4.4.9) then takes the following form

SFull = SG + 2

∫ √
−gdnxe−2d̄

∫
∂
e−2λHĀB̄NB̄fĀ. (4.5.15)

The gaugings fĀ written in the geometric and non-geometric frames introduced in the

previous section have the following form

f̂Ā =

∂me
m
ā − 2emā ∂mλ+ ∂̃m(enāBmn)− 2ekāBmk∂̃

mλ

∂̃meām − 2eām∂̃
mλ

 ,

f̃Ā =

 ∂me
m
ā − 2emā ∂mλ

∂m(eānβ
mn)− 2eākβ

mk∂mλ+ ∂̃meām − 2eām∂̃
mλ

 .
(4.5.16)

The 2-form field Bmn contributes to the 3-form flux H = dB that is geometric, the

vielbein emā is a source of the geometric flux f āb̄c̄ = eām(ek
b̄
∂ke

m
c̄ −ekc̄∂kemb̄ ). It is important

to mention that although the gaugings (fluxes) F ĀB̄C̄ do not depend on internal doubled

coordinates, they may depend on xµ.

It appears that all terms in the boundary term in both gauges can be written as

traces of the components of the generalised flux. In the hat-gauge the boundary term

reads

HĀB̄NB̄fĀ = hāb̄nā
(
∂me

m
b̄ − 2emb̄ ∂mλ

)
+ hāb̄nā

(
∂̃m(enb̄Bmn)− 2enb̄Bmn∂̃

mλ
)

+

+ hāb̄ñ
ā
(
∂̃neb̄m − 2eb̄m∂̃

mλ
)

= hāb̄nāF c̄c̄b̄ + hāb̄ñ
āQc̄b̄c̄ − 2

(
nm∂mφ+ (ñn − nmBmn)∂̃nφ

)
= hāb̄nāF c̄c̄b̄ + hāb̄ñ

āQc̄b̄c̄ − 2HMNNM∂Mφ.

(4.5.17)

Here the dilaton that depends only on the internal coordinates, is denoted ϕ = ϕ(Y)

and the generalised metric and normal in the last term of the last line are written in

the hat gauge.
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In the non-geometric frame it takes the following form

HĀB̄NB̄fĀ = hāb̄nā
(
∂me

m
b̄ − 2emb̄ ∂mλ

)
+

+ hāb̄ñ
ā
(
∂̃neb̄m − 2eb̄m∂̃

mλ
)

+ hāb̄ñ
ā
(
∂m(eb̄nβ

mn)− 2eb̄nβ
mn∂mλ

)
+

= hāb̄nāF c̄c̄b̄ + hāb̄ñ
āQc̄b̄c̄ − 2

(
(nn − ñmβmn)∂nφ+ ñm∂̃

mφ
)

= hāb̄nāF c̄c̄b̄ + hāb̄ñ
āQc̄b̄c̄ − 2HMNNM∂Mφ

(4.5.18)

Hence, the boundary term can be represented completely in terms of the components

of the generalised flux, which are identified with geometric and non-geometric fluxes.

Moreover, the boundary term expressed in terms of traces of fluxes does not depend on

the gauge chosen

SB = 2

∫ √
−gdnxe−2d̄

∫
Td−1
θ ×T̃d

e−2λnāF c̄c̄ā(θ)
∣∣∣∣θ=2π

θ=0

+

+ 2

∫ √
−gdnxe−2d̄

∫
Td×T̃d−1

θ̃

e−2λñāQc̄āc̄(θ)
∣∣∣∣θ̃=2π

θ̃=0

+

+ 2

∫ √
−gdnxe−2d̄

∫
Td×T̃d

√
g ∂A

(
HAB∂Be−2φ

)
(4.5.19)

where the prefactor e−2λ provides the correct integration measure and explicit form

of fluxes depends on the gauge chosen. Each term here is not a T-duality invariant

expression, however the whole action is since it came from a T-duality invariant expres-

sion (4.4.9). It is important to emphasize that although consistent f and Q fluxes in

supergravity applications are traceless, this is not true for the case of DFT since there

is dependence on dual coordinates.

