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Calibration of stochastic traffic microsimulation models is a challenging task. This paper proposes a fast iterative probabilistic
pre-calibration framework and demonstrates how it can be successfully applied to a real-world traffic simulation model of a section
of the M40 motorway and surrounding area in the UK. The efficiency of the method stems from the use of emulators of the stochastic
microsimulator which provide fast surrogates of the traffic model. The use of emulators minimizes the number of microsimulator
runs required and the emulators probabilistic construction allows the consideration of the extra uncertainty introduced by the
approximation. It is shown that automatic pre-calibration of this real-world microsimulator, using turn count observational data, is
possible considering all parameters at once and that this pre-calibrated microsimulator improves on the fit to observations compared
to the traditional expert tuned microsimulator.

I. INTRODUCTION

ROAD transport microsimulation models are fixed time
step Monte Carlo simulations of individual vehicles

moving on a road network and are intended to provide
decision support to transport planners; [1] describes many
contemporary commercial and academic software suites. Large
models are often both computationally intensive to run and
also labour intensive to calibrate with numerous interrelated
parameters adjusted in an iterative process. The combination of
long run times and the interactions between parameters makes
calibration a challenging task on a large microsimulation
model.

In this paper we demonstrate a pre-calibration, or ‘history
matching’, approach to calibration of a traffic microsimulation
model, building on the methods developed in [2]. History
matching refers to the process of ruling out areas of the
parameter space which are inconsistent with the available
observations through the use of a probabilistic discrepancy cri-
terion. [2] apply history matching to a deterministic galaxy for-
mation simulator to determine plausible parameter sets. Galaxy
formation simulators are amongst the most computationally
intensive simulators in use today, and to address this issue,
[2] utilise emulators, that is surrogate statistical models, which
can be used to reduce the computational cost of calibration [3].
History matching is sometimes referred to as pre-calibration
since it helps to identify regions of parameter space that cannot
be ruled out given the observational evidence. Reducing the
parameter space using history matching can then be followed
by a more formal Bayesian calibration [3].

The workflow adopted in this paper is to: 1. elicit the critical
inputs and outputs of the model; 2. produce emulators which
reproduce the relationship between inputs and outputs; and 3.
progressively refine the emulators in the area(s) of parameter
space where calibration is most likely to be achieved. In the
second and subsequent waves of refinement we are able to
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both limit the volume of parameter space to be investigated
and also refine the emulators, moving from a simple to a
more complex emulator. An additional challenge we face in
calibrating microsimulation models is that they are stochastic
simulators, thus when using emulators we need to predict not
just the simulator outputs for a given input, but the distribution
of the simulator outputs.

The paper begins reviewing the literature on calibration of
stochastic traffic simulation (Section I-A) and then describes a
general methodology to probabilistically calibrate a stochastic
simulator (Section II). We present an extensive demonstration
of the methodology on a model of the M40 motorway near
Warwick, England in Sections III - IV. We conclude with a
summary and suggestions for further work in Section V.

A. Literature

Calibration and sensitivity analysis are well studied prob-
lems [4], [5] that appear in a multitude of application domains.
In the field of traffic simulation, operational calibration is often
what might be referred to as hand tuning, in which model
parameters are adjusted based on expertise and trial and error.
We term this approach expert calibration and it is discussed
in Section III-A within the context of the M40 model.

A wide range of statistical approaches to transport model
calibration have been proposed. [6] discuss methodologies of
calibration specific to road transport microsimulation models
observing that the issue is addressed in some studies primarily
through calibration based on comparisons of individual vehicle
movements and in other studies by aggregated measures of
flow rates and journey times. [6] also discuss the number of
parameters involved in the calibration and the merits of using
a pragmatic multi-stage process to reduce the scope of the
calibration problem in each stage as advocated by [7] versus
an approach that addresses all parameters simultaneously and
is hence more likely to find a better calibration.

[8] developed a microsimulation model for a large region of
Des Moines, Iowa and used an automatic calibration method.
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However, the complexity of the model, and in particular
the computational time, meant that an iterative approach
to calibration was undertaken considering parameter groups
sequentially. As noted in the paper, and in agreement with [6],
it would be preferable to jointly tune all parameters; however,
the driver behaviour is calibrated on a single road section
only and then fixed while other parameters are tuned using
a generalised least squares method. [9] developed a general
mathematical framework for the simultaneous calibration of
the parameters and inputs to microscopic traffic simulation
models using general traffic measurements while [10] used a
neural network approach to the calibration of microsimulation
models of roundabouts with mixed success depending on the
measure chosen for calibration.

An example of Bayesian calibration, applied to stochastic
biological simulators, is described in [11], which employs
a relatively simple emulator that allows for input dependent
variance in the outputs, but decouples the mean response from
the variance response. Within the context of traffic simulation,
[12] describes a Bayesian approach to the calibration of a
traffic simulator on a small network, and exploits the rela-
tively simple structure of the simulator to derive an efficient
Markov Chain Monte Carlo sampling method. [13] stress the
importance of uncertainty quantification and the application of
Bayesian methods for calibration of traffic microsimulators.

Run time is a problem inherent in large transport models,
[14] attempted to calibrate a very large microsimulation model
of the Buffalo and Niagra region and found the model run
time of 30 hrs even precluded heuristic based techniques
and essentially required that the process be over-simplified.
[15] developed an emulator of an agent based travel demand
model utilising a multiple regression model to emulate the
relationship of one key output (km travelled) with three socio-
economic inputs including first order interactions. [15] argue
the case for the use of emulators in applications where short
run times are critical (in this case, an investigative workshop
environment) and extend this to the case for emulation in
sensitivity analysis.

[16] used Gaussian process metamodels, or emulators, de-
rived from a transport microsimulation model to examine the
feasibility of undertaking parameter sensitivity analysis of the
car following and gap acceptance algorithms. Their conclusion
was that comparable results were achievable in parameter
sensitivity analysis using both the original model and the em-
ulator. [17] developed this work to examine the performance
of different optimisation techniques and calibration criteria.
Each experiment required many runs of a computationally
expensive model and hence a kriging metamodel, equivalent
to a Gaussian process emulator, was developed with the four
vehicle behaviour parameters identified as critical in [16] as
inputs.

