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Abstract

Mixture designs are represented as sets of homogeneous polyno-
mials thus allowing the use of computational commutative algebra to
deduce generalised confounding relationships on monomials terms and
to determine families of identifiable models.

Keywords: Mixture designs, cone of a mixture designs.

1 Introduction

In a mixture experiment the response variables depend on the proportion of
the components or factors but not on the absolute amount of the mixture.
There is a vast literature on mixture experiment, ranging from the seminal
work by H. Scheffé [30, 31] up to the work on optimal designs for second
order mixture experiments by Zhang et al. [35]. An excellent textbook
at the third edition is by J. Cornell [10] and we refer the reader to the
bibliographical list therein.
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We study mixture designs with tools from computational commutative
algebra. Specifically we tailor the polynomial algebra approach to identi-
fiability analysis introduced in [29] to mixture designs. In few words that
approach consists of representing a design with a set of polynomials in k
indeterminates, where k is the total number of factors in the design. Rel-
evant statistical information and objects are retrieved by analysis of that
polynomial set. Large part of the available literature is focused on ob-
taining suitable supports for models which are identifiable by the design
and on determining “generalised confounding relations”, see for example
[6, 7, 18, 28, 21, 27]. Here we identify sets of polynomials suitable to repre-
sent mixture designs.

A characteristic of that approach is that it is computational. As we
shall see later the algorithms for example in [28] and [29] apply to mixture
experiments but the main results are in k−1 factors. In particular only sup-
ports for slack models are obtained and all but one of the basic “generalised
confounding relations” exclude entirely a factor. The one that involves all
factors translates the sum to one condition in the polynomial framework.
In [18] the missing factor is reintroduced by homogenization with respect to
it. This can be limiting as we show in Example 9. There is an intrinsic and
unavoidable asymmetry in the computational technology behind the men-
tioned algorithms, as they depend on a technical tool called a term ordering
which orders the factors, see Appendix 7.1. In [21] this has been used at
the advantage of the statistical analysis of a complex data set. Despite this,
we feel that for mixture experiments the mentioned technology resents too
much of this asymmetry and we propose a modification.

The present paper is based on three observations, already present in the
literature in different forms. First, a mixture design is a projective object
of which we happen to take proportions summing to one. Thus each design
point of the original mixture can be assimilated to a line through the point
and the origin, excluding the origin itself. We call the set of all such lines the
design cone. From an algebraic geometry perspective this leads naturally to
consider homogeneous polynomials and thus homogeneous type regression
models. A reference to mixture models based on homogeneous polynomials
is [14], where the mathematical tool employed is the Kronecker product. So
homogeneous polynomials are at the base of our second observation. The
third one is that no non-trivial polynomial function can be defined over
a cone and rational polynomial models play a relevant role. Cornell [10]
collects and comments on many models for mixture experiments including
ratios of polynomial models.

We shall make heavy use of computational commutative algebra. The
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material we use is collected in the appendix and in the main text only
when necessary. There are many good books of computational commutative
algebra, each with its peculiarities. We mainly use the undergraduate texts
[11] and [12]. Good books are also [2] and [22]. We would like to put the
reader in condition to perform the computations we present here for his/her
own mixture designs. To this aim we show how to perform them in the
freely available computer package CoCoA [9]. We could have used other
excellent and free softwares for polynomial computation like Singular [20]
or Macaulay2 [19].

In this paper we use the terms “interaction” to mean a monomial of
degree larger than one and “main effect” for monomials of degree one. For
proper use of the terminology, statistical interpretation and analysis of the
presence or absence of an interaction in the obtained model when dealing
with models for mixture designs, we refer to the caveats, comments and
solutions proposed in [10, 13, 8, 33, 26].

In Section 2 the mixture design is associated to the set of all homogeneous
polynomials whose zeros include the design points. For completeness with
respect to the current literature in algebraic statistics and design [17, 34] in
Section 2.2 an indicator function of a mixture design is defined as a suitable
ratio of polynomials.

In Section 3 we introduce a technology to retrieve supports for regression
models of the same degree identified by the mixture. The algorithm in
Section 3.1, which allows us to substitute some terms of the obtained model
support retaining identifiability, strongly resembles the algebraic FGLM and
Gröbner walk algorithms [15][12, Ch.8§5]. It proved to be very useful in
practice. Some typical model structures from the literature are considered
in Section 3.2.

Practical examples are collected in Section 4 where the theoretical re-
sults of the paper are applied to simplex lattice designs, simplex centroid
designs and axial designs. A brief exemplifying analysis of two data sets is
performed.

2 The cone of a mixture design

The design space of a mixture design in k factors with n distinct points,
D ⊂ Rk, is a regular (k − 1)-dimensional simplex. For this reason we can
see D alternatively in the affine space Rk or in the projective space Pk−1(R),
where every point is associated to a line through the origin. This leads us
naturally to identify uniquely D with the affine cone, CD ⊂ Rk, passing
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through the origin and D:

CD = {αd : d ∈ D and α ∈ R} ⊂ Rk

Recall that

i) two points p1 = (x1, . . . , xk) and p2 = (x′
1, . . . , x

′
k) in Rk are equivalent

if there exists λ ∈ R\{0} such that xi = λx′
i for i = 1, . . . , k, written

as p1 ∼ p2;

ii) the (k−1)-dimensional projective space over R is the set of equivalence
classes on Rk\{(0, . . . , 0)}, written as Pk−1(R) = (Rk\{(0, . . . , 0)})/ ∼;

iii) each p = (x1, . . . , xk) ∈ Rk\{(0, . . . , 0)}) defines a point in Pk−1(R)
and the xi are called the homogeneous coordinates of p.

Example 1 The cone of D1 = {(0, 1), (1, 0), (1/2, 1/2)} ⊂ R2 is CD1
=

{(0, a), (b, 0), (c, c) : a, b, c,∈ R} ⊂ R2, to which we can associate three
projective points. For example (0, 1), (1, 0), (1, 1) ∈ P1(R) are representative
of the points in D1 as well.

An analogous construction of CD2
for D2 = {(0, 0, 1), (0, 1, 0), (1, 0, 0),

(0, 1/2, 1/2), (1/2, 0, 1/2), (1/2, 1/2, 0), (1/3, 1/3, 1/3)} ⊂ R3 shows that
in the projective space D2 can be represented in P2(R) by a 23\{(0, 0, 0)}
structure with levels 0, 1: a fact we shall exploit in Section 4.

In this paper we study mixture designs with tools from computational
commutative algebra specialising the theory developed in [28] and [29] for
a general design. The first step in that theory is that any design D ⊂ Rk

is associated to the set of all polynomials whose zeros include the design
points, called the design ideal and written as Ideal(D).

In Appendix 7 we collect definitions and results from computational com-
mutative algebra we use. Here we report only few essential ones. R[x1, . . . , xk]
is the set of all polynomials in x1, . . . , xk indeterminates and with real coef-
ficients. A subset I ⊂ R[x1, . . . , xk] is a (polynomial) ideal if f + g ∈ I
and hf ∈ I for all f, g ∈ I and h ∈ R[x1, . . . , xk]. The Hilbert ba-
sis theorem states that every polynomial ideal is finitely generated, where
G = {g1, . . . , gq} ∈ R[x1, . . . , xk] generates I if for all f ∈ I there ex-
ist s1, . . . , sq ∈ R[x1, . . . , xk] such that f =

∑q
i=1 sigi. We write I =

〈g1, . . . , gq〉. There exist special generating sets called Gröbner bases which
depend on a term-ordering (see Appendix 7.1). The computation of a
Gröbner basis from a generating set is considered here an “elementary”
operation. The design ideal is an ideal [28, 29].
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Example 2

Ideal(D1) = {s1(x1 + x2 − 1) + s2x1(x1 − 1/2)(x1 − 1) : s1, s2 ∈ R[x1, x2]}

and x1 + x2 − 1 and x1(x1 − 1/2)(x1 − 1) form a generator set of Ideal(D1).

If D is a mixture design, then the polynomial x1 + . . . + xk − 1 always
vanishes on the design points and thus belongs to Ideal(D) [18, 27]. If the
design lies on a face of the simplex then there will be a set A ⊆ {1, . . . , k} for
which

∑

i∈A xi − 1 ∈ Ideal(D). As we shall show in Section 3, this restricts
unduly the class of regression models for D retrieved with the algebraic
statistics methodology and we need a more general theory. The idea is
to exploit the representation of a mixture design as a cone. This will have
consequences on the structure of the regression models we can associate to D,
thus extending the general theory of modelling and confounding particularly
useful for non-regular fractions of a design as shown for example in [28, 29].

The notion of a polynomial vanishing on a projective point is rather
delicate. Indeed, the polynomial x2 − x2

3 vanishes on p = (1, 4, 2). The
points p and q = (2, 8, 4) = 2p are the same point of P2(R), but x2 −
x2

3 does not vanish in q. A way to overcome this problem is to use only
homogeneous polynomials. A polynomial is homogeneous if the total degree
(sum of exponents) of each one of its terms (or power products) is the same.
For example, x1x2 − x2

3 is a homogeneous polynomial of degree 2 which
vanishes on (λ, 4λ, 2λ) for all λ ∈ R.

Definition 1 The cone ideal of a mixture design is

Ideal(CD) = {f ∈ R[x1 . . . , xk] : f(d) = 0 for all d ∈ CD}

that is the ideal of polynomials vanishing on every point of the cone of the
design.

It is easy to show that Ideal(CD) is an ideal. Let I, J ⊂ R[x1 . . . , xk] be
two ideals generated by the sets GI and GJ respectively. Then I + J =
{f + g : f ∈ I and g ∈ J} is an ideal and GI ∪ GJ is a generator set of I +
J . A polynomial ideal is said to be homogeneous if for each f ∈ I the
homogeneous components of f are in I as well, equivalently if I admits a
generator set formed by homogeneous polynomials [11, page 371].

Theorem 1 For a mixture design D
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1. Ideal(CD) = 〈f ∈ R[x1, . . . , xk] : f is homogeneous and f(d) = 0 for all d ∈
D〉, that is the largest homogeneous ideal in R[x1, . . . , xk] vanishing on
all the points of D.