In general, one is free to choose any gauge at the points θ = 2π and θ = 0 with the

only condition that they should be related by an O(d, d) monodromy. For applications

it is suggestive to fix the following set up

θ = 2π : hat gauge (geometric),

θ = 0 : tilde gauge (non-geometric).
(4.5.20)

Substituting the explicit form of fluxes (4.5.17) and (4.5.18) into the boundary term SB
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we obtain an inspiring expression

SB = 2v

[∫
Td−1
θ ×T̃d

naQmnaBmne
−2λ +

∫
Td×T̃d−1

θ̃

ñbf
b
mnβ

mne−2λ

]
+

+ 2v

[∫
Td−1
θ ×T̃d

nmBmn∂̃
ne−2λ −

∫
Td×T̃d−1

θ̃

ñmβ
mn∂ne

−2λ

]
,

(4.5.21)

where we define v =
∫ √
−gdnxe−2d̄ It is important that now the normal and the fluxes

are with curved indices without bars. Since no traces of fluxes enter this expression it

is straightforward to impose the section condition and evaluate the boundary term for

known backgrounds.

4.6 52
2-brane primer

For a 52
2 exotic brane with the metric (4.1.6) we solve the section condition (1.5.14)

by dropping dependence on all dual coordinate. The doubled coordinates are taken to

parametrise the 2-torus (special cycles) and the cycle θ while the external coordinates

xµ parametrize the transverse space

ya = (θ, x8, x9),

xµ = (x0, r, x3, x4, x5, x6, x7).
(4.6.1)

This means that the torus Td−1
θ is taken to be d − 1 = 2 dimensional spanned by the

coordinates x8 and x9.

The normal is directed along the θ coordinate na = (nθ, 0, . . . , 0) with the only

non-zero component nθ = 1. This results in the following expression for the boundary

term

SB = 2

∫ √
−gdnxQ89

θB89

∣∣∣∣
θ=2π

= −2

∫ √
−gdnx 2πσ2

H2 + (2πσ)2
=

= −2V ol

∫
rdr

2πH(r)σ2

H(r)2 + (2πσ)2

(4.6.2)

Where V ol =
∫
dxn−1 is the volume of the space R5,1

034567. One may think of the boundary

term (4.5.21) as a magnetic coupling of branes whose background carries a non-zero

monodromy.

To analyse behaviour of the action SB when the flux σ is changed, lets start with
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the integral in the expression above∫
rdr

2πH(r)σ2

H(r)2 + (2πσ)2
=

∫ Λ

0
rdr

1− σ log r
Λ

(1− σ log r
Λ)2 + 4π2σ2

=

=
Λ2

σ2

∫ 1

0
ada

σ−1 − log a

(σ−1 − log a)2 + 4π2
,

(4.6.3)

where the cut-off 0 < r < Λ was used and the new variable a = r/Λ was introduced.

Hence, one can make a substitution |σ−1| = log β to obtain the following expression

1

β2σ2

∫ ∞
log β

ydy

y2 + 4π2
e−2y =

1

2β2σ2

∫ ∞
log β

(
dy

y + 2πi
+

dy

y − 2πi

)
e−2y (4.6.4)

where the new variable ey = a/β was introduce and i is the imaginary unit. If one

recalls the definition of exponential integral function

Ei(z) = −
∫ ∞
−z

dt

t
e−t, (4.6.5)

the action SB can be written in the following form

SB = Λ2V ol e−2|σ|
[
Ei

(
4πi− 2

|σ|

)
+ Ei

(
−4πi− 2

|σ|

)]
. (4.6.6)

Although the arguments of the exponential integral functions in the action are complex,

this particular combination is real and always negative. As expected for a co-dimension

SB

|σ|

Figure 4.4: Boundary action is always negative and vanishes for configurations with
large flux σ and with zero flux.

2 object, the action is quadratically divergent if Λ → ∞. The contribution of the

topological term for configurations with zero flux is zero. The minimum of the action

is realised by certain configurations of the special torus with flux σ close to |σ| = 1.
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CHAPTER 5

APPENDIX

This Appendix consists mainly of calculations, that are necessary but too detailed

to be presented in the main sections. In addition some interesting results, that do not

fit organically to the main narrative thread, are collected here.