II. PROBABILISTIC CALIBRATION VIA HISTORY
MATCHING

We first describe the methodology we propose to calibrate
the stochastic microsimulator via history matching. The pro-
cess may be summarised by the following iterative scheme:

1) Elicitation (Section II-A): initially an elicitation exercise
[18] is undertaken with the model stakeholders to iden-
tify the key input parameters in the simulator and the key
outputs, and their associated plausible ranges. The elic-
itation exercise also considers the simulator structural
error, intrinsic variance and observational uncertainties.

2) Initial experimental design: an experimental design to
vary the elicited inputs is created. The maximin Latin
Hypercube design is widely used in the computer exper-
iment literature [3] as it provides good coverage of the
input space and is fast and straight-forward to generate.
Due to the stochastic nature of the simulator, multiple
runs are undertaken for each design point to obtain
estimates of the simulator variance.

3) Simulator evaluation: The simulator is executed at the
design points to obtain the corresponding outputs and
the design is split into non-overlapping training and
validation sets.

4) Emulator fitting and validation (Section II-B): emulators
are trained to approximate the simulator using the pre-
viously obtained training set of simulator evaluations.
The performance of the emulators is checked on the
validation set to ensure the probabilistic description is
correct [19].

5) Implausibility (Section II-C): emulators are used with
observations to calculate the implausibility criterion for
each proposed parameter set, taking into account all
sources of uncertainty (Section II-A). This allows us to
rule out areas of implausible parameters, creating a new
denser experimental design in the ‘not ruled out’ space.

6) Iterate: return to step 3 by evaluating the simulator
at the design locations still deemed non-implausible.
The emulators constructed at the next stage are defined
only in the non-implausible region. Continue until either
the computational budget is exhausted or the emulator
uncertainty is dominated by other sources of uncertainty.

We now describe each stage in more detail.

A. Expert Elicitation

In addition to eliciting the ranges for the simulator inputs,
estimates of simulator and observational uncertainties are
needed. Specifically we elicit:

• Model Discrepancy (MD): the difference of the simulator
output to reality. This is also known as structural or
model error and is due to simplifications and other
approximations incorporated in the construction of the
simulator, and can be very challenging to quantify.

• Observation Error (OE): the expected error of the obser-
vations, and is generally better understood.

Additionally we need to consider the Intrinsic Stochastic
Simulator (ISS) variance that arises from running the simulator
repeatedly at a single parameter setting. This is usually input-
dependent and we propose to estimate the ISS variance by us-
ing replicated experimental designs and constructing emulators
that provide a smoothed estimate for this quantity coupled with
‘emulator uncertainty’. The latter is defined as the additional
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uncertainty due to the use of the emulator rather than the
simulator.

B. Emulation

Although calibration can be performed without the use of
emulation, emulation allows for considerable savings in the
number of simulator runs required and is thus commonly
employed when dealing with computationally demanding sim-
ulators. In this exercise, the following additive model is
assumed for each simulator output:

t(x) = f(x) + ε(x),

where x denotes the simulator inputs (parameters), f(x) is the
logarithm of the unknown mean of the simulated traffic count,
ε(x) is an input dependent, zero mean, additive Gaussian
random variable representing the intrinsic simulator variability
and t(x) represents the stochastic computed simulator outputs.

A common approach to emulation for deterministic simula-
tors, where ε(x) = 0, is to place a Gaussian Process (GP) prior
on f(x) [3]. For stochastic simulators, the GP emulator can
be extended to incorporate the stochastic nature of the output
by including a range of additional variance models. A GP is
defined as ‘a collection of random variables, any finite number
of which have a joint Gaussian distribution’ [20]. GPs are an
example of a non-parametric method as they characterise a
prior over functions directly instead of requiring an explicit
parameterisation of the unknown function f [21].

A GP is defined by a mean and a covariance function, the
specification of which allows the incorporation of prior knowl-
edge in the emulation construction such as the smoothness and
differentiability of the approximated function. Formally

f(x) ∼ GP (m(x), c(x, x′)) ,

where x ∈ Rp the vector of inputs. The mean function m(x)
and covariance function c(x, x′) are defined as:

m(x) = E[f(x)],
c(x, x′) = cov [f(x), f(x′)] .

Any finite collection of samples from a GP has a joint Gaus-
sian distribution {f(x1), f(x2), . . . , f(xN )} ∼ N (µ,C) ,
where C has entries Cij = c(xi, xj) and the mean µ has
entries µ(xi). The Squared Exponential and Exponential co-
variance functions [20] are considered:

kSE
θ (r) = σ2

p exp

(
− r2

2λ2

)
,

kExp
θ (r) = σ2

p exp
(
− r

λ

)
,

where r = ||xi − xj || the Euclidean distance between input
points. The process-variance parameter σ2

p controls the am-
plitude of the kernel response. The correlation length-scale
parameter λ rescales the inputs. The GP parameters may be
estimated by maximum likelihood or integrated out by using
sampling. For computational efficiency we use the maximum
likelihood approach.

Assuming Gaussian noise and conditioning on the max-
imum likelihood estimates of the parameters, the posterior

predictive distribution for a new point x∗ can be analytically
calculated [20]. This allows for fast prediction at new points
x∗ where the simulator has not been evaluated:

E[t∗|x∗, x, t] = C∗(C +R)−1t ,

V ar[t∗|x∗, x, t] = C∗∗ +R∗ − C∗(C +R)−1CT
∗ ,

where {x, t} is the training set, C∗ = [c(x, x∗)] and C∗∗ =
[c(x∗, x∗)] the train-prediction and prediction only covariance
matrices respectively [20]. R and R∗ refer to the variance
model ε(x) and ε(x∗) respectively.

