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ABSTRACT 
 

Past climate change and recent human activity have had major impacts on the 

distribution of habitats as well as the community and population genetic structure of the 

species occupying these habitats. In temperate zones, glaciation forced many taxa into 

southern refugia. In contrast, little is understood about the extent to which tropical taxa 

and habitats were affected by colder periods. In Southeast Asia, some argue that the 

tropical forest was replaced by savannah at the Last Glacial Maximum (LGM), whereas 

others suggest that the forest persisted. Studying population genetic and community 

structure of forest-dependent species in this region may shed light on which of these 

scenarios is most likely, as well as provide crucial information on the effects of recent 

habitat loss. To address these issues, I studied the genetic and community structure of 

forest-dependent insectivorous bat species in Peninsular Malaysia. Data collected at 22 

sites indicated that species richness declined with latitude, consistent with post-glacial 

expansion of forest. To test this further, I undertook mitochondrial DNA sequencing of 

a widespread species, Rhinolophus affinis, and found high haplotype diversity, little 

phylogeographic structure and no demographic growth. These all suggest a long 

population history in the region with no post-LGM range expansion. Subsequent 

microsatellite analyses of R. affinis and the congeneric R. lepidus showed that genetic 

distance followed an isolation-by-distance model, and that allelic diversity was 

unexpectedly higher in the northern populations. Taken together, my results from the 

community and genetic analyses disagree with each other. These conflicts are perhaps 

best explained if observed clines in species richness pre-date the LGM. I conclude that 

there is little evidence of forest contraction in the LGM. The fact that the highest species 

diversity was detected in the south, which is experiencing the most forest loss due to 

human activity, has important conservation consequences. 
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Chapter 1: General Introduction 

 

Climatic oscillations in shaping biodiversity on Earth 

 

Climate change, either due to the long-term natural climatic oscillations or to human 

activity, can lead to local and regional changes in habitat structure and availability 

(Rosenzweig et al. 2008). The species occupying these habitats have been observed to 

show associated phenological, genetic, behavioural and distributional responses to 

climate change (Parmesan, 2006).  Such responses have been implicated in the previous 

‘big five’ mass extinctions, which resulted in severe global species turnover and altered 

global biodiversity levels (Hewitt, 2000; 2004).   

 

In terms of the impact that natural climate change linked to past glacial cycles 

has had on populations, the most recent episode, known as the Last Glacial Maximum 

(LGM), is particularly well-understood. Recent dating studies, based on 14C, 10Be, and 
3He, have traced the maximum extent of ice-sheet coverage to 26.5-19 thousand years 

before present (Ky BP), and suggest de-glaciation of the northern hemisphere occurred 

around 19-20 Ky BP and that of the southern hemisphere around 14-15 Ky BP (Clark et 

al., 2009). Since the end of this glaciation and the beginning of the current interglacial 

period, global land cover has changed considerably with climatic warming (Adams and 

Faure, 1997). There has been an increase in sea level, with the present level being up to 

120m higher compared with that of the LGM, when lower coastal areas were exposed 

and more land was available for terrestrial species (Yokoyama et al., 2000; Lambeck 

and Chappell, 2001).  

  

Overall, glacial periods, including the LGM, led to the southern constriction of 

warmer and humid systems, whereas during warmer periods there have been polar 

constrictions of cold systems. The extent to which species will be impacted by 

environmental change will reflect their ecological flexibility (Laidre et al., 2008). While 

some species might remain in their original habitat, others may fail to adapt, or tolerate, 

new conditions and will often undergo range shifts to places with more suitable climatic 

conditions. In worst case scenarios, populations or species can become extinct (Davis et 

al., 2005). Species that were already regionally constricted, especially in colder regions 
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such as the poles and mountains, face especially severe stresses and appear to be the 

first groups to become extinct (Stirling et al., 1999; Wilson et al., 2005). 

 

Although there is much scientific debate regarding the initial triggers and 

mechanisms causing climate change (Williams et al., 1998; Rind, 2002; de la Fuente 

Marcos and de la Fuente Marcos, 2004; Donnadieu et al., 2004), recent advancements in 

technology have revealed that, for at least the last 2 gigayears (Gyr), the Earth has 

experienced continued fluctuations of temperature, causing ice ages and interglacial 

periods (de la Fuente Marcos and de la Fuente Marcos, 2004).  The theory behind these 

oscillations is still debated, however, several hypotheses have been proposed, including 

the eccentricity of the Earth’s orbital parameters (Hays et al., 1976; Bintanja and van de 

Wal, 2008), variations in solar activity (Marsh and Svensmark, 2003), natural variation 

on the Earth’s surface (Hoffman and Schrag, 2002; Donnadieu et al., 2004) and 

amplification of the orbit cycle that triggers the glacial cycles by positive feedback from 

carbon dioxide and temperature (Hogg, 2008). The interrelated nature of cycles of water 

and atmospheric gases, and conditions for sustaining life, mean that climatic 

fluctuations are of concern to researchers from various fields, ranging from astronomy 

and geology to biology. Indeed interdisciplinary approaches are needed to trace how 

past climate fluctuations affected the conditions on Earth, and in turn their impact on 

biota. Decades of investigation have identified five major mass extinctions in the history 

of the planet that have been linked to changes in climatic conditions, which occurred 

around 439 million years ago (Ma) (boundary of Ordovician-Silurian period), 364 Ma 

(Late Devonian period), 251 Ma (Permian-Triassic period, boundary of Paleozoic and 

Mesozoic era), 199-214 Ma (End Triassic) and 65 Ma (Cretaceous-Paleogene period, 

Mesozoic and Cenozoic era) (Erwin, 2001). The last three extinction events were 

followed by a massive turnover of global biodiversity (Alroy, 2008).   

 

Identification of the exact causes of these mass extinctions is still in progress. 

However findings to date have been able to link these mass extinctions to various 

natural events, including direct and/or indirect impacts of volcanic activity (Erwin, 

2001; Wignall et al., 2009), as well as other broad scale trends such as global cooling or 

changes in sea temperature (Jablonski, 1995; Erwin, 2001; Wake and Vredenburg, 

2008). The first mass extinction is believed to have been triggered by great fluctuations 

in sea level due to a period of extensive glaciation followed by dramatic global 

warming.  While the more recent mass extinctions have been attributed to volcanism or 
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meteor impacts, leading to drastic climatic change and changes in patterns of climatic 

oscillations (Jablonski, 1995; Erwin, 2001).  

 

Nowadays, many scientists believe we are experiencing the sixth mass 

extinction, which once again is caused by changes in climate, but on this occasion, these 

changes are being accelerated by human activity (Martin, 2005; Jackson, 2008). 

Climatic oscillations normally refer to the fluctuation of temperature on Earth, which 

affects the humidity, the extent of ice coverage, and sea levels. In addition to 

experimental evidence demonstrating the impacts of temperature oscillations on 

individual species, there are also empirical data including shifts in the composition of 

fungus communities resulting from changing daily temperature cycles (Dang et al., 

2009). Longer term trends can also be seen; for example, in changing copepod 

biodiversity in the ocean (Hooff and Peterson, 2006). Environmental heterogeneity 

resulting from change can encompass both spatial variation (e.g. local climates and 

biomes) and temporal variation (including the history of disturbance) (Pearson et al., 

1996). Long time frames are typically needed to observe biotic changes; although 

distribution range shifts in invasive mussels along coastal areas of California were 

evident over the course of just one decade (Thomas et al., 2009). We can also learn 

about the likely ability of a species to face future extreme habitat changes by tracing 

how these species respond to present variation, as well as past climatic fluctuations, for 

example, as demonstrated for amphibians (Wake and Vredenburg, 2008). 

 

As mentioned above, it is perhaps unsurprising that different species will vary in 

their sensitivity and response to climate and other habitat changes. Such differences are 

often reflected by contrasting present and historical broad scale distributions. Historical 

distribution patterns of species have been inferred from the remains of plant micro- and 

macro-fossils (Bos et al., 2007; Engels et al., 2008; Pini et al., 2009), from insect 

remains (Engels et al., 2008) and also indirectly from genetic methods (Hewitt, 1999, 

Schmitt and Seitz, 2001; Bigg et al., 2008; Davies et al., 2009). Increasingly, former 

distributions have also been reconstructed from palaeo-climate modeling (Adams and 

Faure, 1997; Cannon et al., 2009). Recently it was suggested that the impacts of past 

climatic oscillations on global geographical ranges of mammal species were mediated 

by selective local extinctions of small-range species during glaciations, and the re-

colonization of good dispersers after glacial maxima (Davies et al., 2009). Indeed, in 

this study it was found that mammal species that faced more extreme temperature 
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fluctuations in the Quaternary are characterised by larger geographic ranges with wide 

habitat breadths (Davies et al., 2009). Yet today’s even higher rate of climate change is 

likely to shape biodiversity more rapidly than during natural cycles. By applying 

dynamic bio-climate envelope models on current global distributions of marine fishes 

and invertebrates, it has been suggested that the marine biodiversity will undergo a 

species turnover of around 60% in the next 50 years (Cheung et al., 2009).   

 

 

Climate, geology and biogeography of Southeast Asia 

 

Southeast Asia is of great scientific interest, in part due to its complex geological and 

climatic history. The region is mainly encompassed by the so-called Sunda plates (Bird, 

2003), which have been uniquely shaped by the active margins of seismicity and 

volcanism in contrast to the relative stability of the plate interior (Ben-Avraham and 

Emery, 1973). At different times in the past, the Sunda plates have collided with several 

surrounding smaller plates, such as Sino-Burma-Thailand Block, Burma Block and 

Indochina Block, all to the north of Sundaland, as well as other land masses in the east 

and west of Sundaland (Lee and Lawver, 1995; Hall, 1998; 2002). These complicated 

geological processes have undoubtedly played an important role in contributing to the 

hyper-diversity of Southeast Asia (Hall, 1998; Morley, 1999). Specifically, the collision 

of the tectonic plates resulted in the diversification of four biogeographical zones: 

Sundaland, Indo-Burma, the Philippines and Wallacea (Conservation International, 

2005). Of these regions, Sundaland (the Sunda Shelf) comprises the Malay-Thai 

peninsula, Sumatra, Java and Borneo.  

 

 Located across the equatorial zone (about 20°N-10°S) (Goh, 2005), much of 

present-day Southeast Asia’s land cover is composed of tropical vegetation, and is 

considered among the oldest rainforests in the world (Olson et al., 2001; 

Wikramanayake et al., 2002). Climatic conditions show greater seasonality in the 

continental parts of Sundaland (Myanmar, Vietnam, Laos PDR, Cambodia and Thai 

mainland), whereas further south in the insular part of Southeast Asia, the conditions are 

more balanced and aseasonal (Malay-Thai peninsula, Singapore, Borneo, Indonesia and 

Philippines) (Goh, 2005). In general, throughout the year the climate in insular 

Southeast Asia is humid (high annual rainfall up to 4000mm per year) and warm (high 
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mean atmosphere temperature). Insular Southeast Asia has also been defined as a 

“maritime continent” by meteorologists (Ramage, 1968), attributable to the complexity 

of its geographic structures as well as the dynamics between oceanic and atmosphere 

circulation systems that bring high annual rainfall (Ramage, 1968; Chang et al., 2005). 

In some parts of the region, differences in temperature between continental and insular 

parts also lead to monsoonal periods (Hastenrath, 1991). 

 

The historical coverage of tropical rainforest in Southeast Asia, including at the 

time of the LGM, is a matter of debate. Studies of rock sediments also show the 

probable existence of rainforest tree species since Late Paleocene (60-54Ma) in Kayan, 

North Borneo, together with other vegetation types associated with coastal and 

freshwater tropical ecosystems (Morley, 1999). A long history of forest in the region is 

supported by a number of investigations (Sun et al., 2000; Anshari et al., 2004; Wang et 

al., 2009); however, at the time of the LGM, many authorities have argued for a drier 

climate than at present, with a more savannah-like habitat (Gathorne-Hardy et al., 2002; 

Wurster et al., 2008), or a mix of habitats in which tropical forest showed a limited 

distribution due to the lower temperatures and rainfall (Heaney, 1991; Aide and Rivera, 

1998; Meijaard, 2003; Bird et al., 2005). Two recent high profile studies illustrate these 

conflicting claims. First, Cannon et al. (2009) combined distribution modelling of forest 

trees with data on past climates to argue that the Sunda Shelf was actually covered by 

humid forest earlier than the LGM, and reached its maximum coverage during the LGM 

when the sea level was at a minimum. The authors showed that the majority of present 

lowland Peninsular Malaysia was covered by semi-green, seasonal and transitional hill 

forest, whereas lowland evergreen rainforest was constricted towards lower and coastal 

areas in Sumatra, the southern part of Peninsular Malaysia, coastal Borneo and in the 

exposed shelf in the east (Cannon et al. 2009). If correct, this finding would mean that 

the rainforest in Sundaland can be considered to be in a refugial state at the present 

time. During this period, sea level was +56 m than present day (Miller et al., 2005). 

Indeed the latest pollen data have also supported this, suggesting that at the time of the 

LGM in the region, temperatures were cooler but humidity was not significantly lower, 

and that rainforest persisted in both lowland and montane areas (Wang et al., 2009).  In 

the second study, authored by Wurster et al. (2010), stable isotopes from the 

accumulated guano of bats and birds in caves was analysed, and used to infer a 

completely different scenario. From caves in central Peninsular Malaysia, guano 

biomass from 35 Ky BP until 16 Ky BP was found to contain mostly C4, indicative of 
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the presence of open savannah, as opposed to forest that has a profile of C3. 

Consequently, the authors state that there was “a substantial forest contraction during 

the Last Glacial Period on both Peninsular Malaysia and Palawan, while rainforest was 

maintained in northern Borneo” (Wurster et al. 2010). 

 

In addition to potentially influencing the ranges of populations and species via 

direct impacts on habitat and vegetation coverage, historical climate change will also 

lead to fluctuations in sea levels that, in turn, can interrupt dispersal and gene flow. 

Unlike temperate zones, equatorial Southeast Asia was not directly affected by ice 

during past glacial periods. However, in tropical zones, changing sea levels due to the 

sequestering of water as ice in the poles had an arguably more important role in shaping 

ecological and evolutionary processes (Woodruff and Turner, 2009). Sea levels 

fluctuated widely; at their lowest level they were approximately 120 m below the 

present level, and they stayed between 30 to 40 m below present sea levels for more 

than half of the glacial cycle (Voris, 2000; Hope, 2005). It is also known that sea levels 

increased very rapidly: first, 20-22m soon after the LGM (Hearty and Kaufman, 2000) 

and then around 16m within just 300 years at around 14.6 to 14.3 Ky BP (Hanebuth et 

al., 2000). During these low sea level periods, the exposed lower area of the Sunda 

Shelf created land bridges among the islands and mainland and caused the region to be 

dissected and rejoined repeatedly. These land bridges may have enabled faunal 

exchange across the Sunda Shelf (Hewitt, 2000; Gorog et al., 2004). Therefore, sea level 

changes in Southeast Asia, particularly the Sunda Shelf, are believed to have influenced 

the dispersal processes of terrestrial species, because during times of high sea levels, the 

flooded areas then served as significant geographical barriers for dispersal, thus 

promoting divergence (Woodruff and Turner, 2009).  

 

In summary, the complicated tectonic structure, interactions among the maritime 

continent and atmosphere, and recurrent fluctuations in sea levels have all contributed to 

the formation of the region’s current distinct and high level of biodiversity (Voris, 

2000). For example, Morley (1999) pointed out three geographical events that 

facilitated the moulding process of floral diversity: first, the collision of different 

tectonic plates into the region brought along different tropical floral species into the 

region and allowed dispersal and intermixing extensively among these plates; second, 

the formation of new land masses during the tectonic plate collision with the high sea 

levels during interglacial cycles acted as an efficient barrier for terrestrial species which 
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led to an increase in the rate of formation of endemic species on islands; thirdly, the 

isolated setting of the region also permitted the survival of the primitive species since 

the early stages of rainforest formation by reducing competition (from invasion) or 

radical climate change (extreme continental climatic conditions). 

 

 

Human activity and biodiversity loss in Southeast Asia 

 

Apart from the effects of long-term gradual environmental change (e.g. glacial episodes 

and sea level fluctuations) on biodiversity, human activity has also had major impacts, 

leading to modification of the structure and function of ecosystems and the wildlife 

assemblages they support (White and Pickett, 1985). In fact such anthropogenic 

disturbance has taken a far shorter time to create a similar amount of change: within the 

past two centuries, the scale of human impacts in the region has dramatically increased, 

leading to alteration and fragmentation of the previously large and continuous tract of 

natural rainforest. Of all tropical regions, Southeast Asia is known to have the highest 

current rates of destruction in the world (Achard et al., 2002): it is predicted that 75% of 

its primary forest and 42% of its biodiversity will be lost, by the end of the century, 

putting the region in a critical status in terms of its unique endemic biota (Sodhi et al., 

2004). Plant, bird and mammal diversity have all been negatively affected by logging, 

forest fragmentation and large-scale monoculture agriculture (Sodhi et al., 2004), while 

the impacts of these activities on amphibians and reptiles are less well understood but 

are subject to ongoing studies (Sodhi et al., 2010a).  

 

Despite the impacts of biodiversity loss of the scale seen in Indo-China, this 

topic has generally been under-studied. In Thailand, there is good evidence for 

disturbance of seasonal evergreen rainforest for the past 250 years, with documented 

small populations of secondary long-lived tree species and irregular canopy size 

distributions of common tree species (Baker et al., 2005). Probably the worst scenario 

can be seen in Singapore, where massive development since the beginning of colonial 

history has resulted in large-scale forest clearance on the island, causing a total of 95% 

of forest loss (Lane et al., 2006). Recently, a comparison between disturbed forest in 

Singapore and some undisturbed forest in the southern end of Peninsular Malaysia, 

found significant changes in dung beetle species diversity, probably due to 

anthropogenic influences and, to some extent, the island effect (Lee et al., 2009). 
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Further studies on the regional biodiversity are needed to improve our understanding of 

the sustainability of the biota, and how these are affected by the joint processes of 

climate change and habitat modification (Sodhi et al., 2010a; Chazdon et al., 2009). 

Such research can also help to inform aspects of conservation management, including 

logging and plantation practices, which are necessary steps for achieving conservation 

goals for Southeast Asia’s biodiversity (Sodhi et al., 2010b). 

 

 

Habitat fragmentation, degradation and local microclimate change 

 

Current habitat change is the major conservation concern for specialist tropical species, 

whereas anthropogenic climate change is often viewed to be the principal threat to 

global biodiversity (Thomas et al., 2004). Therefore, regions such as Southeast Asia are 

considered to be particularly vulnerable because they face both types of threat. 

Moreover, the potential loss of intact rainforest in Southeast Asia is even more alarming 

in light of evidence indicating it might already be in a refugial stage, so much reduced 

from the former larger distribution at the time of the previous glacial maximum 

(Cannon et al. 2009).  

 

 As well as the net loss of forest, habitat modification in Southeast Asia has 

involved extensive fragmentation of the remaining forest. Although fragmentation is 

sometimes a natural process arising from events such as flooding or hurricanes, it is 

more commonly the result of human activity (Andren et al., 1997; Frankham et al., 

2002). Forest fragmentation occurs when continuous forest is converted into several 

smaller pieces, a process that involves a reduction in patch size and an increase in the 

distance and thus level of isolation among remaining habitat patches. Of particular 

concern is that habitat fragmentation increases exposure to habitat edges (so-called 

‘edge effects’) that may alter several aspects of the newly fragmented ecosystem, 

included the local climate (Lovejoy et al., 1986; Laurance et al., 2006). Indeed the local 

microclimate of patches is often characterised by higher temperatures and lower relative 

humidity (Dreistadt et al., 1990) and these effects are further promoted by extreme 

weather conditions such as in times of drought (Laurence et al., 2001). The nature of the 

microclimate is important in determining the position of the edge-interior boundary of a 

habitat patch, along with its vegetation composition and other local conditions (Bender 

et al., 1998). 
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 The process of fragmentation leads to the formation of new habitats among gaps 

(matrix), so leaving a mosaic landscape (Andren, 1994). The habitat characteristics of 

fragments and areas of the matrix may vary depending on their size and level of 

disturbance. Generally, areas of disturbed forest will retain more humid microclimates 

when they are surrounded by primary forest (Avendaño-Mendoza et al., 2005). Such 

habitat modification can affect species composition and diversity across the landscape. 

In fact, fragmentation can even lead to higher species diversity due to the increased 

numbers of habitat types in the landscape. For example, Laidlaw (2000) reported higher 

mammal species richness or abundance in disturbed forests than protected ones. 

Nonetheless, it is also clear that excessive disturbance and habitat heterogeneity can 

cause the loss of species that are sensitive to environmental change (Pearson et al., 

1996). In fact, forests can take many years to recover from disturbance, with one study 

showing that tree canopies were affected by logging for over 40 years after it had been 

stopped (Okuda et al., 2003).  

 

In Southeast Asia, a major contribution to fragmentation of forest has been the 

rapid expansion of agricultural land for commercial production of oil palm and other 

cash crops (Fitzherbert et al., 2008). This type of land conversion contrasts with 

smaller-scale forest clearance that occurs in more traditional agricultural practices such 

as shifting cultivation, and when unsustainable can also result in the formation of 

savannah and secondary forest (Bogaert et al., 2008). Oil palm monocultures are 

structurally less complex and support fewer species than tropical forests (Fitzherbert et 

al., 2008) and as such, represent an inhospitable matrix to forest-interior species. Where 

matrix habitats are barriers to dispersal, over time fragmentation can lead to reduced 

gene flow across the landscape and, this in turn is associated with the loss of genetic 

diversity and inbreeding depression, which may reduce the capacity of populations to 

adapt to future change (Frankham et al., 2002). Such consequences are important 

considerations when planning strategies and policies for wildlife management. 
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Insectivorous bat diversity in Peninsular Malaysia 

 

Within Southeast Asia, Sundaland is a biodiversity hotspot and this high diversity is 

well reflected in the region’s bat fauna, which comprises over 330 reported species 

(Simmons, 2005; Kingston et al., 2006; Kingston, 2010). Bat species in the region are 

currently classified into nine families, eight of which represent insectivorous bats 

(Francis, 2008). In Peninsular Malaysia, the insectivorous bat fauna is among the richest 

and highest density in the world (Kingston et al., 2003; Yoshiyuki and Lim, 2005; 

Kingston et al., 2006; Francis et al., 2007). Many of these species live in the highly 

cluttered environment of the tropical forest interior, whereas others are adapted to forest 

gaps, vegetation edges and the open spaces surrounding forests.  

 

A high proportion of the insectivorous bats present in Peninsular Malaysia 

belong to the Old World families of Rhinolophidae and Hipposideridae, and to two Old 

World subfamilies of the family Vespertilionidae: the Murininae and Kerivoulinae. The 

bats from these groups are characterized by ecomorphological traits that result in slow 

flight in highly cluttered environments, and sensory signals for hunting in clutter 

(Kingston et al., 2003). They are thus highly adapted to life in the forest interior, as 

supported by distribution data from Southeast Asia (Kingston et al., 2006; Francis, 

2008; SAMD, 2009). These insectivorous species play a major role as nocturnal insect 

predators; every night, one insectivorous bat is estimated to consume a minimum of half 

their body-weight in insects, while a large colony may consume up to 2,000 tonnes of 

insects per night (Kingston et al., 2006).   

 

Like most of the mammal species in the region, insectivorous bats are facing 

habitat threats. The negative impact of deforestation on Sundaland’s bats has been 

demonstrated by the loss of bat fauna in Singapore due to rapid development over the 

past 50 years. Here, massive deforestation has been linked to the loss of 38% of the 

island’s insectivorous bat diversity (Lane et al., 2006), as well as 34-87% of butterflies 

and vertebrates (Brook et al., 2003). In spite of the recent rediscovery in 2009 of 

Hipposideros bicolor and a new record of Kerivoula hardwickii (Leong and Lim, 2009), 

the situation for Singapore’s bats is a long-term concern. In central Sumatra comparison 

of bat assemblages across habitat types revealed very few species in rubber and oil palm 

plantations compared to forests (Danielsen and Heegard, 1995). Fukuda et al. (2009) 

also found that, with the exception of three Old World fruit bat species that use orchards 
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as a primary food source, many bat species seldom feed in agricultural lands. Other 

research on the bat assemblages in Pahang state in Peninsular Malaysia reported 

declines in insectivorous bat abundance and diversity in small forest fragments 

(Struebig et al. 2008). 

 

Apart from a few notable exceptions, such as those described above, there have 

been very few investigations into the impacts of environmental change on bats of the 

Asian and African Old World tropics. This is unfortunate given that Sundaland and, in 

particular, Peninsular Malaysia, is both a centre of Old World bat diversity and has also 

experienced dramatic habitat modification due to historical climate change, and more 

recently due to human activity. In recent years, records of bats and other mammals from 

this region have been collated into a Southeast Asia Mammals Databank (SAMD), 

which together with field guides (Medway, 1982; Kingston et al., 2006; Francis, 2008) 

and taxonomic revisions (Csorba et al., 2003; Simmons, 2005) has aided research (see 

SAMD, 2009). However, conservation initiatives would still benefit from longer-term 

monitoring studies of mammals, of the sort that are commonly practiced in Europe and 

America.  In particular, monitoring would help to determine the differential responses of 

Old World bat species to habitat change.  

 

With such little work conducted in Southeast Asia, some of our understanding of 

the potential vulnerability of tropical forest bats to habitat loss and fragmentation has 

come from bat work in the better-studied Neotropical bat assemblages (Cosson et al., 

1999; Law et al., 1999; Estrada and Coates-Estrada, 2002; Gorresen and Willig, 2004).  

However, it is important to note that there are fundamental differences in the sensory 

and morphological characters of Neotropical versus Palaeotropical forest bats; the 

former are often frugivorous and are better adapted for flying over longer distances. In 

contrast, the Old World bats use either flutter detection or whispering echolocation calls 

to find insect prey in clutter, and are poorly adapted to disperse over open spaces. 

Therefore, there are good reasons to suspect bats from Southeast Asian forests will be 

especially susceptible to the unparalleled rate of forest fragmentation.  
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Project aims and objectives 

 

This project aimed to characterize the community and population genetic structure of 

forest-interior bat species in Peninsular Malaysia, in order to determine the impact of 

both past climatic fluctuations and on-going human-induced habitat change on bat 

populations. It was anticipated that the results would provide indirect evidence on 

whether the forest of Southeast Asia has a long history, or has expanded in area since 

the Last Glacial Maximum (LGM). In addition, I aimed to assess whether local forest 

conservation management will safeguard current levels of biodiversity in Peninsular 

Malaysia in the face of future threats. The main objectives were as follows: 

 

i. Characterize the broad scale patterns of species diversity and assemblage 

structure in forest-interior bats across Peninsular Malaysia. Determine whether 

site-wise assemblage structure relates to geographical distance, and also 

whether species diversity declines with latitude, as expected if the forest has 

undergone a post-LGM expansion. 

 

ii. Reconstruct the phylogeographic and demographic history of the most 

widespread bat species, Rhinolophus affinis across Peninsular Malaysia, to 

assess whether this species has undergone recent population growth consistent 

with expansion of the forest, or whether it appears to have a long and stable 

history in the region. 

 
iii. Characterize the population genetic structure of two related forest-interior bat 

species, Rhinolophus affinis and Rhinolophus lepidus to assess the pattern and 

nature of gene flow. Also, to assess whether genetic diversity in these taxa 

declines with latitude (as would be consistent with forest expansion) and thus 

whether species and genetic diversity are correlated. 
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Chapter 2: Broad scale patterns of 

assemblage structure in insectivorous bats 

in Peninsular Malaysia 

 

Chapter summary 

 

Understanding geographical patterns of assemblage structure can provide information 

on past ranges, the impact of past habitat change, as well as the conservation 

implications of current and future habitat change. Here I undertook the most detailed 

study to date of mammalian assemblage structure in Peninsular Malaysia, focusing on 

bat species that are critically dependent on the forest interior. Tropical forest in 

Malaysia contains the highest bat diversity of anywhere in the Palaeotropics, however, 

whether or not this forest has contracted or expanded since the Last Glacial Maximum is 

debated. Bat surveys were taken across Peninsular Malaysia and supplemented with 

published data. The assemblage structure was constructed both at the level of sites (α-

diversity in terms of species richness, abundance) and at the level of dissimilarity of 

species between sites (β-diversity). Results indicated that bat assemblages were 

consistently dominated by six cave roosting species from the families Rhinolophidae 

and Hipposideridae, while another 16 captured species were classified as rare in this 

study. Species richness decreased with increasing latitude, consistent with hypothesised 

northern shift and expansion of tropical rainforest species since the Last Glacial 

Maximum. Analyses of β-diversity showed that differences between communities were 

not related to geographical distance, although there was evidence of greater differences 

in species numbers between the most distant sites. Rhinolophus affinis was the most 

dominant species across Peninsular Malaysia and variation in the abundance of this 

species among sites correlated with overall patterns of assemblage similarity. Greatest 

bat diversity was recorded in areas that are undergoing the most intensive forest loss, 

highlighting conservation priorities. 



23 
 

Introduction 

 

Biogeographical factors shaping assemblage structure  

 

Studying patterns of community or assemblage structure can help us to understand how 

past events have shaped existing levels of biodiversity, as well as allow us to predict the 

impact of environmental change on species survival in the future. Species responses to 

environmental change can be physiological, ecological and/or behavioural, and the 

capacity of species to respond may affect their adaptability and thus long-term survival 

(Lichatowich and Mobrand, 1995; Wiens and Donoghue, 2004; Hillerbrand et al., 

2008). 

 

Most rapid environmental change is typically due to non-sustainable human 

activities such as construction, agriculture, logging, mining or war (Millemium 

Ecosystem Assessment, 2005). These anthropogenic alterations cause changes in the 

landscape, often reducing the availability of natural habitats. Massive change within a 

short timeframe imposes stress on communities, potentially leading to a loss in species 

diversity due to species emigration and extinction events. Large-scale anthropogenic 

alterations can also result in changes in species dominance and evenness, which often 

occur more quickly than changes to actual species richness (Chapin et al., 2000). Indeed 

a recent review revealed that human-induced environmental changes commonly led to 

increased regional dominance and thus declines in the variation in species diversity 

among sites (beta diversity) (Hillebrand et al., 2008).   

 

Broad clearance of land for agriculture, or linear clearings formed by human 

construction, such as highways or wide logging roads, will divide large continuous 

natural habitat into smaller fragments, which may affect local biodiversity either 

positively (Ferris, 1979) or negatively (Tija, 1988; Laurance et al., 2009; Pohlman et al., 

2009). The affected ecosystem then faces scale changes in patch size, shape and 

vegetation structure. Island biogeography theory suggests that larger patches of habitat 

support higher species richness (MacArthur and Wilson, 1967). However, elements of 

landscape variation due to fragmentation, including shape and edge effects (patch shape 

index), are also important factors in determining species diversity (Barbaro et al., 2005).  

Indeed, low interior-to-edge ratios in fragments are of greater benefit to so-called edge 

species (species that primarily live near the perimeter of a landscape (sensu Forman, 
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1995)) than to interior species (species that live primarily away from the landscape 

perimeter in the interior of the landscape patch (sensu Forman, 1995)). Whether or not 

fragments will suffer long-term declines in interior species will be partly determined by 

the strength of neutralising source-sink effects, which can allow species to persist in 

unsuitable sites if there are sources of colonisers nearby (Hanski, 1999). In other cases, 

fragments might form foraging sites for assemblages of mobile species, as found in the 

case of Neotropical bats assemblages in Panama (Estrada-Villegas et al., 2010).   

 

In addition to environmental change caused by human activities, assemblage 

structure will also be affected by natural events, particularly over longer time periods. It 

is proposed that climatic fluctuations have been especially important in shaping 

biodiversity (Erwin, 2009). Efforts to reconstruct past and present climates, habitats and 

species distributions have been intensively undertaken in recent years (Walther, 2000; 

Walther et al., 2002; Kostopoulous et al., 2007). Several hypotheses have also been 

formed to explain global biodiversity patterns, including the latitudinal gradient of 

species richness (Willig et al., 2003) and metabolic theory of ecology (Allen et al., 

2002). Of these, latitudinal effects are probably the longest recognised correlates of 

species richness (Willig et al., 2003).   

