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Abstract

In this thesis the recently developed duality covariant approach to string and M-
theory is investigated. In this formalism the U-duality symmetry of M-theory or T-
duality symmetry of Type II string theory becomes manifest upon extending coordinates

that describe a background.

The effective potential of Double Field Theory is formulated only up to a bound-
ary term and thus does not capture possible topological effects that may come from a
boundary. By introducing a generalised normal we derive a manifestly duality covariant
boundary term that reproduces the known Gibbons-Hawking action of General Rela-
tivity, if the section condition is imposed. It is shown that the full potential can be
represented as a sum of the scalar potential of gauged supergravity and a topological
term that is a full derivative. The latter is written totally in terms of the geometric

f-flux and the non-geometric Q-flux integrated over the doubled torus.

Next we show that the Scherk-Schwarz reduction of M-theory extended geometry
successfully reproduces known structures of maximal gauged supergravities. Local sym-
metries of the extended space defined by a generalised Lie derivatives reduce to gauge
transformations and lead to the embedding tensor written in terms of twist matrices.
The scalar potential of maximal gauged supergravity that follows from the effective po-
tential is shown to be duality invariant with no need of section condition. Instead, this
condition, that assures the closure of the algebra of generalised diffeomorphisms, takes

the form of the quadratic constraints on the embedding tensor.
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CHAPTER 1
INTRODUCTION

1.1 Invitation to the topic

String theory is arguably the most developed candidate for a theory of everything.
It appeared as an attempt to describe strong interactions and dualities in scattering am-
plitudes. Soon it was rediscovered as a possible theory of quantum gravity [6]. It was
realised that the spectrum of a closed string contains excitations of spin 2 which were
then identified with gravitons, which caused the significant transition in the understand-
ing of strings from simply tubes between quarks to the most elementary constituents of
matter. This resulted in intense studying of fundamental strings and led to discovery of
five different consistent superstring theories that live in 10 dimension: Type I, Type ITA
and IIB, SO(32) and Ejg heterotic strings. These theories differ by gauge symmetries,

set of fields, boundary conditions and realisation of supersymmetry.

The situation appeared to be very strange: after years of looking for a theory of ev-
erything one eventually ends up with five of them having no way to choose the correct
one. The way out of this trouble was tightly connected to the problem of extra dimen-
sions in string theories. Almost one hundred years before these events T. Kaluza and
F. Klein suggested one could consider the Maxwell field A, as a part of 5-dimensional
metric. Assuming, that the fifth dimension is compact with very small radius of com-
pactification they showed that General Relativity on such a background is equivalent
to the 4-dimensional theory of electromagnetic field interacting with gravity. The same

idea can be used to get rid of extra 6 dimensions of string theories.

For example one can choose a 6-dimensional torus T® as an internal space. Since
the torus is flat it preserves reparametrisation invariance of the worldsheet and Virasoro
algebra, that is local. An amazing feature of Type ITA and Type IIB string theories
is that compactified on T! they become equivalent on quantum level [7-9]. This is
a particular case of the so-called T-duality that is the oldest known duality in string

theory [10, 11]. It relates two heterotic string theories to each other as well.

T-duality is a perturbative symmetry and can be seen manifestly in the spectrum
of a closed string living on a background with compact directions. An example of a

non-perturbative symmetry is provided by S-duality of Type IIB string theory in 10



dimensions, that is SL(2,Z). In addition, S-duality relates heterotic SO(32) strings to
Type I strings. Finally, type ITA theory in the strong coupling regime behaves as an 11-
dimensional theory whose low-energy limit is captured by 11-dimensional supergravity.
The same supergravity being compactified on a unit interval I = [0,1] leads to the

low-energy limit of Eg heterotic theory.

The net of dualities that unifies all five string theories gives a hint that there should
exist a mother theory that gives all string theories in various limits and lives in 11
dimensions. Such theory is commonly referred to as M-theory and, although it has not

been understood in great details, a lot of is already known about its structure.

M-theory describes dynamics of 2- and 5-dimensional membranes (the so-called M2-
and Mb5-branes) and reduces to 11-dimensional supergravity in its low-energy limit.
Being compactified on a circle S! M-theory is equivalent to Type ITA string theory. A
fundamental string then is associated to an M2-brane wrapped around the circle. The
other objects of Type IIA string theory like D2, D4 branes for example appear from the

fundamental objects of M-theory in a similar way [12-14].

On the other hand M-theory compactified on a torus T? gives rise to Type IIB
string theory compactified on a circle S'. S-duality symmetry SL(2,7Z) of Type IIB
theory becomes transparent in this picture and is just the modular group of the 2-
dimensional torus. Together S- and T-dualities are combined into a non-perturbative

set of symmetries of M-theory that is called U-duality [15].

These dualities provide a powerful instrument for studying string compactifications,
moduli stabilization, properties of string backgrounds, and were intensively studied for
many years (for review see [11, 16-18]). However, the partition function of a superstring
is not manifestly invariant under these transformations. In [19-21] the formulation of
the worldsheet action for a string where T-duality of a background is manifest was
proposed. The idea was to consider combinations of coordinates of a closed string
X =X, +X_ and X = X, — X_ as independent variables. Then O(d, d) T-duality
symmetry becomes manifest if the action is rewritten in terms of 2d extended coordinates
X = (X, X ). The Buscher procedure, described in details in further sections, gives a well
defined algorithm for gauging the isometry, integrating out gauge fields and obtaining
the T-dual sigma-model. This leads to the notion of the so-called generalised metric
that puts the space-time metric and the gauge fields on an equal footing and allows
one to consider diffeomorphisms and gauge transformations as a part of more general

transformations of extended space.

The duality invariant approach on which the thesis is focused, is an incredibly fas-
cinating construction. Among other applications, the most intriguing feature of this

approach is that both non-geometric and geometric backgrounds of string theory be-



come geometric in terms of the extended space. Although geometry of the extended
space is still a mystery and very little is known about its structure, one already sees
useful applications such as gauged supergravities, studying non-geometric fluxes, SU(3)
structures, global properties of backgrounds and many others. Good pedagogical re-

views of this approach and its applications can be found in [22, 23].

1.2 Structure of thesis

The focus of this thesis is on the duality invariant approach in the context of string
and M-theory. In the next section we start with brief introduction to duality symmetries
in string and M-theory. It is explicitly demonstrated how the extended space and the

generalised metric follow from Duff’s procedure.

In Chapter 2 we investigate dimensional reduction of the extended space by U-duality
valued Scherk-Schwarz twist matrices. It is shown that this reduction successfully re-
produces the known structures of gauged supergravities, such as the embedding tensor,
scalar potential and gauge group. A brief introduction to gauged supergravities is pre-
sented in the beginning of this chapter. The most laborious calculations of this chapter

are contained in the Appendix.

Chapter 3 is devoted to boundary terms in the duality invariant formalism. The
potential for Double Field Theory, commonly written only up to a full derivative term,
acquires an extra duality invariant term that reduces to the known Gibbons-Hawking
term if the section condition is satisfied. This boundary term is written in terms of
a generalised normal. For backgrounds with non-trivial monodromy properties the
boundary term does not vanish as is shown explicitly for the example of the 53 exotic

brane.

1.3 Dualities in string and M-theory

The action for a string on a background defined by metric G/, and the Kalb-Ramond
2-form field By, is given by the Howe-Tucker action for the 2-dimensional non-linear
sigma model [24, 25]

Sp = / drdo (V=RhG, + € B, ) 0,X10,X", (1.3.1)

here {7, 0} are coordinates on the world-sheet of the string and hg; is the world-sheet
metric. Embedding of the two-dimensional string world-sheet into the target space is
described by D functions X*(7,0), where the Greek indices run from 1 to D. The



symmetries of the theory include the target space diffeomorphisms X'* = X'#(X), the
world-sheet reparamterizations ¢’ = ¢’*(c®) and the Weyl transformations h/,(c%) =
ew(")hab(a“). The quantum corrections respect the Weyl symmetry only for certain
choices of the dimension D of the target space (the famous D = 26 for the bosonic
string and D = 10 for the superstring). For more details the reader is referred to the

classical textbooks on string theory [6, 26] and the lectures by David Tong [27].

In addition to the symmetries listed above there are number of non-manifest trans-
formations of fields involved in string theories that relate different theories to each other.
One example of this kind of dualities in string theory is presented by the target space
duality or T-duality [10].

1.3.1 Closed string spectrum

T-duality is usually better understood in the context of backgrounds consistent with
dimensional reduction by compactification. In the case of compactification on a torus
T-duality acts along cycles of the torus replacing a cycle with radius R by a cycle with

radius o/ /R relating two different theories.

Consider a closed string and start with flat background with one compact direction
R P=2 5 St of radius R and set the Kalb-Ramond field to be zero, B,, = 0. Gauge
transformations represented by the worldsheet reparametrisations and the Weyl trans-
formation can be used to further simplify the worldsheet metric and bring it to diagonal

form ||hgp|| = ||nap|] = diag[1l, —1]. The resulting action is then given by
S = / drdo ™0, X 9y X . (1.3.2)
Variation of the action with respect to the fields X* reads
5 = — / drdo ™5 X" 0,0, X, + / drdod, (naba)(“abxu) —0. (1.3.3)

Assuming that the variation 0 X*(7,0) is an arbitrary function of ¢ and 7 that van-
ishes as 7 — +00, the first term gives rise to the known Klein-Gordon-type equation
0%0, X" = 0 while the second leads to boundary conditions. For a closed string the

boundary conditions will be

XY(r,0+27) = X%1,0), fora=1,...,D—1

(1.3.4)
O(1,0 4+ 2m) = 60(r,0) + 2rmR, m € Z,

where the compact coordinate of the target space is denoted by 6. The integer number

m shows how many times the closed string is wrapped around the compact direction

10



and is called the winding number.

Components of momentum of the string which correspond to the non-compact di-
rections @ = 1...D — 1 give rise to the mass spectrum, while the remaining component
py becomes quantized and leads to the tower of states. This follows from the condition
that the string wave-function on the circle S' should be uniquely defined. The action of

the vertex operator on the ground state of the string gives a general state of the string
) = [ dotiic, x> o), (1.3.5)

where II(¢, X*) is some combination of the polarization of the string (,,.. ,, and the
coordinates X*, whose explicit form is irrelevant for the discussion. The quantization

of the momentum follows from the phase factor in the exponent and states

2mn

Po = (1.3.6)

Finally, this leads to the mass spectrum which depends both on the winding number m
and the translational mode number n

n?  m2R? ~

where N and N denote the standard number operator. One can immediately see that
the closed string mass spectrum is invariant under change of the radius R to o//R with

additional replacing the winding modes by the translational modes

a/

R - 1.3.8
—— (138)

m <— n. (1.3.9)

Hence, the equivalence of small and large circles from the point of view of a closed string

is shown in this simple example.

1.3.2 The Buscher rules

So far, the Kalb-Ramond field was set to be zero and the background metric was
taken to be flat for simplicity. Dropping these conditions reveals more complicated
structure of T-duality transformations that now involve not only inverting the radius R
but also non-trivial transformations of the metric G, and the 2-form field B,,, that are
known as the Buscher rules [28-30]. The procedure that derives the Buscher rules may
be referred to as a path integral approach, since it is concerned with Lagrange multipliers

and integrating out non-dynamical fields. Although in the further description of this

11



procedure the path integral is not mentioned, since it does not change things drastically,

few comments on one-loop quantum effects are made in the end.

For further discussion it is useful to write the action (1.3.1) in the conformal gauge

and adopt the light cone world-sheet coordinates oy = 1/2(7 £+ o)

Sy[6] = / 4o (G + B)wdy X'0_ X" =
_ / do (Gap0+00_6 + Eqody X“0_0 + Eya400_ X+ (1.3.10)
+E,50: X0 XP),

where the notation E,, = G, + B, was introduced. Since the coordinate 6 is a
coordinate on the circle S! this action is invariant under global U(1) transformations
0" = 0 + &, where €€ € U(1). The idea is to make this symmetry local by introducing
covariant derivatives

DO = df + A, (1.3.11)

with the gauge field A = A, do™ + A_do~. The gauge field A should be fixed to be a
pure gauge so not to increase the number of degrees of freedom of the theory. This can

be done by making use of a Lagrange multiplier
So[0,A] = / do(G + B) s X"0_ X" =
- / do (G99D+9D,9 4 Bsgds XOD_0 + Egu D400 X%+ (1.3.12)
T B30 X0 X7+ AFy ).

Integrating over the Lagrange multiplier X in the string path integral leads to the con-

dition F_, = 0, whose solutions imply that the gauge field is a pure gauge

AL =040

1.3.13
A_=0_¢p. ( )

This condition reverts the action S3[f, A] back to the initial action S1[0+ ¢] that is equal
to S1[6] up to a field redefinition.

An alternative way to proceed is to leave the Lagrange multiplier A but exclude the

gauge field A. Equations of motion of the gauge field are algebraic and thus can be

12



easily solved providing

1 1 .
Ay = —04 A+ —Epa0-X*
Goo Goo (1.3.14)
1 1 N e
Al = — O N+ —— FEsp0,. X
Goo Gop~ 07"

The action S3[f, \] with A and A_ replaced according to these expressions becomes

S3[\] = / do ( "N\ + Bl 04 X0\ + F\ ;04 N0- X+
) (1.3.15)
+E! Bmxda_xﬁ) ,

where the gauge was fixed by setting § = 0. This action has the same form as S;[f] but
the background is different

;L 1
, 1
E,\d = 7G Eeew
60 (1.3.16)
/ _ 1 EA
A\ — _7G99 abs
1
/ — A — ~ [ ~
Bl = Fap — Baog—Fop-

These transformations are referred to as the Buscher rules and define the transforma-
tion of the background under T-duality. Both the actions S; and S35 are equivalent to
the action Sp, thus they are equivalent to each other and describe the same physics.
Transformations (1.3.16) are non-linear transformations that mix the metric G, and
the Kalb-Ramond field B,,,, thus mixing target space diffeomorphisms with gauge trans-
formations B’ = B + dA.

The procedure described above is pure classical and does not take into account
contribution from the dilaton measure. A correct one-loop calculation shows that in
addition to the T-duality transformations of the metric and the B-field listed above one

should consider the transformation of the dilaton
/ 1 / 1
® —Zlndetg :gp—zlndetg (1.3.17)

providing the combination \/56_2‘” is invariant.

13



1.3.3 Duff’s procedure for the Fl-string and the M2-brane

The so-called Duff’s procedure reveals another non-trivial feature of T-duality trans-
formations: hidden symmetry between equations of motion and the Bianchi identities
[21, 31]. Starting from this symmetry one can introduce a set of dual coordinates and
the so-called dual Lagrangian that governs the dual dynamics. The key point is that
equations of motion for the dual coordinates appear to be equivalent to Bianchi identi-
ties for the ordinary coordinates and vice versa. A relation between these coordinates

leads to the notion of the generalised metric.

Consider a bosonic string on a background given by the metric and the B-field
that do not depend on X*. The reason for this is that we have in mind toroidal
compactifications with X* the compactified coordinates. The equations of motion for
the field X* that follow from the action (1.3.1) have the form of the conservation law

aaég = 0 for some current
Go = (V=hh"G, + € By, ) 0,X". (1.3.18)

Locally solutions of this equation can be represented by the Hodge dual of the full
derivative QZ = €ab8bYH of the would-be dual coordinates Y),, that leads to the following
equation

(VERH Gy + € B ) 9,X7 = €0y, (1.3.19)

Hence, taking the derivative d, of this expression one obtains the equations of motion
for X* on the left hand side and the Bianchi identities e“b(?aabYM = 0 for the field Y,
on the right hand side.

The equations of motion for the field X* can be equivalently derived from the first

order Lagrangian by introducing an extra independent field U’

1 ~
Lo = 5(\/ﬁhabc;w + € B, ) ULUY — GaUL, (1.3.20)
where the current QZ is written in terms of the field X*. Equations of motion for the
fields U} and X* that follow from this Lagrangian give an algebraic constraint on the

auxiliary field and the equation (1.3.19) respectively.

OLe o uw gn

aUa

or (1.3.21)
O g = 0= O |(VRh G + e“bBW)U,;’] —0.

Solution of the first line, given by U4 = 9,X*, implies that the second line is exactly
(1.3.19).

14



The dual Lagrangian for the field Y, has exactly the same form as £, but with Qﬁ

expressed in terms of Y),

1
L,=5 (VERR G+ € By, ) ULTY = e0,Y, U1 (1.3.22)

The variation of the corresponding action with respect to Y, gives the Bianchi identities
e“baaUg‘ = 9,0, X* = 0 for the field X* while variation with respect to U4 implies

(VERR G+ € B ) Uy = €0, (1.3.23)

It is straightforward to solve this equation with respect to UL and to write the solution

as
eabUM = (\/—hh“bp‘“’ + eabq“”) Y, (1.3.24)

where p,, = G + Bua B and puaq® = B,”. This expression has exactly the
same form as (1.3.19), but with X* replaced by Y}, and the corresponding background
transformation, that is actually a T-duality rotation. Hence, the intermediate result
is that doubling of coordinates reveals hidden symmetry of equations of motion for a

bosonic string and the Bianchi identities.

To make this symmetry manifest it is useful to make the following definitions

G2 = V=hh®d,Y,, F =/ —hh®oX",

SR i . (1.3.25)
Go = ,Y,,, For = abg, X,
and to rewrite two sets of equations (1.3.19) and (1.3.24) as
gNa -G, Fw +B ﬁau
g " (1.3.26)

P G + G

The first equation here is just the equation (1.3.18), while the second one can be reduced
to (1.3.24) multiplying by pa,. Structure of these equations suggests to combine indices

into one set introducing matrix notations
mun® ™ = Hyn e, (1.3.27)

where the capital Latin indices M, N = 1...2n. Here the objects G and F were collected

into two 2n-rows

M — [Ffw] , PM = [FW] (1.3.28)
Ge G

15



and 2n x 2n matrices H and 7 are defined as

Gap — BapBPs —B."

Hun = By G

y TIMN =

0 &
. ] . (1.3.29)

Now the SO(n,n) symmetry of (1.3.27) becomes apparent. The objects ® and ® trans-
form in the fundamental representation of SO(n,n), the matrix H transforms as a

2-tensor and the matrix nasn is an SO(n,n) invariant tensor:

(I)liM — OMN(I),iN, HEMN — OMKHKLONLa

o _ (1.3.30)
q)le — OMNq)lzN, NN = OMKT]KLONL-

Note that the last equation together with the explicit form of vj;ny implies that O €
SO(n,n).

The matrix H sy, that is the so-called generalised metric, allows to consider the or-
dinary metric G and the 2-form field B on an equal footing. Moreover, while T-duality
is realised by the non-linear transformations of the supergravity fields (1.3.16) the gen-
eralised metric transforms linearly (1.3.30). One can check that the linear SO(d,d)

transformations of H sy are precisely equivalent to the Buscher rules.

This procedure is not a unique property of string theory and can be applied to
dynamics of extended objects of other dimensions. Consider M-theory that describes
dynamics of M2-branes together with Mb5-branes interacting with the three-form gauge

field C5. The bosonic part of the action for the theory can be written as follows:
1 1 1
S = / d3ev/—h [2habGW6aX“8bX” + 6eabcCWaaXaabX“acX” -5l (1.3.31)

where the integration is performing over the M2-brane world-volume v/hd3¢ that lives
in the bulk with the metric G,. The 3-form matter field couples to the brane in the

way that is a natural generalization of electromagnetic and Kalb-Ramond coupling:

A0 X1

1.3.32
B0, X 0, X", ( )

corresponding to zero- and one-dimensional fundamental objects respectively. The Mb-

branes are carriers for magnetic charge associated with the field strength F[C] = dCj.

Consider the specific case of SL(5) duality group that arises in T* spatial reductions
of M-theory so that there are 4 commuting Killing vectors. The metric and 3-form
are still independent of the four coordinates X* associated with these Killing vectors.