Different models for the simulator variability ε(x) are
considered:

• Homoscedastic: input-independent Gaussian noise ε ∼
N

(
0, σ2

)
. In this case R = R∗ = σ2I where I the

identify matrix.
• Heteroscedastic: polynomial input-dependent Gaussian

noise ε(x) ∼ N
(
0, exp

(
H(x)Tβ

))
, where H(x) is

the set of fixed basis functions with known parameters
[22]. A simple example in 2D space is a linear variance
model exp (β0 + x1β1 + x2β2). In this study we use
polynomial variance models up to degree 3. In terms of
the variance matrices, R and R∗ are diagonal with entries
exp

(
H(x)Tβ

)
and exp

(
H(x∗)

Tβ
)

respectively.
The homoscedastic model is the simplest but likely to be
inappropriate for stochastic simulators where the variance of
the simulator is expected to depend on the inputs. However, it
is useful as a baseline measure from which to judge the more
complex heteroscedastic models. [22] reviews approaches to
heteroscedastic GP emulation in more detail.

Lastly, we note that more complex emulator structures
are available and can be employed at any iteration of the
calibration process. Rather than using independent emulators
for each output other methods that model the correlation
between output emulator uncertainties are possible. Dynamic
emulators, as proposed in [23], explicitly model the time
dependency in the response and would be useful to model
time series data such as that produced in the M40 Model
for a single location (Section III). More general types of
correlations between different responses could also be modeled
using a multivariate response GP [24]. Such methods would
also require a multivariate elicitation of model discrepancy and
observations error that are challenging to elicit in practice [2].

C. Implausibility

The essence of the history matching method employed in
this paper lies in the probabilistic criterion known as implau-
sibility [2]. A large value suggests a large difference between
the simulator output and reality, considering all sources of
uncertainty. For input vector x, the implausibility for output i
is defined as:

Ii(x) = (Ei[t]− zi)
2
/(Vi[t] + V O

i + V MD
i ) ,

where zi is the log of the observed data (turn count data in our
case), Ei[t], Vi[t] is the mean and variance of the emulator, V O

i

is the observation variance and V MD
i the model discrepancy

variance. Large values of Ii(x) suggest if the simulator was



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. ? , NO. ?, JUNE 2014 4

evaluated for the input vector x, it is very unlikely the response
would be an acceptable match to the observed data, accounting
for all the sources of uncertainty [2].

The implausibility across all outputs is summarised by
making the simplifying assumption of the independence of
output errors. This leads to a multivariate version of I(x) with
diagonal matrices:

I(x) = (E[t]− z)
T (

V [t] + V O + V MD
)−1

(E[t]− z) ,
(1)
where E[t] the vector of Ei[t] and z the vector of all obser-
vations. V [t] is a diagonal covariance matrix with emulator
variances Vi[t] on the diagonal. V O and V MD are similarly
diagonal matrices of the observation errors and model discrep-
ancy respectively. As [2] argue, non-independent constructions
of the implausibility measure are possible and lead to more ef-
ficient reduction in the parameter space, however they require
elicitation of error correlations which is challenging.

The theoretical distribution of (1) assuming z is
sampled from a multivariate Gaussian distribution
N

(
E[t], V [t] + V O + V MD

)
is a Chi-squared distribution

with m degrees of freedom where m is the number outputs.
This allows the calculation of a cut-off as a suitable
percentile of the Chi-square distribution. The cut-off is set
to c = F−1

(
X 2

m < 99.5
)

where F−1 the inverse cumulative
distribution function. If I(x) > c it is very unlikely the
simulator will produce output that will be close to the
observations, even taking into account all the uncertainties. .

III. M40 MICROSIMULATION MODEL

The subject for this exercise is an operational model of a
section of the M40 Motorway in England between junctions
12 and 14 (Figure 1). It lies south of Warwick and covers
58km of road with 44 zones acting as sources and sinks for
traffic. It models over 50,000 trips in the four hour AM peak
period. The model, commissioned in 2011 by Warwick County
Council, uses the S-Paramics microsimulation software suite
[25] and is intended to test options for traffic management and
road improvements with a goal of reducing chronic congestion,
and improving journey times and journey time reliability.

This model was chosen because it shows many of the more
complex facets of a transport microsimulation model. It has
route choice and uses dynamic routing in which knowledge
of congestion is imparted to some, but not all, vehicles
in the simulation. The area is overcongested, exhibits flow
breakdown on motorways, and has significant queueing at two
key junctions. The execution time of the model is ∼ 10–30
minutes depending on the parameter settings, which implies
that, while it is not unmanageable, running it many times to
investigate parameter options during model calibration is non-
trivial.

The model calibration process is described in the Local
Model Validation Report (LMVR) [26]. The LMVR describes
a structured approach to calibration following the process
recommended by the software supplier [27]. The key junctions
in the model are cordoned and calibrated independently by
adjusting locus points, junction visibility parameters and by
making local vehicle behaviour adjustments. The next stage is

Fig. 1. M40 Modelled Area.

to examine the road network as a whole; assigning route cost
multipliers to particular links or classes of links, by making
behavioural changes to reflect observations and by defining
the merge and weave areas on motorways prior to exit ramps.
Calibration of the distribution of trips in the model, the detailed
time profile of trip generation, and the route knowledge of
the drivers making those trips forms the third stage. The
relationships between route choice, junction congestion, ve-
hicle release rates and timing, and driver knowledge form a
network of many interelated parameters controlling different
aspects of the model and all contributing to its calibration.
Changing one may require complementary changes in others
and the inherently linear process of hand calibration struggles
to manage the complexity of the task for a large model.

