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Abstract

Several experimental treatments are often compared with a common

control in a clinical trial nowadays. A group sequential design in-

corporating response-adaptive randomisation can help to increase the

probability of receiving a more promising treatment for patients in

the trial and to detect a treatment effect early so as to benefit the

whole population of interest. With such ethical advantages, the trial

design has invoked investigation using the Bayesian approach. In the

frequentist approach, the type I error rate of a multi-armed trial may

involve two error elements, the inflated error rates caused by multiple

treatment comparisons and sequential testing. In this study, a group

sequential global test was considered. By monitoring the response-

adaptive design at a continuous information time, calculation of the

information time and two optimal response-adaptive sampling rules

for multi-armed trials were described. Operating characteristics of

the designs were investigated via simulation for censored exponential

survival outcomes and using patient data sampled from a four-armed

binary trial to demonstrate their practical applicability. Our results

showed that, in general, the adaptive designs preserved ethical ad-

vantages in terms of reducing the average numbers of patients and
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failures compared with a group-sequential non-adaptive randomised

design, while not adversely affecting the power.

Keywords: binary outcome, censored survival outcome, global test, multi-

ple treatment comparison, optimal allocation, power

1 Introduction

Comparing several treatments in a multi-armed trial is considered to be more

efficient in terms of time, resource and sample size than conducting several

conventional two-armed trials, each comparing an experimental arm with the

control. Multiple treatment comparison can be conducted using either ad-

justed pairwise comparisons or global testing. For group sequential pairwise

comparisons, one can simply use the Bonferroni adjustment to control the

overall type I error rate (Follmann et al., 1994; Jennison and Turnbull, 2000).

Specifically, for p pairwise tests at each look, αk/p is the nominal type I error

rate for each pairwise test, where αk is the type I error rate spent by interim

analysis k. The Bonferroni approach strongly controls the overall type I error

rate. However, it can be too conservative at the price of losing power.

Other studies considered using multi-armed multi-stage (MAMS) designs to

monitor multi-armed clinical trials (Magirr et al., 2012; Wason et al., 2014).

MAMS designs simultaneously evaluate several regimens against a common

control. Follmann et al. (1994) generalised the Pocock, O’Brien and Fleming,

and Lan and DeMets boundaries to multi-armed trials considering pairwise

comparisons, where Lan and DeMets (1983) is an alpha-spending approach

and one can determine the rate at which alpha is used during the course of a

two-treatment comparison. This approach preserves the nominal type I error

probability without the requirement of pre-specifying the number of interim

analyses. A disadvantage of the alpha-spending approach for multi-armed

trials is that the expected sample size properties may not be desirable (Wa-

son et al., 2016). With efficacy and futility boundaries, the designs allow

dropping of inferior treatments at interim analyses. MAMS designs focus on
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designs that strictly control the family-wise error rate in the strong sense,

with the probability of falsely rejecting one or more null hypotheses being

less than or equal to α (Bratton et al., 2016; Jaki et al., 2019). Given a

pre-specified error rate, the number of patients needed per arm per stage

and the critical boundaries are obtained by numerical computation.

In group sequential monitoring, when an inferior treatment is identified at

an interim look, it is more ethical to adjust the allocation probabilities to

assign more patients to the more promising arm(s). Incorporating response-

adaptive randomisation in multi-armed designs has been discussed using the

Bayesian approach (Wason and Trippa, 2014; Ventz et al., 2018; Ryan et al.,

2020). In the frequentist approach, the joint distribution of the sequential

Z test statistics for two-armed trials that combine group sequential analysis

with response-adaptive randomisation has been shown to have a canonical

form such that critical boundaries for standard group sequential designs can

be utilised as an approximation (Jennison and Turnbull, 2000; Zhu and Hu,

2010; Liu and Coad, 2020). For multi-armed trials, Jennison and Turnbull

(1991, 2000) derived exact critical boundaries for standard group sequential

global tests analogous to Pocock’s and the O’Brien and Fleming boundaries

based on multi-armed normal trials with equal variances and equal treatment

allocation. Whether or not the standard critical boundaries can still be used

as an approximation to control the overall type I error rate in multi-armed

group-sequential response-adaptive designs is of concern in this paper. The

idea is that, if the standard group sequential critical boundaries for both

two-treatment and multi-treatment comparisons can be applied to response-

adaptive designs while preserving good operating characteristics, then the

proposed global test statistics, followed by pairwise comparisons if the global

null hypothesis is rejected, can be an alternative to monitoring pairwise com-

parisons for multi-armed multi-stage trials, which are more computationally

demanding in obtaining the stopping boundaries. Different optimal response-

adaptive sampling rules for binary and censored survival outcomes will be

investigated.
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Consider a motivating example of a four-armed binary trial. NeoSphere

(Gianni et al., 2012) is a phase II randomised trial which compares the ef-

ficacy and safety of different combinations of treatments for women with

breast cancer. Antibody trastuzumab with concomitant chemotherapy do-

cetaxel is a conventional treatment for the cancer. The NeoSphere trial

examined the activity of another anibody, pertuzumab, by assessing the ef-

fects of pertuzumab combined with either trastuzumab, docetaxel or both.

The trial consisted of trastuzumab plus docetaxel (control), pertuzumab and

trastuzumab plus docetaxel (E1), pertuzumab and trastuzumab (E2), and

pertuzumab plus docetaxel (E3). There were 417 eligible women randomly

assigned to the treatment groups with equal probabilities. The endpoint

considered in the study was pathological complete response, which was di-

chotomised and serves as a surrogate for long-term efficacy. The complete

response rate was 29% for the control, 45.8% for E1, 16.8% for E2 and 24%

for E3. The study concluded that E1 had a significantly higher complete

response rate compared to the conventional control group. Redesigning the

clinical trial using response-adaptive randomisation will be investigated.