Suppose in addition that there are no other directions in space-time in which the M2-

16



brane is moving. Under such simplifications the equations of motion for the field X*
that follow from (1.3.31) have again the form of the conservation law (%QNI‘j = 0 with the

current defined as
Go(X) = V=hG 0. X" + %e“bccwabxyacxp. (1.3.33)
At least locally solutions of this equation can be written in the following form
Ga(Y) = "0, X" DY, (1.3.34)

where the dual coordinate Y, was naturally introduced. As in the case of the F1-string
the equations of motion for the dual coordinate that follow from the dual first order
Lagrangian are exactly the Bianchi identities for the field X*. We can write the first

order Lagrangian £, and its dual £, as

1 N 1 .. ;
L, =— §¢jthJUng‘yGuv - §€UkUiMUJZ‘/Ul? e+ UG (X)),
and (1.3.35)

1 N 1 .. :
L, =— 5\/jhhszlHijGﬂV - §61]kaUJ‘VUl?Cuva + UG (Y),

where the auxiliary field U!* was introduced as before. Equations of motion for the
auxiliary field that follow from the Lagrangian £, imply the algebraic constraint U}* =
0; X*, while the variation of the corresponding action with respect to the field X* gives
aaég = 0. The dual Lagrangian L, gives the following equations of motion for the

auxiliary field
V=hh UGy + €IFUL UL Crve = GL(Y) = €970, X" 04V 0. (1.3.36)

Variation of the dual action with respect to Y, leads to the Bianchi identities €' kajf)kX H
0 on the filed X*.

In analogy with Duff’s procedure for the Fl-string one introduces the following
variables
Ge, = V=hh™0,Y,,, F = —hh"X",

g~a _ 6abca Xl/a Y Jfa,uu _ abca X,ua XV (1337)
w= b ct pvs =€ b c .

The fields G, and F" are straight derivatives of the coordinates and are therefore
rather like displacements, whereas Qg and Fo are rather like field strengths. These

allow to write equations that follow from the Lagrangians £, and £, in a simple form

Gt =G F + Crap T

a v v,af ~a vpAa (1338)
Faww —ppraBge. 4 qrveGe.

17



The fields p,, oo and ¢""? that naturally appear here are defined by the following rela-
tions
Pap ™’ = —Cap,G",
Paprop = 15, (1.3.39)
Pagur = GajuGuip = CappC’ )
Introducing the generalised index M = {u, af}, that runs from 1 to 10 labelling the
10 representation of SL(5), we can write the above equations in the following compact

form

oM — pMN P4 (1.3.40)

where the matrix MM is the desired generalised metric

G 4 5O CY 5, 5CF g
MMN — (1.3.41)
750" a8 Gappo

and the variables (1.3.37) were collected into the objects

Fan gs
M — , 0% = : (1.3.42)
(olz,B ]}bpa

The tensor G, po = %(GWGW — GusGyp) is used to lower and raise an antisymmetric
pair of indices. Finally, the Bianchi identities and the equations of motion can be unified
as 8(1&)%4 =0.

1.4 Extended geometry and generalised metric

As it was shown in the previous section the generalised metric H sy naturally ap-
pears when considering theory of closed string on toroidal backgrounds. This metric
appeared in the early works on T-duality and defined the first quantized Hamiltonian
of a closed string on toroidal backgrounds [21, 32]. The Duff’s procedure reveals the
hidden O(n,n) symmetry of equations of motion for a closed string and the Bianchi
identities leading to the generalised metric transforming in a linear representation of
the duality group. The matrix H sy parametrizes the coset O(n,n)/O(n) x O(n) that

appears in toroidal reductions of supergravity.

In mathematical literature the concept of a generalised metric appears in generalisa-
tions of Calabi-Yau and symplectic manifolds and is usually referred to as the generalised

geometry [33-36]. This formalism is based on two ideas: the first is to replace the tan-
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gent bundle 7" of a manifold M by direct sum of the tangent and the cotangent bundles
T &T*, the second is to replace the Lie bracket on sections of T' by the Courant bracket
on sections of T'& T [37].

Denoting tangent and cotangent vectors by Y and £ respectively, elements of a fibre

T, ® T, at the point p can be represented as a formal sum v =Y + § with the natural
inner product

(v,v) = (Y + &Y 4+ &) :=iy€. (1.4.1)

Here iy ¢ is the interior product or the evaluation £(Y") that is just index contraction if

written in components

& =Y%,. (1.4.2)

The Courant bracket is defined as a generalisation of the ordinary Lie bracket of vector
fields [Y71, Y2]

Y1 +&, Yo+ &) = Y1, Y2 + Ly, & + Ly, 61 — %d(im& —iv,&1). (1.4.3)

Failure of the Courant bracket to satisfy the Jacobi identity is an important feature of
the algebra it defines. Indeed, for any sections w,v and w of the generalised tangent
bundle T'® T™* the following is true

T ol 0]+ [, ] 0] + [l ] ] = 5 (sl w) + (], 0) + (ol w) - (1.4.4)

which implies that the Courant bracket is not a bracket of any Lie algebra. Application
of the formalism of generalised geometry to string theory translates this aspect to the

so-called section condition that restricts dynamics of the system.

Although the generalised tangent space 1° @ 7™ has dimension doubled compared
to the conventional tangent space T, Hitchin’s generalised geometry does not introduce
extra coordinates. In other words the space M still remains the ordinary manifold. On
the contrary, in string or M-theory extended geometry dual coordinates enter the game.
The generalised metric introduced by Gualtieri [35] becomes now a conventional metric
defined on the extended space, that still does not admit the structure of a Riemann
manifold [38-43].

String moduli that enter the matrix H sy are the metric G;; and the NS-NS gauge
field G;;. It is known that the low energy effective action for a closed string is that of

the supergravity whose bosonic part is

Sepf = /dxme—% <R[G] + 4(0¢)* — 112H2> . (1.4.5)
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Here R[G] is the Riemann curvature of the metric G;;, H = dB is the field strength of
the gauge field B = Bijda:i/\da:j and the dilaton is denoted as ¢. Although, the partition
function for string theory is invariant under the T-duality transformations (1.3.16), it is

very non-trivial to show this explicitly. Thus, the symmetry is not manifest or hidden.

The notion of generalised metric, that puts the metric and the 2-form field on equal
footing and transforms linearly under the action of T-duality, allows to rewrite the low
energy effective action in a duality covariant form. Moreover, the so-called extended

space that unifies translational and winding modes has to be introduced.

In the work by Kugo and Zwiebach [44] it was shown that a closed string on a
toroidal background considers translational and winding modes equally. E.g. they both
contribute to the mass spectrum of the closed string on the background given by the
torus S! of radius R (1.3.7)

n?  m2R? -

+ + (N +N—2), (1.4.6)

M=m+=0

where n and m are the (discrete) translational momentum and the winding number.

The Zo action of T-duality exchanges n and m and replaces R by its inverse.

The winding number can be thought of as a discrete momentum that is dual to the
ordinary momentum under the action of T-duality. The inverse Fourier transformation
turns the translational mode into the ordinary coordinate x* and the winding mode into
the so-called dual coordinate, that is denoted as Z;. The theory is now considered as
living on a doubled torus T™ x T with coordinates (z*,%;). It is convenient to double
not only the compact coordinates but other d = D — n coordinates as well introducing
a theory that has manifest O(D, D) invariance and lives on the extended space with 2D

dimensions.

The construction of the double field theory was developed by Hull, Hohm and
Zwiebach in [45-48]. The main feature of this formalism, in addition to the doubling of
coordinates, is a condition that restricts the extended space to a D-dimensional space
if satisfied. It originates from the Virasoro algebra constraint Ly — Lo = 0 of the closed
string theory and states that all fields and all their products must be annihilated by the

operator 8;0' (sum over i is understood).

The strong constraint can be written in an O(D, D) covariant form 9p;0™ = 0 upon

collecting ordinary and dual coordinates into one object

XM = [x] : (1.4.7)

that represents coordinates on the extended space labelled by M = 1..2D. Using this
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notation it is straightforward to show that the strong constraint effectively reduces the
number of dimensions to D. Indeed, in the momentum representation section condition
reads

PyPY =0, (1.4.8)

where PM = (!, p;) is the momentum corresponding to the coordinate X*. This implies
that momenta P and P’ associated with Fourier components of any two fields should

be mutually orthogonal and isotropic
P.P=0, P-P=0, P-P=0. (1.4.9)

The maximal dimension of such isotropic subspace in the space of signature (D, D) is

D. Indeed, the equation P - P = 0 can be written as

~Q 1 a a
Dap® = Z(ka +q4)(E* —¢%) =0, (1.4.10)

that has two solutions k, = +q,. Here the new variables kK = p+p and g = p—p
were introduced. Different choices of this subspace correspond to picking a particular

T-duality frame.

Recall the explicit form of the generalised metric and the Buscher rules written in

the duality invariant formalism
HMN = , H?\/[N = OMK'HKLOLN, (1.4.11)

where O is an element of the group O(D, D). The effective action can be expressed in

terms of the generalised metric in the duality covariant form [48]

1 1
S = /dxdieQd (8HMN8M’HKL8NHKL — §HKL8L’HMN8NHKM—
(1.4.12)
—20rdONHMN + 47-LMN8Md8Nd> .

Here the dilaton ¢ and the determinant of the metric G = det |Gy || are combined into

a single object called the duality invariant dilaton
1
d=¢— ilogG. (1.4.13)

The capital Latin indices are raised and lowered by the O(D, D) invariant 2D x 2D
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constant metric

1
0 DXD] . (1.4.14)

NMMN =
llpr 0
Structure of the generalised metric implies that application of this rule to Hsn gives

the inverse matrix
HMN = MEq e N WM Y e = 0} (1.4.15)

This suggests to define a matrix SMy = HMy = nMEH y, that satisfies S'nS = n
and thus is an element of O(D, D). The matrix S is what was initially defined as the

generalised metric in the mathematical literature.

In addition to the global invariance with respect to T-duality transformations, su-
pergravity action is invariant under local symmetries given by the diffeomorphisms and
gauge transformations of the Kalb-Ramond field. The formalism of the double field the-
ory allows to unify these transformations and write them in a T-duality (or equivalently

an O(D, D)) covariant form.

Consider a generalised gauge parameter £ that combines the vector field £%, which

defines the diffeomorphisms, and fa that is the parameter of the gauge transformations

M _ ga
sM = La] : (1.4.16)

Then the duality covariant local transformation of an arbitrary generalised vector VM

consistent with diffeomorphisms and gauge transformations reads

S VM =Ny vM —yNgysM 4 oMy s

(1.4.17)
= LyVM + YME oo nhvs.

YME o = nMEppg

to emphasise that dxV? is a deformation of the ordinary Lie derivative Ly V™. This

It is convenient here to introduce the O(D, D) invariant tensor

suggests to view the transformation (1.4.17) as the generalised Lie derivative and write
LsVM =55VM = LyVM 4 YME Lo e 2Ry S, (1.4.18)

The action of Ly can be defined on any tensor TAL-An Bi...By; Dy processing each index
in the same pattern. In addition one consistently defines the transformation of the
dilation to be

dnd = Moy d — %aMzM = Lyd — %aMzM. (1.4.19)

The generalised Lie derivatives of the O(D, D) metric nysn and the Kronecker symbol
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oM y vanish explicitly:
Lsnun =0, LzdMy=0. (1.4.20)

Algebra of the local transformations dx; is closed only up to the section condition
OM o 9pre = 0. Indeed, consider commutator of two generalised Lie derivatives calcu-

lated on a generalised vector Vs
(L5, L,V = = L5, 5010 Vi + Fur (X1, 22, V), (1.4.21)

where [¥1, ¥9]c that naturally appears here is the C-bracket which was introduced by
Siegel in [49] and is defined as [45]

1
21, Bolo™ = S onTy] — izﬁaMzz]P. (1.4.22)
The extra term Fj; has the following form
1
Fr (21,32, V) = _52[1N0Q22]N3QVM + 09501005y Vi (1.4.23)

and is zero if the strong constraint 9, @ 9™ e = 0 is satisfied.

Although the generalised effective potential (1.4.12) is written in terms of the fields
Harn and d living on the extended space of dimension 2D, the strong constraint effec-
tively reduces the number of dimensions to D. As it will be explained further, in the
Scherk-Schwarz reduction of the extended space formalism the section condition can
be relaxed and turned into conditions on the so-called embedding tensor (or structure
constants). This relation between the extended space geometry and the deformations

of supergravities means that the extended space is more than a mathematical trick.

It is straightforward to investigate different solutions of the section condition. For
this purpose it is convenient to expand the duality invariant action (1.4.12) and write
it in terms of 8; and &' that are derivatives with respect to the ordinary and the dual
coordinates. The natural form of this expansion suggested by the structure of the

effective action itself reads [47]
§=80 450 5@ - / dwdi (do) +L£W 4+ L<2>) : (1.4.24)

where the number in the superscript denotes the order of the dual derivative 9% in the

corresponding expression. Hence, the first term contains no dual derivatives and thus
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has the form of the conventional supergravity action (up to boundary terms)
1 . 1 . g g 1
L0 =2 [—4@]@0’“0@“ + iawaia’flajekl + 201d0;GY + 4G9 0,d0;d — — H*

—e 2\ /—g (R[G] + 4(8¢)? — 112H2> + boundary terms.
(1.4.25)
Here H = dB is the field strength for the Kalb-Ramond field, R[G] is the Riemann
curvature for the metric Gj; and in the second line the explicit form of the invariant

dilaton d = ¢ — %log G was used.

Since the whole formalism is duality invariant and the term £2) contains only dual
derivatives &' it has to be very similar to £(© and T-dual to it. Introducing the field

Eij = gij + b;j this term can be written as
1 ., . - - - - - N
L2 — g2 [—4g’kgﬂgpq (5pr5qsa’"5klasgij £y 1y g — gmgsja’“splasqu)

— gikgﬂ <gip5qj5pd5qgkl + gpigjqépdéq&k) + 4gij5ik5ﬂ(§kd5ld] .
(1.4.26)

Starting from the O(D, D) transformations of the generalised metric Hyny it can be

shown that the field &;; transforms as
E'(X) = (a€(X) +b)(cE(X) +d) 1, (1.4.27)

where a,b, ¢ and d are D x D blocks of an O(D, D) matrix

Ouk = [i Z] (1.4.28)

with straightforward constraints on them following from OO = 7. In the special case
when T-duality acts in all directions, i.e. a = 0,b = 1,c =1 and d = 0 these relations
imply

g =&, (1.4.29)

and the corresponding dual metric is g}, = Skigij&j. Hence, the Lagrangian £(2) can

be obtained from £(% using the following rules
Eij — M. gl géj, 0; — 0. (1.4.30)

Verification of T-duality between these two terms is straightforward and is provided in
details in [47]. Thus, the terms £(°) and £?) give the same supergravity action written

in different T-duality frames. Namely, the first one corresponds to d%e = 0 solution of
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the strong constraint while the second survives if nothing depends on ! (alternatively

&o = 0).

Finally, the term £(1) has the following form

1 ., . - - -
L0 =2 [QQMgﬂgm (& 0 Ew1 0415 — £ 07 €4y O4Ejq + En ' i OE s )

g7 (Erq Opd D Eij = Epr O AOEy + Eny 0 A OS5 — E4y 0107 E)

— 8gij gzk 5kd ajd} .
(1.4.31)
and contributes to the action for such choices of T-duality frames that include both

dual and ordinary coordinates, for example 9; = 0 and 52, .OP =0.

This decomposition of the effective action has very close relation to fluxes in type 11
string theory. One can find reviews on fluxes in string theory [50-52], in supergravity [53]
and in application to extended geometry [54, 55]. In addition, recently some progress
has been made in this direction in [56-59]. The first and the most intuitive example of

a flux that is called the H-flux is given by the integration of H = dB over a 3-torus T?

H. (1.4.32)

T3
Starting with the Kalb-Ramond field with the only non-zero component B, = Nz,
where N € Z the H-flux is given by the integer N. Using the Buscher rules one can

show that T-duality in the direction x leads to the following metric
d52 = (d.CC + fxyZZdy)Q + dy2 + dZZ‘ (1.4.33)

Here f*,. = N is the so-called f-flux that is T-dual to the H-flux and the metric is that
of the twisted torus. Indeed, one can consider the torus T® as a T? fibration over a
circle S' parametrized by the coordinate z. Then, going around the circle z ~ z + 27
one has to shift the coordinate x as x ~ x + 27 f*,,y in order to have well defined
metric. Finally, T-dualities in the directions y and z turn f-flux into Q-flux and R-flux

respectively providing the following chain

Tx Tll

T.
nyz — ftcyz — szz —=

RovZ, (1.4.34)

Q and R fluxes are non-geometric in the sense that the first one leads to non-commu-

tativity of the string coordinates and the second implies non-associativity [56]

[$a7l_b] ~ Qabcxc,

b 2] e (1.4.35)
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These ideas naturally fit in the picture of the extended geometry. The solution
d" = 0 of the section condition leaves only the term (1.4.25) that contains contribution
from the H-flux. T-duality in the direction x in this language means that the only
non-zero derivatives are now (', d2,d3) and one has to include both £(!) and £®?) into

the consideration. After some algebra the effective action takes exactly the same form
1
Sy = /dfcldm?dx?’ <R[g/} - 12H’2> (1.4.36)

but the metric ¢’ now contains a contribution from the f-flux. Following the same
simple pattern it is straightforward to show that the Q and R fluxes correspond to the

coordinates (%1, #2, %) and (&1, T2, ¥3) respectively.

1.5 Extended geometry for M-theory

Apart from fundamental strings that are one-dimensional, string theories contain
various excitations represented by extended objects. These are Dp-branes that appear
as p-dimensional subspace where strings endpoints can travel and D stands for Dirichlet
boundary conditions. Type IIA string theory contains even dimensional Dp-branes that
interact with p + 1 odd forms C(y), C3), ..., while even dimensional branes appear in
type IIB strings coupled to odd forms C(p), C(2),.... All these excitations along with
KK monopoles appear naturally from compactifications of an 11 dimensional quantum
theory whose fundamental objects are 2 dimensional M2 branes and their duals 5-
dimensional M5 branes. Lacking any better name this conjecture was called M-theory.
For a review see [12, 13] and [10].

1.5.1 M-theory and U-duality

M-theory that is formulated in 11 dimensions firstly appeared as a theory which
describes non-perturbative strong coupling limit of Type IIA string theory. The extra
compact dimension is generated dynamically in string theory and has radius R = lpgg/ 3,
where g is the string coupling constant and [, denotes the 11d Planck length [60, 61]. In
the limit when the string coupling is large, the extra dimension becomes uncompactified.
Clearly, the relation between Type ITA string theory and M-theory is non-perturbative
and cannot be derived from analysis of the string spectrum. The proper tool to investi-
gate this correspondence is perturbative duality symmetries of string theories O(d, d, Z),
non-perturbative SL(2,Z) Schwarz and West symmetries of type IIB string theory [62]

and exceptional Ey)(Z) Cremmer-Julia symmetries of supergravity [63-65].

Relations between Type ITA string theories and 11-dimensional supergravities were
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known long time ago. Namely, upon compactification of 11-dimensional supergravity on
a circle S' of radius R one obtains Type ITA 10-dimensional supergravity that appears
to be the low-energy limit of the corresponding string theory [66, 67]. The dimensional
reduction is carried by splitting the fundamental (bosonic) fields of 11d SUGRA, the
metric and the 3-form field C),,x, into 10 dimensional metric, gauge fields and the

dilaton. The metric anzats is then given by
ds?, = e'9/3 (dxn + Aud;v“)2 + 6_2¢/3d8%0 (1.5.1)

where the index p = 1...10 labels 10 dimensions of the resulting theory, ¢ denotes the
dilaton and ds%o is the 10-dimensional interval. The vector field A, is the RR 1-form
gauge potential of the 10-dimensional theory. The 3-form field C,,,; gives rise to the
10-dimensional RR 3-form potential C},, and the NS-NS 2-form Kalb-Ramond field

B,,, thus completing the bosonic sector of the theory:

NS-NS : guw, B, ¢

(1.5.2)
RR : A, Cup.