A. Expert Calibration

The model is calibrated using criteria are set out in the
UK WebTAG Section 3.19 [28] which requires that 85% of
the count locations must have a GEH value < 5 defined as
GEH =

√
2(m−o)2

(m+o) , where m is the modelled count and o is
the observed count in vehicles per hour. This criteria was de-
signed for traditional transport models which typically use trip
matrices specified at 1 hour intervals. For the microsimulation
model, a finer time profile of release of vehicles into the model
is possible giving a much improved ability to reproduce the
turn counts using the time resolution of the observed data (15
minutes). The elicitation stage revealed that the build up and
dispersal of the queues occurred in under one hour implying
that calibration using 1 hour aggregated data was sub-optimal.
Hence the decision was taken to modify the calibration criteria
to use the equivalent GEH comparison for 15 minute data. [6]
comment that most studies use aggregate data such as link flow
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and journey time in calibration relying on the micro-simulation
software supplier to have calibrated the underlying behaviour
model for generic applications with only local modifications
based on observed deviation from normal behaviour required.
This approach was adopted in this study not least due to the
constraints of the available traffic flow data.

B. Elicitation

The goal of the elicitation exercise was to identify the
critical inputs, outputs and uncertainties in the model. The
experts in the elicitation exercise were the model owner from
Warwickshire Council, the project manager, and the director
of the S-Paramics software development team. The elicitation
exercise was conducted 1 month after the LMVR was written
and the model completed.

1) Model Inputs
The first stage is to identify those inputs that, in the opinion

of the stakeholders, had the most influence on the simulator
calibration or had the greatest uncertainty as to the most
appropriate value.

a) Junction Calibration: The model stakeholders were
confident that the congested junctions had been adequately
calibrated in isolation and showed representative throughput.
However, some critical parameters were discussed and, on the
recommendation of the software expert, these were included
in the inputs to the emulators. These are described in Table II.

b) Route Behaviour: The description of the road network
also affects routing; links are described as major or minor
depending on whether they form the main signposted routes
or not. While the M40 motorway is obviously a major road,
the designation for the parallel B4100, a secondary road, but a
primary route to the Jaguar-Landrover plant is more subjective.
Dynamic route choice gives those drivers labelled familiar
knowledge of the current achieved speeds in the model, in
effect mimicking a process of longitudinal learning by regular
commuters. Drivers with higher awareness and aggressiveness
attributes will react more strongly to this information but all
will have an uncertainty in their perception of congestion
delay. As the model was disaggregated to the extent that the
users of the main commuter routes could be identified by
vehicle type as well as by Origin - Destination (OD) trip,
it was possible to assign different route choice parameters to
these vehicles. These are described in Table III.

c) Vehicle Release: The number of vehicles released into
the model on a particular trip is described by OD matrices
which may be disaggregated by vehicle type (i.e. car, HGV)
or by trip purpose (i.e. commuter, leisure) and more closely
controlled by a time profile with five minute granularity. In the
simple case where one profile serves an entire zone, the profile
can be derived directly from the observed flow rates from that
zone. In the more complex case where multiple profiles are
assigned to one zone, it is necessary to examine observed data
at junctions further into the model. However, when elements
of the route are shared, generating profiles is a non-trivial task
and is often subject to the modeller’s professional judgement.

The elicitation process revealed that the project team were
confident in the OD matrix, cordoned from a wider area model,

but were less confident about the departure time profiles. Four
key profiles were identified and are described in Table IV.

Parameterising the release profiles was undertaken by defin-
ing a spread and shift variable for each profile. The spread
variable reduced the peak of a profile by distributing it across
the shoulder of the profile using an exponential transformation
with a bound of 20% deviation, the shift variable moved the
peak forwards or back in time by up to 3 steps (15 min).

d) Vehicle Dynamics: Vehicle dynamics may be globally
specified for the model or may be overridden in chosen
locations to model observed behaviour. On the B4100, the
secondary road running parallel to the M40 motorway, the
headway between vehicles is observed to extend beyond the
typical range. Subjective opinion expressed in the LMVR is
that, with experience, drivers have learned that making smooth
progress on this road, where the majority of vehicles share
the same destination, is better than stop/start queuing. This
observation was coded into the model altering driver behaviour
on this link by coding it as either urban or rural and by
extending the headway between individuals. The sensitivity
of the model to these changes and the relationship of these
parameters to the route choice options was of interest to
the model stakeholders. The elicited parameters controlling
vehicle behaviour are described in Table V.

2) Model Outputs and Uncertainties
The next stages of elicitation were to determine which

of the model outputs should be emulated and what was the
stakeholder’s understanding of the inherent uncertainty in the
model. As the calibration focus in this model is on the
aggregate level of matching turn counts [6], then with 255
count locations, it is inevitable that many are interdependent.
Hence, the elicitation task was to identify which are the main
points where driver choice is made and where routes diverge,
and which are the main points which allow the characteristics
of the flow in the adjacent area to best be inferred. After
consultation we narrowed the focus of the calibration to four
timesteps and nine locations that were deemed critical.

In terms of the Model Discrepancy (MD) and Observa-
tion Error (OE) variances (Section II-A), they were treated
similarly and were assumed mutually independent and input
independent. For the MD error a value of 15% of the simulator
turn count output was elicited. The elicited value for the OE
was only 2% of the observed count, the low errors being due
to the nature of the data considered. In all cases the model
experts felt that proportional errors were more likely, with
the quoted percentages referring to two times the standard
deviation (giving 95% confidence intervals) of the Gaussian
noise in the log transformed space (see Section III-D).

C. Experimental Design

The simulator was evaluated in three waves. For wave 1, the
simulator was evaluated on a maximin Latin Hypercube design
of 484 points with 5 replicates at each point. This design
provided an initial estimate of the mean and variance response
of the model across the entire domain of elicited parameter
values. An independent validation set of 250 runs with 5
replicates at each point was used for emulator validation.
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Wave 2 was performed on the subset of the original space
deemed as warranting further investigation by evaluating the
implausibility criterion (Section II-C). The wave 1 emulators
were evaluated on a 1100 point maximin Latin Hypercube
on the original space. Evaluating the implausibility criterion
at each point resulted in 233 of the points classified as non-
implausible, i.e. we could not conclude with high confidence
that the simulator would result in unrealistic predictions at
those settings (Section II-C). The simulator was then evaluated
at each of the 233 points using 20 replicate runs to obtain more
accurate estimates of the simulator variance. The data set was
split into a training and small validation set with 213 training
points and 20 validation points.