2. Ideal(D) = Ideal(CD)+〈
∑k

i=1 xi−1〉, that is a polynomial vanishing on
D can be written as combination of homogeneous components vanishing
on D and the sum to one condition. If G is a generator set of Ideal(CD)
then G and

∑k
i=1 xi − 1 form a generator set of Ideal(D).

Proof. 1. Let f ∈ I = {f ∈ R[x1, . . . , xk] : f is homogeneous and f(d) =
0 for all d ∈ D}. As f is homogeneous then f(αd) = 0 for all α ∈ R and
thus f(d) = 0 for d ∈ CD. Hence I ⊆ Ideal(CD).

Now we show that Ideal(CD) is homogeneous. If f ∈ R[x1, . . . , xk] and
f(d) = 0 on the cone then as D ⊂ CD f(d) = 0 on D. For any polynomial
f = fs + fs−1 + · · · + f0 with fi homogeneous polynomials of degree i. For
α ∈ R and d ∈ Rk

f(αd) = fs(αd) + fs−1(αd) + · · · + f0(αd)

= αsfs(d) + αs−1fs−1(d) + · · · + α0f0(d) (1)

If we take f vanishing on CD then we have f(αd) = 0 for all α ∈ R. Equation
(1) is a polynomial of degree s in α. As it is zero for infinitely many α’s
then its coefficients are zero that is fs(d) = . . . = f0(d) in particular for all
d ∈ D. As by construction fi is homogeneous, fj(d) = 0 for all d in the
cone. Clearly Ideal(CD) ⊆ I.

2. Clearly Ideal(CD) ( Ideal(D) ⊂ R[x1, . . . , xk] and 〈
∑k

i=1 xi − 1〉 (

Ideal(D) ⊂ R[x1, . . . , xk]. Also I, J ⊂ I + J .
Let g ∈ Ideal(D). Then there exists s ∈ Z≥0 such that g =

∑s
i=0 fi

and the fi’s are homogeneous polynomials of total degree i. As
∑k

i=1 xi −
1 ∈ Ideal(D) we set

∑s
i=0 fi(x1 + · · · + xk)

s−i = ghomo over D. Then, for
l = x1 + · · · + xk

g − ghomo = g −
∑s

i=0 fi(x1 + · · · + xk)
s−i = g −

∑s
i=0 fil

s−i

= (1 − l)
(

fs−1 + (1 + l)fs−2 + · · · + (1 + l + · · · + ls−1)f0

)

= (1 − l)f̄

and we have g−ghomo = f̄(1−l). But both g and (1−l)f̄ are in Ideal(D), thus
ghomo ∈ Ideal(D). By 1. ghomo ∈ Ideal(CD) and thus ghomo ∈ Ideal(CD) +
〈l − 1〉 and the the proof is concluded.

Example 3 Ideal(CD1
) = 〈x2

1x2−x1x
2
2〉 and Ideal(CD2

) = 〈x2
1x2−x1x

2
2, x

2
1x3−

x1x
2
3, x

2
3x2 − x3x

2
2〉. For D3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1/3, 1/3, 1/3)},

Ideal(CD3
) = 〈x1x3 − x2x3, x1x2 − x2x3〉.
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Theorem 1 states explicitly a constructive method to obtain a generating
set of Ideal(D) from a generating set of Ideal(CD) by just adjoining the sum-
to-one condition. Moreover we have the following theorem. A term ordering
is graded if xα < xβ whenever

∑k
i=1 αi <

∑k
i=1 βi.

Theorem 2 Let D be a mixture design and CD its cone. Let G = {l −
1, g1, . . . , gr} be a Gröbner basis of Ideal(D) with respect to a graded term
ordering τ . Then {h(g1), . . . , h(gr)} is a generating set of Ideal(CD), where
h(g) is the homogeneization of g with respect to l =

∑k
i=1 xi.

Proof. Let f ∈ Ideal(D) be a homogeneous polynomial of degree s. From
the defining property of a Gröbner basis, there exist q, q1, . . . , qr ∈ R[x1, . . . , xk]
such that f = q(l−1)+q1g1+. . .+qrgr with deg q ≤ s−1 and δi = deg(qigi) ≤
s. Homogeneousing we obtain h(f) = h(q)h(l − 1) + ls−δ1h(q1)h(g1) +
. . . + ls−δrh(qr)h(gr) and of course h(l − 1) = l − l = 0. Thus h(f) =
∑r

i=1 ls−δih(qi)h(gi). But f is homogeneous and so f = h(f) and f =
∑r

i=1 ls−δih(qi)h(gi). The claim now follows from Theorem 1.
The generating set of the cone ideal obtained in Theorem 2 might not

be a Gröbner basis because we do not control the leading term of h(gi). The
next example shows that if G is not a Gröbner basis the thesis of Theorem
2 might not hold.

Example 4 For D = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1/2, 1/2, 0),(1/2, 0, 1/2),
(0, 1/2, 1/2)} Ideal(D) = 〈x1 + x2 + x3 − 1, xi(xi − 1/2)(xi − 1) : i = 1, 2, 3〉
and the four listed polynomials form a generator set. For l = x1+x2+x3 the
ideal I = 〈xi(xi − 1/2l)(xi − l) : i = 1, 2, 3〉 ( Ideal(D) does not contain the
polynomial x2

2x3−x2x
2
3, which instead belongs to Ideal(D) and to Ideal(CD).

For a simple test to check ideal membership see [11] and [28].

In some computer algebra packages macros are implemented to com-
pute generator sets of Ideal(D) and Ideal(CD) directly from the coordi-
nates of the points in D. In CoCoA they are called IdealOfPoints and
IdealOfProjectivePoints, respectively. See [1]. For αi ∈ R>0, i =
0, . . . , k, Ideal(CD)+〈

∑k
i=1 αixi−α0〉 cuts the design cone not at the standard

simplex. It returns another affine representative of the projective represen-
tation of the mixture design.

2.1 Notes on confounding for mixture designs

In [29] the authors use polynomials in Ideal(D) to deduce (generalised) con-
founding relations between functions defined over a design D. For exam-
ple x1 + x2 − 1 ∈ Ideal(D1) testifies that the polynomial functions x1 and
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1 − x2 take the same values over D1, likewise x2
1x2 = x1x

2
2 over D1 as

x2
1x2 − x1x

2
2 ∈ Ideal(D1). Indeed for all d ∈ D1, (x2

1x2)(d) = (x1x
2
2)(d) = 0.

In particular a Gröbner basis of Ideal(D1) with respect to some term order-
ing (see Appendix 7.1) gives a set of confounding relations which is sufficient
to deduce all the others. Usually in classical experimental design theory this
information is encoded in the alias table for the design, if it exists.

The confounding relationships
∑

i xi − 1 belongs to Ideal(D) for every
mixture design D [18, 27], thus confounding linear terms with the intercept.
In particular the classical algebraic approach [28, 29] leads to the study of
confounding relationships in a smaller set of factors and only when the sum-
to-one condition is considered the remaining factors are reintroduced in the
analysis.

Example 5 For the design D containing the corner points of the simplex
in Rk, for any corner point d and α ∈ Zk

≥0

(xα)(d) =







1 if α = (0, . . . , 0)
(xi)(d) if α = (0, . . . , αi, 0, . . . , 0)
0 if at least two components of α are not zero

In Section 4 we study some classes of mixture designs and discuss meth-
ods to construct classes of fractions by describing the generating polyno-
mials of the cone of the fraction. We use mainly symmetric polynomials
[11, page 311], that are invariant under permutations of the indeterminates.
They lead to symmetric mixture designs which have interesting statistical
properties like equal variance estimates for main factors and for interaction
terms where reasonable [23]. They are considered to be particularly useful
in the first stage of an experiment when the design region needs to be fairly
screened.

2.2 Indicator function

The authors of [16, 17, 34] identify a fraction F of a larger design D, typically
taken to be a full factorial design, with a polynomial indicator function SF .
They show how to read properties of the fraction from the coefficients of
SF . Thus SF − 1 ∈ Ideal(F), S2

F −SF ∈ Ideal(F) and SF can be computed
from the CoCoA function SeparatorsOfPoints [1].

Example 6 For D3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1/3, 1/3, 1/3)}, SeparatorsOfPoints
returns four polynomials

3/2x2
3 −1/2x3, 3/2x2

3 +x2−3/2x3, 3/2x2
3−x2−5/2x3 +1, −9/2x2

3 +9/2x3
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each vanishing on three of the four points in D3. The sum of the last two
polynomials, 3x2

3+x2−2x3, is an indicator function of F = {(0, 0, 1), (0, 1, 0)} (

D3.

Analogously for a mixture design D the CoCoA macro SeparatorsOfProjectivePoints
returns a set of homogeneous polynomials each one vanishing on all points
of D except one.

Example 7 Ideal(CF ) = 〈x1x3 − x2x3, x1x2 − x2x3, x
2
2x3 − x2x

2
3〉 and the

short CoCoA script

Use T::=Q[x[1..3]];

D:=[[0,0,1],[0,1,0],[1,0,0],[1/3,1/3,1/3]];

S:=SeparatorsOfProjectivePoints(D);

Foreach Element In S Do PrintLn Element; EndForeach;

S[1]+S[2];

gives
−x2x3 + x2

3, x2
2 − x2x3, x2

1 − x2x3, 9x2x3

Note again that separators of single points are not functions in the pro-
jective space, for example the value of (9x2x3)(d) for d ∈ P2(R) depends on
the representative of d as projective point: for (1/3, 1/3, 1/3) (9x2x3)(d) = 1
and for (1, 1, 1) (9x2x3)(d) = 9. Thus we cannot sum separators of single
points as in the affine case and obtain an indicator polynomial function.
We resort to ratio of polynomials, a typical thing to do when working in
projective spaces.

Theorem 3 An indicator function for F ⊂ D, where D is a mixture design,
is the rational polynomial function

SF =
∑

p∈F

Sp

(
∑

i xi)sp

where Sp is a homogeneous polynomial of total degree sp such that Sp(d) = 1
if d = p and 0 if d ∈ D \ {p}.

