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Fundamental physical constants play a profound role in physics. For example, they govern nuclear
reactions, formation of stars, nuclear synthesis and stability of biologically vital elements. These
are high-energy processes discussed in particle physics, astronomy and cosmology. More recently,
it was realised that fundamental physical constants extend their governing reach to low-energy
processes and properties operating in condensed matter systems, often in an unexpected way. These
properties are those we experience daily and can routinely measure, including viscosity, thermal
conductivity, elasticity and sound. Here, we review this work. We start with the lower bound on
liquid viscosity, its origin and show how to relate the bound to fundamental physical constants. The
lower bound of kinematic viscosity represents the global minimum on the phase diagram. We show
how this result answers the long-standing question considered by Purcell and Weisskopf, namely
why viscosity never falls below a certain value. An accompanying insight is that water viscosity and
water-based life are well attuned to fundamental constants including the Planck constant. We then
discuss viscosity minima in liquid He above and below the λ-point. We subsequently consider a very
different property, thermal diffusivity, and show that it has the same minimum fixed by fundamental
physical constants as viscosity. We also discuss bounds related to elastic properties, elastic moduli
and their analogues in low-dimensional systems, and show how these bounds are related to the upper
bound for the speed of sound. We conclude with listing ways in which the discussion of fundamental
constants and bounds advance physical theories.

Contents

1. Introduction 1

2. Minimal viscosity 3
A. The liquid problem 3
B. Viscosity and dynamical crossover 4
C. Viscosity minima 5
D. Elementary viscosity, diffusion constant and

uncertainty relation 8
E. The Purcell question: why do all viscosities stop

at the same place? 9
F. Fundamental constants, quantumness and life 10
G. Quantum liquids 11
H. Quark-gluon plasma 12
I. What is “fundamental”? 13

3. Thermal conductivity 14
A. Thermal conductivity of insulators and

dynamical crossover 14
B. Lower bound on thermal diffusivity 15
C. Thermal diffusivity of electrons in metals 16

4. Minima on the phase diagram: theory and
applications 16

5. Elastic properties 17
A. Elastic moduli 17
B. Low-dimensional systems: surface tension and

atomic force 18

6. Speed of sound 18
A. The upper bound 18
B. Comparing to experiments 20

7. Summary: fundamental constants and
physical theories 21

8. Acknowledgements 22

References 22

1. INTRODUCTION

Our search for the source of consistency and pre-
dictability of the observed physical world has led us to
physical laws and related theories. These theories in-
volve fundamental physical constants such as the Planck
constant, electron mass or dimensionless combinations of
these constants, pure numbers. These constants give the
observed Universe its distinctive character and differen-
tiate it from others we might imagine [1–10].

Understanding the values of fundamental constants has
a long history and is viewed as one of the grandest ques-
tions in modern science [11]. Given that we don’t know
anything more fundamental [12], this is probably one of
the ultimate grand challenges in physics. Referring to
fundamental constants as “barcodes of ultimate reality”,
Barrow proposes that these constants will one day unlock
the secrets of the Universe [1].

Fundamental constants play a profound role in a num-
ber of processes, from governing nuclear reactions and
nuclear synthesis in stars including carbon, oxygen and
so on which can then form molecular structures essential
to life. Theories of these processes suggest that they re-
quire a finely-tuned balance between the values of several
fundamental constants. One example is the tuned bal-
ance between the masses of up and down quarks: larger
up-quark mass gives the neutron world without protons
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and hence no atoms consisting of nuclei and electrons
around them; larger down-quark mass gives the proton
world without neutrons where light hydrogen atoms can
form only but not heavy atoms. Our world with many
heavy atoms with electronic orbitals which endow com-
plex chemistry would disappear with only a few per cent
fractional change in the mass difference of the two quarks
[8, 9, 13].

Another commonly discussed example is the Hoyle’s
prediction of the energy level of carbon nucleus of about
7.65 MeV. This resonance level is required in order to
explain carbon abundance and in particular the synthe-
sis of carbon from fusing three alpha particles in stars
[1, 2, 5, 6]. Following the Hoyle’s prediction, the required
energy level was experimentally confirmed. This carbon
resonance-level coincidence is considered striking. A re-
lated important effect is a slightly lower resonance level in
oxygen, which enables carbon to survive further resonant
reactions. This finely balanced sequence of coincidences
enables carbon-based life. In this process, production of
carbon and oxygen depends on their nuclear energy lev-
els which, in turn, depend on the fine structure constant

α = e2

~c ≈
1

137 and strong nuclear force constant. A small
change of these constants (more than 0.4% and 4% for
the nuclear and fine structure constant) results in almost
no carbon or oxygen produced in stars [1, 5, 6]. α and
the proton-to-electron mass ratio β = me

mp
≈ 1

1836 play a

role in making the centres of stars hot enough to initiate
nuclear reactions, and unless α and β satisfy a certain
relation, there would be heavy nuclei produced in stars.
There are other examples of what would happen as a re-
sult of altering fundamental constants, all showing that
there is a fairly narrow “habitable zone” in the parameter
space (α,β) (see, however, Ref. [9]). In this zone, mat-
ter can remain stable long enough for stars to evolve and
produce essential biochemical elements including carbon,
planets can form and life-supporting molecular structures
can emerge [1, 2, 5, 6]. For this reason, the observed fun-
damental constants are called “bio-friendly” or “biophilic
[1, 9].

The discussion of the role of fundamental constants was
mostly limited to high-energy processes including parti-
cle physics, astronomy and cosmoslogy. More recently,
it has been realised that the fundamental constants ex-
tend their governing reach to the properties of condensed
matter phases and at energy much lower than the high-
energy physics. Many of these properties are those we
experience daily and can routinely measure, including
viscosity, thermal conductivity, elasticity and sound. Al-
though these are all familiar properties, their numerical
values remain hard to predict on the basis of an ana-
lytical theory because they are strongly depend on the
system and external parameters. This is contrast to a
class of universal properties such as, for example, the
Dulong-Petit result for the specific heat.

One frequent way in which fundamental physical con-
stants affect system properties is that they impose a
bound on a property. We will show that a number of im-

portant physical properties have lower or upper bounds
in a sense that they do not fall below or exceed certain
values. Understanding the origin of these bounds has en-
thralled physicists, including those interested in collective
dynamics and systems where many interacting agents op-
erate. Apart from the interest in the values and origins of
the bounds themselves, there is another important reason
why bounds are interesting: finding and understanding
these bounds often means that we enhance our grasp of
or clarify the underlying physics or property in question.

The main aim of this review is to summarise and syn-
thesise earlier and more recent results related to con-
densed matter properties in terms of fundamental physi-
cal constants. In the process, we will see that comparing
the observed properties to their fundamental bounds re-
veals important insights not just about the bounds them-
selves but also about the essential physical processes at
operation as well as theories of those processes. This in-
cludes understanding different dynamical regimes of the
system and predicting its behavior in future experiments.

This reviews is organised as follows. In Chapter 2,
we discuss the lower bound on liquid viscosity, its ori-
gin and show how to relate this bound to fundamental
constants. We show how this result answers the long-
standing question posed by Purcell and considered by
Weisskopf, namely why viscosity never falls below a cer-
tain value. This has the implications for water viscosity
and life which appears to be well attuned to the degree
of quantumness of the physical world as well as other
fundamental constants. We will note that the viscosity
minimum is interestingly close to that in a very different
system, the quark-gluon plasma. We also discuss viscos-
ity minima in liquid He above and below the λ-point.

In Chapter 3, we consider a very different property,
thermal conductivity, and show that, similarly to viscos-
ity, it has a minimum fixed by fundamental constants.
Whereas thermal diffusivity minimum gives a minimum
on the phase diagram except in the vicinity of the criti-
cal point, the minimum of kinematic viscosity is a global
minimum on the entire phase diagram as discussed in
Chapter 4.

In Chapter 5, we review the bounds related to elastic
moduli and their analogues in low-dimensional systems.
This will lead us to the last Chapter 6 where we discuss
the upper bound on the speed of sound in condensed
matter phases. Our review includes fairly recent results
including our own, and we raise interesting open ques-
tions in this and related fields.

In the last Chapter 7, we conclude with listing ways
in which the discussion of fundamental constants and
bounds advance physical theories. This includes insights
about essential physical processes at operation, under-
standing different dynamical regimes, predicting future
experiments as well as understanding characteristic val-
ues of condensed matter properties. The realisation that
water-based life forms are well attuned to fundamen-
tal constants raises far-reaching questions related to our
place in the Universe, e.g. what values of fundamental
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constants make water-based life possible and how well-
tuned these constants need to be to remain bio-friendly
at the biochemical level.

2. MINIMAL VISCOSITY

A. The liquid problem

Our first case study involves viscosity and its minima.
We show that the minimal value of liquid viscosity turns
out to be nearly universal and set by fundamental phys-
ical constants. Here we encounter the first example of
what we mentioned in the Introduction: fundamental
constants impose bounds on condensed matter proper-
ties.

That viscosity minima of all liquids can be derived
theoretically and turn out to be universal is remarkable
and unexpected for two reasons. First, the universal re-
sult applies to a variety of liquid systems, with differ-
ent structure, chemistry and intermolecular interactions.
The second reason is that in contrast to solids and gases,
a general liquid theory was considered to be unworkable
due to fundamental problems involved. To appreciate the
second point, we briefly review it below.

Properties of real liquids have proved to be partic-
ularly hard to understand and calculate theoretically.
Common liquid models are inapplicable to understand-
ing the energy and heat capacity of real liquids. These
models include notable workhorses of liquid physics: the
widely discussed Van der Waals mode and the hard-
spheres model [14–17]. Both models give the specific
heat cv = 3

2kB [18, 19], the ideal-gas value, in contrast
to experiments showing liquid cv = 3kB close to melting
[19–21]. These models were also used as reference states
to calculate the energy (1) by expanding interactions into
repulsive and attractive parts (see, e.g., Refs. [22–26]).
These parts understandably play different roles at high
and low density, however this method faces the problem
that interactions and expansion coefficients are strongly
system-dependent and so are the final results, precluding
a general theory. This is part of a more general problem
stated by Landau, Lifhitz and Pitaevskii and discussed
below.

As stated by Landau, Lifshitz and Pitaevskii (LLP),
the absence of a small parameter due to the combination
of strong interactions and the absence of small oscilla-
tions disallows a possibility of calculating liquid thermo-
dynamic properties in general form [18, 27]. Lets consider
the calculation of liquid energy as

E =
3

2
NT +

n

2

∫
g(r)u(r)dV (1)

where n is concentration, g(r) is the pair distribution
function, u(r) is the interaction potential, interactions
and correlations are assumed to be pairwise. Here and

below, kB = 1.

Since the interaction u(r) in liquids is both strong
and system-specific, E in Eq. (1) is strongly system-
dependent. For this reason, no generally applicable the-
ory of liquids is considered possible as discussed by LLP
[18, 27]. An additional difficulty is that interatomic
interactions and correlation functions are not available
apart from fairly simple model liquids such as Lennard-
Jones systems and can be generally complex involving
many-body, long-range and hydrogen-bonded interac-
tions. The interactions and correlation functions can be
simulated quantum-mechanically or obtained from exper-
iments. This is a hard task which, if achievable, reduces
the predictive power of a theory. Even when g(r) and
u(r) are available in simple cases, the calculation involv-
ing Eq. (1) is not enough: one still needs to develop a
physical model explaining experimental temperature de-
pendence of energy and heat capacity of real liquids [28].
Such a general model based on interactions and correla-
tion functions (exemplified by Eq. (1)) has not emerged.

In solids, the above issues do not emerge because
the solid state theory is based on collective excitations,
phonons. This theory is predictive, physically transpar-
ent and generally applicable to all solids. There is no need
to explicitly consider structure and interactions in order
to understand basic thermodynamic properties of solids.
Most important results such as universal temperature de-
pendence of energy and heat capacity readily come out in
the phonon approach to solids [18]. The simplifying small
parameter in solids are small phonon displacements from
equilibrium, but this seemingly does not apply to liquids
because liquids do not have stable equilibrium points that
can be used to sustain these small phonon displacements.
Weakness of interactions used in the theory of gases does
not apply to liquids either because interactions in liquids
are as strong as in solids. This constitutes the no small
parameter problem outlined by LLP [18, 27].

It is therefore interesting to observe that earlier liq-
uid theories and the solid state theory diverged at the
point of a fundamental approach. Early liquid theories
[22, 23, 25, 29, 30] considered that the goal of the statisti-
cal theory of liquids is to provide a relation between liquid
thermodynamics and liquid structure and intermolecular
interactions such as g(r) and u(r) in Eq. (1). Working to-
wards this goal involved developing the analytical models
for liquid structure and interactions, which has become
the essence of earlier liquid theories [14, 16, 31–37]. The
solid state theory, on the other hand, does not aim to
predict the solid structure and its characteristics such as
g(r). For a given chemical composition, the structure can
be predicted in quantum-mechanical calculations [38, 39]
but not by a purely theoretical approach. Instead, the
structure is often an input to theory. Similarly, the solid
state theory does not aim to predict interatomic interac-
tions. Some simple models of these interactions play a
useful role in the solid state theory, however the variety
of interactions (ionic, covalent and their combinations,
metallic, dispersion, hydrogen-bond interactions and so
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on) belongs to the realm of computational physics or
chemistry rather than pure theory.