A final, wave 3, set of simulator runs was created using
another 1100 point Latin hypercube over the complete input
space and evaluating the implausibility using the emulators
from wave 1 and wave 2. This resulted in 32 more simulator
runs, further refining the emulators in the area of minimum
implausibility.

D. Emulation construction and validation

In the analysis an independent emulator is utilised for
each output (location × time). As the analysis is focussed
on nine locations and four time points at each, this results
in a total of 36 emulators being fitted in each wave. The
emulator structure is simplified by using a log transformation
of the outputs, which also serves to ensure predicted traffic
counts remain positive. The emulator output can then be
treated as a continuous real number and the observation and
structural errors become additive rather than multiplicative in
the transformed space (Section III-B2).

The emulators were validated at each wave
using the Negative Logarithmic Predictive Density
(NLPD) score which weights the errors on the
mean prediction by the predictive variance, therefore
penalising incorrect mean and variance estimates [20]:
NLPD = − 1

2N

∑N
i=1

(
log(2πVar[t]i) +

(E[t]i−ti)
2

Var[t]i

)
, where

N the number of validation points, E[t]i and Var[t]i the
emulator predictive mean and variance and ti the simulator
response at validation point i. Smaller values indicate a more
accurate prediction.

In wave 1 a common emulator structure was specified for all
outputs; a zero mean GP emulator with a squared exponential
kernel and a homoscedastic noise model. For the first iteration
only, a rather coarse emulator is needed since the aim is
to quickly exclude areas of the parameter space where the
output is predicted as implausible with high confidence. The
emulators were validated using the NLPD score evaluated at
the wave 1 validation set. The median NLPD for all outputs
was 0.12 as compared to 1.49 for an ordinary least squares
linear regression model.

In wave 2 a wider range of emulators were considered. For
each of the 36 outputs, five independent models were fit:

• A linear model t(x) = xT b+ ε where ε ∼ N(0, σ2) and
σ2 a input-independent variance.

• Linear mean GP models with an exponential kernel for
f(x) and polynomial variance models up to degree 3.

The GP specification was changed from wave 1 as exploratory
analysis of the wave 1 non-implausible simulator runs in-
dicated a linear mean process with a less smooth response
was more appropriate. The model which minimised the NLPD
score evaluated on the wave 2 validation set, was selected for
that output. The linear model was selected for most outputs
(58.3%) whilst the homoscedastic GP was never selected
for any outputs. The heteroscedastic model with log linear
variance was selected 25% of the time, with log quadratic
variance 8.3% of the time and with log cubic variance also
8.3% of the time. The median NLPD for all outputs was
−0.74. The selection of the linear model for most outputs is
due to a variety of reasons. Whereas the wave 1 emulator
structure was imposed on all outputs, the model selection
performed in wave 2 allowed for simple mappings to be
described concisely by a linear model. A simple mapping is
also more likely in the reduced space of wave 2 compared
to wave 1. The small training data sets used also make more
likely a better fit with a linear model whereas the additional
flexibility of a GP model would necessitate larger training
sizes.

IV. RESULTS

This section presents the results of the emulation and pre-
calibration of the M40 microsimulation model. Section IV-A
discusses how variable selection was used to reduce the num-
ber of inputs considered in the pre-calibration. Visualisation
of the implausibility space is discussed in Section IV-B. The
pre-calibrated model fit is discussed in Section IV-C.

A. Wave 1 Variable Selection

Through discussion with the domain experts at the elici-
tation stage, the initial set of 37 simulator parameters was
reduced to a subset of 25 for the study. Using stepwise
polynomial regression, a further 5 parameters were removed
that were never selected as inputs for any of the 36 outputs.

B. Simulator parameter investigation

In summary 3 iterations (known as waves) were performed.
The first wave included 484 × 5 simulator runs, the second
wave 233×20 runs and the third wave 32×20 runs. In Figure 2
the mean value across the replicate runs for all three waves are
shown for one typical location representative of the majority
of the output locations (Figure 2(a)) and one atypical location
(Figure 2(b)).

Wave 1 reduced the parameter space to 20% of the original
volume considered. Wave 2 further reduced the volume of the
parameter space to 3% of the original. This reduction in the
parameter space is an important aspect of the pre-calibration
and allows us to develop increasingly accurate emulators on an
increasingly compact input space, where the emulator response
is likely to be simpler and more straightforward to model.

Of note in Figure 2 is that for some locations the simulator
is unable to give responses close to the observations under
any parameter settings considered. For example for location
M40 J12 onoff (Figure 2(b)), the observed turn counts between
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Fig. 2. Turn counts for runs generated using wave 1 ( dotted light grey),
wave 2 (dotted dark grey) and wave 3 (dashed dark grey) parameterizations.
The expert calibrated model is shown in diamonds and the observed data in
circles.

7-8am are higher than all simulator runs. While errors such
as this do not preclude the approval of the model using the
GEH criteria described in [28], it would be worthwhile to
investigate this structural error and if possible to reduce it
by including other parameters in the analysis or enlarging
the ranges of the parameters considered. Overall we note that
for most locations wave 2 and 3 runs are more concentrated
around the observations compared to the wave 1 runs.

In Figure 2 the output produced by the expertly calibrated
model described in Section III-A is also shown. We term this
the default run. These parameter settings were arrived at by
an empirical calibration exercise performed prior to history
matching. For most locations, the default run is reasonably
close to the observations but we also note significant improve-
ments in the wave 3 runs in several locations. For example
in Figure 2(a) the default run consistently underestimates the
turn counts between 7:00 and 7:45 while wave 3 includes runs
achieving significantly smaller error.