The structure of the remaining sections is as follows. In Section 2, a general

form of the group sequential global test statistic comparing several treat-

ments with a control and its sequential critical boundaries are described. In

Section 3, two optimal allocations for multi-armed clinical trials are intro-

duced. One ensures the most precise estimate of the parameter vector. The

other maximises the power subject to a constraint on the total sample size

or a function of the sample sizes. Then optimal response-adaptive randomi-

sation procedures, which aim to target the pre-specified optimal allocations,

are described. Results of the redesign of the motivating clinical trial and

simulation for censored exponential survival outcomes are presented in Sec-

tion 4, including the error probabilities, the expected number of patients, the

expected number of failures and the average allocation proportion with its

variability. Conclusions and further work are in Section 5.
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2 Form of test

2.1 Information time

Let N be the maximum number of patients for a trial with J arms and let

K be the number of group sequential analyses. For multi-armed trials with

immediate responses, the information time at look k, tk, is proportional to

the number of patients obtained so far.

tk =

∑J
j=1mj,k∑J
j=1Mj

=
nk
N
∈ (0, 1], k = 1, ..., K,

where mj,k is the cumulative number of patients for treatment j, j = 1, ..., J,

at look k, mj,K = Mj, and nk =
∑J

j=1mj,k is the cumulative sample size at

look k, nK = N .

For survival responses, the information time is proportional to the number

of events. As described in Kim et al. (1995), and Liu and Coad (2020), it

can be expressed as

tk =

∑J
j=1mj,kε̂k∑J
j=1Mj ε̂K

=
nk ε̂k
Nε̂K

∈ (0, 1], k = 1, ..., K,

where εk is the probability of an event, which can be estimated using empirical

or model-based methods.

2.2 Group sequential global test statistic

Consider testing a vector of J treatment contrasts. The global null hypoth-

esis is HG0 : θG = 0 versus HGa : θG 6= 0, where θG = (θ1 − θJ , θ2 −
θJ , ..., θJ−1 − θJ)T considering arm J as the control arm. The test statistic

at group sequential test k is

Sk = θ̂
T

Gk
Σ̂−1
k θ̂Gk

, k = 1, ..., K,
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where θ̂Gk
is the maximum likelihood estimator of θG based on the responses

obtained so far and Σ̂−1
k is the corresponding estimated covariance matrix.

For binary outcomes, θG is the vector of treatment contrasts of the prob-

abilities of success pj, j = 1, ..., J, and

Σ̂k =



p̂1,kq̂1,k
m1,k

0 ... 0

0
p̂2,kq̂2,k
m2,k

0

. . .

0 0 ...
p̂J−1,kq̂J−1,k

mJ−1,k


+
p̂J,kq̂J,k
mJ,k

11T ,

where p̂j,k is the maximum likelihood estimate of the probability of success

for treatment j at look k and q̂j,k = 1− p̂j,k. Here, 1 = (1, ..., 1)T is the vector

with J − 1 ones.

For censored exponential survival outcomes, θG is the vector of treatment

contrasts of the survival means θj, j = 1, ..., J. The maximum likelihood

estimate of the mean survival time for treatment j evaluated at look k is

θ̂j,k =
∑mj,k

i=1 yi,j,k/rj,k and var(θ̂j,k) = θ2j/E(rj,k), where yi,j,k is the survival

time for patient i, i = 1, ...,mj,k, on treatment j at interim look k and rj,k

is the cumulative number of events on treatment j at look k, then we obtain

Σ̂k =



θ̂21,k
r1,k

0 ... 0

0
θ̂22,k
r2,k

... 0

... ... ... ...

0 0 ...
θ̂2J−1,k

rJ−1,k


+
θ̂2J,k
rJ,k

11T .

The matrix Σ̂k is nonsingular and its inverse exists. Under HG0 , the marginal

distribution of Sk is asymptotically χ2
J−1, since Sk is a quadratic form of

asymptotically normal variables. Under HGa , the distribution is asymptoti-

cally noncentral chi-squared with noncentrality parameter
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ηk = θTG Σ−1
k θG =

J−1∑
j=1

mj,k

pjqj
(pj − pJ)2 − 1∑J

j=1

mj,k

pjqj

{
J−1∑
j=1

mj,k

pjqj
(pj − pJ)

}2

for binary outcomes and

ηk =
J−1∑
j=1

rj,k
θ2j

(θj − θJ)2 − 1∑J
j=1

rj,k
θ2j

{
J−1∑
j=1

rj,k
θ2j

(θj − θJ)

}2

for censored exponential survival outcomes. The function ηk is concave and

∂ηk/∂rj,k ≥ 0 in the second case. In other words, when the cumulative

number of events on any treatment arm, rj,k, j = 1, ..., J, increases, the

noncentrality parameter ηk is increased. Note that the forms are similar to

those considered in fixed-sample designs (Tymofyeyev et al., 2007; Sverdlov

et al., 2011).

2.3 Stopping boundaries

For standard group-sequential non-adaptive designs, Jennison and Turnbull

(1991) showed that the sequence of test statistics is Markov. More specif-

ically, the probability distribution of Sk+1 depends only on Sk and not on

{S1, ..., Sk−1}. The joint distribution of {S1, ..., Sk+1} can be constructed re-

cursively by multiplying the conditional distributions of Sk+1 given Sk for

k ≥ 1. Then the critical boundaries dk can be obtained recursively based

on the multivariate joint distribution. The boundaries analogous to Pocock’s

and the O’Brien and Fleming boundaries for sequential t, χ2 and F tests can

be found in Jennison and Turnbull (1991). Based on the significance level

approach, the critical boundaries can be used to give an approximate test

for adaptive randomised trials, as long as the imbalance in the sample sizes

is not too severe (Jennison and Turnbull, 1991, 2000). The stopping rules

are as follows. For k = 1, ..., K − 1, we reject HG0 if Sk ≥ dk; otherwise,

we continue to the next look. For k = K, we reject HG0 if Sk ≥ dk and

accept HG0 otherwise. Pairwise comparisons can be conducted after reject-
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ing the global null hypothesis to investigate which experimental treatments

have different efficacies to the control. Conventional critical boundaries for

two-armed designs can be used.