 

Observations of latitudinal gradients in biodiversity levels have been noted in 

numerous studies; in fact, even Darwin and Wallace suggested that more species were 

found at warm and humid equatorial zones than at the poles (Willig et al., 2003). In the 

1960s, the recognition of this natural global vegetation-climatic-latitudinal pattern led to 

the proposal of the Holdridge life zones, which define the distribution of natural 

vegetation or habitat based on three climatic factors: precipitation, heat and humidity 

(Holdridge, 1967). This climatic latitudinal gradient, along with dispersal limits and/or 

niche width differences among taxa, are all expected to contribute to decay in 

community similarity with distance on a north-south axis (Nekola and White, 1999). 

Others such as Monjeau et al. (2009) have attributed increased diversity in the tropics to 

either an energetic gradient (i.e. amount of energy per surface unit), or to a simple 

artifact of the greater land area at lower latitudes compared to at temperate or polar 

regions (Rosenzwig, 1992). Regardless of these explanations, recorded patterns of 

diversity do not always follow predictions (Clarke and Lidgard, 2000; Krystufek and 

Griffiths, 2002; Lambshead et al., 2002; Carranza et al., 2009). 
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 An additional important explanatory factor for greater diversity at the topics is 

long-term climatic stability (stability hypothesis). Unlike temperate regions, the wet 

lowland tropics did not experience glacial or tundra conditions during glacial maxima 

(Cannon et al., 2009), and have therefore had longer to accumulate species and genetic 

diversity (although as mentioned the extent to which forest persisted is open to 

question). In contrast, in temperate zones some species have never colonized or re-

colonized following de-glaciation so depressing diversity at these latitudes and 

contributing to the global gradient (Yalden, 1982; Hewitt, 1999; Sommer and Zachos, 

2009). Regardless of the exact climatic conditions in tropical areas during the 

Pleistocene, it is clear that sea level changes have had lasting impacts on biodiversity. 

For example, a study of mammal distribution data for the Malay-Thai Peninsula showed 

that apart from the expected latitudinal gradient in species richness, there was also a 

species-area relationship (Woodruff and Turner, 2009). In this study, distribution range 

limits indicated that more mammal species (including bats) occur at the wider parts of 

the peninsula where land surface area is greater: at 5°N (north Peninsular Malaysia) and 

14°N (northernmost peninsula in Thailand that joins with Asia mainland). These 

findings suggested that current mammal distribution patterns are shaped by the historic 

drastic and repeated sea level fluctuations (see Chapter 1). Major sea level rises of 120m 

after the Last Glacial Maximum (LGM) caused a shrinking of approximately half the 

area of the Malay-Thai Peninsula since the LGM, and might have led to local 

extinctions in these narrower areas.  

 

 

Species diversity and assemblage structure 

 

Biodiversity comprises three hierarchical components: genetic diversity, species 

diversity and ecosystem level diversity (World Climate Monitoring Centre, 1992; 

Gaston and Spicer, 1998).  Studies of species diversity have included analyses of local 

species richness (the number of species in a community (Dyke, 2008), abundance (total 

individuals of a species in a defined region) (Krishnamurthy, 2003) and evenness 

(equitability of different species existing in a defined region, relative to the species 

abundance of the region) (Krishnamurthy, 2003) and, finally, assemblage and 

community structure analysis.  With extensive research on this topic, confusion has 

arisen regarding some of the community ecology terms such as community, assemblage 

and ensemble. These terms have been reviewed and redefined by Fauth et al. (1996) and 
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also summarised by Magurran (2006). According to these authors, a community refers to 

all the taxa that occur in the same place at the same time regardless of phylogeny or 

resource use. An assemblage is part of the community in which phylogeny is restricted, 

and an ensemble is a sub-component of an assemblage that includes species with similar 

resource use. 

 

Analyses of species diversity consider both species richness and abundance in an 

assemblage or community. Species abundance measures determine the importance of 

particular species in assemblages whereas species richness treats all species equally 

regardless of abundance (Magurran, 2006). It has been argued that communities with 

greater species evenness (i.e. low dominance) are better at responding to environmental 

constraints (Norberg et al., 2001), and allow greater stability of richness across temporal 

fluctuations (Doak et al., 1998). However, the effects of species evenness in ecosystems 

have been overlooked compared to those of species richness (Hillerbrand et al., 2008), 

possibly partially reflecting the greater effort needed to estimate evenness. Also, 

estimating species richness is considered important for understanding the impacts of 

past, present and future changes in habitat availability. Obtaining repeated measures of 

biodiversity over time can thus be useful in tracing environmental events or factors of 

ecological or conservation importance (Green et al., 2009). 

 

In addition to quantifying diversity at a site or within an area (termed ‘alpha 

diversity’), ecologists are also interested in differences in diversity between areas 

(termed ‘beta diversity’) and the total diversity in a region (‘gamma diversity’) (Lande, 

1996; Magurran, 2006). Beta diversity can provide information on the dynamics of 

assemblage turnover and structure across sites (Whittaker, 1960). Variation in 

assemblage structure across space and time in natural conditions can in turn improve 

our understanding of the consequences of habitat modification and disturbance 

(Kingston, 2009). Some have modified the beta diversity definition, to incorporate 

comparisons at different spatial scales, with proposed measures of local beta diversity, 

beta diversity and delta diversity (Willig et al., 2003). 
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Bat assemblage studies in Peninsular Malaysia 

 

Peninsular Malaysia is recognised as the centre of a hotspot of Old World bat diversity 

with more than 120 species recorded (Simmons, 2005; Kingston et al., 2006; Kingston, 

2010). The Krau Wildlife Reserve in Pahang, in the centre of the territory, has a 

reported alpha diversity of >70 species, which is greater than anywhere else in the 

Palaeotropics (Kingston et al. 2003), and is also hosts the best studied bat fauna of 

anywhere in Southeast Asia. Long-term monitoring of insectivorous bats at Krau has 

taken place at five permanent study grids in the reserve (Kingston et al., 2006). Bat 

assemblages in forest fragments surrounding the reserve have also been described by 

Struebig et al. (2008; 2011), who showed that some large forest patches hold greater bat 

species richness and abundance at standardized sample sizes than the study plots in 

Krau. Struebig and colleagues have also focused on examining the influence of 

limestone karst on local assemblage structure, and reported that two species (R. affinis 

and R. lepidus) dominate bat assemblages up to 11 km from major cave roosts (Struebig 

et al., 2009). This series of studies in and around Krau make central Pahang the most 

well studied region of Peninsular Malaysia for bats. Comparable (albeit slightly lower) 

levels of bat diversity are also known from Ulu Gombak approximately 50km away, in 

Selangor (Heller and Volleth, 1995).  

 

 Currently there are no published data on bat assemblage structure from 

elsewhere in Peninsular Malaysia. Therefore, it is not known whether forests to the 

north and south of Krau support the same levels of bat diversity, and whether there are 

clines in species richness over the peninsula. Based on expectations of latitudinal 

gradients of species diversity in other areas, and the proposed shift of humid tropics 

towards lower areas of exposed Sunda Shelf during LGM (Gathorne-Hardy et al., 2002, 

Meijaard, 2003; Cannon et al., 2009; Wurster et al. 2010) (see Chapter 1), assemblage 

structure might be expected to vary across the peninsula, with higher species richness 

towards refugial areas towards the equator. Given the importance of the Malaysian 

peninsula for regional bat diversity, gaining a greater understanding of patterns of 

diversity will also be important for developing effective conservation priorities in this 

country. 
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Study objectives  

 

The objectives for this chapter were as follows: 

 

i. To undertake surveys of bats across Peninsular Malaysia in order to yield 

richness and abundance data as well as collect samples for genetic analyses 

(Chapters 3 and 4). 

 

ii To describe patterns of insectivorous bat assemblage structure and diversity in 

the forests of Peninsular Malaysia, and determine whether there is any clinal 

pattern of species richness as expected if forests have expanded, or whether 

forest specialist species are found evenly across the region. 

 

iii.  To identify the main species that shape these patterns, including characterisation 

of rare and common species. 
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Methods and Materials 

 

Characterisation and determination of study forest sites 

 

Using maps of forest cover in 1997 supplied by the Department of Agriculture 

Peninsular Malaysia, I selected 22 rainforest sites distributed across Peninsular 

Malaysia for sampling of bats (Figure 2.1). 

 

 

 

Figure 2.1  

Map of Peninsular Malaysia showing sampling sites and the coverage of lowland 

tropical rainforest in 1997 as green areas (Forestry Department of Peninsular 

Malaysia, 1997). Sites for which tissue samples were obtained from third-parties but 

for which no capture records were available are shown as circles. Sites for which bat 

assemblage data were collected are shown as diamonds and sites for which bat 

assemblage data were not analysed due to either low capture rates or non-standard 

trapping methods are shown as squares.  
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 All sites were in continuous forest or large fragments of >1000 ha and were 

categorised as lowland evergreen, Dipterocarp, tall forest (Adams and Faure, 1997). 

Sites were located at lower than 300m above sea level, which is the reported maximum 

elevational extent for the local lowland Dipterocarp evergreen rainforest (Vincent and 

Yusuf Hadi, 1993). All sites had been logged once within the last 30 years, but were 

now either fully protected for recreation and tourism, or managed for logging or mining 

(Table 2.1). The local landscape varied for each site due to geographical factors and also 

the type of human activities in the area, so for assemblage analyses forests were selected 

if they were of sufficient area and quality to be comparable with one another. A cut-off 

of 1000 ha was used because previous work showed that bat assemblages in forests of 

this size are similar in structure to those in undisturbed forest (Struebig et al., 2008). 

The potential influences of contemporary forest fragmentation on bat assemblage 

structure were therefore minimized for the final set of sites analysed, meaning that 

patterns in assemblage structure detected could be attributed to geographical and 

historical influences. 

 

 Site area was characterised using ArcView version 3.2 and the geographical 

distance between selected sites was calculated using GenAlEx version 6.0 (Peakall and 

Smouse, 2006) based on coordinates recorded by a Garmin V GPS in decimal degrees.   

 

 

Bat capture and species identification 

 

Field work was undertaken between 2007 and 2009. In order to avoid monsoonal 

seasons or other wet weather that can bias captures and thus affect species composition 

and sample sizes (see Kingston, 2003; Zortéa and Alho, 2008), I only captured bats 

between March and September, which is the drier season. Target species were 

insectivorous bats that forage or roost in cluttered forest under storey. Following 

Kingston (2006) and Francis (2008), bats were categorised into three main ensembles 

based on the level of vegetation clutter in their foraging environment: species that 

forage in the cluttered forest interior; those that forage around forest edges or gaps 

between cluttered areas; and bats that forage in open spaces. Four-bank harp traps 

(Figure 2.2) were used to capture bats. This trapping method has proven effective for 

capturing Old World forest bat species compared to mist nets which are widely applied 

in bat surveys in the New World (Francis, 1989). However, mist nets and hand nets 
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were also used on certain occasions where harp traps were not practical, mainly to 

obtain tissue samples for genetic analyses (Chapters 3 and 4). Individuals captured by 

mist nets or hand nets were not included in these analyses due to the different capturing 

method.  

 

  

 

 

 

 

 

 

 

Four sets 
(banks) of 

strings 

Collecting bag 
for bats 

Figure 2.2 A four-bank harp trap set across a stream for this study. 
Parallel vertical fishing line is undetected by the bats, which fall 
and roost in the cloth bag beneath. 
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All four-bank harp traps were set across old logging skids, hunting trails, or 

streams, all of which are potential foraging routes for bats. The number of traps set 

depended on the number of available trapping positions, geographical and weather 

conditions and accessibility of the forest site. Between two to eight traps were set per 

trapping night, which were set between 1400 and 1800 and checked twice, at 2200 and 

at 0700. During poor weather conditions (i.e. heavy rain) or when forest access was 

considered dangerous, the traps were – where possible - taken down before dark, or 

were otherwise left up but only checked the following morning. The sampling period for 

each site was 3-14 days. A minimum of seven trapping days was conducted for each 

site. 

 

 Individual bats were identified immediately using the key by Kingston et al. 

(2006) and Francis (2008). External measurements (e.g. length of forearm, tibia and tail, 

as well as body mass) were taken and then the bats were released near to the capture 

points within 12 hours of processing. On occasions where identification was uncertain, 

detailed remarks were recorded and photographs were taken for future reference.    
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Table 2.1 Details of 26 sampling sites, comprising 22 visited in this study and 4 surveyed by Struebig 
(2008). In total 15 were used for community structure analysis. Details given are site location, land use of 
surrounding areas, management regime of each site, and protection status. Observed total capture species 
(S), total capture individuals (N) and total harp trap nights (HTN) are reported. 

Site 

Code Surveyed site 

Surrounding 

land usea 
Major human 

activityb 
Protected  

Statusc 
Sd Ne 

 

(HTN) 

JR1^ Lenggor 
103.586°E, 2.186°N O,F L M 12 99 41 

JR2 Gunung Panti, Johor 
103.914°E, 1.869°N O,F R,L M 20 481 51 

JR3 Labis Forest Reserve, Johor 
103.159°E, 2.346°N F,O,V R M 19 528 7 

KH1 Bukit Hijau, Kedah 
100.773°E, 5.501°N O,R,V R M 15 162 6 

KH2^ Wang Hill 
100.484°E, 6.319°N V,G R M 14 68 32 

KH3 Ulu Muda, Kedah 
100.963°E, 6.107°N F,D R F 7 217 3 

KT1^ Lojing Highland 
101.486°E, 4.674°N V,F,G R,A M 14 79 14 

KT2^ Temangan Hill 
102.168°E, 5.695°N C,G,V N F 18 82 45 

KT3 Gunung Stong, Kelantan 
101.977°E, 5.340°N O,R,F,V R,L M 15 123 8 

MK4^ Senggeh Hill 
102.383°E, 2.383°N G,V,O N M 11 66 N/A 

MK5^ Batang Melaka 
102.417°E, 2.467°N G,V,O N M 5 6 N/A 

NS1 Gunung Angsi, N. Sembilan 
102.078°E, 2.705°N O,R,F,V N M 16 171 N/A 

PH1 Bukit Ibam, Pahang 
102.901°E, 3.223°N O,C L,M M 19 195 24 

PH2 Gunung Aais, Pahang 
102.681°E, 4.413°N F L M 21 382 21 

PH3^ Beserah 
103.357°E, 3.861°N G N,R M 11 82 10 

PH4^ Balok 
103.362°E, 4.127°N C,G L M 5 6 4 

PH5^ Chalas 
103.033°E, 3.917°N O R M 8 460 

Hand 
net 

PH6 Forest Kenong 
102.188°E, 4.216°N F,O N,R F 17 694 15 

PK1 Kledang Saiong, Perak 
101.004°E, 4.538°N O,G R F 14 131 26 

PK2^ Pangkor Island 
100.555°E, 4.220°N G,F R F 13 375 N/A 

PK3^ Bujang Melaka 
101.176°E, 4.379°N G,V R,L M 15 94 24 

PN1 Bukit Panchor, Penang 
100.546°E, 5.151°N O,G,V R M 13 177 N/A 

F01* Kemasul 1 
102.183°E, 3.383°N A,O N/A M 15 137 28 

F02* Kemasul 2 
102.133°E, 3.433°N A,O N/A M 16 220 40 

F23* Klau Besar 
101.890°E, 3.749°N O,R N/A M 16 358 19 

F24* Jengka 
102.455°E, 3.615°N O,R N/A M 13 104 13 

a. Land-use surrounding the sampling site: A, Acacia plantation; O, oil palm plantation; R, rubber plantation; C, cleared land; F, 
forest; G, mixed gardens with villages; V, vegetable and fruit plantation; D, dam; C, cleared land. Classes follow Struebig (2008). 
b. Main human activity in the sampling site: N, low activity; R, recreational and tourism; L, logging; M, mining; A, Agriculture. 
c. Protected status based on the forestry department: F, fully protected from logging or mining, and minor tourism; M, managing for 
logging, mining and tourism.  
d. Total captured number of individuals per site. 
e. Total captured species per site 
* Sampling sites data obtained from Struebig (2008). 
^ Surveyed sites excluded from the assemblage analysis due to low sample number or non-standard capture method 
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Analytical design 

 

From the 22 sites that I surveyed, 11 sites distributed from south to north of the 

peninsula were used for detailed species assemblage analysis (Table 2.1). Sampling 

sites were excluded if they did not follow a standardised harp trapping protocol and 

yielded fewer than 100 captured forest-interior bats (Kingston et al., 2003). At some 

sites, where the number of bats captured was very high, it was necessary to release 

individuals of some common species immediately after identification without taking 

detailed measurements. This was done to prevent stress to the animals where manpower 

was limited. In these cases, numbers of individuals were recorded based on a 25-

individuals scale (e.g. 25, 50, 75, 100, 125 individuals released). For statistical analyses, 

capture data were further filtered so that only forest-interior bat species were used. The 

11 datasets were augmented with published data from four additional large forest 

fragments (Struebig, 2008) to give a total of 15 sites. 

 

 In order to identify the composition of the bat assemblages prior to analysis, a 

Fisher’s plot was constructed. The purpose of this plot is to draw attention to the large 

proportion of rare species in an assemblage (Magurran, 2006).  The cut off point for rare 

species in this study was set to describe species that represented less than 1% of total 

captured individuals of all species. Assemblage structure was investigated at the level of 

sites (α-diversity) and the dissimilarity of species between sites (β-diversity) in terms of 

species richness, abundance, diversity and similarity. 

 

 

Site species richness, diversity and species abundance 

 

The accuracy of species richness is very sensitive to sample size; as the number of 

individuals sampled increases, the higher the possibility for most of the species in a 

community to be detected (Nicholas and Robert, 2001). Due to time and resource 

constraints, sampling effort for each site was limited to a maximum of two weeks 

(Chapters 3 and 4). Consequently, the number of bats captured at each site varied (Table 

2.1). For this reason, and to minimise potential sampling biases, species richness for a 

standard sample was estimated using rarefaction. Two methods were used, the first of 

which involved rarefying the total captured individuals of each site down to the 

minimum number of individuals (104 bats) using sample-based species accumulation 
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curves with individuals recoded as samples (Colwell et al., 2004; Mao et al., 2005). For 

this procedure 1000 randomisations with replacement were used to generate 95% 

confidence intervals for the rarefaction curves. These rarefied observed richness (Sobs) 

values were produced using EstimateS version 8.2 (Colwell, 2009). However, because 

information from the more thoroughly sampled sites could potentially be lost using this 

method, I also used a second rarefaction technique to predict species richness of sites up 

to the site with the maximum number of individuals (694 bats). These predicted species 

richness values were calculated using the Shen Multinomial Model (SShen) (Shen et al., 

2003) computed in Species Prediction and Diversity Estimation (SPADE) (Chao and 

Shen, 2003) with 200 bootstrap replicates. The Shen predictor was chosen as it 

performed better than other estimators in a previous bat assemblage study based on 

assemblages in Malaysia (Kingston, 2009). 

 

In addition to species richness, rarefied species evenness was estimated at each 

site using the reciprocal Simpson index (1/D) calculated in EstimateS version 8.2 using 

1000 randomisations with replacement to generate the 95% confidence intervals. The 

Simpson index is a robust diversity index as it considers the variance of the species 

abundance distribution (Simpson, 1949; Magurran, 2006) and the reciprocal of the 

Simpson index has been shown to have a higher degree of discrimination. The Simpson 

index was designed to describe the dominance of species, and is equal to one when there 

is zero diversity, and decreases with greater diversity (Magurran, 1988). Thus larger 

values of 1/D indicate greater diversity and evenness, with the maximum equal to the 

total species in a sample. 

 

Estimated metrics (Sobs, SShen, and 1/D) were plotted against latitude and 

longitude to test for clines in assemblage structure. To determine relative contributions 

of land area, latitude and longitude on shaping spatial patterns of bat species richness 

and diversity over Peninsular Malaysia, relationships between these metrics and site-

level diversity were further investigated using generalised linear regression models in 

Systat 13 (http://www.systat.com/). Prior to running this test, I tested and confirmed that 

the data conformed to assumptions of normality for parametric tests (backward stepwise 

model: longitude: F = 0.678, P = 0.426; latitude: F = 13.540, P = 0.003; width: F = 

2.104, P = 0.173; SShen: Z = 0.885, P = 0.915). 
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Variation in the abundance of species between sites was investigated by 

calculating the proportional abundance of each species at each site (i.e. ratio of total 

captured individuals of a species in a site to the total captured individuals of the site).  

Species proportional abundances were then plotted against latitude and longitude for the 

15 most abundant species. Spearman rank correlations were used to test for association 

between latitude, longitude and population abundance.   

 

 

Assemblage structure and β-diversity 

 

To determine patterns of species turnover and assemblage similarity between sites, beta 

(β) diversity was calculated based on pairwise or multiple-site comparisons. Similarity 

indices suffer the same biases as estimates of species diversity, and so are strongly 

influenced by sample size. I therefore used the Morisita-Horn similarity index, 

calculated in SPADE, which is biased towards more common species and so less 

sensitive to the absence of rare species in under-sampled assemblages (Chao et al., 

2008). I also repeated analyses using a recently modified version of the Sørensen 

similarity index (Chao et al., 2005), calculated in EstimateS with 200 bootstrap 

replications to generate standard errors, which accounts for potentially undetected rare 

species in assemblages. These distance measures consider the abundance of species in 

assemblages as well as their presence/absence, with higher values indicating higher 

similarity between the two communities (Chao and Shen, 2009).   

 

 To test for distance-decay, pairwise assemblage similarity among sites was 

plotted against corresponding pairwise geographic distance. To test for statistical 

significance of the correlation, I used a Mantel test in GenAlEx 6.2 with 999 

permutations. This was also verified using the RELATE analysis in Primer version 5 

(Clarke and Gorley, 2006), which is a non-parametric technique that is robust to non-

linearity between the variables.  

 

 

Identifying species that contributed to patterns of assemblage structure  

 

Finally, the potential determinants of patterns of β-diversity between communities, and 

the species that contribute to these patterns, was also explored using non-metric 
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multidimensional scaling (NMDS), performed using PC-ORD version 5 (McCune and 

Mefford, 2006). For this analysis, the Sørensen dissimilarity index was used. NMDS is 

an ordination technique that attempts to reduce the difference between the rank order of 

dissimilarities and ordination distances. It is different from other ordination techniques 

in terms of design, interpretation and compatible for non-parametric assemblage data 

(McCune and Grace, 2002). NMDS also better preserves high dimensional analysis 

structure with fewer axes than principal coordinates analysis (PCoA), although both are 

types of ordination (Zuur et al., 2007). The number of axes for the ordination is in part 

determined by minimising 'stress', which is a measure of reliability of the ordination, 

and can be tested in PC-ORD by comparing the actual ordination with ordinations 

produced using Monte Carlo iterations of the original data. However, it is easier to 

interpret an ordination that has fewer axes. 

 

 In PC-ORD, a matrix of pairwise Sørensen dissimilarity coefficients was 

generated based on the abundance data of assemblages from each of the 15 sites. I then 

used the autopilot feature to determine the appropriate ordination solution for these data. 

The auto-pilot test is included in PC-ORD in order to choose the best solution for the 

dimensionality (i.e. the number of the axes) as well as test for the significance of the 

ordination solution compared with randomised data using Monte Carlo with 250 

iterations. For the final ordination chosen, species that contributed most to the variation 

in the assemblage structure were identified by correlating the species abundance with 

the ordination axis score. Correlation between axis scores and both latitude and 

longitude was also determined.  
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Results 

 

Bat capture and species identification 

 

Between 2007 and 2009, I conducted a total survey effort of 333 harp trap nights (HTN) 

across 22 sites. In total, I captured 4679 individuals (excluding recaptures), consisting 

of 48 species from seven families. These bats included Old World fruit bat species and 

open space/ forest edge insectivorous species (Table S2.1, see Appendix). To obtain 

standardised data for assemblage analyses, I used 11 sites for which at least 100 

individuals of forest-interior species were captured. These 11 sites recorded a total of 

161 HTN with 3262 captured individuals of 31 species from five families. After adding 

in data from four sites surveyed by Struebig (2008) the final dataset from 15 sites 

comprised 3847 captured individuals, representing 32 species from five families. 

Further filtering to remove occasional captures of open space and edge species resulted 

in 3776 individuals of 32 species from five families. The three most commonly 

represented families were the Rhinolophidae (9 species), Hipposideridae (11 species) 

and Vespertilionidae (10 species), with the latter consisting of six species of the 

subfamily Kerivoulinae, three species of the subfamily Murininae, and one species of 

genus Myotis (Table 2.2). Of these 32 species, 18 were categorised as tree-roosting bats 

and 14 cave-roosting bats. 
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Table 2.2 (a) Insectivorous bat species captured at 22 sites in Peninsular Malaysia used for analyses. See Appendix S2.1 for full inventory. 
 

Species abundance in surveyed sites 
FAMILY/Taxon Species code Red list statusa Distribution levelb Ensemblec 

JR2 JR3 KH1 KH3 KT3 NS1 PH1 PH2 PH6 PN1 PK1 F01 F02 F23 F24 

MEGADERMATIDAE                    

Megaderma spasma MSP  R F             1   
NYCTERIDAE                    

Nycteris tragata NTR  R F  1 2   1         2 
HIPPOSIDERIDAE                    

Hipposideros bicolor 131 HB131  W C 118 136 11 1 4 10 11 126 2 5 31 5  1 1 
Hipposideros. bicolor 142 HB142  W C   35  27 2 3  170 6 16   21 5 
Hipposideros cervinus HCE  W C 196 222 10   40 7 8 169 3 24 24 5 12 2 
Hipposideros. larvatus HLA  W C 11 5 3  36 15  100 220 27 32 1 26 17  
Hipposideros armiger HAR  R C         2 3      
Hipposideros cineraceus HCI  R C  1   3          1 
Hiposideros diadema HDI  W C 7 3 4  4  1 1 3 2  1 3  11 
Hipposideros doriae HDO NT R F 1 1 2     2     1   
Hipposideros dyacorum HDY  R C     2    1       
Hipposideros galeritus HGA  R C 7 6      6 2  1     
Hipposideros ridleyi HRI VU W F 1    1  12 11    10 16   
RHINOLOPHIDAE                    

Rhinolophus affinis RAF  W C 68 97 25 169 14 47 64 80 94 76 8 14 23 18 21 
Rhinolophus lepidus RLE  W C  32 55 34 1 11 2 3 10 28  2 22 2 40 
Rhinolophus luctus RLU  R F      1  1        
Rhinolophus robinsoni RRO  R C 3 3    13  1 1 3 3     
Rhinolophus stheno RST  W C 1 2 4 8 4 1 1 1 3 4   5 4 4 
Rhinolophus trifoliatus RTR  W F 13 3  2  1 14 3  3 4 14 22 5 4 
Rhinolophus acuminatus RAC  R C        2        
Rhinolophus sedulus RSE NT W F 8  3    8 6   1 1 13 1  
Rhinolophus macrotis RMA   F              1  

VESPERTILIONIDAE                    

Kerivoula hardwickii KHA  W F 12 5   10 7 13 1  10 2   7  
Kerivoula minuta KMI NT W F 6 3 4 1  3 8 12 7       
Kerivoula papillosa KPA  W F 15 1  2 3 3 20 2 5 3 4 14 14 11 6 
Kerivoula pellucida KPE  R F 4  1  1 3 5 5 3  1 1 9 1 1 
Kerivoula intermedia KIN NT W F 1 1   2  6 3 1  2 47 47   
Phoniscus atrox PAT NT R F  1     3 2    2 1   
Murina suilla MSU  R F 1  1  2 1 10     2 5 5 6 
Murina aenea MAE VU R F 1  1    1       1  
Murina cyclotis MCY  R F  1     1  1  1 1  1  
Myotis ridleyi MRI NT R F 1     1          
 

a IUCN red list status: NT, near threaten; VU, vulnerable (SAMD, 2009). 
b Distribution of species based on the total captured individuals of all species from all sites: R = rare (comprises <1% of total individuals; W = widespread (comprising >1% of total individuals). Rarity classification based on Struebig 
(2008). 
cEnsemble to which species belongs: F = predominantly tree cavity and/or foliage roosting narrow-space species; C = predominantly cave roosting narrow-space species. 
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Table 2.2 (b) Insectivorous bat species captured at 22 sites in Peninsular Malaysia and used for analyses. See Appendix S2.1 for full 

inventory. 
 

Species abundance in surveyed sites 
FAMILY/Taxon Species code Red list statusa Distribution levelb Ensemblec 

JR1 KH2 KT1 KT2 MK4 MK5 PH3 PH4 PH5 PK2 PK3 

MEGADERMATIDAE                
Megaderma spasma MSP  R F          1 1 
NYCTERIDAE                
Nycteris tragata NTR  R F    1  1  1  3 2 
HIPPOSIDERIDAE                
Hipposideros bicolor 131 HB131  W C 7  3 1 7  7     
Hipposideros. bicolor 142 HB142  W C  15   11  4  4 57 38 
Hipposideros cervinus HCE  W C 14    5     221  
Hipposideros. larvatus HLA  W C  3   7  4  1  1 
Hipposideros armiger HAR  R C           1 
Hipposideros cineraceus HCI  R C      1 1   2  
Hiposideros diadema HDI  W C  1  19 2  1     
Hipposideros doriae HDO NT R F 1           
Hipposideros dyacorum HDY  R C       30     
Hipposideros galeritus HGA  R C    1   1   2 3 
Hipposideros ridleyi HRI VU W F  3  2        
RHINOLOPHIDAE                
Rhinolophus affinis RAF  W C 40 16 6 3 6 1 29  222 35 24 
Rhinolophus lepidus RLE  W C 4  17 1 22  1 1 221 49 8 
Rhinolophus luctus RLU  R F    1  1    1 1 
Rhinolophus robinsoni RRO  R C     3 2      
Rhinolophus stheno RST  W C 1  27       1 5 
Rhinolophus trifoliatus RTR  W F 4 4 4 19        
Rhinolophus acuminatus RAC  R C  2  2    1    
Rhinolophus sedulous RSE NT W F 1       1    
Rhinolophus macrotis RMA   F            
VESPERTILIONIDAE                
Kerivoula hardwickii KHA  W F 5 4 6 2 1  3    1 
Kerivoula minuta KMI NT W F  4 1         
Kerivoula papillosa KPA  W F 5 12 8 6       6 
Kerivoula pellucida KPE  R F 2  1 2   1    1 
Kerivoula intermedia KIN NT W F 15   2    2    
Phoniscus atrox PAT NT R F            
Murina suilla MSU  R F   1 1 1     1 1 
Murina aenea MAE VU R F          1  
Murina cyclotis MCY  R F  1 2        1 
Myotis ridleyi MRI  R F         7   
 

a IUCN red list status: NT, near threaten; VU, vulnerable (SAMD, 2009). 
b Distribution of species based on the total captured individuals of all species from all sites: R = rare (comprises <1% of total individuals; W = widespread (comprising >1% of total individuals). Rarity classification based on Struebig 
(2008). 
cEnsemble to which species belongs: F = predominantly tree cavity and/or foliage roosting narrow-space species; C = predominantly cave roosting narrow-space species.  
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A Fisher’s species abundance plot showed clear stepwise patterns in dominance 

(Figure 2.3). The two most dominant species across the entire study region were R. 

affinis (21.7% of total captures) and Hipposideros cervinus (19.1%), although their 

abundance was highly variable across sites (Table 2.2). All six of the most dominant 

species were cave roosting species from the families Rhinolophidae and Hipposideridae, 

possibly reflecting the fact they live in large colony sizes (Nowak, 1994). The 15 most 

dominant species together represented 95.6% of total captures (Table 2.2). Based on a 

cut-off point of less than 1% of total captures (37 individuals), 16 species were 

classified as rare, which included Kerivoula pellucida (0.93%), Murina suilla (0.87%) 

and Rhinolophus robinsoni (0.72%). For Rhinolophus luctus and Rhinolophus 

accuminatus, a maximum of two individuals were recorded for any assemblage, 

whereas Megaderma spasma and Rhinolophus macrotis were represented by only 1 

capture over the entire 15 sites (Table 2.2). 
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Site species richness, diversity and species abundance 

 

Raw (uncorrected) species richness at the 15 selected sites ranged from seven species 

(site KH3) to 21 species (PH2), with a mean of 15.73 ±1.74 (CI) species captured at a 

site (data not shown). After rarefaction downwards to a standardised sample size of 104 

individuals, observed species richness (Sobs) was seen to be greatest at site PH1 (16.38 

±1.79), whereas only 5.07 ±1.04 species were found at KH3 (Table 2.3). This pattern 

was consistent when species richness was predicted (SShen) to the maximum sample size 

available (694 bats at PH6): 22.8 species at PH1 compared to 8.8 species for KH3 

(Table 2.3). Compared to the actual capture record sites, F23 (358 individuals, 16 

species) was predicted to host a further 8.5 species given extra survey effort. This was 

Figure 2.3 Fisher’s plot showing the abundance of all species captured at the 15 

standardised sites from 2007 to 2009.  The dashed line depicts the threshold of 

rarity (less than 1% of total capture individuals of all species, with more 

common species on the left of the graph and rarer ones on the right. 
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relatively high compared to PH1 and KH3, also suggesting that the F23 sampling had 

not reached an asymptote in its species accumulation curve relative to PH1 and KH3. 