The effect on parameter space can be explored in a variety
of ways by visualization of the implausibility space. The
simplest is to look at the implausibility a single parameter
at a time. In Figure 3 we show these plots for two param-
eters, Headway, and MotorwayCost. These plots were
constructed by evaluating the implausibility using wave 2
emulators (for all locations and times examined) on a large
set of designs. Specifically, for each parameter a grid set of
values was generated. For each value in the grid, a large set
of designs (200) for the other 19 parameters was generated.
The implausibility for this large set of designs was then
calculated. The minimum implausibility value is then shown
for each grid point in the plot. The calculation of implausibility
threshold shown in the implausibility plots is discussed in
Section II-C. The interpretation of these plots is as follows:
for any parameter values over the threshold (red line), the
simulator will very likely produce unrealistic outputs across
the entire range of all other parameters. This can be more
simply stated by saying that implausibility values over the
threshold represent with near certainty regions in which the
simulator will produce unrealistic outputs whilst values under
the threshold represent a state of ignorance, that is we cannot
say with any certainty that for such parameter values the
simulator output will be unrealistic. For the parameters shown
in Figure 3, we can state that setting Headway greater than

2.1 or the Motorway Cost less than 0.24 will result in
unrealistic simulator runs.

1 1.5 2 2.5 3

100

150

200

250

2.10

(a) Headway

0.2 0.4 0.6 0.8 1

100

120

140

160

180

0.24

(b) Motorway Cost

Fig. 3. Wave 2 minimum implausibility profile plots for three of the simulator
parameters. The implausibility threshold is shown as a solid horizontal line.

The univariate plots do not reveal interactions and so
we include examples of two dimensional plots where such
interactions are apparent. This is generated in the same man-
ner as previously outlined, the only difference being a two
dimensional grid is now used. In Figure 4 we show the in-
teraction of the Headway parameter with the CarPerturb,
GVFam, CarFam and MotorwayCost parameters. For the
first two, the headway parameter dominates the implausibility
criterion, with the threshold boundary being nearly linear at
a value of Headway of approximately 2. With the other two
parameters however, the threshold boundary is non-linear with
interactions apparent between parameters. For instance, the
simulator output is implausible for lower values of Headway
than 2 and MotorwayCost higher than 0.2 which is not
evident from the one dimensional plots. Generating these plots
without the use of emulation would require 152×200 = 45000
simulator runs, and with 6 replications of a Monte Carlo
simulation this would require at least 1800 days of computer
time (assuming the current best case 10 minute simulator
runtime), demonstrating the utility of employing emulation for
visualisation and interpretation of the pre-calibration process
results.

Fig. 4. Wave 2 2-D minimum implausibility parameter profile plots. The
decision threshold in the implausibility plot is shown as a solid black line.

To better understand the structure of the wave 3 non-
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implausible space we used hierarchical cluster analysis. Vari-
ables B4100-Behaviour and B4100Routeclass are
categorical so the data set is of mixed type and standard
clustering is not appropriate. We applied a k-medoids clus-
tering method adapted to mixed type variables [29]. Pearson’s
adaptation of Hubert’s Γ metric (PH metric) was calculated,
which gives larger values when the parameters are in different
clusters. Numbers of clusters ranging from k = 2 to k = 8
were explored; the PH metric achieved higher values when the
number of clusters were 4, 5 or 6, thus pointing to a complex
structure in the non-implausible region of parameter space:

No. clusters k 2 3 4 5 6 7 8
PH (×100) 11 32 39 41 38 36 38

To better understand the clustering a technique called
persistent homology analysis [30] was applied. Persistent
homology enables us to describe the topological struc-
ture of the non-implausible parameter values, giving in-
sight to the connectivity of the parameter values at dif-
ferent scales of variation. The most topologically complex
cluster corresponds to B4100-Behaviour=Highway and
B4100Routeclass=Minor clusters, identified in the hi-
erarchical cluster analysis. The complex geometry of this
cluster may reflect non-linearities in the simulator, due to
the formation of queues, which creates a fragmented non-
implausible parameter region.

C. Calibrated Model Fit

We can also compare the performance of the model under
the default expert calibrated parametrisation versus the best
parametrisation obtained via the iterative probabilistic cali-
bration methodology. While this is not a formal Bayesian
calibration it allows us to compare the ‘best’ model we found
automatically with the best model found by hand tuning. In
Table I we compare the GEH of the model under the two
parameter settings using two different perspectives. Firstly we
show the percentage of the time series where GEH < 2.5.
The threshold value of 2.5 is used since the error is taken
with respect to the 15 minute observational data used in the
calibration. For all locations, the probabilistically calibrated
model achieves a higher score except for the M40 J12 location
where the model prediction consistently underestimates the
observations under all parametrisation considered (see Section
IV-B and Figure 2(b)). Examining the median GEH, we note
large reductions in error for all locations reflecting the closer
proximity of the model prediction to the observations.

Figure 5 shows two examples of the automatically calibrated
simulator output versus the default run and the observations.
As expected the calibrated simulator output is closer than the
default run on most of the observations used in the calibration.
The error outside the observations calibrated against however
can be significantly higher than the default run since it is
not considered in the calibration exercise. Taking into account
more time steps in future waves of calibration would address
this issue at the cost of increased computational complexity.

TABLE I
PERCENTAGE OF GEH < 2.5 AND MEDIAN GEH FOR THE

HAND-CALIBRATED SIMULATOR RUN (DEFAULT) AND THE BEST
SIMULATOR RUN FOUND USING PROBABILISTIC CALIBRATION (BEST).

Location De-
fault
%

Best
%

Default
Median

Best
Median

M40 J12 NB onoff slip From
M40 SB slip to B4451 south

50 50 2.50 1.87

SE Entrance FROM B4100 S
TO JLR SE Entrance

100 100 2.28 0.82

NW Entrance Aston Martin
Rbout From B4100 north to
Aston Martin

75 100 0.81 0.43

Banbury Rd RB From Banbury
Road north to Banbury Road
south

100 100 1.49 0.59

Gallows hill ( Greys mallory)
From Warwick Bypass to Ban-
bury Rd. (S)

100 100 1.38 0.51

Gallows hill ( Greys mallory)
From Warwick Bypass to Ban-
bury Rd (N)

75 100 1.94 0.98

Gallows hill ( Greys mallory)
From Warwick Bypass to Eu-
ropa Way

50 100 2.15 0.43

Europa Way Rbout From J3
Europa Way West to J3 Eurpoa
Way North

75 100 0.88 0.11

Europa Way Rbout From
J3 Europa Way West to J3
Queensway

100 100 1.41 0.42
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North
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(b) Banbury Road Roundabout:North
to South

Fig. 5. Observations (Marked with circles), default (diamonds) and best
calibrated model run (dotted ) in terms of GEH. The vertical lines denote
the time points used in the probabilistic calibration.