Since, the 11-dimensional theory does not have dimensionless couplings the string cou-
pling gs is generated dynamically reading g2 = ¢?. Hence, in order to relate M-theory
to Type IIA string theory by compactification on a circle one has to consider the 11-

dimensional supergravity as a low-energy limit of M-theory.

As it was discussed in the previous sections, Type IIB string theory compactified on
a circle of radius R is T-dual to Type IIA string theory compactified on a circle of radius
o’/R. The bosonic NS-NS sector of these two theories is the same and transformation of
the fields g, By, and ¢ under T-duality is given by the Buscher rules (1.3.16). These
Zs transformation is a part of the full T-duality group O(d,d,Z). This allows us to
relate M-theory to Type IIB string theory.

In its turn, Type IIB string theory possesses a global SL(2,Z) symmetry that is
called S-duality [15]. It is instructive to consider the bosonic sector of Type IIB super-
gravity and its transformation properties. Two fields, the dilaton ¢ and the axion ¥,

are naturally combined in a complex field
p=x+ie? (1.5.3)

under the action of S-duality that is given by

ap+b
cp+d

(1.5.4)
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Here the integer numbers a, b, ¢ and d compose the corresponding SL(2,7) matrix with
ad—bc = 1. A pair of 2-form potentials that come from NS-NS and RR sector transform
as a doublet. The remained bosonic fields that are the graviton and the 4-form potential

are invariant under S-duality.

The non-perturbative S-duality symmetry of Type IIB string theory becomes man-
ifest in the approach of M-theory being a non-trivial remnant of 11-dimensional diffeo-
morphism invariance and U-duality. The duality group SL(2) is now a modular group
of the compact torus T? and the complex field p defines modular parameter [68, 69].
On the other hand, Type IIB theory is T-dual to Type IIA theory. This symmetry
together with symmetries of a d-torus form the U-duality symmetry. These are given

by the known exceptional Cremmer-Julia symmetry groups Eg(g).

Although the S-duality part is manifest in M-theory and is originated from diffeo-
morphisms, the whole exceptional symmetry does not have such simple explanation. As
it was shown in the previous sections the extended geometry approach allows to write
the effective potential of Type II string theory in T-duality covariant variables, i.e. the
generalised metric H sy and the dilaton d. This section is a brief review of the same

approach to U-duality.

1.5.2 Duality invariant actions

In string theory extended geometry one introduces an O(d, d) covariant object, gen-
eralised metric Hpsn, that parametrizes coset O(d,d)/O(d) x O(d) and is written in
terms of the metric G,,, and the Kalb-Ramond 2-form field B,,,. In this formalism
2d coordinates of the extended space are associated to every string charge and to ev-
ery field. The usual space-time coordinates z® are associated to the metric, while the
dual coordinates Z, are associated to the 2-form. Mathematically this is realised by
exploiting the Hitchin’s concept of generalised tangent bundle that is a direct sum of

the tangent and the cotangent bundles of the space-time M
TM & T*M. (1.5.5)

It is important that the base of this bundle is still a d-dimensional space M. The non-
trivial transition to the extended space occurs when one starts to think of fibres of the
generalised tangent bundle as tangent spaces to a 2d dimensional extended space M.
Although, a lot is known about covariant derivatives, curvature and infinitesimal tensor

transformations on this space its geometry is still unclear [38, 39, 41, 42, 70, 71].

In the generalization of this formalism to M-theory one considers U-duality group,

that is Ey for duality acting in d directions. Since fundamental objects of M-theory are
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represented by M2 and M5 branes, the corresponding extended space becomes slightly
more involved than in the case of T-duality where only winding modes of the F1 string
contribute. This gives rise to the ordinary coordinates %, dual coordinates ¥y, for the
M2 brane, zgpeqe for the M5 brane and so on. The generalised tangent bundle (1.5.5) is

replaced then by the following construction
TM & AN*T*M & - - - (1.5.6)

As before, a typical fibre of this bundle over the ordinary space M is understood as a
generalised tangent space to the extended space M. The generalised metric, that unifies
the metric G, and the gauge fields, parametrises the coset

Eq

M — 1.5.
MNGHd, (1.5.7)

where Hg is a maximal compact subgroup of the U-duality group Ejy.

To describe the extended space of M-theory one exploits the idea of non-linear reali-
sation of space-time symmetries that was known long ago [72-74]. Borisov and Ogievet-
sky showed that the theory of general relativity in four dimensions can be described in
terms of a non-linear realisation of the groups G = GL(4,R) x R* and H = SO(3,1).
Here the group G is the semi-direct product of the structure group GL(4,R) and the
group of space-time translations R*. The semi-direct product implies that generators of
the latter transform under the fundamental representation of the group GL(4,R). The
coset G/H is identified with space-time.

The same structure appears when one constructs a supergravity theory. The coset
of the super-Poincaré group with respect to the Lorentz group leads to the notion of su-
perspace [75]. However, this formalism does not include all symmetries of supergravity:
generators of U-duality transformations obviously are not in the super-Poincaré group.
It is known [76, 77] that eleven dimensional supergravity can be naturally formulated in
terms of a non-linear realisation of very extended algebra, that is commonly denoted as
FEq1. The suggested Fq1 covariant way to include both space-time generators P, and du-
ality symmetry generators, was to collect them into the first fundamental representation

of E11 denoted by Iy, that is infinite dimensional.

The theory in D dimensions with U-duality acting in d dimensions then can be
obtained by deleting a certain node in the Dynkin diagram of E1; . This corresponds
to taking a subalgebra GL(D) & Ey4 of the algebra Eq; The factor GL(D) together with
space-time translations that are contained in /; gives rise to gravity in D dimensions
as it should be. The remained factor E; is the known Cremmer-Julia duality group of

maximal supergravity in D dimensions [63, 65, 78]. Thus these symmetries are naturally
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Figure 1.1: Dynkin diagram of the algebra F7; with node D deleted.

reproduced in the non-linear realisation of F1;.

The representation [ that contains an infinite number of generators

P, Zgiay, (1.5.8)

Za1a2a3a4a5 9

is decomposed into representations of GL(D) @ E;. In addition to ordinary space-time
coordinates one finds an infinite number of coordinates that correspond to higher level
fields. Coordinates that are scalars with respect to GL(D) but transform under Ey are
in the 10, 165,27,56 and 248 & 1 of SL(5),S0(5,5), Eg¢, E7 and FEg for d = 4,5,6,7 and

8 respectively [79, 80]. A set of ordinary coordinates together with a certain number

d | Global duality group | Local duality group Ry

1 SO(1,1) 1 1

2 SL(2) SO(2) 3

3 SL(3) x SL(2) SO(3) x SO(2) 6

4 SL(5) SO(5) 10

5 SO(5,5) SO(5) x SO(5) 164

6 E6 USp(8) ﬁ

7 Er Sp(8) 56

8 Eg SO(16) 248®1

Table 1.1: Global and local duality groups and the representation Ry .

of these scalar dual coordinates parametrizes the extended space of M-theory. The
corresponding set of generators transforms in the representation Ry of E, that is listed

in the table above..

The non-linear realisation leads not only to the extended space but allows one to
construct a generalised vielbein using the conventional vielbein and form fields. The
dynamics of strings and branes in the presence of background fields can be formulated
in terms of the non-linear realisation as well. The coordinates of the extended space
correspond to brane charges and momentum. It is instructive to go through a case
with a certain number of dimensions in more details. For a full analysis the reader is
referred to [81] that describes the geometry of the extended space in terms of brane

charges in the spirit of Hitchin’s’ generalised geometry, and to the papers [82] and [83],
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that construct duality invariant actions for M-theory using the Duff’s procedure and

the non-linear realisation briefly described above.

Consider the case where U-duality group is SL(5) that acts in 4 space dimensions.
Winding modes of 5-branes do not appear in the formalism and thus one has to include

only wrappings of 2-branes. This results in the generalised tangent space
TM & A*T* M, (1.5.9)

whose fibres are understood as tangent spaces to the 10-dimensional extended space
parametrized by the coordinates (z%,y,3) with a, 8 = 1,...,4. The coordinates 2
are associated with the metric and represent space-time coordinates, while y,53 = —y34
are associated with the M2-brane charge and represent dual coordinates. Already this
simple example shows that in contrast to the case of T-duality, where each space-time
coordinate has its dual, here numbers of space-time and dual coordinates are not equal.
All ten coordinates of the extended space are combined in an object that transforms in
the representation 10 of the U-duality group SL(5)

XM — [xa] . (1.5.10)
Yap

Capital Latin indices here and in all expressions in this thesis label the representa-
tion Ry of the corresponding U-duality group. It is convenient to represent the 10-
dimensional index M as an antisymmetric pair of two indices in 5 using the following
identifications [84]
XSa — .,Eoz
b
X = { X* = —a*, (1.5.11)
1
X8 = 5eo‘fg"”yw,

where small Latin indices run from 1 to 5 and €*?#” is the 4 dimensional alternating

1234 — 1), Generalised vectors V' then carry indices labelling the representa-

symbol (e
tion 10 of SL(5). Tensors of other ranks may carry any number of small Latin indices,

even or odd.

As in the case of the O(d, d) geometry one constructs a generalised tangent bundle
whose fibre are the formal sums V = v 4+ p, where v = v®
Papdx® A dz? is a 2-form. Structure group of this fibre bundle is SL(5,R), that can
be reduced to SO(5,R) upon introducing a generalised vielbein globally. The coset

SL(5)/SO(5) is parametrised by the metric g,, and the 3-form field C,,,, that are

 is a vector and p =
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collected into the generalised metric

gp/]/ + %Cuaﬂcljaﬁ %C}/PG

My = , (1.5.12)

1 6 6,p0
5Ch gr5P

where the object gt = grlegfl i used to raise and lower antisymmetric pairs of

indices.

The generalised Lie derivative of a generalised vector VM in the U-duality invariant

formalism has exactly the same form as in the Double Field Theory (1.4.17)

S VM =Ny VM —yNgysM 4 oMy 9
= LyVM 4 YME L9 2By S (1.5.13)
= LxV,

but the invariant tensor YI](V‘EN is defined in a different way. Its exact form follows
from the condition that algebra of transformations (1.5.13) is closed upon the section
condition

[Lv,, L] = ‘C[Vl,Vz}c + Fo,

(1.5.14)
Y%NaM ednye=0— Fy=0.

Substituting (1.5.13) into the closure condition one finds the following expressions for

the invariant tensor [85, 86]:

O(d7 d)strings : Y}yQN = 77MN77PQH
SL(B):  YAEY = eMNeypq,
SO(5,5):  YpE = 3(THMN(Ty)pq , (1.5.15)
Ege):  YpG =10d"NRdpgp
. MN _ 19.MN (MsN) | 1_MN
E7(7) : YPQ =12c PQ +5P (SQ + 5€ EPQ -
Here the index « runs from 1 to 5 labelling the representation 5 of SL(5) and the index

i labels the 10-dimensional vector representation of SO(5,5). The invariant metric on

O(d, d) is denoted by nyn, €aMN = €q,8v.5¢ is the SL(5) alternating tensor, SO(5,5)
[MN are 16 x 16 gamma-matrices in Majorana-Weyl representation,
MN

gamma-matrices

the tensors dysn g and ¢ g1, are symmetric invariant tensors of Fg and E7 respectively.

The invariant tensor YI%IN is subject to various important relations that will be used
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later [86]

Yyt -y e =0, for d <5,
YN = —agPic™ N + Baoil of + 611 6%, (1.5.16)

YHAY BN = (2 — ag) YN + (nBa + a) B0 M 67 + (ag — 1)6M 6%

Here d = 11 — D is the number of compact directions and P4ZoP

is the projector
on the adjoint representation of the corresponding duality group. It is defined as
PABcPPpC il = P\Pg” and PoBp4 = dim(adj). The coefficients oy and By depend
on the duality group and for the cases in question take numerical values (ay, £1) = (3, %),
(a5, B5) = (4,7), (@6, B6) = (6,%). The last line in (1.5.16) with n = ¢4 is a direct con-
sequence of the second relation and properties of the projector P4ZcP. The first line

is true only for d < 5 and the relevant identity for Eg) duality group reads
1
10pQ(MTNPRP)ST _ pR(MSN(;g) _ ngNPdQRS —0. (1.5.17)

The generalised metric is a dynamical field of the theory and along with its deriva-
tives contributes to the effective potential. The explicit form of the potential for the

SL(5) case was found by D. Berman and M. Perry in [82] and has the following form

1 1
Vsre) = V9 EMMN@MMKL)((?NMKL) - iMMN(aNMKL)(aLMMK) +

1 1
o MY (MR E 00 M) (M Oy M) — 4(MR56KMRS>(6LMKL)} ,

12
(1.5.18)

where g = det ||gu|| is the determinant of the four dimensional metric. It is easy to

show that g is always proportional to a certain power of det || My n||.

The potential (1.5.18) is invariant under the transformations (1.5.13) up to the sec-
tion condition. Taking a special solution of the section condition 9, = 0 that effectively
removes all dependence of the dual coordinate y,,, turns the effective potential to that

of the supergravity theory (the bosonic part) up to A boundary term:

Vsri) = V9 (R[g] - 418F[C]2> , (1.5.19)

where R[g] is the curvature of the metric g, and F' = dC' is the field strength of the
3-form field C),,p.

When considering duality transformations acting in more than 4 dimensions one
has to include coordinates associated with the Mb5-brane and the KK6-brane. The
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corresponding bundle is then
TM & A*T*M @ A°T*M @ ASTM. (1.5.20)

The expression for the generalised Lie derivative (1.5.13) remains the same up to choos-
ing an appropriate Y-tensor (1.5.15). In four dimensions the last two terms do not
contribute since elements of say AT*M are 5-forms that can’t be defined in four di-
mensions. The same is true for 5 dimensions and the term ASTM whose elements are

6-vectors. Finally, in dimensions d > 6 one considers the full bundle [81, 83, 87].

In higher dimensions it is more convenient to introduce a generalised vielbein rather

giving an explicit expression for the generalised metric
My = E{yERM 35, (1.5.21)

where the barred indices run from 1 to n labelling flat directions and M 55 is diagonal.
Explicit expressions for the generalised vielbein in dimensions d = 5, 6, 7 and the effective
potential were found in [83] starting from the non-linear realisation of Eq;. These are

given in the next sections in application to Scherk-Schwarz reductions.

Finally, it is necessary to mention the work [88] that considers the reduction from
M-theory to type II string theory in the duality invariant formalism. It is shown that one
successfully reproduces the structures of O(3,3) geometry starting from SL(5) invariant
theory. The DFT section condition naturally emerges from the SL(5)-covariant section

condition.
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CHAPTER 2
DIMENSIONAL REDUCTIONS

2.1 Introduction

The extended geometry formalism of string and M-theory encodes the low energy
limit of the theories in a manifestly T(U)-duality invariant way. The resulting theory
is formulated on a space that is parametrised by an enhanced set of coordinates both
ordinary and dual that correspond to momentum and winding modes. In this chapter we
show that Scherk-Schwarz reduction [89] of the extended space consistently reproduces
structures of gauged supergravities such as the scalar potential, the embedding tensor

and the gauge group.

Gauged supergravities appear as consistent supersymmetric deformations of toroidal
compactifications of 11-dimensional A" = 1 supergravity (for review see [53]). These are

represented by the horizontal line on the Figure 2.1 where the general picture is sketched.

(N =1D=11 Supergravit})

reduction in presence of

reduction ~ p-form fluxes [, F?) = Cy,
on torus — torsion (geometric flux)
™ de® = T,2eb A e

— non-geometric flux

gauging
@ ngauged supergravit})—><Gauged supergravit;)

Figure 2.1: This diagram demonstrates relations between toroidal reductions of ' =1 D = 11
supergravity, gaugings and more complicated dimensional reductions.

Gauged supergravities were first constructed in [90] by incorporating the structure
of Yang-Mills theories to the maximal supergravity and then generalised to higher di-
mensions in [91, 92] and to other non-compact groups [93, 94]. The diagonal line on
the picture demonstrates the relation of gauged supergravities to flux compactifications

that was realised recently (for review see [55, 95, 96].
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Starting from the 11-dimensional supergravity one performs the Kaluza-Klein reduc-
tion on a simple n-dimensional torus and ends up with ungauged supergravity where
none of the matter fields is charged under gauge group U(1)"V. Here ny is the number

of vector multiplets that come from certain components of metric and 3-form field.

More complicated reductions on non-trivial n-dimensional manifolds like a sphere,
reductions in presence of torsion or non-zero fluxes of p-form fields (geometric fluxes),
or reductions with non-geometric fluxes lead to gauged supergravity. In these theo-
ries the matter fields transform under a gauge group that is a subgroup of the global
E4(q) Cremmer-Julia duality group. The non-trivial geometry of the internal space typ-
ically allows one to introduce a scalar potential that supports an effective cosmological
constant and provides terms for moduli stabilization, leads to spontaneous symmetry
breaking etc. (see [17, 18, 50, 51] for review). A universal approach to gauged su-
pergravities is the embedding tensor which describes how gauge group generators are
embedded into the global symmetry group. Treated as a spurionic object the embedding

tensor provides a manifestly duality covariant description of gauged supergravities.

In addition to the global E;) symmetry the toroidally reduced theories also posses
a global R scaling symmetry known as the trombone symmetry (this is an on-shell
symmetry for D # 2). This gives rise to a more general class of gaugings whereby a
subgroup of the full global duality group Fyq4) X R* is promoted to a local symmetry.
The embedding tensor approach was extended to incorporate such trombone gaugings
in [97]. The embedding tensor (:)%4 projects generators t, of the global duality group
Enmn) ® R* to some subset X, = 5) Mm%t which generate the gauge group and enter
into covariant derivatives:

D=V —gAMX, . (2.1.1)

The index « of the embedding tensor is a multiindex which labels the adjoint represen-
tation of the duality group. According to its index structure the embedding tensor is
in the Ry x Rgq; representation. Here R,q; is the adjoint representation of the global
duality group and Ry is an ny-dimensional representation in which the vector fields

transform. In general the embedding tensor decomposes as
Ou ERY @Rugj =Ry @ ... (2.1.2)

The preservation of supersymmetry gives a linear constraint restricting the embedding

tensor only to some representations, e.g. for the cases considered in further sections we
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have

Oy2ec10®15@ 40, for D=7
On® € 16, ® 144, for D = 6 (2.1.3)
One € 27 ® 351, for D = 5.

The trombone gauging that is always in the representation Ry corresponds to the on-
shell symmetry and does not appear in the action. Hence, the scalar potentials written

further below do not include this gauging.

In this chapter Scherk-Schwarz compactifications of the extended geometry formal-
ism are considered. In what follows the extended space parametrized by the coordinates
XM represents the internal space. In other words coordinates of the d-dimensional in-
ternal space are extended while the external non-compact space is parametrised by

ordinary the coordinates z(py with D =11 —d.

Dependence of any covariant object defined on the extended space is given by the
so-called Scherk-Schwarz twist matrices that act like a vielbein. With this anzats the
generalised diffeomorphism (1.5.13) turns into a gauge transformation generated by the
same algebra that one encounters in gauged supergravities. The corresponding group
appears to be a subgroup of the global duality group and the embedding tensor becomes
naturally written in terms of the twisting matrices. Hence, one connects geometric

properties of the extended space to the algebraic properties of the theory.