3 Optimal response-adaptive randomisation

Two optimal allocations for multi-armed trials are considered. One ensures

the most precise estimate of the parameter vector and the other maximises

the power subject to a fixed total sample size. The two optimal allocations

reduce to Neyman allocation when J = 2. However, for J ≥ 3, they have

different characteristics. The optimal allocations were derived based on a

fixed-sample design. However, they can be used in group sequential designs,

since the target optimal allocation would not be affected by the number of

interim tests.

3.1 Optimal allocations

3.1.1 DA-optimal allocation

Suppose that the parameter of interest is ATβ = (β1 − βJ , ..., βJ−1 − βJ)T ,

where AT is a (J − 1) × J matrix. Then the DA-optimal allocation (Wong

and Zhu, 2008) ensures the most precise estimate of ATβ by minimising the

determinant of cov(AT β̂) = ATM−1(ξ)A, where β̂ is the maximum likelihood

estimator of β, over all possible randomisation designs ξ, or, equivalently,

minimising Φ(ξ) = log|ATM−1(ξ)A|. The DA-optimal allocation yields the

smallest confidence ellipsoid for ATβ. In practice, one can use the general

equivalence theorem (Kiefer and Wolfowitz, 1960) to obtain the DA-optimal

allocation by solving the system of equations

dA(xj, ξ
∗) = J − 1, j = 1, ..., J,

where dA(xj, ξ
∗) is the directional derivative of the criterion Φ(ξ∗), xj is the

indicator for treatment j, ξ∗ is the optimum value of ξ and J − 1 is the rank

of A.
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For multi-armed binary trials, the DA-optimal allocation, where ρj is the

allocation proportion for treatment j and 0 ≤ ρj ≤ 1/(J−1), can be derived

by solving

dA(xj, ξ
∗) =

1

ρj
− 1/(pjqj)∑J

l=1 1/(plql)ρl
= J − 1, j = 1, ..., J, (1)

where 1/(pjqj) is inversely proportional to the variance for treatment j.

Similarly, for exponentially distributed survival outcomes, the DA-optimal

allocation can be obtained by solving the equations

dA(xj, ξ
∗) =

1

ρj
−

εj/θ
2
j∑J

l=1(εl/θ
2
l )ρl

= J − 1, j = 1, ..., J, (2)

where θj is the mean survival time for treatment j, εj is the probability of an

event on arm j and εj/θ
2
j is inversely proportional to the variance for arm j.

The DA-optimal design consistently allocates more patients to the treatments

that have larger variances for the responses. For exponentially distributed

survival responses, the variance of the responses on arm j is θ2j/E(rj). In

this case, the variance increases when the mean survival time for treatment

j is increased. Therefore, for exponential survival responses, the DA-optimal

allocation is always ethical. However, for normal and binary responses, the

most efficient design may assign more patients to the inferior treatments.

3.1.2 Optimal allocation based on nonlinear programming

To find a design that maximises the power of a test, one can consider max-

imising the noncentrality parameter η, since the power increases as η is in-

creased. Tymofyeyev et al. (2007) investigated the optimality rule which

maximises the noncentrality parameter such that

J∑
j=1

vjMj ≤ C and
Mj

N
≥ B for j = 1, ..., J,
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where (v1, ..., vJ) is a vector of some positive weights, Mj is the sample size

for treatment j,
∑J

j=1Mj = N and the lower bound B ∈ [0, 1/J ]. When

(v1, ..., vJ) = (1, ..., 1) and B = 0, the solution maximises the power subject

to the constraint that the total sample size does not exceed a fixed value,

which is an analogue of Neyman allocation. When (v1, ..., vJ) = (q1, ..., qJ),

where qj is the failure probability for treatment j, the derived optimal allo-

cation minimises the expected number of failures for a fixed power, which is

an analogue of the optimal allocation derived by Rosenberger et al. (2001)

generalised to J ≥ 3 treatments. A general solution (ρ1, ..., ρJ) for any vector

of weights does not exist, and numerical methods are required. The solution

in the case of (v1, ..., vJ) = (1, ..., 1) is given below.

Let p1 = ... = ps > ps+1 ≥ ... ≥ pJ−g > pJ−g+1 = ... = pJ for some

positive integers s and g. When B ∈ [0, B̃], B̃ = min(B̃1, B̃J , 1/J), the solu-

tion (ρ1, ..., ρJ) is obtained by

ρ1 = ... = ρs =
1

s

(
QB +

√
p1q1√

p1q1 +
√
pJqJ

)
,

ρs+1 = ... = ρJ−g = B,

ρJ−g+1 = ... = ρJ =
1

g
{1−B(K − s− g)− sρ1},

(3)

where

B̃1 =
1

s−Q

√
p1q1√

p1q1 +
√
pJqJ

,

B̃J =
1

J +Q− s

√
pJqJ√

p1q1 +
√
pJqJ

and

Q =

√
p1q1√

p1q1 +
√
pJqJ

{
J−g∑
j=s+1

pJqJ
pjqj

− (J − s− g)

}

−
√
p1q1pJqJ

p1 − pJ

J−g∑
j=s+1

pj − pJ
pjqj

.

When B > B̃, the optimal allocation proportions are fixed. That is, they

are functions of B but not the parameters of interest. In this paper, the
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situation B ∈ [0, B̃] is considered. Generalisation of such optimal allocation

to censored exponential survival responses can be found in Sverdlov et al.

(2011).

3.2 Optimal response-adaptive randomisation proce-

dures

Optimal response-adaptive randomisation procedures are used to target the

pre-specified optimal allocation. Two such procedures for multi-armed trials

are introduced below. Since the optimal allocations are functions of unknown

parameters, a learning phase using permuted-block randomisation for the

first 10% of the N patients is applied throughout the simulations in this

paper. This burn-in learning phase sample size appears to be large enough

for the initial parameter estimates to be reasonably reliable. In practice, the

burn-in sample size should be considered on a case-by-case basis for different

design parameters. Permuted-block randomisation balances the sample sizes

across the treatment groups. When initial parameter estimates are obtained,

the following randomisation procedures can be implemented.