Proof. In [1] it is shown that Sp exists for all p. For α ∈ R and d ∈ D,

SF (αd) =
∑

p∈F

Sp(αd)

(
∑

i xi)sp(αd)

=
∑

p∈F

αspSp(d)

α
sp (

∑

i xi)sp(d)

=
∑

p∈F

Sp(d)

(
∑

i xi)sp(d)
= SF (d) =

{

1 if d ∈ F
0 otherwise
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Non significant differences occur if Sp takes any non zero value a other
than 1 and the normalization is by a(

∑

i xi)
sp or if we normalise each Sp by

(
∑

i αixi/
∑

i αipi)
sp , with αi ∈ R>0 and p = (p1, . . . , pk) ∈ F .

3 Supports for regression models

In [28] and [29] it is noted that for any design D the set of real functions
over D is a R-vector space and it is isomorphic to the coordinate ring R[D].
In turn, R[D] is isomorphic to the quotient ring R[x1, . . . , xk]/ Ideal(D).
The quotient space is a “computable algebraic object”, for example using
Gröbner bases. This makes it an important tool to discuss functions over a
design.

For definition and properties of a coordinate ring over a variety see [11,
Ch.5], for R[D] see [28, Ch.2§10,Ch.5] and [12]. See also Appendix 7.1. Here
we report only the essential ones. The quotient ring R[x1, . . . , xk]/ Ideal(D)
is the set of equivalence classes for the equivalence relationship f ∼ g if
f − g ∈ Ideal(D). Special monomial R-vector space bases of the quotient
ring, called standard monomials, can be obtained from particular generating
sets of Ideal(D), namely Gröbner bases and depend on a term ordering (see
Appendix 7). The main steps of the computation are as follows.

1. Determine a Gröbner basis of Ideal(D) with respect to a term ordering,
for example a Gröbner basis of Ideal(D1) is {x3

1 − 3/2x2
1 + 1/2x1, x1 +

x2 − 1} with respect to any term ordering for which x2 > x1;

2. compute the leading term of each element of the Gröbner basis, for
the example x3

1 and x2;

3. determine all monomials which are not divisible by the leading terms,
for the example 1, x1 and x2

1 (see Figure 1a).

Note that any standard monomial set includes the intercept. Thus for a
mixture design D, this procedure returns supports for slack models [10, page
334]. These can be homogenized to return the support for a homogeneous
regression model [18]. Models returned in Step 3. above have a hierarchical
structure in that if they include the monomial xα then by Step 3. above
they also include xβ for all β ≤ α component wise. A set of monomials with
this property is called an order ideal. Standard monomials can be used as
support for hierarchical polynomial models [25], [24]. The CoCoA macros
QuotientBasis performs the algorithm above.
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×
×

x1

x2

0 1 2 3

1

a)

×

x1

x2

b)

Figure 1: Standard monomials for Ideal(D1) and Ideal(CD1
). Both cases

were computed with a term order in which x2 > x1.

To overcome the lack of symmetry in the factors for mixture designs at
the core of the procedure above, we propose to adapt it to the homoge-
neous component of the design ideal, that is to work directly over the cone
ideal. There are two difficulties. First, R[x1, . . . , xk]/ Ideal(CD) has infinite
dimension. Figure 1b) shows this for Ideal(CD1

). Indeed x2
1x2−x1x

2
2 is a uni-

versal Gröbner bases with leading term x1x
2
2 for any any term ordering for

which x2 > x1. Second, usually a polynomial does not define a polynomial
function on Pk(R) equivalently on CD (see the comment before Definition
1). One classical computational commutative algebra remedy to address the
first problem considers only monomials of a certain degree say s ∈ Z≥0. The
basic algebraic definitions and results are reported in Appendices 7.2 and
7.4. Below we just apply them. For a mixture design D

1. determine a Gröbner basis of Ideal(CD) with respect to a term ordering,
for Ideal(CD1

) it is {x1x
2
2 − x2

1x2};

2. compute the leading terms of each element of the Gröbner basis, for
the example x1x

2
2 for term orderings for which x2 > x1;

3. consider all monomials of a sufficiently large total degree, for exam-
ple in R[x1, x2] there are four monomials of degree s = 3, namely
x3

1, x
2
1x2, x1x

2
2, x

3
2;

4. determine all monomials of degree s not divisible by the leading terms
of the Gröbner basis, in the example x3

1, x
2
1x2, x

3
2.

These monomials form a vector space basis for the quotient space R[x1, . . . , xk]/ Ideal(D)
and it is a subset of the set of standard monomials for the cone ideal. We
refer to it with the term degree s standard monomials. As in the affine case
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it can be used to construct the support for regression models for D. The
correctness of this statement follows directly from Theorem 5. Appendix 8
includes CoCoA macros to perform this procedure.

Lemma 4 Let D be a mixture design and s ∈ Z≥0 large enough. The R

vector space R[x1, . . . , xk]≤s/ Ideal(D)≤s has a basis [g1], . . . , [gn] where rep-
resentatives of the equivalence classes can be chosen to be homogeneous of
degree s.

Proof. Let [f ] be an element in R[x1, . . . , xk]≤s/ Ideal(D)≤s. We want to
prove that there exists g ∈ [f ] such that g is homogeneous of degree s. Let
l = x1 + . . .+xk and let f = ft + . . .+f0 where fj is homogeneous of degree
j and t ≤ s. Let

g = ls−t
(

ft + lft−1 + . . . + ltf0

)

Then,

g − f = ls−t
(

ft + lft−1 + . . . + ltf0

)

−
(

ft + lft−1 + . . . + ltf0

)

+
(

ft + lft−1 + . . . + ltf0

)

− (ft + . . . + f0)
= (ls−t − 1)

(

ft + lft−1 + . . . + ltf0

)

+(l − 1)ft−1 + (l2 − 1)ft−2 + . . . + (lt − 1)f0

= (l − 1)
[

(ls−t−1 + . . . + 1)
(

ft + lft−1 + . . . + ltf0

)

+ ft−1 + (l + 1)ft−2 + . . . + (lt−1 + . . . + 1)f0

]

But l − 1 ∈ Ideal(D) and so g ∈ [f ]. An upper bound for s is the number of
points in D.

Theorem 5 Let D be a mixture design. Then

dimR[x1, . . . , xk]s/Ideal(CD)s = dim R[x1, . . . , xk]≤s/Ideal(D)≤s

If moreover D has n distinct points and s is sufficiently large then the di-
mensions equal n.

Proof. Let [f1], . . . , [fp] be a basis of the R-vector space R[x1, . . . , xk]≤s/Ideal(D)≤s

and let g1, . . . , gp be the degree s homogeneous polynomials constructed in
Lemma 4. We want to prove that [g1], . . . , [gp] is a basis of R[x1, . . . , xk]s/Ideal(CD)s.
They are linearly independent: assume there exist λ1, . . . , λp ∈ R such that

λ1[g1] + . . . + λp[gp] = 0

Then λ1g1+. . .+λpgp ∈ Ideal(CD) ⊆ Ideal(D) and so λ1[g1]+. . .+λp[gp] = 0
in R[x1, . . . , xk]≤s/Ideal(D)≤s. Hence, λ1[f1] + . . . + λp[fp] = 0 and so λ1 =
. . . = λp = 0 because [f1], . . . , [fp] is a basis of R[x1, . . . , xk]≤s/Ideal(D)≤s.
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Let g ∈ R[x1, . . . , xk]s. Thus, there exist λ1, . . . , λp ∈ R such that

[g] = λ1[f1] + . . . + λp[fp] = λ1[g1] + . . . + λp[gp]

and so [g1], . . . , [gp] are generators of R[x1, . . . , xk]s/Ideal(CD)s. As a conse-
quence, we get the claim. If s is sufficiently large then dim R[x1, . . . , xk]≤s/Ideal(D)≤s =
n (see e.g. [29]) and thus p = n.

A monomial basis of degree s can be computed with the Singular macro
kbase. The corresponding CoCoA macro is in Appendix 8.

Example 8 The Gröbner basis of the homogeneous ideal for D3 = {(0, 0, 1),
(0, 1, 0), (1, 0, 0), (1/3, 1/3, 1/3)} and for any ordering for which x1 > x2 >
x3 is {x1x3 − x2x3, x1x2 − x2x3, x

2
2x3 − x2x

2
3}. The leading terms are x1x3,

x1x2, x2
2x3 respectively. For s = 3 the standard monomials are x3

1, x
3
2, x

3
3, x

2
3x2:

the largest possible number of terms we can identify with a four point de-
sign. For s = 1 we obtained the support for a non saturated model x1, x2, x3.
Below we list the degree s standard monomials for all values of s.

s list of monomials of degree s degree s standard monomials

0 1 1
1 x1, x2, x3 x1, x2, x3

2 x2
1, x1x2, x

2
2, x1x3, x2x3, x

2
3 x2

1, x
2
2, x2x3, x

2
3

3 x3
1, x

2
1x2, x1x

2
2, x

3
2, x

2
1x3, x3

1, x
3
2, x2x

2
3, x

3
3

x1x2x3, x
2
2x3, x1x

2
3, x2x

2
3, x

3
3

s > 3 xs
1, x

s−1
1 x2, x

s−2
1 x2

2, . . . , x
s
3 xs

1, x
s
2, x2x

s−1
3 , xs

3

Example 9 The slack model obtained for D3 with respect to any ordering
with x1 > x2 > x3 has support 1, x3, x

2
3, x2. By homogenising it following

[18] we obtain x3
1, x3x

2
1, x

2
3x1, x2x

2
1, which is the support of a saturated ho-

mogeneous model of total degree 3 but different from the degree 3 model in
Example 8.

Note the following things. i) For s ≥ n the procedure returns a degree
s saturated support model. Example 8 shows that smaller values of s are
possible, namely s = 2, 3 but the returned model support may not be sat-
urated. ii) Equivalently for s large enough, the design/model matrix for
D and the degree s standard monomials is invertible, and for any s it is
full rank. iii) These standard monomials are not usually retrieved with the
homogenization of a slack model as Example 9 shows (cf. [28]). iv) Different
identifiable models can be obtained for a degree s standard monomial set as
shown in Section 3.1.
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3.1 Changing model

Often we want to substitute standard monomials obtained with the method-
ology of Section 3 or any other monomial basis of the quotient space, with
monomials from a set δ that for some reason we would prefer to consider
for the construction of the final regression model. That is, the new set
should be a basis of the quotient space by Ideal(D) expressed with some
representatives taken from δ. Next we present an algorithm to perform such
substitution.

