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Abstract

In areas such as kernel smoothing and non-parametric regression there is emphasis
on smooth interpolation and smooth statistical models. Here we concentrate on
pure interpolation. Splines are known to have optimal smoothness properties in one
and higher dimensions. It is shown that smooth polynomial interpolators can be
constructed by first extending the monomial (polynomial) basis and then minimising
a measure of roughness with respect to the free parameters in the extended basis.
Algebraic methods are a help in choosing the extended basis, which can also be
found as a saturated basis for an extended experimental design with dummy design
points. One can get arbitrarily close to optimal smoothing for any dimension and
over an arbitrary region, giving simple alternative models arbitrarily close to splines.
Examples show that the interpolators do much better than straight polynomial fits
and for small sample size perform better than kriging-type methods. The tractability
of their polynomial forms points to fruitful areas of research.

Key words: regression, splines, kernel smoothing, non-parametric regression,
computer experiments, algebraic statistics.

1 Introduction

There is a considerable literature on smooth interpolation and its statistical
counterpart, for example in non-parametric regression. The optimal smooth-
ness properties of splines have a substantial literature. The main optimality
result for one dimension is attributed to Holladay [1957] and for two dimen-
sions, where thin-plate splines are optimal, to Duchon [1976]; see Kimeldorf
and Wahba [1970] and Micula [2002] for reviews of spline optimality.
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In computer experiments, Bayesian kriging using Gaussian kernel stochastic
process models has been preferred to splines, Sacks et al. [1989], Kennedy and
O’Hagan [2001], Kleijnen [2009] and have also become popular in machine
learning, see Rasmussen and Williams [2005]. Of course, the connection be-
tween kriging and splines is thoroughly researched and, for example, splines
can arise as kriging (conditional expectation) interpolators for special Gaus-
sian stochastic processes, see Kimeldorf and Wahba [1970].

Raw polynomial interpolation is known in general not to have optimal rates
of interpolation unless special sampling (design) points are used such as in
Tchebychev approximation. On the other hand the existence of polynomial
interpolators over an arbitrary design is at the core of the newer theory of
“algebraic statistics”: for any arbitrary design in d dimensions there is always
a monomial basis out of which we can build a polynomial interpolator. This
was introduced into statistics by Pistone and Wynn [1996], covered at length
in the monograph Pistone et al. [2001] and was also the basis for Bates et al.
[2003] which can be seen as the forerunner of the present paper.

The basic idea of this paper may seem at first to be somewhat contradictory.
We start with a given polynomial interpolator and by extending the basis make
the interpolator smoother. Although there is a tendency to associate higher
order polynomial terms with lack of smoothness, we can, in fact, extend the
basis and use the freedom this gives to increase smoothness. It should be
pointed out that the use of polynomials to build kernels with pre-specified
properties is familiar in signal processing, see Lin et al. [2004]. The algebraic
method referred to above, is used here to help clarify the extension of the basis
to higher degree monomials.

1.1 An introductory example

The Lagrange interpolator of the three points (x, y) = (0, 1), (1
2
, 3), (1, 2) is

the quadratic:
y(x) = 1 + 7x − 6x2.

The (average) roughness of y(x) over [0, 1] is, according to the criteria we shall
use in the paper,

Ψ2 =
∫ 1

0

(

d2y(x)

dx2

)2

dt = 144.

Now, consider a quartic interpolator which interpolates the same points but
also two additional points (2, s), (3, t). We may call s, t “dummy” values. The
quartic interpolator is a function of (s, t) and so, therefore, is the roughness Ψ2.
In fact, Ψ2 a is quadratic function of (s, t) and we may minimise it precisely.
The minimal value is 768

7
= 109.714 < 144, which is achieved at (s, t) =

(117
7

, 1276
7

). This gives the following quartic interpolator which is smoother
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than y(x):

ỹ(x) = 1 +
39

7
x +

8

7
x2 −

80

7
x3 +

40

7
x4.

We note that if we replace the extra points x = 2, 3 by any other points
(distinct from {0, 1/2, 1}) we obtain the same interpolator. This is because
it is the extension of the basis, which determines the method. We shall see
that for larger problems we obtain very substantial increases in smoothness
by increasing the basis and typically achieve a large decrease in integrated
squared error.

1.2 Monomial and extended bases

Recent work in the area of algebraic statistics shows how to construct es-
timable (identifiable) monomial bases for polynomial regression and we start
with a very short description. The motivation is that we shall need an ex-
tended basis with certain conditions and the algebra is one way of achieving
this.