Although the approach to the liquid theory diverged
from the solid state theory in its fundamental perspec-
tive, there were notable exceptions. Sommerfeld [40] and
Brillouin [41–44] considered that the liquid energy and
thermodynamic properties are fundamentally related to
phonons as in solids and discussed liquid properties on
the basis of a modified Debye theory of solids. The first
Sommerfeld paper discussing this was published only 1
year after the Debye theory of solids [45] and 6 years
after the Einstein’s paper “Planck’s theory of radiation
and the theory of the specific heat” in 1907 [46]. Apart
from isolated attempts [20, 32, 47], this line of enquiry
has stalled in the years that followed, and liquid the-
ories based on structure and interactions were pursued
instead. Whereas the Debye and Einstein theories have
become part of nearly every textbook where solids and
phonons are mentioned, a theory of liquid thermodynam-
ics has remained unworkable for about a century that fol-
lowed. One potential reason for this is that, differently
from solids, the nature of collective excitations in liquids
remained unclear for a long time.

As a result of these issues, theoretical calculation and
understanding energy and heat capacity of real classical
liquids (both its values and temperature dependence) has
remained a long-standing problem in both research and
undergraduate teaching [48–50].

The problems involved in liquid theory started to lift
fairly recently and involved several steps. The first step
involved the consideration of microscopic dynamics of liq-
uid particles provided by the Frenkel theory [51]: dif-
ferently from solids where particle dynamics is purely
oscillatory and gases where dynamics is purely diffu-
sive/ballistic, particle dynamics in liquids is mixed and
combines oscillations around quasi-equilibrium points as
in solids and diffusive motions between different points.
The second step was using the above microscopic dynam-
ics to ascertain the nature of excitations in liquids. At the
fundamental level, physics of an interacting system is set
by its excitations or quasiparticles [18]. In solids, these
are phonons. The nature of phonons and their properties
in liquids were not clear for a long time since Sommer-
feld first brought up this issue in 1913 [40] (see, e.g.,
Ref. [52]). A fairly recent combination of theory, experi-
ments and modelling led to understanding the propaga-
tion of phonons in liquids with an important property:
the phase space available to these phonons is not fixed as
in solids but is instead variable [21, 28, 49, 53]. This is a
non-perturbative effect. In particular, the phonon phase
space in liquids reduces with temperature [28], consis-
tent with the result from the numerical instantaneous
mode approach [54]. This reduction has a general im-
plication for liquid thermodynamic properties: specific
heat of classical liquids universally decreases with tem-
perature, in agreement with experiments [21, 28, 53]. (In
other approaches, the reduction of specific heat was at-
tributed to the singularity of the hard-sphere free energy

functional [26] or accounted for by considering the liq-
uid energy as the weighted sum of solid and gas energies,
with weights numerically calculated from instantaneous
normal modes [55]).

The theory leading to this picture is importantly
based on considering the microscopic dynamics of liquid
molecules. As discussed in the next section, considering
this dynamics is also the key to understanding viscosity
minima and calculating their values.

We note in passing that the energy of quantum liq-
uids such as 4He is readily understood on the basis of
phonons. A quantum nature of this liquid interestingly
turns out to be a simplifying circumstance: any weakly
perturbed quantum state is a set of elementary quantum
excitations. In Bose liquids, excitations can appear and
disappear singly (in contrast to Fermi liquids where exci-
tations appear and disappear in pairs). The elementary
excitations with small momenta p are the sound waves,
the phonons, with the linear dispersion relation ε = pc.
Hence at temperature close to zero, the elementary exci-
tations are phonons, and the system energy is then the
sum of these excitations, resulting in cv ∝ T 3 as in solids
and in agreement with experiments. Landau attributes
this calculation to Migdal in 1940 [56].

B. Viscosity and dynamical crossover

We now discuss the microscopic origin of viscosity min-
ima related to the crossover of particle dynamics.

Viscosity of fluids, η, varies in a wide range, from about
10−6 Pa·s for the normal component of liquid He [57] to
about 1013 Pa·s in viscous liquids approaching liquid-
glass transition at the glass transition temperature Tg.
η continues to increase below Tg too, however the cor-
responding relaxation time becomes longer than experi-
mental time. In the low-temperature liquidlike classical
regime, η has no upper bound as a function of tempera-
ture. At temperature approaching zero, η is limited by
the temperature-independent frequency of particle tun-
neling.
η strongly (exponentially or faster) depends on tem-

perature and pressure. η is additionally strongly system-
dependent and is governed by the activation energy bar-
rier for molecular rearrangements, U . In turn, U is re-
lated to inter-molecular interactions and structure. This
relationship is in generally complicated, and no univer-
sal way to predict U and η from first principles exists.
Indeed, tractable theoretical models describe the dilute
gas limit of fluids where perturbation theory applies, but
not dense liquids of interest here [58] (in field theories,
viscosity can be evaluated in the limit of weak and strong
coupling [59, 60]). In view of this and more fundamen-
tal problems involved in liquid theory discussed in the
previous section, it is quite remarkable that the minimal
value of liquid viscosity turns out to be nearly universal
and set by the fundamental physical constants.

Experimental viscosity η and kinematic viscosity ν =
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η
ρ , where ρ is density, are shown in Figure 1 for several

noble (Ar, Ne and He), molecular (H2, N2, CO2, CH4,
O2 and CO) and network (H2O) fluids. For some fluids,
we show η and ν at two different pressures. The low pres-
sure was chosen to be high enough and above the critical
pressure so that viscosity is not affected by near-critical
anomalies. The high pressure was chosen to make the
considered pressure range as wide as possible and at the
same time low enough in order to see the viscosity min-
ima in the temperature range available experimentally.

We now recall the origin of viscosity minima shown in
Fig. 1. In the liquid-like regime of molecular dynamics
at low temperature, η decreases with temperature as

η = η0 exp

(
U

T

)
(2)

where η0 is a pre-factor and U can be temperature de-
pendent

In the gas-like regime of molecular dynamics, η is

η =
1

3
ρvL (3)

where ρ is density, v is average particle velocity and L is
the particle mean free path.

For gases, L ∝ 1
ρ and η ∝ v ∝

√
T [58]. Hence η in-

creases with temperature without bound, although new
effects such as ionization start operating at higher tem-
perature. These can change the system properties in-
cluding η.

Consistent with Fig. 1, Eqs. (2) and (3) imply that η
should have a minimum.

Before calculating η at the minimum, it is useful to
qualify the above terms “liquid-like” and “gas-like” re-
ferring to different regimes of molecular dynamics and
elaborate on conditions at which the minima are seen.
At low temperature, molecular motion in liquids com-
bines solid-like oscillations around quasi-equilibrium po-
sitions and diffusive jumps to new positions. Enabling
liquid flow, these jumps are thermally-activated events
involving an energy barrier set by inter-molecular inter-
actions. This gives an exponential dependence in Eq.
(2). The diffusive jumps are characterised by liquid re-
laxation time, τ , the average time between the jumps. τ
is related to η by the Maxwell relationship η = Gτ , where
G is the high-frequency shear modulus [51]. τ decreases
with temperature in the same way as η in Eq. (2) and is
bound by the elementary vibration period, commonly ap-
proximated by the Debye vibration period in the Debye
model, τD. When τ approaches τD, the oscillatory com-
ponent of molecular motion is lost, and molecules start
moving in a purely diffusive manner. On further temper-
ature increase (or density decrease), the motion remains
purely diffusive, however molecules gain enough energy
to move distance L without collisions. In this gas-like
regime, the fluid viscosity can be calculated by assuming

that a molecule moves in straight lines between collisions,
resulting in Eq. (3).

If temperature is increased at pressure below the crit-
ical point, the system crosses the boiling line and un-
dergoes the liquid-gas phase transition. As a result, η
undergoes a sharp change at the transition (we will re-
turn to this in Section 2 D), rather than a smooth min-
imum as in Fig. 1. In order to avoid effects related to
the phase transition itself, it is convenient to consider
matter above the critical point, the supercritical state.
Here, the supercritical Frenkel line (FL) formalises the
qualitative change of molecular dynamics from combined
oscillatory and diffusive to purely diffusive. Introduced
about ten years ago [63–65], the transitions at the FL has
been confirmed in several important supercritical fluids
using different experimental techniques (see Ref. [66] for
review). The location of the minima of η can depend on
the path taken on the phase diagram. As a result, the
minimum of η may deviate from the FL depending on
the path.

C. Viscosity minima

We are now set to calculate viscosity at the mini-
mum, ηmin. There are two ways in which this can be
done: considering the low-temperature limit of the gas-
like viscosity (3) or taking the high-temperature limit
of the liquid-like viscosity given by the Maxwell relation
η = Gτ . We start with the first approach and consider
how η = ρvL changes with temperature decrease (we
drop 1

3 in (3) since the calculation evaluates the order of
magnitude of viscosity minimum as discussed in more de-
tail below). L decreases on lowering the temperature and
is bound by the UV cutoff in condensed matter systems:
inter-particle separation a. From this point on, L has
no room to decrease further. Instead, the system enters
the liquid-like regime where η starts increasing on further
temperature decrease according to (2) because the diffu-
sive molecular motion crosses over to thermally-activated
as discussed earlier. Therefore, ηmin approximately cor-
responds to L ≈ a. When L becomes comparable to a,
v in Eq. (3) can be evaluated as v = a

τD
because the

time for a molecule to move distance a in this diffusive
regime is given by the characteristic time scale set by τD.
Setting L = a, v = a

τD
= 1

2πωDa and ρ ≈ m
a3 , where ωD

is Debye frequency and m is molecule mass, gives:

ηmin =
1

2π

mωD

a
(4)

We note that (3) applies in the regime where L is larger
than a, hence the evaluation of viscosity minimum is an
order-of-magnitude estimation. This is consistent with
other approximations made later. In this regard, we ob-
serve that theoretical models can only describe viscosity
in a dilute gas limit where perturbation theory applies
[58], but not in the regime where L ≈ a and where the
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energy of inter-molecular interaction is comparable to the
kinetic energy. In view of theoretical issues as well as
many orders of magnitude by which η can vary, the eval-
uation of its minimum is meaningful and informative.
An order-of-magnitude evaluation is probably unavoid-
able if a complicated property such as viscosity is to be
expressed in terms of fundamental constants only.

ηmin in (4) matches the result obtained by approach-
ing the viscosity minimum from low temperature in the
liquid-like regime and considering the Maxwell relation-
ship η = Gτ . In the liquid-like regime, η and τ de-
crease with temperature according to (2), but this de-
crease is bound from below because τ starts approaching
the shortest time scale in the system set by the Debye
vibration period, τD. From this point on, τ has no room
to decrease further, and the system enters the gas-like
regime where η starts increasing with temperature ac-
cording to (3). This corresponds to the crossover be-
tween the thermally-activated liquid-like and diffusive
gas-like motion of molecules discussed earlier. There-
fore, the minimum of η can be evaluated by setting
τ ≈ τD. In the liquid-like regime, G can be estimated
as G = ρc2, where c ≈ a

τD
is the speed of sound. Then,

ηmin = GτD = ρ a
2

τD
= 1

2π
mωD

a as in Eq. (4), where ρ = m
a3

is used as before.

We can check how well Eq. (4) evaluates the minima
of η in Figure 1. Taking characteristic values a =3-6 Å,
ωD

2π on the order of 1 THz and atomic weights 2-40 for

liquids in Fig. 1, we find ηmin in the range 10−5 − 10−4

Pa·s. This is consistent with Fig. 1a. We observe that
high pressure reduces a and increases ωD. As a result,
Eq. (4) predicts that ηmin increases with pressure, in
agreement with the experimental behavior in Fig. 1a.

The viscosity minima of strongly-bonded liquids such
as liquids metals were not measured due to their high
critical points. Nevertheless, high-temperature η is close
to 10−3 Pa·s for Fe (2000 K), Zn (1100 K), Bi (1050 K)
[67], Hg (573 K) and Pb (1173 K) and is expected to
be close to η at the minima. This is larger than ηmin
in Fig. 1 and is consistent with Eq. (4) predicting that
ηmin decreases with a (a is smaller in metallic systems as
compared to noble and molecular ones in Fig. 1a) and
increases with molecular mass (mωD ∝

√
m).

