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Abstract—Ultra-reliable and low-latency communications
(URLLC), as one of the major communication services of
the fifth-generation (5G) and the sixth-generation (6G) cellular
networks, is critical to supporting a variety of emerging mission-
critical applications. However, the modern mobile networks could
not satisfy the latency and reliability requirements as well as
other Quality of Service (QoS) requirements, including spectrum
efficiency, energy efficiency, capacity, jitter, round-trip delay, net-
work coverage, and so on. To fulfill diverse QoS requirements for
various URLLC applications, machine learning (ML) solutions
are promising for future 6G networks. In this paper, we first
categorize the 6G URLLC vision into three connectivity charac-
teristics, including ubiquitous connectivity, deep connectivity, and
holographic connectivity, with their corresponding unique QoS
requirements. We then identify potential challenges in meeting
these connectivity requirements, and investigate promising ML
solutions to achieve the intelligent connectivity for the 6G URLLC
service. We further discuss how to implement the ML algo-
rithms to guarantee the QoS requirements for different URLLC
scenarios, including mobility URLLC, massive URLLC, and
broadband URLLC. Finally, we present a case study of downlink
URLLC channel access problems, solved by centralized deep
reinforcement learning (CDRL) and federated DRL (FDRL),
respectively, which validates the effectiveness of machine learning
for URLLC services.

I. INTRODUCTION

Global telecommunications is ongoing an extraordinary

transformation. The evolving network is expected to provide

connectivity with extremely high speed, large-scale, tremen-

dous capacity, low latency, low power consumption, and high

reliability. Despite the deployment of the fifth-generation (5G)

networks is presently well underway in many countries, 5G is

unable to fully realize the vision of the Internet of Everything

(IoE), due to the limited standardization time and the maturity

of relevant technique development [1]. Current networks can

only support the connectivity of the macro physical world

with a limited spatial reach of thousands of meters above the

land surface, which still has many shortcomings in the depth

and breadth of information exchange [2]. The swift growth of

human activities scope and the swift advancement of technical

fields has increased the demand for more diverse and extensive

information interaction, which motivates the research of the
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sixth-generation (6G) mobile cellular communication systems

[2]. The vision of 6G is to largely enhance and extend the

existing 5G three main services, including enhanced ultra-

reliable and low latency communications (eURLLC), ultra-

massive machine type communications (umMTC), and further-

enhanced mobile broadband (feMBB) [3] [4].

The 6G mobile networks are expected to support an un-

precedented proliferation of new IoE applications, including

extended reality (XR) (including augmented, mixed, and vir-

tual reality (AR/MR/VR)), tactile internet (TI), unmanned

aerial vehicles (UAVs), brain-computer interfaces (BCI), and

so on, that further exacerbate challenges for eURLLC services.

These emerging applications not only substantially tougher

reliability and latency criteria than those established set in

5G URLLC, but also impose massive connections and high

data rate requirements. That is to say, the 6G eURLLC

will conflate with both mMTC and eMBB, which disrupts

the original 5G goal of offering straightforward short-packet,

sensing-based classical URLLC services [3]. In a word, the 6G

eURLLC is expected to support extremely reliable low latency

communications (ERLLC), mobile broadband reliable low

latency communications (MBRLLC), and massive-URLLC

(mURLLC) services [4].

To satisfy diverse requirements for these various eURLLC

applications, the 6G networks not only require new communi-

cation techniques like holography technology, haptic commu-

nications, Internet of Nano-Things (IoNT), Internet of BioNan-

oThings (IoBNT), space-air-ground integrated network (SA-

GIN), etc., but also require machine learning (ML) techniques

[5]. Several existing works have focused on specific machine

learning solutions, such as deep reinforcement learning (DRL)

[6], federated learning (FL) [7], and transfer learning (TL) [8],

for general wireless networks, and deep learning (DL) [9] for

URLLC services. Yet, a comprehensive study on the vision of

6G eURLLC scenarios as well as their unique characteristics,

and corresponding machine learning solutions has never been

exploited.