We start with a set of factors x = (x1, . . . , xd). For a set of nonnegative integers
α = (α1, . . . , αd), a monomial, such as x2

1x2, is written xα = xα1

1 · · ·xαd

d , and
a polynomial is a linear combination of monomials. A design Dn is a set of n
distinct points in d dimensions, Dn = {x(1), . . . , x(n)}, x(i) ∈ R

d, i = 1, . . . , n.
This rather general definition of a design is familiar in computer experiments
and spatial sampling, where good designs are chosen to cover the input space
in some desirable fashion.

The algebraic methods give us the following: given an experimental design, Dn,
it is always possible to find a saturated non-singular monomial basis BL =
{xα, α ∈ L}. Thus, the size of the basis is equal to the size of the design
|L| = |Dn| = n and the n × n X-matrix, from the saturated regression model
X = {xα}x∈Dn,α∈L is non-singular. We call such a basis a good saturated basis
for the design. The intuition behind the algebraic method is straightforward:
terms are included in the good saturated basis according to a term ordering
and a rank inclusion criterion. For details on term orderings see Cox et al.
[1997], and for description of the algebraic method see Pistone et al. [2001].

Example 1 Let D24 to be the first 24 points of a bidimensional Sobol’s space
filling sequence. Sobol’ sequence is a (multivariate) binary sequence, bitwise
constructed with the aid of special binary generators called “direction num-
bers”. We do not pursue here a detailed explanation of the construction of
Sobol’ sequence, which can be found in Bratley and Fox [1988]. This sequence
is implemented in the R package fOptions through the function runif.sobol,
see Ihaka and Gentleman [1996]. By selecting terms with a degree lexicographic
term order x1 ≻ x2, a good saturated basis with 24 monomials is identified
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for D24. This model includes the monomials x6
2, x1x

5
2, x

2
1x

4
2 plus all the terms

of a model of total degree five. This basis will be extended in the example of
Section 3.3.

It will be critical in the development that we may extend a basis. By this we
mean we keep the design Dn fixed but take a larger set of N > n monomials,
hence the term “supersaturated” in the title of the paper. We first require a
condition contained in the following definition.

Definition 1 (1) A finite set of monomials B is called a hierarchical basis
if, for any monomial xα in B, all its divisors are in B.

(2) Given a design Dn, with sample size n, a good supersaturated basis is
a basis BM = {xα, α ∈ M} with |B| = N > n such that there is a
hierarchical non-singular sub-basis of size n.

As an example start with a rather poor design in two dimensions: D4 =
{(0, 0), (1, 1), (2, 2), (3, 3)}. It is straightforward to see that there are only two
good saturated model bases {1, x1, x

2
1, x

3
1} or {1, x2, x

2
2, x

3
2}. From this we can

see that the extended basis {1, x1, x
2
1, x2, x

2
2} with five terms is not useful as

it has no good sub-basis of size four.

If we start with a non-singular hierarchical basis for a design Dn and extend it,
in any way, then we always obtain a good supersaturated basis. But there is a
revealing way of generating a good supersaturated basis, namely by extending
the design Dn to a design DN with N points and finding a good saturated basis
for the larger design, which contains the good basis for Dn. The algebra method
guarantees that this is always possible. This leads to a second, and equivalent,
way of producing the smooth models which will be called the “dummy design”
method, covered in sub-section 2.2. This is precisely the method we used in
the introductory example.

2 Smooth interpolators

Let the experimental design be Dn and y1, . . . , yn be real values (observations)
taken at the design points x(i) ∈ Dn, i = 1, . . . , n, respectively. Let BM be a
good supersaturated basis for the design Dn and let

y(x) =
∑

α∈M

θαxα (1)

be a polynomial model in that basis. A good supersaturated model will be
sought using a measure of roughness.

In one dimension (d = 1) we shall adopt the following measure of roughness
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based on the second derivative

Ψ2 =
∫

X
(y′′(x))2dx, (2)

where the integration is carried out over a desired region X ⊂ R. For higher
dimensions the Hessian is

H(y(x)) =

{

∂2y(x)

∂xi∂xj

}

,

and
∑

ij

(

∂2y(x)

∂xi∂xj

)2

= ||H(y(x))||2 = trace
(

H(y(x))2
)

. (3)

Then define
Ψ2 =

∫

X
||H(y(x))||2dx, (4)

for some desired region X ⊂ R
d.

Smooth here means “having minimal roughness”, so that a smooth interpo-
lator is ŷ(x) =

∑

α∈M θ̂αxα, where the coefficients θ̂α are selected to minimise
roughness subject to the interpolation condition, i.e. solving the constrained
optimisation problem

min
θ

Ψ2(y(x)) subject to yi = ŷ(x(i)), i = 1, . . . , n (5)

In the next subsection we give the solution of this constrained problem and
in the second subsection the dummy design method. It is revealing that these
two methods are equivalent.