It is convenient to use the kinematic viscosity ν. ν de-
scribes momentum diffusivity, analogous to thermal dif-
fusivity involved in heat transfer discussed in Chapter 3
and gives the diffusion constant in the gas-like regime of
molecular dynamics [51]. Another benefit of considering
ν is that it makes the link to the high-energy result dis-
cussed in Section 2 H, where η is divided by the volume
density of entropy. Using ν = η

ρ = vL, v = 1
2πaωD and

L = a as before gives the minimal value of ν, νmin, as

νmin =
1

2π
ωDa

2 (5)

We now come to an important part of this discussion

where we invoke fundamental physical constants [62]. We
recall that the properties defining the UV cutoff in con-
densed matter can be expressed in terms of these con-
stants. Two important properties are Bohr radius, aB,
setting the characteristic scale of inter-particle separation
in condensed matter phases on the order of Angstrom:

aB =
4πε0~2

mee2
(6)

and the Rydberg energy, ER = e2

8πε0aB
[68], setting the

characteristic scale of cohesive energy in condensed mat-
ter phases on the order of several eV:

ER =
mee

4

32π2ε20~2
(7)

where e and me are electron charge and mass.
Lets now recall the known ratio between the cohesive

energy E and the characteristic phonon energy, ~ωD:
~ωD

E . This ratio can be derived by approximating ~ωD

as ~
(
E
ma2

) 1
2 , taking the ratio ~ωD

E and using a = aB from
(6) and E = ER from (7). This gives, up to a factor close
to 1:

~ωD

E
=
(me

m

) 1
2

(8)

The same ratio (8) follows by combining two known
relations in metallic systems: ~ωD

E ≈ c
vF

, where vF is the

Fermi velocity, and c
vF
≈
(
me

m

) 1
2 , providing an order-of-

magnitude estimation ~ωD

E in other systems too [68].
Combining (5) and (8) gives

νmin =
1

2π

Ea2

~

(me

m

) 1
2

(9)

As mentioned earlier, a and E in (9) are set by their
characteristic values aB and ER. Using a = aB from (6)
and E = ER from (7) in (9) gives a simple and good-
looking result for νmin:

νmin =
1

4π

~
√
mem

(10)

Eq. (10) can be obtained without explicitly using aB
and ER in (9). The cohesive energy, or the characteristic
energy of electromagnetic interaction, is

E =
~2

2mea2
(11)

Using (11) in (9) gives (10).
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Another way to derive (10) is to consider the “charac-
teristic” viscosity η∗ [69]:

η∗ =
(Em)

1
2

a2
(12)

η∗ is used to describe viscosity scaling on the phase
diagram: the ratio between viscosity and η∗ is the same
for systems described by the same interaction potential in
equivalent points of the phase diagram. For systems de-
scribed by the Lennard-Jones potential, the experimental
and calculated viscosity near the triple point and close to
the melting line is about 3 times larger than η∗ [69, 70].
Near the critical point, η∗ is about 4 times larger than
viscosity and is expected to give the right order of magni-
tude of viscosity at the minimum at moderate pressure.
The kinematic viscosity corresponding to (12) is

η∗

ρ
=
E

1
2 a

m
1
2

(13)

Using a = aB from (6) and E = ER from (7) in (13)
gives the same result as (10) up to a constant factor on
the order of unity. As before, we can also use (11) in (13)
to get the same result.

Minimal viscosity in Eq. (10) corresponds to maximal
fluidity in the system.

We observe that νmin in (10) contains ~ and electron
and molecule masses only. Lets consider the implications
of this in more detail.

The first observation is that viscosity is commonly con-
sidered as a classical property because most liquids exist
at high temperature and are classical. This is related to
melting temperature exceeding the Debye temperature
in most systems. Yet the minimal viscosity is a quantum
property as follows from Eq. (10). This is because vis-
cosity it is governed by molecular interactions, and these
are ultimately set by quantum effects. Brazhkin has ex-
panded on this point in relation to viscosity and other
properties of condensed matter [71].

Second, νmin interestingly does not depend on electron
charge e, contrary to what one might expect considering
that viscosity is set by the inter-particle forces which are
electromagnetic in origin. Although e enters Eqs. (6),
(7) and (11) for the Bohr radius, Rydberg and cohesive
energy, it cancels out in Eq. (10) for νmin. We will return
to this point later in section 2 H.

Third, there are two masses in Eq. (10), m and me. m
characterises the molecules involved in viscous flow. me

characterises electrons setting the inter-molecular inter-
actions. m in (10) is m = Amp, where A is the atomic
weight and mp is the proton mass. The inverse square
root dependence νmin ∝ 1√

A
interestingly implies that

νmin is not too sensitive to the liquid type.
Setting m = mp (A = 1) for H in (10) (similarly to (6)

and (7) derived for the H atom) gives the fundamental
kinematic viscosity νf in terms of ~, me and mp as

νf =
1

4π

~
√
memp

≈ 10−7
m2

s
(14)

Eq. (14) is consistent with the experimental results in
Figure 1b. This shows how fundamental constants set the
characteristic scale of physical properties. This includes
complicated properties such as viscosity which was not
thought to be amenable to an analytical treatment. We
will revisit this point in Section 2 I.

We note that a relationship between fundamental con-
stants and simpler properties such as elastic moduli dis-
cussed in Chapter 5 was known and is not unexpected.
For more complicated properties such as viscosity dis-
cussed here, thermal diffusivity and speed of sound dis-
cussed in Chapters 3 and 6, it remained unclear till fairly
recently whether their characteristic values can be di-
rectly related to fundamental constants. One of the aims
of this review is to show how this can be done.
νf depends on three parameters: ~, me and mp, as

illustrated in Figure 2. ~ and me are fundamental con-
stants. Although mp depends on other Standard Model
parameters, the dimensionless number me

mp
is attributed

a fundamental importance [1], as discussed in section 2 F
in more detail.

The derivation of the viscosity minimum (10) and fun-
damental viscosity (14) involves more than a dimensional
analysis. First, the dimensionless analysis is not unique
in the absence of a physical model. As mentioned ear-
lier, it is not apriori clear that νmin should involve ~
and be a quantum property, especially so in view that
most liquids are considered classical. Second, a purely
dimensional analysis can give a quantity with right di-
mensions but wrong value. Indeed, multiplying the right
hand side of Eq. (10) by f( mme

), where f is an arbitrary
function, gives the result consistent with the dimensional
analysis but produces any desired value of νmin with a
suitable choice of f . Third, we have used a specific phys-
ical model to derive νmin. We started with attributing
the viscosity minimum to the crossover of microscopic
particle dynamics, from combined oscillatory and diffu-
sive to purely diffusive. This consideration led us to a
particular regime of particle dynamics where the particle
speed is set by the interatomic separation and elemen-
tary vibration period. Dimensional analysis alone does
not have anything to say about why would this regime
correspond to the minimum of viscosity. We next evalu-
ated the minimal value of ηmin using two approaches in-
volving the Maxwell relation and the gas kinetic theory.
Each of these approaches is based on a specific physical
mechanism. We then related νmin to the length and en-

ergy scales using the ratio ~ωD

E =
(
me

m

) 1
2 in Eq. (8). The

dimensionality analysis does not predict this ratio and
is consistent with ~ωD

E taking any dimensionless number.
We finally expressed the length and energy scales in terms
of fundamental constants. Most of these steps involved in
the derivation of Eq. (10) are physically guided and in-
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corporate a lot more information that would be available
from purely dimensional considerations.

In Table I, we compare νmin calculated according to
the theoretical prediction (10) to the experimental νmin
[61] for all systems shown in Fig. 1. The ratio between
experimental and predicted νmin is in the range of 0.5-3.
As expected, experimental νmin for the lightest liquid in
Table I, H2, is close to the theoretical fundamental vis-
cosity (14). In view of approximations made, we observe
that Eq. (10) predicts νmin well.

νmin (calc.) νmin (exp.)

×108 m2/s ×108 m2/s

Ar (20 MPa) 3.4 5.9

Ar (100 MPa) 3.4 7.7

Ne (50 MPa) 4.8 4.6

Ne (300 MPa) 4.8 6.5

He (20 MPa) 10.7 5.2

He (100 MPa) 10.7 7.5

N2 (10 MPa) 4.1 6.5

N2 (500 MPa) 4.1 12.7

H2 (50 MPa) 15.2 16.3

O2 (30 MPa) 3.8 7.4

H2O (100 MPa) 5.1 12.1

CO2 (30 MPa) 3.2 8.0

CH4 (20 MPa) 5.4 11.0

CO (30 MPa) 4.1 7.7

TABLE I: Calculated and experimental νmin. From Ref. [62].
Copyright: the Authors, some rights reserved; exclusive li-
censee AAAS. Distributed under a Creative Commons Attri-
bution NonCommercial License 4.0 (CC BY-NC).

Table I shows that νmin increases with pressure in Ta-
ble I, similarly to ηmin in Fig. 1. However, pressure
dependence is not accounted in νmin in (10) since (10) is
derived using Eqs. (6)-(9) which do not account for the
pressure dependence of ωD and E.

We add several other remarks regarding the compar-
ison in Table I. First, the important term in Eq. (10)
is the combination of fundamental constants ~, me and
mp which set the characteristic scale of the minimal kine-
matic viscosity, whereas the numerical factor may be af-
fected by the approximations used and mentioned earlier.
Second, Eqs. (6)-(8) assume valence electrons directly
involved in chemical bonding and hence strongly-bonded
systems, including covalent, ionic and metallic liquids.
Their viscosity in the supercritical state is generally un-
available due to high critical points. The available experi-
mental data in Fig. 1 and Table I includes weakly-bonded
systems such as noble, molecular and hydrogen-bonded
fluids. Although bonding in these systems is also elec-
tromagnetic in origin, weaker dipole and van der Waals
interactions corresponds to smaller E and, consequently,
smaller η as compared to strongly-bonded ones, with the
viscosity of hydrogen-bonded fluids lying in between [72].

However, νmin in (9) contains the factor Ea2. E
1
2 is 3-10

times smaller and a is 2-4 times larger in weakly-bonded
as compared to strongly-bonded systems [72]. Hence the
dependence of νmin on bonding type is weak. As a result,
the order-of-magnitude evaluation (10) is unaffected, as
Table 1 shows.

More recently, the experimental viscosity of metallic
liquids was discussed at high temperature in order to find
limiting high-temperature value of Eq. (2), η0, and com-
pare it to the bound (10) [73–75]. Although the bound
(10) is related to the true minimum of viscosity and can
be several times larger than η0

ρ due to the crossover be-

tween liquidlike and gaslike dynamics, the closeness be-
tween the predicted bound (10) and experimental η0ρ was

noted.

D. Elementary viscosity, diffusion constant and
uncertainty relation

Corresponding to atomic H, Eq. (14) gives the max-
imal value of the minimal kinematic viscosity. It is in-
teresting to find a viscosity-related quantity which has
an absolute minimum. This can be done by introducing
the “elementary” viscosity ι (“iota”) defined as the prod-
uct of ηmin and elementary volume a3: ι = ηmina

3 or,
equivalently, as ι = νminm. Using (10), ι is

ι =
~

4π

(
m

me

) 1
2

(15)

Eq. 15 has the absolute lower bound, ιmin, for m = mp

in H:

ιmin =
~

4π

(
mp

me

) 1
2

(16)

which is on the order of ~ (ιmin ≈ 3.4~) and interest-
ingly involves the proton-to-electron mass ratio, one of
few dimensionless combinations of fundamental constants
of general importance [1, 10].

In Fig. 3a-b, we show the product νm in the units
of ~ for two lightest liquids, H2 and He, for which the
minimum of νm, νminm = ι, should be close to the lower
bound (16). νm is calculated using the experimental vis-
cosity and density data [61] and shown above and below
the critical pressure Pc. For He, the temperature range
is above the superfluid transition (we do not consider su-
perfluidity here).

We observe that the liquid-gas phase transition results
in sharp changes of viscosity below Pc. For H2, the min-
imum of νm is kinked as a result and, starting from the
lower pressure, decreases with pressure up to Pc. This
is followed by the minimum becoming smooth and in-
creasing above Pc. The smooth minimum just above the
critical point (where the derivation of ηmin and νmin, as-
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suming a smooth variation of viscosity, applies) is very
close to the minimum at Pc. For He, the minimum simi-
larly increases with pressure above Pc and weakly varies
below Pc.

The smallest value of νm, ι = νminm, in Fig. 3a-b is
in the range (1.5-3.5)~ for He and H2. This is consistent
with the estimation of the lower bound of ι, ιmin in (16).
Given that νm varies 4-6 orders of magnitude in Fig. 3,
the agreement with Eq. (16) is notable.

We also show νm for common H2O in Fig. 3c as a
useful reference and include the triple and critical point
in the pressure range. The behavior of νm is similar to
that of H2, with ι of about 30~. Similarly to H2 and He,
the smooth minimum just above Pc is very close to that
at Pc. This implies that the viscosity minimum applies
to both supercritical fluids and subcritical liquids. We
will return to this point in the next Section.

ι is a convenient property to discuss the uncertainty
relation and its implication for the lower bound. As dis-
cussed in the previous section, the minimum of ν can be
evaluated as νmin = va, corresponding to ι = mva = pa,
where p is particle momentum. According to the uncer-
tainty relation applied to a particle localised in the region
set by a, ι ≥ ~. This is consistent with the bound ιmin in
(16), although a more general Eq. (15) gives a stronger
bound which increases for heavier molecules.

An important difference of the lower bound (10) or (15)
and bounds based on the uncertainty relation [76–81] or
other mechanisms [82] in earlier discussions is that (10)
and (15) correspond to a true minimum as seen in Fig. 1
(in a sense that the function has an extremum), whereas
the uncertainty relation compares a product (px or Et)
to ~ but the product does not necessarily correspond to
a minimum of a function and can apply to a monotonic
function. We will return to this point in Section 2 H.