The main contributions of this paper are: 1) we first cate-

gorize the 6G eURLLC vision into three connectivity charac-

teristics, including ubiquitous connectivity, deep connectivity,

and holographic connectivity, with their corresponding unique

Quality of Service (QoS) requirements in Section II; 2) we

then identify potential problems and challenges in meeting

these connectivity requirements, and exploit promising ML

techniques to design a multi-layer intelligent system to achieve

the intelligent connectivity vision in Section III; 3) we fur-

ther present how to implement different ML algorithms to
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Fig. 1: Connectivity Vision and Application Scenarios for 6G eURLLC

guarantee the QoS requirements for different eURLLC ap-

plications, including mobility URLLC, massive URLLC, and

broadband URLLC in Section IV; 4) in order to demonstrate

the effectiveness of ML for 6G eURLLC service, we present

a case study of channel access optimization problems for

downlink URLLC, specifically based on the centralized deep

reinforcement learning (CDRL) and federated DRL (FDRL)

algorithms, respectively, in Section V. Finally, we conclude

the paper in Section VI.

II. CONNECTIVITY VISION AND APPLICATION SCENARIOS

FOR 6G EURLLC

As illustrated in Fig. 1, the 6G eURLLC is expected to

support emerging types of connectivity, including (i) ubiqui-

tous connectivity, (ii) deep connectivity, and (iii) holographic

connectivity. In this section, we will first characterize the

vision of these three connectivity types and then describe the

corresponding application scenarios for 6G eURLLC as well

as their QoS requirements as shown in Table I.

A. 6G eURLLC Connectivity Vision

1) Ubiquitous Connectivity: The first trend of the 6G

connectivity is the breadth expansion of the distribution areas

of the connected things in the physical world, expanding

from a limited space range of thousands of meters above the

land surface to three-dimensional coverage and connection

of all types of things in terrain and space. With the rapid

development of science and technology in the fields of deep-

sea exploration and astronautics, the human activity range is

expanding quickly, which will greatly expand the geographic

range of 6G networks. Thus, the 6G networks are expected

to provide a broader connection anytime and anywhere, with

the aim to achieve real ‘ubiquitous connectivity’ [10]. One

scenario is that in an emergency, moving devices (e.g., UAVs

and airplanes) in SAGIN can be exploited to deliver light

healthcare supplies (e.g., medicines and surgical instruments)

among hospitals or remote locations (e.g., rural, ocean, desert,

islands, and mountain areas). This will reduce data interchange

latency by assisting in the prevention of traffic congestion.

2) Deep Connectivity: The second trend of 6G connectivity

is the depth expansion of the connected things, from traditional

domains in the macro physical world to the complex sensing

environment in the biological world. With the development

of 6G technology and other interdisciplinary disciplines like

materials science, bio-science, and bio-electronics medicine,

it is expected to realize smart miniaturization, noninvasive

biomedical measurements, and wearable in-body and on-

body sensing with emerging IoBNT devices. These emerging

applications could collect and sense signals from the biological

environment and send them to data centers for processing

through the internet. Thus, the 6G networks need to support a

‘deep connectivity’ vision [10]. One scenario involves IoBNT

devices (e.g., implants, and on-body nano-devices), which are

able to transmit data with extremely high reliability and low

latency to the medical staff at hospitals by edge devices or

cloud centers for medical analysis.

3) Holographic Connectivity: The third trend of 6G con-

nectivity is the digitization of the physical world (e,g., cars,

drones, transportation, factories, mobile devices, homes, cities)

and the biological world (e.g., brains, organs, DNA, proteins,

cells, molecules), i.e., from macro, micro to virtual, as the

‘digital twin’ [4]. The evolution of VR, AR, and MR technolo-
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TABLE I: QoS Requirements of Different Use Cases for 6G eURLLC

Scenarios Use cases Qos Requirements

Healthcare IoT
Remote health monitoring Reliability: 1− 10−5, Latency: 1ms, Connectivity: 107 Devices/Km2

Telesurgery Reliability: 1− 10−9, Latency: 0.1ms, Data rate: 100–1000 Gb/s

Industrial IoT
Servo motors Reliability: 1− 10−7, Latency: 0.1ms, Jitter: 1μs

Motion control Reliability: 1− 10−6, Latency: 1μs, Jitter: 1μs

Automotive IoT
Delivery drones Reliability: 1− 10−6, Latency: 1ms, Mobility: >240km/h

V2X Reliability: 1− 10−9, Latency: 0.1ms, Mobility: >1000km/h

gies towards XR in 6G communications is accelerated by the

rapid development of new display and imaging technologies.