For a mixture design D let SMτ,s(CD) be the set of standard monomials
of degree s with respect to a term ordering τ computed e.g. with the pro-
cedure of Section 3. We simplify the notation SMτ,s(CD) to SMs. It seems
reasonable to start with a monomial set of the same size as the design, thus
we take s sufficiently large. Set l =

∑k
i=1 xi and let G be a Gröbner basis

of Ideal(CD) with respect to τ .

Example 10 Our running example has D = {(1/4, 1/4, 1/2),(1/8, 1/8, 3/4),
(1/3, 1/3, 1/3) ,(1/5, 1/5, 3/5),(0, 0, 1)}, s = 4, τ is the default term ordering
in CoCoA and δ = {x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3} a Scheffé type model
[31, page 237], [30], [10, page 334]. Thus

SMs = {x4
2, x

3
2x3, x

2
2x

2
3, x2x

3
3, x

4
3}.

Step 0. η := SMs is the current monomial basis of R[x1, . . . , xk]/ Ideal(D),
W := ∅ set of rewriting rules, δ′ := δ.

Step 1. Chose a monomial w ∈ δ′ and let deg(w) be its total degree and update
δ′ := δ′ \ {w}. Compute the normal form of wls−deg(w) with respect to
G

NF(wls−deg(w)) =
∑

xα∈SMs
θαxα for θα ∈ R

=
∑

xα∈η θ′αxα

These equalities are valid over D. The second one follows by substi-
tuting the rules in W where necessary (this can be cumbersome in
practice).

Step 2. Chose a term xβ in
∑

xα∈η θ′αxα for which θ′β 6= 0 and xβ 6∈ δ, equiva-

lently xβ ∈ SMs. If there is not such β then repeat Step 2.

Step 3. Update η := η \ {xβ} ∪ {w}. In each g ∈ W substitute xβ with
1
θ′
β

(w −
∑

xα∈η\{xβ} θ′αxα) and get g′. Update W = {xβ ≡ 1
θ′
β

(w −
∑

xα∈η\{xβ} θ′αxα), g′ : g ∈ W}.

14



Step 4. Repeat from Step 2. until δ′ = ∅.

This is a variation of the algorithm in [4] where the set δ is the union of
all the stairs and their border sets. A monomial set is a stair if it contains
the divisors of any of its monomials. That is stair is another name for
order ideal. The border of a monomial set is computed by multiplying any
monomial in the set by xi for any i and excluding monomials already in the
set. The starting monomial set used in [4], what we call η, is a stair as well.
The correctness of the above algorithm is proved as in [4]. Its termination
is guaranteed by the updating of δ′ in Step 1. and the finiteness of δ. While
in [4] the algorithm terminates when η contains n monomials which are
linearly independent and form an order ideal according to the chosen term
ordering. In particular the algorithm in [4] returns a support for a saturated
hierarchical model. In the introduction we already mentioned the similarity
with the algorithms in [15] and [12, Ch.8§5].

Example 11 For Example 10 the basic steps of the algorithm are as follows.
Step 1. We chose terms in δ in the order they are presented left-to-right

in Example 10. Thus w = x1 of degree 1 and for (x1 + x2 + x3)
3x1

NF(x1l
3) = 8x4

2 + 12x3
2x3 + 6x2

2x
2
3 + x2x

3
3

We update δ′ = δ′ \ {x1}. Steps 2. and 3. We select xβ = x4
2 and update

η = {x1, x
3
2x3, x

2
2x

2
3, x2x

3
3, x

4
3} and W = { x4

2 ≡ 1/8x1−12/8x3
2x3−3/4x2

2x
2
3−

1/8x2x
3
3}.

Steps 1. and 2. Next w = x2, update δ′ = δ′ \ {x2} and

NF(x2l
3) = 8x4

2 + 12x3
2x3 + 6x2

2x
2
3 + x2x

3
3 = x1

There is no element to select as, over D, x1 = x2 which is already included
in η.

Steps 1. to 3. We try the next monomial in δ, w = x3 which turns out it
can replace x3

2x3. We update η = {x1, x3, x
2
2x

2
3, x2x

3
3, x

4
3}, W = W ∪{x3

2x3 ≡
1/8x3 − 12/8x2

2x
2
3 − 3/4x2x

3
3 − x4

3} and δ′.
Steps 1. to 3. We update η substituting x2

2x
2
3 with x1x2 and add the

rule x2
2x

2
3 ≡ x1x2 − x2x

3
3 − 1/4x4

3 − 1/2x1 + 1/4x3 to W .
Steps 1. to 3. Now we substitute in η the monomial x2x

3
3 with x1x3

and add the rule x2x
3
3 ≡ −1/16x4

3 + 4/9x1x2 + 2/9x1x2 − 2/9x1 + 4/243x3

to W . The current η is {x1, x3, x1x2, x1x3, x
4
3}.

Steps 1. and 2. The next candidate in δ is x2x3. However, there is
no interchange possible as over D, x2x3 = x1x3 and x1x3 ∈ η. At this step
δ′ = {x1x2x3}.
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Steps 1. to 3. The final monomial to be removed from η is x4
3 which

is substituted with x1x2x3. We add the rule x4
3 ≡ 6x1x2x3 + 14/3x1x2 −

11/3x1x3 − 7/3x1 + 235/162x3.
Step 4. As now δ′ = ∅, the algorithm ends with the new model/representatives

of classes of the quotient space

η = {x1, x3, x1x2, x1x3, x1x2x3}

and with the updated set of rules W to express polynomials in terms of
monomials in η.

The starting monomial set does not need to be a SMs set but could be any
other set of monomials which are linearly independent over D. McConkey et
al. (2000) [23] describe the confounding relationship between the parameters
of the Scheffé quadratic model and the model with support xi and xi(1−xi),
i = 1, . . . , k used to describe the average deviation from linearity caused by
an individual component on mixing with the other components. The set
δ could then be this support and for w = xi(1 − xi) the normal form of
xi

∑

j 6=i xj is computed.

Example 12 For D3 a brother algorithm of the above can be summarised
in the following table, which expresses the inverse of the rewriting rules in
W , for δ = {xi, xi(1 − xi) : i = 1, 2, 3}, SMτ = {1, x2, x3, x

2
3} and any τ for

which x1 > x2 > x3

B =

1 x2 x3 x2
3

x1 1 −1 −1 0
x2 0 1 0 0
x3 0 0 1 0

x1(1 − x1) 0 0 1 −1
x2(1 − x2) 0 0 1 −1
x3(1 − x3) 0 0 1 −1

3.2 Rational models

Sets of linearly independent functions over D can be defined starting from
a R-vector space basis of R[x1, . . . , xk]/ Ideal(D) and considering ratios of
homogeneous polynomials of the same degree as in Theorem 3.

Example 13 To D1 and {x1, x2, x1x2} we associate the real valued rational
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functions f1 = x1

x1+x2
, f2 = x2

x1+x2
, f3 = x1x2

(x1+x2)2
where for example

x1

(x1+x2)
: CD1

−→ R

(0, 1) 7−→ 0
(1, 0) 7−→ 1
(1, 1) 7−→ 1/2

The design matrix of D1 and f1, f2, f3 is the same as that of D1 and x1, x2, x1x2.
As over D1 x1 + x2 = 1, there is no issue in considering a polynomial
model as usually done. If x1 + x2 = a for some a ∈ R \ {0} then a
mixture-amount model either in polynomial form [10, §7.9] or rational form
can be considered. The natural rational model which includes terms like
x1

a
can be written as a polynomial model by introducing two extra inde-

terminates say t = 1/a and the extra polynomial ta − 1. Namely, for
θ1, θ2, θ11 parameters, θ1x1 + θ2x2 + θ11x1x2 becomes the rational model
θ1

x1

(x1+x2)
+ θ2

x1

(x1+x2)
+ θ11

x1x2

(x1+x2)2
which in turns translates into the pair of

polynomials at − 1 and θ1x1 + θ2x2 + θ11x1x2a.

Sometimes in the literature xi is substituted with xi/(1 − xi). These
are defined over D and not over CD. Models with support {xi/(1 − xi), i ∈
A}, with A ⊆ {1, . . . , k}, are used as screening models [10]. Those are
possible if the corner points with component 1 at the coordinates in A are
not in the design. That is, if the normal form of the polynomials 1 − xi,
i ∈ A, are not in zero. Moreover there is not automatic guarantee that the
linear independence of a set {xα} implies the linear independence of the
“normalised” {xα/

∏k
i=1(1 − xi)

αi} with α = (α1, . . . , αk). See Section 5.2
for an example.

We could cut the design cone not with the standard simplex but with
another hyperplane

∑k
i=1 αixi = 1 with all αi > 0. In this case there is no

immediate interpretation of the points on the hyperplane as mixture design.
The only obvious explanation is as a fraction of a bigger experiment with a
linear generator.

Example 14 For D1 and x1, x2, x1x2 and the hyperplane αx1 +βx2, α, β >
0 the design matrix is

x1/(αx1 + βx2) x2/(αx1 + βx2) x1x2/(αx1 + βx2)
2

(0, y) 0 1/β 0
(x, 0) 1/α 0 0
(x, x) 1/(α + β) 1/(α + β) 1/(α + β)2
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Some mixture model forms include inverse terms to model extreme changes
in the response behaviour (see [10, Ch.6]) for example

k
∑

i=1

θixi +
k

∑

i=1

θ−ix
−1
i (2)

when no design point has a zero coordinate. A standard trick in algebra
allows us to transform the above in a polynomial model in two ways at
least. Set yi = x−1

i , to Ideal(D) add the polynomials yixi − 1, i = 1 . . . , k
and work in R[y1, . . . , yk, x1, . . . , xk] with a term ordering which eliminates
the yi indeterminates [11, page 72]. Alternatively, rewrite Model (2) as

y
k

∑

i=1

θixi +
k

∑

i=1

θ−i

k
∏

j 6=i,j=1

xj

and add the polynomial y
∏k

i=1 xi − 1. See Section 4.4 for other transforma-
tions.

4 Some symmetric mixture designs

We state a simple characteristic of mixture designs including corner points
and slack models, which is the algebraic representation of the well known
fact that contrasts of all linear effects with the intercept are identifiable by
such designs.