The uncertainty relation can also used to evaluate the
diffusion constant D and its lower bound in the gaslike
regime of particle dynamics (the upper bound on diffu-
sion constant related to relativistic effects was also dis-
cussed [83]). In the gaslike and liquidlike regimes of parti-
cle dynamics (see Section 2 B), D = ν and D ∝ 1

ν , respec-
tively [51]. This implies that, differently from η and ν,
D does not have a minimum and monotonically increases
with temperature, albeit with a crossover at the Frenkel
line marking the transition from gaslike to liquidlike dy-
namics as discussed in Section 2 B. However, the lower
bound in the gaslike regime can be found by using the
same approach we used for viscosity minimum earlier and
by equating the particle mean to a: Dmin = νmin = va.
Combining this with the uncertainty relation pa ≥ ~, we
find the lower bound of D as

Dmin ≥
~
m

(17)

Eq. (17) is found to be consistent with diffusion ex-
periments in Fermi gases [84].

E. The Purcell question: why do all viscosities stop
at the same place?

In 1977, Purcell noted that there is almost no liquid
with viscosity much lower than that of water and ob-
served (original italics preserved) [85]:

“The viscosities have a big range but they
stop at the same place. I don’t understand
that.”

In the first footnote of that paper, Purcell says that
Weisskopf has explained this to him. We did not find
published Weisskopf’s explanation, however the same
year Weisskopf published the paper “About liquids” [86].
That paper starts with a story often recited by conference
speakers: imagine a group of isolated theoretical physi-
cists trying to deduce the states of matter using quantum
mechanics only. They are able to predict the existence
of gases and solids, but not liquids.

Earlier discussion in this Chapter helps answer the
Purcell question. The answer has two parts. First,
viscosities “stop” because they have minima. Second,
the minima are fairly fixed by fundamental physical con-
stants: these constants help keep νmin in Eq. (10) from
moving up or down too much [87]. νmin are not universal
due to νmin ∝ 1√

m
mass dependence, although this does

change νmin too much for most liquids. This includes
liquids listed in Table I.

For different fluids such as those in Fig. 1 and Table

I, Eq. (10) predicts νmin in the range (0.3-1.5)·10−7 m2

s .
This is somewhat lower, but not far, from ν in water at
room conditions. Water at ambient conditions happens
to be runny enough and close to the minimum. This is
what Purcell noted: viscosities of most liquids do not go
much lower than in water.

An interesting implication of this discussion is related
to our everyday experience in which we deal with water
and water-based substances. We have earlier seen that
water viscosity is not far from what Eq. (14) predicts.
This prompts an interesting thought: our daily experi-
ence is set by three fundamental constants in Eq. (14).
We will find similar examples later on in this review.

In Section 2 C, the lower viscosity bound ηmin or νmin
was related to a smooth viscosity minimum such as that
shown in Figure 1. The smoothness was due to the
crossover in the supercritical state where no liquid-gas
phase transition intervenes. If we are below the critical
point, ν still has a minimum, albeit with a jump as is
seen in Figure 3. This Figure also shows that the small-
est value of all minima involving jumps below the criti-
cal pressure nearly coincides with the low-lying smooth
minimum above the critical point. Therefore, the lower
viscosity bound applies to both the subcritical and super-
critical liquids. This is relevant to the Purcell question:
although he did not specify which liquids he examined,
he was probably referring mostly to subcritical liquids.
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F. Fundamental constants, quantumness and life

We recall the fundamental physical constants appear-
ing in Eq. (10) and Eq. (14) including ~ and me. These
and other constants form dimensionless fundamental con-
stants which do not depend on the choice of units and
which play a special role in physics [1]. Two impor-

tant numbers are the fine structure constant α = e2

~c and
the electron-to-proton mass ratio, me

mp
. As discussed in

the introduction, the finely-tuned values of α and me

mp
,

and the balance between them, governs nuclear reactions
and nuclear synthesis in stars, leading to the creation of
the essential biochemical elements, including carbon, and
molecular structures essential to life. This balance pro-
vides a “habitable zone” in the parameter space (α,me

mp
)

where stars and planets can form and life-supporting
molecular structures can emerge [1]. For this reason,
Barrow calls these constants “bio-friendly” and Adams
refers to our Universe as “biophilic”.

On the basis of Eq. (10) or Eq. (14), we can add an-
other observation. The currently observed fundamental
constants are friendly to life at a higher level too: biolog-
ical processes, including those in and between cells rely
heavily on motion (both motion under external gradient
and diffusive motion) provided by water and biological
fluids. Lets consider what would happen if fundamental
constants were to take different values. According to Eq.
(10), the minimum of ν and hence the minimum of η will
change accordingly. To be more specific, let’s write the
linearised Navier-Stokes equation as

ρ
∂v

∂t
= −∇p+ η∇2v (18)

where v is the fluid velocity which is assumed to be small
and p is pressure.

For time-dependent flow, the solution of Eq. (18) de-
pends on kinematic viscosity η

ρ . For simplicity, we con-

sider steady flow where the flow velocity depends on η.
Using ηmin = νminρ, ρ ∝ m

a3B
, m ∝ mp and Eqs. (6) and

(10), we find

ηmin ∝
e6

~5
√
mpm5

e (19)

Let’s consider diffusive processes in and between cells.
These processes correspond to the low-temperature liq-
uidlike dynamics involving combined oscillatory and dif-
fusive particle motion (see Section 2 B). In this regime,
the Stokes-Einstein equation relates η and diffusion con-
stant D as [51]:

D =
T

6πrη
(20)

where r is the radius of moving particle.

The minimal viscosity in Eq. (19) then gives the
largest D attainable in the system and limits diffusion
from above.

Lets consider what happens if we dial ~ and set it
smaller than the current value. ηmin in Eq. (19) is quite
sensitive to ~ and increases if ~ is smaller. Raising the
viscosity minimum implies that viscosity of all liquids in-
creases, at all conditions of pressure and temperature.
Larger viscosity means that water now flows slower, dra-
matically affecting life processes such as blood flow, vital
flow processes in cells, inter-cellular processes and so on.
This applies to all liquids and hence all life forms relying
on liquids as the medium to provide motion and flow.

At the same time, diffusion strongly decreases, imply-
ing slowing down of all diffusive processes of essential sub-
stances and molecular structures in and across cells. This
affects, for example, protein mobility, active transport in-
volving protein motors and cytoskeletal filaments, molec-
ular transport, cytoplasmic mixing, mobility of cytoplas-
mic constituents and sets the limits at which molecular
interactions and biological reactions can occur. Diffusion
is also essential for cell proliferation. These processes
have been of interest in life, biomedical and biochemical
sciences (see examples in Refs. [88, 89]).

Physically, the origin of this slowing down due to
smaller ~ is related to the decrease of the Bohr radius
(6) as the classical regime with smaller ~ is approached.
This results in the increase of the cohesive energy in Eq.
(7) via Eq. (11), making it harder to flow and diffuse.

Large viscosity increase (think of viscosity of tar or
higher) may mean that life might not exist in its current
form or not exist at all. One might hope that cells could
still survive in such a Universe by finding a hotter place
where overly viscous and bio-unfriendly water is thinned.
This would not help though: ηmin sets the minimum be-
low which viscosity can not fall regardless of temperature
or pressure. This applies to any liquid and not just wa-
ter and therefore to all life forms using the liquid state
to function.

We therefore see that water and life are well attuned to
the degree of quantumness of the physical world (in con-
junction with other fundamental constants and parame-
ters). The same applies to other fundamental constants
in Eq. (19) such as e, me and to a smaller degree to mp.

The results in this Chapter add another layer to the
discussion of the anthropic principle, sometimes referred
to as the anthropic argument [9] or anthropic observa-
tion [90]. Eliciting different views [1–4, 8–10, 90, 91],
this term is a collection of related ways to rationalise
the observed values of fundamental constants by propos-
ing that these constants serve to create conditions for an
observer to emerge and hence are not unexpected. De-
veloping this argument often involves an ensemble of dis-
joint universes and a physical mechanism to generate this
ensemble. Then, a relatively small number of universes
have the right values of fundamental constants, and we
find ourselves in one of those universes and measure those
constants. Alternatives include introducing the natural
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selection argument in cosmology, explaining the observed
values of fundamental constants [90].

In these discussions, there are several types of con-
ditions that need to be met for life and observers to ex-
ist. These conditions involve the range of effects, starting
from cosmological processes and ending with nuclear syn-
thesis discussed in the Introduction. Nuclear reactions
are high-energy processes. Condensed matter physics in-
volves much lower energies, and our earlier discussion
showed how fundamental constants govern water viscos-
ity. This adds a biological and biochemical aspect to
the discussion of the anthropic principle. We can ask
what change of water viscosity and diffusion constant
from their current values is needed to disable cellular and
inter-cellular biological processes essential to life. For ex-
ample, this can happen if water became too viscous due
to the lower viscosity bound getting larger, necessitating
higher viscosity at all conditions. Once this is known, we
can readily calculate the corresponding change of fun-
damental constants setting this lower bound using, for
example, Eq. (19).

One might think that the constraints on fundamental
constants from star formation or nuclear synthesis are al-
ready tight enough to keep water viscosity from taking
unwanted values not conducive to life. There are two
points to consider here. First, it is possible to substan-
tially change the lower bounds for kinematic and dynamic
viscosity and at the same time keep the fine structure

constant α = e2

~c and the electron-to-proton mass ratio
β = me

mp
intact, with no consequences for star formation

and nuclear synthesis.
Second, different effects involved in the existing hier-

archy of observed fundamental constants and operating
at different levels [1, 3, 4] have different tolerance to life-
disabling variations [9, 13]. A small, compared to large,
range of allowed fundamental constants is interesting be-
cause it tells us how special our Universe is and sets the
weight of the anthropic argument. We have seen that
sustaining liquid-based life (including water-based life)
imposes constraints on fundamental physical constants
which are additional to and different from what has been
discussed before in nuclear synthesis. These constraints
come from condensed matter physics and involve biology
and biochemistry, adding a higher level to the hierarchy
of life-enabling effects [1–4]. It remains to be seen how
tight these constraints are compared to constraints dis-
cussed in particle physics, astronomy and cosmology.

Exploring these and related issues further is important
and invites an inter-disciplinary research. This interdisci-
plinarity has previously included some chemical and bio-
chemical aspects of life [2, 92, 93], however the overall
focus was on particle physics, astronomy and cosmology
and on production of heavy elements in stars [1, 2, 5, 6, 8–
10, 92]. On the other hand, fundamental insights from
condensed matter physics were not explored, and this
overview illustrates the benefits of this consideration.

It is useful to note that testability and falsifiability of
a physical model involved in the current discussions of

the anthropic principle is a central issue [90]. On the
other hand, the physical model underlying the viscosity
minima comes from condensed matter physics with plen-
tiful opportunities to test and falsify it. As we have seen
earlier, the physical model underlying viscosity minima
benefits from agreeing with a wide range of experimental
data.

G. Quantum liquids

Quantum liquids are liquids where the effects of quan-
tum statistics, Fermi or Bose, become operative at low
temperature on the order of ∼ 1 K. Quantum liquids is
a large area of research with long history where superflu-
idity in liquid helium plays an important role [18, 94].

Despite this long history, some central problems re-
main not understood. Pines and Nozieres observe [94]
that “microscopic theory does not at present provide a
quantitative description of liquid He II” (“II” here refers
to helium below the superfluid transition temperature of
about 2.2 K). This is in contrast to superconductivity
where superconducting properties emerge from a micro-
scopic Hamiltonian. For quantum fluids, a microscopic
theory exists only for models of dilute gases or models
with weak interactions where perturbation theory applies
such as the Bogoliubov theory. Griffin broadly agrees
with the assessment of Pines and Nozieres and says that
we can’t make quantitative predictions of superfluid 4He
on the basis of existing theories and depend on experi-
mental data for guidance [95]. Interestingly, Griffin at-
tributes the theoretical problems of understanding the
superfluid He to the “difficulties of dealing with a liq-
uid, whether Bose-condensed or not”. In other words,
he recognizes that the general problems of liquid theory
discussed in Chapter 2: the no-small parameter problem
related to the combination of strong interactions and dy-
namical disorder.

Compared to several decades ago, research into liq-
uid helium superfluidity has been slowing down. We
have a set of important results and we know that several
fundamental problems remain unresolved but we don’t
know where the next important insight is likely to come
from. One insight we learned from classical liquids is
that considering microscopic details of their dynamics
and the combined oscillatory and diffusive components
of particle motion in particular is the key to understand-
ing liquids. This motion governs collective excitations,
phonons, in liquids which, in turn, govern liquid ther-
modynamic properties [28]. It may well be that these
dynamical details will similarly need to be incorporated
in the future microscopic theory of liquid helium.

In Chapter 2, we used the microscopic mechanism of
molecular motion in liquids to derive lower bound of liq-
uid viscosity. In view of the need for microscopic theory
of liquid helium, it is interesting to see whether we can
discuss the minima of He viscosity on the basis of the
same molecular mechanism as in classical liquids.
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In Figure 4, we have compiled several sets of experi-
mental data related to liquid 4He. The data represented
by finely-spaced points and lines above the superfluid
transition temperature Tc = 2.17 K (λ-point) are from
NIST [61]. These plots include interpolation artefacts at
low temperature. These are usually unimportant in a
wider temperature range, however here we are interested
in liquid helium which exists in a narrow temperature
range. For this reason, we also show the experimental
points on which the NIST curves are based [96] as bul-
let points. We also show viscosity of He II below Tc,
attributed to the normal component with nonzero vis-
cosity [57]. The kinematic viscosity is calculated using
density from Ref. [96].