This means that 6G networks will enable deep interactions for

everything, and even merge several human senses (e.g., taste,

smell, touch, sight, and hearing) to support a totally immersive

experience at any time and place. Thus, the 6G networks are

expected to support high fidelity XR and holographic commu-

nication with the aim to realize the ‘holographic connectivity’

vision [10]. One scenario is that surgeons could remotely

oversee and control the surgery procedure via real-time video

streaming with high resolution over holographic internet for

accurate diagnosis, with the help of the medical devices or

assistant robotics interconnected at high speed, low jitter, and

low round-trip time (RTT).

B. 6G eURLLC Application Scenarios and QoS Requirements

According to the vision in Fig. 1, we present the corre-

sponding Internet of Things (IoT) use cases for 6G eURLLC

application scenarios and detailed their QoS requirements.
1) Healthcare IoT: 6G eURLLC could support healthcare

applications since continuous low-latency and high-reliability

communications are essential for services related to remote

health and disaster response. For instance, in order to accom-

plish a quick and reliable remote diagnosis to provide real-time

healthcare, the remote health monitoring applications require

high reliability ( 1−10−5) and low latency (< 1ms) [11]. The

telesurgery applications require continuous connectivity with

ultra-reliability (1−10−9) and ultra-low latency (sub-ms), due

to a small latency and poor connectivity will cause severe fatal

consequences in case of emergencies.
2) Industrial IoT: 6G eURLLC could further promote the

manufacturing revolution (e.g., Industry 5.0), where most

industrial applications rely on frequently updated control loops

in an extremely reliable environment as well as low latency.

In order to accommodate these high-frequency updates (e.g.,

100 times per second updating of servo motor’s closed control

loop), extreme reliability (1 − 10−7) and sub-millisecond

latency (< 0.1ms) are needed. The motion control applications

(e.g., machine tools or packaging machines) in the industrial

automation field, require reliability (1− 10−6) and microsec-

ond level (ideally 1μs) end-to-end latency (across the radio

access, core, and transport networks) [12]. Low jitter is another

crucial factor for such low latency industrial applications. In

order to control industrial actuators, a jitter delay of 1μs is

required to achieve real-time communications.

3) Automotive IoT: 6G eURLLC could transform the entire

transportation ecosystem by supporting vehicle-to-everything

(V2X) communication, which will contribute to autonomous

vehicles in the future. The V2X communications will have

far-reaching effects on vehicle-to-vehicle (V2V), vehicle-to-

pedestrian (V2P), vehicle-to-infrastructure (V2I), and vehicle-

to-cloud (V2C) by providing low latency, high reliability, and

high throughput communications. In V2X communications,

each communication channel requires extreme network pa-

rameters. Extremely low latency (1ms) and high reliability

(1 − 10−9) [12] are needed for connectivity among medical

facilities delivery drones and connectivity among the roadside

infrastructures.

III. CHALLENGES AND MACHINE LEARNING SOLUTIONS

The 6G networks are envisioned to be large-scale, multi-

layered, ultra-dense, high dimensional, dynamic, and hetero-

geneous. These characteristics pose great challenges to 6G

eURLLC services: 1) the massive amounts of highly heteroge-

neous data collected from 6G mobile networks makes it hard to

extract meaningful and useful information for further network

optimization and eURLLC performance improvement; 2) the

complicated time-variant hybrid communication environment

makes it hard to achieve the automated operation of 6G

eURLLC applications via conventional network optimization

techniques; and 3) the formulated eURLLC optimization prob-

lems usually require trade-offs among multiple objectives (e.g.,

latency, reliability, mobility, capacity, and data rate) in order

to achieve a suitable solution, which is hard to handle using

conventional mathematical techniques.