Lemma 6 Let D ⊂ Rk be the mixture design formed by the k corner points
of the simplex. Let τ be a term order for which xk > xi for all i. The (gen-
eralised) confounding relationship for a general interaction xα = xα1

1 . . . xαk

k ,
α ∈ Zk

≥0, is

NF(xα) =















1 −
∑k−1

i=1 xi if xα = xαk

k

xi if xα = xi, i = 1, . . . , k − 1
0 if α has at least two non zero components
1 if α = (0, . . . , 0).

(3)

Proof. A Gröbner basis for I(D) for any term ordering τ is given by {x1 +
. . .+xk −1, x2

1−x1, . . . , x
2
k −xk, x1 · · · xk}. Then for τ such that xk > xi for

all i, the standard monomial set is {1, x1, . . . , xk−1}. The result now follows
from Example 5.
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Theorem 7 Let D be a mixture that contains the corner points. Let τ be a
graded term ordering for which xk > xi for all i. Then

1. 1, x1, . . . , xk−1 are linearly independent monomials over D,

2. the coefficient of the term 1 in NF(xαk

k ) is 1,

3. the coefficient of the term 1 in NF(xα), with xα 6= xαk

k is 0.

Proof. For 1. observe that as the term ordering is graded than lower order
terms are favoured over higher order terms and then included in the support
for a slack model. It follows directly from the structure of the design/model
matrix involved

x1 . . . xk−1 1 · · ·
(1, 0, . . . , 0) 1 0 . . . 0 1 · · ·

... 0
(0, . . . , 1, 0) 0 0 . . . 1 1 · · ·
(0, . . . , 0, 1) 0 0 . . . 0 1 · · ·

...

For 2. let NF(xαk

k ) =
∑

xα θαxα where for a slack support no xα involves
xk and evaluate it at the corner point ck = (0, . . . , 0, 1). Deduce θ0 = 1.
Similarly 3. is proved.

4.1 Simplex lattice designs

In [30] Scheffé discusses uniformly spaced distributions of points on the
simplex to explore the whole factor space and calls them simplex lattice
designs. A {k,m} simplex lattice design is the intersection of the simplex in
Rk and the full factorial design in k factors and with the m + 1 uniformly
spaced levels {0, 1/m, . . . , 1}. The number of points in a {k,m} simplex
lattice design is

(

m+k−1
m

)

. Directly from the definition we deduce that for
the {k,m} simplex lattice design, D,

Ideal(D) = 〈
m
∏

j=0

(x1 − j/m), . . . ,

m
∏

j=0

(xk − j/m),

k
∑

i=1

xi − 1〉

where the first k polynomials are a simple generating set of the full factorial
design and the last one is the simplex condition. The simplex lattice design
is the set of points lying on the triangulation of the simplex obtained by
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drawing k sets of m−1 equidistant lines parallel to each edge of the simplex.
In this sense its correspondence to the full factorial design is clearest.

The set of R-vector space bases of the quotient space which correspond
to hierarchical regression model support are well classified and they are k as
Theorem 9 shows via Lemma 8. In [6] the set of order ideals identified by
a design and obtained via the procedure in Section 3 is called the algebraic
fan of the design.

Lemma 8 Let D be a {k,m} simplex lattice design. Then a basis of the
R-vector space R[x1, . . . , xk]≤s/ Ideal(D)≤s is

{1, x2, . . . , xk, x
2
2, x2x3, . . . , x

2
k, . . . , x

s′

2 , xs′

2 x3, . . . , x
s′

k }

where s′ = min{s,m}.

Proof. The claim is equivalent to the following: Ideal(CD)s = 0 for s ≤ m.
Indeed, x1 + . . . +xk − 1 ∈ Ideal(D) and we can choose the other generators
of Ideal(D) as homogenous polynomials in Ideal(CD) by Theorem 1. Thus,
let f ∈ Ideal(CD)m. We want to prove that f = 0 and we use induction
on k and m. The base of the induction is as follows. First, we analyse the
case {2,m}, for which D = {P0, . . . , Pm} with Pi = (i/m, (m − i)/m) for
i = 0, . . . ,m. But no homogeneous polynomial of degree m can have m + 1
distinct zeros, unless it is the null polynomial. Second, we consider hte case
{k, 1}. But this design was studied in Lemma 6.

Now, we consider the general case {k,m} and we assume that no polyno-
mial of degree m− 1 belongs to a {k,m− 1} design and that no polynomial
of degree m belongs to a {k−1,m} design. Let f ∈ Ideal(CD)m. We need to
show that f = 0. If we set xk = 0 then we obtain a {k−1,m} design D′ and
f(x1, . . . , xk−1, 0) ∈ Ideal(C ′

D)m. By inductive hypothesis, f(x1, . . . , xk−1, 0)
is the zero polynomial. Hence, f = xkf

′ for some f ′ suitable homogeneous
polynomial of degree m − 1. The affine transformation

Xi = m/(m − 1)xi i = 1, . . . , k − 1
Xk = −1/(m − 1) + m/(m1)xk

takes D \D′ into a {k,m − 1} simplex lattice design. Call it D ′′ and f ′ into
(

m
m−1

)m−1
f ′(X1, . . . , Xk−1) ∈ Ideal(D′′). By inductive hypothesis, we have

f ′ = 0 and so f − 0. As a consequence the Hilbert function of D is

dim R[x1, . . . , xk]≤s/ Ideal(D)≤0 = 1+

(

k

k − 1

)

+. . .+

(

s′ + k − 1

k − 1

)

=

(

s′ + k

k

)
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D Ideal(CD) Number of terms

{k, 1} Ideal(CD) = 〈xixj : i 6= j〉
(

k
2

)

{k, 2} Ideal(CD) = 〈x2
i xj − xix

2
j , xixjxl : i 6= j 6= l〉

(

k
2

)

+
(

k
3

)

{2,m} Ideal(CD) = 〈x1x2f(x1, x2)〉

Table 1: Ideal(CD) for some simplex lattice designs

where s′ −min{s,m} and the claim follows becasue
(

m+k
k

)

is the number of
points in D.

Theorem 9 The algebraic fan of a {k,m} simplex lattice design has size k.
Each one of its elements is the set of all monomials up to degree m in k − 1
factors.

Proof. In order to respect the order ideal property, not all factors can be
included in the presence of the intercept. Moreover no higher degree power
in any factor can be included as shown in Lemma 8.

Corollary 10 For no other polynomial, saturated and hierarchical model
structure and for the {k,m} simplex lattice design, D, the design/model
matrix is invertible.

Proof. Any other candidate model support would include the terms 1, x1, , . . . , xk,
but they all cannot be identified as x1 + . . . + xk = 1 over D.

By Theorem 1 Ideal(CD) is the radical of the ideal generated by the
homogeneous polynomials

∏m
j=0 (xi − lj/m) for i = 1, . . . , k and l =

∑k
i=1.

Table 4.1 reports a Gröbner basis for Ideal(CD) for various combinations of
k and m. It uses the following functions

g(x1, x2, w) =

w
∏

j=1

(x1 −
jx2

m − j
)(x1 − x2

m − j

j
) for w ∈ Z>0

f(x1, x2) =







1 if m = 1
g(x1, x2, w) if m odd, m 6= 1 and w = bm/2c
(x1 − x2)g(x1, x2, w) for m even and w = m/2 − 1
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Fractions of a {k,m} design, or of any other design, can be built by
confusing identifiable terms [28]. A systematic use of the Hilbert function
computes how many terms will be in any corresponding saturated model
support and, in the homogeneous case, how many terms of each degree can
be at most included. The relevant theory on Hilbert functions is in Appendix
7.4. Methods for identifying properties of the design and other information
relevant to statistical analysis directly from the ideal of a design, without
knowing the actual values of the design point, are under study (G. Pistone,
personal communication). In some cases the generator set of the fraction is
easy enough to allow the determination of the actual design points by direct
investigation.

Example 15 For the {4, 4} design, the binomials x1x2 −x3x4, x1x3 −x2x4

and x1x4−x2x3 added to the generator set of the ideal of either the design or
its cone, select the four corner points and the centroid point. The polynomial
(x1 − x2)(x3 − x4) selects the 15 points for which x1 = x2 or x3 = x4, see
Example 20. With respect to the default term ordering in CoCoA we obtain
the support for a slack model

1, x4, x
2
4, x

3
4, x

4
4, x3, x

2
3, x2, x

2
2, x

3
2, x

4
2, x3x4, x3x

2
4, x2x4, x

2
2x4

For the same fraction and term ordering, the support for a homogeneous
model of total degree s = 0, . . . , 4 is

s SMs

0 1
1 x1, x2, x3, x4

2 x2
1, x1x2, x

2
2, x2x3, x

2
3, x1x4, x2x4, x3x4, x

2
4

3 x3
1, x

2
1x2, x1x

2
2, x

3
2, x2x

2
3, x

3
3, x

2
2x4, x2x3x4, x

2
3x4, x1x

2
4, x2x

2
4, x3x

2
4, x

3
4

4 x4
1, x

3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2, x2x

3
3, x

4
3, x

3
3x4, x

2
2x

2
4, x2x3x

2
4, x

2
3x

2
4, x1x

3
4,

x2x
3
4, x3x

3
4, x

4
4

In Example 15 we had to take the saturation [] of the ideal generated
by the homogeneous polynomials

∏4
j=0(xi − lj/4), i = 1, 2, 3, 4 and (x1 −

x2)(x3 − x4) with respect to x1, x2, x3, x4. The saturation is an algebraic
operation which allows us to take the largest homogeneous ideal defined over
a variety, namely the ideal of the variety. It can be performed in e.g. CoCoA
with the command Saturation. We do not study it here any further.

4.2 Simplex centroid design

Simplex centroid design introduced in [31] are mixture designs in which
coordinates are zero or equal to each other. Thus in the k dimensional

22



simple centroid design there are k points of the form (1, 0, . . . , 0),
(

k
2

)

of

the form ( 1
2 , 1

2 , 0, . . . , 0),
(

k
3

)

of the form ( 1
3 , 1

3 , 1
3 , 0, . . . , 0), ..., and the point

( 1
k
, . . . , 1

k
): a total of

∑k
j=1

(

k
j

)

= 2k −1 points. The simplex centroid lattice
design in k-variables is the projection of the full factorial design with levels
0 and 1, on the simplex in Rk with respect to the origin. Again easily we
see that there are 2k − 1 points. We rename “2k design” the full factorial
design with levels 0 and 1 in k factors.