 

 The reciprocal Simpson Index, which considers both the species richness and 

evenness, indicated high diversity in F02 (1/D=8.86) and F23 (1/D=8.16).  In contrast, 

KH3 exhibited low bat diversity (1/D=1.60), as only seven species were captured for 

217 individuals, and the assemblage was dominated by one species (R. affinis) (Table 

2.3). 
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 Table 2.3  

Bat species diversity at 15 selected sites based on observed rarefied species 
richness (Sobs), predicted richness using the Shen Multinomial predictor 
(SShen), and evenness as described by the reciprocal Simpson diversity index 
(1/D). 

 

Site 

Code 
Site name, state and location 

Width of 

peninsular 

(km) 

 

S
a
 Sobs

b 
SShen

c 
1/D

d 

NS1 Gunung Angsi,  
N. Sembilan  
102.078°E, 2.705°N 

237.64 
 

17 12.60 20.60 5.49 

PK1 Kledang Saiong, 
Perak  
101.004°E, 4.538°N 

315.94 
 

14 11.96 17.10 5.84 

KH1 Bukit Hijau, Kedah  
100.773°E, 5.501°N 

292.25 
 

15 12.55 16.40 5.09 

PH1 Bukit Ibam, Pahang  
102.901°E, 3.223°N 

235.93 
 

19 16.38 22.80 6.71 

PH2 Gunung Aais, Pahang 
102.681°E, 4.413°N 

317.96 
 

21 13.72 23.40 4.35 

KH3 Ulu Muda, Kedah 
100.963°E, 6.107°N 

233.19 
 

7 5.07 8.80 1.60 

PN1 Bukit Panchor, Penang 
100.546°E, 5.151°N 

317.23 
 

13 11.84 13.00 4.06 

JR2 Gunung Panti, Johor 
103.914°E, 1.869°N 

147.19 
 

20 12.27 23.00 3.94 

KT3 Gunung Stong, Kelantan 
101.977°E, 5.340°N 

306.07 
 

15 12.80 16.40 5.51 

JR3 Labis Forest Reserve, Johor 
103.159°E, 2.346°N 

209.72 
 

19 8.86 20.90 3.56 

PH6 Forest Kenong 
102.188°E, 4.216°N 

322.2 
 

17 8.31 17.00 4.23 

F01* Kemasul 1 
102.183°E, 3.383°N 

248.47 
 

15 12.11 21.70 5.62 

F02* Kemasul 2 
102.133°E, 3.433°N 

254.68 
 

16 12.82 18.10 8.86 

F23* Klau Besar 
101.890°E, 3.749°N 

270.4 
 

16 12.93 24.50 8.16 

F24* Jengka 
102.455°E, 3.615°N 

258.67 
 

13 11.00 15.10 4.84 

 a  Raw species richness based on harp trapping records. 
b   Rescaled sample-based to individual-based rarefied species accumulation index.  This 
index was calculated based on the Mau Tao function estimated in EstimateS 8.2 (Colwell, 
2009).   
c  Prediction diversity using the multinomial model index was calculated in SPADE (Shen et 
al., 2002). 
dReciprocal Simpson Index to show species diversity based on the sampling data in 
EstimateS 8.2 (Colwell, 2009). 
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Spatial assemblage patterns were investigated by plotting species diversity indices (Sobs, 

SShen and 1/D) against both the latitude and longitude of each site (Figure 2.4). Results 

showed significant negative relationship between SShen species richness and latitude (r2 

= 0.51, P = 0.001) and a positive  relationship with longitude (r2 = 0.49, P = 0.003). All 

of the indices examined (Sobs, SShen and 1/D), revealed a broad reduction in diversity 

with ascending latitude (south to north), although these were not always significant 

(Figure 2.4 a, c, e). Trends in diversity with ascending longitude (west to east) were less 

clear (Figure 2.4 b, d, f). Species richness indices, Sobs and SShen, exhibited wider 95% 

confident interval ranges compare to 1/D.  This is partly due to the sensitivity of Sobs 

and SShen on rare species compare to 1/D, which considers both species richness and 

species evenness. 

 

Variation in SShen across latitude and longitude was further examined using a 

general linear model. Initial models revealed that both latitude and longitude predicted 

SShen index independently. Therefore, latitude, longitude, quadratic latitude, quadratic 

longitude and interaction between latitude and longitude were also included in the 

models. The results indicated latitude yielded the simplest model for predicting the SShen 

index. In short, latitude itself is a better predictor of SShen rather than combination of 

latitude and longitude (linear regression model for latitude adjusted r2=0.5031, P = 

0.002, F=15.17). When the, SShen index from 15 sites was superimposed on the 

Peninsular Malaysia forest coverage map in Figure 2.5 a latitudinal decline in species 

richness was seen from south towards north. 
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Figure 2.4  

Plots to show clinal patterns of species richness with latitude (a, c and e) and longitude 

(b, d and f). Plots a and b show upper 95% confidence intervals only because these are 

estimated from upward extrapolations of the observed values. All other plots show 

upper and lower 95% confidence intervals for each value. 
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Figure 2.5  

Map of Peninsular Malaysia showing the gradient of the species richness with 

latitude. Radii of circles are scaled by predicted species richness based on the 

Shen Multinomial Model (SShen) in Table 2.3. Filled small circles without labels 

represent those sites excluded from the assemblage analysis. Note that the circles 

show a broad reduction from south to north, indicating northward reduction in 

species richness.  
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Species diversity was highest in the centre of the peninsula at F02 (8.86) and 

F23 (8.16), which indicated a higher species evenness compared to other sites. In 

contrast, KH3 at the far North of the study area showed the highest dominance of R. 

affinis and Rhinolophus lepidus with 1/D=1.60. The proportions of abundance for two 

of the 15 common species were correlated with latitude (Figure 2.6). Abundance of 

Hipposideros cervinus was lower at higher latitude (rSpearman= -0.693, P = 0.002), and 

the abundance of H. bicolor 142 was higher at higher latitude (rSpearman= 0.456, P = 

0.044). No significant correlation was detected between abundance and longitude (i.e. 

west-east) for any of the 15 most common species. 

 

The proportional abundance of many species was also strongly correlated: cave-

roosting species positive correlations were seen between R. lepidus and R. stheno 

(rSpearman= 0.686, P = 0.002); tree/foliage-roosting species Kerivoula intermedia and 

Hipposideros ridleyi (rSpearman= 0.857, P = 0.000), and tree/foliage-roosting species 

Kerivoula papillosa and R. trifoliatus (rSpearman= 0.846, P = 0.000). Significant negative 

correlations were detected between cave-roosting H. cervinus and R. stheno (rSpearman= -

0.601, P = 0.009), cave-roosting R. lepidus and tree/foliage-roosting species K. 

intermedia (rSpearman = -0.628, P = 0.006), and between cave-roosting H. bicolor 131 and 

R. stheno (rSpearman = -0.597, P = 0.009). A large number of weaker but significant 

correlations were also detected: between cave-roosting R. affinis and tree/foliage-

roosting species K. intermedia (rSpearman = 0.583, P = 0.011), cave-roosting R. stheno and 

tree/foliage-roosting species K. intermedia (rSpearman = -0.561, P = 0.015), tree/foliage-

roosting species K. papillosa and H. ridleyi (rSpearman = 0.467, P = 0.015), tree/foliage-

roosting species R. trifoliatus and H. ridleyi (rSpearman = 0.481, P = 0.035), tree/foliage-

roosting species R. sedulus and K. hardwickii (rSpearman = 0.472, P = 0.038), tree/foliage-

roosting species R. sedulus and H. ridleyi (rSpearman = 0.573, P = 0.013).  In general, the 

results suggested that abundance of the tree/foliage-roosting species K. intermedia  

decreases with increasing abundance of the common cave-roosting species R. lepidus, 

R. affinis and R. stheno. 
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Assemblage structure and β-diversity 

 

Mantel tests and inspection of separate plots of geographical distance versus the three 

measures of assemblage similarity showed weak but non-significant relationships: 

Morisita-Horn similarity (r2=0.029, PMantel =0.074), estimated Chao-Sørensen (r2 = 

0.034, PMantel = 0.084) and raw-Sorensen (r2=0.024, PMantel=0.122) (Figure 2.7). When 

analyses were repeated using the RELATE procedure with non-parametric assumptions 

the associations remained non-significant: Chao-Morisita similarity (rSpearman= 0.147, P 

= 0.101), estimated Chao-Sørensen (rSpearman= 0.169, P = 0.089) and raw Sørensen 

(rSpearman = 0.107, P = 0.196) (Figure 2.7). Therefore, similarity in assemblage structure 

did not show a pattern of distance decay, and neighbouring populations were no more 

similar to distant ones (Figure 2.7). However, pairwise differences in species richness 

was positively correlated with pairwise geographical distance (r2= 0.1932, PMantel =  

0.010) (Figure 2.7). 
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Figure 2.6 Latitudinal variation in the relative abundance (proportional to total number 
of captures) of the 15 most common species. Proportional abundance was less than 0.5 
for all species except for R. affinis. 
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Figure 2.7 Plots showing species similarity (beta-diversity) versus geographical 

distance (km)  
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Patterns of assemblage structure 

 

Non-metric multidimensional scaling of raw Sørensen dissimilarity coefficients 

revealed that a three-axis ordination was chosen as the best solution (P = 0.004), which 

together explained 86.3% of variation. The final ordination was stable and reliably 

represented assemblage dissimilarity (stress = 7.26). Of the total variation, axis 1 

explained 42.8% of the variation in assemblage dissimilarity, axis 2 explained 26.7%, 

and axis 3 explained 16.8%. Therefore, axes 1 and 2 represented the greatest portion of 

the variation in the matrix and were used in subsequent analyses. 

 

 The abundance of six species was correlated with NMDS axes scores (Figure 

2.8): two tree/foliage–roosting species, K. minuta (Tau coefficient = 0.525) and H. 

ridleyi (Tau coefficient = -0.497); and four cave roosting species, H. galeritus (Tau 

coefficient = 0.546), R. affinis (Tau coefficient = 0.632), R. lepidus (Tau coefficient = 

0.612) and R. stheno (Tau coefficient = 0.562). However, inspection of abundance-

NMDS axes plots (Figure 2.8) revealed that these correlations were statistical artefacts 

for all but three species: R. affinis, R. lepidus and R. stheno. These plots revealed that 

the abundance of R. affinis was strongly correlated with both axes 2 and 3 and the 

abundance of R. lepidus was strongly correlated with axis 2. Most of the dissimilarity of 

assemblage was caused by the changes in abundance of R. affinis and R. lepidus. 

 

 Correlation between axes and both latitude and longitude were also tested. Tau 

correlation indicated latitude correlated weakly with axis 1 (-0.314) and axis 2 (0.314).  

Longitude was weakly correlated with axis 1 (0.390).   
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Figure 2.8 Plots to show statistical artifacts of correlation between species 
abundance and ordination scores in K. minuta, H. ridleyi and H. galeritus.  Tau 
coefficients show at least medium association between ordination axes with the 
species abundance (Tau coefficient ≥ 0.5).  However, distribution of the points 
revealed artifacts.  P values are not reported for each plot as ordination scores 
are not strictly independent from each other.   
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Discussion 

  

Broad-scale patterns of assemblage structure can provide valuable insights into past 

climate change, as well as help to predict the response of biodiversity to future climate 

changes and the conservation consequences of current and future habitat change. In this 

chapter, I investigated several aspects of assemblage structure to determine current 

patterns of forest bat diversity over Peninsular Malaysia and inferred how this may have 

been shaped by proposed changes in the extent and distribution of tropical rainforest 

after the Last Glacial Maximum (LGM).  

 

 

Consequences of past climate oscillation in shaping bat assemblages 

across the peninsula  

 

I surveyed and analysed assemblages of forest bats at 15 selected sites, all distributed 

between 1°N and 7°N latitude, and between 100°E and 105°E longitude (Figure 2.1). 

All of the bats in this study were characterized by ecomorphological traits, including 

wing shape (broad and short wings) (Arita and Fenton, 1997) and flapping kinematics, 

that confer slow flight in highly cluttered environments (Aldridge and Rautenbach, 

1987; Stockwell, 2001). Similarly, their smaller body size (Stockwell, 2001) and high 

frequency and/or constant frequency calls (Kingston et al., 2003) also suggest 

adaptations for hunting in dense vegetation. Current distribution ranges in Southeast 

Asia (Kingston et al., 2006; Francis, 2008; SAMD, 2009) confirm a tight association 

between this guild of bats and intact forest, and so it can be assumed that the historical 

range of these species must have mirrored that of lowland evergreen tropical rainforest. 

 

At the alpha diversity level, species richness of each site was calculated using 

three indices with different approaches: estimated species richness (Sobs), predicted 

species richness (SShen) and the reciprocal index (1/D). These three indices revealed a 

weak decline in species richness from the south of Peninsular Malaysia towards the 

north, although the trend was only significant when using predicted SShen, indicating that 

more sampling might be needed in order to observe the trend based on the empirical 

data alone. Indeed based on the SShen index, there were only two sites (PN1 and PG6) 

for which the species were fully sampled in spite of the large amount of fieldwork 

undertaken. The observed overall cline in diversity could suggest a northward expansion 
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of forest, with greater numbers of forest species in the south nearer to the equator. I also 

found a weaker relationship between species richness and longitude, although this 

probably reflects the co-variation between longitude and latitude due to the shape of the 

peninsula (Figure 2.3).  

 

The combined effect of the longitudinal and latitudinal clines in diversity was 

also evident from the significant relationship between pairwise difference in species 

richness among sites and corresponding geographical distance. In other words, this 

confirmed that the biggest differences occurred between the most distant (i.e. southeast 

and northwest) sites. Interestingly, however, the other measures of beta diversity 

examined did not reveal an effect of distance, although all showed substantial variation 

in values. A recent high profile and large-scale study of 500 species of tropical 

herbivorous insects in Papua New Guinea also found no effect of geographical distance 

on beta diversity across 75,000 square km of lowland rainforest (Novotny et al., 2007). 

However, in this study the authors found beta diversity was low overall and proposed 

that insect diversity is probably similar across large areas because of the relatively 

uniform climate, soil and other conditions that characterise lowland areas. Such a result 

suggests that my observed variation in assemblage structure in bats in lowland 

Peninsular Malaysia is worth further study, and might be of considerable conservation 

importance. 

 

Overall, my results from species richness analyses do not appear to support the 

maps of past vegetation at the LGM reconstructed by Cannon et al. (2009). In these 

models, lowland evergreen forest was more widely distributed than at present, occurring 

across exposed land in the coastal areas around Borneo and the area that is now covered 

by the South China Sea. If such a long history of forest in Peninsular Malaysia is correct 

(with no replacement by savannah at the LGM) then it might be expected that species 

turnover (beta diversity) will be low across latitude or longitude. Instead my data cannot 

rule out theories that rainforest in the peninsula was replaced by open grassland, and 

only expanded again after the LGM (see Wurster et al., 2010). There might also be other 

possible explanations for clinal variation in assemblage structure and diversity across 

Peninsular Malaysia. One is that aspects of the observed patterns reflect variation in the 

width of current or historical land. Woodruff and Turner (2009) estimated species 

richness of terrestrial mammals in the Malay Peninsula from museum specimen 

collections and literature distribution ranges, and found that diversity was lowest 
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between 6°N and 13°N at the narrowest part of the Malay-Thai peninsula. They 

attributed this to an area effect based on island biogeography theory, which suggests 

that a reduction in area (here due to the rise in sea level) will promote competition 

among species, and the eventual loss of some species as long-term equilibrium is 

reached. Indeed at around 11,000 years BP, the sea level rose (Sathiamurthy and Voris, 

2006) to 40 m below present, covering part of east Sundaland and remaining at this 

level for over half of the interglacial period (Voris, 2000; Sathiamurthy and Voris, 2006). 

Further increases in sea level disconnected the Malay-Thai peninsula from Sumatra and 

Borneo and formed the exposed land shape that we see today.  

 

Woodruff and Turner (2009) showed that as well as the decrease at the 

narrowest part of the isthmus, species richness peaked just before this, at 5°N, and again 

at 14°N where the land widens into continental Asia. They explained this pattern as due 

to transitions in the distributions of multiple species. Because the results from my study 

suggest a dip in diversity at 5°N, they might not be due to the same effect of land area. 

However, although Woodruff and Turner's study included data on 103 bats species 

found in the Malay-Thai peninsula (for which data could be obtained from the 

literature) they made no distinction between open-space species and forest specialists. In 

my work, open space insectivorous species and fruit bats were excluded from analyses, 

furthermore all data were obtained from actual field surveys and so considered both 

species abundance and species richness to provide more insight into the species 

diversity of forest insectivorous bats. These differences mean that the clines in bat 

species richness seen in both studies may reflect different issues. While Woodruff and 

Turner (2009)’s broader scale focus of more species may have greater power in 

detecting the consequences of dramatic area effects (which affect all terrestrial species 

equally), my finer scale focus may better reflect the more subtle variation in beta 

diversity due to recolonization of forest-dependent species over land. 

 

Clines in species diversity could also result from finer-scale and more subtle 

habitat variability due to present conditions rather than re-colonisation events, as 

highlighted by the Holdridge life zones model (Holdridge, 1967). In 2002, 

Wikramanayake et al. (2002) divided the World into 139 eco-regions, and classified 

Peninsular Malaysia into three eco-regions: rainforest, montane rainforest and peat 

swamp forest. Lowland evergreen Dipterocarp tropical rainforest occurs below 300m 

above seal level and, within Peninsular Malaysia, is distributed between 1°N and 6°N 
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degrees latitude with the vegetation transition to monsoonal forests reported to be at 

6°30’N at the so-called Kangar-Pattani Line (Vincent and Yusuf Hadi, 1993; Woodruff, 

2003). In my study, I aimed to minimize the impact of habitat variation across the study 

region; the northernmost site was located at 6.3 °N, all sites were below 300m, and I 

avoided peat swamp. Nonetheless I cannot rule out the possibility of local conditions 

influencing assemblage structure. Conditions in Malaysia also differ longitudinally: 

annual rainfall is slightly higher and temperatures are relatively cooler at the east coast 

compared to the west coast; (Tija, 1988; Vincent and Yusuf Hadi, 1993), and the central 

montane part of Peninsular Malaysia averages fewer sunshine hours and is also cooler 

than coastal areas (Sayang Mohd Deni et al., 2009). 

 

To date, few studies have conducted fieldwork to look at large-scale patterns of 

species diversity across Southeast Asia. As mentioned, a low rate of species turnover 

(beta diversity) was detected for herbivorous insect guilds consisting of species from 

seven groups in Papua New Guinea (Novotny et al., 2007). On Borneo, a study of 

geometrid moth beta diversity traced species turnover patterns across 700km, and 

uncovered environmental and temporal factors that shaped the turnover trend (Beck et 

al. 2007). Beck et al. (2007) also analysed distribution of sphingid moths across the 

Southeast Asian mainland, and found that species richness peaked in northern Thailand 

and was lower both further north and towards the south. Like Woodruff and Turner 

(2009), Beck et al. (2007) proposed a peninsular effect to explain a southward decreases 

in moth species richness, and they also proposed an influence of environmental factors 

after finding that diversity was greater in higher altitude areas.  

 

These different results all show that more work is needed in Southeast Asia to 

gain an overall picture of latitudinal patterns of species diversity, and the processes that 

caused these patterns. In comparison, a greater number of detailed studies have been 

conducted in the New World, on groups such as birds (Blackburn and Gaston, 1996), 

large mammals (McCoy and Connor, 1980) and insects (Stout and Vandermeer, 1975). 

In a comprehensive survey of bats, Stevens and Willig (2002) studied the latitudinal 

patterns of species across both South and North America continents, covering three 

climatic zones (temperate, subtropical and tropical). They revealed that local species 

richness (alpha diversity) increases and is more variable with decreasing latitude. In 

their study, Stevens and Willig (2002) also compared 14 indices that differed in 

sensitivity and showed that some had advantages over others. This and other evaluations 
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of multiple indices have provided useful guidance for ecologists (Beck and 

Schwanghart, 2010). For example, it is clear that indices that attempt to predict species 

richness can be especially useful for rapid diversity assessments because they can 

provide information when inventories are incomplete. 

 

Although this study is one of the first detailed studies of assemblage structure in 

a mammal group across peninsular Malaysia, more sampling (both in terms of numbers 

of bats and the geographical area) is needed in order to confirm the results. One 

secondary finding that is of particular interest was the highest alpha diversity detected in 

the extreme south (JH2), which is near to Singapore. This part of Malaysia is under the 

most intensive pressure for land, and has already suffered from huge loss of forest in 

recent decades (Peh et al., 2006). Thus the high alpha diversity of forest bats recorded in 

southern Malaysia is of critical conservation concern, and the rich diversity may 

expected to decline soon if there is an extinction debt (Tilman et al., 1994; Loehle and 

Li, 1996; Brook et al., 2003,). 
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Table S2.1 All bat species captured in 22 surveyed sites in Peninsular Malaysia. (continued on next page) 
 

Species abundance in surveyed sites 

FAMILY/species 

IUCN 

statusa Ensemb 
JR 

1 

JR 

2 

JR 

3 

KH 

1 

KH 

2 

KH 

3 

KT 

1 

KT 

2 

KT 

3 

MK 

4 

MK 

5 

NS 

1 

PH 

1 

PH 

2 

PH 

3 

PH 

4 

PH 

5 

PH 

6 

PK 

1 

PK 

2 

PK 

3 

PN 

1 

P 

N2 

F0 

1 

F0 

2 

F 

23 

F 

24 

                              

                              

PTEROPODIDAE                              

Balionycteris maculate NT F     1        3 1        2      
Cynopterus brachyotis  LC F  1  1      1                  
Cynopterus horsefieldi LC F                  1          
Eonycteris spelaea LC C                    1  2      
Macroglossus sobrinus LC F              1              
Megaerops ecaudatus LC F     1                       
Chironax melanocephalus LC                       1      
Penthetor lucasi LC                       1      
                              
MEGADERMATIDAE                              
Megaderma spasma LC F                    1 1    1   
                              
NYCTERIDAE                              
Nycteris tragata LC F   1 2    1   1 1    1    3 2      2 
                              
EMBALLONURIDAE                              
Emballonura monticola LC F  2      2              1      
                              
HIPPOSIDERIDAE                              
Hipposideros bicolor 131 LC C 7 118 136 11 15 1 3 1 4 7  10 11 126 7   2 31   5  5  1 1 
Hipposideros. bicolor 142 LC C    35     27 11  2 3  4  4 170 16 57 38 6    21 5 
Hipposideros cervinus LC C 14 196 222 10      5  40 7 8    169 24 21  3  24 5 12 2 
Hipposideros. larvatus LC C  11 5 3 3    36 7  15  100 4  1 220 32  1 27 14 1 26 17  
Hipposideros armiger LC C                  2   1 3      
Hipposideros cineraceus LC C   1      3  1    1     2       1 
Hiposideros diadema LC C  7 3 4 1   19 4 2   1 1 1   3    2  1 3  11 
Hipposideros doriae NT F 1 1 1 2          2           1   
Hipposideros dyacorum LC C         2      301   1          
Hipposideros galeritus LC C  7 6     1      6    2 1 2 3       
Hipposideros ridleyi VU F  1   3   2 1    12 11          10 16   
                              

RHINOLOPHIDAE                              

Rhinolophus affinis LC C 40 68 97 25 16 169  3 14 6 1 47 64 80 29  22 94 8 35 24 76  14 23 18 21 
Rhinolophus lepidus LC C 4  32 55  34  1 1 22  11 2 3 1 1 21 10  49 8 28  2 22 2 40 
Rhinolophus luctus LC F        1   1 1  1      1 1       
Rhinolophus robinsoni LC C  3 3       3 2 13  1    1 3   3      
Rhinolophus stheno LC C 1 1 2 4  8   4   1 1 1    3  1 5 4   5 4 4 
Rhinolophus trifoliatus LC F 4 13 3  4 2  19    1 14 3     4   3  14 22 5 4 
Rhinolophus acuminatus LC C     2   2      2  1            
Rhinolophus sedulus NT F 1 8  3         8 6  1   1     1 13 1  
Rhinolophus macrotis LC F                          1  
a IUCN red list status: NT, near threaten; VU, vulnerable (SAMD, 2009). 
bEnsemble to which species belongs: F = predominantly tree cavity and/or foliage roosting narrow-space species; C = predominantly cave roosting narrow-space species 
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Table S2.1 Bat species in 22 surveyed sites in Peninsular Malaysia. 
 
 

Species abundance in surveyed sites FAMILY/species 
IUCN 

statusa 
Ensembleb 

JR1 JR2 JR3 KH1 KH2 KH3 KT1 KT2 KT3 MK4 MK5 NS1 PH1 PH2 PH3 PH4 PH5 PH6 PK1 PK2 PK3 PN1 PN2 F01 F02 F23 F24 

                              

                              

VESPERTILIONIDAE                              

Kerivoula hardwickii LC F 5 12 5  4  6 2 10 1  7 13 1 3    2  1 10 5   7  
Kerivoula minuta NT F  6 3 4 4 1 1     3 8 12    7          
Kerivoula papillosa LC F 5 15 1  12 2 8 6 3   3 20 2    5 4  6 3  14 14 11 6 
Kerivoula pellucida LC F 2 4  1   1 2 1   3 5 5 1   3 1  1   1 9 1 1 
Kerivoula intermedia NT F 15 1 1     2 2    6 3  2  1 2     47 47   
Phoniscus atrox NT F   1          3 2          2 1   
Murina suilla LC F  1  1   1 1 2 1  1 10       1 1   2 5 5 6 
Murina aenea VU F  1  1         1       1      1  
Murina cyclotis LC F   1  1  2      1     1 1  1   1  1  
Myotis ridleyi NT F  1 3    1     1  1   7  1      6   
Myotis ater LC E   1    1       1        1  1 1 3  
Myotis horsefieldii LC E  2 1    1                     
Myotis muricola LC E        15                    
Glischropus tylopus LC E       2 2     2 3           4 4  
Pipistrellus tenuis LC E   1              1           
Tylonycteris pachypus LC E       1  7                 1  
Tylonycteris robustula LC E         1                   
Scotophilus kuhlii LC O     1                       
Miniopterus magnater NT O       1  1                   
Miniopterus 

medius/Miniopterus 

schreibersii 

LC O 
  1              4           

a IUCN red list status: NT, near threaten; VU, vulnerable (SAMD, 2009). 
bEnsemble to which species belongs: F = predominantly tree cavity and/or foliage roosting narrow-space species; C = predominantly cave roosting narrow-space species 
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Table S2.2 Pairwise geographical distance (KM) between 15 selected sites for assemblage analysis. 
 

 F01 F02 F23 F24 JR2 JR3 KH1 KH3 KT3 NS1 PH1 PH2 PH6 PN1 PK1 

F01 0.000               

F02 7.856 0.000              

F23 52.092 44.293 0.000             

F24 39.710 41.069 64.442 0.000            

JR2 255.527 263.365 306.931 252.851 0.000           

JR3 158.278 166.131 210.243 161.348 99.215 0.000          

KH1 282.669 274.973 230.829 280.604 533.398 439.487 0.000         

KH3 331.687 324.362 281.584 322.652 573.704 483.948 70.538 0.000        

KT3 218.785 212.733 177.148 198.985 441.732 357.842 134.420 140.914 0.000       

NS1 76.283 81.178 117.953 109.495 224.128 126.527 342.956 397.964 293.192 0.000      

PH1 81.681 88.408 126.553 65.975 187.915 101.669 346.171 385.969 256.738 108.015 0.000     

PH2 127.189 124.812 114.703 92.231 314.223 235.934 243.556 267.724 129.279 201.385 134.574 0.000    

PH6 92.659 87.313 61.597 73.118 323.757 234.264 212.115 250.217 127.109 168.491 135.860 58.894 0.000   

PN1 267.608 259.759 215.677 272.000 522.375 425.882 46.366 115.865 159.828 320.748 337.928 250.468 209.620 0.000  

PK1 183.342 175.487 131.769 190.911 438.684 341.556 110.061 174.458 139.823 236.167 256.313 186.472 136.104 84.962 0.000 
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Table S2.3 Pairwise difference of species richness between 15 selected sites.  The values were 
calculated manually based on the values predicted by Shen Multinomial Model in Table 2.3. 

 
 F01 F02 F23 F24 JR2 JR3 KH1 KH3 KT3 NS1 PH1 PH2 PH6 PN1 PK1 
F01 0.0               
F02 3.6 0.0              
F23 2.8 6.4 0.0             
F24 6.6 3.0 9.4 0.0            
JR2 1.3 4.9 1.5 7.9 0.0           
JR3 0.8 2.8 3.6 5.8 2.1 0.0          
KH1 5.3 1.7 8.1 1.3 6.6 4.5 0.0         
KH3 12.9 9.3 15.7 6.3 14.2 12.1 7.6 0.0        
KT3 5.3 1.7 8.1 1.3 6.6 4.5 0.0 7.6 0.0       
NS1 1.1 2.5 3.9 5.5 2.4 0.3 4.2 11.8 4.2 0.0      
PH1 1.1 4.7 1.7 7.7 0.2 1.9 6.4 14.0 6.4 2.2 0.0     
PH2 1.7 5.3 1.1 8.3 0.4 2.5 7.0 14.6 7.0 2.8 0.6 0.0    
PH6 4.7 1.1 7.5 1.9 6.0 3.9 0.6 8.2 0.6 3.6 5.8 6.4 0.0   
PN1 8.7 5.1 11.5 2.1 10.0 7.9 3.4 4.2 3.4 7.6 9.8 10.4 4.0 0.0  
PK1 4.6 1.0 7.4 2.0 5.9 3.8 0.7 8.3 0.7 3.5 5.7 6.3 0.1 4.1 0.0 
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Table S2.4 Chao-Sørensen corrected similarity between 15 selected sites, based on the capture records of numbers of 
species and individuals from each site, calculated in EstimateS 8.0. 
 
 F01 F02 F23 F24 JR2 JR3 KH1 KH3 KT3 NS1 PH1 PH2 PH6 PN1 PK1 
F01 0.000               
F02 0.982 0.000              
F23 0.764 0.739 0.000             
F24 0.731 0.669 0.817 0.000            
JR2 1.000 0.816 0.951 0.776 0.000           
JR3 0.985 0.828 0.909 1.000 0.971 0.000          
KH1 0.516 0.631 0.928 0.959 0.667 0.854 0.000         
KH3 0.525 0.574 0.552 0.845 0.704 0.791 0.822 0.000        
KT3 0.813 0.736 0.883 0.793 0.641 0.671 0.914 0.394 0.000       
NS1 0.719 0.758 0.988 0.877 0.950 0.983 0.917 0.685 0.795 0.000      
PH1 0.956 0.857 0.956 0.895 0.990 0.992 0.865 0.810 0.775 0.848 0.000     
PH2 0.990 0.756 0.909 0.977 1.000 0.991 0.861 0.880 0.949 0.965 0.822 0.000    
PH6 1.000 0.779 0.896 0.758 0.822 0.859 0.963 0.315 0.814 0.977 0.702 0.839 0.000   
PN1 0.701 0.676 0.937 0.829 0.861 0.964 0.892 0.819 0.949 0.970 0.775 0.929 0.953 0.000  
PK1 0.953 0.692 0.959 0.547 0.930 0.932 0.691 0.552 0.794 0.935 0.786 0.924 0.978 0.862 0.000 
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Table S2.4 Uncorrected  Sørensen similarity between 15 selected sites, based on the capture records of numbers of species 
and individuals from each site, calculated in EstimateS 8.0. 
 