2.1 The constrained problem

The main technical difficulty arises from the fact that linear parts of the model
make no difference to the criterion Ψ2 but nonetheless affect the interpolation.
It is necessary to partition the X-matrix to take account of this.

Let f(x) and θ respectively be the vectors which hold the good supersaturated
basis and the parameters so that we can write (1) as y(x) = θT f(x). Denote

f (ij) = ∂2f(x)
∂xi∂xj

and define

K =
∫

X





k
∑

i,j=1

f (ij)f (ij)T



 dx. (6)

Then we see that
Ψ2(y(x)) = θT Kθ. (7)
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The difficulty with linear terms mentioned above has the effect that K may
not be full rank. In particular the constant and any linear term in the models
basis will give zero entries. Call these entries structural zeros. Permute the
rows and columns of K so that the structural zeros are adjacent:

K =







0 0

0 K̃





 (8)

Let X = [X0, X1], f = (fT
0 : fT

1 )T and θ = (θT
0 : θT

1 )T be the corresponding

rearranged and partitioned versions of Xn, f and θ, respectively. The matrix
X has n rows and as many columns as terms in f . Let y be the column vector
with n observations and note that Ψ2 = θT

1 K̃θ1.

With this partitioning the constrained quadratic problem (5) is:

min
θ

θT
1 K̃θ1 subject to X0θ0 + X1θ1 = y (9)

Let 2λ be an n × 1 vector of Lagrange multipliers (2 is for convenience) so
that the Lagrangian is

θT
1 K̃θ1 − 2λ(X0θ0 + X1θ1).

After differentiation the full set of equations for θ0, θ1 and λ can be written in
block form















X0 X1 0

0 K̃ −XT
1

0 0 XT
0





























θ0

θ1

λ















=















y

0

0















(10)

If the matrix on the left hand side of Equation (10) is nonsingular we obtain a
unique solution θ̂0, θ̂1, λ̂. The following three conditions are together sufficient
for this.

(i) The full basis is a good supersaturated basis for Dn, so that X is full rank.

(ii) X0 is full rank.

(iii) K̃ is full rank and thus invertible.

The full matrix inverse with solutions θ̂0, θ̂1, λ̂ are given in Appendix 1. Finally,
using these results, we express the smooth estimator as

ŷ(x) = θ̂0f0 + θ̂1f1 = θ̂f(x)

and the optimal Ψ2 as
Ψ∗

2 = θ̂T
1 K̃θ̂1.
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In applications, as is common with quadratic programming, we simply invert
the matrix on the right hand side of (9) using a fast numerical method. Thus,
given the design Dn, the good supersaturated basis and K̃, the method is
fairly straightforward to implement.

It is revealing to consider the case where K is nonsingular. Then we do not
need the partition of Equation (8) and instead can write Equation (10) as







X 0

K̃ −X













θ

λ





 =







y

0





 ,

which has the solution:

θ̂ = (XT X + K(I − P )K)−1XT y

where P = XT (XXT )−1X is the projector onto the row space of X. Thus,
although XT X is not invertible, because we have a supersaturated model, the
second term K(I − P )K on the left hand side can be seen as a smoothness
induced regularisation of the problem which compensates for this singularity.

2.2 The dummy design method

For simplicity of development we assume that K is non-singular in the present
case. Let DN be a large design, with N > n distinct points, which contains
the original design Dn and write

DN = Dn ∪ Dq,

where q = N − n. Let h(x) be a good saturated basis for Dn, and let f(x)
be an (extended) good saturated basis for DN , f(x) = (h(x)T , g(x)T )T . Also
extend the observation vector to z = (yT , zT )T where, as before y holds the
“true” observations taken at points in Dn, and z can be thought of as dummy
observations on the design Dq, as in the introductory example. The extended
model is written

y(x) = f(x)T θ = hT (x)β + gT (x)γ (11)

and we assume, as in the last section, that y(x) interpolates the observations
y over Dn.

We now minimize Ψ2 over the the choice of dummy observations z which is
now an unconstrained optimization problem, but with a reduced set of free
parameters, namely z. This is the procedure we used in the introductory ex-
ample. The constrained optimization (9) and this unconstrained optimization
(12) are equivalent in the case that the full basis is good for the full design,
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DN . This is because of the one-to-one correspondence between observations
and parameters and the fact that the interpolation constraint is the same in
both cases.

The unconstrained problem is:

min
z

(yT : zT )X−1
N

T
KX−1

N

(

y

z

)

. (12)

Where XN is the X-matrix for the full large model f(x). First, let the following
matrix be partitioned according to the model bases f(x) = (h(x)T , g(x)T )T :

A = X−1
N

T
KX−1

N =







A11 A12

A21 A22





 .