The ideal of the cone of D is easier to built than the affine ideal and it is

Ideal(CD) = 〈x2
i xj − xix

2
j : i, j = 1, . . . , k; i 6= j〉

The geometry of the design is easily deduced by inspection of the factorised
generators xixj(xi − xj): coordinates of a point in D are either 0 or equal
to each other. The generator set given for Ideal(CD) is a Gröbner basis
with respect to any term ordering (a universal Gröbner basis). The proof is
rather technical and a straightforward application of the S-polynomial test
[11, Ch.2§6Th.6].

Also the construction of Ideal(D) can be based on the derivation of the
simplex centroid design from the 2k design but it is more complicated and
involves techniques from elimination theory [11, Ch.3]. We may want to
do this when for some reasons we may not want to list the mixture point
coordinates. The steps of the constructions are as follows.

1. The ideal of the 2k design is 〈x2
i − xi : i = 1, . . . , k〉.

2. The origin can be removed by adjoining the polynomial given by
the sum of the elementary symmetric polynomials and 1 with alter-
nate signs [11, Ch.7§2]. The elementary symmetric polynomials in
R[x1, . . . , xk] are

σ1 = x1 + . . . + xk

...
σr =

∑

i1<i2<···<ir
xi1 . . . xir

...
σk = x1 . . . xk

3. The simplicial projection is performed in two steps [5]. Extend the
polynomial ring with the variables y1, . . . , yk and adjoin to the ideal
above the polynomials yi(

∑k
j=1 xj) − xi.
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4. Eliminate the indeterminates xi, i = 1, . . . , k from the ideal obtained
in 3. above [11, Ch.3] to get Ideal (D) which is now expressed in the
yi indeterminates.

Example 16 For k = 3 the affine ideal of a 23 design is 〈x2
1 − x1, x

2
2 −

x2, x
2
3 − x3〉. The origin is removed in with the ideal operation Ideal(23 \

{(0, 0, 0)}) = Ideal(23) + 〈σ3 − σ2 + σ1 − 1〉, where σ3 − σ2 + σ1 − 1 =
x1x2x3 −x1x2 −x1x3 −x2x3 +x1 +x2 +x3 − 1. Extend the polynomial ring
with y1, y2, y3 and create the following ideal:

Ideal(23 \ {(0, 0, 0)}) + 〈y1l − x1, y2l − x2, y3l − x3〉 ⊂ R[x1, x2, x3, y1, y2, y3],

where l = x1 + x2 + x3. Eliminate the variables x1, x2, x3, for instance with
the CoCoA macro Elim. This last step gives a set of generators for Ideal(D)

{y1 + y2 + y3 − 1, y3(y3 − 1)(2y3 − 1)(3y3 − 1), y2y3(y2 − y3),
y3(2y3 − 1)(2y2 + y3 − 1), y2(2y2 − 1)(y2 + 2y3 − 1)}

In [31] Scheffé considers two types of fractions of a simplex centroid. A
fraction D of the type in [31, §Appendix B] is built from a fraction of the
2k design, F not including the origin. In this case Ideal(D) is computed
starting the above algorithm with F and by homogenization as in Theorem
2 Ideal(CD) can be obtained. The ideal of a fraction of the other type
[31, §5] is built starting the algorithm from an echelon fraction of the 2k

design excluding the origin. For echelon designs see [28, §3.4]. Some of
the difficulties met by Scheffé [31, §Appendix B] in determining identifiably
models for these fractions are then overcome by the algebraic approach to
design, specifically the algorithms in Section 3.

Example 17 For 1 < m ≤ k let Fm be the fraction of a simplex centroid
design that includes all points with at most m non zero components, where
Fk is the full simplex centroid. Clearly, Fm satisfies the description in [31,
§5]. The number of points in Fm is

∑m
j=1

(

k
j

)

. The cone ideal for Fm is

〈x2
i xj − xix

2
j , xi1 · · · xim+1

: i 6= j and i1 6= · · · 6= im+1〉 if m > 1

which for m = 1 simplifies to 〈xixj : i 6= j〉. Differently from Example 15
the given generators are those of a saturated ideal.

Example 18 We compute the algebraic fan of D = Fm of Example 17 as
an example of the application of the techniques in Subsection 4.2. First note
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that the given generator set is a universal Gröbner basis. For m = 1 and any
term ordering, the leading term of xixj ∈ Ideal(CD) is the monomial itself.
Thus the homogeneous model has support {xs

1, x
s
2, . . . , x

s
k} for any s ∈ Z≥1.

If m > 1 the leading term of xi1xi2 · · · xim+1
is the monomial itself. For

a given initial term ordering on x1, . . . , xk, e.g. x1 < x2 < x3, the leading
term of x2

i xj − xix
2
j is x2

i xj if xi > xj and xix
2
j otherwise.

For a given initial term ordering there are
∑m

j=1

(

k
j

)

monomials of total

degree s not divisible by x2
i xj , with xi > xj and xi1xi2 · · · xim+1

, namely for
m = 3

{xs
i , x

s−1
i xj , x

s−2
i xjxl : i, j, l = 1, . . . , k, i < j < l}

4.3 Snee-Marquardt designs

In [32] simplex screening designs which are axial designs are presented and
now they are known as Snee-Marquardt designs. The Snee-Marquardt de-
sign in k factors, M, has the points

k vertices (1, 0, . . . , 0), . . . , (0, . . . , 0, 1)
1 centroid ( 1

k
, . . . , 1

k
)

k interior points ( k+1
2k

, 1
k
, . . . , 1

k
), . . . , ( 1

k
, . . . , 1

k
, k+1

2k
)

k end effects (0, 1
k−1 , . . . , 1

k−1), . . . , ( 1
k−1 , . . . , 1

k−1 , 0)

To construct Ideal(M) observe that each point in M lies on one axis
between a vertex ith and its opposite end effect point. Call Ai these axes,
i = 1, . . . , k. Note

Ideal(M∩Ai) = 〈g, fi, xj − xl : for j 6= i, l, j = 1, . . . , k〉

where g =
∑k

i=1 xi − 1 is the simplex condition, fi = xi(xi −
k+1
2k

)(xi − 1)

selects points with ith coordinate in
{

0, k+1
2k

, 1
}

, and the other polynomials
describe the ith axis. Note that the centroid point, c, is not included and
Ideal({c}) = 〈xi −

1
k

: i = 1, . . . , k〉.
Ideal(M) is obtained as the product of the Ideal(M∩Ai) and of Ideal({c})

[11, page 210], as M is the union of the points on the Ai axis and the centroid
point. A generator set is obtained as the set of all products of the generators
of all factor ideals [11, page 183]. Ideal(CM) is obtained by homogenising as
in previous examples.

The ideals of other types of axial designs are obtained by changing the
fi polynomials.
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4.4 Logistic transformations

Mixture designs in Rk+1 with no points on the boundary are obtained from
a full factorial designs in Rk applying the additive logistic transformation or
any other transformation that maps Rk into the interior of the simplex in one
higher dimension. Let F ⊂ Rk be a full factorial design with li1, . . . , lini

∈ R

levels for factor i. Then

Ideal(F) = 〈
ni
∏

j=1

(zi − lij), i = 1, . . . , k〉 ⊂ R[z1, . . . , zk] (4)

with the unique standard monomial set

{

zα : α ∈
k

∏

i=1

{0, 1, . . . , ni − 1}

}

(5)

The additive logistic transformation

xi =
ezi

1 +
∑k

j=1 ezj

for i = 1, . . . , k

xk+1 =
1

1 +
∑k

j=1 ezj

with inverse transformation

zi = ln
xi

xk+1
i = 1, . . . , k (6)

maps z = (z1, . . . , zk) ∈ F into a mixture point. Call G the collection of
such mixture points. Note that substitution of the inverse relationship in
(5) returns the support for a generalisation of the model (12.6) in [3].

Substitution of (6) in (4) and inclusion of the sum to one condition in
the xi space gives

Ideal(G) = 〈
k+1
∑

i=1

xi − 1,

ni
∏

j=1

(xi − xk+1e
lij ), i = 1, . . . , k〉 ⊂ R[x1, . . . , xk+1]

Direct application of the Buchberger algorithm [11, Ch.2§7] shows that
the polynomials above form a Gröbner basis for any term ordering for which
xk+1 > xi for all i = 1, . . . , k. The corresponding standard monomial set is
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directly linked with that of the full factorial in (5) and it gives the support
for a slack model identified by G

{

xα1

1 · · · xαk

k : αi ∈ {0, 1, . . . , ni − 1}, i = 1, . . . , k
}

(7)

As another example of the simplicity and elegance of the algebraic statis-
tics note that the recursive structure of the multiplicative logistic transfor-
mation

xi =
ezi

∏i
j=1 (1 + ezj )

for i = 1, . . . , k

xk+1 =
1

∏k
j=1 (1 + ezj )

with inverse

zi = ln
xi

1 − x1 − . . . − xi
i = 1, . . . , k

sending F into H is reflected in the recursive structure of the polynomials
in

Ideal(H) = 〈
k+1
∑

i=1

xi − 1,

ni
∏

j=1

(

xi(1 + elij ) − (1 − x1 − . . . − xi−1)e
lij

)

: i = 1, . . . , k〉

There exists at least a term ordering for which the leading terms of the
polynomials above are xni

i and for the sum to one condition it is xk+1.
The corresponding standard basis is again (7) while the substitution of the
inverse relationship in (5) returns the support for a generalisation of the
model (12.7) in [3].