V. CONCLUSIONS

This study considers the pre-calibration of a real traffic
microsimulation model in a moderate complexity, operational
scenario. The work has shown that using Gaussian processes
emulators with the microsimulation model it is possible to
jointly constrain many parameters in the simulator, signfi-
cantly reducing the volume of parameter space that needs
to be considered in the formal calibration exercise. Indeed
the pre-calibrated (non-implausible) simulator runs are shown
to improve on the expert calibration of the simulator. The
emulation approach offers even greater benefits when using
stochastic simulators compared with deterministic models,
since once trained the emulators are able to capture the
intrinsic variability in the simulator without the requirement
for replicated simulator runs.

The ability to describe the topology and structure of clus-
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ters in the pre-calibration space provides a means to try
and understand whether the calibration processes finds many
competing solutions across parameter space, or a single global
maximum in the implausibility measure. It also helps to
describe the complexity of the non-implausible space, and
when used in conjunction with the implausibility surfaces
can help improve our understanding of the simulator and its
associated parameters. This is critical to both operational use
of the microsimulator, and identifying how to improve the
microsimulator. It must be emphasised that emulation works
with the microsimulator, and does not replace it.

In this study the observational data used to constrain the
simulator consisted of only 9 locations each extending over
4 time steps. This has simplified the subsequent analysis
but at the cost of efficiency, i.e. some runs that produce
clearly implausible output are not detected as such because
that behaviour occurs outside the subset of locations and
times we have looked at. Extending our approach to more
time points and locations is straight-forward but requires the
development of many more independent emulators. Lighter-
weight emulators as used in [2], which are essentially linear in
parameter models, can be utilised to reduce the computational
requirement, although the computational cost of training an
emulator is signficantly less than a single simulator evaluation.
Another option that could be explored is creating multivariate
emulators for the functional output, or potentially emulating
the misfit (implausibility) as was done in [31].

In future, we plan to extend this work to consider a
formal Bayesian calibration of such a microsimulation model
and to use these methods to explore road development and
traffic management option sensitivity. This will require further
consideration of the various sources of uncertainty and in
particular model discrepancy in microsimulation models.

APPENDIX A
ELICITED VARIABLES

Tables II-V show the ranges and values of the elicited input
variables.

TABLE II
ELICITED VARIABLES: JUNCTION CALIBRATION

Group Variable Range Default Units
M40 J12 J12EastBound 500-4000 3000 m

Where vehicles start to get in lane
before Junction 12

Greys EastBound 0-60 60 m
Mallory SouthBound 0-60 20 m

Junction visibility at Greys Mallory
Gaydon 4415SWB 0-15 15 m
Gaydon 4415NEB 0-60 20 m
Gaydon 4100SEB 0-18 18 m
Gaydon 4100NWB 0-17 17 m

Junction visibility at Gaydon

ACKNOWLEDGEMENTS

The authors would like to thank James Edwards of ARUP
Ltd and Alan Law of Warwickshire County Council for their
assistance during the elicitation stage and the provision of the

TABLE III
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B4100RouteClass Maj—Min Minor enum

Route weighting

TABLE IV
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B4100-Headway 0.8-3.0 1.5
Behaviour specific to the B4100

simulation model and SIAS Ltd. for the loan of an S-Paramics
simulation software licence. This work was funded as part
of the Managing Uncertainty in Complex Models project
(EPSRC grant D048893/1) and the Aston Research Centre
for Healthy Ageing (ARCHA). We also wish to thank the
anonymous reviewers for their comments that helped improve



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. ? , NO. ?, JUNE 2014 10

the presentation of the paper.

REFERENCES

[1] J. Barcelo, Fundamentals of Traffic Simulation, ser. International Series
in Operations Research and Management Science. Springer Verlag,
2010.

[2] I. Vernon, M. Goldstein, and R. G. Bower, “Galaxy formation: a
Bayesian uncertainty analysis,” Bayesian Analysis, vol. 5, pp. 619–670,
2010.

[3] A. O’Hagan, “Bayesian analysis of computer code outputs: a tutorial,”
Reliability Engineering and System Safety, vol. 91, pp. 1290–1300, 2006.

[4] A. Saltelli, K. Chan, and E. Scott, Sensitivity Analysis. Wiley, 2009.
[5] M. Hill and C. Tiedeman, Effective Groundwater Model Calibration:

With Analysis of Data, Sensitivities, Predictions, and Uncertainty. Wi-
ley, 2006.

[6] Y. Hollander and R. Lui, “The principles of calibrating traffic microsim-
ulation models,” Transportation, vol. 35, pp. 347–362, 2008.

[7] FHWA, “Traffic analysis toolbox volume iii: Guidelines for applying
traffic microsimulation modeling software,” FHWA, Tech. Rep., 2004.

[8] M. Jha, G. Gopalan, A. Garms, B. Mahanti, T. Toledo, and M. Ben-
Akiva, “Development and calibration of a large-scale microscopic traffic
simulation model,” Transportation Research Record: Journal of the
Transportation Research Board, vol. 1876, pp. 121–131, 2004.

[9] R. Balakrishna, C. Antoniou, M. Ben-Akiva, H. N. Koutsopoulos,
and Y. Wen, “Calibration of microscopic traffic simulation models:
Methods and application,” Transportation Research Record: Journal of
the Transportation Research Board, vol. 1999, pp. 198–207, 2007.