These challenges make it vital to explore emerging adaptive

and flexible techniques to achieve intelligent 6G eURLLC

communications with ultra-reliability, ultra-low latency, ultra-

massive access, and ultra-broadband. In recent years, as a

key paradigm, artificial intelligence (AI) could support coordi-

nating communication and information systems from bottom

to top. In order to overcome the aforementioned challenges,

ML approaches, as a significant branch of AI, are able to

establish an intelligent system operating in complicated en-

vironments, thanks to their tremendous learning, optimizing,

and intelligent recognition capabilities. The intelligent system
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TABLE II: Challenges and Machine Learning Solutions for 6G eURLLC

ML-enabled Intelligent Wireless System for 6G eURLLC Services

Layers Issues Challenges ML Solutions

Intelligent
Perception Layer

Data Gathering Massive Devices
CNN:

improve sensing accuracy and reliability;
SVM&K-means clustering:
achieve real-time sensing.Environment Monitoring Varying Environment

Intelligent
Analytics Layer

Compress and Filter High Dimensiona
PCA, ISOMAP:

compress and filter high-dimensional data;
RBM, DBN, CNN, GNN:

address large-scale heterogeneous data fusion.Knowledge Discovery Heterogeneous

Intelligent
Control Layer

Decision Making Multiple Objectives
Constrained DRL:

latency and reliability requirements formulated as constraints.

Performance Optimization High-quality Requirements

Intelligent
Application Layer

Service Provisioning Resource Utilization

Knowledge-assisted DL:
improve utilization efficiency of manufacturing resources;

FL:
trade-off between learning accuracy, communication latency,

and computation latency.
Performance Evaluation Effectiveness

Implement ML Solutions for Different eURLLC Application Scenarios

Scenarios Challenges ML Solutions

Mobility URLLC: High-speed mobility,
Frequent handovers

Precise Prediction:
knowledge-assisted DL-based predictive algorithms, RNN based
DL predictive algorithms, TL adapted on DNNs, LSTM Method;

Decision Making:
fuzzy Q-learning, DRL-based algorithm.

Massive URLLC:
Simultaneously deliver several critical QoS

requirements, Massive devices lead to network
congestion with degraded QoS performance

Scheduling and Allocation:
DRL approach, distributed multi-agent DRL;

Multiuser Detection:
DNN-aided GF-NOMA system with deep auto-encoder,

DNN-aided message-passing-based block sparse
Bayesian Learning algorithm.

Broadband URLLC: Data rate of up to terabits per second,
Boost the need for spectrum

Channel Modeling and Estimation:
RL-based Bayesian filter for angle-of-arrival
(AoA) estimation in terahertz channels;

Spectrum Sharing:
DRL-based occupied spectrum predict algorithms, FL

approaches improve learning performances

can be applied to intelligently achieve knowledge discov-

ery, complex decision-making, and performance optimization,

to fulfill diverse QoS requirements of emerging eURLLC

applications [13]. This section focuses on the ML-enabled

intelligent wireless system for 6G eURLLC services with

multiple layers: sensing layer, analytics layer, control layer,

and application layer [13], as illustrated in Table II.

A. Intelligent Perception Layer

In the first perception (sensing) layer, a massive number

of devices (e.g., cameras, robots, drones, and vehicles) will

sense and detect data from physical or biological environments

in real-time and then communicate to the Access Point (AP)

[13]. It is noteworthy that highly reliable sensing in real-

time for 6G eURLLC services is important but challenging

for massive connectivity devices to collect data in a con-

tinuously varying environment. In this context, cutting-edge

ML approaches are needed in this layer to achieve intelligent

environmental monitoring, data collection, dynamic spectrum

access and interference management, that have ultra-low la-

tency and ultra-reliability requirements of eURLLC services.

Cooperative sensing based on convolutional neural networks

(CNN) can increase sensing accuracy and reliability with low

complexity. By training low-dimensional input samples, the

support vector machine (SVM) and K-means clustering could

be exploited to do reliable sensing in real time [13].

B. Intelligent Analytics Layer

In the second analytics layer, the AP will process (reduce

and filter), analyze (useful and valuable), compute, and store

a large amount of raw data produced by the massive number

of devices from the first perception layer in the networks

[13]. It is important to discover valuable patterns or rules

during data analytics, known as ‘knowledge’, to provide

useful information for protocol adaptation, architecture slicing,

resource management, and so on for eURLLC services [13].

However, for massive URLLC services, the heterogeneous,

nonlinear, and high dimensional nature of massive acquired
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data poses challenges in processing and analyzing data to

achieve semantic derivation and knowledge discovery. Large-

scale heterogeneous data fusion can be addressed by ML-

based data analysis and mining techniques, such as ad-

vanced neural networks (ANNs) including deep belief network

(DBN), CNN, graph neural network (GNN), and restricted

Boltzmann machine (RBM), to get meaningful information.