An important feature of the extended space formalism is that one needs a constraint
for closure of the algebra of generalised diffeomorphisms and to have an invariant effec-
tive potential (see (1.5.14)). In the generalised Scherk-Schwarz reduction this constraint
is promoted into the so-called quadratic constraint on the embedding tensor that is ba-

sically the condition of closure of the algebra
[Xar, Xn] = Xun™ Xx, (2.1.4)

where X/ is a generator of the algebra and the structure constants X,y are written

in terms of the twist matrices and their first derivatives.

Therefore in this chapter we do not impose section condition. Rather we require
closure of the algebra of the generators Xj;. In general the functions Xy;n% are not
necessarily constants, since one is free to choose the twist matrices almost in an arbi-
trarily way. The condition that Xp;ny% are indeed structure constants of an algebra
is promoted to a constraint on the twist matrices. In other words, since, the whole
extended space is considered to be internal, instead of projecting on a subspace by sec-

tion condition we choose it to be of a particular shape, defined by the twist matrices.
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In what follows we assume that there exist non-trivial twist matrices for each gauging,

however this has not been proved yet.

It is worth mentioning, that to ensure invariance of the effective action written in

the Scherk-Schwarz anzats one has to introduce an extra term of the form

/ dX YMN e oy EAR oy B (2.1.5)

that is zero up to section condition. Here the generalised vielbein is denoted as Eﬁ}
with hatted indices parametrising generalised tangent space (fiber indices). Although,
this term introduces extra degrees of freedom as it is not invariant under the local H
transformations this appears to be not an issue of the Scherk-Schwarz reduced action.
In this case the twisted vielbeins do not depend on XM and the derivatives in the extra

term act only on the twist matrices Wg.

The extra term allows to organise all terms in the twisted effective potential in
expressions that involve only the generators X ;n% and the twisted generalised metric.
The details of this procedure for the cases of SL(5), SO(5,5) and Eg duality groups

is given in further sections.

2.2 Scalar sector of maximal gauged supergravity

In this section we briefly review the structure of the scalar sector of the maximal
gauged supergravities in D = 5,6 and 7 and introduce expressions that we will need
further. Sections devoted to different dimensions D exploit their own conventions for
indices and fields, that should not be confused. Since the review is very brief and does

not cover all the details we refer the reader to the relevant papers [97-100] and [53].

2.2.1 D =7 supergravity

The global symmetry group of the ungauged D = 7 maximal supergravity is Fy4) =

SL(5) whose generators can be expressed as

153;5;1
5 (2.2.1)

(T = 2T,

by\i 7 ¢b
(Ta)j - 5a5j -

in the representations 5 and 10 respectively. These generators are traceless, Tr(T?) = 0
and obey a relation 7 = 0. Here small Latin indices run from 1 to 5 labelling the

fundamental representation. Commutation relations that define the algebra of SL(5)
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read

(T2, 79 = 6b19 — 5917 . (2.2.2)
Also we have )
Trs(TPTY) = —66° + 55353 . (2.2.3)

The embedding tensor for D = 7 gauged supergravity, with no trombone gauging,
is given by [100]:
@mnqu = 5fImYn]p - 2€mnprszrs’q (2.2.4)

with Yinn = Y(n) in the 15 and 2799 = ZI"h4 in the 40 so that ZI"*4 = 0. It is
traceless Oy, ,” = 0 and hence the gauge group generators in the 5 and 10 are given
by

I (2.2.5)

an,pq = ®mn,pq s an’pqrs = 2@mn,[p[r5;

To incorporate the trombone gauging an extra generator (Tp)j = dp corresponding

to the RT is introduced and an ansatz is proposed (we follow exactly [97] where the

procedure is carried out for all the other exceptional groups)

@mn,O = Hmn ’
Omnp?! = 08 Valp = 2mnprs 27 + COi5 (T30, (2.2.6)

where 0y, = O] 1s in the 10. Then the gauge generators in the fundamental are given
by

Konp? = Omno(T0)d + Opnr* (T2

1
— 5E]m(Yn}p — 200,1) — 2€mmprs 270 + 5(5 — 20)0mnd}, (2.2.7)

and in the 10 by

A~ A~

an,qus - @mn,O(TO);Z'f_émn,ab(Tél);Z
= 20y, 3}] + 20000],03) + COi (T2, (T7)
= 20,0 4 (24 S ) G5 £ COg8l” 57 — Lo, im0
mn,[p Y mn % Pa°mn] — 45V amnpq

TS
Pq

5
(2.2.8)
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One now calculates the symmetric part of the gauging

an,pqrs + qu}mnrs _ 26amnpq <Z1“S,a . iersaijgij> 4

] (2.2.9)

¢ [r 58] [ s°)
+ (2 + 5) (randls 5] + Opadlr 000 )

The requirements of supersymmetry as explained in [97] are that this falls in the same
representation as without the trombone gauging hence we fix { = —%. Although the
symmetric part of the gauging does not depend on Y note that the that the antisym-

metric part of the gauging depends on 8 Z and Y.

The abelian vector fields A% = A[’i‘lb] of ungauged supergravity transform in the
representation 10 of SL(5). These are turned into non-abelian fields by introducing a

deformation given by the embedding tensor ©,,,,? that acts as structure constants.

The scalar fields of the theory are elements of the coset SL(5)/SO(5) and are most
conveniently described by an SL(5) valued matrix V.M. Tt satisfies V,"""Q,ny, and
transforms as [100]

V= GVH, Ge SL(5), He SO(®5). (2.2.10)

Here the dotted Latin indices run from 1 to 4 labelling the fundamental representation
of USp(4) =~ SO(5) and Qi = Qpyiyy) is the invariant symplectic form.

A coset representative is fixed by imposing a gauge condition with respect to the
local SO(5) invariance that result in a minimal parametrization of the coset space in

terms of the 24 — 10 = 14 physical scalars
Meap = VGMthqumﬁan. (2.2.11)

The scalar potential of maximal gauged supergravity can be expressed totally in terms
of the unimodular USp(4) invariant matrix mg, and the gaugings (except the on-shell

trombone gauging)

1
Vicalar “ 64 (3an7rsquvsrmmpmnq - Xr?zp,qXﬁ,smprmqs) + (
2.2.12)
1
+ 96 (anwSquvtumumnqmﬁmsu + me,annnsmmpqmrs) :

In further sections it will be shown that the generalised metric acts as the coset rep-
resentative (2.2.11) in Scherk-Schwarz reduction as it has precisely 14 components and

provides exactly the scalar potential of the maximal gauged supergravity.
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2.2.2 D = 6 supergravity

Maximal supergravity in six dimensions is invariant under the global duality group
SO(5,5). The representation Ry is now the spinorial representation 165 of SO(5,5).
We let the capital Latin indices run from 1 to 16 labelling this representation and
the small Latin indices run from 1 to 10 labelling the 10 representation of SO(5,5).
Then the components of the projected generators Xj; can be written in the spinorial

representation as
Xun™ = (X)) ™ = Onti; = 607 (Tij) N, (2:2.13)

where I';; = 'y are the generators t;; in the spinorial representation while I'; are
16 x 16 gamma matrices in the Majorana representation. This means that they are real

and symmetric
OMN = N (2.2.14)

As it was shown in [99] and [97] the gauge group generators are given by

o 1.
Xun® = 0TI (Tij) N5 - TO(F”)ML(FM)NK% — Oon". (2.2.15)

The generators are only written in terms of the gauging "M € 144 and the trombone

gauging s € 16. The symmetric part Zyn% = X(MN)K then reads
. . . 2 .
Zun® =Tiynz™M, Z7IM = _giM _ grzMNeN. (2.2.16)

Since the gauging "M is in the 144 representation it satisfies the linear constraint

OMT. Ny = 0.

Scalar fields of the theory are elements of the coset space SO(5,5)/S0(5) x SO(5)
that can be conveniently parametrised by SO(5,5) valued 16 x 16 matrices V%% [101].

its inverse is defined by
ViV op = 83, VeV My = 5365, (22.17)

Here the dotted and the undotted small Greek indices run from 1 to 4 and label the

spinor representation 4 of each SO(5) in the coset.

In the absence of the trombone gauging the scalar potential can be written as

1~
Vicalar = 92T1" <TaTa — QTT> , (2218)
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where tilde denotes transposition and the T-tensors are given by [99]

(Td)ad _ VideiMVMao’z
(T8 = —y,agiMy, o0 (2.2.19)
T — T&’}/& — —T&’Y&

Here the hatted small Latin indices label the vector representation 5 of SO(5) and dots
again distinguish between two SO(5)’s in the coset. The gamma matrices v¢ and v* are
4 x 4 chiral gamma matrices whose vector indices are contracted without raising and

lowering. The 10 x 5 matrices V are defined as

o1 -
Vit = EVMW(’ya)a’BFz‘MNVNﬁm
2 1 . 2 ;
Vit = —EVMW(’YCL)aBFz‘MNVNaB-

(2.2.20)

According to the quadratic constraint the dotted and the undotted T' tensors are not
independent and satisfy
T%0aT% 55 = T% s T (2.2.21)

B BB

2.2.3 D =5 supergravity

In five dimensions the global duality group of the maximal supergravity is Eg(g) that
is the maximal real subgroup of the complexified Fg group. The representation Ry in
this case is given by the 27 representation of Egg) and the capital Latin indices run
from 1 to 27. The corresponding invariant tensor is a fully symmetric tensor dysnx

that satisfies the following identities
dypd™ @ = 53,
1 2
drrsd® P dpnydU RO = T055w51%) - ngNRdRQP’ (2.2.22)
3
dMPSdSQTdTRUdUPVdVQWdWRN - _ 1*05]]\\]4
The linear constraint implied by supersymmetry restricts the full embedding tensor

O to the 27 & 351 representation of Egg). In the absence of the trombone gauging

the embedding tensor reads

One = 2Pt g5 d K L dp N kdsor.- (2.2.23)
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The symmetric part of the gauge group generators Zyn® = X (M N)K is then given by

. . 15
Zun® = dynp Z8F, ZKE = ZKL _ ?dKLMeM. (2.2.24)

A non-trivial relation among the generators of Fg) that follows from the last line in
(1.5.16) is

1 1 )
(tg)MK(ta)NL = 17861\1515%\[ + 6(5]1\‘45]{? — ngNRdRKL. (2.2.25)

Scalar fields of the theory live in the coset space Egg)/USp(8) and can be paramet-
rised by the scalar matrix Vs with small Latin indices labelling the 8 representation
of USp(8). The scalar matrix Vp/% is antisymmetric in ij and satisfies Vi 9€;; = 0,
where Q;; = —Qj; is the symplectic invariant of USp(8). Thus, the scalar matrix has

27 x 27 components and its inverse is defined as

Va9V = ol
1 (2.2.26)
Vz]MVMkl _ 6ijkl o gQZ]le

The matrix V can be used to elevate the embedding tensor to the so-called T-tensor
that is USp(8) covariant field dependent tensor. We need this tensor since it appears

in the scalar potential. The convenient relation to be exploited below is [98]
Xun® = V™ VNVt (20 T 1 + TP, Qi Q4 (2.2.27)

The tensor Tklm"ij belongs to the 315 representation while Tiﬂm is in the 36 © 315. It
is possible to write these two tensors in terms of two pseudoreal, symplectic traceless,
tensors A1 € 35 and Ay"kl € 315 as

Tklmnij _ 4A2q,[klm5n] [in}q + 3A2P7‘I[lemn} Qp[in]Q’

2.2.2
TR — Q. AR Q. <Qm[kAll]j itk g i 4 ileAlmj> . ( 8)

Tensors A; and Ay satisfy A1) =, Aghikl = A BUKL and A,lb3k) — (0. The scalar

potential then can be written as
iy 1 ..
Vtscalar = 92 |:3|A11]|2 - 3|A21’]kl|2:| 5 (2229)

where | |? stands for the contraction of all indices.
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2.3 Scherk-Schwarz reduction

In contrast to the Kaluza-Klein reduction here the dependence on internal coor-
dinates is hidden in so-called twist matrices W4 5(X) that are subject to various con-
straints. For the case at hand we consider the whole extended space as an internal space

and let the remained D-dimensional space to be whatever it wants to be [102, 103]:
VAM zp)) = WAsX)WVE (), (2.3.1)

where V4 is a generalised vector on extended space defined by its transformation (1.5.13)
and Wg is the Scherk-Schwarz generalised twisting matrix. The anzats for tensor of

higher rank is introduced in a similar way.

From now on we will not include the dependence on z(p) since it does not affect the
extended geometry formalism. The barred indices are the twisted ones (flat) and the
unbarred are the untwisted ones (curved). To simplify notation we will use the unbarred

indices for the flat space in cases where this does not cause confusion.

The important feature of the Scherk-Schwarz reduction is that it allows non-abelian
gauge groups. Substituting the anzatz (2.3.1) into the local transformations of the initial
theory that are given by the generalised Lie derivative (1.5.13) we obtain the following

transformation of the vector Q4
62Q" = (L2Q)"! = WX PENQ". (232)
Here the coefficients Xy n% are defined as
X415 = 2WcCo W  + YSEWMopW ¢ (2.3.3)

with the antisymmetrisation factor of 1/2, and are assumed to be constants. One
should note that in the case of extended geometry these “structure constants” are not

antisymmetric.

We recall the closure constraint (1.5.14)

‘C[Xl,XQ]CC?M - [‘CX17LX2]QM = 7F(j]w (234)
Assuming that Xp;n™ is constant and substituting the twist anzats (2.3.1) and the
explicit from of Fy [83, 84] this implies

1 — _ _ _ . . .
3 (XABC - XABC) Xop® = Xpp Xac® + X357 Xpc® =0 (2.3.5)
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for any X7 and Xs. If we define Xy n® = (Xp7)n™ this can be written in the suggestive
form
(X1 X5 = —Xup“Xe - (2.3.6)

This allows one to interpret the structure constants as the components of the generators

X of the algebra of transformations
5xQA = X AvKQY (2.3.7)

in adjoin representation. By making use of the closure constraint (2.3.6) we find the

Jacobiator

[5217 [5227 523HVF +cp. = ( )
_ _ _ _ _ i o 2.3.8
G G G A C

(X i Xpe© + Xiea" Xen® + Xpo)" X e4 ) Xep' SPEFEgVP,
where c.p. denotes cyclic permutations. The right hand side of this equation is the
Jacobi identity of the antisymmetric part X [MN}K projected into the algebra genera-
tor. For the consistency of the algebra of transformations the right hand side should
vanish. We emphasise that the Jacobi identity for X, N}K needs only to hold after the

projection.

We need X ;n" to be not only constants but also invariant objects under the local
symmetry transformations. As it will be shown later it is necessary so that the reduced
action does not depend on the internal coordinates and transforms as a scalar. As it
follows from the definition (2.3.2) the structure constants Xy should transform as

a generalised tensor
OsX 15 = 2P ([XEvaﬂBé + XEAD(XD)BC) : (2.3.9)
This leads to the final quadratic constraint on the structure constants
(X4, Xgl=-Xi5Xs . (2.3.10)

We conclude from this constraint that the symmetric part Zyn% = X N)K should

vanish when projected into a generator

Zis’Xe=0. (2.3.11)

The quadratic constraint (2.3.10) on its own is enough to ensure that the Jacobiator
(2.3.8) vanishes and the algebra is closed. This can be seen by considering the Jacobi

identity for the commutator appearing in (2.3.10). Hence the closure condition can be
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(Extended geometr})

Generalised
o Scherk-Schwarz
reduction

( M-theory )

low energy
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on torus — torsion (geometric flux)
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— non-geometric flux

gauging
@ ngauged SupergravitHauged Supergravi’q)

Figure 2.2: This diagram demonstrates relations between reductions of N’ = 11 supergravity
and Scherk-Schwarz reductions in the extended geometry formalism.

relaxed from the section condition that restricts fields and their products to a condition

on the structure constants X;n™ that define the algebra of gauge transformations.

2.4 Algebraic structure

The general form of the structure constants X 45 is always the same and is given
by (2.3.3). Under a particular U-duality group these split into certain representations
that depend on the duality group and are identified with gaugings. In this section we
give an explicit derivation of the embedding tensor and all gaugings starting from X 43¢

in its general form.

2.4.1 SL(5): reduction to 7 dimensions

The extended space formalism introduced in [82] starts with 4 compact dimensions
and rewrites the low energy action in an SL(5) invariant form. The generalised metric
parametrises the coset SL(5)/SO(5) and has 14 components, given by the metric and
the 3-form field in 4 dimensions. In Section 1.5 it was shown in details that the ordinary

coordinates z* and the dual ones y,3 can be collected into an SL(5)-covariant extended

oH
_ [ ] | 2a1)

2 Yo

coordinate

Xab _ XSM
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where "8 (€1234 = 1) is the 4-dimensional alternating symbol. Then the generalised

Scherk-Schwarz twisting (2.3.1) takes the following form
Qab(an,fU(D)) = ng(X)QEd(x(D))- (2.4.2)

The twisting matrix Wgé’ is written in the representation 10 of SL(5) and can be

decomposed into a product of two matrices V2 in the fundamental representation

a 1 a a
W = (vevE - vevd). (2.4.3)

Recall the explicit form of the invariant tensor YM¥ -/ from the table (1.5.15) where

all relevant cases are collected

1

YI%N =e"MNe po = geamnkleamm, (2.4.4)
where each antisymmetric pair of indices M = [ab] that will be a dummy index in
X nE carries a factor of one half. Then the would-be structure constants written in
terms of the twist matrices read

1 . o — _
Xezef™ =3 (W,gf Do gW I — Wb B, s Wiy — ke, Wi &WZZ”)

n f mn 4 mn%ij 'V g
Lo ab rpg L b ab yr7mp qn
= Wi W Op W + 5000 W™ + 2WiL W0, Wi

We encounter our first constraint on the Scherk—Schwarz twist element which is that
these objects are constant. However, an immediate difference to the O(d, d) case is that
these “structure constants” are not anti-symmetric in their lower indices — to correct
this misnomer we shall refer to them as gaugings rather than structure constants. By
making use of the invariance of the epsilon tensor and the decomposition (2.4.3), the

symmetric part of the gaugings can be extracted as

_7 _ 1 - - =
Xaj,éfab + Xéf,aiab = geiaééfejmnab‘/zamﬁvf . (2.4.5)

To see the full content of the gauging it is in fact helpful to decompose according (2.4.3).
One finds that

ab agb
Xoiof™ = 2X 475! 5}] , (2.4.6)
with
Xpa® = SVAGVI 4 (IO (Vi VE) (T — 58V, V! 2.4.7
i = SVadaVi" + (TR (VI 0maVh) (THE = 508V OV, (247)

in which (Tg)‘c;1 and (Tg’)?%ﬁ are the SL(5) generators in the 5 and 10 respectively (see
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appendix). This result can be expressed as

_ - 10 ana 1 a
Xege" = 5%YC{]E - gdféecilé = 26qemnd " + 595525? ) (2.4.8)
where Y,; = Y3, is in the 15 and is given by
Yeq = V" On(cVy) » (2.4.9)
and Z™"P = — 7P ig in the 40 such that Z™"?] = ( is given by
gmp _ 1 mﬁ%}kvﬁa__vt V[m&-VM n|ijkp
and 0,7 = —0; is in the 10 and is given by
1 _ _
ni = 15 (V" OuiViy = VIOtV ) - (2.4.11)

It is note worthy that although 10 ® 24 = 10 ® 15 ® 40 © 175 the 175 makes no

appearance in the gaugings produced by Scherk—Schwarz reduction.

2.4.2 S0O(5,5): reduction to 6 dimensions

Maximal supergravity in 6 dimensions possesses a global duality group FEjs) =
SO(5,5). The local group of the theory is SO(5) x SO(5). Thus the target space of
scalar fields of the theory is given by the coset

SO(5,5)
SO(5) x SO(5)°

(2.4.12)

The corresponding extended space of the Berman-Perry formalism has 16 dimensions

and the representation Ry appears to be the spinorial representation of SO(5,5).