3.2.1 Doubly-adaptive biased coin design (DBCD)

Suppose that m
(i)
j is the cumulative sample size on treatment j after i pa-

tients, i = 1, ..., N . Let m
(i)
j /i and ρ̂

(i)
j be the current and target allocation

proportions for treatment j, j = 1, ..., J, based on the treatment assignments

and responses obtained so far. Then the probability that the next patient

will be assigned to treatment j is given by

gj =



ρ̂
(i)
j

{
ρ̂
(i)
j

m
(i)
j /i

}γ

∑J
l=1 ρ̂

(i)
l

{
ρ̂
(i)
l

m
(i)
l /i

}γ if 0 < m
(i)
j /i < 1,

1−m(i)
j /i if m

(i)
j /i = 0, 1,

where γ ∈ [0,∞) is a tuning parameter that controls the degree of random-
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ness. The DBCD is the most deterministic when γ → ∞, whereas the pro-

cedure is the most random when γ = 0. The value γ = 2 is commonly used

for a reasonable trade-off between variability and power. When m
(i)
j /i > ρ̂

(i)
j ,

the probability that the next patient will be assigned to arm j is decreased

and vice versa. At an extreme case such as m
(i)
j /i = 1, it is impossible that

the next patient will be assigned to arm j. The allocation probability gj is

updated after each response observed.

3.2.2 Efficient randomised-adaptive design (ERADE)

Let

ψ(x) = 1 +

√
(x2γ

′ − 1) ∨ 0

be a weight function. Here, a∨ b = max(a, b). The probability that the next

patient will be assigned to treatment j is given by

gj =



ρ̂
(i)
j ψ

(
ρ̂
(i)
j

m
(i)
j /i

)
∑J

l=1 ρ̂
(i)
l ψ

(
ρ̂
(i)
l

m
(i)
l /i

) if 0 < m
(i)
j /i < 1,

1−m(i)
j /i if m

(i)
j /i = 0, 1.

Similar to the DBCD, the ERADE allocation probability depends on the

current and the optimal allocation proportions. Here, the tuning parameter

γ
′

can be any positive number. Through personal communication with L.-X.

Zhang, a value 2 ≤ γ
′ ≤ 4 is suggested to achieve a high power while allowing

a reasonable degree of randomness. The ERADE has been shown to attain

the Cramér-Rao lower bound for the variance of the allocation proportions

(Zhang, 2016). That is, the use of the ERADE guarantees the least variabil-

ity in the allocation among all response-adaptive randomisation methods.

The optimal response-adaptive randomisation procedures require the opti-

mal allocation proportions ρ1, ..., ρJ to be continuous and twice continuously

differentiable. The DA-optimal allocation satisfies these conditions. How-

ever, the closed-form solution for the optimal allocation based on nonlinear
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programming is discontinuous when the parameters are all equal. Smoothing

techniques are required.

4 Simulation results

4.1 Redesign of a four-armed binary trial

We now revisit the Neosphere trial. Let pC = 0.29, pE1 = 0.458, pE2 = 0.168

and pE3 = 0.24. The global null hypothesis HG0 : pG = 0 versus the alter-

native hypothesis HGa : pG 6= 0 with pG = (pE1 − pC , pE2 − pC , pE3 − pC)T

is tested. The nominal type I error rate is set to 0.05 and K = 3 group se-

quential tests are planned at equally-spaced information times. The O’Brien

and Fleming critical boundaries (23.76, 11.88, 7.92) for J = 4 treatments

are used as an approximation. Results for the group sequential complete

randomisation (CR) design and the fixed-sample CR and response-adaptive

designs are provided alongside for comparison. For the fixed-sample designs,

the critical boundary is 7.81. The adaptive designs are investigated by sim-

ulation with 5,000 replicates in terms of the error probabilities, the expected

number of patients (ENP), the expected number of failures (ENF), the allo-

cation proportions and the corresponding variability (s.d.).

The first 40 patients are randomly assigned using permuted-block randomi-

sation with ratio 1:1:1:1 to obtain initial parameter estimates. Then the

optimal response-adaptive randomisation procedures are performed. The

tuning parameters γ = γ
′

= 2 are set for the DBCD and the ERADE func-

tions. For the DA-optimal allocation, the target allocation proportions for

the four-treatment trial can be obtained by solving the system of equations

in (1), where J = 4. For the nonlinear programming (NP) allocation, the

user-specified lower bound for the allocation proportions B is set to be 0.20

to satisfy B ∈ [0, B̃], where B̃ = min(B̃1, B̃4, 0.25). The closed-form solu-

tion for the NP optimal allocation requires the order of the parameters to be

p1 > p2 ≥ p3 > p4. Let p1 = pE1, p2 = pC , p3 = pE3 and p4 = pE2. Then,

from (3), the NP optimal allocation which maximises the power subject to
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the total sample size not exceeding a fixed value is

ρ1 = QB +

√
p1q1√

p1q1 +
√
p4q4

,

ρ2 = ρ3 = B,

ρ4 = 1− 2B − ρ1,

where

B̃1 =
1

1−Q

√
p1q1√

p1q1 +
√
p4q4

,

B̃4 =
1

3 +Q

√
p4q4√

p1q1 +
√
p4q4

and

Q =

√
p1q1√

p1q1 +
√
p4q4

(
3∑
j=2

p4q4
pjqj

− 2

)

−
√
p1q1p4q4

p1 − p4

3∑
j=2

pj − p4
pjqj

.

When B = 0, the solution maximises the power but reduces to Neyman

allocation for J = 2, where patients are assigned to the best and the worst

treatments only. When B = 0.25, the solution becomes equal allocation.

Table 1: Simulated type I error rate for redesigning the NeoSphere trial
using complete randomisation and response-adaptive randomisation, pC =
0.29, pE1 = 0.29, pE2 = 0.29, pE3 = 0.29 and N = 417.