Then after expanding (12) and differentiating, the optimal z is ẑ = −A−1
22 A21y

and the minimum roughness value is

Ψ∗
2 = yT Q y,

where Q = A11 − A12A
−1
22 A21. The smooth interpolator is

ŷ(x) = fT (x)X−1
N

(

y

ẑ

)

= fT (x)X−1
N

(

I

−A−1

22
A21

)

y = fT (x)K−1(X11 : X12)Qy

(13)
where

XN =







X11 X12

X21 X22







is the appropriate partitioning of XN , i.e. the rows of XN are indexed by Dn

and Dq, while the columns are indexed by h(x) and g(x).

Both the last equality and the equivalence to the solution in Subsection 2.1 is
shown for the case that K is non-singular. The equivalence in general holds
under conditions (i), (ii) and (iii) in that section. We note, as for the intro-
ductory example, that the solution does do not depend on the dummy design
Dq, except in so far as it is involved in guaranteeing that we have a good
supersaturated basis.

2.3 Computing effects

An important step of the analysis of computer models involves assessing the
importance of effects. This is usually computed by the functional Analysis of
Variance (functional ANOVA), see Sobol′ [2001]. It has been used extensively
in sensitivity analysis: see Saltelli et al. [2000].
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Due to its polynomial nature, the smooth supersaturated model has important
advantages which makes this analysis very simple. For instance, main effects
and interactions can be computed analytically, and the sensitivity indexes can
also be directly computed. Moreover, those effects remain polynomial and can
be easily plotted, which is specially useful for double interactions. As an exam-
ple, the general form for fi(xi), the main effect for the i-th factor, is computed
integrating Equation (1) over the region [0, 1]d and over all factors except xi

and substracting the average value of y(x), yielding the closed formula

fi(xi) =
∫

y(x)
∏

k 6=i

dxk −
∫

y(x)dx =
∑

α∈M

θα

(

xαi

i (αi + 1) − 1
∏d

j=1(αj + 1)

)

. (14)

The variation of fi(xi), termed Di, has a simple form Di =
∫ 1
0 fi(xi)

2dxi =
θT Aθ, where θ is the vector of model parameters θ = (θα)α∈M and A is the
square matrix A = (aα,β)α,β∈M with entries

aα,β =
1

∏d
j=1(αj + 1)(βj + 1)

·
αiβi

αi + βi + 1
.

Similar expressions can be derived for other interactions and their variations.
Note that the above results are general and do not require knowledge of the
fitted model parameters θ̂α. The estimates θ̂α can be substituted once they
are available.

2.4 Towards splines

We make the claim that as the supersaturated model order increases we get
closer to the most smooth interpolating function. For our criteria it is well
known, see references in the introduction, that cubic splines are optimal in
one dimension, thin-plate splines in two dimensions and their generalisations
in higher dimensions. However, the published analytic results are where the
region of integration X has a standard shape (eg hyper-rectangle, ball etc)
and typically contains the knots. On the other hand, except for numerical
stability and our sufficient conditions, our methods apply to any region X .
Although we do not present here a formal proof of the convergence to splines
the intuitive explanation is that as the model order increases and if the bases
are suitably nested the optimal Ψ2 decreases monotonically as the size of the
model basis increases. Thus the Ψ2 will converge to a minimum. Point-wise
convergence of the interpolators to a limiting function can then be shown, and
these limiting functions can be interpreted as a spline.

Recent references from the literature covering smoothing over irregular bivari-
ate regions are Ramsay [2002] and Wood et al. [2008].
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3 Examples

3.1 A one dimensional example: spline-like behavior

In this example, smooth saturated models are used for interpolating a known
univariate function. The function considered is the sine cardinal m(x) =
sinc(ax + b) with a = 15π/2 and b = −10π/2. The region over which the
interpolators will be smoothed is X = [0, 1].

Suppose that the design D6 is a uniform design (evenly spaced) in [0, 1],
and that the response vector y contains the values of m(x) at points in D6.
The choice of a good saturated and supersaturated models can be driven
by algebraic methods. For the present case, an obvious candidate is h(x) =
(1, x, . . . , x5)T . Call ŷ0 the interpolator fitted solely with h(x). Now a pro-
cess of smoothing is carried out by adding dummy points, one at a time.
While adding dummy points, h(x) remains unchanged. With only one dummy
point, a clear candidate for g(x) is g(x) = (x6), while for q dummy points,
g(x) = (x6, . . . , x6+q−1). Call ŷq the smooth interpolator obtained by adding q
dummy points, q = 1, . . . , 5. The value of roughness for ŷq quickly drops down
so that a similar roughness to that of a spline is achieved with ŷ4 (only four
extra terms), see Table 1.