5 Notes on the analysis of two data sets

5.1 A non regular mixture design

In [18] a non-regular mixture experiment with k = 8 and n = 18 is analyzed.
For the initial term ordering h ≺ g ≺ f ≺ e ≺ d ≺ c ≺ b ≺ a on the factors
a hierarchical slack model for the response is obtained. For the same initial
ordering the support for a homogeneous saturated model of degree 2 is

{df, ef, f 2, ag, bg, cg, dg, eg, fg, g2 , ah, bh, ch, dh, eh, fh, gh, h2}

Call it M1. Some of the terms in M1 are replaced by terms of different degree
using the algorithm in Subsection 3.1. In particular we may want to check
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Initial model Final terms R2 R2
A σ̂ × 102

M1 h2, bh, df, eh 0.977 0.958 6.1
M2 f, h, bh, fh 0.983 0.978 4.4

M3
ef

(1−e)(1−f) ,
g2

(1−g)2
, bh

(1−b)(1−h) , 0.974 0.964 5.7
ch

(1−c)(1−h) ,
gh

(1−g)(1−h)

Table 2: Results of model selection

if we can replace the quadratic terms of f 2, g2, h2 by the linear terms f, g, h.
Indeed that is the case and we have a (more) Scheffé (like) model, named
M2. We could as well have replaced some interactions terms with linear
terms, for example building models degree by degree using a suitable δ set
in the algorithm in Subsection 3.1. But we do not pursue this here. Finally,
following [10] we can construct a support for a third model where xixj in M1

are replaced by the rational terms xixj/((1 − xi)(1 − xj)). We refer to this
model as M3. Such a substitution with rational terms is not always possible.
But in this specific example it can be shown that the linear independence
of the terms in M3 over the design follows from the linear independence of
the terms in M1, because of the particular structure of the design.

For practical purposes, often a reduced model which fits reasonably well
to the data, is preferred to the saturated one. Table 5.1 shows the values of
the determination coefficient R2, the adjusted one R2

A and the residual error
σ̂ for the submodels obtained with backward stepwise regression. We use the
leaps function in the statistical software R; see http://cran.r-project.org.

5.2 A fraction of the simplex centroid design

A particular fraction of the simplex centroid with k factors is proposed
in [23] for screening for significant interactions. It exhibits some sort of
symmetries. The fraction is constructed by considering the k corners of the
simplex and those combinations with p non zero factors such that any pair
of non zero factors appears in the design just once. The fact that there are
many such fractions, obtained by relabelling of the factors is clearest from
the structure of the polynomial representation below. The fraction obtained
is of the echelon type described in [31, §5], and it is labeled {k|p} in [23].
In [23] it is noted that there are some values of k for which a {k|p} fraction
cannot be constructed. We focus our attention on the {9|3} analysed in [23].

28



To construct the cone ideal consider the polynomials

xi(xj − xk), xj(xi − xk), xk(xj − xi) : (i, j, k) ∈ A
xixj(xi − xj) : i 6= j, i, j ∈ {1, . . . , 9}

where the second set of polynomials give the simplex centroid design in 9 fac-
tors and the set A = {(1, 2, 3), (1, 4, 8), (2, 5, 9), (3, 6, 7), (4, 5, 6), (2, 4, 7), (3, 5, 8),
(1, 6, 9), (7, 8, 9), (1, 5, 7), (2, 6, 8), (3, 4, 9)} corresponds to the non-zero triplets
in our design. The centroid point (1, . . . , 1) still satisfies that set of equa-
tions. The algebraic operation to remove it is the colon of ideals [11, Ch.4§4]
and can be achieved by taking the saturation of the ideal generated by the
above polynomials and x1x2x3x4x5x6x7x8x9 or any other degree three mono-
mial with exponents not in A, for example x4x8x9, where the saturation is
with respect to the usual ideal Ideal(x1, . . . , x9). The Hilbert function (Ap-
pendix 7.4) of the cone ideal is

HFIdeal(CD)(s) =







1 if s = 0
9 if s = 1
21 if s ≥ 2

and thus we can construct a saturated homogeneous model of degree two.
For the default term ordering in CoCoA with x1 > . . . > x9 the support for
such a model is

{x2
1, x

2
2, x2x3, x

2
3, x

2
4, x4x7, x4x8, x4x9, x

2
5, x5x6, x5x7, x5x8, x5x9, x

2
6,

x6x7, x6x8, x6x9, x
2
7, x

2
8, x8x9, x

2
9}

(8)

A feature of a {k|p} fraction is that double interactions are completely con-
founded over the design in sets of size p, e.g. for the {9|3} fraction the
polynomials x1x2 − x1x3, x1x2 − x2x3 and x1x3 − x2x3 belong to Ideal(CD),
that is the column of a design/model involving the polynomials x1x2, x2x3

and x1x3 are equal. For this reason the analysis in [23, Eqn.(3)] includes
the sum x1x2 + x1x3 + x2x3.

The terms xi can replace the terms x2
i in Equation (8), e.g. by application

of the algorithm in Section 3.1. The design/model matrix for the obtained
model and the fraction {9|3} is a diagonal matrix of the form

[

I9 0

P 1
9I12

]

where Ik is the identity matrix of size k and P is the 12 × 9 matrix listing
the coordinates of the mixture points.
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7 Appendix

Reference texts for this section include [2, 11, 22].

7.1 Basic concepts

With R[x1, . . . , xk] we indicated the set of polynomials in x1, . . . , xk and
with real coefficients. The theory holds for whatever field K instead of R.
For us T k indicates the set of power products or monomials in R[x1, . . . , xk]:
xα = xα1

1 . . . xαk

k for αi ∈ Z≥0 and a polynomial f ∈ R[x1, . . . , xk] is a finite
sum f =

∑

α∈A aαxα with xα ∈ T k, aα ∈ R and for a finite subset A ⊂ Zk
≥0.

Definition 2 A set I ⊂ R[x1, . . . , xk] is a polynomial ideal if

1. f + g ∈ I for all f, g ∈ I

2. hf ∈ I for all h ∈ R[x1, . . . , xk] and f ∈ I.

We state the very deep property of polynomial ideals known as Hilbert
Basis Theorem [11, Ch.2§5]

Theorem 11 Every ideal I ⊆ R[x1, . . . , xk] is finitely generated, i.e. there
exist g1, . . . , gt ∈ I such that for every f ∈ I there exist h1, . . . , ht ∈
R[x1, . . . , xk] that satisfy f = h1g1 + · · · + htgt.

The polynomials g1, . . . , gt in the previous theorem form a set of generators
of I and we write I = 〈g1, . . . , gt〉. There are special sets of generators called
Gröbner bases. To introduce them we need the notion of term ordering. A
term ordering τ is a total order relation on T k that satisfies i) xα > 1 for all
non zero α ∈ Zk

≥0 and ii) if xα > xβ then xαxγ > xβxγ for all α, β, γ ∈ Zk
≥0.

Definition 3 Given a term ordering τ , the leading term of a polynomial
f ∈ R[x1, . . . , xk] is its largest term with respect to τ , and we write it as
LTτ (f).
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Given a term ordering τ and an ideal I, we consider the set of leading
terms of all polynomials in I: LTτ (I) = 〈LTτ (f) : f ∈ I〉. If g1, . . . , gt is a
generator set of an ideal I, in general LTτ (g1), . . . ,, LTτ (gt) is not a set of
generators of LTτ (I). This remark justifies the following definition.

Definition 4 Let I be an ideal, τ a term ordering and G = {g1, . . . , gt} ⊆ I.
G is a Gröbner basis (sometimes called a standard basis) of I if LTτ (I) is
generated by 〈LTτ (g) : g ∈ G〉.

Theorem 12 For every ideal I and term ordering τ there exist finite Gröbner
bases of I.

Definition 5 Let r =
∑

α∈A aαxα be a polynomial, τ a term ordering and
I be an ideal. r is in normal form w.r.t. I and τ if xα 6∈ LTτ (I) for all
α inA.

The following result holds.

Proposition 1 Let τ be a term ordering, I an ideal and let G = {g1, . . . , gt}
be a Gröbner basis of I w.r.t. τ . For every polynomial f ∈ R[x1, . . . , xk]
there exists a unique r ∈ R[x1, . . . , xk] in normal form and h1, . . . , ht ∈
R[x1, . . . , xk] such that f = h1g1 + · · ·+ htgt + r. Furthermore, r = 0 if and
only if f ∈ I.

Given an ideal I, we can consider the quotient ring R[x1, . . . , xk]/I whose
elements are the equivalence classes [f ] of the relation f ∼ g if f−g ∈ I. It is
easy to prove that if r is the normal form of f w.r.t. I and τ , then [f ] = [r]
and so the elements of R[x1, . . . , xk]/I (are represented) by polynomials
obtained as combination of terms not in LTτ (I). The set SMτ (I) = T k \
LTτ (I) is called the set of the standard monomials of I w.r.t. τ . As R-
vector spaces, R[x1, . . . , xk]/I is isomorphic to R[x1, . . . , xk]/LTτ (I) and so
it is isomorphic to the vector space spanned by SMτ (I) over R. The Singular
macro kbasis returns SMτ (I) for an ideal of points.

7.2 Affine Hilbert function for ideals

For s ∈ Z≥0 let R[x1, . . . , xk]≤s = Span(xα ∈ T k :
∑k

i=1 αi ≤ s). For an
ideal I ⊂ R[x1, . . . , xk], let I≤s = I ∩ R[x1, . . . , xk]≤s. As R[x1, . . . , xk]≤s

is a R-vector space of dimension
(

k+s
s

)

and I≤s is a subvector space of
R[x1, . . . , xk]≤s, we can define the affine Hilbert function of I as

aHFI(s) = dim R[x1, . . . , xk]≤s/I≤s = dim R[x1, . . . , xk]≤s − dim I≤s.
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There exists s0 called the index of regularity of I such that for all s ≥ s0
aHFI(s) is a polynomial with integer coefficients. It is called the affine
Hilbert polynomial of I and denoted as aHPI(s). That is

aHPI(s) =
k

∑

i=0

bi

(

s

k − i

)

with bi ∈ Z≥0 and bi > 0. The following theorem gives the affine Hilbert
function for the design ideal I(D).

Theorem 13 Let I(D) be the ideal generated by a design D with n distinct
points. Then for s ≥ n, aHFI(D)(s) = aHPI(D)(s) = n.

Proof. This is in [11, Ex.10,Ch.9§4].
The Hilbert function counts the monomials that are not in I(D); this

set of monomials is precisely the set of standard monomials as described in
Subsection 7.1. As aHFI(D)(s) is a constant, we retrieve the standard result
dim R[x1, . . . , xk]/I = n.