 F01 F02 F23 F24 JR2 JR3 KH1 KH3 KT3 NS1 PH1 PH2 PH6 PN1 PK1 
F01 0.000               
F02 0.962 0.000              
F23 0.621 0.690 0.000             
F24 0.681 0.652 0.798 0.000            
JR2 0.948 0.775 0.847 0.671 0.000           
JR3 0.928 0.745 0.825 0.916 0.948 0.000          
KH1 0.482 0.590 0.840 0.907 0.578 0.838 0.000         
KH3 0.515 0.574 0.550 0.843 0.600 0.687 0.756 0.000        
KT3 0.643 0.683 0.848 0.691 0.589 0.614 0.839 0.370 0.000       
NS1 0.666 0.686 0.927 0.823 0.927 0.963 0.893 0.648 0.737 0.000      
PH1 0.923 0.836 0.838 0.831 0.952 0.873 0.765 0.774 0.703 0.827 0.000     
PH2 0.954 0.745 0.803 0.715 0.986 0.963 0.829 0.753 0.783 0.940 0.797 0.000    
PH6 0.761 0.727 0.888 0.753 0.817 0.846 0.962 0.297 0.794 0.956 0.677 0.828 0.000   
PN1 0.660 0.676 0.930 0.821 0.854 0.960 0.892 0.814 0.917 0.956 0.760 0.906 0.951 0.000  
PK1 0.854 0.656 0.915 0.491 0.912 0.888 0.671 0.498 0.791 0.923 0.760 0.888 0.954 0.862 0.000 
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Chapter 3: Phylogeography of the 

intermediate horseshoe bat (Rhinolophus 

affinis) in Peninsular Malaysia and 

comparisons with Chinese populations 

 

Chapter summary 

 

The intermediate horseshoe bat Rhinolophus affinis was found to be the most widely 

distributed and common forest-specialist bat species across the Malay Peninsula, and is 

thus a useful candidate for phylogeographic analyses to assess past habitat change. I 

studied the colonisation and demographic history of this species, to determine whether it 

supported a post-LGM population expansion from the south, as suggested by my 

assemblage analyses. I sampled R. affinis from across Peninsular Malaysia, and 

sequenced 525 base-pairs of the hyper-variable region I of mitochondrial D-loop in 200 

individuals. Data were compared to published data from three other subspecies of R. 

affinis from Southern China. Phylogenetic analyses supported monophyly of R. affinis 

in Peninsular Malaysia with a divergence from China around 800,000 years before 

present (BP), and the time of most recent common ancestor (TMRCA) of the Peninsular 

Malaysian subspecies around 466,391 years BP. Very high haplotype diversity was 

detected with 167 haplotypes identified, and demographic analyses suggested no recent 

population expansion. Median-joining and statistical parsimony networks indicated well 

mixed haplotypes across regions in Malaysia, and no isolation-by-distance was found. 

High diversity and an absence of clear population structure suggest strong gene flow or 

considerable ancestral polymorphism, and do not support a rapid expansion since the 

LGM. Instead all evidence supports a long history, with a possible origin of the 

Malaysian subspecies from further north. 
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Introduction 

 

Phylogeographic analyses 

 

The subject of phylogeography is concerned with the spatial and temporal arrangement 

of genetic lineages, which may come from within a taxon, or may represent different 

taxa (Avise, 2009). As such phylogeography combines elements of population genetics 

at a micro-evolutionary scale (Hickerson et al., 2010), together with the disciplines of 

phylogenetics, biogeography and historical geography, all of which focus on the macro-

evolutionary scale (Avise et al., 1987). Therefore, while phylogeography shares some 

features with landscape genetics in that both explore genetic lineages from spatial and 

temporal perspectives, the latter aims to evaluate contemporary environmental processes 

that influence genetic structure at finer scales (Chan et al., 2011), whereas 

phylogeography is much more focussed in tracing the historical processes that formed 

these patterns of genetic variation (Wang, 2010). Combined with a comparative 

approach, phylogeographic methods can also help to identify similarities or differences 

in patterns of genetic relationship across species, so providing insights into common 

processes that have influenced multiple organisms (Taberlet et al., 1998; Hewitt, 2001; 

Hewitt, 2004; Emerson and Hewitt, 2005). 

 

Because phylogeographic methods aim to capture historical signals of past 

evolutionary events, they tend to rely on genetic markers with slower mutation rates 

(Avise et al., 1987; Wang, 2010). Genes or genomes that are characterised by high 

copy-number, haploidy and uni-parental inheritance offer additional benefits for 

phylogeographic analyses. Therefore it is not surprising that genes located within 

organelle genomes such as those of mitochondria (mtDNA) and chloroplasts (cpDNA) – 

which meet these criteria - have traditionally been the most popular choice for studies of 

animals and plants, respectively (Avise, 2009). In animals, for example, maternally 

inherited mtDNA, has a moderate mutation rate (µ) of around 6 × 10-8, which is slower 

than that of microsatellite markers yet faster than single-copy nuclear DNA (scnDNA) 

(Haag-Liautard et al., 2008). In contrast to animal mtDNA, plant mtDNA is 

characterised by rates of mutation up to 100 times slower. Moreover, plant 

mitochondrial genome sizes are much larger and more variable than those in animals, 

leading them to be much less suitable for the analysis of plant phylogeography. The 

circular cpDNA molecule has faster mutation rates and relatively less size difference 
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among species (Avise, 2009). With these advantageous characteristics, cpDNA has been 

widely used as an evolutionary marker in plant phylogeography studies over many 

years. However, the genetic transmission mode of cpDNA differs from species to 

species and is not always transmitted purely down the maternal line (Avise, 2009). It is 

thus essential that the transmission mode of cpDNA is considered for each particular 

species before this marker can be corrected applied and interpreted. Despite some 

disadvantages compared to organelle genomes, scnDNA has been successfully applied 

in the field of phylogeography (Hare, 2001). Notably introns of protein-coding regions 

(which tend to have faster mutation rates than coding exons) can be useful for resolving 

population histories, while some sex chromosome genes (e.g. Y-chromosome loci in 

mammals) are effectively haploid, thus circumventing the problems of recombination 

(Avise, 2009). Nowadays, a growing number of phylogeographic studies combine 

multiple types of marker with the aim of simultaneously inferring several aspects of 

population and lineage history (Godinho et al., 2008; Flanders et al., 2009; Mao et al., 

2010b; Polezhaeva et al., 2010). 

 

In vertebrates, mtDNA remains the preferred source of markers for 

phylogeography studies/analyses, with numerous examples of studies that have 

examined sections of mtDNA to trace dispersal patterns of species (O'Corry-Crowe et 

al., 1997; Burbrink et al., 2000, Huang et al., 2010), as well as the colonisation and 

migration histories of populations (Vigilant et al., 1991; Flanders et al., 2009). 

Moreover, the D-loop, or control region, has long been considered to be especially 

informative for revealing evolutionary processes due to its elevated polymorphism 

resulting from nucleotide variability as well as length variation (Wilkinson and 

Chapman, 1991). Although high mutation rates can introduce the risks of homoplasious 

mutations, the D-loop is arguably still the most useful marker for phylogeography and 

indeed shallow phylogenetic analyses of animal taxa (Avise, 1998; Hewitt, 2001).   

 

Results from genetic analyses are more valuable if they can be related to other 

sources of information regarding the history and physical make up of a given study area. 

Unlike landscape genetics, phylogeography analyses focus most heavily on past 

geographical conditions. Presently, Geographic Information System (GIS) analysis is 

proving a useful geospatial resource in this context (Hickerson et al., 2010). In 

particular, data on past environments or ecosystems can offer essential landscape 

information to complement phylogeographic models in identifying the causes of 
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reconstructed historical and/or observed contemporary patterns of genetic variation 

(Flanders et al., 2011). Advances in geospatial resources, together with rapid 

developments in statistical phylogenetics and demographic modelling, is pushing 

phylogeography into a new era, which should shed light on the underlying mechanisms 

of diversification events, as well as inform conservation management decisions (Chan et 

al., 2011). 

 

Phylogeography studies of bats 

 

The phylogeography of several bat species have been well-studied in Europe and the 

continents of North and South America. In Europe, these studies have consistently 

shown evidence of rapid population growth since the last glacial period, with 

recolonization out of Mediterranean areas (Ruedi and Castella, 2003; Rossiter et al., 

2007; Bilgin et al., 2008; Flanders et al., 2009; Furman et al., 2009) and West Asian 

refugia (Flanders et al., 2009, Rossiter et al., 2007); in line with Hewitt’s syntheses on 

other species (Hewitt, 1999). Moreover, in these studies of temperate species, lower 

genetic diversity at higher latitudes has also been found, due to the effect of “northern 

purity”, whereas their refugial population tend to be characterised by “southern 

richness”, again supporting Hewitt (1999). 

 

 As more markers have become available, studies of bats and other taxa have 

shown that the typical expansion from refugia in the Balkans, Italy or Iberia is an 

oversimplification. Indeed, studies that have included more fine-scale sampling have 

been able to show that populations in traditional refugia might actually contain multiple 

refugial populations, leading to the idea of “refugia-within-refugia” (Hulva et al., 2004). 

Moreover, by combining markers with different mutation rates, it has been possible to 

reconstruct a longer history of colonization. For example, working on the greater 

horseshoe bat, Rhinolophus ferrumequinum, Rossiter et al. (2007) used microsatellites 

to show that European populations survived the LGM in the Mediterranean and 

Balkans, and expanded to form suture zones. However, at the same time mtDNA 

showed almost no variation across Europe, indicating that this population had also 

undergone an earlier expansion out of the Middle East (Flanders et al., 2009). Other 

studies have also reported refugia in Asia Minor, including the Caucuses and Turkey 

(Bilgin et al., 2008). In recent years, there has also been increasing evidence of refugia 

even further east, including temperate and subtropical areas of China, although the 
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impact of glaciations were estimated to be less severe than those in Europe (Hewitt, 

2004). Our understanding of Asian refugia comes from a range of species, including the 

plant Arabidopsis thaliana (Sharbel et al., 2000; Beck et al., 2008), tawny owl (Brito, 

2005) and summer-green trees (Leroy and Arpe, 2007). 

 

 In addition to showing northward declines in genetic variability, populations that 

have undergone expansions can also be identified by their ‘star-like’ phylogenies, in 

which there is a common ancestral haplotype with several closely related derived 

haplotypes. This is the case for R. affinis in China (Mao et al., 2010b), in which the 

estimated most recent common ancestor for the star-like topographies was concurrent 

with Pleistocene glaciations cycles. Similar topologies have been observed in some 

other bat species, such as Carollia perspicillata and Carollia sowelli from the New 

World tropics (Hoffmann and Baker, 2003) and Mystacina tuberculata from New 

Zealand (Lloyd, 2003).    

  

 In comparison to temperate areas, the phylogeography of bats (and other taxa) in 

the wet tropics has not been well explored. However, current findings have 

demonstrated greater population variation and network complexity in tropical bats, 

often with less clear demographic expansions due to higher nucleotide diversity 

(Carstens et al., 2004; Martins et al., 2007; Martins et al., 2009; Chen et al., 2010).  

These phenomena are evident in Cynopterus brachyotis (Campbell et al., 2004), 

Rhinolophus pearsoni (Mao et al., 2010a) and Rhinolophus monoceros (Chen et al., 

2006). Here the networks show more even distributions of ancestral haplotypes, with 

reticulations and often lots of mixing. This is not surprising since the populations and, 

in some cases the taxa, should be much older in areas that were not directly affected by 

ice sheets during glacial periods. However, although these tropical populations are older 

than those in temperate zones, the possibility remains that forest-specialist species have 

undergone cycles of contractions and expansions if the area of forest in the region 

decreased during the LGM. More studies are therefore needed in order to test this 

possibility.  

 

Up until the year 2002, a total of 71 horseshoe bat species, under the single 

genus Rhinolophus, (family Rhinolophidae) had been identified worldwide (2003, 

Simmons, 2005). Rhinolophus species are distributed across the Old World and are 

particularly diverse in the tropical regions of Asia and Africa (Csorba et al., 2003). The 
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recently compiled Southeast Asia Mammal Databank (SAMD, 2009) shows that 38 

Rhinolophus species (around 53% of the total number) occur in Southeast Asia. There 

has been considerable interest in the timing and mechanisms of diversification of 

horseshoe bats, as well considerable debate regarding their biogeographical history. A 

detailed phylogeny has been reconstructed based on Cytochrome b sequences (Guillén-

Servent et al., 2003) in which the oldest fossil of the genus was used to estimate the split 

time of the Rhinolophidae from its sister family, the Hipposideridae (Simmons and 

Geisler, 1998; Gunnell and Simmons, 2005). This phylogeny was used to suggest that 

the genus originated from Europe during the late Eocene. However, this result 

conflicted with earlier assessments based solely on morphological data, which 

suggested a Southeast Asian origin (Bogdanowicz, 1992). More recent phylogeographic 

inferences based on mitochondrial genes and nuclear introns (Stoffberg et al., 2010) and 

a combination of morphological and molecular data (Teeling et al., 2005), have not 

resolved this issue and both Asian and African origins are still proposed (Eick et al., 

2005). In most of these studies, the divergence, radiation and colonisation processes of 

horseshoe bats have been linked to climate or habitat change (Maree and Grant, 1997). 

Examination of the shallower parts of the tree has focused on mechanisms of species 

divergence (Kingston and Rossiter, 2004; Mao et al., 2010a; 2010b). 

 

Dispersal and colonisation history of Rhinolophus affinis 

 

Rhinolophus affinis is a common species that is widespread across northern India, 

southern China, mainland Southeast Asia (Thailand, Vietnam and Malaysia) and 

Indonesia (Csorba et al., 2003; SAMD, 2009; Francis, 2008). To date, nine subspecies 

of R. affinis have been recognised and, with the exceptions of R. a. himalayanus and R. 

a. hainanus, all are restricted to Southeast Asia (Csorba et al., 2003). 

 

Studies that have undertaken morphological assessment (Zhou et al., 2005) and 

reconstructions of population history (Mao et al., 2010b) have revealed differences 

among three subspecies of R. affinis in China: R. a. himalayanus, R. a. macrurus and R. 

a. hainanus. Of these, the former two are from the mainland, and the latter is an island 

subspecies from Hainan. Bayesian estimation of the time of the most recent common 

ancestor (TMRCA) of all three taxa was around 900,000 years ago, a period when the 

sea level was higher and so suggesting a role of the Qiong Zhou Strait as a geographical 

barrier mediating the formation of the island subspecies R. a. hainanus (Mao et al., 
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2010b). This study also suggested that during glaciation periods, when the sea level was 

low, exposed land bridges aided recolonization events of R. a. hainanus back to the 

mainland, where it formed R. a. macrurus and underwent secondary contact with R. a. 

himalayanus. 

 

Other work on R. affinis in Southeast Asia linked genetic structure to sea barriers 

(Maharadatunkamsi et al. 2000). Yet unlike the clear divergence pattern shown in 

China, the populations of R. affinis from 11 islands in the Wallacea region of Indonesia 

(at the eastern edge of the species range) revealed a different trend. Here, allozyme and 

morphological data taken from island subpopulations indicated an overall longitudinal 

decline in heterozygosity from west to east, with lowest diversity in the most isolated 

islands. Moreover, in contrast to the findings of Mao et al. (2010b), there was no 

evidence that genetic structure among islands was correlated to sea barriers at the time 

of the LGM (Maharadatunkamsi et al., 2000). 

 

 In Peninsular Malaysia R. affinis is represented by just one subspecies, R. a. 

superans, which was first described in 1905 in Pahang (Andersen, 1905). The taxon was 

later reported in other areas of Peninsular Malaysia, including Pasoh Forest Reserve in 

Negeri Sembilan, Sungei Siput, Batu Caves, Lenggong in Perak; as well as Krau, 

Sembilan, Kampung Juara (Tioman Island) and Tanah Rata in Pahang (Zubaid, 1993; 

Csorba et al., 2003; Kingston et al., 2006; Struebig et al., 2008).  Landscape-scale 

population genetic structure of R. affinis population in Pahang was studied by Struebig 

(2008) based on microsatellite data, who found evidence of two main clusters, 

suggesting the presence of a potential cryptic species, although further sampling and 

analyses are needed to confirm this.  

 

Although the aim of my study was to study the intra-species phylogeography of 

R. affinis in Peninsular Malaysia to gain insight into population history and 

colonisation, it is anticipated that any processes and patterns detected will be applicable 

to many other bat species that share the same traits and ecological requirements. As 

mentioned, the study region is home to the highest alpha diversity of insectivorous bats 

in the Old World, and tropical zones generally host more bat species (Findley, 1993). 

Similar ecomorphological and behavioural traits are seen in many of the rhinolophid 

species of Southeast Asia, including R. sinicus, R. lepidus and R. stheno (see Csorba et 

al. (2003)). The latter two of these taxa were included in a recent study by Rossiter et al. 
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(2012), who found evidence of correlated signatures of fine-scale gene flow in several 

forest bats characterised by similar roost habits (although this study did not include R. 

affinis).  

 

Biogeographical history of Sundaland 

 

The Malay Peninsula together with the southern part of Sumatra, Java, Borneo and 

Greater Palawan are collectively known as the Sundaland part of Southeast Asia, due to 

the fact that they are all located on the continental Sunda Shelf (Wallace, 1860; 

Tougard, 2001; Bird et al., 2005). See Figure S3.1 in the Supporting Appendix for a 

map of the shelf. Sundaland is an important biodiversity hotspot (Myers et al., 2000; 

Brooks et al., 2002), and is classified as one of the sub-regions of the Oriental 

biogeographical regions (Tougard, 2001). At the eastern limit of the region is Wallace’s 

line, and at the northern limit is the Isthmus of Kra at 9ºN. A clear turnover of biota has 

long been recognized at each side of these boundaries (Wallace, 1860). It is generally 

accepted that the Sunda Shelf was geologically stable throughout the Cenozoic era (Hall 

and Nichols, 2002), despite its complex geological formation during the Palaeozoic 

(Burrett et al., 1991), and that of Southeast Asia as a whole (Hall, 1998). Indeed tectonic 

plate models constructed for Southeast Asia suggest that the Malay Peninsula had 

formed its present shape, and had connected to mainland Asia over 50 million BP (Hall, 

1998 ). However, there were three subsequent major collision events that occurred 

beyond the Sunda Shelf that might have impacted on this region. These events were the 

collision of India and Asia at around 45 million years BP, the collision between the 

margin of north Australia and the arcs to the north (25 Ma) and the collision of Taiwan 

(5 Ma) (Hall, 1998; Ali and Aitchison, 2008).   

 

Before the mid-Miocene, the movement of ‘terranes’ (tectonic fragments) from 

Gondwana towards the Asian continental margin, acted as stepping stones for terrestrial 

Gondwanan biota to disperse into Sundaland (Burrett et al., 1991). The biogeography of 

these terranes has turned out to be fundamental in shaping present-day Sundaic 

biodiversity. For example, mite harvestmen that originated from the Sibumasu terrane 

of Gondwana are one example of an ancestral, yet endemic, group of arthropods from 

Sundaland (Clouse and Giribet, 2010). Other major faunal exchanges occurred between 

Southeast Asia and India, around 55 Ma, and also between northern Australia and 

eastern Sundaland (Hall, 1998; reviewed by Ali and Aitchison, 2008).    
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In addition to geological and tectonic activities, past and present biodiversity in 

Sundaland will also have been shaped by fluctuations in sea levels (and thus land 

distribution), as well as climatic elements such as temperature, rainfall and humidity. 

These factors have played especially important roles during the past one million years 

when the current shape of Sunda Shelf was fully formed and stable. Some researchers 

have presented evidence to suggest that Sundaland in the late Pliocene to early 

Pleistocene was characterized by a drier and seasonal climate (Verstappen, 1997), and 

this has also been suggested to be the case during the LGM itself (Heaney, 1991; 

Wikramanayake et al., 2002; Bird et al., 2005; Wurster et al. 2010). During such dry 

periods, it has been suggested that ‘savannah corridors’ stretched from the Malay 

peninsula to southern Borneo and Java, so fragmenting or replacing humid tropical 

rainforest and providing new habitats to animals (van den Bergh et al., 2001) and, at 

around 1.9 Ma, humans (Heaney, 1991; van der Kaars and Dam, 1995; Bettis et al., 

2004). Work on the taxonomic diversity of forest ant species suggest that the current 

highlands might have served as rainforest refugia during drier climatic conditions, 

although this study argued for the persistence of some forest (Quek et al., 2007). 

Similarly, it has been argued that grasslands replaced forest during glacial maxima in 

lowland Amazonia, and that this floral replacement contributed to the regional 

biodiversity by driving isolation and divergence of populations of forest specialists into 

small upland areas (Haffer, 1969).   

 

Contrary to suggestions that the forest was replaced by grasslands (also see 

General Introduction) a recently built spatially explicit model that incorporated 

palaeoclimatic, geographic and geologic information of Sundaland, has argued for a 

different scenario. Cannon et al. (2009) found that there was evidence of greater 

continuous coverage of evergreen rainforest in Sundaland during the LGM. In fact, 

under this model, the larger extent of rainforest was considered normal throughout the 

last million years, whenever periods of the sea level dropped lower than present day. 

This study further concluded that Sundaland’s tropical forests are currently at a refugial 

stage, where flora and fauna are retreating and remain in the exposed highlands. If this 

is the case, rainforest fauna would have been provided with a broad and continuously 

available habitat with no obvious barriers to dispersal over the fully exposed shelf 

during low sea level periods since the mid-Pliocene (5.3 to 2.8 Ma), a scenario that has 

been suggested from data on rodents (Gorog et al., 2004) and primates (Harrison et al., 
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2006). Interestingly, the extent of savannah in Amazonia has also been questioned in 

light of newer data, again indicating that rainforest might have been more resilient to 

cooler climates than was previously suggested (Colinvaux et al., 1996). 
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Study objectives  

 

In this study, the widespread distribution of R. affinis over Sundaland and Asia, as well 

as its abundance in the region, provided an ideal model species with which to trace the 

phylogeographic and colonisation patterns of a forest-specialist mammal in tropical 

Southeast Asia. By examining mtDNA to characterise the phylogeographic pattern of R. 

affinis populations in Peninsular Malaysia, the following questions and hypotheses were 

addressed:  

 

i. Characterize the pattern of broad-scale genetic structure and migration model of 

R. affinis populations in Peninsular Malaysia and assess its demographic history. 

If theories of rainforest loss during the LGM following by post-LGM recovery 

are correct, I hypothesize that genetic variation (haplotype diversity) will show a 

clinal signature due to population and range expansion from one or more 

refugial areas. Conversely, if the rainforest persisted throughout this period, I 

expect no such cline and instead diversity should be more evenly distributed. 

ii. Compare R. affinis population genetic diversity and structure in Malaysia to that 

of China, to incorporate a wider geographical scale. 

iii. Estimate and construct maternal genealogies of R. affinis populations in 

Peninsular Malaysia based on statistical parsimony and median-joining methods.  

Related to (i), I would expect to see evidence of a star-like phylogeny if this 

species underwent post-glacial population expansion and no such signature if the 

species was relatively stable during the glacial maximum. 

iv. Estimate demographic growth of R. affinis in Peninsular Malaysia, again to 

assess whether there is evidence of population growth consistent with post-LGM 

recovery.  
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Material and methods 

 

Sampling sites selection and tissue sampling 

 

I surveyed 28 sites for R. affinis individuals across Peninsular Malaysia between 

February 2008 and September 2009 (Figure 3.1). For 26 sites, bats were captured with 

harp traps (see Chapter 2). Additionally at site KH3, hand nets were used to capture bats 

in caves due to practical difficulties of accessing foraging sites. For sampling for DNA 

analysis, a 3-mm biopsy of wing membrane tissue was removed from each animal using 

a dermatological punch (Stiefel, UK). From two additional sites, samples were obtained 

from Dr C. Fletcher of the Forest Research Institute of Malaysia (FRIM): coded as 

Temenggor Forest Reserve (PK4/PITC) and the FRIM headquarters (FRIM). More 

details of sampling sites (hereafter referred to as ‘populations’) are listed in Table 3.1. 

 

DNA extraction and amplification 

 

Genomic DNA for each individual of R. affinis was extracted and purified from wing 

membrane tissue using either the high-throughput Promega Wizard® SV 96 Genomic 

DNA Purification System (96-well format) or the Promega Wizard® SV Genomic DNA 

Purification System (250 preps). In each case, digestion using Proteinase K was 

undertaken overnight, and extractions followed the manufacturer’s protocols. 

 

 The hypervariable domain I (HV I) of the D-loop of the mitochondrial genome 

was amplified with primers DL-H 16750 (5’-CCTGAAGTAGGAACCAGATG-3’) 

(Wilkinson and Chapman, 1991) and Thr-L 16272 (5’-CCCGGTCTTGTAAACC-3’) 

(Stanley et al., 1996).  This region spans phenylalanine tRNA (tRNAPhe) to proline 

tRNA (tRNAPro) (Clayton, 1982). Polymerase Chain Reactions (PCRs) were undertaken 

in 30µl volumes containing 1u of Promega GoTaq® Flexi DNA Polymerase, around 

3.0ng of DNA template, 0.67µM of each primer, 0.33mM of each dNTP, 2mM of Mg2+ 

and 1x of the manufacturer’s buffer. PCR was performed using an Eppendorf 

Mastercycler Gradient with the following profile: an initial denaturing step of 5 minutes 

at 95ºC; 35 cycles of amplification, with each cycle consisting of a denaturing step of 30 

seconds for 94ºC, an annealing step of 55ºC for 30 seconds and an extension step of 40 

seconds for 72ºC. The PCR ended with a final extension step of 72ºC for 10 minutes.  
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Figure 3.1 Map of Peninsular Malaysia showing 30 localities from which 

individuals were analysed for sequence-based phylogeographic analyses. 

To aid with the interpretation of the results, sampling sites (populations) 

are colour coded as follows: brown-yellow for the west region, green for 

the central region, blue for the east region, and red-pink for the southern 

region.  For each group, colour tones decrease with latitude (i.e. darker 

colours for the most north-east samples). These colours are also included in 

Table 3.1 and Figures 3.4 and 3.5.  
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Table 3.1 Localities with samples analysed for sequencing 

Coordinates 

Site Region 

Sampling 

Locality
a
 

Sampling 

Elevation Longitude Latitude n
b
 C

c
 

Central F03 <300m 101.9670 3.7000 1  

 F23 <300m 101.8910 3.7494 5  

 F24 <300m 102.4542 3.6348 6  

 F25 <300m 102.1667 3.7500 2  

 F26 <300m 102.0830 3.6830 6  

 KH3 129m 100.9628 6.1069 6  

 KT1 294m 101.4857 4.6736 5  

 KT3 65-108m 101.9766 5.3398 8  

 PH1 34-56m 102.9011 3.2229 6  

 PK4/PITC 590-810m 101.3600 5.5100 6  

 PH6  70m 102.1882 4.2163 9  

West FRIM NA 101.6378 3.2369 10  

 KH1 51m 100.7732 5.5012 6  

 KH2 78&178m 100.4840 6.3192 9  

 NS1  <300m 102.0782 2.7050 7  

 PN1  <300m 100.5457 5.1511 6  

 PK1  90m 101.0039 4.5385 8  

 PK2  <300m 100.5550 4.2200 9  

 PK3  18m 101.1757 4.3789 8  

East KT2 49-257m 102.1681 5.6948 3  

 KT4 94m 102.3784 5.7411 9  

 KT5 48m 102.3384 5.7944 7  

 PH2  140m 102.6813 4.4131 7  

 PH3  6m 103.3575 3.8614 9  

 PH5  <300m 103.0333 3.9167 8  

South JH1 29-160m 103.5860 2.1862 10  

 JH2 24-29m 103.9139 1.8693 6  

 JH3 97m 103.1589 2.3456 10  

 MK4 <300m 102.3833 2.3833 7  

 MK5 <300m 102.4167 2.4667 1  
a Sites in italic are sampling locations of wing punch tissues contributed by Dr C. Fletcher 
of the Forest Research Institute of Malaysia (FRIM). 
b Number of samples used in analyses 
c Colours representing sampling localities, corresponding to Figures 4.1, 4.4 and 4.5. 
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PCR products were then purified using the QIAquick PCR Purification Kit 

(Qiagen), and sent for Sanger sequencing, either by Eurofin MWG Operon (Germany) 

or by 1st Base Pte. Ltd. (Singapore). Both companies used an automated ABI PRISM 

DNA Sequencer (Applied Biosystems). All PCR products were sequenced in a single 

direction with primer Thr-L 16272. In cases of failed or low quality sequencing results, 

this step was repeated at least once with the same primer.  

 

Sequences were edited by eye and aligned using CLUSTAL, implemented in 

BioEdit (http://www.mbio.ncsu.edu/bioedit/bioedit.html). During alignment and editing, 

sequences of low quality were filtered. Aligned mtDNA sequences were collapsed into 

haplotypes using Alignment Transformation Environment (ALTER) (Glez-Peña et al., 

2010). Aligned sequences were converted into nexus and phylip file formats for 

subsequent analyses. 

 

 

Genetic diversity and demographic history analysis 

 

For the complete dataset, the numbers of polymorphic and parsimony informative sites 

were calculated using DNA Sequence Polymorphism (DnaSP) version 5.10. Genetic 

diversity was calculated at the global level (i.e. all populations from the Peninsular 

Malaysia) and also for the four broad regional groupings: West, Central, East and South 

regions (Figure 4.1). These areas, although somewhat arbitrary, were chosen because 

they correspond to natural geographical areas (each side of the main mountain range, 

the inland area, and the coastal area). It was hoped that comparative genetic analyses of 

populations from these four regions could thus provide information on broad-scale 

patterns of structure and variation. 

 

Average pairwise distances among haplotype sequences, within each region and 

between the four regions, were calculated with MEGA v. 4 (Tamura et al., 2007) using 

the Kimura-2-parameter model (Kimura, 1980) with a gamma distribution. Gaps were 

treated as pairwise deletions. Average pairwise differences (k), haplotype diversity (h) 

and nucleotide diversity (π) were calculated for each population as well as at the 

regional level using the software DnaSP version 5.10 (Librado and Rozas, 2009). 

Populations with only one individual (e.g. F03 and MK5) were excluded during the 
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calculation of the three measurements at the population level, leaving 28 populations 

across Peninsular Malaysia that collectively comprised a total of 198 individuals. 

Haplotype diversity is defined as the probability of two randomly chosen haplotypes 

from a sample being different (Nei, 1987), which is analogous to expected 

heterozygosity for diploid data (Doukakis et al., 2002). Nucleotide diversity (π) 

describes the average number of nucleotide differences per site between two randomly 

chosen and randomly mated DNA sequences in the sample (Nei, 1987; Nei and Kumar, 

2000).   

 

In order to estimate the demographic history of the study populations, neutrality 

tests were performed at both the global level (which here means all populations in 

Peninsular Malaysia) and at the regional level (Central, West, East, and South of 

Peninsular Malaysia). Pooling sequences from different populations in this way was 

justified because, based on the results, the data met the assumption for undertaking 

demographic analyses that population genetic structure is minimal or absent. These tests 

also assume no recombination, or selection, which are also conditions that are met by 

mtDNA. For the global analysis, Tajima’s test of neutrality, D (Tajima, 1989) was used 

to assess the null hypothesis of selective neutrality and constant population size 

(Kimura, 1983) of the D-loop mtDNA region of R. affinis based on its DNA 

polymorphic sites and the average number of nucleotide differences. Beside this, Fu and 

Li’s D* and F* tests (Fu and Li, 1993) were applied to assess population growth of R. 

affinis population in Peninsular Malaysia. These tests focus on DNA polymorphism to 

detect an excess of old mutations.  Fu’s FS (Fu, 1997) test is one of the most powerful 

tests for population growth when based on non-recombining (Fu, 1997; Ramírez-

Soriano et al., 2008) and uni-locus neutral data (Ramos-Onsins et al., 2007). If the 

global population experienced population expansion or bottleneck events, then the null 

hypothesis of Tajima’s D test will be rejected, and the D value will deviate from zero. 