(t1, t2, t3)=(0.33, 0.67, 1)

Procedure α̃ ENP (s.d.) ENF (s.d.) ρ̃C (s.d.) ρ̃E1 (s.d.) ρ̃E2 (s.d.) ρ̃E3 (s.d.)

CR 0.050 415.7 (13.9) 295.1 (9.9) 0.250 (0.020) 0.250 (0.020) 0.250 (0.020) 0.250 (0.020)

DBCDDA
0.061 414.7 (20.9) 294.4 (14.8) 0.250 (0.012) 0.250 (0.012) 0.250 (0.012) 0.250 (0.011)

ERADEDA
0.058 414.9 (17.5) 294.6 (12.4) 0.250 (0.009) 0.250 (0.009) 0.250 (0.009) 0.250 (0.009)

DBCDNP 0.069 413.6 (25.1) 293.6 (17.8) 0.244 (0.108) 0.244 (0.116) 0.243 (0.115) 0.268 (0.105)

ERADENP 0.057 414.3 (21.4) 294.2 (15.2) 0.243 (0.108) 0.246 (0.115) 0.245 (0.114) 0.267 (0.105)

Fixed-sample design

Procedure α̃ ENP (s.d.) ENF (s.d.) ρ̃C (s.d.) ρ̃E1 (s.d.) ρ̃E2 (s.d.) ρ̃E3 (s.d.)

CR 0.054 417 (0) 296.1 (0) 0.250 (0.020) 0.250 (0.020) 0.250 (0.020) 0.250 (0.020)

DBCDDA
0.056 417 (0) 296.1 (0) 0.250 (0.011) 0.250 (0.011) 0.250 (0.011) 0.250 (0.011)

ERADEDA
0.058 417 (0) 296.1 (0) 0.250 (0.009) 0.250 (0.009) 0.250 (0.009) 0.250 (0.009)

DBCDNP 0.055 417 (0) 296.1 (0) 0.242 (0.108) 0.245 (0.117) 0.246 (0.116) 0.266 (0.104)

ERADENP 0.055 417 (0) 296.1 (0) 0.241 (0.107) 0.246 (0.115) 0.245 (0.115) 0.268 (0.105)

Under the null hypothesis, the type I error rate in Table 1 for the fixed-sample
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designs is well controlled in general. However, for the combined approach us-

ing the DBCD, α̃ is inflated. For the ERADE designs, α̃ lies within three

standard errors of 0.05. This may be due to the fact that critical boundaries

derived based on normal responses and equal variances with equal alloca-

tion are used as an approximation here. Under the null hypothesis where

the parameters are all equal, the probability of early termination is small.

The differences in the ENP and the ENF for the group sequential and fixed-

sample designs are small. In addition, under HG0 , the optimal allocation

proportions are close to equal allocation, with the DA-optimal allocation

consistently having the least variation in the allocation proportions.

Since there are significant differences in the treatment effects, a high-powered

test was obtained for all designs: see Table 2. This agreed with Gianni et al.

(2012) that patients who received pertuzumab and trastuzumab plus do-

cetaxel (E1) had a significantly improved pathological complete response

rate compared to those who received the control, where a two-sided Mantel-

Haenszel test was used.

The total number of failures in the NeoSphere trial was 296. A similar figure

for the expected number of failures (ENF) was found for the fixed-sample

CR design. If fixed-sample response-adaptive designs were used, about two

fewer failures on average would be avoided using the DA-optimal allocation

and around 22 fewer could be achieved using the NP allocation. In addi-

tion, if group-sequential response-adaptive designs were used, a further re-

duction in the ENF could be obtained. Since the expected number of patients

(ENP) for the group sequential designs was substantially lower than for the

fixed-sample designs, the ENF was also decreased. If the group-sequential

response-adaptive design with DA-optimal allocation was applied, around 86

failures could be avoided. If the NP allocation was used, about 109 fewer

failures could be achieved.

The ENF
′

for the group sequential designs is calculated based on N = 417

patients to compare with the fixed-sample designs. When trials stop at an
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interim analysis, the rest of the patients are assigned to the better-performing

treatment and the expected number of failures for the rest of the patients is

(1−p1)E(Nrest), where p1 is the probability of success for the best-performing

treatment and Nrest denotes the number of remaining patients. In practice,

trials stop when a decision is made. The ENF
′

is also consistently lower

than the ENF for the fixed-sample designs, since the rest of the patients are

assigned to the most promising treatment if trials stop early. For instance,

for the NP allocation, the ENF
′

for the group sequential designs is about 15

less than the ENF for the fixed-sample designs. The other designs achieve

around 20 fewer failures.

4.2 Three-armed censored survival trials

Consider testing HG0 : θG = 0 versus HGa : θG 6= 0 with θG = (θE1 −
θC , θE2 − θC)T , where θj refers to the mean survival time for treatment j.

This testing problem has been investigated by Sverdlov et al. (2011) using

a fixed-sample design with the DBCD, and their simulation settings were

based on a head and neck cancer experiment (Fountzilas et al., 2004). Here,

similar simulation settings are considered. The duration of the trial D is

96 months. Independent exponentially distributed survival times and uni-

formly distributed arrival and censoring times are assumed. The DA-optimal

allocation and the NP allocation are used as the target allocations for the

optimal response-adaptive designs. For the NP allocation, the user-specified

lower bound for the allocation proportions B is set to be 0.20 to satisfy

B ∈ [0, B̃], where B̃ = min(B̃1, B̃3, 1/3). The nominal type I error rate is set

to 0.05. There are K = 3 group sequential analyses planned at equally- and

unequally-spaced information times. The O’Brien and Fleming boundaries

(18.36, 9.18, 6.12) are used as an approximation. Again, γ = γ
′

= 2 are set

for the DBCD and the ERADE functions. Results for the group sequential

CR design and fixed-sample CR and response-adaptive designs are also pro-

vided for comparison. For the fixed-sample designs, the critical value is 5.99.