The massively gathered high-dimensional data (e.g., channel

information, photos, and videos) could be compressed and

filtered using two additional traditional dimension reduction

algorithms, principal component analysis (PCA) and isometric

mapping (ISOMAP) [13]. As a result, it may be possible

to significantly reduce model complexity, storage space, and

processing latency.

C. Intelligent Control Layer

In the third control layer, the controllers will make decisions

based on the ‘knowledge’ obtained from the lower layers

[13]. Those decisions include power control, spectrum access,

routing management, resource allocation, edge computing,

network association, network slicing, and so on. For various

eURLLC applications with high-quality requirements, specific

efficient decision-making objectives include the appropriate

routing strategy management in dynamic SAGIN for mobility

URLLC service, the flexible spectrum access for massive

URLLC service, and the parameter selection of Terahertz

(THz) transmission for broadband URLLC service. The ML

techniques, instead of traditional algorithms that have heavy

mathematical models, need to be investigated to achieve

parameter optimization based on global objectives (e.g., re-

liability, latency, connectivity, and coverage) for various eU-

RLLC services. The problem is generally multi-objective

optimization due to that in 6G eURLLC applications, multiple

performance metrics need to be jointly optimized. Most of the

existing works solve this problem by maximizing or minimiz-

ing a weighted sum of different performance metrics, where

the weighting coefficients are determined manually. Another

possible solution is constrained DRL, where the latency and

reliability requirements could be formulated as constraints

and other variables including weighting coefficients could be

optimized iteratively with the primal-dual method.

D. Intelligent Application Layer

In the fourth application layer, the primary duty is to deliver

specific vertical eURLLC application services according to

their diverse requirements including latency, reliability, mobil-

ity, coverage, and data rate, as well as evaluate the provisioned

services [13]. These emerging specific vertical eURLLC appli-

cations, including XR for automated industry, UAVs for smart

health, and autonomous vehicles for smart transportation,

etc., introduce diverse tasks with stringent requirements pose

critical challenges to traditional bit-oriented communications.

ML algorithms are required to scale up performance as well

as save energy and resources in order to serve a variety of

smart eURLLC applications. For instance, the knowledge-

assisted DL methods could significantly improve the QoS of

smart factories and the utilization efficiency of resources. As

such, the experts or engineers can transfer their skills remotely

through remote supervision, maintenance, and management

using various types of XR and teleoperation equipment with

super-fast, ultra-low latency, and ultra-reliable connections.

The FL approaches could be designed to balance the trade-

off between learning accuracy, communication latency, and

computation latency for object recognition in autonomous ve-

hicles. Efficient FL approaches could decrease the model size

to satisfy latency constraints via federated dropout, federated

pruning, and model compression, where the loss functions

with latency constraints could be utilized to evaluate the

effectiveness of service.

IV. MACHINE LEARNING IMPLEMENTATION IN DIFFERENT

APPLICATION SCENARIOS

Based on the ML-based intelligent system described in

Section III, we discuss how to implement the ML solutions for

different eURLLC application scenarios, including mobility

URLLC, massive URLLC, and broadband URLLC in this

section, as illustrated in Table II.

A. Mobility URLLC

A large number of high-speed mobility devices (e.g., vehi-

cles, satellites, and UAVs) in 6G SAGIN will contribute to fre-

quent handovers. Efficient mobility and handover management

are two main challenging issues of 6G eURLLC services that

require continuous communication with low latency and high

reliability. ML techniques could be exploited to intelligently

execute mobility prediction and handover optimization for 6G

eURLLC services.

• Precise Prediction: In order to void frequent handovers

or handover failures to reduce latency as well as increase

reliability, the knowledge-assisted DL-based predictive

algorithms could efficiently predict the mobility patterns

of high-speed vehicles or trajectories of UAVs. The DL

predictive algorithms could be based on the recurrent

neural network (RNN) to improve the accuracy of state

estimation. The pre-trained deep neural network (DNNs)

could adopt the transfer learning (TL) algorithms to fine-

tune non-stationary 6G mobile networks for improving

learning efficiency and performance. Another effective

DL technique is the long short-term memory (LSTM)

method, which may be exploited to learn a series of

future time-dependent mobility states and predict future

trajectories in order to optimize handover parameters and

improve mobility URLLC performance.