Similarly, a significant negative departure of D*, F*, FS value from zero (e.g. no 

selective advantage among haplotypes in the population) also signifies past 

demographic expansion. 

 

 To assess the demographic history at a finer scale, I used the R2 statistic, which 

is a measure of the difference between the average number of nucleotide differences and 

the number of singleton mutations (Ramos-Onsins and Rozas, 2002). Small R2 values 

point to a population expansion model. Finally, I also plotted mismatch distributions for 
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all regions (Rogers and Harpending, 1992), which are distributions of polymorphic sites 

versus the pairwise number of differences (Librado and Rozas, 2009). I used 

Harpending’s raggedness index (r) to assess the null hypothesis of population growth, 

which is a measure of smoothness of the curve (Harpending, 1994). Populations at 

stationary demographic equilibrium are expected to have ragged, bimodal or 

multimodal distributions so that the null hypothesis can be rejected (P < 0.05) whereas 

populations that have undergone recent demographic expansion are expected to have 

smoother or unimodal plots and the null model will not be rejected (P > 0.05) (Rogers 

and Harpending, 1992). All of the population demographic history tests and analyses 

were performed with DnaSP version 5.10 (Librado and Rozas, 2009). Test values were 

assessed for significance with 10,000 bootstrap replicates using the coalescent 

simulation tool in the same program. 

 

 

Population genetic structure analyses 

 

In order to assess dispersal patterns and population structure of R. affinis populations in 

Peninsular Malaysia, I undertook an isolation-by-distance (IBD) analysis. The IBD 

model of gene flow applies where genetic isolation increases with physical distance due 

to a decrease in dispersal and mating probability (Wright, 1943). Gene flow is said to be 

following a stepping stone model. As such, IBD plots are commonly constructed to 

assess genetic structure among populations based on the Euclidean distances (Wright, 

1943), assuming there is no geographical complexity (Jenkins et al., 2010). For my 

project, I calculated pairwise geographical distances among 23 sampling sites in 

Peninsular Malaysia (each consisted of a minimum of five samples) using Genetic 

Analysis using Excel (GENALEX) version 6.4 (Peakall and Smouse, 2006). Recorded 

coordinates (in the form of latitude and longitude) are shown in Table 3.1. Pairwise 

genetic distances among the 23 sampling sites were calculated based on aligned 

haplotypes using MEGA 4 (Tamura et al., 2007) using the Kimura-2-parameter 

(Kimura, 1980) model of substitution. The correlation between genetic and geographical 

distances was tested in the software ‘Isolation by Distance Web Service’ version 3.16 

(IBDWS) (http://ibdws.sdsu.edu/) (Jensen et al., 2005). The strength and significance of 

the relationship between genetic distances and geographic distances was assessed using 

a Mantel Test and reduced major axis (RMA) regression, based on 10,000 

randomizations.   
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Populations were further classified into two regions based on climatic and 

geographical characteristics: the Central Montane region that is more humid, 

mountainous, cooler and less developed (F24, F26, KH1 to KH3, KT1, KT3, NS1, PH2, 

PH6, PK3) and the “Marginal” region that is lower, flatter, drier, and more developed 

and thus characterised by forests that show greater fragmentation (JH1 to JH3, KT4, 

KT5, MK4, PH1, PH3, PH5, PK1, PK2, PN1, FRIM, UKM). IBD tests were repeated 

within each of these two regions. Here, the Montane region represents undisturbed and 

more continuous habitat for forest bat species, while the Marginal region is a more 

disturbed and fragmented habitat. If gene flow in R. affinis is influenced by habitat 

disturbance, I would expect that populations in the marginal areas might show greater 

levels of differentiation for a given distance than those in the more continuous forest of 

the Centre. 

 

 

Phylogenetic analyses 

 

Several methods were used to infer the phylogenetic relationship among populations 

within Peninsular Malaysia, and also between these and populations further north in 

China. These methods can provide insights into population origin and historical 

processes including colonization. 

 

Two network-based genealogical analyses were conducted to assess 

relationships among all sampled individuals, which are considered particularly suitable 

for describing intraspecific gene evolution because they can incorporate several 

phenomena that are common at the population-level but which are not taken into 

account in conventional phylogenetic approaches (Posada and Crandall, 2001). These 

phenomena include the coexistence of both ancestral and derived gene copies in the 

population, reticulate relationships due to recombination events, and multi-furcating 

relationships. 

 

First, general intraspecific network analysis was performed in NETWORK 

4.6.0.0, which implements the median-joining method (Bandelt et al., 1999). A total of 

200 sequences from 30 sampling sites were collapsed into 167 haplotypes in 

NETWORK 4.6.0.0 before proceeding to the three stages of network construction. At 
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the pre-processing stage, relationships between all haplotypes were first inferred and 

predicted by a star contraction network with the star radius set to 4. The pre-constructed 

network was contracted twice at this stage resulting in a total of 155 haplotypes for 

median-joining (MJ) construction at stage two. The MJ network was constructed with a 

default character weighting of 10 at each character and an epsilon value (weighted 

genetic distance) of 10. A frequency criterion of >1 was used at this stage to include 

sequences for the network skeleton. The connection cost was selected as the network 

distance calculation method. At the post-processing stage, the Maximum-Parsimony 

method was applied to identify and suppress unnecessary median vectors and links. The 

resulting network was then edited in Network Publisher software 1.3.0.0. A regional 

network was also constructed using the same procedures as described above, based on a 

total of 229 haplotypes from West Malaysia and China (Mao et al., 2010b), which was 

ultimately represented by 54 active haplotypes.   

 

Second, I also inferred the mtDNA gene genealogy of R. affinis by constructing 

a network cladogram based on the statistical parsimony method in the software TCS 

1.21 (Clement et al., 2000). A parsimony threshold of 95% was used, and gaps in the 

sequences were treated as a fifth state. Statistical parsimony is an algorithm established 

by Templeton et al. (1992), which estimates gene genealogies based on the calculation 

of maximum numbers of mutational steps formed by the most parsimonious connection 

between two haplotypes at a probability of 95% (significant standard deviations). This 

algorithm is limited to DNA sequences or segments with low occurrence of 

recombination. Unlike the previous network, all haplotypes from 200 individuals 

representing 30 localities were fully demonstrated in this network cladogram. The 

resulting genealogical network cladogram was then edited in Microsoft Power Point 

2007. The colour codes used are listed in Table 3.1. 

 

In addition to networks, three traditional phylogenetic analyses were also used to 

assess the relationships among haplotypes found across the study area: UPGMA, 

Maximum-Likelihood and Bayesian (see below for details). For these, the D-loop 

sequence of Rhinolophus monoceros (GenBank ref: DQ314025) was used as an out-

group to root the trees. These analyses were applied to the data from Peninsular 

Malaysia, and also to the combined data from Peninsular Malaysia and China (see Mao 

et al., 2010b). 
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A phylogram based on the UPGMA was undertaken in PAUP version 4.0 beta 

10 for Windows System (Swofford, 2002). The HKY85 gamma-corrected genetic 

distance (Hasegawa et al., 1985) was used, using 1000 bootstraps (Felsenstein, 1985). 

HKY85 is a model of substitution for DNA sequence data (Hasegawa et al., 1985) that 

allows for unequal base frequencies and an unequal transition to transversion ratio (ti/tv 

ratio) (Swofford, 2002). As mentioned above, UPGMA phylograms were constructed 

using only Peninsular Malaysia samples (148 selected haplotypes) and also these with 

the samples from China (108 selected sequences from Mao et al. (2010b)).   

 

 For phylogenies based on Maximum Likelihood and Bayesian methods, it was first 

necessary to select a best-fit nucleotide substitution model for the data using 

MrModeltest 2.3 (Nylander, 2004). Model selection was undertaken based on 148 

selected aligned haplotypes from 30 sampling sites in Peninsular Malaysia. 

MrModeltest 2.3 implemented model selection by running several nucleotide 

substitution models and comparing model fit using likelihood-ratio tests and the Akaike 

Information Criterion (AIC) (Posada and Crandall, 1998; Posada, 2008).  

 

 Using the best fitting model (see Results), Maximum-Likelihood phylograms 

were undertaken in PhyML 3.0 Online (http://atgc.lirmm.fr/phyml/) (Guindon and 

Gascuel, 2003). This program has been written to cope with large datasets. Bootstrap 

analysis was performed with 500 replicates. Bayesian phylogenetic reconstruction was 

performed using MrBayes (Huelsenbeck and Ronquist, 2001; Ronquist and 

Huelsenbeck, 2003), run on the high performance computer (BioHPC) at Cornell 

University (USA) (http://cbsuapps.tc.cornell.edu/mrbayes.aspx). For estimation of 

posterior probabilities of the Malaysia dataset, four Monte-Carlo Markov Chains 

(MCMC) were run, each for 4,000,000 generations. During the run, trees were sampled 

at every 100th generation, and the first 80,000 trees were discarded as burn-in. For 

inferring relationships between the Peninsular Malaysia and Chinese populations, the 

same parameters were applied to the whole dataset with 6,000,000 MCMC generations. 

Nodes with at least 70% bootstrap support in UPGMA and ML phylograms, as well as 

minimum Bayesian posterior probability of 0.95, were considered as significant and 

robust.  Generated phylograms were opened and edited with TreeView 1.6.6 (Page, 

1996) and FigTree version 1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/). 
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Finally, in order to estimate the time to the most recent common ancestor 

(TMRCA) for the major mtDNA clades, a Bayesian tree was constructed in the software 

BEAST (‘Bayesian Evolutionary Analysis Sampling Trees’) version 1.6.1 (Drummond 

and Rambaut, 2007). In this program, a total of 241 mtDNA sequences from both 

Chinese and Peninsular Malaysia populations were analysed based on the HKY+I+G 

model as well as a relaxed-clock model with an uncorrected lognormal distribution 

using a substitution rate of 20% per million years. This substitution rate was previously 

estimated empirically for the control region of the noctule bat (Petit et al., 1999), and 

has also been used for other horseshoe bat species (Chen et al., 2006). Two independent 

runs of 15 million generations each were performed, with a burn-in of 15,000 

generations and sampled every 1000 steps from each respective run. Results from both 

runs were combined and assessed for effective sample size (ESS) for each parameter in 

Tracer version 1.5 (Drummond and Rambaut, 2007). Bayesian trees from both of the 

runs were also combined using LogCombiner version 1.6.1 (Drummond and Rambaut, 

2007) and visualized and edited in FigTree version 1.3.1. 
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Results 

 

Genetic diversity and demographic history analysis 

 

I obtained a total of 200 HV I of D-loop region sequences of R. affinis from 30 sampling 

sites across Peninsular Malaysia. The sequenced section comprised 525 base-pairs and 

ranged from positions 6272 and 16750 (Wilkinson and Chapman, 1991). Of these 200 

sequences, 167 different haplotypes were recorded, including 144 (86.23%) singletons. 

A few haplotypes occurred as multiple copies (18 cases of two copies, two of three 

copies, one of four copies and two of five copies). Overall, haplotype diversity (h) was 

0.9975. In terms of geographical structure, 13 haplotypes were found in multiple 

populations, mostly (n = 8) from the same region. Just one haplotype occurred in all five 

regions. Details of the localities and frequencies of the haplotypes are shown in Table 

3.2a. A table summarising the published haplotype data from Chinese and Vietnamese 

populations of R. affinis revealed that the level of diversity was also extremely high in 

this species in higher latitudes north of Malaysia (Table 3.2b). Mao et al. (2010b) 

estimated the haplotype diversity (h) to be 0.983, therefore almost identical to the value 

found in this study. 
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Table 3.2a Haplotypes for D-loop region of R. affinis mtDNA that successfully identified 

based on 200 individuals from 30 sampled populations across Peninsular Malaysia 

Continued overleaf 

Haplotypes 

observed 

Individuals Populations observed Number of 

sequances shared 

1 F03041  F03 1 
2 F23010, F23023 F23 2 
3 F23038, PK301006 F23,PK3 2 
4 F23062, PH601049 F23,PH6 2 
5 F23065, PH601064 F23,PH6 2 
6 F24005 F24 1 
7 F24007 F24 1 
8 F24021 F24 1 
9 F24033 F24 1 

10 F24034, F24035 F24 2 
11 F25020 F25 1 
12 F25021 F25 1 
13 F26020 F26 1 
14 F26021 F26 1 
15 F26023 F26 1 
16 F26071 F26 1 
17 F26073 F26 1 
18 F26084, JH301007, NS1MA, NS10013, PH10106 F26,JH3,NS1,PH1 4 
19 FRIM1585 KH20107 KT501025 FRIM,KH2,KT5 3 
20 FRIM1632 FRIM 1 
21 FRIM1690 FRIM 1 
22 FRIM3761 FRIM 1 
23 FRIM3763 FRIM 1 
24 FRIM3768 FRIM 1 
25 FRIM3770 FRIM 1 
26 FRIM3827 FRIM 1 
27 FRIM3948 FRIM 1 
28 FRIM3991 FRIM 1 
29 JH10107 JH1 1 
30 JH10110 JH1 1 
31 JH10121 JH1 1 
32 JH10122 JH1 1 
33 JH10123 JH1 1 
34 JH101180 JH1 1 
35 JH10203 JH1 1 
36 JH10204 JH1 1 
37 JH10524 JH1 1 
38 JH10538 JH1 1 
39 JH201114 JH2 1 
40 JH201117 JH2 1 
41 JH201121 JH2 1 
42 JH201125 JH2 1 
43 JH201135, JH302027 JH2, JH3 2 
44 JH202009 JH2 1 
45 JH302008 JH3 1 
46 JH302014 JH3 1 
47 JH302016 JH3 1 
48 JH302017 JH3 1 
49 JH302018 JH3 1 
50 JH302028 JH3 1 
51 JH302033 JH3 1 
52 JH303035 JH3 1 
53 KH10125 KH1 1 
54 KH10128 KH1 1 
55 KH10135 KH1 1 
56 KH102149 KH1 1 
57 KH10211, KH20111 KH1, KH2 2 
58 KH10252 KH1 1 
59 KH20108 KH2 1 
60 KH20138 KH2 1 
61 KH20143 KH2 1 
62 KH20144 KH2 1 
63 KH20205 KH2 1 
64 KH20214 KH2 1 
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65 KH20218, KH30206 KH2, KH3 2 
66 KH30101 KH3 1 
67 KH30203 KH3 1 
68 KH30234 KH3 1 
69 KH30253 KH3 1 
70 KH30255 KH3 1 
71 KT10110 KT1 1 
72 KT10120 KT1 1 
73 KT10132 KT1 1 
74 KT10513 KT1 1 
75 KT10526 KT1 1 
76 KT201015, KT401053 KT2, KT4 2 
77 KT201024 KT2 1 
78 KT202013 KT2 1 
79 KT302005 KT3 1 
80 KT302007 KT3 1 
81 KT302008 KT3 1 
82 KT302013 KT3 1 
83 KT302016 KT3 1 
84 KT302017 KT3 1 
85 KT302024, PH601063 KT3, PH6 2 
86 KT302033 KT3 1 
87 KT401003 KT4 1 
88 KT401013, PK302003 KT4, PK3 1 
89 KT401014, KT401078 KT4 2 
90 KT401019 KT4 1 
91 KT401026, PITC1611 KT4, PITC 2 
92 KT401052 KT4 1 
93 KT401058 KT4 1 
94 KT501008 KT5 1 
95 KT50122, PH301009 KT5, PH3 2 
96 KT501031 KT5 1 
97 KT501044 KT5 1 
98 KT501055 KT5 1 
99 KT501067 KT5 1 

100 MK40106, MK40135 MK4 2 
101 MK40129 MK4 1 
102 MK40130, MK40136 MK4 2 
103 MK40132 MK4 1 
104 MK40147 MK4 1 
105 MK50104 MK5 1 
106 NS1FARPL NS1 1 
107 NS1FARPL2 NS1 1 
108 NS10021 NS1 1 
109 NS10024 NS1 1 
110 NS10709 NS1 1 
111 PH10102 PH1 1 
112 PH10103 PH1 1 
113 PH10105 PH1 1 
114 PH10107 PH1 1 
115 PH10345 PH1 1 
116 PH20133 PH2 1 
117 PH20162 PH2 1 
118 PH20192 PH2 1 
119 PH201128, PH301026, PH301056, PH301061 PH2, PH3 4 
120 PH201147 PH2 1 
121 PH201151 PH2 1 
122 PH201174 PH2 1 
123 PH301014 PH3 1 
124 PH301017 PH3 1 
125 PH301045 PH3 1 
126 PH301060 PH3 1 
127 PH301079 PH3 1 
128 PH501003, PH501051 PH5 2 
129 PH501013 PH5 1 
130 PH501018 PH5 1 
131 PH501022 PH5 1 
132 PH501045 PH5 1 
133 PH501046 PH5 1 
134 PH501055 PH5 1 
135 PH601034 PH6 1 
136 PH601053 PH6 1 
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137 PH601062 PH6 1 
138 PH602035 PH6 1 
139 PH602043 PH6 1 
140 PH602044 PH6 1 
141 PITC0124 PITC 1 
142 PITC0156 PITC1642 PITC 2 
143 PITC1699 PITC 1 
144 PITC3537 PITC 1 
145 PK10102 PK1 1 
146 PK10103 PK1 1 
147 PK10104 PK1 1 
148 PK10107 PK1 1 
149 PK10151  PK1 2 

 PK10209   
150 PK10173 PK1 1 
151 PK101129 PK1 1 
152 PK203037 PK203038 PK203040 PK205031 PK205050 PK2 5 
153 PK203065 PK2 1 
154 PK205046 PK2 1 
155 PK205058 PK2 1 
156 PK206008 PK2 1 
157 PK301002 PK3 1 
158 PK301008 PK301048 PK3 2 
159 PK301012 PK3 1 
160 PK301018 PK3 1 
161 PK303001 PK3 1 
162 PN10201 PN1 1 
163 PN102098 PN1 1 
164 PN102109 PN1 1 
165 PN102115 PN1 1 
166 PN102116 PN1 1 
167 PN102117 PN1 1 
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Table 3.2b Summary information for 121 published haplotypes for D-loop region of R. 

affinis based on 164 individuals from five localities in China and one locality in Vietnam 

published data by Mao et al. (2010b). Continued overleaf 

Haplotypes  

observed 

Individuals Populations observed Number of 

sequances shared 

168 FQX009, SLD001, SLD004, SLD017, SLD022, WLB033 
JLH004, JLH006,  

Fu Jian (FJ),  
Guang Dong (GD),  

Guang Xi (GX),  
Jiang Xi (JX) 

8 

169 FQX010 FJ 1 
170 FQX011, SLD020 FJ, GD 2 
171 FQX012 FJ 1 
172 FQX015 FJ 1 
173 LF007 GD 1 
174 LF020 GD 1 
175 SLD002 , SLD016 GD 2 
176 SLD003 GD 1 
177 SLD005, SLD011, SLD019 GD 3 
178 SLD006 GD 1 
179 SLD009 GD 1 
180 SLD010 GD 1 
181 SLD021 GD 1 
182 SLD023 GD 1 
183 WLB001, WLB032 GX 2 
184 NBCP001 Bong area, Cuc Phuong 

National Park, Ninh Binh 
Province Vietnam (VN) 

1 

185 NBCP015 VN 1 
186 JLH001 JX 1 
187 JLH002 JX 1 
188 JLH005, JLH008 JX 2 
189 JLH009 JX 1 
190 LZ539, JC400, DL608, YG07 Hainan Island (HND) 4 
191 LZ540 HND 1 
192 LZ541, QE001, QE004, QE006, SK362, DL616 HND 6 
193 LZ542 HND 1 
194 LZ543, XL002, DL611,YG20, YG23 HND 5 
195 LZ544, XL006, XL012, DL164, SL24, DL615  

YG09, YG12 
HND 8 

196 LZ545 HND 1 
197 LZ546 HND 1 
198 LZ547 HND 1 
199 LZ548 HND 1 
200 LZ549, DL163, YG18 HND 3 
201 LZ550, XMSK198 HND 2 
202 LZ551 HND 1 
203 XL003, SK364 HND 2 
204 XL004 HND 1 
205 XL007 HND 1 
206 XL009 HND 1 
207 XL010 HND 1 
208 XL011 HND 1 
209 XL014 HND 1 
210 XL015 HND 1 
211 QE002, DL597 HND 2 
212 QE003 HND 1 
213 QE005 HND 1 
214 QE007, DL609 HND 2 
215 XMSK197, XMSK208 HND 2 
216 XMSK201 HND 1 
217 XMSK205 HND 1 
218 XMSK214 HND 1 
219 XMSK216 HND 1 
220 MC186 HND 1 
221 MC187 HND 1 
222 MC192, SL25 HND 2 
223 NX001 HND 1 
224 NX129 HND 1 
225 SL19 HND 1 
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226 SL20 HND 1 
227 SL21 HND 1 
228 SL22, SL31 HND 2 
229 SL23 HND 1 
230 SL26 HND 1 
231 SL27, JC397 HND 2 
232 SL28 HND 1 
233 SL29  1 
234 SL30, JC396, JC399 HND 3 
235 SK360 HND 1 
236 SK361 HND 1 
237 SK363 HND 1 
238 SK365 HND 1 
239 SK366, JC394 HND 2 
240 JC389 HND 1 
241 JC390 HND 1 
242 JC391 HND 1 
243 JC392 HND 1 
244 JC393 HND 1 
245 JC395, YG08, YGL432 HND 3 
246 JC398 HND 1 
247 JC401 HND 1 
248 JC402 HND 1 
249 JC403 HND 1 
250 JC404 HND 1 
251 JC405 HND 1 
252 JC406 HND 1 
253 JC407 HND 1 

     254 JC408 HND 1 
255 LJ009 HND 1 
256 HL002 HND 1 
257 DL598 HND 1 
258 DL602 HND 1 
259 DL603 HND 1 
260 DL604 HND 1 
261 DL605 HND 1 
262 DL606 HND 1 
263 DL607 HND 1 
264 DL610 , YG10, HND 2 
265 DL612 HND 1 
266 DL613 HND 1 
267 DL614 HND 1 
268 DL617 HND 1 
269 YG05,YGL431 HND 2 
270 YG11 HND 1 
271 YG13 HND 1 
272 YG14, YG21 HND 2 
273 YG25 HND 1 
274 YGL433 HND 1 
275 YGL434 HND 1 
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Haplotypes from Malaysia collectively had a total of 147 variable sites (127 

sites with two nucleotide substitution and 20 sites with more than three nucleotides 

substitution).  Of these 147 variable sites, 111 were identified as being parsimony 

informative sites. The transition to transversion ratio was estimated to be 19.81 based 

on the nucleotide substitution model HKY85 (Hasegawa et al., 1985). Based on the 200 

mtDNA sequences, nucleotide diversity (π) was 0.03216 ± 0.00128 (± standard 

deviation). Average pairwise distance among haplotypes was 0.0389. Like haplotype 

diversity, estimated nucleotide diversity from Malaysia was remarkably similar to that 

reported for the Chinese and Vietnamese populations (π = 0.041) (Mao et al., 2010b).  

 

When these haplotypes were grouped into regions, the average pairwise distance 

within the Central region was 0.0454, the East region was 0.0364, the West region was 

0.0368, and the South region was 0.0270 (Table 3.3). The largest pairwise genetic 

distance was found between West-Central and East-Central regions, and the shortest 

distance was found between West and South region. 

 

 

 

Table 3.3 Average pairwise genetic distances between regions generated by MEGA 

4. Values in brackets below the region are the average pairwise distances within the 

respective region. 

Region Central 

(0.0454) 

West 

(0.0368) 

South 

(0.0270) 

East 

(0.0364) 

Central     

West 0.0421    

South 0.0396 0.0325   

East 0.0421 0.0360 0.0335  
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 Estimates of genetic diversity for each population in Malaysia are reported in 

Table 3.4. Populations from the Central region exhibited the highest haplotype diversity 

(h = 0.9961) and nucleotide diversity (π = 0.0400) in spite of having the fewest 

observed haplotypes (n = 53). The West region was found to have the next highest 

nucleotide diversity (π = 0.0310), whereas values were lower in the East (π = 0.0310) 

and South (π = 0.0273) regions. Overall numbers of polymorphic sites and pairwise 

genetic distances were also lower in the south and east. Therefore, unlike the findings 

for bat assemblage structure in the Chapter 2, genetic diversity of R. affinis based on the 

mtDNA D-loop did not decrease with increasing latitude or decreasing longitude. 

 

Demographic analyses of Malaysian bats based on Fu’s FS test showed a 

significant negative departure from zero (Fs = -205.25, P < 0.0001), a trend that was 

also indicated by Fu and Li's D* = -2.0283 (P < 0.05) and by F*= -1.8579 (P < 0.05).  

These statistical results reflect an excess of rare mutations in the population and thus 

indicate that the study population has not experienced a large population expansion. 

However, the small and significant Fs value of -205.25 (P < 0.001) also suggests that 

the study population may not be truly panmictic. In addition to these tests, Tajima’s D 

indicated a non-significant excess of rare mutations with slightly negative D values 

(D=-1.0556, P > 0.05), which supports the null hypothesis of Tajima’s D of a constant 

population size.  

 

Mismatch distribution plots showed approximately bimodal distributions for all 

of the four regions (Figure 3.2), with the observed mismatch distribution in the South 

and East regions peaking at a lower number of pairwise differences than the other 

regions. A unimodal distribution would occur under a model of growth, so a bimodal 

distribution is indicative of a more constant population size. I found that the raggedness 

index was significantly low for the whole Malaysian population (Figure 3.2a) as well as 

for each of the four regional groupings (Figure 3.2 b-d), suggesting rejection of the null 

model of population growth. There was also no evidence of recent growth as indicated 

by the R2 index, which was not significant in all of the regions. Based on all of the tests 

of population expansion, including both r and R2 indices, it seems that there is good 

evidence of a constant size for R. affinis in Peninsular Malaysia, and certainly no recent 

severe population growth (R2 = 0.0559, P > 0.1). 
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Table 3.4 Genetic diversity in 30 populations of R. affinis based on 
525bp of mtDNA D-loop region sequences 

No. 

Sampling 

Locality 

Latitude 

(ºN) na Ho
b Sc kd he π

f 

 

Central 

(Total)  60 53 105 21.3972 0.9961 0.0400 

1 KH3 6.1069 6 6 38 18.1333 1.0000 0.0346 

2 PK4/PITC 5.5100 6 5 42 21.4667 0.9333 0.0396 

3 KT3 5.3398 8 8 53 23.2143 1.0000 0.0443 

4 KT1 4.6736 5 5 17 8.1000 1.0000 0.0155 

5 PH6  4.2163 9 9 72 25.3889 1.0000 0.0471 

6 F25 3.7500 2 2 10 10.0000 1.0000 0.0191 

7 F23 3.7494 5 4 39 18.8000 0.9000 0.3588 

8 F03 3.7000 1 1 - - - - 

9 F26 3.6830 6 6 23 9.3333 1.0000 0.0178 

10 F24 3.6348 6 5 37 15.8000 0.9333 0.3015 

11 PH1 3.2229 6 6 16 7.5333 1.0000 0.0144 

 West (Total)  63 54 114 16.9160 0.9923 0.0310 

12 KH2 6.3192 9 9 43 16.8889 1.0000 0.0311 

13 PN1  5.1511 6 6 33 14.3333 1.0000 0.0268 

14 KH1 5.5012 6 6 26 10.6000 1.0000 0.0202 

15 PK1  4.5385 8 7 40 14.9643 0.9643 0.0286 

16 PK3  4.3789 8 7 40 15.8929 0.9643 0.0291 

17 PK2  4.2200 9 5 22 9.7778 0.7222 0.0180 

18 FRIM 3.2369 10 10 75 22.5111 1.0000 0.0423 

19 NS1  2.7050 7 6 36 12.7619 0.9524 0.0244 

 East (Total)   43 36 87 14.5415 0.9889 0.0273 

20 KT5 5.7944 7 7 51 19.8095 1.0000 0.0368 

21 KT4 5.7411 9 8 53 16.7222 0.9722 0.0319 

22 KT2 5.6948 3 3 29 19.3333 1.0000 0.0369 

23 PH2  4.4131 7 7 33 12.0952 1.0000 0.0222 

24 PH5  3.9167 8 7 31 12.1429 0.9643 0.0232 

25 PH3  3.8614 9 7 29 9.2222 0.9167 0.0169 

 South (Total)  34 31 65 12.5668 0.9947 0.0240 

26 MK5 2.4667 1 1 - - - - 

27 MK4 2.3833 7 5 24 10.7619 0.9048 0.0205 

28 JH3 2.3456 10 10 43 12.2222 1.0000 0.0233 

29 JH1 2.1862 10 10 41 13.6667 1.0000 0.0261 

30 JH2 1.8693 6 6 37 14.4667 1.0000 0.0276 
a Sample size 
b Haplotypes observed 
c Polymorphic sites 
d Mean pairwise differences 
e haplotype diversity; f nucleotide diversity 
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Figure 3.2 Mismatch distributions plotted for Rhinolophus affinis populations 

in Peninsular Malaysia to test for demographic growth. Plots were conducted 

for (A) all regions, (B) the Central region, (C) the Southern region, (D) the 

Eastern region, and (E) the Western region.  Results were assessed using the 

R2 statistic (Rasmos-Onsins and Rozas, 2002) and the raggedness index r 

(Harpending, 1994), the results of which are shown on each plot. 
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Population genetic structure  

 

To test for evidence of restricted dispersal among populations, I fitted an isolation-by-

distance (IBD) model of gene flow. This model assumes genetic structure will increase 

with Euclidean distances due to stepping-stone dispersal. Deviations from IBD can thus 

indicate geographical barriers or an island model of gene flow.  

 

 No IBD was detected for R. affinis populations across Peninsular Malaysia (r2 = 

7.66 x 10-3, P = 0.7587; Figure 3.3), indicating that adjacent populations are not less 

differentiated than those further apart. Upper points (higher differentiation based on 

values of > 0.05) in the IBD plot were seen to involve comparisons within the Central 

montane region, whereas most lower points (genetic distance of 0.02 to 0.05) tended to 

represent comparisons with the other regions. These comparisons were separated for 

closer examination (see Figures 3.3 b and 3.3c). Although genetic distances among most 

sites within the Central region were approximately the same as those from the other 

regions, three populations were seen to be associated with higher differentiation 

suggesting greater isolation (Figure 3.3b); these were populations KT3 (genetic distance 

with other sites ranged 0.04 to 0.05), PH6 (genetic distance with other sites ranged 0.04 

to 0.06) and KT1 (genetic distance with other sites ranged 0.06 to 0.08). Differences in 

genetic structure within and between regions are also summarized in Table 3.4.  
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Figure 3.3 Part (A) shows isolation-by-distance (IBD) undertaken for 

pairwise populations across Peninsular Malaysia. Part (B) shows IBD 

within the central montane region. These points have been colour-

coded to show different levels of differentiation recorded within this 

region: red diamonds indicate genetic distances between KT1 and other 

sites from the region, black diamonds indicate genetic distances 

between PH6 and KT3 and other sites from the region, and green 

diamonds indicate genetic distances between remaining sites from the 

region. Part (C) shows IBD within the coastal regions. 

 

Geographical distance (km) 
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Phylogenetic analyses 

 

An unrooted Median-Joining network constructed in NETWORK 4.6.0.0 consisted of 

157 contracted haplotypes with 26 active haplotypes (see Figure 3.4a). Most private 

haplotypes were excluded in this network in order to present the overall intraspecific 

maternal population structure of R. affinis in Peninsular Malaysia. The Median-Joining 

network showed just a single major haplo-group. Overall, very little phylogeographic 

structure was evident and haplotype frequencies were relatively even. All four regions 

were mixed in the network, although only a few haplotypes were shared by more than 

one region (shown by pi-charts with mixed colours), so that all regions had private 

haplotypes. At least 14 mutational steps separated the closest related haplotypes up to a 

maximum of 31 mutational steps between least related haplotypes. In the main group, 

reticulations were formed between interior inferred haplotypes, although very few 

interior haplotypes were sampled. The same network showing finer resolution 

geographical information (Figure 3.4b) highlighted this high level of mixing, with some 

regional private haplotypes from Figure 3.4a shown to occur in multiple populations. 

