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1 Models for mixture experiments with process variables

When a mixture experiment cannot be performed under uniform conditions or
when the responses depend on factors other than the mixture components, like
the total mixture amount or some process variables, then the cross product of
a standard mixture design and a full factorial design in the non mixture factors
is often recommended (see e.g. [3, Ch. 7] and [13]). But product designs might
have a larger number of runs than desired and only a subset of the design is
implemented.

Let z = (z1,...,24) € RY be the mixture components and z = (21,. .., 2;) €
RF the process variables. The x;, i = 1,...,q are to be interpreted as propor-
tions, maybe scaled, of a total amount which might be one of the z;, which
often indicated by m. We assume that a design D is a finite set of points
in R7t* usually the mixture components listed first, and that there are no
replicated runs. The projection of D over the z-space is D, and D, is the pro-
jection over the process variable space. Both D, and D, admit replicates. For
small values of ¢ and k the full product design, D, X D., is recommended in
the literatures, where D, is a simplex lattice design and D, is a full factorial
design [3, Ch. 7].

In the literature various models to study the combined effect of the x
and z factors are proposed. Often they have a fairly regular structure derived
from a standard cubic or quadratic model for factorial designs (g below) and
Scheffé quadratic or cubic polynomial model, in a relevant parametrization,
in the mixture components (f). In [5] for a pure mixture designs Kronecker
type models are recommended of degree two or three. Thus typically proposed
models are additive regression type models like y(x, z) = f(x)+g(2), complete
cross product models of the type y(z,z) = f(x)g(z), or in between models as
y(x,2) = flx)+9(z)+ >, Z;C:l fij(wi, zj) (see e.g.[3, §7.10]), where the f;;
comprises products of terms in f and g. For a mixture amount experiment in
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[3, §7.5 and page 405] a mixture amount model of the form fo(z) +mfi(z) +
..+ mP fp(z) is suggested where

Z% z; —i—Z%J TR 7§],0.)..,zxi1 Ty,

i<J i1 <...<14g

1 < g, p is a positive integer and the (?) are regression parameters. A com-
ponent amount model has a smaller number of terms and takes the form
flai,...,aq) for a; =x;m,i=1,...,q and a suitable polynomial function f.

2 Homogeneous representation of a mixture experiment

In algebraic statistics [12] an indeterminate z; is associated to the i-th factor in
the experiment and the design, D, is described and defined by the set of poly-
nomials in the z;’s vanishing on all the design points. This infinite set of poly-
nomials is called the design ideal, Ideal(D). The ideal generated by the polyno-
mials f1,..., fy is defined as (f1,..., fo) = {D_i_; sifi : si are polynomials}.

Ezample 1. A {q,m} simplex lattice design [16] is the intersection of the sim-
plex in RY? and the full factorial design in ¢ factors and with the uniformly
spaced levels {0,1/m,...,1}. Thus the ideal of the {g, m} simplex lattice de-
sign is

m m q

H Il_]/m 7H(Iq_j/m)ale_1>

j=0 §=0 i=1
that is the first ¢ polynomials give the full factorial design and the last one
is the simplex condition which selects the points of the full factorial whose
components sum to one.

In [9] it is shown that for a pure mixture design, D = D, an alternative
polynomial representation is meaningful and useful. The design is identified
with the set of lines through the origin of the z-space and a point in D, to
indicate that in a pure mixture experiment the relative proportions of the
component are of interest irrelevant of the total mixture amount. The set of
all such lines is called the design cone and indicated as Cp. The set of all
polynomials vanishing on all points of Cp is Ideal(Cp).

Ezample 2. The simplex centroid design, D in R? [17] is the projection, on

the simplex in R? with respect to the origin, of the full factorial design with

levels 0 and 1. This shows that it has 2¢ — 1 points, the coordinates of each

point are either zero or equal to each other and moreover it holds that
Ideal(Cp) = (w7x; — ZCZ'SC? chi=1,. 40 #£F)

In particular the design point with projective coordinates (1:...:1) € RY is

the barycenter point of the simplex in R?. See [9, §4.2].
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In mathematical terms, a mixture experiment is thus to be interpreted
as a projective variety. For the consequence of this interpretation we refer to
[9]. Note that Ideal(Cp) is a homogeneous ideal, that is an ideal generated by
homogeneous polynomials. A polynomial is homogeneous of degree s € Z> if
each one of its terms has sum of exponents equal to s. By convention a € R
has degree zero. Indeed if f is a homogeneous polynomials of degree s and
f(d) = 0 for all d € D,, then for A € R f(Ad) = A°f(d). Viceversa see
Theorem 1 in [9].