The maximum number of patients, N , is computed to achieve around 80%

power for the group sequential CR design. The simulation results are based
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on 5,000 replicates.

From Table 3, we find that the critical boundaries derived based on standard

group sequential designs can be used as an approximation here. The type I

error rate for all of the designs is less than 0.01 from 0.05. The differences in

the ENP and the ENF among the designs are small under HG0 .

Under the alternative hypothesis, from Table 4, the response-adaptive de-

signs using the NP allocation can achieve a higher power and reduce the

ENP and the ENF compared with the other designs. For instance, the use

of the NP allocation can increase the power by around 4% compared to the

DA-optimal allocation. Meanwhile, about seven fewer patients on average

are used and nine events are prevented. However, compared with the NP

allocation, the DA-optimal rule has more accuracy and precision in targeting

the optimal allocation proportions.

Tables 5 and 6 compare the designs under group sequential monitoring with

equal and unequal increments in information time. The fixed-sample designs

are provided alongside for comparison. The maximum number of patients,

N , is computed by simulation to attain around 80% power for the group

sequential CR design. Compared with the settings in Tables 3 and 4, the

mean survival time for each treatment is increased. When the mean survival

time is 24 months as in Table 3, the probability of an event is 0.62, whereas,

when the mean survival time is 45 months, as in Table 5, the probability

of an event is 0.45. The probability of a censored response is increased for

longer mean survival times.

Tables 5 and 6 demonstrate similar behaviour to Tables 3 and 4. In brief, the

adaptive designs with the NP optimal allocation can achieve a higher power

and reduce the ENP and the ENF, whereas those using the DA-optimal allo-

cation have lower variation in the allocation proportions compared with the

NP optimal allocation. In addition, the critical boundaries can be used as

an approximation to preserve the type I error rate for multi-armed censored

survival trials with equal and unequal increments in information time.
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Table 2: Simulated power for redesigning the NeoSphere trial using com-
plete randomisation and response-adaptive randomisation, pC = 0.29, pE1 =
0.458, pE2 = 0.168, pE3 = 0.24 and N = 417.

(t1, t2, t3)=(0.33, 0.67, 1)

Procedure power ENP (s.d.) ENF (s.d.) ENF
′

(s.d.) ρ̃C (s.d.) ρ̃E1 (s.d.) ρ̃E2 (s.d.) ρ̃E3 (s.d.)

CR 0.987 304.5 (70.3) 216.5 (50.1) 277.9 (12.2) 0.249 (0.024) 0.250 (0.024) 0.251 (0.024) 0.250 (0.024)

DBCDDA
0.991 298.8 (72.5) 210.9 (51.5) 275.3 (12.4) 0.256 (0.015) 0.267 (0.013) 0.229 (0.021) 0.248 (0.017)

ERADEDA
0.987 297.3 (72.6) 209.8 (51.6) 275.1 (12.4) 0.256 (0.014) 0.267 (0.011) 0.229 (0.020) 0.248 (0.015)

DBCDNP 0.994 284.0 (71.5) 187.3 (47.2) 259.5 (8.9) 0.198 (0.037) 0.465 (0.038) 0.152 (0.031) 0.185 (0.032)

ERADENP 0.993 282.0 (72.4) 186.4 (48.0) 259.7 (9.2) 0.199 (0.038) 0.460 (0.040) 0.154 (0.029) 0.187 (0.031)

Fixed-sample design

Procedure power ENP (s.d.) ENF (s.d.) - - ρ̃C (s.d.) ρ̃E1 (s.d.) ρ̃E2 (s.d.) ρ̃E3 (s.d.)

CR 0.989 417 (0) 296.5 (2.1) - - 0.250 (0.020) 0.250 (0.020) 0.250 (0.020) 0.250 (0.020)

DBCDDA
0.990 417 (0) 294.3 (1.3) - - 0.256 (0.012) 0.267 (0.011) 0.230 (0.015) 0.248 (0.012)

ERADEDA
0.989 417 (0) 294.3 (1.0) - - 0.256 (0.009) 0.266 (0.008) 0.230 (0.013) 0.248 (0.010)

DBCDNP 0.994 417 (0) 274.4 (2.8) - - 0.198 (0.030) 0.470 (0.033) 0.145 (0.029) 0.187 (0.030)

ERADENP 0.995 417 (0) 274.7 (2.6) - - 0.198 (0.028) 0.468 (0.030) 0.147 (0.027) 0.188 (0.027)

The target DA-optimal and NP allocations are (0.256, 0.266, 0.230, 0.248) and

(0.200, 0.479, 0.121, 0.200), respectively.

Table 3: Simulated type I error rate for three-armed censored survival trials
using complete randomisation and response-adaptive randomisation, θE1 =
θE2 = θC = 24 and N = 312.

Procedure α̃ ENP (s.d.) ENF (s.d.) ρ̃E1 (s.d.) ρ̃E2 (s.d.) ρ̃C (s.d.)

CR 0.041 311.4 (7.0) 193.9 (4.4) 0.333 (0.025) 0.333 (0.025) 0.333 (0.025)

DBCDDA
0.058 310.3 (12.3) 193.2 (7.7) 0.333 (0.034) 0.333 (0.034) 0.333 (0.034)

ERADEDA
0.057 310.7 (10.7) 193.5 (6.6) 0.333 (0.031) 0.334 (0.031) 0.333 (0.030)

DBCDNP 0.058 310.5 (10.8) 193.4 (6.7) 0.336 (0.091) 0.332 (0.090) 0.332 (0.090)

ERADENP 0.052 310.9 (10.0) 193.6 (6.2) 0.333 (0.088) 0.334 (0.089) 0.332 (0.089)
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Table 4: Simulated power for three-armed censored survival trials using com-
plete randomisation and response-adaptive randomisation, θE1 = 34, θE2 =
24, θC = 20 and N = 312.

Procedure power ENP (s.d.) ENF (s.d.) ρ̃E1 (s.d.) ρ̃E2 (s.d.) ρ̃C (s.d.)