The invariant tensor of the duality group is given by the contraction of two gamma

matrices in the Majorana representation
1.
YRt = §FZMNF7;KL, (2.4.13)

that are thus symmetric and real. Here capital Latin indices run from 1 to 16 and small
Latin indices run from 1 to 10 labelling the vector representation of SO(5,5). Since
the generators t& of the duality group in the spinorial representation are given by I'/,

where the multiindex « is represented by the antisymmetric pair of vector indices, the
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projector with correct normalisation is defined as

1 .
PN = — oo (DY) (T3 L (2.4.14)
All gaugings of the maximal supergravity appear as components of the structure
constants (or the embedding tensor). Start with the trace part of the structure constants
(2.3.3)
XY =40cWE + WEogW§ =: —160,;. (2.4.15)
By making use of the algebra of gamma matrices the symmetric part of the gaugings

can be extracted as

Xap)© =TiapZ,

I . (2.4.16)
ZzC — ZFJCDszaDGiz,
where the twist matrices in the vector representation G;J are defined as
rA8G7 = 1IPWwAwpz5. (2.4.17)

According to its indices the gauging Z8 is in the 16 ® 10 = 16 & 144 representation
of SO(5,5). Separating the 16 part of the gauging we obtain the trombone gauging 6y,

ZMT N = —40y. (2.4.18)

What is left lives in the 144 representation and is defined as

. . 2 .
oM — _ziM _ 5P’MNQN. (2.4.19)

After some algebra (see Appendix A) the structure constants can be rewritten in terms

of only these objects

o 1 ..
XMNK = —elLerM(Fz‘j)NK a TO(F”)ML(FM)NKQL - 51IV(9M' (2‘4'20)

This has the same structure as the embedding tensor of the maximal supergravity in 6
dimensions
Xun® €16 @ 144. (2.4.21)

with gaugings explicitly written in terms of the twist matrices as

4

Oy = —EFAD FEANG{ 0pG;'.

- 1 =cm . ) Y
0 = —JMPGHOpG — ST N,
(2.4.22)
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It is straightforward to check that the second line here is the same as (2.4.15) using the

definition of Gﬁ and the relation

. N .
G;JQL@G]'Z = gFBKZFjéKWCCaAWBC. (2.4.23)

2.4.3 Eg(s): reduction to 5 dimensions

In five dimensions vector fields of maximal supergravity transform in the 27 repre-
sentation of the global duality group Ep). The scalar fields transform non-linearly and

are parametrised by elements of the coset

Eg6)
USp(8)

(2.4.24)

The group USp(8) is the R-symmetry group of the theory.

The U-duality invariant formalism of the extended geometry provides the extended
space to be 27 dimensional and the generalised vector indices A, B... label the 27
representation of Ege). The invariant tensor is given by the Egg) symmetric invariant

tensor dy Nk
YN = 10dMVE dye ps, (2.4.25)

that is subject to the following useful identities

dyrpod™t? = 53,
1 2
dyrrsd® T drnyd/ 9 = 17065\451%) - ngNRdRQP7 (2.4.26)
dMPSdSQTdTRUdUPVdVQWdWRN — 13705]]\\;

The trace part of the structure constant is identified with the trombone gauging 0,
and reads
X =90cWS + WEaWE = —2760y. (2.4.27)

The intertwining tensor is given by the symmetric part of the structure constant Zy;n % =
X(MN)K and is parametrised by the tensor ZM¥ in the 27 ¢ 351

Zun™ = dynp 2K (2.4.28)

Taking the symmetric part of (2.3.3) and by making use of the identities (2.4.26) we

have for the symmetric part

ZMN = 5gMELyC o Wl (2.4.29)
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that has the same structure as (2.4.16) if one notices that
Wi dMEE = gMELywE W (2.4.30)

since the twist matrices interpolate between the barred and the unbarred indices.

Subtracting the part of the tensor (2.4.29) that is symmetric in M N we are left with
the gauging in the 351 and the trombone gauging

. 15
ZMN — ZMN + ?dMNKQK, (2 ) 31)
Ox =5d"Prdy g WEogWTY.

Thus the structure constant X;x% is in the 27 @ 351 representation of Eg)-

2.5 Scalar potential

The effective potential V' =V (Map, 0x M ap) that depends on the generalised met-
ric M4p and its derivatives after twisting should become the scalar potential for the

appropriate gauged SUGRA. It appears that one must add an extra term of type
ViS04 E=M0pEe™ 65°, (2.5.1)

where E=M is a generalised vielbein and 6=® is the Kronecker delta. It can be always
added to the action since it is zero up to the section condition. This term is necessary
for two major reasons. Firstly, this term allows to write the action in terms of the
structure constants X/n. Secondly, this terms provides the action that is invariant
under gauge transformations (2.3.7). Not to be confused, one should think of this term
as a term that has always been in the action but has usually been dropped because of
the section condition. After the section condition is relaxed it is important to add this

term since it provides the invariance of the action.

2.5.1 D =7 supergravity

The effective potential that defines the SL(5) covariant dynamics has the following

form

1 1 1 1
V= \/§ <2V1 — 5‘/2 + ZV?, + Ew + V5> (2.5.2)
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where

Vi = MMNy MELO M, Vo = MMNy MELOi My
Vs = =0 MMP (MP59p Mps) , Vi = MMN (MP509y Mps) (M5 oy M)
Vs = MV e, po EAMPS BB 0y ER o ED

(2.5.3)

with the generalised metric (see Section 1.5) and the vielbein E]‘é[ where the hatted

Latin indices label flat coordinates

Guv + %Cuaﬁcuaﬁ V2 vPo
Myn = , Myn = E36;5ER. (2.5.4)

1 6 J,
ﬁc" grore

We now apply the Scherk—Schwarz ansatz to the terms in the action to find the
reduced theory. We will find it convenient to work not with the 10 x 10 matrix big
Mjsn but instead with the 5 x 5 little m,,, defined by

MMN = an,pq = MmpMng — MmqMpq (2 5 5)

MMN — MRS — e P

The metric in the fundamental representation is given by

-1/2 V.
Mmn = g Jnw 1/2 v (256)
Vi det g'/2(1 + VuVug")

where V¥ = %GWPUC,,M and e*”*? is the alternating tensor. This object has determinant

det mp, = det gfé. In terms of little m the terms in the potential reads’

n = gmprmqsa,,qm’"" s Mamn — %mprquTr(mflapqm)Tr(mfl8mnm) ,

Vo = mprmqsﬁpqulaksmrl — apqmpkaklmlq ,

Vi = 4m™m"9pym;0pmpm™?,

Vi = 8mPmETr(m 1 0pym)Tr(m ™ Omnm) . (2.5.7)

For little m the Scherk—Schwarz ansatz is then

M = ViEmz VP . (2.5.8)

We found the computer algebra package Cadabra [104, 105] a useful tool for verifying some of the
more laborious manipulations in this section
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Let us introduce some notation:
Aeq = V’rgbai)évdl’n v N = Xee s ANape = Ve - (2.5.9)

Assuming that 0p,,mag = 0 we obtain

Vl = —m med |:3Ae——fA bde + 2X(ICde + 3m fmg A ach bdh]
Vo = —m®m® [21\6 faéA e T A faaA — A fabA edt 2%61\5&@5 - %61/’55}
ab, ed ghré f
—m*mS [méfmg Aea@Af B(Tb}
Vs = —8mm [XéaAéBaZ + XBEwFu{]
Vi = 32m®™m®xaexig (2.5.10)

for the original terms in the action. For the extra term (which vanishes upon the strong

constraint) we find

‘/5 = _E&EEdeeafth (mpzmqg) AfbcpAhdeq
= —4(%5ma )? + 4m®m® {1/1& i+ 2teel\® g + A° fabA — A A ecb:| :
(2.5.11)
To proceed we shall simplify matters by assuming
detg=1, detm=1, detV =1, (2.5.12)

and further that the trombone gauging vanishes. Then we have the following identifi-

cations:

Xab = 0 ) 1/][&1_;] =0 ) 7Yal_) = 1/}(@5) ) ZbE,?z andef defbc . (2513)

Using the invariance of the e-tensor we then find the following relations:

6425 zdef MadMpe M f =\ 5ag\© fghmaembf Gy dh _ 2A“bchf hmaembfmChmdg

T = _ _ _ . 1 _
64Z“b’chefmangéméf :Aa,;EJAbaéf-mcfmde — §A bchd mb m¢f
b d, b d,
— A® bch__fm e — 278 s\ efam emds
1 -
+ iAaBEJAefgﬁméémbfmcgm Aal;cJ % hmaémbfmchmdg )

(2.5.14)
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Putting things together we then find that

1 1 1 _ . — I

Vi 5Ve = 5V = ~32Vjauged + Aokl (mcemdf — m%yef ) (2.5.15)

where Vi qugeq is the known potential for the scalars in gauged supergravity given by

[100]:

1 = - . -

Viauged = 61 (2mab}%emCdYJa - (mabYaI})2> + Z%c 7] (mamééméf - mamééméf) .
(2.5.16)

That is to say we have reproduced exactly the potential for the scalar fields expected

for gauged supergravity up to the term
AaBEJAEaEf (méém‘jf — m‘_ximéf) , (2.5.17)
which, however, is a total derivative and after some algebra can be written as
2011 (m?”“mﬂ@q(‘)pq%f]) . (2.5.18)
It is worth remarking that the additional term in the Lagrangian V5 was vital to achieve

correct cancellations and contributions to this result.

It is natural to ask whether the assumption that the trombone gauging vanishes
is actually necessary; could one obtain an action principle for a trombone gauged su-
pergravity? From the above considerations it seem likely that an appropriate a scalar
potential could be deduced. However, the trombone symmetry is only an on-shell sym-
metry of the full supergravity action and so to make such a conclusion it would be vital
to include the other supergravity fields (i.e. the gauge and gravity sectors) in a duality

symmetric fashion.

Now we perform a variation of the action under a generalised diffeomorphism to find
OV ==Go+... (2.5.19)
in which the ellipsis indicates total derivative terms and G vanishes upon invoking the

section condition.

By substituting the Scherk—Schwarz ansatz to the action we obtain the action for

the gauged supergravity (2.5.16). This can be written in terms of an’kl as follows

1

vaauged :674 (3an,rsqu,srmmpmnq — anp7qX$n7smprmqs) +
) (2.5.20)
+ % (an,rsqu,tummpmnqmrtmsu + me’annT,smmpqmrs) .
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Since we understand X,,, as a generator of the algebra it does not transform under

gauge variation while the transformation of the metric m® reads
5em® = (Xppm®m™ + Xy ma™)eM. (2.5.21)
Thus we find the gauge transformation of the action to be
6V = iXa[bﬁ]dde7nanl7pmepmm”§kl : (2.5.22)

The action of the gauged supergravity transforms as a scalar under generalised gauged

transformation if 6,,,,, = 0. Indeed, the expression above becomes

1
5£V = — ﬁeabcpqqujdé[u;lym}nXkLpmepmmngkl =
2.5.23)
1 (
=5 (eabcqupq’aYmnmm” — eabcqupq’denm“") thpbmcf’fkl =0.

The first term here is zero due to Z1%¢< = 0 and the second is zero because of the

quadratic constraint
Z"m"PY,, = 0. (2.5.24)

Hence, the generalised gauge transformation of the action is zero if one drops the
trombone gauging. The trombone gauging does not leave the action invariant as it

should do since it corresponds to the on—shell symmetry.

2.5.2 D = 6 supergravity

The effective potential in six dimensions is given by [83]

L 1
Very =1 MM N ouM* 0N Mycp, — 5 MY oy M* L0, My i+
11 ]
+ ﬁMMN(MKLaMMKL)(MRS(’?NMRS) VN O Eo Ky Ex6%9,

(2.5.25)

where the extra term is included. Here the 16 x 16 matrix M7, is the generalised metric

and it is written in terms of the metric g,, and the RR 3-form field C),4p

9ur + 5Cu" Cupo + 15X, Xy %CMWQ + %ﬁXuVVWQ 19717 X,

M = \}ﬁ %Cmmy + ﬁvmusz gHak2vIve 4 %Vmuzvvu@ %971/21/#1#2
1 —1/2X 1 —1/2VV1V2 -1
19 v V29 g

(2.5.26)
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where the small Greek letters here run from 1 to 5 labelling 5 compact directions and

1
VP = e G, X, = CupV"7. (2.5.27)

The matrix F=¥ is the vielbein for MMN = EgM E=N§O9E and the capital Greek

indices run from 1 to 16 labelling flat spinorial indices.

For the convenience of notations we define the object
fag€ =WeCo;Ws, (2.5.28)

where W 5 is the twist matrix introduced in (2.3.1). Then using the definition (2.3.3)

the structure constant can be written as
Xun™ = fun®™ = fvu®™ + YAY fon®, (2.5.29)

that us true for the extended geometry formalism in any dimension.

From now on we assume that the trombone gauging vanishes and that the matrix
My is unimodular. The latter can be always arranged by rescaling the generalised
metric by g = det(gu,). The only effect this has on the potential is change in the
coefficients of the terms proportional to derivatives of the determinant. Summarising

we have

Oy =0, detW =1,
fap* =0, fap® =0, (2.5.30)
acwcg =0.

In cases when it does not confuse the reader the bar notation is dropped to make
expression less heavy. In all expressions which include terms with both barred and
unbarred indices these are treated carefully. One should remember that such quantities
like Xa/n", farn™ or gaugings always have flat barred indices and not be confused if

they appear without bar. Taking this into account, the effective potential is given by

Verp=Vi+Vo+ V3 + SC, (2.5.31)
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where

1
Vi= _gMMNfNPLfMLP + MM frrpt fint

1
Vo = iMMNfPMLfLNpa
X , (2.5.32)
Vs = MMNMEL MR (SfMKRfNLS — 2fKMRfNLS> ;

1
SC = §YIJ(‘/[LNfMRKfNSLMRS-

By integrating 0p and 97, by part in V5 it can be shown that this term is zero up to a
full derivative. To proceed further and to be able to use gamma matrices algebra we

need to define objects in the vector representation

1.
faj é(FjZ)K fakx”,
mzDIAP = Dipa MFANSE (2.5.33)
Xy = (O k" X
By making use of these definitions the part V3 can be written as
1 . .
V3 :Z(Fbrn)NLfKi]mebmzmmjnMKL =
1 j LafMN, ik 1 K LyrMN 3 rRS (2:5.34)
EXMiJXNk M mt mj; = 372XMR Xnsg™M M™ Mkr,.

Indeed, the first two lines of (2.5.33) imply that

fMKRfNLSMRSMMNMKL — 2szijmnMMNmnjmmla
1 (2.5.35)

Frmfnr® Mg MMN pEL = 5 TN L frcid fmm™m g, MEL.

These two equalities lead to the first line in (2.5.34). The definitions (2.5.28) and (2.3.3)
together with the condition 63; = 0 allow to write the structure constants X unE in

terms of f Bt
4ZIC = TiABf, O
1 . ‘ (2.5.36)
Xyt = ZFZABFJLM(Fij)NKfABL-

Note, that this relation can not be inverted i.e. it is impossible to write fag® in terms
of Xprn¥ and just substitute it into the potential. Basically, this follows from the first
line of the equation above, that includes only symmetric part. Finally, substituting the
last line of the equation (2.5.33) into the second line of (2.5.34) and using the identities

above one exactly recovers the first line in (2.5.34).
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To obtain the term V; + SC one may use the following relations

V8L X ke r® = —3X gt

(2.5.37)
V&L fer® = =3 freart,

that follow from the explicit form of the structure constant (2.4.20), relation between
Xyun® and furn® (2.5.29), identities (1.5.16) involving the invariant tensor Y]\[fﬁ, and
the condition #5; = 0. Then the term V7 + SC of the effective potential can be written
as

Vi+SC = —%XMKLXNLKMMN. (2.5.38)

Indeed, substituting (2.5.29) into the expression above one encounters exactly V; +SC

plus a term, proportional to V5, that is a full derivative.
Finally, the effective potential can be recast in the following form

1

25 R s MMM M (2.5.39)

1
Verr = *gXMKLXNLKMMN +

This expression reproduces exactly the scalar potential for maximal gauged supergravity

in D = 6 dimensions up to a prefactor
1.

The details of this calculation are provided in Appendix B.1.

The effective potential (2.5.39) is invariant under transformations (2.3.7) because of

the quadratic constraint (2.3.10) (see Appendix B).

2.5.3 D =5 supergravity

The low energy effective potential for the Egg) invariant M-theory has the same
form as in the SO(5,5) case up to coefficients [83]

1 1
Vveff :ﬂMMNaMMKLaNMKL — §MMN6NMKL6LMNK+
19 1 _
* ﬁMMN(MKL&MMKL)(MRsaNMRs) - §Y;](V[LN3ME9K3NEEL5~9.

(2.5.41)
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We again add the term proportional to the section condition that includes the vielbein

e’ —%eujC’ij 3€,3U + 16,0, VI
EeM = (dete) /2 [ 0 emper,  —dsemjem Vikis | (2.5.42)
1.4
0 0 (dete)™"e;2,

where the capital Greek letters now run from 1 to 27, the small Latin and Greek indices
run from 1 to 6 labelling curved and flat space respectively. The fields U and V%" are
defined as

1 ..
kl
U= 662] mncijk:lmn7

. 1 . .
V’Lkl — gezklmnj Cmnj )

(2.5.43)

Here the 6-form field Cjjximy is a new field that was not present in the previous example

because the dimension was lower than 6.

Using the same notations for fi;n™ as in the previous subsection and setting

det M =1 and 0); = 0 we have for the twisted effective potential

Verf =V1+Va+ V34 SC, (2.5.44)
with
Vi= _%MMNJCNPLJCMLP + MY frrp frn®,
Vo = %MMNfPMLfLNPa
(2.5.45)

1 1
Vs = MYMNMEE Mg (meKRfNLS - 2fKMRfNLS> ;
1
SC = §YIJ<\4LNfMRKfNSLMRS-
Again the part V5 is the full derivative and can be dropped.
It is straightforward to check the following identities

Yl Xkr® = =Xk,
Yot fur® = —5fku”, (2.5.46)
VE Xan® = Xon™ +4Xn. 5,
that can be derived exactly in the same fashion as (2.5.37). The analogue of the second

line of (2.5.33) is
M dVEE = d g g MNVE MRE (2.5.47)

99



and implies that the indices of the invariant tensor are raised and lowered by the gen-

eralised metric. This is in agreement with the definition of the unimodular matrix
Myn = VPV (2.5.48)
and the following representation of the invariant tensor [99]
dynie = Var TV V™ Qi Qi Qi (2.5.49)

if one takes into account the condition Vj;% Q;; =0.

Using the identities (2.5.46), the definition (2.5.47) and the last line of (1.5.16) we

deduce for the effective potential

1 1
Vers=— EXMKLXNLKMMN + EXMRKXNSLMMNMRSMKL‘F ( )
2.5.50

1
+ TOXRMKXNSLMMNMRSMKL.

The first term can be verified using the same technique as in the previous section.
Namely, substituting the structure constant Xy;n* from (2.5.29) and taking into ac-
count the identities (2.5.46) one obtains that the first term in the equation above is
Vi 4+ SC plus a full derivative term.

The derivation of the second and the third term is longer but straightforward. Lets
sketch the idea here on the example of the second term XurEXngEMMNMES Mper .
Substituting here the expression (2.5.29) and expanding the brackets one obtains terms

of the types

Frur®™ fust MMV MRS M, Frad®™ fns™ MMN MBS M,
Frur™YER fasP MMN MBS My, TR YEN fasP MMV ME My, (2.5.51)
Yirp forTYER fas® MMV MRS My .