• Decision Making: In order to avoid frequent handovers

and reduce connectivity failures for URLLC performance

guarantee, the DRL can be exploited to optimize the

handover strategies for high-speed mobility devices in

time-varying environments. In the DRL-based algorithm,

each device can be treated as an agent to observe the envi-

ronment states (e.g., movement velocity, channel quality,

and device location) and then choose the best actions

(e.g., parameters related to mobility or handover ) to

obtain the greatest reward defined by the transmission

latency, reliability, and so on. [13].
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B. Massive URLLC

The massive URLLC must simultaneously deliver several

critical QoS requirements, including high reliability, low la-

tency, and massive connectivity. Such applications include

reliable massive health data delivery in real time to facilitate

remote healthcare as well as reliable massive information

sharing among V2X to enhance road safety and improve

traffic efficiency. However, these massive devices will lead to

network congestion with degraded QoS performance, which

poses a big challenge for 6G eURLLC applications. As a

result of recent developments in ML techniques, it is an

outstanding tool for supporting mURLLC in 6G to provide

excellent solutions for user scheduling, resource allocation,

and user detection [11].

• Scheduling and Allocation: For the grant-free non-

orthogonal multiple access (GF-NOMA) schemes that are

available for 6G massive URLLC, the collision problem

(two or more users choose the same pilot sequence) is

the bottleneck for reliability performance. In GF-NOMA

systems, the DRL approach can be exploited to optimize

pilot sequence selection and scheduling in GF-NOMA

since it does not need tractable mathematical models. The

choice of the pilot sequences should be carried out by

the users in a distributed way because it is impractical

for users to share their information with each other in

reality [14]. As a result, distributed multi-agent DRL is

a promising method to learn about the contention status

(collision or not) at resource blocks and exploit potential

superior resource blocks with fewer collisions to achieve

higher reliability in an uncoordinated manner.

• Multiuser Detection: GF-NOMA schemes for massive

URLLC also pose challenges in terms of user detection

at the receiver. This is owing to the fact that in cases

with massive connectivity, the receiver cannot identify

the user activity because of the significant correlation

between the pilot sequences. Therefore, ML approaches

could be exploited to solve user detection problems in the

scenarios of massive number of devices and strict latency

limitations. The data decoding could be performed by a

deep auto-encoder, and the spreading signature selection

could be optimized by a DNN-aided GF-NOMA system

[14]. The user activity detection as well as channel esti-

mation could be accomplished by DNN-aided message-

passing-based block sparse Bayesian learning methods.

C. Broadband URLLC

The emerging broadband URLLC applications may require

up to terabits per second data rate to make these devices

operate smoothly not only in the uplink but also in the

downlink. Such applications include autonomous vehicles,

which will require a high data rate for reliable data (e.g., high-

definition images and videos). Providing broadband URLLC

with rate and capacity guarantees for such applications boost

the need for spectrum. It is necessary to explore both wider

communication bandwidths (e.g., terahertz channel) and spec-

trum sharing (e.g., unlicensed bands sharing) as well as their

corresponding ML solutions.

• Channel Modeling and Estimation: The reliability of the

terahertz channels may be compromised due to free-

space path loss, molecular absorption attenuation, and

limited communication range. Especially for dynamic

scenarios with high-speed moving devices, traditional

channel models based on stationary or quasi-stationary

assumptions will no longer be appropriate for terahertz

channels that are seen as non-stationary. The challenges

of terahertz channel modeling and estimation for 6G

eURLLC services can be addressed by a wide variety of

ML methods. For the angle-of-arrival (AoA) estimation of

terahertz channels, the RL-based Bayesian filter might be

exploited to improve estimation accuracy under dynamic

conditions for applications (e.g., MR and XR). The RL

algorithms can also be exploited for channel modulation,

channel tracking, channel selection, and channel coding

design [14].

• Spectrum Sharing: The coexistence of existing use cases

like satellite services and future terahertz communications

requires spectrum sharing. The DRL-based prediction

methods can be exploited to help to make decisions about

accessing or releasing the spectrum band, in order to guar-

antee priority access for URLLC devices [14]. In contrast

to centralized algorithms, distributed algorithms can save

a significant amount of network spectrum resources for

data training in complex scenarios. By avoiding the

offloading of a massive number of data to the remote

server during the training process, the FL methods could

be exploited to provide low-latency network interactions

[14]. Furthermore, the cooperation of a large number of

devices for FL could hasten the convergence rate and

thereby enhance 6G eURLLC learning performances.