CR 0.733 294.7 (32.9) 178.8 (20.1) 0.334 (0.026) 0.333 (0.026) 0.333 (0.026)

DBCDDA
0.785 284.9 (38.9) 170.0 (23.8) 0.409 (0.029) 0.324 (0.039) 0.268 (0.041)

ERADEDA
0.788 284.8 (38.8) 170.0 (23.7) 0.407 (0.026) 0.325 (0.035) 0.269 (0.037)

DBCDNP 0.827 277.2 (40.5) 161.8 (25.0) 0.533 (0.092) 0.229 (0.062) 0.238 (0.050)

ERADENP 0.824 278.0 (40.4) 162.5 (24.9) 0.526 (0.091) 0.234 (0.065) 0.240 (0.048)

The target DA-optimal and NP allocations are (0.406, 0.323, 0.271) and (0.544,

0.200, 0.256), respectively.

Table 5: Simulated type I error rate for three-armed censored survival trials
using complete randomisation and response-adaptive randomisation, θE1 =
θE2 = θC = 45 and N = 600.

(t1, t2, t3)=(0.33, 0.67, 1)

Procedure α̃ ENP (s.d.) ENF (s.d.) ρ̃E1 (s.d.) ρ̃E2 (s.d.) ρ̃C (s.d.)

CR 0.040 599.2 (10.5) 269.6 (4.7) 0.334 (0.018) 0.333 (0.018) 0.333 (0.018)

DBCDDA
0.048 598.4 (14.6) 269.2 (6.6) 0.334 (0.029) 0.333 (0.030) 0.333 (0.029)

ERADEDA
0.050 598.5 (14.5) 269.3 (6.5) 0.333 (0.026) 0.333 (0.026) 0.333 (0.026)

DBCDNP 0.045 598.4 (14.7) 269.2 (6.6) 0.331 (0.084) 0.334 (0.084) 0.335 (0.085)

ERADENP 0.048 598.5 (13.8) 269.3 (6.2) 0.332 (0.081) 0.336 (0.081) 0.332 (0.081)

(t1, t2, t3)=(0.5, 0.8, 1)

Procedure α̃ ENP (s.d.) ENF (s.d.) ρ̃E1 (s.d.) ρ̃E2 (s.d.) ρ̃C (s.d.)

CR 0.039 599.5 (6.2) 269.7 (2.8) 0.334 (0.018) 0.333 (0.018) 0.333 (0.018)

DBCDDA
0.049 598.8 (11.0) 269.4 (5.0) 0.333 (0.029) 0.333 (0.030) 0.333 (0.029)

ERADEDA
0.051 599.0 (9.4) 269.5 (4.2) 0.333 (0.027) 0.334 (0.027) 0.333 (0.026)

DBCDNP 0.048 598.9 (9.9) 269.4 (4.4) 0.336 (0.085) 0.333 (0.084) 0.332 (0.082)

ERADENP 0.044 599.1 (8.3) 269.6 (3.7) 0.335 (0.083) 0.331 (0.081) 0.334 (0.083)

Fixed-sample design

Procedure α̃ ENP (s.d.) ENF (s.d.) ρ̃E1 (s.d.) ρ̃E2 (s.d.) ρ̃C (s.d.)

CR 0.041 600 (0) 269.9 (0.0) 0.334 (0.018) 0.333 (0.018) 0.333 (0.018)

DBCDDA
0.051 600 (0) 269.9 (0.0) 0.334 (0.029) 0.333 (0.029) 0.333 (0.029)

ERADEDA
0.050 600 (0) 269.9 (0.0) 0.334 (0.026) 0.333 (0.027) 0.333 (0.027)

DBCDNP 0.048 600 (0) 269.9 (1.8) 0.332 (0.088) 0.333 (0.087) 0.334 (0.088)

ERADENP 0.042 600 (0) 269.9 (0.0) 0.332 (0.086) 0.334 (0.085) 0.334 (0.087)
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Table 6: Simulated power for three-armed censored survival trials using com-
plete randomisation and response-adaptive randomisation, θE1 = 59, θE2 =
45, θC = 37 and N = 600.

(t1, t2, t3)=(0.33, 0.67, 1)

Procedure Power ENP (s.d.) ENF (s.d.) ENF
′

(s.d.) ρ̃E1 (s.d.) ρ̃E2 (s.d.) ρ̃C (s.d.)

CR 0.807 556.3 (62.1) 247.0 (27.7) 263.6 (4.3) 0.334 (0.019) 0.333 (0.019) 0.333 (0.019)

DBCDDA
0.829 545.4 (66.2) 237.7 (29.9) 258.5 (5.0) 0.401 (0.027) 0.331 (0.033) 0.269 (0.035)

ERADEDA
0.835 547.0 (65.9) 238.4 (29.8) 258.6 (5.0) 0.400 (0.023) 0.331 (0.030) 0.269 (0.033)

DBCDNP 0.853 536.8 (67.6) 229.6 (31.1) 253.6 (7.0) 0.506 (0.093) 0.239 (0.066) 0.254 (0.048)

ERADENP 0.844 537.9 (66.9) 230.4 (30.8) 254.0 (7.0) 0.499 (0.095) 0.243 (0.070) 0.257 (0.048)

(t1, t2, t3)=(0.5, 0.8, 1)

Procedure Power ENP (s.d.) ENF (s.d.) ENF
′

(s.d.) ρ̃E1 (s.d.) ρ̃E2 (s.d.) ρ̃C (s.d.)