Lets show that the third term in the second line is exactly proportional to the second

term in the first line. Substituting the invariant tensor Y]%:N = 10dMNPdppr as using

the relation (2.5.47) two times one can verify the following identities

Frar™ Y Fas® MYMN MBS My, = 10 frar™ d“* A depn fas® MMN MBS My, =
10frar" depn fasPdipo MO MACMMN M =
10 frar™ fas®d"™M MypdipoMAC MRS = fry™ fas®Yitg MapMAOMPS =

— 5fro” fas® Mg MASMES
(2.5.52)

where the identity (2.5.46) was used in the last line. Using the same idea one simplifies
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the last line in (2.5.51). Finally, the contributions like the first term in the second line

of (2.5.51) coming from two last terms in (2.5.50) precisely cancel each other.

After long algebraic calculations it can be derived that the expression (2.5.50) is
up to a prefactor equal to the scalar potential of maximal gauged supergravity in 5
dimensions

o 3

9 .. 1 ..
Vers = 5147 P = 5145 = S Vicatar, (2.5.53)

where the | |? stands for the contraction of all indices. To show this one expresses
the potential in terms of the T-tensor by making use the relation (2.2.27). Finally,
rewriting the 7T-tensor in terms of the A-tensor as (2.2.28) and using the properties
of the A-tensors one obtains the scalar potential of the maximal gauged supergravity.>
We refer the reader to Appendix B for the proof that the potential (2.5.50) is invariant

under gauge transformations (2.3.7).

2.6 Summary

The above results show that the idea of Scherk-Schwarz reduction works in detail
for D = 5,6 and 7. The most interesting point to mention here is that geometry of the
extended space plays an important role in the picture presented above. It is not just a
Kaluza-Klein reduction where fields does not depend on internal coordinates. The ex-
tended space should be an extended geometry analogue of a parallelisable space so the
dependence on the dual coordinates should be of a particular form. These constraints
match the quadratic constraint on the embedding tensor of gauged supergravity. Al-
though there are many papers [41, 42, 85] considering geometry of the extended space
it is not fully understood how to describe this object. In this work we investigate a very
particular situation but we hope it may contribute to the full picture of the extended

geometry.

2These results were verified with the help of the computer algebra system Cadabra [104, 105]
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CHAPTER 3

BOUNDARY TERMS IN EXTENDED
GEOMETRY

3.1 Gibbons—-Hawking formalism

The example of General Relativity where one first encounters a non-trivial contri-
bution from boundary terms, teaches us that the action is not just a simple way of
writing the equations of motion. In gravity the famous Gibbons-Hawking term that
results from ambiguity in variations of the canonical fields in the action, encodes the
thermodynamics of solutions. As an introductory example the Gibbons-Hawking term
of General Relativity that allows us to describe thermodynamics of black holes is taken.
An important feature of General Relativity that differentiates it from say a vector field
theory is that the boundary term cannot be written in terms of the canonical variables
of the theory (bulk metric). Instead it is defined in terms of geometric properties of the

boundary, i.e. the extrinsic curvature, which is related to the black hole entropy.

In this chapter we show that a similar situation takes place for the case of duality
invariant formulations of string theory. Firstly, the corresponding boundary term can
be written in terms of a normal to the boundary and the induced metric. Interestingly,
by making use of the semi-covariant derivative this expression can be written exactly in

the form of the (generalised) extrinsic curvature.

In the path integral approach to quantized fields one expresses the amplitude to go
from the field with configuration ¢; at time ¢; to @9 at to as
©(t2)=wp2 T
(p2,t2|p1,t1) =/ Depe''l¥, (3.1.1)
w(t1)=¢p1

where the integral is over all field configurations that take the values (1 at time t; and
2 at time to. On the other hand the same quantity can be written in the following way

using the Hamiltonian (operator of evolution)

(pa, tal1, t1) = (pale H 27|, (3.1.2)
After rotation to imaginary time ty — t; = —if8 and taking the trace (sum over all
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© = 1 = pg) one obtains:

Trexp(—pH) = /Dcpef[‘p], (3.1.3)

where the path integral is now taken over all fields that are periodic with period § in
imaginary time. In a sense this integral describes quantum field system in a space with

one compact dimension.

An important observation is that the left-hand side of (3.1.3) is just the partition
function Z for the canonical ensemble consisting of the fields ¢ at temperature 7’ = 571,
Thus, one can describe thermodynamics of field-theoretical systems and define such

quantities as entropy and free energy.

The object that connects classical and quantum gravity is the black hole. On the
one hand it is a macroscopic object since it appears as a solution of the GR equations.
On the other hand a black hole produces quantum effects, e.g. the Hawking radiation.
According to Bekenstein and Hawking, this object has entropy proportional to the area
of the black hole [106]:

S="A (3.1.4)

This entropy was introduced to explain the phenomenon of Hawking radiation that is
basically a flux of particles emitted by a black hole. It is a pure quantum effect and
a black hole evaporates during this process. The spectrum of the radiated particles is
described by the black body spectrum. In the Hawking description of this process one
assumes that the mass of the black hole slowly changes adiabatically slowly i.e. there
is no back-reaction. This means that at every moment of time the radiation and the
black hole are (nearly) in thermodynamic equilibrium and that the black hole should

have well defined temperature.

Thermodynamics defines temperature as a measure of how energy changes with the
number of microstates corresponding to the given macrostate. Applying this definition
to black hole radiation, one encounters a paradox since according to the no-hair theorem
any black hole has only one microstate. This implies zero entropy in contradiction to

the Bekenstein formula.

String theory as a quantum theory of gravity has suggested a few ways of resolving
such paradoxes of black holes. For example the contradiction stated above coul be re-
solved by the proposition made by Strominger and Vafa in [107]. They have shown that
one may count microscopic configurations of strings and branes to obtain the Beken-
stein entropy. Another interesting approach that could explain black hole entropy is
Loop Quantum Gravity. In this approach one assumes that the space-time is funda-

mentally triangulated, i.e. consists of the simplest objects, triangles. In certain sense
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this solves the information paradox by identifying one macroscopic configuration of the
space-time with many different triangulations. These correspond to microstates in the
thermodynamical state [108, 109]. Finally, to resolve the information loss paradox in
the framework of AdS/CFT correspondence one suggests that all information about an
initial state of a collapsing object is returned by the Hawking radiation [110]. For a

review of the black hole thermodynamics see [111].

Going back to General Relativity one could calculate the black hole temperature
using (3.1.3). However, substituting the black hole solution to (3.1.3) one immediately

acquires a problem: the usual Einstein-Hilbert action for gravity

Iy = /\/ng (3.1.5)

equals zero for empty-space solutions (including black hole). This is a reflection of the

gauge nature of General Relativity and the same behaviour is observed in YM theories.

To resolve this difficulty one recalls that the action of general relativity contains
second derivatives of the metric g,,, that require us to set not only dg,, = 0 on the
boundary but also d,dg,, = 0. To fit the extra conditions to the conventional Euler-

Lagrange procedure a boundary term has to be added to the action.

It is useful to illustrate how this works in the simplest case of classical mechanics
[112]. Consider a particle moving in one dimensional space, parametrised by a coordi-

nate ¢, whose action is given by

I= —/dtqij. (3.1.6)

Variation of the action leads to the following expression

ol = —/dt (Gog + qoq) . (3.1.7)

Usually at this step the second term is integrated by part two times and the boundary

terms are neglected. However, the boundary condition d¢ = 0 does not follow from
d0q = 0. More accurately the variation is written as:

. d : o

0 = — [ dt |Gdq + 7 (g0q) — Gog

p d (3.1.8)

= — [ dt |2§0q + — (¢6¢) — —(Gdq) | .

/ [ Gog + — (¢5¢) — — (4 q)]

To end up with the ordinary equation of motion ¢ = 0, the second term should be

64



somehow excluded. It can be compensated by introducing the following boundary term

. d, .
Liot = /dtqq+/dtdt(qq). (3.1.9)

It is easy to check that now the variation of this action has the very familiar form:

Oltor = —2/dtc'j5q +2(ddq) |12, (3.1.10)

which after fixing ¢ = 0 on the boundary gives § = 0.

An important feature of theories of this kind is that the action (3.1.9) can be written

in canonical variables

Lot = 2/dtq'q' (3.1.11)

with no second derivatives. On the contrary in the case of the Einstein-Hilbert action
the Gibbons-Hawking boundary term cannot be written in terms of canonical variables
in a covariant way. Instead it is written in terms of surface properties (first and second
fundamental form). And the total action for GR cannot be written nicely in the same
way as (3.1.11).

Let us show that the full action for GR has the following form

Ig] = Igulgl + IB[g], (3.1.12)

where

IEHZ/ d4$\/§R;
M

(3.1.13)
Ip =2 }[ ByvVhK.
oM

Here h is the metric on the boundary M, K is the second quadratic form (extrinsic
curvature) of the boundary. Indeed, variation of the Einstein-Hilbert action gives (for
details see [113])

0pg = / V—gd*z [R,w - ;Rg,w} —&-7{ V—hd3y (51}“71“) , (3.1.14)
M oM

where dv* is defined as:
dut = g*PsTh , — gHoTY (3.1.15)

and
9" SRy, = dvt . (3.1.16)

The “bar” notation was introduced to emphasize that dv* is not a variation of some
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quantity v*. Finally, the vector n* is the unit normal to the boundary oM.

Varying the boundary term we obtain
dlp = 7{ ho‘ﬁégagvun“\/ —hd3y. (3.1.17)
oM
Finally, taking into account that the following equality is true on the boundary
ntév, = —h“ﬁégag,#n“ (3.1.18)
we end up with the familiar Einstein equations:

1
Ry — QRQ;U/ =T (3.1.19)

Hence, we have shown that in general one has to add the Gibbons-Hawking boundary
term to the Einstein-Hilbert action for General Relativity. This term allows us to derive
equations of motion for the metric g, consistently by the conventional Euler-Lagrange
procedure. An important implication of the boundary term is that the total action
(3.1.12) does not vanish for empty-space solutions like the black hole. Instead, it implies
that termodynamics of black holes is governed totally by the boundary term [106].

3.2 Black holes thermodynamics

Black holes are solutions of Einstein equations in the absence of matter T, = 0.
These objects are point-like and have a horizon, that is a boundary in the space-time
of external observer that does not allow anything to get out from the black hole. The
simplest example of such a solution is the Schwarzschild black hole described by the

following metric

oM 1
ds® = — (1 - r) dt® + — dr? + r2d02. (3.2.1)

T

This solution is stationary and spherically symmetric and describes a space-time with a
source at the point 7 = 0. For an external observer the horizon is given by the surface
r=2M.

According to the no-hair theorem, a black hole could only be characterized by
three parameters: mass, angular momentum and charge. These correspond to the
Schwarzschild, Kerr (rotating) and Reissner-Nordstrom (charged) black holes [114].
The most general stationary metric for rotating charged black hole is the Kerr-Newmann

solution.
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To follow the analogy with M-theory consider the Reissner—Nordstrém solution char-

acterized by a charge

oM Q? oM Q*\ !
ds? = — (1 -2 ¢ SR +(1-—+ L) a + r2dQ?. (3.2.2)
r r2 r r2

In this case the action for the electromagnetic field should be added:

I[A] = — / V—gd*zF,, F". (3.2.3)

For a solution of the Maxwell equations, 9, F'*” = 0 the integrand can be written as a
divergence:

F? = (2F"™A,)., (3.2.4)

and the action takes the same form as the Gibbons-Hawking term i.e. integral over the

boundary
-2 7{ FrA,dE,. (3.2.5)

From the previous section we known that on empty space solutions the total action
becomes just a boundary term. Thus the combined gravitational and electromagnetic

actions can be written as [115]

[ =1I[g] +I[A] = 2 f Kds — / =gd w E PP
=il6n’k (M — Q®),

(3.2.6)

where the gauge transformed electromagnetic vector potential is taken to be A, =
(Qr~t — ®)t, and ® = Qrg_l is the scalar potential on the horizon. The integral in
(3.2.6) is taken over the surface near the horizon and x = (4M)~! is the surface gravity
of the black hole solution. The imaginary unit ¢ comes from the factor /—¢ in the

surface measure.

Now returning to (3.1.3) we can study the thermodynamics of our black hole. At
first, let us mention the fact that the dominant contribution to the path integral comes
from such configurations of the metric g and the matter field ¢ which are close to
classical solutions (background) gp and ¢¢. Expanding the action in Taylor series near

the background gy and ¢y one obtains for the partition function
log Z = il[go, o] + log/Dg exp (i[g [g}) + log/Dqg exp <i[g [(;NS]) , (3.2.7)

where I,[§] and I5[¢] are quadratic in the fluctuations § and ¢.

Thermodynamics teaches us that for the canonical ensemble log Z = —WT~!, where
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W is the thermodynamic potential of a system. Thus one can identify —il[go, ¢o]T
with background contribution to thermodynamic potential and the other terms with

contributions of thermal gravitons and matter quanta.

Thus from (3.2.6) it follows that W = (M —®Q) and the temperature T' = r(2m)~!.
From the fact that W = M — T'S — ®() one obtains that

1 1
§M =TS+ iQCI). (3.2.8)
And finally using the generalised Smarr formula M = 2kA + Q® we obtain:
1
S = A (3.2.9)

This famous Hawking formula introduces the notion of entropy and temperature for a

black hole. This allows us to speak about black hole thermodynamics.

These formulae connect gravity with thermodynamics in some strange way using
(3.1.3). But they give the correct answer that is used in construction of “true” black
hole thermodynamics with counting states inside a black hole. Thus it can shed some

light on the quantum gravity and string theory.

3.3 Duality invariant topological terms

3.3.1 Double Field Theory

In Double Field Theory which provides a duality covariant description of string the-

ory backgrounds and was introduced in Section 1.4 one encounters a constraint (1.5.14)
MN Oy e One =0, (3.3.1)

that effectively restricts the extended space to some subspace if satisfied. Here the
2d x 2d constant matrix n/n is the flat O(d, d) invariant metric. This closure condition
can be solved by imposing two natural constraints on all fields defined on the extended
space

03 =0 oritsdual 0,=0, (3.3.2)

that correspond to particular T-duality frames. Taking the first choice so that all fields

are taken to be independent of the winding coordinates &; the duality covariant action
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(1.4.12)

1 1
S = / dodie % <8HMN6M7-LKL8N”HKL — §HKL8L”HMN§NHKM—
(3.3.3)
—200 dONHMN + 4’HMN8Md8Nd> .

reduces to the bosonic part of the supergravity action (1.4.25)
d. —2d| L i ki 1 iia ij ij R
S=[de _Zg 0i9 ajgkl + 59 0;g ajgkl + 26id6jg + 4g 8ld8]d - EH

1
:/dd:c e 20y/—g <R[g] + 4(0¢)* — 12H2) + boundary terms.
(3.3.4)
The boundary terms are usually dropped in this formalism, however imposing the strong

constraint but keeping the boundary terms we can write the following

S = / A%z \/ge 2? (R[g] + 4(8¢)? — 112H2> —

(3.3.5)
- / Om [e‘2¢\/§g”b9m08ngbc - e‘%\/égmcg”b@cgnb} :

It is then natural to combine the total derivative term in the above with the Gibbons-
Hawking term (modified by the dilaton). In the previous section it was shown that
the Gibbons-Hawking boundary contribution can be written in terms of the surface

curvature [115]

Sep =2 7{ Vhe 2K =2 ?{ Vhe 2 h® (9amp — Tipnan)

(3.3.6)
=9 f Vhe 2 h%®,ny, — f Vhe 22 h B (20, hy — Ophap)im

where K = V;n’ is the second fundamental form for the boundary, n, and hy;, are the

normal and metric on the boundary respectively.

Comparing (3.3.5) and (3.3.6) (and with the replacement of g by h) one obtains:

/ NG <R[g] + 4(0¢)? — 112H2> + S =S+ 7{ Vhe 29 (2n%n, 3, — n°h®Oyhae).

(3.3.7)
It is well known that in gravity (in contrast to other field theories) it is impossible to
write the action with the GH term in a covariant form (without introducing a boundary).

In other words, the additional term cannot be written as just a full derivative.

We now wish to write the boundary term on the right hand side of (3.3.7) in an
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O(d, d) covariant form by recasting it in terms of the generalised metric. This produces
Siot = S + 7{ e 2 [2HAPOANp + NadpH'P] . (3.3.8)
0

The normal N4 is now the unit normal to the boundary in the doubled space. At the
moment it is not clear how to define such a normal since the notion of the extended
space itself is not well-defined. In the next section we show that the boundary term
actually reflects topological properties of the internal manifold such as monodromy. For
example this receives a contribution from exotic branes [116]. Finally, it is important
to mention that the expression (3.3.8) is O(d,d) covariant and should be true in any

duality frame.

In order for the generalised boundary term (3.3.8) to match the boundary term in
(3.3.7) (after a duality frame is chosen to give the usual bulk action) we require that
the possible boundary in the doubled space is restricted to be of the form:

0 ~bin

Ny = , N4= . (3.3.9)
Ng, n®
This normal is such that the normalization condition does not imply any constraints to

the dynamical fields g;; and b;;:

NANBH g =1 = ngn® = 1. (3.3.10)

The fact that the normal is only allowed components along the z? directions is due
to the fact that we chose the particular duality frame where the fields are independent
of Z;. A direct consequence of this is that there could be no boundary located in Z;
in the chosen duality frame as this would break Z; translation invariance. Of course, if
we chose the T-dual frame where fields are independent of z* then we would have to
choose the opposite condition on the boundary normal. A natural conjecture is that
the general restriction on the boundary normal follows from the constraint which has

its origins in the level matching condition so that in general we require that
NAnapNB =0 (3.3.11)

and the normal vector has components in both ordinary and dual directions

Vg

Ny = [na] . (3.3.12)
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In order to satisfy the normalisation condition HAPN4Np = 1 without introducing

extra constraints on the gauge field b;; the component v, has to be defined as
Va = Ng + bapnl®. (3.3.13)
Then the normalisation constraint and section condition imply

HABNANg =1 = a?2+n?=1, (33.14)
UABNANB =0 = ngn® = 0. o

3.3.2 SL(5) covariant geometry.

In Section 1.5 it was shown that low-energy effective dynamics of M-theory can
be described in terms of U-duality covariant fields by extending the internal space in
a particular way. In this section we consider the case of SL(5) duality group that

corresponds to 4 toroidal directions. Recall the effective action (1.5.18)

1 1
V=g EMMN(aMMKL)(aNMKL) — 5J\4MN(8N1\4KL)(aLMMK) +
(3.3.15)
1 1
+EMMN (MEEQy M) (MBS 0y Mpg) — Z(MRSaKMRg)(aLMKL) ,

I
0z’ Oyap

section condition Y™V i1 9y @ One = 0, where

) and the generalised metric My is given by (1.3.41). The

YMN o = éMNe o is a duality in-

where Oy = (

variant tensor (1.5.15), effectively restricts the extended space to its physical subspace.
As before the capital Latin indices run from 1 to 10 labelling the 10 representation of
SL(5), small Greek indices are the ordinary tensor indices and run from 1 to 4, small

Latin indices label the 5 representation of SL(5).

The section condition is written in the form of a differential equation on all fields
living on the extended space. It can be solved by restricting these fields in various ways
with a natural solution being 8, = 0. This solution implies that no fields depend on
the dual coordinate y,,, and turns the effective action V' to the ordinary supergravity

action (1.5.19) modulo boundary terms.

In the natural duality frame given by the solution 8, = 0 the effective potential V'

with all boundary terms included takes the following form

[v=[va(ro- gre?)-

- / O [\/59”5 9"y 9pa — /99" 9" aozguﬁ} . (3.3.16)
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Comparing this expression with the Gibbons-Hawking term (3.3.6) one obtains

/ v <R(g) - 418F(C)2> + San = / V+ 7{ Vh(2h*ng 5 — n"h* dgha,). (3.3.17)

As before the extra term can not be written without referring to a boundary and intro-
ducing a normal explicitly. To write the expression above in a duality covariant form

one needs to define a generalised normal, that in general should have the form:

nt
NM = . . (3.3.18)
Vpa - ﬁcapanoc
As before the form of the normal is determined by the simple requirement that the
normalization Mg N4NP = 1 should not imply any constraint either on C or g. Thus,
we have for the norm

MapNANE = n)? + v (3.3.19)

Finally, repeating calculations of the previous section one finds that (3.3.17) can be

written in the following form:
/V - 7{ Vh (2M*B9sNp + NadpM45). (3.3.20)

Hence, the extra term can be written in a duality covariant form by introducing a

generalised normal.