Model ŷ0 ŷ1 ŷ2 ŷ3 ŷ4 ŷ5 Spline

Ψ∗
2 76.543 74.698 33.153 33.020 27.767 27.745 26.744

Table 1
Convergence of Ψ∗

2 to spline for the univariate example of Section 3.1.

With a uniform design, the polynomial interpolator ŷ0 exhibits the undesirable
oscillating feature called Runge phenomenon, see Trefethen and Weideman
[1991]. However, the smooth supersaturated models tended to remove the
oscillations. The progressive smoothing achieved with extra terms can be seen
in Figure 1 which shows the interpolator and smooth saturated models.

A comparison between the smooth supersaturated method and cubic splines,
which are optimally smooth, was carried out as follows. First, for a uniform
design Dn on [0, 1], a saturated model ŷ0 was fitted to the values of m(x) at
the design points. Call Ψ∗

2(0) the value of smoothness for ŷ0. Then, using q
extra basis terms, a smooth supersaturated model ŷq was fitted. Call Ψ∗

2(q)
the corresponding value of smoothness. A cubic interpolating spline was also
fitted to the same data and call Ψ∗

2(sp) its smoothness value. We observe ex-
perimentally that values Ψ∗

2(0), Ψ∗
2(1), . . . form a decreasing sequence which

converges surprisingly quick to Ψ∗
2(sp), see the discussion in subsection 2.4.
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x

−0.5

−0.25

0.5

0

0.5

1

b b b b b b

ŷ1

ŷ4

ŷ4

ŷ1

Fig. 1. Sequence of smooth saturated models: ŷ0 is a polynomial of fifth degree (- -),
ŷ1, . . . , ŷ4 (—) are supersaturated models. The true model m(x) (· · · ) and design
points are also shown.

This behavior can be quantified by plotting the ratio
√

Ψ∗
2(q)/Ψ

∗
2(sp) against

the number of terms added to smooth the model. Figure 2 shows such com-
parison when Dn are uniform designs of size n = 5, 10, 15, 20. The line for
n = 20 is indistinguishable from R(q) = 1.

q

R(q)

0 2 4 6 8 10
1

2

3

4
5

10

Fig. 2. Logarithm of the smoothness ratio R(q) =
√

Ψ∗
2(q)/Ψ∗

2(sp) against the num-
ber of smoothing terms added q: sample sizes n = 5, 10, 15 (- -,· · · ,—).
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3.2 Smoothing and kriging: unidimensional comparison

An important feature of smooth supersaturated interpolators is that, even for
small sample sizes, an interpolator can be fitted to data. This feature can be
an advantage over other methods such as kriging, which requires a initial stage
of parameter estimation. If the sample size is small, and no prior information
for kriging parameters is available, then smooth supersaturated models can
be used as an alternative to kriging interpolators.

A comparison was performed between smooth supersaturated models and krig-
ing. The aim was to judge the performance of both interpolating systems to
produce good fits to data using extra validation points. The design region for
the study was [0, 1] and call Dn, n = 5, . . . , 17 a design of n points constructed
with the first n − 2 points of the standard univariate Sobol’ sequence imple-
mented in R, together with 0 and 1. The designs are nested, for example D6

can be obtained by adding the point 0.375 to D5 = {0, 1, 0.5, 0.75, 0.25}.

The following four univariate functions were used as true (but assumed un-
known) simulators:

g1(x) = sinc(23x−15.7); g2(x) = 1+sin(13.9x); g3(x) = sin(12x2) and g4(x) =
(1 + sin(13.9x))u(x − 0.34) where u(x) is the Heaviside step function, i.e.
u(x) = 1 if x ≥ 0 and u(x) = 0 otherwise.

The selected functions were chosen to include features which are difficult to
model with polynomials. For instance, g2 is periodic; g1 features damping
oscillations; g3 has frequency that changes with variable x and g4 has a flat
region and a periodic region.

For each function g1, . . . , g4, training data was generated at the design points
Dn, and both smooth supersaturated models and a kriging model were fitted
to the data. The analysis was performed independently for every function. The
smooth model was computed using nine smoothing terms, while the kriging
model used an exponential correlation function corr(Y (s), Y (t)) = exp(−θ|s−
t|p), with parameters θ, p carefully estimated by maximum likelihood, see Sacks
et al. [1989].

Finally, a validation design was constructed taking 30 further points from
Sobol’s sequence. Empirical root mean square error (RMSE) was computed
using the models fitted and the true function. The comparison is made using
the ratio of RMSE value for kriging against that for smooth supersaturated
models RMSEkr/RMSEssm, which is shown in Table 2 and plotted in Figure
3.