CR 0.791 566.4 (40.5) 251.4 (18.1) 264.2 (3.0) 0.334 (0.019) 0.333 (0.019) 0.333 (0.019)

DBCDDA
0.822 558.2 (45.1) 243.2 (20.9) 259.1 (4.0) 0.401 (0.026) 0.331 (0.032) 0.268 (0.034)

ERADEDA
0.818 558.6 (45.1) 243.5 (20.8) 259.2 (3.9) 0.399 (0.023) 0.331 (0.029) 0.270 (0.031)

DBCDNP 0.846 552.2 (46.1) 236.1 (22.2) 254.3 (6.3) 0.507 (0.093) 0.236 (0.064) 0.257 (0.048)

ERADENP 0.842 552.2 (45.9) 236.5 (22.3) 254.6 (6.5) 0.500 (0.096) 0.240 (0.068) 0.259 (0.048)

Fixed-sample design

Procedure Power ENP (s.d.) ENF (s.d.) - - ρ̃E1 (s.d.) ρ̃E2 (s.d.) ρ̃C (s.d.)

CR 0.763 600 (0) 266.3 (1.2) - - 0.334 (0.018) 0.333 (0.018) 0.333 (0.018)

DBCDDA
0.804 600 (0) 261.5 (1.7) - - 0.399 (0.024) 0.331 (0.029) 0.270 (0.030)

ERADEDA
0.797 600 (0) 261.5 (1.6) - - 0.398 (0.022) 0.330 (0.027) 0.272 (0.028)

DBCDNP 0.835 600 (0) 256.4 (5.4) - - 0.510 (0.092) 0.230 (0.062) 0.261 (0.051)

ERADENP 0.831 600 (0) 256.6 (5.3) - - 0.506 (0.091) 0.231 (0.061) 0.263 (0.050)

The target DA-optimal and NP allocations are (0.400, 0.330, 0.270) and (0.519,

0.200, 0.281), respectively.
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5 Discussion

5.1 Conclusions

Previous work on two-armed clinical trials has shown that combining group

sequential analysis with response-adaptive randomisation preserves the ad-

vantages of both techniques while controlling the error rates. This paper

investigates the combined approach in multi-armed clinical trials. Based on

the results obtained, the critical boundaries derived based on standard group

sequential designs can be used as an approximation for the adaptive design

for different types of outcomes. Moreover, response-adaptive randomisation

can be more efficient than complete randomisation in multi-arm trials.

Compared with the group sequential CR design, the adaptive designs can

increase the power of the tests of homogeneity while decreasing the average

numbers of patients and failures. Both optimal response-adaptive designs can

target the specified optimal allocations well, with the ERADE consistently

having a lower variability in the allocation proportions than the DBCD.

Comparing the two optimal allocations derived based on different optimality

criteria, in general, the adaptive designs with the DA-optimal allocation have

a lower variance for the allocation proportions, whereas the NP allocation

can achieve a higher power while minimising the average number of patients.

We acknowledge that some aspects of the NeoSphere trial in Section 4.1

have been simplified for illustrative purposes. In practice, considerations

on whether or not to use the combined approach include but are not lim-

ited to (a) the number of treatments being compared, (b) the target sam-

ple size/number of events, (c) the length of time to obtain the intermedi-

ate/surrogate outcome measurements and (d) the availability of a response-

adaptive randomisation algorithm, especially if several centres are involved.

It is acknowledged that the use of such an adaptive design is more compu-

tationally demanding than conventional randomisation algorithms such as

minimisation, and is less appealing for rare diseases or in two-armed trials.
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5.2 Further work

The global test focuses on a test of homogeneity. The critical boundaries

used are based on the joint distribution of the test statistics assuming that

sampling for all treatments continues to the end of the trial. Dropping of

inferior treatments violates this underlying assumption. Further work on the

multi-armed adaptive designs that allow dropping inferior arms at interim

analyses will be presented separately.

This paper focused on treatment contrasts as the parameters of interest.

A rate ratio or hazard ratio are also common outcomes. Biswas et al. (2011)

investigated the optimal allocations for different types of outcomes. However,

the multi-armed adaptive designs, which combine group sequential tests with

adaptive randomisation techniques, presented in this paper have not been in-

vestigated using outcomes of a rate/hazard ratio, yet may be of interest for

future study.

In the Bayesian paradigm, MAMS designs with adaptive randomisation have

been explored. The posterior estimation, which is updated by the observed

cumulative outcomes with a pre-specified prior, is used to allocate patients

adaptively. The posterior distribution is also computed to see if it meets

the pre-specified Bayesian decision rule to stop the trial early at an interim

analysis. With the advantage of flexibility in Bayesian designs, Ventz et al.

(2018) further considered adding experimental arms to a platform clinical

trial. However, unlike the frequentist approach, the Bayesian one does not

focus on controlling the type I error rate, which is a common requirement

by regulatory authorities. To extend the frequentist design in this paper to

allow arms to be added while controlling the type I error rate, one will need

to show that the information time formula described in Section 2.1 continues

to hold after adding arms, which may be worth exploring. The operating

characteristics of such a design can be compared with those of a Bayesian

approach.

22



Seamless phase II/III designs allow dose or treatment selection at one or

more interim analyses. A single arm is selected and the comparative efficacy

with the control evaluated (Stallard and Todd, 2011; Thall, 2008). This ap-

proach was further extended to allow any number of treatments to continue

at each stage as long as the number is pre-specified and not data-dependent.

Jennison and Turnbull (2006) showed that seamless phase II/III group se-

quential designs control the family-wise error rate in the strong sense. It is

reasonable for dose selection but might be too conservative in some circum-

stances, especially when the treatments being compared are very different.

One may explore generalising seamless phase II/III designs to the response-

adaptive setting. A short-term outcome should be used at interim analyses.

Exponential survival times are considered in this paper, which require the

strong assumption of a constant hazard. The DA-optimal design for multi-

armed trials assuming Weibull survival times has been investigated (Sverdlov

et al., 2014). Their approach required interim data to be analysed at pre-

specified points in the trial. The proposed global testing in the present paper

can be extended to the Weibull survival case. However, unlike the simple ex-

ponential case, there will be no closed form for the probability of an event

on arm j, εj, in (2). Nevertheless, an alternative is to consider the empirical

estimate of εj using the actual observed events. This approach allows an in-

terim analysis to be conducted at any time, since the critical boundaries for

pairwise comparisons following the completion of global testing were derived

based on an alpha-spending function.
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