3.4 Summary

In this chapter it was shown that for consistency one should add a boundary term
to the known Hohm-Zwiebach or Berman-Perry actions. Then the full effective action
successfully reproduces all the terms in the Einstein-Hilbert action without need of
integrating by parts. Moreover, the Gibbons-Hawking term, which captures the ther-
modynamics of empty-space solutions, follows from the full effective action as well. An
important remark is that the Gibbons-Hawking boundary term that is always present in
General Relativity is related to thermodynamic properties of black branes and basically
to the topology of the space. A similar idea stands behind the results shown in the

sections above.

In all the expressions of this chapter we do not specify the boundary since the
geometry of the extended space is still unclear. However in the following chapter we

explicitly show that the derived boundary term actually feels the non-trivial topology
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of string theory backgrounds generated by exotic branes with non-zero non-geometric
Q-flux. It is demonstrated, that two contributions from these fluxes are T-dual to each

other providing the full boundary term is T-duality invariant as it should be.
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CHAPTER 4

NON-GEOMETRY IN DOUBLE FIELD
THEORY

4.1 Exotic branes and monodromy

The Gibbons-Hawking term in general relativity is relevant for backgrounds gener-
ated by objects with a horizon, such as black holes or black branes, and the horizon
is related to the boundary. In string or M-theory one may meet even more fascinating
situations when a consistent background is not defined globally. Instead, local patches
are glued by duality transformations leading to non-trivial cycles. Encircling these cy-
cles results in transformation of the metric and gauge fields, that in general mixes these

objects, hence the name of non-geometric background.

A example of such background is provided by the twisted torus already mentioned
in section 1.4. This geometry appears in Type II string theory compactified on a torus
T2. Consider an NS5-brane extending along six dimensions not wrapping the internal
2-torus. T-duality along one of cycles of the 2-torus turns the NS5 brane into the
Kaluza-Klein monopole (or the 5i-brane in another notations, for a review see [116]).
Further action of T-duality along the remained cycle of the internal torus results in a
non-geometric background generated by the so-called 53-brane that carries a non-zero

Q-flux. This duality chain can be represented by the following table.

1 2 3 4 5 6 7|8 9
NS5 X X X X X
KKM X X X X X |©®
53 X X X X X|O® O

Table 4.1: Under T-dualities an NS5-brane stretched in directions marked by x turns
into a Kaluza-Klein monopole and a 53-brane. Dotted circles denote special cycles along
which T-duality acts.

In the supergravity description the metric for a 53 brane (a KK monopole) wrapped

on compact 3,4,5,6,7 directions, placed at x = xp in the transverse space IR{‘;’29 is given
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by [116]
d52 = d8%34567 + HdS%Qg + Hil(dI‘S + (U)2,
B® =0, dslyy = dr?+r2d0* + (dz)?,
Ry

- 2|x — xp|

(4.1.1)
H=1+>» H, H,
p

where B® is the Kalb-Ramond 2-form field, w is a 1-form and Ry is the radius of the

2? direction.

9 we consider a set of KK

In order to T-dualize this solution along the direction x
monopoles with centres arrayed along z° at intervals of 2rRg. Hence, the function H
becomes divergent

R A+ Vr2+ A2
H=1+) 5 ~ltologo YRR (4.1.2)
nez 2¢/r? + (29 — 2w Rgn)? "

where the sum was approximated by an integral and a cut-off A was introduced. The
constant o is defined as o = Rg/2m Ry = RgRyg /2w

The log divergence of this kind is common for a co-dimension two object and imply
that it is ill-defined as a stand-alone object. Instead, one considers a configuration
where at long distances this divergence is compensated by contributions from another

co-dimension two objects. Hence one considers a regularised form of the function
_ K
H(r)=ho+olog=, (4.1.3)
r

where the radius r € [0, A]. To have asymptotically flat space, i.e. H(r = c0) =1 we

rewrite H in the following form

H(r)=1- Jlog%. (4.1.4)

For this choice of the function H the 1-form w can be written as w = —ofdz® and
one immediately see that encircling the cycle 8 — 6 + 27 results in twisting the special

2-torus as
9

)

% — 2% — 21ox
(4.1.5)

) — 2.
This transformation glues the tori T? at the points 6 and @ + 27 defining a monodromy
group around the cycle. Since the monodromy is a diffeomorphism the KKM background
is geometric, i.e. the metric do not mix with the B-field. This background carries a non-

zero f-flux f8gg = —0o
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An example of a non-geometric background is provided by the 53 brane. Its metric
can be derived by T-dualizing the remained z° coordinate of the special 2-torus in

(4.1.1). Straightforward application of the Buscher rules (1.3.16) gives the following

expression
H
ds* = H(dr* + r*d6*) + mdsgg + dsgsasems
2) _ ot 8 9
o2
H? + 5202’

where ¢ denotes the dilaton.

For this configuration the monodromy around the circle 8 — 6 + 27 is not a dif-
feomorphism, it mixes the metric and the B-field acting as a T-duality transformation.

Namely, the size of the special 2-torus does not come back to itself

0=0: Gss=Ggg=H!,
H (4.1.7)

0 =2m: G88:G99:m.

The resulting transformation can be most clearly written in terms of Double Field
Theory. Let us focus on the (8,9) part of the metric that corresponds to the special
torus. From the point of view of transverse space the corresponding generalised metric

encodes scalar moduli and has the following form (see Section 1.4)

G1 G~ 'B

) 4.1.8
—-BG! G-BG'B ( )

Hun =

In this notation the monodromy 6 — 6 + 27 takes the form of an O(2,2) rotation
H(O =60+ 27m) = OTH(6)O, (4.1.9)

where the matrix O encodes the non-geometric S-transform

0= [ 12 0] . (4.1.10)
BO") 1z

We will see in further sections, that although the bivector 5 is usually understood as
a sign of non-geometry, it is not the only source of Q-flux. In the DFT formulation
the Q-flux becomes written in terms of derivatives of the vielbein with respect to dual

coordinates and does not vanish even if g = 0.

To switch on the Q-flux with the section condition imposed, i.e. when there is no

dependence on dual coordinates, one need the bivector to be non-zero. For the case of

76



a 53 exotic brane the bivector has only one component [96]

0 0

89 89

= AN — = g0. 4.1.11
p=p ox®  0x9’ b ? ( )
The explicit form of the Q-flux is then given by one component Q% = —0o.

It is more natural to write the metric for non-geometric backgrounds in the so-called
non-geometric frame, where the generalised metric is just a beta-transform of (4.1.8)
by the matrix (4.1.10). In this frame the bivector § replaces the Kalb-Ramond field in
the generalised metric H MN

G' - BGB BG

sc ol (4.1.12)

Hun =

In further sections we derive the explicit form of the corresponding generalised vielbein.

in this frame the metric for a 53 brane is written in a suggestive form

ds? = H(dr? + r2d6*) + H 'dsZy + dsdsyser,
(4.1.13)
g=p 9 9
0x8 " OxY

Since the monodromy (4.1.10) glues the space at the point 6 and 6 + 27, the generalised
metric appears to be written in different frames at these points. This observation is
of crucial importance for further sections, where the topological contribution becomes

proportional to the monodromy.

4.2 Gauged Doubled Field Theory

To introduce a setup for further sections we briefly repeat the calculation of [103] here
with all necessary details included. For a more detailed description of the generalised

Scherk-Schwarz reductions the reader is referred to the Chapter 2.

In the manifestly T-duality covariant low-energy formalism for string theory, there
is an object called the generalised metric, which appears to be a metric on the so-called
extended space. The background, given by the direct product of an external manifold
M and the internal torus T¢, is replaced by the direct product of the external manifold
and the doubled torus T¢ x T?. Coordinates Y parametrising the doubled torus unify

the coordinates corresponding to all string charges

YM = !ya] , (4.2.1)

Ya
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where the small Latin indices run from 1 to d, and the capital Latin indices run from 1
to 2d. The O(d, d) covariant dynamics is formulated in terms of the generalised metric
by introducing the following effective action that is invariant with respect to (1.4.17)

up to the section condition [47]

| 7 1 27 o K
S = /\/g dX €_2d <8HMN(9M’HKL8NHK£ — §HKL8£HMN8N'HKM—
o o (4.2.2)
MN MN
—28Md6NH + 4H 6Md6]\7d) .

Here the internal coordinates YM = (y® 7,) on the doubled torus and the external
coordinates x* are collected into one object XM — (z#,YM), where the hatted Latin
indices run from 1 to 2d + n. Measure on the external space is given by /gd"x =
\/Wd”x where the Greek indices run from 1 to n. Then the generalised metric
H 5 can be represented in the block-diagonal form

Juv 0
H oo = , 4.2.3
o= [ o 129

while the doubled dilaton d is written in terms of the usual dilaton ¢
e =\/Ge . (4.2.4)

An important aspect of the formalism is that explicit solutions of the section condition
correspond to certain choices of T-duality frame. In each frame the effective action

takes the form of the Type II supergravity action (bosonic part)

S — / VGdz e <R[g] +4(0¢)* — 112H2) : (4.2.5)
where G is the metric on the whole (d + n)-dimensional space parametrised by the
coordinates z and H = dB is the field strength for the Kalb-Ramond field. Explicit
relationship of the coordinates z to the coordinates x and Y depends on the duality frame
chosen. A natural choice is to drop all dependence on the dual coordinates ¢, and end
up with z = (z#,y*). The choice z = (z*, 91,4, ...,y%) is equivalent to performing a

T-duality transformation along the y' coordinate.

It was shown in [103] that the Scherk-Schwarz dimensional reduction of the described
O(d, d) invariant formalism completely reproduces the structure of the scalar sector of

gauged supergravity. The reduction is performed by introducing the twisting matrices
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UM ;(Y) that encode all of the dependence on the internal extended space coordinates

TAl.A.Am (.'IT,Y) = UA1A1 (Y) . UAmAm (Y)TAlAm (CL'),

(4.2.6)
d(z,Y) =d(x) + M\(Y),

where the barred indices denote twisted directions and T414m is a rank m generalised

tensor on the extended space.

Substituting this anzatz into the definition of the generalised Lie derivative (1.4.17)

one recovers the following expression

Ly, VM = UM 5 (V) FM g VIE () Vi (), 2

FApe =20 yUgNonUe™ — UMY MY g onUp™ Ugy ™,

where the coefficients FM i are taken to be constants. This leads to tructure of an
algebra

A

[(Xwrs Xn] = F unXa (4.2.8)

with generators X z defined by their matrix form in the adjoint representation (X 7)™ 5 =
FM a5

The structure constants can be split into irreducible representations of the corre-

sponding duality group implying that the algebra is an O(d, d) (or E,)-graded algebra.

This is in accordance with the structure of gauged supergravities where F ;o is called

the embedding tensor. From the point of view of the external space the structure con-

stants encode all geometric and non-geometric fluxes [16] (for details see Section 4.5).

An important but straightforward consequence of Scherk-Schwarz anzatz is that one
does not need the section condition for closure of the algebra. Instead, the structure
constants (the embedding tensor) should satisfy a set of constraints, quadratic and
linear [53]. The anzatz (4.2.6) then allows to rewrite the action (4.2.2) in terms of the
gaugings FM R

Sq = / d?ye2AY) / d*ze (R +Ry) , (4.2.9)

where Ry is the gauged part of the action

_ - . 1 _ — _ _
- EFABCFDEFHAD%BEHCF
1 ) o o - o (4.2.10)
— ZFAB@FBAD’HCD — 2FA3§HAB + 4FA’HABaBd — FAFBHAB .
The twisted derivative is defined as 9y; = UM ;0); and the additional gauging reads

Fi=0pn(U HYM 7 =20 HM 100\ (4.2.11)
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To write the gauged action consistently in terms of the gaugings FA wn and Fyy one
has to supply the action (4.2.2) by an additional full-derivative term and a term that is

zero up to the section condition
SC ~ / dedY YN Oy EK EFHEL, (42.12)

where we denote flat indices by underlined Latin letters. At the moment one should not
confuse underlined and barred indices since they refer to different types of vielbeins F
and U. In the section 4.5 these will be identified.

4.3 Full Double Field Theory action

The action (4.2.9) that gives the scalar potential of supergravity differs from the
effective potential (4.2.2) by a full derivative and a term that is zero up to the section

condition.
Se =S+ 5C + /M dzdYo,, [e‘Qd(él’HMNaNd - aN’HMN)} . (4.3.1)

The integration is taken over some region of the extended space M ~ R" x T% x T? that
may have non-trivial topological properties (see discussion in the next section). The
generalised metric H sy and the extended coordinates XM = (2, YM) are defined as
Gij — B;"Ba; B 5
HMN = . YM = [ym] . (4.3.2)
l

l k
—-B; G

Here the hatted indices label all coordinates, including flat coordinates x* of the space
that is not doubled, and M = 1,...,2d...2d + n. Capital Latin indices without hat

label only coordinates of the doubled space and run from 1 to 2d.

On the other hand we have the action that gives the full SUGRA action with the
Gibbons-Hawking term. It differs from the Hohm-Zwiebach action by a boundary term

that can be written in the duality invariant form [1]

Srun = Suz + j{

e [aHAB YN + N30 HAP) (4.3.3)
1o}

In what follows this action is referred to as ’the full action’.

Substituting the form of the action Syz given by (4.3.1) to (4.3.3) the full action

becomes equal to the action Sg plus a term that is an integral over a boundary 0 of a
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full derivative

Srull =S¢ + 2 7({9 94 (edd}{ABNB) : (4.3.4)

Although the integrand in the second term can be represented in a from of a total
derivative the integral is in general non-zero. The extra term vanishes only if the
expression in brackets in (4.3.4) can be defined globally meaning that the space M has
trivial topology.

In the particular T-duality frame defined by the solution d" = 0 of the section
condition when n, = 0 reflecting the translational invariance along %.,, the boundary

term in (4.3.4) can be written in the following way
2 jq{ a4 <e—2dHABNB> 2 % dS K. (4.3.5)
0 1o}

Here K = g™V ,ny, is the extrinsic curvature of the boundary,V, is the ordinary covari-
ant derivative with Levi-Civita connection and dS = \/—gd? 'z is the area element of

the boundary.

The boundary term can be rewritten in the very same form in any T-duality frame
using the semi-covariant formalism developed in [40, 117, 118]. The semi-covariant

derivative is defined as

N

VeTa . Ay = 00Tay a5 Ay —wrTPpcTa a5 ay + > _Toa,"Tay a4 Bai. Ay
i=1
(4.3.6)

where the weight wp is non-zero only for the dilaton d, that is by definition covari-
antly constant Vod = 0. Using these definitions, the boundary term readily takes the

following form

2 ?{ N (e_QdHABNB> ¥ =2 f{ dx e 2K, (4.3.7)
0 1o}

where K = HABK 45 and Kap = V4Ng. The quantity I can be identified with the
extrinsic curvature of the generalised boundary. Although, the form of the boundary

term looks very familiar it is not clear how the generalised area element d¥ is defined.

4.4 Topology of extended space
The form (4.3.4) of the boundary term does not manifestly specify the boundary

0. To understand its geometry it is convenient to focus only on terms that can be

represented as an integral of a full derivative
Sfuil = SGrana + 2 ?{ 45 0 ;NyH B2 42 / V—gd xdYd; (837-[‘436’%) . (44.1)
7] M
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As was mentioned in the previous sections in the DFT formalism the space M can
be represented as the flat manifold R (parametrized by z*) times the doubled torus
T? x T¢ parametrized by Y. Terms that involve boundaries in flat directions have the

following form
/8MNVQ‘LWdU+ /dY/\/—gd"xaa (8590‘[367%) , (4.4.2)
0

where small Greek indices run from 1 to n labelling the flat space coordinates, the area
element has the transparent meaning do = v/—hd" 'z and h is an induced metric on

the boundary.

We choose the coordinates x* to label the space R" that do not have any boundary
or non-trivial topology. Then all terms that have derivatives with respect to z* become
zero. The second term in (4.4.2) is zero according to the Poincaré lemma since it is
a full derivative. The first term would not appear in our consideration from the very
beginning since there is no boundary and the normal cannot be defined. Alternatively,

one can cut the space R” introducing two boundaries 0; and 0y by hand. This results

Rn
02

o1

Figure 4.1: Contributions from the boundaries 9; and 0 in R™ cancel each other

in two terms each involving an integral over the corresponding boundary. Since all
fields are well defined when crossing this kind of boundaries in the flat directions, these

contributions cancel each other:

/(%N,,g’“‘”da = aulel)g’“’dU + G“Ny)g“”dcr
0 o 0 (4.4.3)

= / 9, N g do — / 8, NV g do = 0.
81 82

In the second line it was used that the boundaries J; and 0y are virtually the same

surface with the normal N ](\}) =—-N ](\3).

The same reasoning does not work for the doubled torus T x T? in the presence
of fluxes, both geometric or non-geometric. In this case the doubled torus becomes a
fibration with non-trivial monodromy properties that result in a non-zero contribution.
Before we proceed in this direction it is suggestive to consider the classical monopole

solution, which demonstrates the similar behaviour [119].
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The monopole appears as a topologically non-trivial configuration of a gauge field
given by a 1-form A. The flux of the corresponding field strength through a 2-sphere is
then defined as

/ F= / dA= | dAy+ [ dAs. (4.4.4)
S2? s2? Un Us

Here the sphere is split into two charts each carrying gauge potentials Ay and Ag
related by a gauge transformation Ay = Ag 4+ dA. Using Stoke’s theorem each term

SQ UN AN

— st AeU(1)

l Us Ag

Figure 4.2: Gauge field A is not defined globally on the sphere S?. Two patches Uy
and Ug carry the potentials Ay and Ag related by a gauge transformation.

can be written as integration over boundaries of Uy g that are virtually the same with

the curve with topology of a circle S

/ dAN + dAg = / d\ = dA. (4.4.5)
UN US aUN Sl

The situation here is in certain sense similar to what we have had before. Naively, one
could say that this integral should be zero since there is no boundary. However, the
gauge parameter A is an element of U(1) and thus has non-trivial monodromy when

going around the circle. It acquires a shift when going around the circle.

Explicitly, one can cut the circle, introducing a coordinate 6 that runs from 0 to 2.

Then the integral becomes

0=27
—A27) —A0) ~neZ (4.4.6)
0=0

/Sl dX = /027r d0 OpA(0) = A(0)

providing quantization of monopole charge.

Going back to the boundary term in (4.3.4) consider only terms that involve deriva-

tives along YM

/ V—gd'z / dYd, (e’QdagHAB). (4.4.7)

The internal torus T can be represented as a torus fibration over a circle S! with a

fibre T?~!. For backgrounds with non-zero geometric f-flux or non-geometric fluxes one
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acquires a non-zero holonomy around the circle 8 — 6+ 27. Fibres at § = 0 and 0 = 27
are glued by a T-duality transformation that in general mixes metric and gauge fields,
hence the name of non-geometric background. An example of such a situation is the
twisted torus that describes a background with f-flux [52].

Figure 4.3: The boundaries T% ! x T¢ and T¢ x ’]~I‘d_1~are obtained by cutting the base
S! of the corresponding torus fibrations T¢~! x St x T¢ and T¢ x T4~ x S!.