For design sizes n < 10, the smooth supersaturated model compares rather
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Design Simulator used

size n g1 g2 g3 g4

5 1.308 1.229 0.993 0.882

6 1.399 0.550 0.969 0.320

7 0.524 0.566 0.987 0.319

8 0.497 0.573 1.043 1.176

9 0.751 0.267 1.369 3.315

10 6.679 5.318 1.314 3.752

11 17.591 41.458 3.022 22.984

12 19.897 59.092 9.981 9.345

13 39.301 255.953 17.570 9.743

14 239.687 6431.865 41.209 25.047

15 479.360 5722.610 176.935 25.989

16 218.640 133.324 74.937 15.767

17 611.246 36.982 178.632 47.473

Table 2
Ratio RMSEkr/RMSEssm for the univariate study.

g1

g2

g3

g4

RMSEssm

RMSEkr

n

0.1

1

10

100

1000

10000

17151311975

Fig. 3. The ratio RMSEkr/RMSEssm for the univariate study.

favorably with kriging. As n size increases, the value of RMSE for kriging be-
comes much smaller, relative to the smooth supersaturated model. This phe-
nomena of smooth supersaturated model consistently being better RMSE than
kriging for small sample sizes was observed for different numbers of smoothing
terms, ranging from three to thirty.
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3.3 Smoothing and kriging: bidimensional comparison

Our second comparison was performed using bidimensional functions. The
settings were similar to the unidimensional study. The design region was [0, 1]2;
the design Dn, n = 5, . . . , 17 was composed of n− 2 points of a bidimensional
Sobol’ sequence, together with the origin and the point (1, 1). Four bivariate
functions were used as simulators:

g1(x1, x2) = sin((x1 − 0.5)2 + (x2 − 0.5)2 + 7x1(x2 − 0.5))

g2(x1, x2) = (x2 + 1/2)4/(x1 + 1/2)2

g3(x1, x2) = 3(1 − u)2 exp (−u2 − (v + 1)2) − 10(u/5 − u3 − v5) exp (−u2 − v2)

−1/3 exp (−(u + 1)2 − v2)

g4(x1, x2) = 100(v − u2)2 + (1 − u)2

The function g3 is the peaks function from MATLAB R©, while g4 is the Rosen-
brock function; both were rescaled to the design region [0, 1]2 with u = 4x1−2
and v = 4x2 − 2. As in the unidimensional study of Section 3.2, the functions
were selected to include features which are difficult to model with polynomials,
such as flat regions with sharp peaks or oscillations with changing frequency.

RMSEssm

RMSEkr

n

g1

g2

g3

g4

0.1

1

10

17151311975

Fig. 4. Ratio RMSEkr/RMSEssm for the simulated bivariate study.

A smooth supersaturated model with 20 additional smoothing terms was fit-
ted to the simulated values. The smoothing terms consist of the next 20 terms
in the same degree lexicographic term order used for the saturated basis. This
smooth model was compared with a kriging model with exponential correlation
function Corr(Y (s1, s2), Y (t1, t2)) = exp(−

∑2
i=1 θi|si − ti|

pi). The parameters
θi, pi, i = 1, 2 were fitted using maximum likelihood. The RMSE values were
computed for both fits using a set of 30 extra bivariate Sobol’ design points.
Table 3 contains values of the ratio RMSEkr/RMSEssm, which are also plot-
ted in Figure 4.

14



The results observed are similar to those of Section 3.2. The RMSE of smooth
supersaturated models compare favourably with that of kriging for small sam-
ple values. Moreover, in two cases (g1, g2) the RMSE remains smaller for
smooth supersaturated model up to sample size is 17. For g4 we observe a
similar phenomena to the unidimensional situation: from a certain sample
size (n = 13), kriging starts performing better.

We do not claim superiority of smooth supersaturated models for small sample
sizes in all circumstances. But we are clear that smooth supersaturated models
are a resource for modellers that can perform better than kriging for small
sample sizes. The usual care should always be taken in the form of validation
and diagnostics of the models.

Design Function

size n g1 g2 g3 g4

5 0.817 0.297 0.964 0.785

6 0.515 0.307 1.712 0.420

7 0.409 0.923 1.538 0.460

8 0.676 0.941 2.034 0.779

9 0.735 0.934 1.136 0.923

10 1.127 0.750 1.223 0.928

11 1.155 0.765 1.344 0.992

12 1.076 0.802 1.203 0.667

13 1.208 0.760 1.195 2.904

14 1.307 0.753 1.063 4.363

15 0.598 0.835 1.002 6.288

16 0.666 0.621 1.106 6.347

17 0.776 0.280 1.110 6.846

Table 3
Ratio RMSEkr/RMSEssm for the bivariate study.