A term ordering τ is graded if xα is larger than xβ whenever
∑k

i=1 αi >
∑k

i=1 βi. Let τ be a graded term ordering, then for all s ∈ Z≥0

aHFI(s) = # (SMτ (I) ∩ R[x1, . . . , xk]≤s)

where #A is the size of the set A.

7.3 Homogenising a mixture ideal

A key point in this paper is the study of mixture designs through cone ideals,
namely Ideal(CD) ⊂ R[x1, . . . , xk] for a mixture design D. As mentioned
in the main text, there are macros e.g. IdealOfProjectivePoints which
construct a generator set for Ideal(CD) from the coordinates of D. Next we
outline the basic construction of Ideal(CD) which can be performed in any
software for ideal computation. Let D = {P1, . . . , Pn} be the design and
assume that Pi = (ai1, . . . , aik) with

∑k
j=1 aij = 1. Then, Pi belongs to the

hyperplane H defined by the single equation x1+. . .+xk = 1 for i = 1, . . . , n.
Moreover Pi is the intersection of H with the line Li containing Pi and the
origin 0 = (0, . . . , 0). In particular, we have Ideal({Pi}) = 〈Ideal({Li}), x1 +
. . . + xk − 1〉. But Ideal(D) =

⋂n
i=1 Ideal({Pi}) = 〈

⋂n
i=1 Ideal({Li}), x1 +

. . . + xk − 1〉. We set Ideal(CD) =
⋂n

i=1 Ideal({Li}), and so

Ideal(D) = 〈Ideal(CD), x1 + . . . + xk − 1〉

Now, we describe some properties of Ideal(CD).
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Theorem 14 Ideal(CD) is generated by homogeneous polynomials.

Proof. The ideal defining the lines Li is generated by the 2 × 2 minors of
the matrix

(

x1 . . . xk

ai1 . . . aik

)

and so it is generated by homogeneous linear polynomials. The intersec-
tion of ideals generated by homogeneous polynomials is again generated by
homogeneous polynomials. So the claim follows.

Ideal(CD) can be characterized as follows.

Theorem 15 Ideal(CD) is the largest homogeneous ideal in Ideal(D).

Proof. Let f ∈ Ideal(D), f homogeneous. Then

f(tai1, . . . , tsik) = tdeg ff(ai1, . . . , fik) = 0

for every i = 1, . . . , n and for all t ∈ R. Hence, f ∈ Ideal({Li}) for all
i = 1, . . . , n and so f ∈ Ideal(CD). That is every homogeneous polynomial
in Ideal(D) is in Ideal(CD) and the claim follows.

7.4 Hilbert function

An ideal Ih ⊂ R[x1, . . . , xk] is homogeneous if it is generated by a set of
homogeneous polynomials.

For s ∈ Z≥0 let R[x1, . . . , xk]s = Span(xα ∈ T k :
∑k

i=1 αi = s) ∪ {0}
and for a homogeneous ideal Ih ⊂ R[x1, . . . , xk], let Ih

s = Ih∩R[x1, . . . , xk]s.
R[x1, . . . , xk]s is a R-vector space of dimension

(

k+s−1
s

)

and Ih
s is a subvector

space. The Hilbert function of the homogeneous ideal I is

HFI(s) = dim R[x1, . . . , xk]s/I
h
s

Theorem 16 Let Ih ⊂ R[x1, . . . , xk] be a homogeneous ideal.

1. For s sufficiently large HFIh(s) is a polynomial with rational coeffi-
cients and integer values.

2. For s ≥ 1
HFIh(s) = aHFIh(s) − aHFIh(s − 1) (9)

3. If Ih is a monomial ideal and thus trivially homogeneous, then HFIh(s)
is the number of monomials not in Ih and in R[x1, . . . , xk]s.
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4. If τ is a term ordering and Ih a homogeneous ideal, then

HFIh(s) = HF〈LT(Ih)〉(s)

5. (The dimension theorem) Let

V = V (I) =
{

a ∈ Pk−1(C) : f(a) = 0 for all f ∈ I
}

be non empty. Then

dim(V ) = deg HPI(s)

where dim(V ), for V a projective variety, is defined as the degree of
the Hilbert polynomial of I. Furthermore,

dim(V ) = deg HP〈LT(I)〉(s)

and it equals the maximum dimension of a projective coordinate sub-
space in V (〈LT(I)〉). If I = Ideal(V ) the last statements hold over
R.

6. The previous statement holds for I an ideal, not necessarily homoge-
neous, V = V (I) and HPI(s) is substituted by aHPI(s)

For the proof we refer to any classical text such as [11]. Here we just need
to observe that as we deal with a regular structure as V = CD then I =
Ideal(V ).

The CoCoA macro Hilbert applied to a homogeneous ideal computes
the Hilbert function of the ideal. In Singular we use hilb and vdim. The
affine Hilbert function of the homogeneous ideal can be retrieved by Equa-
tion (9) together with the initial condition aHFIh(0) = 1. If the ideal is not
homogeneous then Hilbert returns the Hilbert function of the correspond-
ing leading term ideal w.r.t. whatever term ordering is running in the open
computer session.

Example 19 For D = {(1/2, 1/2), (1/4, 3/4), (0, 1)} and a term order in
which x1 > x2, Ideal(CD) = 〈x3

1 − 4/3x2
1x2 + 1/3x1x

2
2〉. Then

s HFIdeal(CD)(s)
a HFIdeal(CD)(s)

0 1 1
1 2 3
2 3 6
3 3 9
4 3 12
... 3 3 + a HFIdeal(CD)(s − 1)
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× x1

x2

0 1 2 3

1
2
3
4
5

s = 5

LT
a)

× x1

x2
s = 5
s = 4

b)

Figure 2: Standard monomials counted by a) the Hilbert function with s = 5
and b) the affine Hilbert function for s = 4, 5. Both cases refer to I(CD) of
Example 19.

See Figure 2.

Theorem 17 Let D be a mixture design with n distinct points and let CD

be its cone; let Ideal(D) and Ideal(CD) be their corresponding ideals. Then
for s large enough,

HFI(CD)(s) = aHFI(D)(s)

Proof. This is Theorem 5.

Example 20 The Hilbert function of the cone ideal of the {4, 4} design in
Example 15 is

HFIdeal(CD)(s) =























1 if s = 0
4 if s = 1
10 if s = 2
20 if s = 3
35 if s ≥ 4

For the fraction cut by (x1 − x2)(x3 − x4) it is

HFIdeal(CF )(s) =























1 if s = 0
4 if s = 1
9 if s = 2
13 if s = 3
15 if s ≥ 4

We use the CoCoA macro Hilbert.
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8 CoCoA programs

8.1 Function for homogeneous model support

// Compares two monomials, the first argument is "leadterm".

// Returns 1 if Compa is divisible by Led

Define Divides(Led,Compa);

Suma:=0; Difference:=Log(Compa)-Log(Led);

For I:=1 To NumIndets() Do

If Difference[I]<0 Then Suma:=Suma+1;

EndIf; EndFor;

If IsZero(Suma) Then R:=1; Else R:=0; EndIf;

Return R; EndDefine;

// Output is a homogeneous basis for R[x]s/Is.

// Inputs are homogeneous Ideal and degree Gr

Define HomogeneousBasis(Id,Gr);

Le:=Gens(LT(Id)); C:=Support(DensePoly(Gr)); L:=[];

ForEach I In C Do

Total:=0; J:=1;

While Total=0 And J<=Len(Le) Do

Total:=Total+Divides(Le[J],I); J:=J+1; EndWhile;

If IsZero(Total) Then Append(L,I); EndIf;

EndForEach;

Return L; EndDefine;

8.2 Function for the point coordinates of some classic mix-

ture designs

// Simplex lattice design in K factors M+1 levels

Define SimplexLattice(K,M);

L:=(0..M); For I:=1 To (M+1) Do L[I]:=L[I]/M EndFor;

L:=Tuples(L,K);

ForEach I In L Do If Sum(I)<>1 Then L:=Diff(L,[I]); EndIf; EndForEach;

Return L; EndDefine;

// 2^K design minus the origin, i.e. simplex centroid design in K factors

Define SimplexCentroidProjective(K);

R:=Tuples([0,1],K); Remove(R,1);

Return R; EndDefine;
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// Snee Marquardt axial design: K factors, if E=1 then add end points

Define Snee(K,E);

R:=[];PV:=[]; PI:=[]; PE:=[];

ForEach I In 1..K Do

Zero:=NewList(K,0); One:=NewList(K,1); Zero[I]:=1; One[I]:=0;

PV:=Concat(PV,[Zero]); PE:=Concat(PE,[One]); One[I]:=K+1;

PI:=Concat(PI,[One]);

EndForEach;

R:=Concat(PV,[NewList(K,1)],PI); If E=1 Then R:=Concat(R,PE); EndIf;

Return R; EndDefine;

8.3 Function for the cone ideal of some classic mixture de-

signs

// Generators for the design ideal of the simplex lattice

Define GSimplexLattice(K,M);

G:=-1; L:=[];

ForEach I In 1..K Do;

P:=1; ForEach J In 0..M Do P:=P*(x[I]-J/M); EndForEach;

G:=G+x[I]; L:=Concat(L,[P]);

EndForEach; L:=Concat(L,[G]);

Return L; EndDefine;

// Generators for the cone ideal of the simplex centroid design

Define GSimplexCentroidProjective(K);

L:=[];

ForEach I In 1..(K-1) Do ForEach J In (I+1)..K Do

L:=Concat(L,[ x[I]^2*x[J]-x[I]*x[J]^2]);

EndForEach; EndForEach;

Return L; EndDefine;

// Generators for the I-th axis of a Snee Marquardt with K factors

Define GAxisSnee(K,I);

G:=Sum(Indets())-1; L:=[];

ForEach M In 1..(K-1) Do ForEach J In (M+1)..K Do

If (J<>I And M<>I) Then L:=Concat(L,[ x[M]-x[J] ]); EndIf;

EndForEach; EndForEach;

L:=Concat(L,[G],[ x[I]*(x[I]-(K+1)/(2*K))*(x[I]-1) ]);

Return L; EndDefine;
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// Generators for the ideal of centroid with K variables

Define GCentroid(K);

L:=[]; ForEach I In 1..K Do L:=Concat(L,[x[I]-1/K]); EndForEach;

Return L; EndDefine;
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