We conjecture that the same is true for the dual torus meaning there is a non-trivial
monodromy around the circle St parametrised by the dual coordinate 6. Taking this

into account the expression above can be written as follows

0=2m
/\/—gdnm/ N, (e_2d837-[“3) +
Ty~ xTd =0
B =2
+ / V—gd"z / N¢ (e*QdaB’HaB) (4.4.8)
'Jl‘d><’l~1‘g*1 G—=0

Where we integrated out the cycle S' in the first term and the dual cycle S' in the
second term. The normal N and the dual normal N, here have only components in

the directions # and 6 respectively.

The full action (4.3.4) is then written as a sum Spy;; = Sg + Sp where the boundary

term has the following form

0=2m

+
0=0

=2x

Sp = /\/—gd":r/ Op (Nae_zd”H“B>
'Jl‘glflx~

Td

(4.4.9)

6=0

+ / \/—gd"x/ OB (N“edeHaB>
Td x’ﬁgfl
It is important to mention that Sp is T-duality invariant since the second term is exactly

T-dual of the first term. As in the case of monopole discussed above, this expression

is non-zero in general, depending on monodromy properties of the background. In this

84



sense it is analogous to the term

/ dX # 0. (4.4.10)
Sl

In the next section we show that the boundary term involves fluxes and thus probes

global properties of the boundary, exactly as the gauge parameter \.

4.5 Duality invariant formulation of fluxes

Dimensional reductions of effective theories that appear as low-energy limits of string
theory are characterised by certain charges H, f, @ and R, also known as fluxes. The
geometric flux Hg. is related to the 2-form Kalb-Ramond field B = B,,,,,dy™ A dy™ as
H = dB. A T-duality transformation along one of cycles of the internal torus turns the
geometric H-flux into the geometric f-flux. Under this transformations the becomes

twisted, with torsion defined by
a Loa b, e
de® = _if 5e€ N e, (4.5.1)

where barred indices are used for flat directions and €% = ¢%dz® is a 1-form that defines
vielbein. This equation can be written in an equivalent form by making use of the Lie
bracket of two vector fields

lea, €3] = f5z€a- (4.5.2)

Here the inverse vielbein is a vector field ez = €2 9, and f%57 = 2efelfm(9be%].

Further T-duality transformations along the remaining two 1-cycles of the 3-torus
lead to the non-geometric fluxes @ and R respectively [52]. Hence, one may think of the

geometric f-flux as of structure constants defined by the algebra of vector fields (4.5.2).

It was suggested in [16] to generalise the construction (4.5.2) to the case of Double
Field Theory using the C-bracket (1.4.22) that is a natural multiplication of generalised
vectors in Double Field Theory

[Ex, Egle = F€pcEq, (4.5.3)

where the barred indices denote flat directions and Eg is a generalised vielbein defined
as
HMY = pM pN MY, (4.5.4)

The diagonal form of the flat generalised metric H 55 = diag[hg;, haé] corresponds to
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two natural gauge choices for the generalised vielbein

[ em 0 [ e 0
EA% - ) EJI\{;[ = )
_elank ez _e’ank eg
- _ - _ (4.5.5)
el eiﬁmn et ezﬁm”
EY = M
| 0 el | 0 e

Although usually the 2-vector ™" is considered a sign of non-geometry it is not the
only source of the non-geometric Q and R fluxes. As it will be shown further, the
dual space parametrised by the coordinates g; itself generates non-geometric fluxes. In
other words, even if ™" = 0 the flux Q%; is non-zero and is written in terms of dual
derivatives 0™ of the fields.

One can think of the generalised vielbein as Scherk-Schwarz twist matrices [103]
and the structure constants F4 B¢ are thus gaugings of the corresponding supergravity
[120]. Recall the explicit expression for gaugings (4.2.7) written now in term of the

generalised vielbein

FApe = 2B BlLoNEY — EfyY MY 0N B[S B, (4.5.6)
The components of the generalised flux FEB in the hatted frame when the generalised

vielbein is chosen to be E% have the following form

Forn = % + ZBbkefefmébeTm + efeﬁ—zei—lé’"Bkl = Fn,

b k k ! b _
emenaHprk — 36[56%%]36198 B, = Hamn,

3
ol 3 o (4.5.7)
F n = 28}7 €q 8p€ﬁ = Q ny
0

where %55 = Qefefm(‘)be%

include the factor 1/n!.

P Hprr = OB,y and all antisymmetrisations of n indices

The generalised vielbein (4.5.5) can be written in compact notations by making use

of the natural basis on the generalised tangent space {0, 5“}

E% = F%9, + 9% = €20 = €7,
Ea = Egaa + Eaaéa = egaa + CgBabéa = €g — Z'efB,

a

(4.5.8)

where ixw denotes the intrinsic multiplication of a vector X and a form w. Written
in this notation the expression (4.5.3) defines the fluxes F, H and Q that contain
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the ordinary fluxes f, H and ) and terms with derivatives with respect to the dual

coordinates Z;:

~

[EEH EE] = ]:E&I_JEE + /HaEEEEv
(B9, By) = F5,E° + Q%% B, (4.5.9)
[Ea7 EB] _ QaBEEa_

It is useful to show the derivation of these expressions explicitly on an example. Consider

the bracket [Eg, Ej] that can be written in the natural basis as

[Ea, E;] = [Ea, E5|"04 + [Ea, Epla0°. (4.5.10)
Taking into account (4.5.3) this generalised vector reads

[Eﬁ7 EB] = FEaBEgaa + FaagEgaéa + FE&BEséa
= Foy (B20u + Bead”) + Frg 50" (4.5.11)
= FEL—LBEA'E + F(—:aBEE.

In the tilde gauge where the Kalb-Ramond field is zero By, = 0 but the two-vector
B™" is non-zero the situation is very similar. The components of the generalised flux

then have the following form

Flan = [“mn = Fma,
oy = QGL“eZmaqe% + ZGLGe%]abe%Bbm — e?e%e%@bﬁrm = Q"

pamn _ —36?62625[(157’1”] + 3e?em€ﬁﬁbmabﬁrn = Ramn’

m-n
Famn = 0.

Then the corresponding commutation relations involving the components of the gener-

alised vielbein in the tilde gauge read

[Eﬁ’EZ_;] = ‘FE&EEE’
[Ea, EB] = ]'-dBEEE + Q(‘:&BE&’ (4.5.13)

[E&,EB] _ QaISEEE + RaBEEE.

The above expressions show that the natural frames correspond to backgrounds with
various fluxes. It is worth mentioning that the bivector ™" is not the only sign of non-
geometry as the fluxes Q and R are non-zero even for vanishing 5. Dependence of the

background on the dual coordinates itself leads to non-zero non-geometric fluxes.
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4.5.1 Monodromy and fluxes

In the vielbein formalism the action S¢g is written totally in terms of the gaugings
Fipe and Fi. The latter is defined as [103]

fi=ePou (Eﬂ{ e—”) , (4.5.14)

where the invariant dilaton d(x,Y) = d(x) + A(Y) was split according to Scherk-Schwarz
reduction. The full action with the extra term (4.4.9) then takes the following form

Srui = Sa + Q/V—gd”xeﬂ/ e PHABN 5 15, (4.5.15)
9

The gaugings f; written in the geometric and non-geometric frames introduced in the

previous section have the following form

_amegl o 262”8””)\ + 5m(€gan) - 2€§Bmk(§m)\
A= ) ~ |
8me‘§n — 26213"1)\
: (4.5.16)
Omelt — 2eT 0\
A= ) N
| O (€5,8™™) — 268D A + O™ eft, — 2€8,0™ A

The 2-form field B,,, contributes to the 3-form flux H = dB that is geometric, the
vielbein eZ" is a source of the geometric flux f%, = e%(ef@ke?—elgakegl). It is important
to mention that although the gaugings (fluxes) F 5~ do not depend on internal doubled

coordinates, they may depend on z*.

It appears that all terms in the boundary term in both gauges can be written as
traces of the components of the generalised flux. In the hat-gauge the boundary term

reads
HAPNg 3= g (Ome’ = 2670 A) + D™ (5™ (¢} Bun) — 263 Bund™A) +
+ hgpn® (5”621 - 26%57")\)
= hna o + hsin® Q% — 2 (nm o + (i — ntmn)5”¢>

= hnaFC g + hygit® Q% — 2HMN Ny .

a
(4.5.17)
Here the dilaton that depends only on the internal coordinates, is denoted ¢ = ¢(Y)
and the generalised metric and normal in the last term of the last line are written in

the hat gauge.
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In the non-geometric frame it takes the following form

HABNE f1 = h®ng (Onel — 2em0,,)) +
g™ (7€, = 265,0X) + hagit® (Om(€h,8™) = 2648700 ) +
= W F g+ hgn® Qe = 2 (0" = 50 + a0
= W FC oy + g @ — 2HMN Nysoyr
(4.5.18)
Hence, the boundary term can be represented completely in terms of the components
of the generalised flux, which are identified with geometric and non-geometric fluxes.
Moreover, the boundary term expressed in terms of traces of fluxes does not depend on

the gauge chosen

_ =27
Sp = 2/\/—gd”xe_2d/ e_QAna]:E@a(G) +
Tgfled 0=0
_ . =2
+2 \/ng"xem/ e g Q%(0) + (4.5.19)
deTg_l =0

+ 2/\/—gd”x6_2d V9 04 (HAB836_2¢>

TdxTd
where the prefactor e=2* provides the correct integration measure and explicit form
of fluxes depends on the gauge chosen. Each term here is not a T-duality invariant
expression, however the whole action is since it came from a T-duality invariant expres-
sion (4.4.9). It is important to emphasize that although consistent f and Q fluxes in
supergravity applications are traceless, this is not true for the case of DFT since there

is dependence on dual coordinates.

In general, one is free to choose any gauge at the points § = 27 and 6 = 0 with the
only condition that they should be related by an O(d,d) monodromy. For applications

it is suggestive to fix the following set up

0 = 27 : hat gauge (geometric),
gauge (g ) (4.5.20)
0 =0: tilde gauge (non-geometric).

Substituting the explicit form of fluxes (4.5.17) and (4.5.18) into the boundary term Sp
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we obtain an inspiring expression

SB =2v [/d L ~dnannaane_2>\ +/ 7~7’bfbmnﬂmne_Q)\ +
T 1%

d . md—1
T ><’]I'§

/ ~ ntmnanQZ)\_/ ] ﬁmﬁmnanefQ)\ ,
T¢ * xTd TaxTd

where we define v = [/ —gd”xe_Q‘i It is important that now the normal and the fluxes

(4.5.21)
+ 2v

are with curved indices without bars. Since no traces of fluxes enter this expression it
is straightforward to impose the section condition and evaluate the boundary term for

known backgrounds.

4.6 5H3-brane primer

For a 52 exotic brane with the metric (4.1.6) we solve the section condition (1.5.14)
by dropping dependence on all dual coordinate. The doubled coordinates are taken to
parametrise the 2-torus (special cycles) and the cycle § while the external coordinates

zH parametrize the transverse space

y* = (0,2%,2%),

0 3.4 .5 6.7
at = (% rx’ 2t 2 a” ).

(4.6.1)

This means that the torus ']I'gf1 is taken to be d — 1 = 2 dimensional spanned by the

coordinates 2% and z°.

The normal is directed along the 6 coordinate n® = (ne,O, ...,0) with the only
non-zero component n? = 1. This results in the following expression for the boundary

term

27 o2

_ —Q/Hd”x _

S =2 [ V—gd"zQ%*yB
b / ga"=Q 0 Beo H? + (2m0)?

2
= _ZVOZ/TdTH(T

Where Vol = [ dz™ ! is the volume of the space R8314567' One may think of the boundary

0=2m
TH(r)o?
)2 + (270)?

(4.6.2)

term (4.5.21) as a magnetic coupling of branes whose background carries a non-zero

monodromy.

To analyse behaviour of the action Sp when the flux ¢ is changed, lets start with
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the integral in the expression above

21 H (r)o? A 1—olog%
/rdr rH(r)o :/ rdr 78 % =
H(r)2 + (270)?2 0 (1—olog §)2 + 4n20?
A% [t o~ —loga
a? Jo (0=t —loga)? + 4n?’

(4.6.3)

where the cut-off 0 < r < A was used and the new variable a = r/A was introduced.

Hence, one can make a substitution |c~!| = log 3 to obtain the following expression

1 o0 d 1 o0 d d
22/ S Y=o 2/ ( e ) e (4.6.4)
B20% Jiogp y* + 4w 28202 Jiogp \Y + 27w  y —2mi

where the new variable ¢ = a/f was introduce and i is the imaginary unit. If one

recalls the definition of exponential integral function

0 dt
Ei(z) = —/ 76—'5, (4.6.5)
the action Sp can be written in the following form
2 20| | .2 . .2
SB =A“Vole Ei( 471 — W + Ei | —4ni — ﬂ . (466)
o o

Although the arguments of the exponential integral functions in the action are complex,

this particular combination is real and always negative. As expected for a co-dimension

Sp

o]

0.5 1 L5 2 25

Figure 4.4: Boundary action is always negative and vanishes for configurations with
large flux o and with zero flux.

2 object, the action is quadratically divergent if A — oo. The contribution of the
topological term for configurations with zero flux is zero. The minimum of the action

is realised by certain configurations of the special torus with flux o close to |o| = 1.
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CHAPTER 5
APPENDIX

This Appendix consists mainly of calculations, that are necessary but too detailed
to be presented in the main sections. In addition some interesting results, that do not

fit organically to the main narrative thread, are collected here.

5.1 SO(5,5) gaugings

While the trombone is obtained in a straightforward way from the gauge group
generators X ;v one has to do some algebra to get the remained gauging #**. This
section is to show how this gauging can be obtained by suitable projections of the gauge

group generators.

The gauge group generators X sy evaluated in the representation Ry have the

form
16
XMNK = @%(ta)NK + (5(ta)MP(ta)NK + 6]{25%) Op, (5'1‘1)

where t, are the generators of the global duality group and are given by (I';;) ~E. The
embedding tensor reads
0,4 = —orlirdl, . (5.1.2)

Thus the gaugings can be explicitly separated out by the following contractions

. . e 144
XN (1)  NTIME = 128971 — ?F’RSGS. (5.1.3)

By making use of the first line of the definitions (2.5.33) one can show that the generators
(2.3.3) contracted in the same way give exactly (5.1.3) with gaugings defined as (2.4.22).
Indeed, lets rewrite the generators X, y* using the second line of (1.5.16)

1 . 1
Xun™ = fun®™ + g(Fij)NK(T”)CBfBMC + Z5zl§fBMB- (5.1.4)
Contracting with the generator and the gamma matrix as in (5.1.3) we obtain

Xan S (D) NTIMR = (fyn® = d g ™)(D) VDIV (5.1.5)
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To show that this is exactly (5.1.3) one needs to do some simple algebra and use the

following identities

ezM — _1F]MDijz _ EFZMNQN;

1 A -1
R_ 1p. QRy i BsR
AP —LipQlY™" fa < faB70p,
! 4 e Tag 4f F (5.1.6)

. . 8 1
fAjZFiABU]k — 49kB + 5FkBCGC + ZFkABfARR,

YA fa® = =3fac® — 2fxa™ 65 — 86504.

Here the first line is just a rewriting of (2.4.22), the second line is a consequence of
the definition (2.5.33) and the last line here. Finally, the third and the last lines are

obtained directly by making use of properties of twist matrices.

5.2 Effective potential for SO(5,5) case

Since the generalised metric My, is a coset representative we identify it with the

unimodular matrix of [99] that has the same meaning and is defined as
Mty = Var Vi a0, 5. (5.2.1)

where Qa3 and €2 5 are the symplectic invariants of Spin(4) corresponding to each
SO(5) in the coset. These matrices are antisymmetric Q2,5 = —€g, and are used to raise

and lower spinor indices QQBQB“ = d,*. The matrices V]\‘}d‘ are coset representatives of

SO(5,5)
SO(5) x SO(5)”

(5.2.2)

Recall the effective potential (2.5.39) that comes from Scherk-Schwarz reduction of

M-theory in the extended space formalism

1

oy X MR Xng " MYN M M (5.2.3)

1
Ve = *gXMKLXNLKMMN +

To show that this expression exactly reproduces the scalar potential of D = 6 gauged

supergravity one needs the following relation
TiapV 5% = VE(y4),BVe? — Vi(y4), Vi, (5.2.4)

that follows from the invariance of the SO(5,5) gamma-matrices [99].

Consider the first term of the potential since it is easier to proceed. The calculations

for the second term are longer but the idea is the same. In the absence of the trombone
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gauging the structure constants read
Xun® = —6L1r9, (Ty)NE. (5.2.5)

Taking into account the quadratic constraint 09Ny, ; = 0, where 7;; is 10-dimensional

flat metric and simple gamma-matrix algebra, one can write

]_ .
Vi = o XX S MY = —20" 05 Tip N Tpa s MM (5.2.6)

The next step is to substitute the explicit expression of the generalised metric My in

terms of the coset representatives (5.2.1) and use the identity (5.2.4). This gives

Vi = =20"46" (VE(3), VA = Vi) 0 V") x
o (5.2.7)
(Vzli(’yb)uﬁ Vi =)’ ny) Qapysp-

Using the definition of the T-tensor (2.2.19) this expression can be written only in terms
of (T%) 44 and (T%) 44

Vi =2(T%)0a (T (4%), ()" = 2(T%)0a (T (7)1 (70) o —

(5.28)
2T (TP (1), (e + 2T (TH) (1) (1),

where one should note that the matrices v and fyé are antisymmetric. Reversing the

order of the gamma matrices in the first and the last terms one obtains

Vi =4(T")aa(T")*" — AToa T + 4(T) e (T*)**
1 (5.2.9)
=8Tr [T“T“ - 2TT] :

where the identities in the last line of (2.2.19) and (2.2.21) were used and the tilde
denotes transposition that implies Tr [TT] =TT,

The same but longer calculation shows that the second term in the potential V5

gives the same expression up to prefactor
1.
Vo = =2Tr |TT* — iTT . (5.2.10)
Together V7 and V5 result in

a1 -
Verr=6Tr [T“T“ - QTT] = 6Vscalar- (5.2.11)
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5.3 Invariance of the action

In this section we show the details of the proof that the actions (2.5.39) and (2.5.50)
are invariant under the gauge transformations (2.3.7). In the dynamical picture of the
extended geometry the action is invariant due to the section condition. In the Scherk-
Schwarz reduction of the theory the invariance of the action is assured by the quadratic
constraint (2.3.10).

The terms that contribute to the effective potentials in d = 5,6
X" Xy MY,
Xur"™ Xns " MMN MBS My, (5.3.1)
XRMKXNSLMMNMRSMKL
are invariant separately. Let us start with the first term whose transformation gives
o (X" Xnp X MMYY = 2 X e " Xy K X peM SR MY =
= —2[Xp, Xs]k " XN ESEMIN = —ATY[Xp, Xg, Xn]SEMSIN = (5.3.2)
= —2Xgn " Tr[Xg, Xp|SBMON = —2X (g5) X p9 X "SR MY =0,
where we used the closure constraint (2.3.10) in the first line and cyclic symmetry of the
trace in the second line. The last step here exploits the condition X4 B)CXC Kt =0.
For the transformation of the second term we have
O (Xnrr™ Xnst MMN MBS Micr) = 2X 0 p™ Xnst XpoM 2P MON MBS Miep +
+2X 0" X" XpoM S MMN M@ My, — 2X 0 p" Xng XpreOSP MMN MRS MOF.
(5.3.3)
After relabelling the indices the last two terms can be recast in the following form
(Xmr® Xpo™ — X Xpr™) XS MMN M@ My, =
= (XpXn — XuXp)o NS MMN MO My = (5.3.4)
= —Xpu Xp" S MMV MO M.
This is exactly the first term in (5.3.3) but with the opposite sign. Thus the second term

in (5.3.1) is invariant under the gauge transformations. The proof of the invariance of

the third term is exactly the same.
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