There are several observations from Figure 4. First,
we observe that viscosity have minima in both phases of
He, He I and He II, similarly to other classical liquids in
Figure 1. Similar viscosity minima are also seen in 3He
[97].

We next observe that in He I above the critical pres-
sure (Pc = 0.23 MPa), viscosity minima in Figure 4 (es-
pecially the minima of kinematic viscosity) are not far
from those seen in Figure 1 in classical liquids. The
minima are somewhat lower in helium because (a) the
pressure in Fig. 4 is lower and (b) viscosity minima in
helium are understandably lower than in other liquids
because the inter-particle interactions in He are partic-
ularly weak. Similarly to Figure 1, viscosity minima in-
crease with pressure. Second, viscosity has a jump due
to the liquid-gas transition in the subcritical regime. The
jump starts close to the viscosity minima in the super-
critical regime at 1 and 3 MPa. The viscosity still have
minima, albeit these are not smooth as in the supercrit-
ical state. This behavior is similar to that in Figure 3b.
Third, although the viscosity minimum of He II is lower
than in the liquid He I at atmospheric pressure by about
a factor of 2-3 for both dynamic and kinematic viscosity
in Fig. 4 (this can be attributed to He II considered to
be a mixture of normal and superfluid components, see
Refs. [56, 94, 98–100] for original papers and reviews), it
is of the same order of magnitude.

Earlier in this Chapter, we showed that viscosity min-
ima in classical liquids are set by fundamental physical
constants. The similarity between viscosity minima in
He I and He II in Figure 4 suggests that the minimum in
He II is similarly set by these constants. This, in turn,
indicates that the mechanism setting the viscosity mini-
mum in He II may be similar. Indeed, the calculation of
the viscosity minima in terms of fundamental constants
in Section 2 C is based on a particular regime of parti-
cle dynamics corresponding to the crossover between liq-
uidlike and gaslike regimes. The closeness of calculated
and observed viscosity minima is therefore informative
in a sense of microscopic dynamics: viscosity decreasing
with temperature is related to the combined oscillatory
and diffusive particle motion, whereas viscosity increas-
ing with temperature is indicative of purely diffusive mo-
tion. This picture is consistent with path-integral sim-

ulations of He: the minima of velocity autocorrelation
function, associated with the liquid-like combined oscil-
latory and diffusive motion [65], are seen at 1.2 K [101]
where viscosity decreases in Figure 4.

Clearly more work is needed to ascertain the nature of
microscopic motion in liquid He and its relation to ob-
served properties including superfluidity. Here, we see
how the discussion of viscosity minima, their origin and
value in terms of fundamental constants has the potential
to provide interesting insights into microscopic dynamics
in quantum liquids. This is important in view of con-
structing a microscopic theory of He II. Earlier in this
section, we quoted the observation of Pines and Nozieres
of the absence of a microscopic theory of He II. Such a
theory would have to incorporate the microscopic parti-
cle of dynamics in liquid helium, and viscosity minima
provide an insight into this dynamics.

Previously, the behavior of helium viscosity was dis-
cussed in terms unrelated to microscopic dynamics of par-
ticles. Landau and Khalatnikov calculated viscosity due
to scattering of phonons and rotons by each other, with
the result that viscosity decreases with temperature [102].
This includes a provision that this result does not hold
in the range where viscosity increases with temperature
because of the proximity of the λ-point. Tisza, on the
other hand, considered part of temperature range where
viscosity increases with temperature, and attributes it to
the gas-like behavior described by the gas kinetic theory.
This was done in one of Tisza’s pioneering papers [98] in-
troducing the two-fluid model of liquid helium (see Refs.
[94, 99, 100] for review of the two-fluid model). Dash
[103] considers the entire regime where viscosity first de-
creases, goes through the minimum and then increases
as in Figure 4 and explains this non-monotonic behavior
by combining the Landau and Khalatnikov model with
the model where viscosity increases due to the increasing
normal fluid fraction.

H. Quark-gluon plasma

Differently from condensed matter systems, the sub-
ject of this review, the quark-gluon plasma (QGP) [104]
is a high-energy system. It is nevertheless interesting to
mention the QGP here, for two reasons. First, a bound
for viscosity-related property was proposed for the QGP.
Second, the kinematic viscosity of the QGP is remark-
ably close to the viscosity minima discussed in Section
2 C.

In Section 2 B, we mentioned fundamental problems
involved in liquid theory due to strong interactions. The
same problem exists in strongly-coupled field theories
where the perturbation theory does not apply. In some
cases, it is possible to derive closed results using the du-
ality between strongly-coupled field theories and weak
gravity duals (see, e.g. Rev. [105] for review). Using
this approach, the lower bound for viscosity-to-specific
entropy ratio was derived as [106]:
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η

s
≥ ~

4π
(21)

where s is the volume density of entropy.
The bound (21) was referred to as the “perfect fluid-

ity” and is being explored in different systems, including
strongly-interacting Bose liquids, ultracold Fermi gases
and quark-gluon plasma [107]. This extends to the vis-
cosity of quasiparticles in graphene [108]. Later work
considered how this and other bounds can be understood
in the picture involving the Planckian relaxation time

τP =
~
T

(22)

and related these and connected ideas to condensed mat-
ter systems including electron and spin transport proper-
ties [74, 76, 77, 79–81, 109–112] as well superconductivity
and superfluidity [113].
τP sets the limiting value of the relaxation time at a

given temperature. In this sense, it is different from other
bounds discussed in this review which are independent of
external parameters and are set by fundamental physical
constants.

The viscosity of the QGP has been measured experi-
mentally: η = 5 · 1011 Pa·s [107]. Although η is about 15
orders of magnitude larger than the viscosity of water at
room conditions, the kinematic viscosity of the QGP is
[104]

νexpQGP ≈ 10−7
m2

s
(23)

and is close to the viscosity minima of ordinary liquids in
Figure 1b as well as fundamental viscosity in Eq. (14).

This similarity is remarkable, given the 15 orders of
magnitude difference in η and that the two systems have
disparate interactions and fundamental theories. A hint
for this remarkable similarity comes from the universal-
ity of the dynamical crossover discussed in Section 2 B.
At the crossover, particle dynamics is neither liquidlike
with many oscillations and occasional jumps nor gaslike
where L � a, but instead is at the border between the
two regimes. At this border, kinematic viscosity turns
out to be fixed by the fundamental constants only and
independent of charge as mentioned in Section 2 C. This
can help explain the similarity of νmin of ordinary liquids
and the quark-gluon plasma [104]. This also suggests
that the QGP may be close to the dynamical crossover
in the sense discussed in Section 2 B.

The similarity of ν between the QGP and liquids at
the minimum interestingly suggests that the flow prop-
erties of these disparate systems is similar. This is seen
from the Navier-Stokes equation (18) or its relativistic
analogue [104].

The lower bound of the ratio (21) was interestingly

compared to real liquids such as N2 and H2O and found
to be about 25 times smaller than viscosity minima in
liquids. Most of this difference can be understood on the
basis of elementary viscosity ι (15) which serves as an
analogue of ηs in (21) because ι is the ratio of viscosity and

number density 1
a3 . The origin of this difference is the

presence of the factor
(
m
me

) 1
2

in Eq. (15) [62]. This factor

is specific to condensed matter and does not feature in
Eq. (21) derived from a theory based on holographic
correspondence and string theory.

I. What is “fundamental”?

In this Chapter, we have discussed bounds to viscos-
ity set by fundamental physical constants. There is a
truly fascinating history of earlier and ongoing effort to
understand the origin and rationalise the values of funda-
mental constants including the dimensionless ones such
as the fine structure constant α, proton-to-electron mass
ratio me

mp
and so on [1, 10]. A possibility was raised that

the fundamental constants might not even be fixed and
vary in different epochs [1, 114], and some related experi-
mental evidence was discussed [115, 116]. Understanding
fundamental constants is viewed as one of the grandest
challenges in modern science [11].

Commenting on prospects to understand fundamen-
tal constants, Weinberg observes that the membership
of fundamental constants depends on a theory or effects
considered [12]. Viscosity of water serves as “fundamen-
tal” in hydrodynamics, whereas electron mass and elec-
tron charge play that function in atomic physics. There
are perhaps two senses in which the term “fundamental”
is discussed here. First, the hydrodynamic theory makes
predictions about liquid flow and involves viscosity as a
pre-determined parameter whose calculation can not be
done and is not required in the hydrodynamic theory
itself. Second, we can ask whether this or other simi-
lar parameter can be calculated on the basis of another,
more fundamental, underlying theory. There is currently
a limit to how fundamental we can go: calculating funda-
mental physical constants can not currently be done not
because the calculation is too complicated (as for the vis-
cosity of water, notes Weinberg), but because we don’t
know of anything more fundamental. On the other hand,
condensed matter physics should in principle be able to
provide tools to calculate water viscosity, although this
remained very hard in view of general issues involved in
liquid theory and viscosity in particular as discussed in
Section 2 B.

The results in this Chapter suggest that despite diffi-
culties involved in calculating viscosity as a “fundamen-
tal” parameter in fluid mechanics, viscosity is neverthe-
less governed by true fundamental physical constants (see
Eq. (14)). These constants set bounds for viscosity and
its values in a fairly wide range of parameters on the
phase diagram.
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3. THERMAL CONDUCTIVITY

A. Thermal conductivity of insulators and
dynamical crossover

In this Section, we consider a property different to vis-
cosity: the ability to conduct heat. We consider insu-
lating systems where the conductivity is due to ions. In
Chapter 3 C, we discuss thermal conductivity by elec-
trons.

Thermal energy can be carried by phonons and elec-
tron quasi-particles in solids and liquids or molecular col-
lisions in gases [58, 68]. Although these two mechanisms
of heat transfer, by collective excitations or particles,
are conceptually simple, they can interestingly interact
with other processes and give rise to a rich variety of
effects. These effects are currently explored in a vari-
ety of materials including insulators, strange metals and
cuprate superconductors, where new mechanisms are in-
voked to explain the experimental data (see, e.g., Refs.
[76, 77, 80, 109]). This involves bounds on thermal con-
ductivity based on uncertainty relations and often in-
volve temperature-dependent Planckian relaxation time
τP = ~

T mentioned in Section 2 H.
Thermal conductivity κ is defined as the proportion-

ality coefficient between the heat current density and
the temperature gradient (e.g., Jx = κxx

∂T
∂x in the x-

direction). The propagation of heat is given by the heat
equation

∂T

∂t
= α

∂2T

∂x2
(24)

where α = κ
ρcp

is thermal diffusivity, ρ is density and cp
is heat capacity per mass unit.

Eq. (24) is analogous to the Navier-Stokes equation
(18). Similarly to the kinematic viscosity governing flow
in Eq. (18), α quantifies the propagation of thermal en-
ergy.

Similarly to viscosity, the heat transport coefficients κ
and α vary in a wide range and depends strongly on the
system, temperature and pressure. Yet we will see below
that the lower bound of these properties is identical to
that of viscosity.

We have collected available experimental data [61] of
κ in several noble (Ar, Ne, He and Kr), molecular (N2,
H2, O2, CO2, CH4 C2H6 and CO) and network fluids
(H2O). This selection includes industrially important su-
percritical fluids such as CO2 and H2O. We have calcu-
lated α = κ

cρ using the experimental values of cp and ρ

and show both κ and α in Figure 5. For some fluids,
we show the data at two different pressures. As in the
case of viscosity in Figure 1, the low pressure was chosen
to be sufficiently far above the critical pressure so that
the data are not affected by near-critical anomalies. The
high pressure was chosen to (a) make the pressure range
as wide as possible and (b) be low enough in order to see

the minima in the available temperature range.

We observe that κ and α universally have minima, sim-
ilarly to viscosity in Figure 1. We also observe that κ can
have maxima at low temperature related to the competi-
tion between the increase of heat capacity due to phonon
excitations in the low-temperature quantum regime and
decrease of the phonon mean free path l as in solids.
In H2O, the broad maximum is related to water-specific
anomalies including broad structural transformation be-
tween differently-coordinated states.

We now discuss the reason why κ and α have minima
in Figure 5. In solids and systems where heat is carried
by phonons, the thermal conductivity κ is κ = cvl, where
c is the specific heat per volume unit [68], v is the speed
of sound, l is the phonon mean free path and we dropped
the numerical factor on the order of unity. Then, thermal
diffusivity α is

α = vl (25)

In gases, α can be written in the same way as (25), but
- and this reflects the difference between heat transfer in
solids and gases - v in (25) corresponds to the average
velocity of gas molecules and l to the molecule free path
[58].

We can now see that the minimum of α is due to the
dynamical crossover between the liquid-like and gas-like
regimes of particles dynamics discussed in Section 2 B.
The liquid phonon states consist of one longitudinal mode
and two transverse modes propagating above the thresh-
old value in ω or k-space [28]. Temperature increase has
two effects on α in Eq. (25): both the phonon mean free
path l and the speed of sound v decrease. However, the
decrease of v and l can not continue indefinitely: l is lim-
ited by either the phonon wavelength [118] or its shortest
value comparable to the interatomic separation a (see the
discussion of the reduction of l close to a by Kittel [119]
in disordered glasses). Similarly, v decreases with tem-
perature at the dynamical crossover discussed in Section
2 B where it becomes comparable to the particle thermal
speed at the Frenkel line, vt. At this crossover, the oscil-
latory component of molecular motion in liquids is lost,
and molecules start moving in a purely diffusive manner.
In this regime, l becomes the particle mean free path, lp.
lp and vt both increase with temperature. Therefore, α
in Eq.(25) has a minimum.