5.1 SO(5, 5) gaugings

While the trombone is obtained in a straightforward way from the gauge group

generators XMN
K one has to do some algebra to get the remained gauging θiM . This

section is to show how this gauging can be obtained by suitable projections of the gauge

group generators.

The gauge group generators XMN
K evaluated in the representation RV have the

form

XMN
K = Θα

M (tα)N
K +

(
16

5
(tα)M

P (tα)N
K + δPMδ

K
N

)
θP , (5.1.1)

where tα are the generators of the global duality group and are given by (Γij)N
K . The

embedding tensor reads

ΘM
ij = −θL[iΓj]LM . (5.1.2)

Thus the gaugings can be explicitly separated out by the following contractions

XMN
K(Γij)K

NΓjMR = 128 θiR − 144

5
ΓiRSθS . (5.1.3)

By making use of the first line of the definitions (2.5.33) one can show that the generators

(2.3.3) contracted in the same way give exactly (5.1.3) with gaugings defined as (2.4.22).

Indeed, lets rewrite the generators XMN
K using the second line of (1.5.16)

XMN
K = fMN

K +
1

8
(Γij)N

K(Γij)C
BfBM

C +
1

4
δKN fBM

B. (5.1.4)

Contracting with the generator and the gamma matrix as in (5.1.3) we obtain

XMN
K(Γij)K

NΓjMR = (fMN
K − 4fNM

K)(Γij)K
NΓjMR (5.1.5)
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To show that this is exactly (5.1.3) one needs to do some simple algebra and use the

following identities

θiM = −1

4
ΓjMDfDj

i − 2

5
ΓiMNθN ,

fAP
R =

1

4
ΓiPQΓjQRfAj

i − 1

4
fAB

BδRP ,

fAj
iΓi

ABηjk = 4θkB +
8

5
ΓkBCθC +

1

4
ΓkABfAR

R,

Y BK
CL fAK

L = −3fAC
B − 2fKA

KδBC − 8δBC θA.

(5.1.6)

Here the first line is just a rewriting of (2.4.22), the second line is a consequence of

the definition (2.5.33) and the last line here. Finally, the third and the last lines are

obtained directly by making use of properties of twist matrices.

5.2 Effective potential for SO(5, 5) case

Since the generalised metric MMN is a coset representative we identify it with the

unimodular matrix of [99] that has the same meaning and is defined as

MMN = VM
αα̇VN

ββ̇ΩαβΩα̇β̇, (5.2.1)

where Ωαβ and Ωα̇β̇ are the symplectic invariants of Spin(4) corresponding to each

SO(5) in the coset. These matrices are antisymmetric Ωαβ = −Ωβα and are used to raise

and lower spinor indices ΩαβΩβµ = δα
µ. The matrices V αα̇

M are coset representatives of

SO(5, 5)

SO(5)× SO(5)
. (5.2.2)

Recall the effective potential (2.5.39) that comes from Scherk-Schwarz reduction of

M-theory in the extended space formalism

Veff = −1

8
XMK

LXNL
KMMN +

1

32
XMR

KXNS
LMMNMRSMKL. (5.2.3)

To show that this expression exactly reproduces the scalar potential of D = 6 gauged

supergravity one needs the following relation

ΓiABV
Bββ̇ = V âi (γâ)α

βV αβ̇
A − V ˆ̇a

i (γ
ˆ̇a)α̇

β̇V βα̇
A , (5.2.4)

that follows from the invariance of the SO(5, 5) gamma-matrices [99].

Consider the first term of the potential since it is easier to proceed. The calculations

for the second term are longer but the idea is the same. In the absence of the trombone
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gauging the structure constants read

XMN
K = −θiLΓjLM (Γij)N

K . (5.2.5)

Taking into account the quadratic constraint θiMθjNηij = 0, where ηij is 10-dimensional

flat metric and simple gamma-matrix algebra, one can write

V1 = −1

8
XMK

LXNL
KMMN = −2 θiAθkBΓiBNΓkAMM

MN . (5.2.6)

The next step is to substitute the explicit expression of the generalised metric MMN in

terms of the coset representatives (5.2.1) and use the identity (5.2.4). This gives

V1 = −2θiAθkB
(
V âi (γâ)µ

αV µα̇
B − V ˆ̇a

i (γ
ˆ̇a)µ̇

α̇V αµ̇
B

)
×(

V b̂k(γ b̂)νβV
νβ̇
A − V

ˆ̇
b
k(γ

ˆ̇
b)ν̇

β̇V βν̇
A

)
ΩαβΩα̇β̇.