2.1 Homogeneous models for pure mixture experiments

Cone design ideals lead naturally to consider homogeneous polynomial regres-
sion models. We need to recall the basics of algebraic statistics for design of
experiments [12]. Let R[x1, ..., x4] be the set of all polynomials in x1,..., x4
with real coefficients. The set of real valued functions over D is isomorphic
to the quotient space R[z1, ..., x4/ Ideal(D) defined by the equivalence rela-
tionship stating that two polynomials f and g are equivalent if they take the
same values over all the points of D. The quotient space is a R-vector space,
of dimension equal to the number of points in D and it admits vector space
bases formed by monomials.

In Lemma 3 and Theorem 4 of [9] it is proved that if D is a mixture design
then there are bases formed by monomials of the same total degree larger than
a suitable integer and an algorithm to compute them is provided. Any such
basis can be used to construct homogeneous polynomial regression models of
the Kronecker type [5] and submodels.

Example 3. For the design in Example 2 the largest set of degree three, linearly
independent monomials in the quotient space is

3, foralli=1,...,q ziz;, foralli < j,i,j=1,...,q
zixjar, foralli <j<k,i,jk=1,...,q

A full basis of a given degree, equivalently a saturated homogeneous model
identified by D, can be retrieved only for a degree larger than three.

3 A model selection algorithm

Consider a product design D = D, x D, with no replicated runs. Let E, =
{z% : o € Ly} € Rlz1,...,24] be a set of linearly independent monomials
in Rlzy,...,24]/Ideal(D,) and E, = {2* : @ € L.} € Rlz1,...,2;] a set
of linearly independent monomials in R[zq, ..., z;]/Ideal(D,). Let E; ® E, be
the Kronecker product of E, and E.. Then by the basic property of Kronecker
and tensor products, E, ® E, is a set of linearly independent monomials in
Rz, z]/ Ideal(D). Moreover if also D, and D, have no replicated points, then
it is a R-vector space basis and it has dimension n,n, where n; is the number
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of points in D;, ¢ = z,z. Then typically E, is a set of monomials of the
same degree, two or three, and E, is an order ideal. In [12, §3.5] and [9, §3]
algorithms are provided to compute E, and E, for generic D, and D.,.

In practice and when ¢ and k£ are not small values, it has to be expected
that E, @ E, is large and a subset has to be considered to construct response
surface models for the problem at hand, and also that not all runs in D, x D,
can be implemented. We suggest an algorithm to select a subset L of E; ® E,
to be used as support for a model identifiable by a given fraction F C D. The
subset L is selected according to “statistical” criterion.

The design/model matrix for D and a model supported over a subset
of E, ® E, is full rank, independently of the selected representatives of the
homogeneous points in Cp,. (It is an immediate corollary of Lemma 3 in
[9]). That is, identifiability does not depend on the homogeneous coordinates.
However, other properties of the design/model matrix are strongly effected
by the representatives used, for example the eigenvalues of the corresponding
information matrix.

We choose to minimise the condition number A of the information matrix.
It is defined as A = Mgz /Amin Where Apa, and Apin > 0 are the maximum
and minimum eigenvalues of the information matrix, X} X, where ! indicates
transpose. If X! X, is close to singular then its columns are almost linearly
dependent and this is signaled by a minimum eigenvalue close to zero. Thus
small condition number indicates more stability in the least square estimates
and smaller variance inflation factor than for larger condition numbers.

In [5] Kronecker type models are studied for pure mixture experiments
and in [14] quadratic Kronecker models are conjectured to be the most robust
to miss-specification of the information matrix among second order models
for experiments with mixtures. In particular in Corollary 1 the authors in
[14] show that any model in a K-chain has higher maximum eigenvalue of the
information matrix than the Kronecker type model. A K-chain is a chain of
mixture models all of the same size, a model in the chain differs from the
next one by one term and the final model is of Kronecker type. Thus E, is of
Kronecker type.