The same mechanism leading to a minimum applies to
κ = cρα. ρ and c monotonically decrease with tempera-
ture [28], hence the minima of α and κ can take place at
somewhat different temperature.

Before evaluating αmin, let us see how well we can es-
timate κ at the minimum, κmin. The speed of sound v
in the Debye model is v = a

τD
(at the crossover where τ

becomes comparable to the time it takes the molecule to
move distance a and where τ ≈ τD as discussed above, v
becomes approximately equal to thermal velocity). Re-
calling that c featuring in κ = cvl is the temperature
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derivative of energy density [68], c = cv
a3 , where cv is heat

capacity per atom at constant volume (if the derivative
is taken at constant volume) and a−3 is the concentra-
tion. At the minimum corresponding to the dynamical
crossover at the Frenkel line, cv is close to 2, reflecting
the disappearance of two transverse modes [28]. Setting
l = a, v = a

τD
= 1

2πωDa, where ωD is Debye frequency,
gives

κmin =
1

π

ωD

a
(26)

Taking the typical values of a =3-6 Å ωD

2π on the order
of 1 THz and reinstating kB, we find κmin in the range
0.05 − 0.09 W

mK . This is consistent with typical values
seen in Fig. 5a. We also observe that high pressure
reduces a and increases ωD in Eq. (26), hence we predict
that κmin increases with pressure as a result. This is
in agreement with the experimental behavior in Fig. 5.
Another prediction of Eq. (26) is the reduction of κmin
with mass m due to ωD ∝ 1√

m
. Consistent with this

prediction, κmin in Fig. 5a tend to be lower for heavier
systems such as Kr.

We note that the minima of κ of most liquids in Fig. 5a
are still lower than thermal conductivity in low-κ solids
such as SnSe (κ = 0.23 W

mK ) where it is considered to be
exceptionally low [120]. For Kr, κmin is about 10 smaller
than the ultralow value of κ in SnSe.

B. Lower bound on thermal diffusivity

We now evaluate α at its minimum, αmin. As discussed
above, l ≈ a at the minimum at the dynamical crossover.
Using v = a

τD
= 1

2πaωD in Eq. (25) as before gives

αmin =
1

2π
ωDa

2 (27)

Eq. (27) is the same as νmin in Eq. (5) in Section 2 C.
Therefore, repeating the same steps as in Section 2 C, we
find [117]:

αmin = νmin =
1

4π

~
√
mem

(28)

giving rise to the fundamental thermal diffusivity αf as
in Eq. (14):

αf =
1

4π

~
√
memp

≈ 10−7
m2

s
(29)

Eq. (29) is consistent with the experimental results
in Figure 5b. Similarly to viscosity discussed in Chapter
2, this shows how fundamental constants set the charac-
teristic scale of physical properties including complicated

ones such as thermal conductivity and diffusivity.
The prediction of Eq. (28) can be compared to experi-

ments. In Table II we compare αmin calculated according
to (28) to the experimental νmin [61] for all liquids shown
in Fig. 5. The ratio between experimental and predicted
αmin is in the range of about 0.9 − 4. The ratio is the
largest for fluids under high pressure (e.g. N2 at 500 MPa
and Ar at 100 MPa) which Eq. (28) does not account for.
For the lightest liquid, H2, experimental αmin is close to
the theoretical fundamental thermal diffusivity viscosity
(27). We therefore find that (28) is consistent with the
experimental data, with caveats discussed in Section 2 C
related to approximations involved.

αthm = νthm αexpm νexpm νmin/αmin

Ar (20 MPa) 3.4 4.5 5.9 1.3

Ar (100 MPa) 3.4 9.3 7.7 0.8

Ne (50 MPa) 4.8 6.4 4.6 0.7

Ne (300 MPa) 4.8 11.9 6.5 0.6

He (20 MPa) 10.7 9.5 5.2 0.6

He (100 MPa) 10.7 17.9 7.5 0.4

Kr (30 MPa) 2.3 4.9 5.2 1.1

N2 (10 MPa) 4.1 4.0 6.5 1.6

N2 (500 MPa) 4.1 17.8 12.7 0.7

H2 (50 MPa) 15.2 22.8 16.3 0.7

H2 (100 MPa) 15.2 27.0 19.4 0.7

O2 (30 MPa) 3.8 5.6 7.4 1.3

H2O (70 MPa) 5.1 10.7 11.9 1.1

CO2 (30 MPa) 3.2 5.4 8.0 1.5

CO2 (90 MPa) 3.2 8.1 9.3 1.2

CH4 (20 MPa) 5.4 7.9 11.0 1.4

C2H6 (20 MPa) 3.9 7.0 12.0 1.7

CO (20 MPa) 4.1 12.0 7.7 0.6

TABLE II: Theoretical (th) and experimental (exp) values
for the thermal diffusivity αmin and the kinematic viscosity
νmin at the minima. All the quantities are displayed in units
of ×108 m2/s except from the last ratio which is dimension-
less. Reproduced from Ref. [117] with permission from the
American Physical Society.

The closeness of the minima of both properties, αmin
and νmin in Eq. (29) is unexpected and surprising. In-
deed, viscosity and thermal conductivity are physically
distinct properties. They are measured in very different
experiments. Yet Eq. (29) predicts that their minima
should be the same.

This prediction is checked in Table in II where ν at
the minima are calculated at the same pressure as α.
Consistent with the prediction of Eq. (27), we observe
that the experimental values of αmin and νmin are close
to each other. This agreement is also seen in the last
column of Table II where the ratio νmin/αmin is in the
range 0.4-1.7.
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We note that the temperatures of the minima of αmin
and νmin are somewhat different, nevertheless the close-
ness of αmin and νmin implies that the Prandtl number,
ν
α , is on the order of 1 at temperatures close to the min-
ima. In other words, the transfer of energy and momen-
tum takes place with the same velocity in this regime.

To illustrate the closeness of αmin and νmin further,
we plot the experimental α and ν for two noble and two
molecular liquids in Fig. 6 at the same pressures as in
Fig. 3 and observe the closeness of the minima of two
properties.

Figure 6 prompts us to think about other interesting
similarities as well as differences between kinematic vis-
cosity and thermal diffusivity. We have already men-
tioned the first general similarity between α and ν: they
feature in the Navier-Stokes (18) and heat equation (24)
which have a similar form. Second, the dominant contri-
bution to thermal conductivity in the low-temperature
liquid-like regime is due to phonons as in solids. In the
high-temperature gas-like regime, thermal conductivity
is due to particle collisions. Viscosity, on the other hand,
is due to the dynamics of individual particles and mo-
mentum they transfer in both liquid-like regime (2) and
gas-like regime (3). Therefore, viscosity and thermal con-
ductivity are set by the same process at high temperature
but by different processes at low temperature. Consistent
with this prediction, Fig. 6 shows that temperature be-
havior of α and ν is more similar at high temperature as
compared to low.

C. Thermal diffusivity of electrons in metals

The discussion of thermal conductivity in the previous
section applies to systems where the dominant contribu-
tion is related to the motion of atoms, ions or molecules.
We now consider systems where electron conductivity is
important or dominant, such as metals.

Similarly to thermal diffusivity in insulating systems
discussed in Section 3 A, the minimum of electron ther-
mal diffusivity, αemin, corresponds to setting l = a in Eq.
(25): αemin = va, where v is the electron speed. This
corresponds to the Ioffe-Regel crossover (see, e.g., Ref.
[121] and references therein). The electron velocity can

be estimated as v =
√

2E
me

, where E is given by the Ryd-

berg energy (7). Estimating a as aB in Eq. (6) as before
give αemin as

αemin = aB

(
2ER

me

) 1
2

(30)

Using aB from Eq. (6) and ER from Eq. (7) in Eq.
(30) gives

αemin =
~
me
≈ 10−4

m2

s
(31)

Similarly to kinematic viscosity discussed in Section
2 D, αemin is consistent with an uncertainty relation ap-
plied to an electron located within a distance a, meva ≥
~.

Set by fundamental physical constants, the bound (31)
is universal and does not depend on the system, in con-
trast to (28). Comparing to the fundamental thermal
diffusivity due to ions in Eq. (29), we see that αemin is
about 103 times larger. This is due to smaller electron
mass as compared to the proton mass.

We note that ~
m , where m is the particle mass, has

been discussed as the lower diffusivity bound for spin
transport [81, 110, 122–124].

Eq. (30) can be compared to the experimental data
in liquid metals at high temperature where l is expected
to approach a. This would be an interesting analysis to
perform.

4. MINIMA ON THE PHASE DIAGRAM:
THEORY AND APPLICATIONS

The discussion of fundamental limits on viscosity and
thermal conductivity in the previous two Chapters were
related to liquids and supercritical fluids. It turns out
that these limits also enable us to discuss the limits of
these properties in the entire phase diagram of matter.

Let us consider to what extent the minima of νmin
and αmin discussed for the liquid and supercritical states
in Chapters 2 and 3 apply to other parts of the phase
diagram. The data showing the increase of ν with tem-
perature in the gas regime in Fig. 1 is above the triple
point. Below the triple point, ν is larger than νmin. This
follows from observing that (a) ν increases above the sub-
limation line along the isobars and also increases along
the sublimation line on lowering the temperature due to
the exponential decrease of sublimation pressure [18] (we
do not consider quantum effects), and (b) ν at the triple
point is significantly larger than νmin [61]. Therefore,
νmin corresponds to the minimum for both fluids and
gases (phases where viscosity operates), including dilute
low-temperature gases.

Considering now thermal diffusivity, we note that in
solids α = vl is larger than αmin, for two reasons. First,
the speed of sound v is faster. Second, the phonon mean
free path l is larger than that in liquids and is typically
larger than a at the UV cutoff. In gases, α = vtlp, where
lp, the particle mean free path and vt, thermal velocity,
increase with temperature. At the minimum, l ≈ a, and
the speed of sound is approximately equal to the thermal
speed of particles at the Frenkel line [66]. Hence α = vl
increases in both solids and gases, and the minimum of
α, αmin, applies to all three states of matter.

We therefore see that αmin and νmin represent minima
on the phase diagram. However, αmin and νmin behave
differently in close proximity to the critical point. Indeed,
viscosity diverges at the critical point [125], and νmin in-
creases close to the critical point as a result. Therefore,
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νmin gives the global minimum on the entire phase di-
agram. On the other hand, the isobaric heat capacity
diverges much faster than κ [126]. As a result, α at the
critical point tends to zero. Therefore, αmin gives the
minimum on the phase diagram of matter except in the
close vicinity of the critical point.

As far as dynamic viscosity η and thermal conductivity
κ are concerned, their minima operate in the liquid and
supercritical parts of the phase diagram only, including
the critical point where they increase. In the gas phase, η
and κ can be arbitrarily small at low temperature. The
same applies to κ in solids where it tends to zero due
to heat capacity becoming zero at low temperature and
where the phonon mean free path saturates to a constant
value set by either system size or scattering from defects.

Apart from ascertaining theoretical minima of the
phase diagram, the fundamental limits of viscosity and
thermal conductivity have practical implications. For ex-
ample, designing a low-viscosity liquid in lubricating ap-
plications benefits from knowing that viscosity can not
be lower than the fundamental bound. On the other
hand, if viscosity is substantially larger than the bound,
there is room for improvement which can be pursued.
Similarly, low-viscosity and associated high diffusion is
important in increasing deployment of supercritical flu-
ids such as CO2 and H2O in cleaning, extracting and
dissolving processes including environmental and green
applications [21, 66, 127–130]. It was noted that im-
proving the fundamental knowledge of the supercritical
state properties is important for scaling up, widening,
and increasing the reliability of these applications (see,
e.g., Refs [127, 131–135]).

Similarly, the lower bound for thermal conductivity
and diffusivity is informative when designing a system
with superior thermal insulation properties. Small ther-
mal conductivity is also important in other areas such
as enhancing the thermoelectric effect. The figure of
merit measuring the efficiency of thermoelectricity is in-
versely proportional to thermal conductivity. Therefore,
the minimal thermal conductivity gives the maximal pos-
sible figure of merit, keeping all other factors unchanged.
As mentioned in Section 3 A, the exceptionally low ther-
mal conductivity reported in Ref. [120] for the solid with
high thermoelectric figure is still larger than theoretical
lower bounds.

5. ELASTIC PROPERTIES

A. Elastic moduli

A convenient starting point of the discussion of elastic
moduli is to write the system energy as [136]

E = E0f

(
V

V0

)
(32)

where E0 and V0 are energy and volume at zero tem-
perature and pressure and f is the function showing the
energy dependence on volume.