 

A statistical parsimony (95% threshold) network for Peninsular Malaysia based 

on the same set of 200 mtDNA sequences revealed six main sub-networks representing 

haplo-groups, and nine haplotypes inferred to be outgroups (shown as rectangles) 

(Figure 3.5).  All haplotypes within haplo-groups were connected by up to eight steps. 

A high level of reticulation among haplotypes was seen, especially in the major haplo-

group I and III. The network also indicated a high frequency of private singleton 

haplotypes (spread among interior and exterior positions) and a high level of variability 

of maternal lineages in the Central region. Putative ancestral haplotypes (out-group 

haplotypes, interior common haplotypes and haplotypes with many connections) were 

seen within all of the regions and often connected to haplotypes from multiple regions. 

There is some evidence of structure with a few related haplotypes restricted to the same 

region (e.g. sub-network II) and a high frequency exterior haplotype (PK2) that 

corresponds to an offshore island population. However, these are exceptional cases, and 

in general the network shows mixing across the country. 
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Figure 3.4 Unrooted Median-Joining haplotype networks showing the main 

intraspecific relationships among detected R. affinis haplotypes in Peninsular 

Malaysia. Each circle represents an active haplotype and small black circles are 

inferred intermediate haplotypes. Circle size is scaled to haplotype frequency, which is 

also shown in the circle. Numbers in red indicate mutational steps between connected 

haplotypes. The network is presented at two levels: (A) regional level (green = 

Central, yellow = West, blue = East and pink = South) and (B): population level 

(colours follow those in Table 3.1) 
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Figure 3.5 Unrooted statistical parsimony network detailing intraspecific relationships 

between detected haplotypes from sampled R. affinis. As in Figure 3.4, each circle 

represents a haplotype and circle size is proportional to haplotype frequency. Localities 

of the haplotypes are represented by colour codes following Table 3.1 (see inset map) 

and abbreviations on the circles are also listed in Table 3.1. Small circles on the branches 

represent inferred intermediate haplotypes. Breakpoints on the branches are equal to five 

mutational steps. 
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 To assess the relationship among Malaysian and Chinese haplotypes, an 

unrooted Median-Joining network was also constructed using data from this study and 

also Mao et al. (2010b) (see Tables 3.2a and 3.2b). The network comprised 54 active 

haplotypes selected from 229 haplotypes separated by 1 to 25 mutational steps (Figure 

3.6). Haplotypes from China and Peninsular Malaysia formed a single clade with a high 

level of reticulation, especially among inferred missing intermediate haplotypes that 

connected south mainland China to Centre and West Peninsular Malaysia. Overall three 

main sub-clades were recovered corresponding to geographical divisions: Hainan, China 

mainland and Peninsular Malaysia. The former of these were closely related to each 

other compared to Peninsular Malaysia.  

  

 

 

 

 

Figure 3.6 Unrooted Median-Joining network showing the intraspecific relationships 

among haplotypes from R. affinis in Peninsular Malaysia and China (published in Mao et 

al., 2010b). Each of the colour-filled circles represents an active haplotype, and small red 

circles represent inferred intermediate haplotypes. Circle size is scaled to haplotype 

frequency, which is also shown in the circle. Numbers in red indicate the numbers of 

mutation steps between connected haplotypes.  
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In addition to networks, I undertook phylogenetic tree reconstructions using 

Bayesian, ML and UPGMA approaches. Tree-based methods have the advantage of 

allowing estimation of the correct mode of mutation, so in this sense they might be more 

accurate at modelling the evolutionary process. Prior to Bayesian analysis, 

MrModelTest 2.3 (Nylander, 2004) indicated that the substitution model that best fitted 

the data was the Hasegawa-Kishino-Yano + invariant sites + gamma model 

(HKY+I+G) (-lnL = 4048.429, AIC=8776.858). This model allows a combination of 

different rates for transitions and transversions, variable substitution rate across sites, 

and a proportion of invariable sites. The Gamma distribution shape rate = 0.3950, the 

proportion of invariable sites = 0.4700, and ti/tv ratio = 15.4158. 

 

The Bayesian phylogenetic tree of R. affinis from Peninsular Malaysia recovered 

some clear structure, as indicated by reasonable support (posterior probabilities >0.6) 

for several nodes (see Figure 3.7). Two well-supported phylogroups were identified, 

which are named group I and group II. The first of these groups was made up 

predominantly of haplotypes from the Centre, representing the main phylogeographical 

signal in the dataset.  These populations are all specifically located near the Titiwangsa 

montane region (see Figure S3.12 in the Supporting Appendix). The latter group is more 

mixed, although it is mostly made up of western haplotypes and again these are near to 

Titiwangsa montane region. When a Bayesian tree was reconstructed with the data from 

Malaysia combined with data from China+Vietnam, both sets of data formed 

reciprocally monophyletic clades. Within Malaysia, the groups I and II were again 

recovered, as well as a third well-supported node (Figure 3.8). For the Malaysian data 

phylogenetic tree reconstruction based on maximum-likelihood analysis recovered 

broadly the same branching pattern (Figure 3.9). Although in the ML tree the Centre 

was the first to split from the rest of Peninsular Malaysia, suggesting these share a 

recent common ancestor with the ancestral haplotypes of all of the other sequences. The 

same groups were also retained in the tree of Malaysia+ China+Vietnam (Figure 3.10). 

Overall, support for groupings within Peninsular Malaysia appeared to increase when 

Chinese haplotypes were added due to the effect of polarization. 

 

 The last two trees, reconstructed using UPGMA for Malaysia only and 

Malaysia+ China+Vietnam (Figures 3.11 and 3.12), recovered similar topologies to the 

other methods, although the splitting order in Malaysia was more similar to the ML tree. 

Once again the first Malaysian phylogroup (Group I) diverged from the others and 
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consisted of haplotypes mostly from the Central and West regions. All of the haplotypes 

detected from KT1 fell into this ancestral phylogroup with high statistical support. More 

recently diverged phylogroups consisted of haplotypes from all of the other sampling 

sites, except for KT1, and showed considerable mixing. In all three methods, the 

haplotypes from China were seen to split into multiple well supported clades, which are 

known to correspond to the subspecies R. a. macrunus (mainland subspecies), R. a. 

hainanus (island subspecies) which split into two subgroups, and finally R. himalayanus 

(mainland subspecies). These were also reported by Mao et al. (2010b). 

 

 

.   
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Figure 3.7 Rooted Bayesian tree of R. affinis from Peninsular Malaysia based on the 

D-loop region. Numbers above the branches are Bayesian posterior probability values 

and are only given where >0.6. Localities of the haplotypes are represented by colour 

codes following Table 3.1 (see inset map). Group i comprises haplotypes from the 

Centre particularly along the Titiwangsa montane region (see Figure S3.2) whereas 

Group ii mainly comprises those from the West and North that are also near to the 

Titiwangsa montane region. 
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    Figure 3.8 Rooted Bayesian tree of R. affinis from Peninsular Malaysia, 

China and Vietnam based on the D-loop region. Numbers above the 

branches are Bayesian posterior probability values and are only given 

where >0.7. Lineages from Peninsular Malaysia, China and Vietnam were 

coloured in green, red and blue respectively. In Malaysia, groups i and ii 

correspond to those from Figure 3.7, while group iii is newly seen in this 

analysis. 
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Figure 3.9 Rooted Maximum likelihood tree of R. affinis from Peninsular Malaysia based 

on the D-loop region. Numbers above the branches are Maximum likelihood bootstrap 

values, and are only shown where >60%. . Localities of the haplotypes are represented by 

colour codes following Table 3.1 (see inset map). Group i, ii and iii are the same groups 

recovered by the Bayesian trees (Figures 3.7 and 3.8). 
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Figure 3.10 Rooted Maximum likelihood tree of R. affinis from Peninsular 

Malaysia, China and Vietnam based on the D-loop region.  Numbers above the 

branches are Maximum likelihood bootstrap values, and are only shown where 

>60%.. Group i, ii and iii are the same groups recovered by the Bayesian trees 

igures 3.7 and 3.8). 
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Figure 3.11 Rooted UPGMA tree of R. affinis from Peninsular Malaysia based on the 

D-loop region. Numbers above the branches are bootstrap support values. . Localities of 

the haplotypes are represented by colour codes following Table 3.1 (see inset map).. 

Group i comprises haplotypes from the Central region, particularly along the Titiwangsa 

montane region, whereas Group ii mainly comprises haplotypes from the West and 

North of peninsula Malaysia near to the montane region. 

 

 

 

 

 

 

 Number of nucleotide substitutions per site 
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Figure 3.12 Rooted UPGMA tree of R. affinis from Peninsular Malaysia, China and 

Vietnam based on the D-loop region. Numbers above the branches are bootstrap support 

values. Lineages from Peninsular Malaysia, China and Vietnam are coloured in green, 

red and blue, respectively. In Malaysia, Group I contains haplotypes from the Centre, 

particularly along the Titiwangsa montane region; Group ii comprises haplotypes from 

the West and North near to the montane region, and Group iii comprises haplotypes 

from coastal areas. 
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 To estimate the approximate timing of the origin of R. affinis superans in 

Peninsular Malaysia, I undertook Bayesian estimation of dating in BEAST. The 

estimated time to the most common ancestor (TMRCA) was about 466,391 years before 

present (BP) (95% highest posterior density, HPD: 140,803 to 710,249 years BP; see 

Figure 3.13 and Table 3.5). Bayesian posterior probabilities supported groups Group i, 

Group ii and Group iii from Figure 3.7 to Figure 3.10 with Effective Sample Size (ESS) 

of parameters successfully estimated exceeding 100. The TMRCA for Group i was 

inferred at 138,203 years BP (95% HPD: 25,626 to 183,440 years BP), while Group ii 

started to diverge from the main lineage about 334,963 years BP, and was formed about 

153,937 years BP (95% HPD: 32,330 to 212,471 years BP). Group iii had the youngest 

TMRCA at about 109,524 years BP (95% HPD: 15,591 to 135,771 years BP). All three 

groups had TMRCAs that fell within the same geological time period during the middle 

to late Pleistocene, and pre-dating the LGM.  
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Table 3.5 Mean estimate of TMRCA for each phylogroup based on D-loop region. 

 

Clade 

mean 

TMRCA 

(years BP) 

 

95% HPD 

 

Quaternary stage  

see Ogg et al. (2008) 

PENINSULAR MALAYSIA  

 All R. affinis superans 466 391 140,803- 

710,249 

Ionian 

Group i 138 203 25,626- 

183,440 

Late Ionian 

Group ii 153 937 32,330- 

212,471 

Late Ionian 

Group iii 109 524 15,591- 

135,771 

Early Late-Pleistocene 

    

CHINA    

All China 598 923 195,030 

-950,307 

Ionian 

R. affinis himalayanus 53 262 17,13- 

34,825 

Late Pleistocene 

R. affinis macrunus  275 700 58,476- 

412,496 

Late Ionian 

R. affinis hainanus 209 591 51,712- 

311,741 

Late Ionian 

 

ALL (PENINSULAR MALAYSIA + CHINA) 

All R. affinis sequences 800 190 338,481- 

1,168,864 

End of Early Pleistocene 

(Calabrian) and beginning of 

Mid-Pleistocene (Ionian) 
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Group ii 

Group i 

Group iii 

Figure 3.13 Rooted Bayesian tree scaled by estimated TMRCA constructed by 

BEAST. Estimated divergence times of TMRCA of the main groups are listed in 

Table 3.5. Lineages from Peninsular Malaysia and China are coloured in green and 

red, respectively.   
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Discussion 

 

Genetic variation and demographic history of R. affinis in Peninsular 

Malaysia  

 

The horseshoe bat Rhinolophus affinis is a cave-roosting species that is classified as 

being highly dependent on intact rainforest (Kingston et al., 2006; Francis, 2008). In 

this study I collected tissue samples from R. a. superans populations across Peninsular 

Malaysia and sequenced the mtDNA control region from all individuals. I then 

conducted phylogeographic, demographic and population genetic analyses to test for 

evidence of historical range shifts, and also evidence of responses to more recent habitat 

loss.  

 

My findings revealed that all populations consistently contained very high 

variation with a total of 167 haplotypes detected from 200 sampled individuals (Table 

3.2a). Haplotype diversity was highest in the Centre, followed by the East, West and 

South (Table 3.4). Although the higher haplotype diversity of the Centre could also 

perhaps reflect the fact that more populations were sampled here than in the South and 

East, this explanation cannot also account for the observed high genetic distances 

among haplotypes (and thus high nucleotide diversity) in the central montane area 

(Table 3.4). In general, this geographical pattern does not appear to support the idea that 

forest has undergone a post-LGM expansion (see Wurster et al. 2010) from refugial 

regions, in which case diversity might be expected to be lower at higher latitudes in the 

direction of colonization. 

 

Apart from measuring genetic diversity in populations, phylogenetic 

relationships were also reconstructed to gain information the status of R. a. superans, 

which has been less studied than other R. affinis subspecies from China and Indonesia 

(Csorba et al. (2003). All of the phylogenetic trees reconstructed in this study support 

the monophyly of R. a. superans with respect to three Chinese subspecies (R. a. 

himalayanus, R. a. macrunus and R. a. hainanus). Previously, Struebig (2008) reported 

the possibility of a cryptic species of R. affinis in the Krau area located in the central 

region of Peninsular Malaysia (F03, F23 to F26 in Table and Figure 4.1) (2008), 

however, I found no deep structure in the mtDNA of these populations, and so found no 

support for cryptic species. Nonetheless I cannot rule out the possibility that multiple 
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species do occur for the reasons that my sampling effort was not concentrated in this 

same region as in Struebig’s study. Additionally, there are numerous published cases of 

related species sharing genes due to introgression. For example, it was recently shown 

that two sister species of horseshoe bat, R. pearsoni and R. yunanensis, have undergone 

large-scale male-mediated ncDNA exchange, probably during glacial periods when they 

were forced into the same refugia (Mao et al. 2010). Introgression of mtDNA is even 

widely reported from numerous taxonomic groups such as fishes (Aboim et al., 2010; 

Joyce et al., 2011), mammals (Senn et al., 2010), plants (Lepais et al., 2009) and insects 

(Kulathinal et al., 2009), while closely related taxa might also share the same haplotype 

due to incomplete lineage sorting of ancestral polymorphism (Sanderson and Shafer, 

2002). 

 

Closer examination of intra-specific relationships among haplotypes, especially 

in relation to geographical locations, provided additional insights into the historical 

processes that have shaped R. affinis populations in Malaysia. Overall, little structure 

was observed, with generally low nodal support values and very few well-defined 

clades. The only obvious phylogeographic signal was a group of mostly Central 

haplotypes. Almost complete mixing of haplotypes across the study area explains the 

observed lack of IBD.  Although strong support for the monophyly of Malaysian R. 

affinis could suggest recent demographic growth from a single common ancestor, the 

phylogenetic tree topologies did not show ‘starburst’ signatures or large numbers of 

unresolved branches (polytomies), which are characteristic features of population 

expansions (Avise, 2009). Phylogenetic reconstructions using network methods also 

supported these results. Networks are considered more useful for showing intra-specific 

patterns because they allow for the persistence of ancestral haplotypes alongside derived 

haplotypes. In this study, both the median-joining network and the parsimony network 

showed that most haplotypes occurred at low frequencies. Additionally, there were no 

very common, geographically widespread haplotypes, which are normally considered to 

be ancestral sequences in haplotype networks. Instead, most of the interior haplotypes 

were inferred, and thus were either extinct or were not sampled in this study. Given the 

huge haplotype diversity recorded, there is a strong possibility that many haplotypes 

were not sampled. The network also helped to explain some of the results from the 

genetic structure analysis, such as high pairwise differentiation in the IBD plot between 

some populations in the central montane area and other populations (see Figure 3.3). 

Indeed some haplotypes from the Centre and West regions were positioned far from the 
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other sequences in median-joining network (Figure 3.5) or even occurred as isolated 

sub-networks and/or outgroups in the parsimony network analyses (Figure 3.6). 

 

All demographic analyses failed to detect historical growth (R2, Fu’s F, 

Tajima’s D, Fu and Li’s D* and F*), therefore suggesting a relatively stable population 

size in Malaysia. For example, the low raggedness index based on the mismatch 

distribution for the whole country and all the regions, means I could reject the null 

model of growth (which would give a smoother unimodal curve). The lowest value of 

the ragged index (which could also be rejected most robustly) was that of the Centre. 

This may suggest that populations of the montane area have had a more stable history 

than populations in the coastal areas. Most reviews of demographic analyses suggest 

that no single test should be used, but rather multiple estimates need to be combined and 

compared (e.g. Ramos-Onsins and Rozas, 2002). Therefore, based on my results I can 

reject a rapid historical demographic expansion of R. affinis in Peninsular Malaysia. 

 

 Combined evidence from multiple analyses all point to a long and stable 

population of R. affinis in Peninsular Malaysia, so arguing against previous hypotheses 

that the rainforest was replaced by savannah during last glacial maximum about 18,000 

years BP (Heaney, 1991; Wurster et al., 2010). Instead the results are consistent with the 

proposal that lowland evergreen rainforest on the the Sunda Shelf was at maximum 

coverage during LGM and has since undergone a decrease in area to its current level 

(Cannon et al., 2009). This model of forest coverage from simulations of climate data 

also suggested that the forest was at an earlier refugial stage at around 120,000 years BP 

(Cannon et al., 2009). Interestingly, my molecular dating based on the Bayesian 

phylogeny suggested that the time to the most recent common ancestors (TMCRA) of 

the three best-supported clades in the Malaysian population  (groups I, II and III) were, 

respectively, 138,203, 153,937 and 109,524 years BP. Given the potential for some 

error associated with any molecular dating, it is therefore possible that these clades have 

undergone diversification following a refugial period. However, the TMCRA of all the 

Malaysian bats was estimated to be much older at around 466,000 years BP and that of 

all four subspecies was 800,000 years BP. It is noteworthy that in East Asia the pollen 

records confirm the occurrence of tropical forest from about 908,000 to 355,000 years 

BP (Sun et al., 2003). 
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 While climate and associated environmental changes have been demonstrated to 

be important elements in shaping the distribution and population structure of species in 

the Northern Hemisphere throughout the Quaternary, the Sunda Shelf has not been 

directly affected by cycles of growth and decay of ice sheets (Hewitt, 2004, Hewitt, 

2000). Nonetheless, sea level fluctuations during the Pleistocene had major effects on 

population structure in the tropics, by altering terrestrial barriers via submerging or 

exposing lowlands (Voris, 2000; Sathiamurthy and Voris, 2006). According to a review 

by Miller et al. (2005), global sea levels have been above the present level during four 

periods within the past one million years. Assuming a long history, as suggested by the 

results in this study, the population of R. affinis in the Malay Peninsula would have 

experienced three such high sea stands, at approximately 0.45, 0.36 and 0.13 million 

years BP (Miller et al., 2005; Woodruff and Turner, 2009). In general, it is unlikely that 

the resulting respective sea level increases of 20 m, 10-15 m and 30 m would have 

majorly altered the overall exposed area of the Sunda Shelf (Sathiamurthy and Voris, 

2006, Woodruff and Woodruff, 2008; Woodruff and Turner, 2009). However, one 

locality where a higher sea level might have had a relatively bigger impact is at the 

narrowest part of the Malay peninsula at the Isthmus of Kra (see General Introduction). 

Previously, the observed and well-known zone of faunal transition at the Isthmus of Kra 

has been attributed to the narrowness of the peninsula at this latitude (Woodruff and 

Woodruff, 2008; 2009). In my study, it is of particular interest that the TMCRA of R. 

affinis in Malaysia (460,000 years BP) corresponds very closly to the period of 450,000 

years BP, when the sea level was 20 m higher than it is now and will have submerged 

the lower coastal and narrowest areas of Malay Peninsula. Thus it is possible that the 

Malaysian subspecies budded off from a more northerly population at around this time. 

 

Analyses presented in this chapter show that the central part of Peninsular 

Malaysia (where disturbance is relatively low and land is still largely covered by 

continuous evergreen tropical rainforest) harbours the most genetically diverse and the 

most demographically stable populations. Indeed the upland regions in the west 

(Bintang and Titiwangsa Montane Region) and east (East Coast Montane Region) (see 

Figure S3.2) both contain ancient lineages from Asia mainland. This region is home to a 

number of tropical vegetation types, including lowland and highland evergreen 

rainforests as well as montane rainforest. Since R. affinis exhibits modest flexibility 

with respect to altitude, it seems that upland areas would not have restricted gene flow, 
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and instead might have acted as a reservoir of diversity for populations in coastal areas, 

which at times would have been submerged by the sea.  

 

 The results from this study strong contrast with those of another study of R. 

affinis in the Wallacea islands at the margins of its South-eastern distribution 

(Maharadatunkamsi et al., 2000). Using allozyme data, this research group revealed a 

longitudinal decline of heterozygosity from the west to the eastern end of the range, and 

attributed this to the ‘marginal effect’ in which lower genetic variability is seen in 

peripheral populations than in the central one (Cunha and Dobzhansky, 1954). Current 

records show R. a. superans is restricted to the Malay Peninsula, Sumatra and Mentawai 

Islands (western part of the peripheral Sunda Shelf), however, no cline in variability 

was observed. However, although exceptionally high mtDNA diversity, and no obvious 

cline or pattern of IBD are good evidence that there has been no post-LGM 

recolonization or population expansion; they cannot be used to make any firm 

assessment of the extent or nature of gene flow in Malaysia. This is because most of the 

diversity is likely to be ancient widespread polymorphism rather than mixing by 

contemporary dispersal or genetic mixing. In other words, the variability reduces the 

power to quantify differentiation at this marker because nearly all sequences recorded 

are unique. Much more sampling is needed, or a multi-locus approach. 

 

Detecting the genetic consequences of recent human-induced habitat change is 

also not straightforward. In the coastal areas, especially along the west coast, massive 

human alteration to the landscape during the last century has caused large areas of 

formerly continuous lowland Dipterocarp forest (see Adams and Faure, 1997) to be lost 

(see Figure 2.1). Forest dependent taxa in these areas may also suffer from micro-

environmental changes in remnant habitat due to edge effects so that suitable forest 

might be even less common than it appears (Bierregaard et al., 1992, Laurance, 1991). It 

is interesting that some of the lowest pairwise differences were associated with the PH1 

population, which has been heavily disturbed by logging and mining in the last decade, 

and is now a very open and dry landscape compared to the denser more primitive forest 

that previously covered the area. A similar situation is seen in KT1, which also had low 

pairwise distance within the population (second lowest among all of the subpopulations 

as listed in Table 4.4). In contrast, the populations KT3 and PH6 are both from 

undisturbed forests in the Centre and were found to have relatively very high genetic 

diversity. Despite these observations it is important to be cautious when relating 
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population-wise estimates of diversity to habitat condition or human activity. Like with 

most studies, the number of samples analysed for mtDNA per population was rather 

low, so there might be considerable noise in the data. Indeed previous work on R. affinis 

from limestone caves at Gunung Senyum Forest Reserve in Pahang, found that this 

species dominated assemblages in forest fragments up to 11km away from the roost 

(Struebig et al., 2009). Thus although this species is heavily dependent on forest, it may 

be able to disperse between neighbouring populations within regions. Microsatellite 

genotyping of greater numbers of animals per population offers better chances of 

characterising the extent and nature of gene flow (see Chapter 4). 
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Appendix of supporting information 

 

Figure S3.1 Map of Sundaland directly adopted from Bird et al. (2005). 
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Figure S3.2 Map of Peninsular Malaysia showing the locations of montane regions 

(listed below).  

 

 

 

1. Nakawan Range,  

2. Kedah-Singgora Range 

3. Bintang Range 

4. Keledang Range 

5. Titiwangsa/Central Range 

6. Benom Range 

7. Tahan Range 

8. East Coast Range 
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CHAPTER FOUR 

 

Genetic structure of Rhinolophus affinis 

(intermediate horseshoe bat) and R. lepidus 

(Blyth’s horseshoe bat) in Peninsular 

Malaysia
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Chapter 4: Genetic structure of Rhinolophus 

affinis (intermediate horseshoe bat) and R. 

lepidus (Blyth’s horseshoe bat) in 

Peninsular Malaysia 

 

Chapter summary 

 

Multi-locus analyses such as those using microsatellites provide powerful tools for 

resolving patterns of genetic differentiation and contemporary gene flow, as well as 

quantifying genetic diversity for conservation assessments. In addition, several studies 

have demonstrated the use of microsatellites in reconstructing population history and 

phylogeography. In Peninsular Malaysia, human activity has been the principle cause of 

loss of forest coverage, and is the main present threat to biodiversity. To investigate the 

genetic consequences of habitat loss and past climate change, I undertook microsatellite 

analyses on two species of co-distributed forest-interior horseshoe bat: Rhinolophus 

affinis and R. lepidus. For these species I used panels of 14 loci and 10 loci, 

respectively, to characterise genetic structure and measure diversity. My results revealed 

that allelic richness was lower in R. lepidus populations than in R. affinis populations, 

however, in both species the allelic richness showed a significant negative association 

with increasing longitude. Due to the shape of Peninsular Malaysia, this result also 

means that diversity was highest in the north, so conflicting with expectations under a 

post-glacial expansion from the equatorial regions. Both species showed increasing 

genetic distance among populations with distance, although significant isolation-by-

distance was only seen in R. affinis. Bayesian clustering and Principal Coordinate 

Analyses revealed no clear genetic structure, indicating no major barriers to gene flow 

and in agreement with isolation-by-distance. Although lower detected genetic diversity 

in the southern populations cannot be related to greater forest loss in this area, it could 

mean that these populations will be less able to adapt to long term environmental 

change. 
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Introduction 

 

Southeast Asia has a rich biodiversity due to its complex geological and tectonic history 

since the Tertiary (Morley, 2000). The region encompasses three biodiversity hotspots, 

which are priorities for conservation due to their high density of endemic species and 

current state of vulnerability from habitat change (Myers et al., 2000). Human-related 

activities have been the main cause of global diversity loss since 1992 (World 

Conservation Monitoring Centre, 1992) and in Southeast Asia these threats include 

over-logging of forests (Laurance, 1999) and clear felling for plantations of high 

commercial value crops, such as oil palm (Elaeis guineensis) (Koh and Wilcove, 2007). 

In fact, the conversion to plantations in the region often appears to be initiated by 

disturbance via logging activities, which reduce the quality of secondary forests. Finally 

plantations are often transformed into construction projects, including residential areas, 

small towns or new cities (Forestry Department of Malaysia; personal communication).   

 

 Other threats to the regional tropical biodiversity include increasing human 

populations, weak government and policies, and increasing trade liberalisation, all of 

which are relatively young issues (past two centuries) but which have already 

contributed to massive forest loss and fragmentation (Laurance, 1999). Overall this 

combination of factors have led to deforestation rates of around 54% to 60%, as 

estimated by the World Conservation Monitoring Center (WCMC) and the Food and 

Agriculture Organisation (FAO), respectively (Sodhi et al., 2004; FAO, 2005), although 

these rates do not include loss of secondary forests that have been cleared at a rate of 

0.8% per year between 2000 and 2005 (Koh and Wilcove, 2007).  Finally, these threats 

are probably made worse by the local effects of global climate change; for example, 

Malhi and Wright (2004) reported that since the 1970s, there has been a general decline 

in precipitation and an increase in temperatures in the tropical rainforests of Southeast 

Asia. 

 

 Genetics can offer a powerful approach for monitoring and assessing how 

populations and species react to rapid habitat change. Moreover, genes themselves are 

recognised by the IUCN as one of the main units of diversity and are thus an important 

element in global biodiversity conservation (Frankham, 1995). Over the past two 

decades, applications of population genetics to conservation have become hugely 
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important, with the recognition of the sub-discipline conservation genetics (for reviews 

on the subject see O’Brien, 1994; Frankham, 1995; Allendorf et. al., 2010; Ouborg et 

al., 2010). A key role for conservation genetics has been to obtain and use genetic 

information to improve management of small or captive populations; for example, by 

monitoring the genetic profiles of founding individuals and subsequent generations in 

order to minimise inbreeding depression and encourage disassortative mating 

(Frankham, 1995; Allendorf et al., 2010). Further areas in which conservation genetics 

has made an impact has been in resolving taxonomic uncertainties, identifying 

evolutionarily significant units (ESUs) and management units (MUs) within species, 

and resolving species identities in forensics (Frankham et al., 2002). 

 

 To date, most conservation genetics studies have focused on taxa from Europe 

and northern America as well as Australia, with relatively little work in Southeast Asia 

despite its extreme biodiversity. Nonetheless there are some recent and notable 

exceptions from a range of taxa such as the mountain hawk eagle (Spizaetus nipalensis) 

(Hirai and Yamazaki, 2010), intermediate horseshoe bat (Rhinolophus affinis) (Mao et 

al., 2009) and venus clam (Cyclina sinensis) (Feng et al., 2010). Focusing on the 

regional endemic murine rodent species, Leopoldamys neilli, (Latinne et al., 2011) used 

mitochondrial and nuclear markers to identify management units. The authors found six 

allopatric lineages from 20 localities in Thailand, suggesting very low levels of gene 

flow among its limestone karst habitat, and highlighting the importance of protecting 

karst in order to preserve this taxon’s unusual intra-species diversity. Similarly, a study 

of one species of cyprinid fish endemic to Sarawak, Tor douronensis, reported two main 

genetic clusters that were consistent with geographical barriers (Nguyen, 2008). 

Conclusions led the author to identify these populations as independent ESUs, and 

suggest that they should be conserved separately via managing their respective river 

systems.  

 

 The growth of conservation genetics can largely be linked to the discovery and 

growing application of microsatellites in population genetics (Litt and Lutty, 1989; 

Jarne and Lagoda, 1996; Zane et al., 2002). Unlike older methods based on allozymes, 

microsatellites offer opportunities for non-lethal and non-invasive sampling of 

endangered species because they can be amplified by PCR from small amounts of 

starting material (Palsbøll 1999). A second major advantage of microsatellites is their 

rapid mutation rate of about 10-3 mutations per locus (compared to an evolutionary rate 
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for DNA sequence of 10-8 to 10-9 per year for point mutations) so that they can be 

applied to examine processes that have occurred in recent evolutionary time, in the 

order of hundreds of generations (Ülo et al., 2008). Consequently, microsatellites are 

useful for resolving landscape-scale spatial genetic structure and contemporary gene 

flow (Guillot et al., 2009). At even finer scales, microsatellites are useful for studying 

social organisation including segregation patterns between kinship groups or the genetic 

consequences of kinship or sex-specific philopatry (Peakall et al., 2003). At the same 

time, however, there can be uncertainties regarding the origins of allelic polymorphism 

at such loci given their stepwise and rapid rate of mutation, and it has been suggested 

that there are biases in reported genetic diversity due to the selective use and reporting 

of only the most highly polymorphic markers for analyses (Estoup et al., 2002; Zane et 

al., 2002; Hoffman and Amos, 2005; Ülo et al., 2008). 

 

 In spite of the popularity of microsatellite loci for applications in conservation 

and population genetics, in recent years several studies have also demonstrated their 

usefulness for reconstructing phylogeographic processes. For example, among 

vertebrates microsatellites have been used to identify population growth in species as 

diverse as humans (Patin et al., 2009), birds (McKay et al., 2010) and tiger salamanders 

(Bos et al., 2008) as well contact zone between populations that have come from 

different glacial refugia (Coyer et al., 2011). Microsatellites have also already been 

applied to understand the phylogeographic history of several bat species, such as the 

Mexican free-tailed bat (Russell et al., 2011), Pipistrellus bat species complex (Hulva et 

al., 2010) and the greater horseshoe bat (Flanders et al., 2009).  