3.4 A case study: Engine Emissions Data

The performance of a smooth supersaturated model was evaluated against a
kriging model using the engine emissions data set analysed in Bates et al.
[2003]. This data set comes from a computer experiment without noise and
comprises 48 observations in five factors N,C,A,B and M . An extra set of 49
observations is available for validation purposes. The smooth supersaturated
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model, termed ŷ, was constructed with 100 terms fitted to the set of 48 ob-
servations. For this model, 48 terms correspond to the good saturated basis
proposed in [Bates et al., 2003, Section 6.3], and this forms h(x). A set of 22
terms were added to complement missing terms of total degree three and then
a set of extra 30 terms of total degree four were added. All the extra 52 terms
described form g(x) and were added using a degree lexicographic order.
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Fig. 5. Smooth supersaturated predictions (ŷ) against spline (ŷsp) and kriging pre-
dictions (ŷkr) for the validation data set of Section 3.4.

Kriging and spline models were constructed with the first data set for com-
parison purposes. The kriging model, termed ŷkr, was built with a five dimen-
sional exponential covariance structure, with parameters estimated by maxi-
mum likelihood. The spline model, named ŷsp, was constructed with the tpaps
function from Matlab R©.

In the validation stage, predictions at the extra 49 design points were built
using the three models ŷ, ŷsp and ŷkr. Existing observations at extra design
points allow computation of RMSE. The values of RMSE for ŷ, ŷsp and ŷkr are
5.844, 5.896 and 4.450, which represent 4.4%, 4.5% and 3.4% respectively of the
range of the response values. The smooth supersaturated model ŷ compares
well with both spline and kriging, being close to the spline model.

Scatterplots were generated using the validation and predicted model data.
Figure 5 shows that predictions with the smooth supersaturated model are
highly correlated with those obtained with spline and kriging models. Figure
6 shows the smooth supersaturated model to be a good predictor of the true
response.

Finally, as described in Section 2.3, the fitted smooth supersaturated model
was decomposed using the functional ANOVA and effects and sensitivity in-
dices were analytically computed. The sensitivity indices allocate 99.51% of
the total variability to all main effects and two factor interactions; of which the
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Fig. 6. True values (y) against smooth supersaturated predictions (ŷ), spline (ŷsp)
and kriging predictions (ŷkr) for the validation data set of Section 3.4.

most important are the main effects for factor M (63.90% of total variability)
and N (32.68%). The two factor interaction MN has a small effect (0.56%).
The two main effects M and N stand out in the effects plot shown in Figure
7. The interaction MN is also shown in Figure 7.

4 Further developpments

4.1 Smooth polynomial kernels and optimal knots

The smooth interpolators of this paper are of the form

ŷ(x) = θ̂T f(x) = yT Bf(x).

If we set the data vector data y to be the basis vector e(i) which has unity in the

i-th entry and zero elsewhere we retrieve an indicator function ki(x) = e(i)T Bf(x)
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in the sense that if xj is a design point

ki(xj) = δij,

the Kronecker delta. We can then write:

ŷ(x) =
n
∑

i=1

yiki(x)

Because the optimal smoothness is a quadratic form in the data y: Ψ∗
2 = yT Qy

(2.2) we have the sure knowledge that each individual ki(x) is an optimally
smooth interpolator under the same conditions that a general ŷ(x), is opti-
mally smooth. Moreover the optimal smoothness for ki(x) is the i-th diagonal

element of Q, namely Ψ∗
2,i = Qii = e(i)tQe(i).

This simple point suggests a method of selecting the design points optimally.
In the language of splines, the design points are knots. The design Dn affects
the value of the smoothness via the matrix X. Given that we have to choose
the design before we observe the data {yi} we may consider choosing it to
minimize, over all designs in our preferred design region, some measure of
the size of the matrix Q, which does not depend on y. Following the above
discussion, the most obvious criterion is to minimize

trace(Q) =
n
∑

i=1

Ψ∗
2,i.

However, we could minimise other criteria such as maxi λi(Q) the largest
eigenvalue of Q. Since Q is singular we cannot use the full determinant, but
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we could minimise the “positive” determinant, namely the product of the
non-zero eigen-values. A general criteria would be to minimise the s-norm:
(
∑

i(λi(Q))s)
1

s for some s > 0, where the sum is over the non-zero eigen-
values. The trace is for s = 1 and the positive determinant and the maximum
eigenvalue are the limiting cases as s tends to zero and infinity respectively.