Eq. (32) gives the bulk modulus K = V ∂2E
∂V 2 as

K =
E0

V0

V

V0
f

′′
(
V

V0

)
(33)

At zero pressure, the bulk modulus is

K0 =
E0

V0
f

′′

0 (34)

Early studies have showed that f
′′

0 is close to 1 for sys-
tems with covalent bonding [136]. Later work ascertained

that f
′′

0 is on the order of 1 for a wider class of solids, in-
cluding metallic, molecular and noble systems [137, 138].
This implies that the bulk modulus and related elastic
properties are largely governed by the bonding energy
density, or density of valence electrons:

K0 ≈
Eb
a3

(35)

where Eb is the bonding energy.
In diamond, this density is high due to fairly small

ionic radius and four valence electrons [137, 138]. This
gives diamond its uniquely large modulus of about 450
GPa.

If the bulk modulus is given by the density of cohesive
energy, we can use Eq. (35) to estimate the “fundamen-
tal bulk modulus” Kf in terms of fundamental physical
constants as [139]

Kf =
ER

a3B
≈ 147 Mbar (36)

where ER is the Rydberg energy in Eq. (7) and aB is the
Bohr radius in Eq. (6).

We note that elastic moduli have the dimension of pres-
sure, and Kf in Eq. (36) is often called the atomic pres-
sure unit. At pressures above Kf , effects related to the
overlap of inner electronic shells come into play, at which
point solids metallise and become similar to each other
and ultimately to the Thomas-Fermi plasma.

From Eqs. (7) and (6), we see that Kf depends on
fundamental physical constants me, e and ~ as

Kf ∝
(
m2
ee

5

~4

)2

(37)

where we dropped numerical factors.
Kf of about 147 Mbar represents an upper bound for

the bulk modulus of condensed matter systems (solids
and liquids) because aB ≈ 0.5 Å in (36) is smaller than
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the interatomic separation in real systems and the Ryd-
berg energy corresponds to large cohesive energy.

As a rough estimate, we can see what Eq. (36) predicts
for diamond where the interatomic separation is about 3
times larger than aB. According to Eq. (36), this gives
the bulk modulus smaller than Mf by a factor of 33, or
about 540 GPa, close to that in diamond.

B. Low-dimensional systems: surface tension and
atomic force

Similarly to elastic moduli, we can consider the surface
tension as the surface energy density σ = E

r2 . Taking
E = ER and r = aB as before gives

σ =
ER

a2B
≈ 780

N

m
(38)

or

σ ∝ m3
ee

8

~6
(39)

in terms of fundamental constants.

Compared to the common surface tension in liquids,
Eq. (38) gives a large value. For example, σ in water
and mercury bordering air is 0.07 and 0.5 N

m , respec-
tively. The meaning of σ in Eq. (38) is that gives max-
imally possible surface tension, and a fair comparison is
with elastic moduli and mechanical properties of two-
dimensional solids. The stiffest two-dimensional solid
known, graphene, has σ = 340 N

m and the averaged break-

ing strength of 55 N
m [140] (the breaking strength can be

estimated as the elastic moduli divided by 2π [141, 142]).
This σ is of the same order as the upper theoretical bound
(38) and conforms to this bound.

We can also consider a one-dimensional chain and in-
troduce a theoretical limit for the elastic force f acting
as one-dimensional analogue of the elastic modulus as:

f =
ER

aB
≈ 41 nN (40)

or

f ∝
(
mee

3

~2

)2

(41)

in terms of fundamental constants.

Similarly to using graphene to compare the theoretical
prediction of two-dimensional elasticity in terms of funa-
mental constants, we can look to compare f in Eq. (40)
to one-dimensional structures of carbon, carbyne. Ex-
periments in carbyne report f = 8 − 12 nN [143, 144].

This is of the same order as the theoretical upper bound
(40) and conforms to this bound.

This review is largely related to three-dimensional con-
densed matter systems. It is nevertheless interesting to
note that low-dimensional systems and their derivatives
can offer a particularly simple relationship between sys-
tem properties and fundamental physical constants. An
interesting result comes again from graphene: the light
absorption coefficient of a single graphene layer is theo-
retically predicted to be πα, where α is the fine structure
constant we discussed earlier [145], in agreement with
experimental results [146].

We also note that we do not consider effects directly re-
lated to quantization in this review. If a property changes
in quanta (e.g., resistivity quanta in the quantum Hall ef-
fect or magnetic flux quanta in superconductors), bounds
related to the smallest quantum number can trivially
emerge too. The nature of these bounds is different from
those considered in this review: we discuss bounds whose
origin is unrelated to quantization.

6. SPEED OF SOUND

A. The upper bound

Our last case study in this review is the speed of sound
in condensed matter phases, v, and its upper limit in
terms of fundamental physical constants.

There are two approaches in which v can be evaluated.
The first approach involves elasticity involving Eq. (35).

The longitudinal speed of sound is

v =

(
M

ρ

) 1
2

M = K0 +
4

3
G

(42)

where G is the shear modulus and ρ is the density. As
discussed in Section 5 A, the bulk modulus is governed
by the density of cohesive energy in Eq. (35), where

the proportionality coefficient f = f
′′

0 is experimentally
found to be in the range 1-4 [137, 138]. The same data
implies the proportionality coefficient between M and E

a3

in the range of about 1-6. Combining v =
(
M
ρ

) 1
2

and

M = f Eb

a3 gives v = f
1
2

(
E
m

) 1
2 , where m is the mass of

the atom or molecule, and we used m = ρa3. The factor
f

1
2 is about 1-2 and can be dropped in an approximate

evaluation of v. Then,

v =

(
E

m

) 1
2

(43)

We now recall that the bonding energy in condensed
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phases is given by the Rydberg energy in Eq. (7). Using
E = ER from Eq. (7) in (43) gives

v

c
= α

(me

2m

) 1
2

(44)

where α = 1
4πε0

e2

~c is the fine structure constant.
The second approach to evaluating the speed of sound

involves the vibrational properties of the system. The
longitudinal speed of sound, v, can be evaluated as the
phase velocity in the longitudinal dispersion curve ω =
ω(k): v = ωD

kD
, where ωD and kD are Debye frequency

and wavevector, respectively. Using kD = π
a , where a is

the interatomic or inter-molecule separation, gives

v =
1

π
ωDa (45)

Using the ratio between the phonon energy, ~ωD, and
E in Eq. (8) in Section 2 C in Eq. (45) gives

v =
Ea

π~

(me

m

) 1
2

(46)

v in (44), up to a constant factor, is obtained by using
a = aB from (6) and E = ER from (7) in (46). Alterna-

tively, the same result can be found by using E = ~2

2mea2

(11) and a = aB (6) in (46).
Compared to the first approach, the second approach

based on vibrational properties involves additional ap-
proximations, including evaluating v from the dispersion
relation in the Debye model, using a = aB in (6) and
the ratio between the phonon and bonding energies (8).
For this reason, we focus on the result from the first ap-
proach, Eq. (44).

In Eq. (44), me characterises electrons, which are re-
sponsible for the interactions between atoms. The elec-
tronic contribution is further reflected in the factor αc
(αc ∝ e2

~ ), which is the electron velocity in the Bohr
model. We note that v does not depend on c. The rea-
son for writing the fraction v

c in terms of α is two-fold.
First, this ratio is convenient and informative, similarly
to the ratio of the Fermi velocity and the speed of light
vF
c commonly used. Second, it is α (together with me

mp
)

that is given fundamental importance and is finely tuned
to enable the synthesis of heavy elements [1] and, there-
fore, the existence of solids and liquids where sound can
propagate to begin with.

Similarly to the viscosity minimum νmin and funda-
mental viscosity νf in section 2 C, the derivation of Eq.
(44) involves more than dimensional analysis. First, the
dimensional analysis alone is consistent with re-writing
Eq. (44) as v

c = f1(α)f2
(
me

m

)
, where f1 and f2 are ar-

bitrary functions. This gives any desired value for the
speed of sound. Instead, the derivation of Eq. (44) in-
volves several physical insights not available in the di-

mensional analysis alone. This includes the experimental
result of f

′′

0 being close to 1 in Eq. (34), using the ratio
~ωD

E , based on the physical model, in Eq. (46), and so
on. These steps are physically guided and incorporate
more information that would be available from purely
dimensional considerations.

m in (44) characterises atoms involved in periodic mo-
tion during sound propagation. The scale of m is set by
the proton mass mp: m = Amp, where A is the atomic
mass. Recall that aB in (6) and ER in (7) are character-
istic values derived for the H atom. Setting A = 1 and
m = mp in (44) gives the upper bound of v in (44), vu,
as [147]:

vu = α

(
me

2mp

) 1
2

c ≈ 36, 100
m

s
(47)

We observe that vu depends on fundamental physical
constants including the dimensionless fine structure con-
stant α and the proton-to-electron mass ratio. We have
discussed the importance of these two constants earlier
in this review, including in the Introduction.

Combining Eqs. (44), (47), and m = Amp gives

v =
vu

A
1
2

(48)

Before discussing Eq. (44) and its implications, Eqs.
(47)-(48), we note that the speed of sound is governed by
the elastic moduli and density which substantially vary
with bonding type: from strong covalent, ionic, or metal-
lic bonding, typically giving a large bonding energy to in-
termediate hydrogen-bonding, and weak dipole and van
der Waals interactions. Elastic moduli and density also
vary with the particular structure that a system adopts.
Furthermore, structure and bonding type are themselves
inter-dependent: covalent and ionic bonding result in
open and close-packed structures, respectively [148]. As
a result, the speed of sound for a particular system can
not be predicted analytically and without the explicit
knowledge of structure and interactions. This is similar
to other system-dependent properties such as viscosity or
thermal conductivity discussed in Sections 2 and 3 but is
different to other properties such as the classical energy
and specific heat which are universal in the harmonic ap-
proximation [18]. Nevertheless, the dependence of v on
m or A in Eq. (48) can be studied in a family of ele-
mental solids. Elemental solids do not have confounding
features of compounds related to mixed bonding between
different atomic species, including mixed covalent-ionic
bonding between the same atomic pairs as well as differ-
ent bonding types between different pairs.
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B. Comparing to experiments

The implication of Eq. (44) leading to the upper bound
(47) is Eq. (48). We can compare Eq. (48) to experi-
ments. We plot the available data of v as a function of
A for 36 elemental solids [149–151] in Fig. 7, including
semiconductors and metals with large bonding energies.
Eq. (48) is the straight line in Fig. 7 ending in the upper
theoretical bound (47) for A = 1. The linear Pearson cor-
relation coefficient calculated for the experimental data
(logA, log v) is −0.71. Its absolute value is slightly above
that notionally separating moderate and strong correla-
tions [152]. We also find that the ratio of calculated and
experimental v is in the range 0.6-2.4, consistent with the
range of f

1
2 approximated by 1 in the derivation of Eq.

(43).
The dashed line in Fig. 7 shows the fit of the exper-

imental data points to the inverse square root function
predicted by Eq. (48) and lies very close to Eq. (48).
The fitted curve gives the intercept at 37,350 m

s . This is
in about 3% agreement with the upper bound vu in (47).
This indicates that the numerical coefficient in Eq. (44),
which is subject to an approximation as mentioned ear-
lier gives good agreement with the experimental trend.
The agreement of Eq. (48) with experimental data sup-
ports Eq. (44) and its consequence, the upper limit vu
in Eq. (47).

We can also see that vu agrees with a wider experi-
mental set. In Fig. 8, we show experimental v [149–151]
in 133 systems, including elementals systems and com-
pounds. As expected, the experimental v are smaller
than the upper theoretical bound vu in (47). vu is about
twice as large as v in diamond, the highest v measured
at ambient conditions (the in-plane speed of sound in
graphite is slightly above v in diamond [153]).

Eq. (48) can be used to roughly predict the average,
or characteristic speed of sound v in condensed matter
systems. A

1
2 which, according to (48) is relevant for v,

varies across the periodic table in the range of about 1-
15, with an average value of 8. According to (48), this
corresponds to v ≈ 4, 513m

s . This is in 16% agreement
with 5,392 m

s , the average over elemental solids in Fig.
7 and in 14% agreement with 5,267 m

s , the average over
the wider range of solids in Fig. 8.

This explains the characteristic values of v and their
average. Although v depends on the system in (48), the
scale of v is defined by Eq. (47) which is set by fun-
damental physical constants. Earlier in this review, we
have seen that characteristic values of other properties,
including viscosity, thermal diffusivity and elasticity are
similarly set by fundamental constants.

Fig. 8 includes the experimental v of room-
temperature liquids with typical v in the range 1,000-
2,000 m

s . v in high-temperature liquid metals such as
Al, Fe, Mg, and Ni is in the higher range 4,000-5,000 m

s
[67]. We see that v in liquids satisfy the bound vu, simi-
larly to solids. We note that the evaluation of v and vu
applies to liquids with cohesive states where molecular

dynamics includes solid-like oscillatory components be-
low the Frenkel line [66] discussed in Section 2. In this
regime, v is set by the elastic moduli as in solids albeit
taken at their high-frequency (short-time) values [51] so
the derivation in Eqs. (43)-(47) applies. On the other
hand, at high temperature and/or low density above the
Frenkel line, cohesive states are lost and Eq. (7) and
Eq. (6) and the derivation of v do not apply. In this
regime, the moduli are related to the kinetic energy of
molecules rather than interactions and bonding energy,
and v starts to increase with temperature and loses its
universality. Above the Frenkel line [66] where the molec-
ular motion is purely diffusive, v is equal to the thermal
speed of molecules as in a gas.