 

 Comparative studies of phylogeography have proven particularly useful in 

identifying common processes and refugia that have influenced multiple taxa; however, 

most such studies have relied on meta-analyses (Hewitt, 2001; 2004; Provan and 

Bennett, 2008; Médail and Diadema, 2009). Recently there have been increasing 

numbers of investigations that have collected data on more than one species and 

compared patterns of genetic structure. For instance, McGovern et al. (2010) found 

similar population divergence times in populations of two co-distributed marine mollusc 

species, which was thought to be due to common responses to past climate change. 

Similarly, Bell et al. (2011) compared multi-locus sequence data for five co-distributed 

frog species endemic to the Australian tropical rainforest, and successfully traced 

historical forest contraction. In terms of studies on bats, Meyer et al. (2009) compared 
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two species of Phyllostomus from Central America and reported less population 

subdivision in the more mobile species. More recently, Rossiter et al. (2012) compared 

gene flow across continuous populations of seven forest bat species with different 

roosting behaviours as well as social organisations. At a landscape-scale, the authors 

found more genetic structure in tree-roosting bat species which also have lower 

mobility, yet almost no structure for cave roosting colonial species that are thought to 

disperse over greater distances. 

 

 

Rhinolophus affinis and Rhinolophus lepidus across Peninsular Malaysia 

 

In this study I used microsatellites to compare the population genetic structure of two 

horseshoe bat species, Rhinolophus affinis (intermediate horseshoe bat) and R. lepidus 

(Blyth’s horseshoe bat) (Figure S4.1) across Peninsular Malaysia. In this region, this 

genus of bats is represented by up to 18 species (Kingston et al., 2006), with one new 

species, Rhinolophus chiewkweeae reported by Yoshiyuki and Lim (2005). Of these, R. 

convexus is categorised as rare, R. sedulus and R. robinsoni as near threatened, and the 

remaining 11 species as not at risk globally (Francis, 2008). However, all 18 species are 

critically dependent on forest, and are therefore under enormous threat. Additionally, 

some of these species roost in karst limestone caves, and so also face threats from 

mining (see SAMD, 2009). The similar habitat requirements of all Rhinolophus species 

mean that any detected patterns of genetic structure in the two focal species are also 

likely to occur in their relatives. 

 

 R. affinis is widely distributed and abundant in peninsular Malaysia and was first 

described from Java by Horsefield in 1823.  Since then, it has been recorded over a wide 

area, from India in the west, through South China and Vietnam to Borneo and its 

offshore islands. To date, eight subspecies are recognised: R. a. andamanensis, R. a. 

hainanus, R. a. himalayanus, R. a. macrunus, R. a. nesites, R. a. princeps, R. a. 

superans and R. a. tener (Csorba et al., 2003, Simmons, 2005; SAMD, 2009). In 

Peninsular Malaysia, this is a cave roosting species that forages in intact forest, though 

it can also be found in secondary forests (Kingston et al., 2006).  In the study region it 

frequently shares roosts with other related members of the Rhinolophidae (e.g. R. 

lepidus) and Hipposideridae (e.g. H. bicolor and H. larvatus) (personal observation). 
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 Blyth’s horseshoe bat (Rhinolophus lepidus) was firstly reported by Blyth in 

1844 with four more subspecies being recognised afterwards that have since been 

included in the species: Rhinolophus monticola in Masuri, northwest of India in 1905, 

Rhinolophus refulgens in Gunung Igar, Malaya in 1905, Rhinolophus refulgens 

cuneatus in Sukaranda, Northeast of Sumatra in 1918 and Rhinolophus feae in Biapo, 

Burma in 1907 (Csorba, 2002; Francis, 2008). It is widely distributed in a few countries 

in Asia included India, Afghanistan, Pakistan, Nepal, Myanmar, Thailand, peninsular 

Malaysia and Sumatra Island in Indonesia (Csorba et al., 2003). Like R. affinis, R. 

lepidus is considered a forest specialist that has been recorded in lowland and hill 

forests (Kingston et al., 2006). R. lepidus usually roosts in boulders crevices and caves 

(Csorba et al., 2003; Kingston et al., 2006; Francis, 2008) although it sometimes occurs 

in houses (Medway, 1982; Csorba et al., 2003), tunnels and other manmade structures 

(Csorba et al., 2003). 

 

 Little conservation work has been undertaken on the focal species, however, a 

preliminary comparative study of several bat species (including R. affinis) across 

undisturbed forest, disturbed forest and agricultural areas in Peninsular Malaysia 

identified sperm abnormalities in agricultural areas, probably caused by chemical 

emissions and so providing indirect evidence of human impacts (Siti-Tafzilmeriam et 

al., 2006). Yet despite the focus on protecting tropical rainforests for animal 

conservation in general, bats can be equally adversely impacted by disturbance at their 

roost sites (Russo et al., 2004). In the case of R. affinis, R. lepidus and related species, 

there is a specific threat of the loss of suitable roosts in limestone karst due to mining 

and tourism. In Southeast Asia, karst covers about 400,000 square kilometres, relatively 

less area than tropical rainforest, with the largest karst area found in Indonesia, Thailand 

and Cambodia (Day and Urich, 2000). This may explain why conservation policies of 

countries in the region, including Peninsular Malaysia, overlook limestone caves. 

Nonetheless, caves formed from natural mechanical and chemical erosion in the region 

serve as unique habitats and thus hold high biodiversity value (Clements et al., 2009).  

The ability of insectivorous bats to echolocate means that they often roost deep in caves, 

sometimes in colonies of thousands of individuals, and the importance of protecting 

caves for the Old World bats has been highlighted in several studies (Suyanto and 

Struebig, 2007; Struebig et al., 2009). Indeed, Struebig et al. (2009) examined the 

influence of karst on local assemblage structure across nine fragmented sites in Pahang, 
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Malaysia, and found that R. affinis and R. lepidus were the dominant species in bat 

assemblages up to 11km from the cave roosts. 
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Study objectives 

 

In this study I undertook analyses of microsatellites to characterize the population 

genetic population structure of two co-distributed and ecologically similar species 

across Peninsular Malaysia: R. affinis and R. lepidus. Several questions and hypotheses 

were addressed to assess the effects of ancient climate change and recent human activity 

on these taxa and their forest habitat. 

 

i. To determine the pattern of population genetic structure of both species across 

the study region. I hypothesize that if the species have undergone contractions 

and periods of isolation consistent with fragmentation of wet forest during the 

LGM, then there would be evidence of deep genetic structure. If forest persisted 

across Malaysia, I would expect little or no deep structure. 

 

ii. To test for latitudinal trends in allelic richness. I hypothesized that if the 

populations have undergone a post-LGM expansion from the equatorial areas, 

there would be a northward decrease in allelic diversity in both species. 

Alternatively, no such pattern would be seen if there has been no such 

expansion. 

 

iii.  To test for evidence of restricted gene flow among isolated forests as expected if 

gene flow has been affected by forest loss and fragmentation. 
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Methods and Materials 

 

Sample collection 

 

Bats were surveyed at 28 forest sites across Peninsular Malaysia between February 2008 

and September 2008. Individuals were captured either by using four-bank harp traps 

placed along foraging paths or by hand-netting roosting bats in caves. Tissue samples 

from bats from two sites not visited in this study were obtained from colleagues. In 

total, tissue samples from individuals of Rhinolophus affinis and/or R. lepidus were 

obtained from 17 sites (hereafter referred to as ‘populations’), as shown in Figure 4.1 

and listed in Table 4.1. For additional details of the geographical characteristics of the 

localities see Table 2.1 (Chapter 2). For DNA analyses, a 3-mm wing membrane biopsy 

was taken from all individuals of Rhinolophus affinis and R. lepidus, as described in 

Chapter 2.  

 

 

Table 4.1 Samples for microsatellite analyses for Rhinolophus affinis and R. lepidus 

Coordinates Sample size Sampling 
locality

 *
 

Sampling 

elevation Longitude Latitude R. affinis R. lepidus 
KH2 78&178m 100.4840 6.3192 5  
KH3 129m 100.9628 6.1069 8 4 
KT2 49-257m 102.1681 5.6948  1 
TG2/GT 58-441m 102.6000 5.5500  6 
PK4/PITC 590-810m 101.3600 5.5100  2 
KH1 51m 100.7732 5.5012 8 17 
PN1  <300m 100.5457 5.1511 45 10 
PK1  90m 101.0039 4.5385 8  
PH2  140m 102.6813 4.4131 31  
FRIM NA 101.6378 3.2369 5 2 
PH1 34-56m 102.9011 3.2229 11  
SL2/UKM NA 101.7814 2.9197  2 
NS3/BRB 249-605 102.0700 2.8000  6 
NS1  <300m 102.0782 2.7050 17 7 
MK4 <300m 102.3833 2.3833  18 
JH1 29-160m 103.5860 2.1862 28 4 
JH2 24-29m 103.9139 1.8693 34  

   Total 200 79 
* For sites in italics, wing tissue biopsies were contributed by C. Fletcher. 
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Figure 4.1 Map of Peninsular Malaysia showing the coverage of lowland tropical 

rainforest in 1997 as shown in green (Forestry Department of Peninsular Malaysia, 

1997). Populations from which Rhinolophus affinis tissue samples were obtained for 

microsatellite analysis are shown as squares, populations from which R. lepidus samples 

were obtained for microsatellite analysis are shown as triangles. Sites shown as circles 

either did not contain these species, or were sampled in the second field season so were 

not included due to time constraints. 
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DNA extraction and microsatellite genotyping 

 

Genomic DNA for each individual from both of the species was extracted using 

Promega Wizard Purification Kits. R. affinis individuals were genotyped at 13 

polymorphic microsatellite markers while R. lepidus individuals were genotyped at 10 

markers. Primers sequences were obtained from the literature (Table 4.2), and the 

forward primer of each primer pair was fluoro-labeled with a FAM, HEX or TAMRA 

tag. For optimization, each marker was first tested across a temperature gradient, to 

determine the best annealing temperature for the species/primer combination. For 

genotyping, I then designed panels of around three or four markers for each species, 

based on non-overlapping PCR products. 

 

For R. lepidus, PCRs contained a single primer set and were undertaken in 

reaction volumes of 15µl, containing 5-25ng of genomic DNA, 0.5U of Roche FastStart 

Taq DNA Polymerase, 0.25mM of labeled forward primer, 0.25mM of unlabeled 

reverse primer, 2mM of MgCl2 and 0.2mM of each dNTP. I used a thermal profile of an 

initial denaturation step at 95ºC for 15 minutes; 35 amplification cycles each comprising 

a denaturation step (95ºC for 30 seconds), an annealing step (50ºC to 61ºC for 30 

seconds) and an extension step (72ºC for 30 seconds); and a final extension at 72ºC for 

10 minutes. Amplified products were pooled into panels and genotyped on an ABI 

PRISM® 3700 Sequencer. Products were genotyped with Genotyper version 3.6. 

 

R. affinis genotyping was conducted a few months later, when multiplex kits 

were available. Therefore, for R. affinis individuals, I was able to amplify all primers 

together from each panel using QIAGEN® Multiplex PCR Kits. PCRs were undertaken 

in volumes of 10µl and contained 1× of QIAGEN® multiplex, 10X primer mix (0.2 µM 

of each primer) and 1-10ng genomic DNA. PCR reactions were undertaken at thermal 

profile suggested by the kit, which was 15 minutes of an initial activation step at 95ºC; 

35 amplification cycles each comprising a denaturation step at 94ºC for 30 seconds, an 

annealing step (57 to 63 ºC) for 90 seconds and an extension at 72ºC for 60 seconds; 

and a final extension step at 60ºC for 30 minutes.  Amplified products were genotyped 

on an ABI PRISM® 3730xl Sequencer and analysed with GeneMapper® version 4.0. 
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Table 4.2 Details of the loci used in this study for (a) Rhinolophus affinis and (b) 

R. lepidus. 

 

 Locus Tm (ºC)
a
 Allele size range (bp) 

GenBank 

accession Reference
b
 

a) A26 58 230-280 EU737082 1 
 A62 59 110-160 EU737084 1 
 B12 55 100-140 EU737085 1 
 B63 55 160-220 EU737086 1 
 B71 60 180-250 EU737087 1 
 D6 60 180-230 EU737088 1 
 D41 56 150-190 EU737095 1 
 E7 56 260-300 EU737089 1 
 E45 58 210-270 EU737090 1 
 E93 58 200-270 EU737092 1 
 E95 55 100-160 EU737094 1 
 E119 56 140-220 EU737093 1 
 F77 56 260-310 EU737096 1 

b) Rferr01 61 110-134 AF160200 2 
 Rferr11 54 172-196 AF160210 2 
 Rferr14 60 227-241 AJ560195 3 
 Rferr27 50 135-207 AJ560170 3 
 RHA8 54 137-176 JF750631 4 
 RHA101 56 131-153 JF750632 4 
 RHA104 55 281-316 JF750633 4 
 RHA105 56 172-190 JF750634 4 
 RHA118 54 223-251 JF750636 4 
 RHD107 51 214-242 DQ102694 5 

a  Tm is annealing temperature 
b  Details of the loci including primer sequences were obtained from references (1) (Mao 
et al., 2009), (2) (Rossiter et al., 1999), (3) (Dawson et al., 2004), (4) (Struebig et al., 
2011) and (5) (Puechmaille et al., 2005) 
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Analysis of genetic diversity  

 

Microsatellite alleles were sized and scored using Genotyper v. 3.6 or GeneMapper v. 

4.0. To reduce potential sources or error, individuals with missing data were removed 

prior to subsequent population genetic analyses. All analyses genetic diversity and 

structure were undertaken separately for both species.  

  

 To test for deviation from Hardy-Weinberg equilibrium (HWE) for each locus in 

each population, I calculated FIS using the Robertson and Hill (1984) estimator in the 

software Genepop on the Web (Raymond and Rousset, 1995). I also tested for linkage 

disequilibrium (LDE) for each pair of loci in each population using the same software. 

For both tests, the exact P-value was estimated using a Markov Chain (settings 10,000 

dememorizations, 10,000 batches and 10,000 iterations). To avoid possible type I errors 

that can arise from undertaking multiple tests, Bonferroni corrections were carried out 

following Rice (1989) in order to adjust the nominal alpha level. The effective number 

of alleles (Ne), observed heterozygosity (HO) and expected heterozygosity (HE) were 

calculated using GENALEX 6.41 (Peakall and Smouse, 2006). The numbers of alleles 

(Na) and allelic richness (Rs) for all loci for all populations were calculated in FSTAT 

2.9.3.2 (Goudet, 1995) with 10 000 permutations. Estimation of allelic richness (Rs) 

involved rarefaction in order to obtain a value that is independent of the sample size for 

a locus (N) so allowing unbiased comparisons among samples (Goudet, 1995). Values 

of allelic richness (Rs) for each population were used to compare allelic diversity across 

longitudinal and latitudinal gradients within Peninsular Malaysia.  

 

Analysis of genetic structure and gene flow 

 

(i) F-statistics and Isolation-by-distance 

 

Genetic differentiation among populations was first determined using F-statistics and 

their analogues. Pairwise vales of FST (Weir and Cockerham, 1984) were calculated 

among all populations for which at least five individuals were genotyped (11 

populations for R. affinis nd 8 for R. lepidus) using FSTAT 2.9.3.2 (Goudet, 1995) with 

1000 permutations for each species’ data set. Bonferroni adjustment was performed 

used to correct for multiple tests. Because FST is calculated based solely on the 

probability of allelic identity and does not consider allele size (Hardy and Vekemans, 



137 
 

2009) it can be biased downwards if stepwise mutation is important (Allendorf and 

Luikart, 2007).  Therefore, RST among populations was also calculated in the software 

SPAGeDi v. 1.3 (Hardy and Vekemans, 2002).  RST is analogous to FST but was 

proposed to estimate genetic differentiation based on allele size rather than allele 

identity, and is therefore suited to hypervariable loci such as microsatellites in which 

allelic variation probably results from a stepwise mutation process (Rousset, 1996, 

Slatkin, 1995).  Comparisons of values of FST and RST can thus provide information on 

the relative importance of the processes of drift versus mutation. When genetic drift is 

more important in contributing to the genetic differentiation, both of the values are 

expected to be similar, whereas RST values should be greater than FST values if there is a 

contribution of stepwise mutation to the differentiation. To make the comparison as 

valid as possible, I specifically compared RST to a form of permuted RST (pRST), in 

which alleles were randomized with respect to their size, so that any possible influence 

of stepwise mutation is removed. If observed RST is significantly larger than pRST, RST is 

the most suitable estimator in describing genetic structure, while no significant 

difference suggests pRST or FST is sufficient. Since drift is likely to occur more rapidly 

than stepwise mutation, higher RST values are also thought to provide evidence of 

differentiation due to phylogeographic separation rather than to recent isolation (Hardy 

and Vekemans, 2002; Rossiter et al., 2007).  

 
To examine whether genetic structure among populations in Peninsular Malaysia 

was consistent with a stepping-stone model of gene flow, plots of isolation-by-distance 

(IBD)  were constructed from pairwise geographical distance versus genetic distance. 

Only populations with a minimum of five samples were included. Pairwise geographical 

distances were calculated using the software GENALEX v. 6.41 (Peakall and Smouse, 

2006) based on the spatial coordinates listed in Table 4.1. Pairwise genetic distances 

were calculated as FST/(1- FST) in the software SPAGeDi v. 1.3 (Hardy and Vekemans, 

2002). Using the software Isolation By Distance Web Service (IBD-WS) v. 1.53 (Jensen 

et al., 2005), these sets of distances were used for IBD analysis for populations from the 

whole of Peninsular Malaysia as well as for populations with each of the four regions 

(see Chapter 3). Strength and significance of the IBD relationships was assessed by a 

Mantel Test (10,000 randomizations) and by reduced major axis (RMA) regression.  

RMA regression analysis was performed to calculate the slope and intercept of the 

relationship between the genetic and geographical distance. 
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(ii) Clustering analyses 

 

The same data were further analysed for genetic structure using STRUCTURE v. 2.3.3 

(Pritchard et al., 2000; Falush et al., 2003; Pritchard et al., 2007; Hubisz et al., 2009). 

The program implements a Bayesian clustering of multi loci genotypes to determine the 

most likely number of groups present (Pritchard et al., 2007). This method makes no 

assumptions about original population membership and instead groups individuals into 

different numbers of clusters in order to minimise deviations from HWE and Linkage 

equilibrium. For each number of clusters in the model, the probability is calculated. In 

the outputted bar graphs, each bar represents an individual, which is assigned a given 

number of clusters in proportion to the probability of membership to each of these 

clusters. This estimated membership coefficient of a bar for an individual will sum to 1. 

Assignment to more than one cluster can indicate genetic admixture. In my study I ran 

STRUCTURE with 100,000 iterations of the Monte Carlo Markov Chain (MCMC) and 

discarded the first 30,000 iterations as burn-in. Based on the correlated allele frequency 

model, I repeated the analysis for values of K from one to nine, and undertook five 

replicate runs per value of K. To avoid overestimating K, I followed the 

recommendations of Pritchard et. al. (2010) for identifying the smallest value of K that 

is able to recover the major structure, and which shows a relatively stable and constant α 

throughout the run.  For the value of K that showed the highest likelihood, so 

maximised Pr(X|K), replicate runs were combined in the software CLUMPP (Jakobsson 

and Rosenberg, 2007). Finally, individuals were displayed graphically in latitudinal 

order in DISTRUCT 1.1 (Rosenberg, 2004). These analyses were also all repeated with 

the same data but where all bats were assigned to the original subpopulations regardless 

of spatial locality of the subpopulations. 

 

 

(iii) Principal Coordinate Analysis (PCoA) 

 

For each species, the pairwise genetic distances among populations were also analysed 

with a Principle Coordinate Analysis (PCoA) implemented in GENALEX v 6.41 

(Peakall and Smouse, 2006). This multivariate method is related to the more common 

Principle Coordinate Analysis and provides a powerful way of visualizing the major 

genetic relationships and patterns in the dataset by finding the main axes of variation in 
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multidimensional space. PCoA provides a complimentary method to clustering and tree-

based approaches of recovering population relationships. 
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Results 

 

Genetic diversity 

 

The full results from genetic diversity analyses for Rhinolophus affinis and R. 

lepidus are shown in Tables 4.3a and Table 4.3b, respectively. For R. affinis, estimated 

values of FIS showed that no populations consistently deviated from Hardy-Weinberg 

equilibrium (HWE) across multiple loci. However, in three loci (Locus A62, D41 and 

E93), multiple populations (seven, two and two populations, respectively) showed 

significant deviations from HWE. In these cases, the FIS was high indicating an excess 

of homozygotes, and suggesting possible presence of null alleles (Allendorf and 

Luikart, 2007).  Nonetheless, the presence of null alleles in this marker was not 

previously recorded for R. affinis populations in China (Mao et al., 2009). For R. 

lepidus, again no populations consistently deviated from HWE across multiple loci. 

Four out of 10 microsatellite loci (Rferr11, RHA101, RHA104 and RHA105) were 

characterised by some high FIS values in a few populations but these were not 

significant (Table 4.3b). No evidence for linkage disequilibrium was found for either 

species. 

 

In terms of diversity, for R. affinis mean allelic richness per population ranged 

from 5.5 to 6.5 (Table 4.3a) whereas the same values were much lower (1.75 to 1.88) 

for R. lepidus (Table 4.3b). In both species, allelic richness per population appeared to 

increase with latitude, however, this was not significant (see Figures 4.2a and 4.2c). On 

the other hand, allelic richness showed a weak but significant decrease with longitude in 

both species (R. affinis: r2 = 0.2531, P = 0.0082 and R. lepidus: r2 = 0.2205, P = 0.0080) 

(see Figures 4.2d and 4.2d, respectively.  These trends indicate a gradual decrease in the 

number of alleles of both species from west to east. Due to the shape of Peninsular 

Malaysia, this also indicates a southerly decline in the number of alleles. 
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(a) Rhinolophus affinis 
Population NS1 JH1 PK1 KH2 KH3 KH1 FRIM JH2 PH2 PN1 PH1 
N 17 28 8 5 8 8 5 34 31 45 11 
            
Locus A20            
Na (6) 2 3 2 3 2 3 2 4 3 5 3 
Ne 1.262 1.075 1.600 1.515 1.133 1.684 1.724 1.236 1.431 1.864 1.449 
Rs 1.771 1.357 1.992 3.000 1.625 2.750 2.000 1.900 2.117 2.552 2.312 
HE (unbiased) 0.214 0.071 0.400 0.378 0.125 0.433 0.467 0.194 0.306 0.469 0.325 
HO 0.118 0.071 0.500 0.400 0.125 0.500 0.600 0.206 0.290 0.489 0.364 
FIS estimate NS NS NS NS NS NS NS NS NS NS NS 
            
Locus A26            
Na (14) 6 8 7 4 6 7 6 9 7 10 6 
Ne 2.524 3.187 5.333 3.333 3.765 4.571 4.167 3.860 3.348 3.479 3.457 
Rs 3.767 4.480 5.698 4.000 4.964 5.589 6.000 4.871 4.289 4.263 4.450 
HE (unbiased) 0.622 0.699 0.867 0.778 0.783 0.833 0.844 0.752 0.713 0.721 0.745 
HO 0.647 0.643 0.875 0.600 0.750 0.875 0.800 0.853 0.742 0.689 0.727 
FIS estimate NS NS NS NS NS NS NS NS NS -0.0036 NS 
            
Locus A62            
Na (17) 8 8 5 5 6 7 6 10 13 13 5 
Ne 6.021 4.709 4.414 3.125 3.765 4.571 5.000 5.709 8.042 8.198 2.495 
Rs 5.687 4.901 4.705 5.000 4.749 5.589 6.000 5.406 6.479 6.464 3.815 
HE (unbiased) 0.859 0.802 0.825 0.756 0.783 0.833 0.889 0.837 0.890 0.888 0.628 
HO 0.118 0.286 0.125 0.400 0.375 0.375 0.400 0.118 0.129 0.267 0.091 
FIS estimate 0.8287* 0.5137

* 
1.0000
* 

0.3500 0.3857 0.4881 0.5000 0.7937
* 

0.7698
* 

0.6026* 0.8173
* 

            
Locus B12            
Na (12) 8 8 7 6 9 6 5 8 7 9 5 
Ne 5.352 5.227 5.818 4.167 7.111 4.000 4.545 5.453 5.460 6.418 3.967 
Rs 5.481 5.114 5.920 6.000 6.992 4.831 5.000 5.082 5.044 5.560 4.415 
HE (unbiased) 0.838 0.823 0.883 0.844 0.917 0.800 0.867 0.829 0.830 0.854 0.784 
HO 0.706 0.893 0.750 0.800 0.875 0.375 0.200 0.824 0.774 0.867 0.909 
FIS estimate 0.2420 NS NS NS NS 0.3571 0.8750 NS NS NS NS 
            
Locus B63            
Na (14) 9 10 7 5 7 8 6 10 11 14 6 
Ne 6.352 5.141 5.565 3.125 5.120 6.400 4.545 5.048 7.392 6.308 4.102 
Rs 5.892 5.101 5.760 5.000 5.677 6.456 6.000 5.110 6.047 5.820 4.932 
HE (unbiased) 0.868 0.820 0.875 0.756 0.858 0.900 0.867 0.814 0.879 0.851 0.792 
HO 0.882 0.893 0.875 0.600 0.750 0.875 1.000 0.853 0.774 0.756 0.818 
FIS estimate NS NS NS NS NS NS NS NS 0.0655 NS NS 
            
Locus B71            
Na (6) 3 4 4 3 2 4 3 4 4 5 4 
Ne 2.165 2.299 2.844 2.273 2.000 2.560 2.174 3.007 3.027 2.443 2.305 
Rs 2.505 2.916 3.500 3.000 2.000 3.554 3.000 3.432 3.358 2.862 2.908 
HE (unbiased) 0.554 0.575 0.692 0.622 0.533 0.650 0.600 0.677 0.681 0.597 0.593 
HO 0.294 0.464 0.625 0.600 0.000 0.500 0.400 0.647 0.516 0.467 0.455 
FIS estimate 0.7258 NS NS 1.1429 NS NS NS NS NS NS NS 
            
Locus D6            
Na (14) 8 8 9 6 7 8 6 11 12 10 8 
Ne 4.446 4.978 8.000 5.000 4.923 6.400 5.000 5.838 7.308 6.795 6.050 
Rs 4.804 4.838 7.214 6.000 5.615 6.456 6.000 5.553 6.160 5.734 5.972 
HE (unbiased) 0.799 0.814 0.933 0.889 0.850 0.900 0.889 0.841 0.877 0.862 0.874 
HO 0.765 0.857 1 1.000 0.625 0.750 1.000 0.794 0.935 0.844 0.818 
FIS estimate NS NS NS NS NS NS NS NS NS NS NS 
 
 
 

           

Locus D41            
Na (10) 4 3 4 3 3 5 3 7 6 7 4 
Ne 2.359 1.931 2.909 2.778 2.032 2.783 1.852 2.227 2.433 3.418 2.782 
Rs 2.801 2.315 3.742 3.000 2.624 3.874 3.000 3.350 3.197 4.002 3.374 
HE (unbiased) 0.594 0.491 0.700 0.711 0.542 0.683 0.511 0.559 0.599 0.715 0.671 
HO 0.294 0.357 0.375 0.400 0.375 0.375 0.400 0.265 0.387 0.556 0.182 

Table 4.3 Genetic data for (a) R. affinis and (b) R. lepidus. Total number of individuals selected in the 

analysis (N), number of alleles (Na), number of effective alleles (Ne), unbiased expected heterozygosity 

(HE), observed heterozygosity (HO) and polymorphism (P). FIS is shown to indicate deviation from 

Hardy–Weinberg equilibrium. * P < 0.05 after Bonferroni correction. 
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FIS estimate 0.5194 0.6127 NS NS NS 0.1786 NS 0.5113
* 

0.1587 0.2644 0.6015
* 

            
Locus E7            
Na (8) 5 5 5 2 4 4 5 6 6 7 3 
Ne 4.624 2.975 3.282 1.724 2.844 3.459 3.125 3.853 3.274 3.835 2.659 
Rs 4.539 3.635 4.125 2.000 3.500 3.838 5.000 4.407 3.884 4.203 2.958 
HE (unbiased) 0.807 0.676 0.742 0.467 0.692 0.758 0.756 0.752 0.706 0.748 0.654 
HO 0.588 0.714 0.750 0.600 0.500 0.875 0.600 0.647 0.613 0.733 0.364 
FIS estimate NS NS NS NS NS NS NS NS NS NS NS 
            
Locus E45            
Na (12) 11 10 7 6 7 7 5 11 10 10 8 
Ne 5.026 7.362 4.414 4.545 5.565 5.120 4.167 6.985 6.025 7.271 6.541 
Rs 5.808 6.100 5.428 6.000 5.999 5.677 5.000 6.128 5.745 6.009 6.146 
HE (unbiased) 0.825 0.880 0.825 0.867 0.875 0.858 0.844 0.870 0.848 0.872 0.887 
HO 0.706 0.714 0.625 0.600 0.875 0.875 0.800 0.647 0.871 0.800 1.000 
FIS estimate NS 0.1193 NS NS NS NS NS NS 0.2617 NS NS 
            
Locus E93            
Na (17) 10 12 9 5 8 9 5 13 12 14 7 
Ne 6.149 7.193 7.529 4.545 4.741 7.529 3.846 6.901 7.145 8.420 5.762 
Rs 5.887 6.136 7.054 5.000 5.964 7.054 5.000 6.148 6.099 6.515 5.660 
HE (unbiased) 0.863 0.877 0.925 0.867 0.842 0.925 0.822 0.868 0.874 0.891 0.866 
HO 0.824 0.786 0.750 1.000 0.875 0.750 0.800 0.706 0.581 0.778 0.273 
FIS estimate NS NS 0.1607 NS NS 0.1161 NS 0.0989 0.2002

* 
NS 0.6625

* 
            
Locus E95            
Na (17) 13 13 9 7 7 9 6 13 13 14 9 
Ne 9.031 8.082 7.529 6.250 5.333 6.737 5.000 8.170 8.940 8.901 7.333 
Rs 7.043 6.440 7.054 7.000 5.698 6.831 6.000 6.424 6.783 6.544 6.563 
HE (unbiased) 0.916 0.892 0.925 0.933 0.867 0.908 0.889 0.891 0.903 0.898 0.905 
HO 0.882 0.786 0.875 1.000 0.813 0.875 1.000 0.882 0.839 0.911 0.818 
FIS estimate NS NS NS NS NS 0.0268 NS NS NS NS NS 
            
Locus E119            
Na (23) 9 11 7 6 8 8 5 14 15 13 6 
Ne 3.420 3.891 4.414 5.000 4.741 4.129 2.500 3.772 3.572 4.677 3.103 
Rs 4.915 5.148 5.428 6.000 5.964 5.875 5.000 5.268 5.144 5.459 4.308 
HE (unbiased) 0.729 0.756 0.825 0.889 0.842 0.808 0.667 0.746 0.732 0.795 0.710 
HO 0.529 0.786 0.875 1.000 0.875 1.000 0.600 0.735 0.677 0.844 0.727 
FIS estimate 0.2800 NS NS NS NS NS NS NS NS NS NS 
            
Locus F77            
Na (8) 4 5 4 4 4 4 5 6 7 5 4 
Ne 3.124 3.246 2.510 2.778 3.282 2.844 4.167 3.596 3.051 3.295 3.103 
Rs 3.654 3.779 3.250 4.000 3.831 3.500 5.000 4.035 4.021 3.724 3.419 
HE (unbiased) 0.701 0.705 0.642 0.711 0.742 0.692 0.844 0.733 0.683 0.704 0.710 
HO 0.412 0.679 0.500 0.600 0.500 0.500 1.000 0.588 0.516 0.467 0.364 
FIS estimate NS NS NS NS NS NS NS 0.1625 0.3142 0.2843* 0.4133 
            