4.2 SSM regression and optimal design

If we consider the design points in Dn as knots we are free to use them to con-
struct the optimal kernels ki(x) without necessary observing the {yi} at the
knots. This leaves us free to consider the optimal experimental design prob-
lem based on using ki(x) as a set of regression functions. This is the analogy
of optimal design for spline regression: given knots we can construct a spline
basis, but, to repeat, we do not have to observe at the knots. In that case it
may well be the case that the actual optimal design points do not correspond
to the knots: see Woods and Lewis [2006]. The spline optimal design problem
has proved hard because of the difficulty of obtaining expressions for splines,
see Kaishev [1989], Dette et al. [2008]. In so far as taking larger supersatu-
rated bases, gets closer to spline regression, the smooth polynomial methods
of this paper combined with optimal design algorithms and provide platform
of approximating spline optimal design over arbitrary regions X , a currently
unsolved problem. This is the subject of further research by the authors.

In summary, this discussion points to a new technology for high dimensional
function fitting over arbitrary regions which sets up a double optimization
problem: choosing knots to maximize smoothness and design points to op-
timize some statistical criterion (such as D-optimality) , or one could use
combined criteria; with or without taking observation at knots. Maintaining
the models as polynomials promises to be more tractable than working directly
with splines.

4.3 Other smoothness criteria

There are a number of ways in which one can generalize or adapt our methods.
A similar analysis will go through for a weighted criterion

Ψ2 =
∫

X
||H(y(x))||2w(x)dx,

where w(x) is a non-negative weight function. This simply changes the defini-
tion of K and K̃, in our analysis. Also, the smoothness criteria we adopted is
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one of a number in a wider quadratic class, which includes

Ψ1 =
∫

X
|| △ (y(x))||2dx,

where △(y(x)) is the gradient vector; and a measure of deviation from a target
function can be used

Ψ3 =
∫

X
|y(x) − t(x)|2dx.

5 Appendix

5.1 Appendix 1: solution for θ̂0 and θ̂1

It is possible to use block matrix inverse methods, but they are a little cum-
bersome. We first find θ̂0. Writing out Equation (10) we have

X0θ0 + X1θ1 = y

Kθ1 − XT
1 λ = 0

X0λ = 0

Solving for λ from the second two equations we have

λ = (X1K
−1XT

1 + X0X
T
0 )−1X1θ1

Using this to eliminate θ1 from the first equation we have

XT
0 (X1K

−1XT
1 + X0X

T
0 )−1X0θ0 = XT

0 (X1K
−1XT

1 + X0X
T
0 )−1y,

giving

θ̂0 = (XT
0 (X1K

−1XT
1 + X0X

T
0 )−1X0)

−1XT
0 (X1K

−1XT
1 + X0X

T
0 )−1y,

Writing y∗ = y − X0θ̂0 we obtain reduced matrix equation:















X1 0

K̃ −XT
1

0 XT
0





















θ1

λ





 =















y∗

0

0















Left multiplying by the transpose of the matrix on the left and inverting we
have

θ̂1 = (XT
1 X1 + K̃(I − XT

1 (XXT )−1X1)K̃)−1X1y
∗ (15)
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Note that in the case that X0 and X1 have orthogonal columns we reduce
to the standard form θ̂0 = (XT

0 X0)
−1XT

0 y. This result can be achieved by
rewriting the supersaturated basis so that the terms with degree higher than
linear (degree one) are orthogonal to the linear terms with respect to the
design. Of course, the definition of K̃ should be changed accordingly.

5.2 Equivalence of forms in the case K nonsingular

The following three forms for θ̂ = By are equivalent, where B is one of:

(i) B1 = (XT
1 X1 + K(I − P )K)−1XT y

(i) B2 = K−1(X11, X12)
T Qy

(ii) B3 = X−1
(

I

−A−1

22
A21

)

To show that B1 = B2 multiply both by XT
1 X1 + K(I − P )K and note that

PXT = XT to obtain respectively XT and XT XK−1XT Q. But from the
definition of Q and using block the partition inverse formula we see that that
XK−1XT = Q−1 and we are done (reversing the steps).

To show that B2 = B3 we multiply both by X−1T
K. Then B2 gives

X−1T
KK−1(X11, X12)

T QQ−1 = X−1T
(X11, X12)

T =

(

I

0

)

,

while B3 gives

X−1T
KX−1

(

I

−A−1

22
A21

)

Q−1 = A
(

I

−A−1

22
A21

)

Q−1 =







A11 A12

A21 A22







(

I

−A−1

22
A21

)

Q−1

=
(

A11−A12A−1

22
A21

A21−A22A−1

22
A21

)

Q−1 =
(

A11−A12A−1

22
A21

0

)

Q−1 =
(

I

0

)

.

Again, reversing the steps we obtain our result.
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