(5.2.7)

Using the definition of the T-tensor (2.2.19) this expression can be written only in terms

of (T â)αα̇ and (T
ˆ̇a)αα̇

V1 =2(T â)να̇(T b̂)µα̇(γâ)µ
α(γ b̂)α

ν − 2(T
ˆ̇a)να̇(T b̂)αµ̇(γ

ˆ̇a)µ̇
α̇(γ b̂)α

ν−

2(T â)αν̇(T
ˆ̇
b)µα̇(γâ)µ

α(γ
ˆ̇
b)α̇

ν̇ + 2(T
ˆ̇a)αν̇(T

ˆ̇
b)αµ̇(γ

ˆ̇a)µ̇
α̇(γ

ˆ̇
b)α̇

ν̇ ,
(5.2.8)

where one should note that the matrices γâ and γ
ˆ̇a are antisymmetric. Reversing the

order of the gamma matrices in the first and the last terms one obtains

V1 =4(T â)αα̇(T â)αα̇ − 4Tαα̇T
αα̇ + 4(T â)αα̇(T â)αα̇

=8Tr

[
T âT̃ â − 1

2
T T̃

]
,

(5.2.9)

where the identities in the last line of (2.2.19) and (2.2.21) were used and the tilde

denotes transposition that implies Tr
[
T T̃
]
≡ Tαα̇Tαα̇.

The same but longer calculation shows that the second term in the potential V2

gives the same expression up to prefactor

V2 = −2Tr

[
T âT̃ â − 1

2
T T̃

]
. (5.2.10)

Together V1 and V2 result in

Veff = 6Tr

[
T âT̃ â − 1

2
T T̃

]
= 6Vscalar. (5.2.11)
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5.3 Invariance of the action

In this section we show the details of the proof that the actions (2.5.39) and (2.5.50)

are invariant under the gauge transformations (2.3.7). In the dynamical picture of the

extended geometry the action is invariant due to the section condition. In the Scherk-

Schwarz reduction of the theory the invariance of the action is assured by the quadratic

constraint (2.3.10).

The terms that contribute to the effective potentials in d = 5, 6

XMK
LXNL

KMMN ,

XMR
KXNS

LMMNMRSMKL,

XRM
KXNS

LMMNMRSMKL

(5.3.1)

are invariant separately. Let us start with the first term whose transformation gives

δΣ

(
XMK

LXNL
KMMN

)
= 2XMK

LXNL
KXRS

MΣRMSN =

= −2[XR, XS ]K
LXNL

KΣRMSN = −4Tr[XR, XS , XN ]Σ[RMS]N =

= −2XSN
KTr[XK , XR]ΣRMSN = −2X(SN)

KXKP
QXRQ

PΣRMSN = 0,

(5.3.2)

where we used the closure constraint (2.3.10) in the first line and cyclic symmetry of the

trace in the second line. The last step here exploits the condition X(AB)
CXCK

L = 0.

For the transformation of the second term we have

δΣ(XMR
KXNS

LMMNMRSMKL) = 2XMR
KXNS

LXPQ
MΣPMQNMRSMKL+

+ 2XMR
KXNS

LXPQ
MΣPMMNMQSMKL − 2XMR

KXNSXPK
QΣPMMNMRSMQL.

(5.3.3)

After relabelling the indices the last two terms can be recast in the following form

(XMR
KXPQ

R −XMQ
RXPR

K)XNS
LΣPMMNMQSMKL =

= (XPXM −XMXP )Q
KΣPMMNMQSMKL =

= −XPM
RXRQ

KΣPMMNMQSMKL.

(5.3.4)

This is exactly the first term in (5.3.3) but with the opposite sign. Thus the second term

in (5.3.1) is invariant under the gauge transformations. The proof of the invariance of

the third term is exactly the same.
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