Other statistical criteria can be considered. A referee suggested to couple
the condition number criterion with a criterion related to the goodness of fit
of the model. The major change in the algorithm below is in the definition of
A; which could become a vector or remain a scalar number and should now
correspond to the new criterion or combinations of criteria. In Example 6 of
Section 3.2 we simply checked that the R? values expressing a goodness of fit
of the selected sub model were not worse than that presented in the literature.

3.1 Selection based on term orderings

As mentioned, the number of columns in the design model matrix, X, for
E; ® E, and D or F might be prohibitive to a full search. Nevertheless term
orderings can be used to guide this search. Thus the search might start with
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a Kronecker type model E, (likely to have a low condition number). Terms
are substituted one at a time according to a term ordering which favours the
a-indeterminates. We suggest and sketch a variation of the algorithms in [1, 9]
to scan the class of models obtaines with term orderings. This class of models
is typically smaller than the class of submatrices of X which are full rank and
of size n. The search we suggest is based on the algorithms for exchange of
basis introduced in [6], developed in [1], and described for designs in [12, §3.5]
and [9, §3]. In [2] an algorithm is given to list all saturated models which are
order ideal and have the same support size.

The idea is to order the finite set of monomials E, ® E,, equivalently the
columns of X they label, in all possible ways that can be extended to a full
term ordering. We do so by using vectors of weights, i.e. w € Zq;gk. It turns out
that a finite set of weighing vectors is sufficient to describe all such possible
ways. The set of all weighing vectors, W, depends only on the exponents of
monomials in the candidate set E, ® E,. Thus W can be computed once for
each set E, ® E, independently of the design and become part of a library.
The computation of W is straightforward for models in two dimensions, but
for models in higher dimensions there is still need for efficient algorithms. This
is largely investigated in the first author’s Ph.D. thesis. See also Example 6
below.

Example 4. There are only two ways of ordering the three monomials 22, 129, 23 €
R[z1,72]. They are 7 < z129 < 235 and 23 < z129 < 22. The first one cor-
responds to the weighing vector w = (1,2), indeed ((1,2)-(2,0)) = 2 <
((1,2) - (1,1)) =3 < ((1,2) - (0,2)) = 4. Many other weighing vectors can be
equivalently considered. See [8].

Call X,, the matrix X whose columns are reordered according to w. Then
the first n linearly independent columns of X,, can be used as support for
regression models. We select the model with n terms and smallest condition
number by varying w € W. The algorithm can be outlined as follows.

Input: D, and D., a fraction F C D, x D, and the number of terms in
the final submodel n and the sets of monomials E, and E., which are
determined following the guidelines at the beginning of Section 3. The
final submodel size n cannot be greater than the number of points in F
to ensure identifiability.

Output: a submodel Ly with a minimal condition number \g. The final sub-
model is formed by the smallest terms of E, ® E, with respect to a term
ordering.

Technique: the search space of candidate submodels is generated by ordering
E, ® E, with different weight vectors, and within this search space we look
for the submodel with the smallest condition number.

Step 1: Compute the design-model matrix X using the points in F and the
terms in E; ® E,. Compute, see also Example 6, the set of weight vectors,
W = {wi,...,ws}. Initialize i := 1, A\g := 0o and Lg := [].



6 Hugo Maruri-Aguilar and Eva Riccomagno

Step 2: Order E, ® E, and the corresponding columns of X using the weight
vector w;. Let L be the first n monomials of E, ® E, such that the rank
of Xy, is n. Let \; be the condition number of X} X .

Step 3: If \; < A\g then \g «— \; and Ly «— L.

Step 4: Update ¢ < i + 1. If 4 < s then repeat from Step 3.1, otherwise Lg
is the set of terms of the wanted model.

The algorithm clearly ends as W is a finite set [1]. Moreover, any weight
vector identifies a model of size n and thus the algorithm gives an answer. The
algorithm is of order O((n,n.)?9*=Yn?) and, as the dimensions ¢ and k are
fixed, the algorithm is of polynomial order in (n;n,) (see [1]. This argument is
detailed in [8, Chapter 2 ]). The search space is certainly more restricted than
the full combinatorial search of exponential order ("2"*) = O((nyn:)"="*).
However the final model respects a hierarchical structure, unlike many of the
models in the combinatorial search and the search is clearly much faster.