[10] I. Otkovic, T. Tollazzi, and M. Sraml, “Calibration of microsimulation
traffic model using neural network approach,” Expert Systems with
Applications, vol. 40, p. 5965 5974, 2013.

[11] D. A. Henderson, R. J. Boys, K. J. Krishnan, C. Lawless, and D. J.
Wilkinson, “Bayesian emulation and calibration of a stochastic computer
model of mitochondrial DNA deletions in substantia nigra neurons,”
Journal of the American Statistical Association, vol. 104, pp. 76–87,
2009.

[12] G. Molina, M. J. Bayarri, and J. O. Berger, “Statistical inverse analysis
for a network microsimulator,” Technometrics, vol. 47, pp. 388–398,
2005.

[13] M. J. Bayarri, J. O. Berger, G. Molina, N. , and J. Sacks, “Assessing
uncertainties in traffic simulation: A key component in model calibra-
tion and validation,” Transportation Research Record: Journal of the
Transportation Research Board, vol. 1876, pp. 32–40, 2004.

[14] Y. Zhaoa and W. Sadeka, A, “Large-scale agent-based traffic micro-
simulation: Experiences with model refinement, calibration, validation
and application,” Procedia Computer Science, vol. 10, p. 815 820, 2012.

[15] A. Rasouli and H. Timmermans, “Using emulators to approximate pre-
dicted performance indicators in complex micro-simulation and multi-
agent models of travel demand,” in Proceedings of the 4th Conference
on Innovations in Travel Modelling Conference, 2012.

[16] B. Ciuffo, J. Casas, M. Montanino, J. Perarnau, and V. Punzo, “From
theory to practice: Gaussian process metamodels for the sensitivity
analysis of traffic simulation models. a case study of the Aimsun
mesoscopic model.” in Proceedings of the Transportation Research
Board 92nd Annual Meeting. TRB, 2013.

[17] B. Ciuffo and V. Punzo, “’No free lunch’ theorems applied to the
calibration of traffic simulation models,” IEEE Transactions on ITS, vol.
Accepted for publication, 2013.

[18] A. O’Hagan, “Eliciting expert beliefs in substantial practical applica-
tions,” The Statistician, vol. 47, pp. 21–35, 1998.

[19] L. S. Bastos and A. O’Hagan, “Diagnostics for Gaussian process
emulators,” Technometrics, vol. 51, pp. 425–438, 2008.

[20] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

[21] D. J. C. Mackay, “Introduction to Gaussian processes,” Neural Networks
and Machine Learning, 1998.

[22] A. Boukouvalas, “Emulation of random output simulators,”
Ph.D. dissertation, Aston University, 2011. [Online]. Available:
wiki.aston.ac.uk/foswiki/pub/AlexisBoukouvalas/WebHome/thesis.pdf

[23] S. Conti, J. P. Gosling, J. E. Oakley, and A. O’Hagan, “Gaussian
process emulation of dynamic computer codes,” Biometrika, vol. 96,
pp. 663–676, 2009.

[24] S. Conti and A. O’Hagan, “Bayesian emulation of complex multi-output
and dynamic computer models,” Journal of Statistical Planning and
Inference, vol. 140, pp. 640 – 651, 2010.

[25] SIAS., S-Paramics V2011.1, Edinburgh UK, 2011. [Online]. Available:
www.paramics.co.uk

[26] J. Edwards, “M40 junction 12 to 14 paramics modelling: M40 paramics
model development report,” Arup, Tech. Rep. 211439-18/R001, 1 May
2012 2012.

[27] SIAS., The Microsimulation Consultancy Good Practice Guide, 2006.
[28] DfT, “Highway assignment modelling,” 01/08/2012 2012. [Online].

Available: http://www.dft.gov.uk/webtag/documents/expert/unit3.19.php
[29] C. Hennig and T. Liao, “How to find an appropriate clustering for mixed

type variables with application to socio-economic stratification (with
discussion),” Journal of the Royal Statistical Society, Series C (Applied
Statistics), vol. 62, pp. 309–369, 2013.

[30] A. Zomorodian, Topology for Computing. Cambridge University Press,
2005.

[31] M. T. Pratola, S. R. Sain, D. Bingham, M. Wiltberger, and E. J. Rigler,
“Fast Sequential Computer Model Calibration of Large Nonstationary
Spatial-Temporal Processes,” Technometrics, vol. 55, pp. 232–242, 2013.

Alexis Boukouvalas received his PhD from Aston
University, UK, in July 2011. He has been part of the
Managing Uncertainty in Complex Models project as
both a research student and a research fellow. He is
currently a Research Fellow at the Aston Research
Center for Healthy Ageing. His research interests lie
in the area of non-parameteric Bayesian modelling
for the analysis of computer experiments as well as
longitudinal studies.

Pete Sykes was the Director of the Software Divi-
sion of SIAS Ltd from 1998 to 2011 with respon-
sibility for the Paramics Microsimulation Software
suite. He is now a part time PhD student at New-
castle University researching methods of eliciting
and managing the drivers of uncertainty in transport
planning projects. He also maintains an interest in
the EU COST project MULTITUDE describing the
content and use of guidelines for microsimulation
modellers.

Dan Cornford is currently a Reader in Computer
Science at Aston University and a director of IGI
Ltd. He obtained his PhD from Birmingham Uni-
versity in 1996 and has since worked on various
aspects of probabilistic modelling of geophysical
systems including work on data assimilation and
how to best combine our knowledge of physical laws
with partial information on unmodelled processes
and incomplete observation. He maintains an interest
in machine learning and statistics including visual-
isation, learning from data, and communication of

uncertainty.

Hugo Maruri-Aguilar received his PhD from War-
wick University, UK in July 2007. He worked as
research fellow in London School of Economics
as part of the project ‘Managing Uncertainty in
Complex Models’ in the period 2006-2009. He is
currently Lecturer in Statistics in the School of
Mathematical Sciences in Queen Mary, University
of London, UK. His research interests lie in design
and analysis of computer experiments, and the use of
algebraic techniques for modelling data in statistics.