In Sections 2 and 3, we have discussed fundamental
bounds of ν and α and later saw that they represent the
bounds for all states of matter, including solids and gases.
In this regard, it is interesting to note that an expression
similar to (43) was earlier obtained by evaluating the
elastic modulus using the liquid state theory and applied
to liquid metals [154]. The speed of sound was also eval-
uated in the theory of metals using the ionic plasma fre-
quency and subsequently accounting for the conduction
electrons screening. This results in the Bohm-Staver re-

lation v ∝
(
me

m

) 1
2 vF, where vF is the Fermi velocity [68],

and hence v ∝ 1

A
1
2

as in Eq. (48). These and other

relations derived for the liquid state give a fairly good
account of the experimental sound velocity in metallic
liquids [67, 154].

We make three remarks about the calculated v and its
bound. First, this derivation involves approximations as
mentioned earlier, which may affect the numerical factor
in Eqs. (44) and (47). However, the characteristic scale
of v in (44) and its upper bound (47) is set by fundamen-
tal physical constants. The second remark is similar to
the disclaimer we made with regard to liquids in Section
2: Eq. (7) as well as Eqs. (44)-(46) used in the second
approach to derive v assume valence electrons directly
involved in bonding and hence strongly-bonded systems,
including covalent, ionic and metallic systems. Although
bonding in weakly-bonded solids such as noble, molecu-
lar and hydrogen-bonded solids is also electromagnetic in
origin, weak dipole and van der Waals interactions result
in smaller E [72] and smaller v as a result. Therefore,
the upper bound vu in Eq. (47) applies to weakly-bonded
systems too.

The upper bound in Eq. (47) corresponds to solid
hydrogen with strong metallic bonding. Although this
phase only exists at megabar pressures [155, 156] and is
dynamically unstable at ambient pressure where molecu-
lar formation occurs, v can be calculated in atomic hydro-
gen using quantum-mechanical calculations. This carries
an additional interest due to research into the proper-
ties of atomic hydrogen at high pressure (see, e.g., Refs.
[155–157]), although the speed of sound in these phases
was not discussed and remains unknown. The quantum-
mechanical calculation of v shows good agreement with
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Eq. (47) [147].
We make several remarks related to previous work in-

volving bounds on the speed of sound. It was noted
that thermal diffusivity of insulators does not fall be-
low a threshold value given by the product of v2 and the
Planckian time [76]. Later work linked the upper bound
on the speed of sound to the melting velocity related to
melting temperature and Lindemann criterion [80]. In
hadronic matter, the upper bound of the speed of sound
was conjectured to be [158, 159]):

vu =
c√
3

(49)

Later work [160–162] discussed the bound (49) and its
violations using different models. Comparing the bound
(49) with (47), we see that the bound (47) is smaller due
to small coupling constant α and the electron-to-proton
mass ratio. In hadronic matter with strong coupling and
particles with the same or similar masses, these factors
become close to 1, in which case vu

c in Eq. (47) becomes
closer to the conjectured limit.

We finally note that the upper bound for v plays a
role in thermodynamic properties too. Indeed, the low-
temperature entropy and heat capacity per volume in
solids are

C

V
=

2π2

5(~u)3
T 3

S

V
=

2π2

15(~u)3
T 3

(50)

where u is the average speed of sound [18].
Hence, the upper bound for u gives the smallest possi-

ble entropy and heat capacity at a given temperature.

7. SUMMARY: FUNDAMENTAL CONSTANTS
AND PHYSICAL THEORIES

Testing and validating a physical theory and compar-
ing it to an experiment involves different types of num-
bers, and in this sense Eq. (50) serves as a good rep-
resentative example. There are ordinary numbers such
as “2” or “π” in Eq. (50). Then there is a family of
external parameters such as pressure, temperature, ex-
ternal field and so on. In Eq. (50), this is represented
by temperature T . Another type of parameters are fixed
by system properties. In Eq. (50), this is the speed of
sound u. Parameters like this are different from free ad-
justable parameters. We prefer not to have those in our
theories if possible, not least because it may be hard to
judge whether the theory is valid if parameters are freely
adjustable. We can often fit experimental data with a
fairly small number of adjustable parameters and hence
can’t decide which theory is the correct one, remaining
no wiser as to what physical mechanism really operates.

On the other hand, a parameter fixed by system proper-
ties has no such flexibility. If we know u from some other
experiment or simulation, Eq. (50) unambiguously pre-
dict heat capacity and entropy at a given temperature.
This is what physics is considered to be about: one view
holds that the essence of every physical theory is to pre-
dict a future experiment on the basis of a previous one
[163] or, in other words, provide a relationship between
different properties.

Finally, there is another class of parameters in a the-
ory: fundamental physical constants. In Eq. (50), this is
~. Being the “barcodes of ultimate reality” [1], these are
very special parameters. They too are fixed by system
properties as in the earlier example, with the proviso that
the system is the Universe.

Accordingly, a theory where an observable is expressed
in terms of fundamental constants only (as well as or-
dinary numbers) is a special type of theory because it
directly links the property in question to the Universe
properties.

By design, such a theory does not address effects re-
lated to variation of external parameters (pressure, tem-
perature and so on). Applied to a range of systems, such
a theory often makes approximations which is inevitable
in view of structural, chemical and bonding variety of
condensed matter phases. Once these are made, the the-
ory and its results allow no further flexibility or leeway.
With this disclaimer, we summarise what we can learn
from such a theory below.

We have seen that fundamental physical constants can
usefully provide a bound on a physical property. We have
discussed how this works for properties which are quite
complicated to be amenable to a general theoretical treat-
ment including liquid viscosity and thermal conductivity.

We found that ~ interestingly enters all expressions
for bounds on macroscopic properties. This includes the
range of external parameters where systems are consid-
ered classical. Viscosity and thermal diffusivity bounds
are additionally governed by me and mp.

We have seen that comparing the observed property to
its fundamental bound informs us about the dynamical
regime the system is in. For example, if viscosity or ther-
mal diffusivity are close to its lower bound νmin (αmin),
we are able to conclude how particle move, namely that
they are close to the dynamical crossover between the
liquidlike and gaslike motion. This contains quite a lot
of information which is not at all easy to ascertain on the
basis of experiments or even modelling, and yet we are
able to make this assertion on the basis of one measured
number only: νmin or αmin.

The value of bounds in terms of fundamental physical
constants also provide a consistency check for a theory
because it anchors the limiting values predicted by the
theory. It also serves as a useful guide for a future the-
ory, as illustrated by the discussion of quantum liquids
and microscopic theory of liquid He which is yet to be
developed.

Knowing the bounds from fundamental constants is
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also useful in systems where high-pressure and high-
temperature properties have not been measured yet due
to high melting points, such as molten salts or liquid
metals.

From the practical standpoint, the fundamental
bounds are useful in a number of ways. For example,
they inform us that we should not spend an effort to de-
sign a lubricating fluid with viscosity significantly below
the lower viscosity bound because this would not be al-
lowed by the fundamental constants. On the other hand,
if the measured values of viscosity or thermal conductiv-
ity are well above the bound, then there is a room for
improvement that can be pursued.

In addition to setting the bounds, fundamental con-
stants explain the observed characteristic values of sev-
eral important properties of condensed matter in ways
not anticipated before. Recall the calculated average
value of the speed of sound in solids of about 5 km/s. By
relating this value to fundamental constants, we can un-
derstand why it is 5, rather than, for example, 50 or 500
km/s. Similarly, we can understand why viscosity, ther-
mal conductivity and elastic properties of many systems
of interest take the values they do. This understanding
is similarly provided by fundamental physical constants.
One of the main points of this review was to show how

this happens.

The observation that fundamental physical constants
largely govern water viscosity raises more general and far-
reaching questions related to our place in the Universe:
what values of these constants make water-based life pos-
sible? What happens to liquid-based life forms if funda-
mental physical constants change, and how finely-tuned
do these constants need to be to remain bio-friendly?
This adds another, biochemical, layer to the discussion
of the anthropic principle [1–3, 6, 8–10] and invites an
inter-disciplinary research.

Some of the fundamental bounds we discussed in this
review were known, whereas others are fairly new and un-
expected. There seems to have been no sustained work in
this area, and this review may encourage further thinking
and discovery of new fundamental bounds.
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FIG. 1: Experimental dynamic viscosity η (a) and experimen-
tal kinematic viscosity ν (b) of noble, molecular and network
liquids [61] showing minima. η for H2, H2O and CH4 are
shown for pressure P = 50 MPa, 100 MPa and 20 MPa, re-
spectively. η for He, Ne, Ar and N2 are shown at two pressures
each: 20 and 100 MPa for He, 50 and 300 MPa for Ne, 20 and
100 MPa for Ar and 10 and 500 MPa for N2. The minimum
at higher pressure is above the minimum at lower pressure
for each fluid. From Ref. [62]. Copyright: the Authors, some
rights reserved; exclusive licensee AAAS. Distributed under a
Creative Commons Attribution NonCommercial License 4.0
(CC BY-NC).
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FIG. 3: νm calculated from experimental kinematic viscosity
[61] for H2 (a), He (b) and H2O (c) below and above the criti-
cal pressure Pc. Pc=1.3 MPa for H2, 0.23 MPa for He and 22
MPa for H2O. The smallest value of νm, ι, is consistent the
lower bound (16). From Ref. [62]. Copyright: the Authors,
some rights reserved; exclusive licensee AAAS. Distributed
under a Creative Commons Attribution NonCommercial Li-
cense 4.0 (CC BY-NC).
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diamonds correspond to viscosity of He II at atmospheric pres-
sure from Ref. [57].
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liquids [61] showing minima. κ and α for Kr, O2, H2O, CH4,
C2H6 and CO are shown for pressure P = 30 MPa, 30 MPa,
70 MPa, 20 MPa, 20 MPa and 20 MPa, respectively. η for
Ar, Ne, He, N2, H2 and CO2 are shown at two pressures each:
20 and 100 MPa for Ar, 50 and 300 MPa for Ne, 20 and 100
MPa for He, 10 MPa and 500 MPa for N2, 50 MPa and 100
MPa for H2, and 30 and 90 MPa for CO2. The minimum at
higher pressure is above the minimum at lower pressure for
each fluid. Reproduced from Ref. [117] with permission from
the American Physical Society.
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FIG. 7: Experimental longitudinal speed of sound [149–151]
in 36 elemental solids (blue bullets) as a function of atomic
mass. The solid line is the plot of Eq. (48): v = vu

A
1
2

. The red

diamond shows the upper bound of the speed of sound (47).
The dashed line is the fit to the experimental data points. In
order of increasing mass, the solids are: Li, Be, B, C, Na,
Mg, Al, Si, S, K, Ti, Mn, Fe, Ni, Co, Cu, Zn, Ge, Y, Nb,
Mo, Pd, Ag, Cd, In, Sn, Sb, Ta, W, Pt, Au, Tl, Pb, Bi,
Th and U. From Ref. [147]. Copyright: the Authors, some
rights reserved; exclusive licensee AAAS. Distributed under a
Creative Commons Attribution NonCommercial License 4.0
(CC BY-NC).
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FIG. 8: Experimental longitudinal speed of sound [149–151]
in 124 solids (circles) and 9 liquids [149] (diamonds) at am-
bient conditions as a function of the system number. Solids
are: Al, Be, Brass, Cu, Duralumin, Au, Fe, Pb, Mg, Dia-
mond, Ni, Pt, Ag, Steel, Sn, Ti, W, Zn, Fused silica, Pyrex
glass, Lucite, Polyethylene, Polyesterene, WC, B, Mo, NaCl,
RbCl, RbI, Tl, Li, Na, Si, S, K, Mn, Co, Ge, Y, Nb, Mo,
Pd, Cd, In, Sb, Ta, Bi, Th, U, LiF, LiCl, BeO, NH4H2PO4,
NH4Cl, NH4Br, NaNO3, NaClO3, NaF, NaBr, NaBrO3, NaI,
Mg2SiO4, α-Al2O8, AlPO4, AlSb, KH2PO4, KAl(SO4)2, KCl,
KBr, KI, CaBaTiO3, CaF2, ZnO, α-ZnS, GaAs, GaSb, RbF,
RbBr, Sr(NO3)2, SrSO4, SrTiO3, AgCl, AgBr, CdS, InSb,
CsCl, CsBr, CsI, CsF, Ba(NO3)2, BaF2, BaSO4, BaTiO3,
TlCl, Pb(NO3)2, PbS, Apatite, Aragonite, Barite, Beryl, Bi-
otite, Galena, Hematite, Garnet, Diopside, Calcite, Cancri-
nite, Alpha-quartz, Corundum, Labradorite, Magnetite, Mi-
crocline, Muscovite, Nepheline, Pyrite, Rutile, Staurolite,
Tourmaline, Phlogopite, Chromite, Celestine, Zircon, Spinel
and Aegirite. Liquids are: Mercury, Water, Acetone, Ethanol,
Ethylene, Benzene, Nitrobenzene, Butane and Glycerol. See
Refs. [149–151] for system specifications, including density
and symmetry groups. From Ref. [147]. Copyright: the
Authors, some rights reserved; exclusive licensee AAAS. Dis-
tributed under a Creative Commons Attribution NonCom-
mercial License 4.0 (CC BY-NC).