3.2 Examples

Ezample 5. A mixture-amount design D is given in the left-hand side of Table
1 in affine coordinates. Here x; and x5 are proportions of a total amount m.
The ideals of interest are Ideal(D) = (x1 + 2 — m,(m — 1)(m — 2), (22 —
1)(m —2), (z2 — 1)(z2 — 2)), Ideal(Cp, ) = (x122(x1 — x2)) and Ideal(D,,)
{((m — 1)(m — 2)), from which we have that E, = {2? 2129,23} and E, =
{1,m}. The corresponding X matrix is shown in the right side of Table 1.
The algorithm of Section 3 returns Lo = {z%, 23, 7122, mx3} for the weighing
vector w = (1,2,3). In this simple case we can additionally perform a full
combinatorial search, which returns the same result.

X1 T2 m|m% X1X2 JJ% mac% mxi1x2 Mmis
0110 0 1 O 0 1
0220 0 4 0 0 8
1121 1 1 2 2 2
2024 0 0 8 0 0

Table 1. Mixture-amount design and matrix X for Example 5.

Ezample 6. We consider the well-known bread experiment introduced in [10],
for which D, is a simplex lattice with three factors and 10 runs and D, is a
factorial 32 design. The analysis in [13] returns a final model of n = 15 terms
and with the condition number 86.83. See [13, Equation (11)].

For the natural sets E, = {x1,x9,23,27, 13, 2%, 1179, 2173, z223} and
E. = {1, 21, 20,22, 2122, 23}, the set E, ® E, has 54 monomials, and the num-
ber of submodels with fifteen terms is (?g) ~ 8.6 x 102, A full search on this
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space is impossible and the algorithm of Section 3 can be applied to select a
candidate model with small condition number.

Instead of computing the full set of weighing vectors W, which as men-
tioned can be hard, we mimic it as follows. The (¢g+k—1)-dimensional simplex
intersects all “cones of equivalence classes” of the weighing vectors. In this
sense every point on the simplex is equivalent to an element of W. We apply
our algorithm with a sample of random vectors uniformly distributed over the
simplex. If the sample is large enough, there is a high chance to pick at least
one w for each equivalence class. This alternative is properly quantified in [8,
Chapter 2].

The variables are listed as (1,2, 3, 21, 22). The algorithm returns the
submodel

Lo = ({m1, 22,23} ® {1, 21, 22} U {22, 23} ® {27, 2122, 23 })

for w = (17,12,10,3,2). The model Lg traded the monomials z127, 2123 in
[13, Equation(11)] for 292122 and x3z122, and this slight asymmetry allows
for the reduction of the condition number to 47.47. With respect to the model
in [13], there is a slight increase in the root-mean-squared error, while the R?
is practically the same.

4 Final comments

In this note we considered a design F C D, x D, and a set of linearly inde-
pendent monomial functions over the vector space of real functions defined
over D, x D,.

An algorithm to select a model identified by F, with a given number
of terms and of minimal condition number is described. It has polynomial
complexity in the number of design points and model size. Its search space is
smaller than the one of a full search. In the authors’ experience, see also [1],
not only it is fast (especially when coupled with a search of the W vectors
over a grid as in Example 6) but also it performs well returning good models.
One possible drawback is that it might exclude models which are symmetric
in the factors. This is inherent in the use of term orderings and thus w vectors.
Indeed there is no term ordering for which 2% < 2% < z175. Symmetric models
might be added to the search space or one can use only partially weighing
vectors w. Methods to work with monomial bases of the quotient space which
are based on term-ordering free computations with multiplication tables are
being studied in the algebraic community. See [15] for a first example. Other
criteria can be substituted to the minimal condition number criterion and
general designs, even with replicated runs, can be considered. We focused
on mixture designs with process variables or mixture amount experiments.
The final model we obtain is usually not one suggested in the literature, it
is different from the model obtained by running the standard algorithm in
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[12, §3.5] and when comparable it performs statistically not worse than other
models suggested in the literature for the examples we tried.
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