V. CASE STUDY

Due to the increase in traffic and bandwidth requirements

for new URLLC applications, the licensed spectrum is in

shortage and the unlicensed spectrum becomes a promising

alternative considering its high flexibility and availability of

bandwidth. As such, in this section, we validate the effective-

ness of ML methods in optimizing downlink URLLC channel

access problems about unlicensed spectrum sharing between

New Radio Unlicensed (NR-U) and WiFi systems.

It should be noted that each node in NR-U and WiFi

has to perform the Listen-Before-Talk (LBT) and Carrier

Sense Multiple Access with Collision Avoidance (CSMA/CA)

before transmission to avoid collisions among different nodes,

respectively. During the LBT and CSMA/CA, the node senses

the channel and compares the received power with a pre-

determined energy detection (ED) threshold to determine if

the channel is idle. The channel access over the sharing

unlicensed spectrum can be modeled as a Markov decision

process. In this process, the agents at NR-U gNodeBs (gNBs)

and WiFi APs take actions to choose the ED thresholds from

[−82dBm,−52dBm], respectively, according to the current

state and strategy, and receive rewards from the environment.

The goal of our study case is to maximize the long-term

successfully served packets for downlink URLLC.
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We consider an indoor downlink transmission scenario

defined by 3GPP [15] for the coexistence between the NR-

U and WiFi systems in the 5 GHz band, which is located in

a 120m × 80m area and a distance between two neighbors

gNB/AP nodes of 40m. In particular, WiFi and NR-U systems

share a single 20-MHz channel, and each of them deploys

three small cells in a one-floor building The gNB/AP nodes

are mounted at a height of 3m on the ceiling and 200 NR-

U user equipments (UEs)/WiFi stations (STAs) are uniformly

distributed in this layout with a height of 1m. The small pack-

ets are generated according to random inter-arrival processes

over the subframes. This type of traffic is also known as FTP-3

traffic in 3GPP scope. The packet size is assumed to be fixed

to 32 bytes for URLLC service.
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Fig. 2: Average number of successfully accessed users

Fig. 2 plots the convergence performances of centralized

DRL (CDRL) and federated DRL (FDRL) algorithms, respec-

tively. We can see that the convergence speed of the FDRL is

a little bit faster than that of the CDRL. Table III compares

the reliability performance of the converged CDRL and FDRL

trained model with that of the fixed ED threshold setting.

We observe that both system and NR-U achieve expected

more than 100% reliability performance gain by applying the

CDRL or FDRL. But the WiFi performance gain in FDRL

(130.82%) is much larger than that in CDRL (13.48%). The

simulation results show that the node cooperation in the FDRL

would hasten the overall training process convergence rate and

enhance intelligent 6G eURLLC learning performances. This

demonstrates the advantages of FDRL for concurrent local data

training and experience sharing via the server with the model

aggregation technique.

TABLE III: Reliability of CDRL and FDRL

Reliability NR-U + WiFi System NR-U WiFi
Fix 13.61% 40.41 % 5.19 %

CDRL 52.17% 86.79 % 5.89 %
FDRL 50.43% 81.05 % 11.98 %

Reliability Gain NR-U + WiFi System NR-U WiFi
CDRL Gain +283.32% +114.77% +13.48%
FDRL Gain +270.54% +100.57% +130.82%

VI. CONCLUSIONS

In this paper, we first categorized the 6G eURLLC vision

into three connectivity characteristics, including ubiquitous

connectivity, deep connectivity, and holographic connectivity,

with their corresponding unique QoS requirements. We then

identified potential challenges in meeting these connectivity

requirements, and investigated promising ML solutions in a de-

signed multi-layer intelligent system to achieve the intelligent

connectivity vision. We further discussed how to implement

ML solutions for different eURLLC applications including

mobility URLLC, massive URLLC, and broadband URLLC

to guarantee their QoS requirements, respectively. Finally, in

order to verify the efficacy of ML solutions, we applied both

CDRL and FDRL algorithms for downlink URLLC channel

access optimization problems. This work provides inspiration

for future research to develop ML solutions that take into

account aspects of the 6G eURLLC connectivity vision with

strict QoS requirements.
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