Mean 

allele/locus 

7.1429 7.4258 6.1429 4.2143 5.7143 6.3571 4.8571 9.0000 9.0000 9.7142 5.5714 

Mean Rs 5.8685 5.6600 6.4427 5.9091 5.9275 6.5340 6.1818 6.1013 6.2152 6.3374 5.5665 
Mean HE  0.679 0.659 0.737 0.698 0.683 0.732 0.717 0.691 0.701 0.724 0.676 
Mean HO 0.518 0.595 0.633 0.640 0.567 0.633 0.640 0.584 0.576 0.631 0.527 
P 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 0.9333 
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(b) Rhinolophus lepidus 
Population NS1 JH1 KH1 MK4 PN1 KH3 NS3 PK4 FRIM TG2 SL2 
N 7 4 17 18 10 4 6 2 4 6 2 
            
LocusRferr01            
Na (8) 6 4 7 7 8 5 7 4 3 6 4 
Ne 5.444 3.556 5.352 4.985 6.061 4.000 5.538 4.000 2.667 5.143 4.000 
Rs 1.879 1.821 1.838 1.822 1.879 1.857 1.894 2.000 1.833 1.879 2.000 
HE (unbiased) 0.879 0.821 0.838 0.822 0.879 0.857 0.894 1.000 0.833 0.879 1.000 
HO 1.000 0.750 0.882 0.722 0.900 0.750 0.833 1.000 0.500 1.000 1.000 
FIS estimate NS NS NS NS NS NS NS NS NS NS NS 
            
Locus Rferr11            
Na (13) 7 5 11 8 7 5 7 2 3 5 4 
Ne 3.920 4.000 7.918 5.143 5.556 3.200 6.000 2.000 2.667 3.789 4.000 
Rs 1.802 1.857 1.900 1.829 1.863 1.786 1.909 1.667 1.833 1.803 2.000 
HE (unbiased) 0.802 0.857 0.900 0.829 0.863 0.786 0.909 0.667 0.833 0.803 1.000 
HO 0.714 0.500 0.765 0.944 0.900 0.750 0.667 1.000 1.000 1.000 1.000 
FIS estimate NS NS NS NS NS NS 0.2222 NS NS NS NS 
            
Locus Rferr14            
Na (8) 3 4 7 7 6 5 5 3 1 4 3 
Ne 2.174 3.200 4.031 4.765 3.922 4.571 4.235 2.667 1.000 3.273 2.667 
Rs 1.600 1.786 1.776 1.813 1.784 1.893 1.833 1.833 1.000 1.758 1.833 
HE (unbiased) 0.600 0.786 0.776 0.813 0.784 0.893 0.833 0.833 0.000 0.758 0.833 
HO 0.6000 1.000 0.688 0.778 0.800 1.000 1.000 0.500 0.000 0.500 0.500 
FIS estimate NS NS NS NS NS NS NS NS NS NS NS 
            
Locus Rferr27            
Na (24) 10 6 14 13 11 4 7 1 3 4 3 
Ne 8.167 4.571 9.660 8.627 8.100 2.909 6.400 1.000 2.667 6.250 2.667 
Rs 1.945 1.893 1.925 1.911 1.928 1.750 1.964 1.000 1.833 1.933 1.833 
HE (unbiased) 0.945 0.893 0.925 0.911 0.928 0.750 0.964 0.000 0.833 0.933 0.833 
HO 1.000 0.750 1.000 0.706 1.000 0.750 1.000 0.000 1.000 0.800 1.000 
FIS estimate NS NS NS NS NS NS NS NS NS NS NS 
            
Locus RHA8            
Na (19) 9 7 14 11 11 7 8 4 4 8 4 
Ne 7.200 6.400 9.966 6.231 7.111 6.400 6.545 4.000 4.000 7.200 4.000 
Rs 1.923 1.964 1.927 1.863 1.868 1.964 1.924 2.000 2.000 1.939 2.000 
HE (unbiased) 0.939 0.964 0.927 0.863 0.917 0.964 0.924 1.000 1.000 0.939 1.000 
HO 1.000 1.000 0.824 0.833 0.875 1.000 0.667 1.000 1.000 1.000 1.000 
FIS estimate NS NS NS NS NS NS NS NS NS NS NS 
            
Locus RHA101            
Na (15) 4 5 10 8 10 4 6 3 3 5 3 
Ne 3.429 4.571 6.644 5.505 7.714 3.556 5.143 2.667 2.667 3.600 2.667 
Rs 1.773 1.893 1.892 1.845 1.921 1.821 1.879 1.833 1.833 1.788 1.833 
HE (unbiased) 0.773 0.893 0.881 0.845 0.922 0.821 0.879 0.833 0.833 0.788 0.833 
HO 0.167 0.250 0.429 0.313 0.556 0.250 0.500 1.000 0.500 0.333 0.500 
FIS estimate 0.7111 0.7500 0.3617 0.5992 0.2593 0.8148 NS NS NS 0.5033 NS 
            
Locus RHA104            
Na (16) 8 6 11 9 9 5 7 4 3 7 4 
Ne 4.900 4.571 8.036 7.136 6.897 4.000 5.538 4.000 2.667 6.000 4.000 
Rs 1.857 1.893 1.906 1.894 1.900 1.857 1.894 2.000 1.833 1.909 2.000 
HE (unbiased) 0.857 0.893 0.906 0.886 0.900 0.857 0.894 1.000 0.833 0.909 1.000 
HO 0.857 0.750 0.600 0.588 0.600 1.000 1.000 1.000 0.500 1.000 1.000 
FIS estimate NS NS 0.3538 0.3320 0.2535 NS NS NS NS NS NS 
            
Locus RHA105            
Na (10) 5 3 7 7 6 4 4 2 3 4 3 
Ne 2.649 2.133 4.923 4.777 4.348 3.556 3.000 2.000 2.667 2.057 2.667 
Rs 1.670 1.607 1.823 1.821 1.811 1.821 1.727 1.667 1.833 1.561 1.833 
HE (unbiased) 0.670 0.607 0.823 0.815 0.811 0.821 0.727 0.667 0.833 0.561 0.833 
HO 0.571 0.750 0.875 0.706 0.600 0.250 0.833 0.000 0.500 0.500 1.000 
FIS estimate NS NS NS NS NS 0.8148 NS NS NS NS NS 
            
Locus RHA118            
Na (11) 8 3 10 10 9 6 7 4 3 8 3 
Ne 5.158 1.684 8.500 5.684 7.364 5.333 5.538 4.000 2.667 6.545 2.667 
Rs 1.868 1.464 1.909 1.848 1.915 1.929 1.894 2.000 1.833 1.924 1.833 
HE (unbiased) 0.868 0.464 0.909 0.848 0.915 0.929 0.894 1.000 0.833 0.924 0.833 
HO 0.857 0.500 0.941 0.889 0.889 1.000 1.000 1.000 0.500 0.833 1.000 
FIS estimate NS NS NS NS NS NS NS NS NS NS NS 
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Locus RHD107            
Na (9) 5 5 7 8 8 4 8 3 NA 7 2 
Ne 3.630 3.200 4.857 6.113 5.714 3.600 4.500 2.667 0.000 5.538 2.000 
Rs 1.780 1.786 1.818 1.860 1.868 1.867 1.848 1.833 NA 2.000 1.845 
HE (unbiased) 0.780 0.786 0.818 0.860 0.868 0.867 0.848 0.833 0.000 0.894 1.000 
HO 0.857 1.000 0.706 0.833 1.000 1.000 0.833 1.000 0.000 0.667 1.000 
FIS estimate NS NS NS NS NS NS NS NS NS NS NS 
            
Mean allele/locus 6.5000 4.8000 9.8000 8.8000 8.5000 4.9000 6.6000 3.0000 2.6000 6.1000 3.3000 
Mean Rs 1.8130 1.7976 1.8773 1.8496 1.8743 1.8531 1.8798 NA 1.7590 1.8327 NA 
Mean HE 

(unbiased) 

0.811 0.796 0.870 0.849 0.879 0.855 0.877 0.783 0.683 0.839 0.917 

Mean HO 0.762 0.725 0.771 0.731 0.812 0.775 0.833 0.750 0.550 0.763 0.850 
P 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9000 0.8000 1.0000 1.0000 
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Figure 4.2 Parts (a) and (b) show mean allelic richness (Rs) for populations of R. affinis 

with latitude and longitude, respectively. Parts (c) and (d) show mean allelic richness 

(Rs) for populations of R. lepidus across latitude and longitude, respectively. 
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 Analysis of population structure  

 

(i) F-statistics and Isolation-by-distance 

 

For both species, estimated global values of RST, as well as pairwise RST among 

populations were not significantly larger than the corresponding permuted analogues 

pRST (values not shown) indicating stepwise mutation has not contributed to the 

observed differentiation, and thus FST is adequate to describe genetic distance. Closer 

examination of pairwise FST among R. affinis populations showed the greatest distance 

(FST = 0.0448, P < 0.001) was found between KH2 and JH1, which are the northernmost 

sampling site and second southernmost sampling site in this study (see Table 4.4a). 

However, the southernmost of all sampling sites (JH2) showed no significant 

differentiation with KH2 (FST = 0.0372, P > 0.05). Other significant pairwise 

differences were detected between KH3 and JH1 (FST = 0.0123, P < 0.05), PN1 and 

PH1 (FST = 0.0162, P < 0.05), PN1 and JH1 (FST = 0.0147, P < 0.01) and PN1 and JH2 

(FST = 0.0145, P < 0.001).  When all values of pairwise genetic distance were plotted 

against corresponding geographic distances, significant isolation-by-distance (IBD) was 

detected (r2 = 0.243, slope 0.0001; P = 0.0013 (Figure 4.3a).  

 

In the case of R. lepidus, pairwise FST values among subpopulations ranged from 

-0.0126 (PN1 and KH3) to 0.0734 (NS1 and JH1), however, none were significant. In 

general, the range of pairwise differences among R. lepidus populations was wider 

compared to that of pairwise differences among R. affinis populations. An IBD plot of 

genetic distance versus geographic distance for R. lepidus revealed a positive 

relationship, however, this was not significant (Figure 4.3b).  
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b) FST  
RST   NS1 JH1 KH1 MK4 PN1 KH3 NS3 TG2 

 
NS1  0.0734 0.0288 0.0325 0.0227 -0.0039 0.0079 0.0013 

 
JH1 0.0356  0.0345 0.0246 0.0176 0.0563 0.0427 0.0499 

 
KH1 0.0255 -0.0273  0.0158 -0.0067 -0.0009 0.0014 0.0091 

 
MK4 0.0237 0.0154 -0.0064  -0.005 0.0006 -0.0014 0.0016 

 
PN1 0.0292 -0.0146 0.0183 0.013  -0.0126 -0.0064 0.0037 

 
KH3 -0.0208 0.1292 0.0612 0.0217 0.0499  0.0013 0.0179 

 
NS3 0.0449 -0.034 0.0276 0.0752 0.0971 0.1639  0.0169 

 
TG2 -0.0336 0.0527 0.0149 -0.0199 0.0017 -0.0593 0.1093  

a) FST  
RST   NS1 JH1 PK1 KH2 KH3 KH1 FRIM JH2 PH2 PN1 PH1 

 NS1  -0.0015 -0.0041 0.0348 0.0111 0.0092 -0.0141 -0.0046 0.0039 0.0058 0.0022 
 JH1 -0.0139  0.0113 0.0448** 0.0123* 0.0229 0.0002 -0.0065 0.003 0.0147** 0.0022 
 PK1 -0.0157 -0.0056  0.008 -0.012 -0.0147 -0.0072 0.0035 -0.0084 -0.0102 -0.0053 
 KH2 -0.0156 0.0066 -0.0377  0.0322 0.0114 0.023 0.0372 0.017 0.0154 0.044 
 KH3 -0.0078 0.0002 -0.0489 -0.0459  0.0013 -0.0188 0.0113 0.0047 0.0041 0.0093 
 KH1 -0.0131 -0.0011 -0.0063 -0.0359 -0.0271  0.003 0.0146 -0.0024 0.0098 0.0163 
 FRIM -0.0659* -0.0192 -0.0182 0.0181 -0.0131 0.0089  -0.0044 -0.0114 -0.0073 -0.002 
 JH2 0.0077 -0.0024 -0.0181 0.0022 -0.0217 0.0127 -0.0089  0.0021 0.0145*** 0.0053 
 PH2 0.0198 0.0058 -0.0136 -0.0145 -0.0291 -0.0117 0.0192 -0.0047  0.0031 0.0077 
 PN1 -0.0012 0.003 -0.0331* -0.0343 -0.0312* -0.0111 -0.0073 0.0002 0.0044  0.0162* 
 PH1 -0.0131 -0.0168 -0.0433 -0.0285 -0.0311 -0.0223 -0.006 -0.0177 -0.025* -0.0207*  

Table 4.4 Pairwise estimated of FST and RST calculated for a) 11 populations of R. affinis and b) 8 populations of R. lepidus 

across Peninsular Malaysia. Significant comparisons are denoted by * for P < 0.05, ** for P < 0.01 and *** for P < 0.001.   
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Figure 4.3 Plot of genetic distance against geographical distance for pairwise population 

comparisons across peninsular Malaysia, undertaken for (a) R. affinis and (b) R. lepidus. 
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(ii) Clustering analyses 

 

In addition to IBD analyses, wider patterns of genetic structure were also analysed 

without geographical information using a Bayesian clustering method.  Mean probabilities 

were generated for one to nine genetic clusters (K values), each based on averaging the 

results from five replicate runs. K was plotted against ln P(D) to determine the most 

probable number of clusters in the data. Following this method, it appeared that the most 

probable number of clusters for R. affinis in Peninsular Malaysia was K = 3, whereas for R. 

lepidus in Peninsular Malaysia it was K = 1 (see Figure 4.4a and b, respectively). For both 

species, these results were the same and the overall broad patterns were similar in runs 

where population membership was considered.   

 

Following grouping of runs in CLUMPP, the results remained the same. For R. 

affinis, cluster membership of all individuals at K = 3 is shown in Figure 4.5a, whereas for 

R. lepidus the structure at K = 2 (the second highest probability) (Figure 4.5b). To assess 

whether any detected clustering follows a clinal pattern, individuals on these plots are 

shown in order of increasing latitude. Overall I found very little evidence of population 

structure, with all populations showing strong admixture (mixed cluster membership). 

Cluster membership coefficients (Q) of all individuals did not exceed 0.5 for a particular 

genetic cluster. However, for R. affinis, there was some weak subdivision present, which 

showed some association with location. For example, JH1 and NS1 both had the same 

signature of admixture, whereas isolated smaller forest fragments such as PH1, FRIM and 

PK1 formed independent clusters from their neighboring sites. Although located in 

continuous primary forest, the southernmost and northernmost site, JH2 and KH2 formed 

independent clusters as well.  KH3 is the site where hand net capturing was conducted for 

both of the species. For R. lepidus, in the bar graph for K = 2 individuals showed no 

differences across all populations (Figure 4.5b) with cluster membership split equally (Q = 

0.5). This is to be expected based on the fact that K=1 had the highest probability (Figure 

4.4b). 
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Figure 4.4 Average likelihood values for increasing number of clusters (values of 

K) shown for (a) R. affinis and (b) R. lepidus. In both plots, filled circles represent 

model runs in which there was no consideration of original population 

membership, whereas squares represent model runs in which original population 

membership information was included. 
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Figure 4.5 Graphical representation of population structure in the Peninsular 

Malaysian for (a) R. affinis at K = 3 and (b) R. lepidus at K = 2.  Although no 

population membership information was used in assigning individuals, they have been 

sorted into their original populations and ordered by increasing latitude for display 

purposes. Plots were produced in DISTRUCT and are based on multiple replicate runs 

combined in CLUMMP. In these plots, each individual is depicted as a vertical line 

(not visible) that is subdivided into K colour sections.  The length of the section 

represents the estimated membership coefficient (Q value) for that cluster.  
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(iii) Principal Coordinate Analysis (PCoA) 

 

Principal Coordinate Analyses (PCoA) were conducted based on pairwise genetic distances 

among individuals within each of the respective species. For R. affinis, coordinates (= axes) 

1 and 2 together explained 40.89% of the total inertia (coordinate 1 = 21.82% and 

coordinate 2 = 19.08%) (see Figure 4.6a). Overall the PCoA pattern showed that 

individuals from all of the populations were generally intermingled, although representation 

of different populations appeared to differ along coordinate 1.  In particular, most of the 

individuals from the southern part of Peninsular Malaysia tended to be distributed at the left 

of coordinate 1, showing segregation from individuals from the smaller forest fragments in 

the south (JH1 and PH1) that were mainly distributed at the right of coordinate 1. Most of 

the individuals from other populations were distributed evenly across coordinate 2. 

 

 For R. lepidus population, the first two coordinates explained a total of 36.94% of 

the total inertia (coordinate 1 = 18.50% and coordinate 2 = 18.44%). Individuals from most 

populations were distributed rather evenly along both coordinates, however, there was 

evidence that individuals from some populations were more concentrated towards the left 

of coordinate 1 (e.g. JH1), whereas others were more concentrated towards the right (e.g. 

KH1 and MK4). The most obvious outlier was an individual from FRIM, which occurred at 

the far left.  
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Figure 4.6 Two dimensional plots of first two coordinates based on a Principal 

Coordinate Analysis of genetic distances for all of the sampling locations for (a) 

R. affinis and (b) R. lepidus. 
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Discussion  

 

In this study I utilised microsatellites data to analyse the genetic structure of two forest 

specialist species, Rhinolophus affinis and R. lepidus, in Peninsular Malaysia. In both 

species, plots of allelic richness (Rs) versus longitude showed significant negative 

correlations, with more alleles in the west (Figures 4.2a and c). Due to the shape of the 

Malay Peninsula, longitudinal declines also reflect greater diversity in the north. These 

results agree with those of Chapter 3, in which mtDNA diversity was also found to be 

higher in the north. Latitudinal declines in microsatellite allelic richness have been 

observed in several vertebrate species, such as the Anadromous brook char (Castric and 

Bernatchez, 2003), the European nine-spined stickleback (Shikano et al., 2010) and the 

common frog both in Sweden (Johansson et al., 2006) and across Europe (Palo et al., 

2004). The opposite trend of northerly (and westerly) increases in microsatellite allelic 

richness detected in this study could reflect reductions in the south due to the effects of 

habitat loss. Alternatively higher diversity in the north might also be due to a longer or 

more stable population history as suggested by network and demographic analyses of 

mtDNA, or to admixture with the divergent population from north of the Isthmus of Kra 

(Chapter 3). As with mtDNA, the direction of the observed clines in microsatellite allelic 

richness do not agree with a scenario of expansion of the forest from the equator following 

the Last Glacial Maximum (e.g. Wurster et al., 2010). Finally, in the case of R. affinis, high 

diversity in the north could also be due to a larger effective population size, since this 

species ranges much further north. However, this seems less likely for R. lepidus, which is 

more restricted to the wet tropics (Csorba et al., 2003). 

 

 Weak isolation-by-distance (IBD) was revealed in R. affinis but not in R. lepidus. 

This difference might in part be due to the greater number of pairwise comparisons at the 

equivalent distances in the former taxon, thus providing more power to detect IBD in R. 

affinis. However, comparisons of the two IBD plots show that for a given pairwise 

geographical distance, the genetic distances are often higher in R. lepidus (Figure 4.3b), 

possibly reflecting smaller sample sizes. Indeed, the estimation of differentiation or fixation 

indices is known to be vulnerable to large sampling errors in population with small sample 

sizes (Nei and Chesser, 1983). Previously among bats, IBD has also been reported in the 
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Neotropical phyllostomid bat Carollia perspicillata but not in related species Uroderma 

bilobatum (Meyer et al., 2009). More commonly IBD has been observed in temperate 

species such as Pipistrellus pipistrellus, P. pygmaeus (Racey et al., 2007) and Plecotus 

auritus (Burland et al., 1999). To date, there have only been two published studies that have 

looked at IBD in other horseshoe bats (Rhinolophus). Chen et al. (2008) worked on the 

subtropical bat species R. monoceros and reported a very similar pattern of IBD and the 

same range of FST values as R. affinis based on microsatellite data across 400 kilometres in 

Taiwan (Chen et al., 2008). In comparison, in the Asia-Europe widespread temperate 

greater horseshoe bat, R. ferrumequinum, the gradient of IBD was steeper in the UK 

population than in the continental European population, probably reflecting stepwise 

colonisation of the species that led to drift in the north, with subsequent population 

isolation following habitat fragmentation (Rossiter et al., 2007). 

 

Interestingly - and in disagreement with my finding of microsatellite-based IBD in 

R. affinis - I discovered no such pattern of IBD from maternally inherited mtDNA (Chapter 

3). In the social organisation systems of most mammals, including bats, females tend to 

remain in their natal site more than males (philopatry), which disperse at sexual maturity 

(Greenwood, 1980). This phenomenon causes maternally inherited alleles to accumulate 

locally and is therefore expected to promote greater maternal population subdivision than 

paternal subdivision (Storz, 1999). As a consequence of these sex-biased behaviours, 

patterns of genetic diversity and subdivision in wild populations are known to often differ 

from theoretical expectations based on classically defined demic groups in which mating 

and dispersal is random (Chesser, 1991). In previous work on bats, for example, haplotypes 

that were private to single populations were used to infer strong female natal philopatry and 

male-mediated gene flow (Worthington-Wilmer et al. 1994, 1999; Kerth et al. 2000; Chen 

et al. 2008). In my study, mtDNA diversity was extremely high due to the long population 

history of the species in Peninsular Malaysia. The consequent accumulation of ancestral 

polymorphisms has led to nearly all sampled haplotypes being private to their source 

population, so causing difficulties in estimating genetic structure among populations.  

Therefore, given the extreme haplotype variability relative to the sample sizes, the mtDNA 

data were unsuitable for detecting sex-biased philopatry and dispersal. Indeed in this 

situation, microsatellites analyses have more power in detecting genetic structure because 
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numerous loci are considered. Since the microsatellite markers are sexually neutral, it is 

unlikely that the detected IBD structure is specifically due to female philopatry in the focal 

species, but rather it probably reflected restricted gene flow in general.  

 

Apart from IBD, I detected some evidence of slight clustering in R. affinis but not in 

R. lepidus, although even in the former species none of the individuals were unambiguously 

assigned to a single cluster with a high membership coefficient. As such, I found no 

evidence for the presence of cryptic species of R. affinis, as suggested from an intensive 

study of central Peninsular Malaysia (Struebig, 2008). Instead, all individuals showed 

evidence of admixture, and any population structure was only evident as slight changes in 

the relative membership of the different clusters (Figure 4.5a). Admixture in populations 

usually arises due to the presence of descendants of immigrants or, in other words, gene 

flow (Excoffier and Heckel, 2006). Admixture inferred from mixed membership of clusters 

has been reported in some other species, including fishes (e.g. sailfin silverside; Walter et 

al., 2009)) and mammals (e.g. red squirrel; Grill et al., 2009) as well as in other bats (e.g. 

greater horseshoe bat; Rossiter et al., 2007). Nonetheless in such cases, admixture is seen in 

populations that are located between clearly define clusters. In my study, geographically 

widespread admixture that showed slight differences among some populations could either 

reflect a signature of ancient multiple refugial populations or perhaps introgression (e.g. 

Mao et al., 2010a),  which has not yet been completely eroded by gene flow. According to 

Pritchard (2007), the STRUCTURE program will face difficulties in analysing genotype 

data of populations in which IBD is the main process, and that this will cause admixed 

cluster memberships in individuals and overestimation of the number of clusters. Even so, 

STRUCTURE has been shown to be less prone to overestimating number of clusters in a 

population in comparison to similar clustering approaches implemented in GENELAND 

and BAPS (Frantz et al., 2009). 

 

The contrasting patterns of structure observed between the two focal horseshoe bat 

species show similarities to results from a study conducted on the co-distributed Old World 

fruit bats, Cynopterus sphinx and Rousettus leschenaulti (Chen et al., 2010).  In this study, 

the former species showed strong structure across southern China, whereas in the latter 

species, no population division was recorded, with equal assignment to clusters using 
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STRUCTURE. Of particular relevance here is the fact that the haplotype network for R. 

leschenaulti reported by Chen et al. (2010) showed evidence of a long population history 

with a high incidence of private haplotypes, whereas that of C. sphinx showed a signature 

of expansion. Therefore the lack of structure described in this Chapter for both R. affinis 

and R. lepidus could occur for the same reasons as in R. leschenaulti. Chen et al. (2010) 

also suggested that these differences might be caused by greater vagility in R. leschenaulti 

due as its adaptation to roosting in large cave colonies, compared to C. sphinx, which roosts 

in small groups in caves (Chen et al., 2010). A similar argument was also proposed by 

Rossiter et al. (2012) who found that for two genera of forest bats, species that roost in 

caves tended to show higher gene flow over a landscape spatial scale than species that roost 

in trees. Both species of horseshoe bat are cave roosters, so might also be able to fly 

sufficiently far to prevent structure. Actual limits of dispersal are not known; however, 

Struebig et al. (2009) studied the assemblage composition in a limestone area in Pahang, 

Peninsular Malaysia, and found that individuals of R. affinis and R. lepidus could forage in 

forest up to 11 km away from their cave roosts. 

 

In summary, all analyses of population genetic structure applied in this study, 

including estimation of FST, IBD plots, Bayesian clustering and PCoA analysis, gave results 

that were consistent with an IBD model in which the probability of dispersal and mating 

decreases with physical distance (Wright, 1943). To date, IBD estimation has been 

commonly applied to measure genetic structure among populations based on Euclidean 

distances regardless of geographic complexity (Jenkins et al., 2010). Historically, the main 

potential barrier to gene flow in the peninsula is the Titiwangsa Central mountain range; 

however, pairwise FST showed no consistent increase in genetic differentiation between 

western and eastern bat populations. In fact, the Titiwangsa mountains are <1800m and are 

covered by continuous forest, so they might not be expected to act as an effective barrier. 

Instead, there is good evidence that upland areas harbour populations with the highest 

genetic richness in both species, and in general, these species appear to occur across a range 

of altitudes within their distributions (Csorba et al., 2003).  

 

 As well as containing relatively low levels of allelic richness, the southern and 

eastern populations of both focal species have also been under the greatest threats from 
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human activities. Around half of the forest sites sampled on the east coast are subject to 

logging or mining activities, while most have some level of disturbance. R. lepidus has 

even been recorded roosting in man-made tunnels in Singapore (B. Lee, personal 

communication) suggesting an ability to cope with human activity, although the health and 

future viability of such populations in the face of ongoing forest loss, are not known. 

Struebig et al. (2011) recorded an effect of fragment size on genetic diversity of Malaysian 

bat populations but they focused on smaller forest fragments than those investigated here. 

Nevertheless, it is likely that larger fragments will show more delays in any negative 

impacts, and these forest patches might further decrease in size. The break up of a large 

continuous population into several small demes can in theory cause a ‘Wahlund effect’ in 

which a deficit in heterozygosity (significant inbreeding coefficients or FIS) occurs due to 

the presence of cryptic structure (Allendorf and Luikart, 2007). Wahlund effects might also 

be particularly likely in species such as bats, if sampling is near to caves roosts that serve 

multiple family groups or colonies. However, in the case of my study, although an excess 

in homozygosity was recorded for some markers in some populations of R. affinis and R. 

lepidus (e.g. notably in the former taxon in populations JH1, JH2, PH2 and PH1), all 

positive deviations from HWE appeared to be due to marker characteristics rather than any 

effect of population processes.  
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Figure S4.1 Two focal species studied: (a) Rhinolophus affinis, intermediate horseshoe bat 

and (b) Rhinolophus lepidus, lesser horseshoe bat 

 

(a) 

 

 
(b) 
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Chapter 5: General Discussion  

 

In this project, I conducted intensive field surveys to study the assemblage structure of 

insectivorous forest-dependent bats in Peninsular Malaysia and found some evidence for 

uneven species richness, with lowest diversity in the north and greatest in the south. These 

results contradict published findings based on literature surveys of mammal species, as 

reported by Woodruff and Turner (2009), and also findings of Hughes et al. (2011), who 

inferred diversity from ranges of species inferred from presence-only data, either collected 

in the field or contributed by third-parties. Reasons for these discrepancies might reflect the 

fact that in my study, species richness was calculated based on forest bats only and also 

took account of sampling effort. In this study I also attempted to control for site elevation, 

fragment size and, moreover, most of my data were collected by harp-trapping of foraging 

bats in forest. For these reasons the trends I found were perhaps less biased by local 

conditions such as roost availability (for example, based on museum and other records, the 

presence of cave roosting bats may be biased upwards in areas where there are caves). 

   

 A clinal pattern in species diversity, with greatest diversity in the south, could be 

considered consistent with theories that the forest over much of the Malay Peninsula was 

replaced by savannah during the Last Glacial Maximum, which subsequently expanded 

from refugial areas (e.g. Wurster et al. 2010). On the other hand, recent recolonization of 

former grassland by forest trees and forest-interior species might also be expected to lead to 

a correlation between beta diversity and geographical distance. Although I found a 

significant association between pairwise differences in diversity and geographical distance, 

this seemed to reflect the extremes in alpha diversity between north and south, and overall 

there was no evidence of an effect of distance on beta diversity among sites. More 

importantly, post-glacial range expansion of forest-interior bats was not supported by the 

genetic data (see below). For these reasons, although the observed geographical variation in 

species richness could be interpreted as supporting historical changes in forest coverage 

from the LGM, this seems less likely when viewed alongside all the other evidence. 
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 In Chapter 3, I undertook analysis of demographic and population genetic structure 

that was applied to one of the most widely distributed bat species, Rhinolophus affinis. In 

recent years phylogeography has proven to be a powerful method for reconstructing the 

past responses of taxa to ancient changes in climate and habitat distribution. The results of 

phylogenetic trees and networks, as well as demographic analyses, all suggest that within 

Peninsular Malaysia this species has had a very stable population history, which would 

long pre-date the LGM. Highest haplotype diversity was observed in the central upland 

areas, where populations also show evidence of having been the most stable. These results 

provide evidence against that of Wurster et al. (2010), who claimed that at the time of the 

LGM, forest across the peninsula was replaced by open savannah. While R. affinis is 

widespread, suggesting some ecological flexibility, it is typically found in or near to forest 

and it would almost certainly not be able to survive in large expanses of open grassland due 

to its ecomorphological adaptations for feeding in cluttered vegetation. In fact, none of the 

approximately 80 known extant species of horseshoe bat are associated with open grassland 

habitats (Csorba et al., 2003). Thus my data indicate that this species has not undergone 

dramatic changes in population size, and might have occurred in Peninsular Malaysia since 

before the LGM. Although the presence of extant rainforest species in some parts of 

Southeast Asian has previously been used to argue for a long history of rainforest (e.g. 

Meijaard, 2003), the same sorts of arguments have not been made using genetic evidence. 

This is in direct contrast to northern Europe and other temperate areas, where haplotype 

data are commonly used to support past population contraction and expansion (e.g. Hewitt, 

2004). 

 

 Phylogenetic analyses that included other subspecies from China allowed estimation 

of the time to the most recent common ancestor (TMRCA) for R. affinis (see Chapter 3). A 

dated phylogeny suggested that this taxon was estimated to have formed about 800,000 

years BP, when according to the literature, East Asia probably had a warmer climate than at 

present, and so was also covered by humid evergreen tropical vegetation. In Peninsular 

Malaysia, the TMRCA of R. a. superans was estimated to be about 460,000 years BP, 

when the sea level was about 20 metres higher than the present sea level and the Isthmus of 

Kra was narrower than it is now. These findings therefore suggest that past sea level 

changes might have contributed to the divergence of the focal subspecies in the same way 
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that they appear to have driven subspecies diversification of R. affinis in China (Mao et al. 

2010b).  

 

 In the final empirical study (Chapter 4) I used microsatellite markers to examine 

patterns of population genetic structure, allelic richness and gene flow in two of the most 

abundant horseshoe bat species in Peninsular Malaysia: R. affinis and R. lepidus. Here I 

found that genetic distance correlated with geographical distance in both taxa, although 

significant isolation-by-distance was only detected in R. affinis. My other analyses also 

failed to detect any deep population structure. All of the results thus point to restricted 

dispersal. Also, no effects of human-induced fragmentation of the forest were seen at the 

spatial scales examined, in contrast to the landscape-scale study of Struebig et al. (2011) 

that focused on smaller fragments in which the effects of genetic drift would be more 

rapidly seen. If either of the focal species in this Chapter had been dramatically impacted 

by habitat change at the LGM (in particular if the rainforest was only able exist as distant 

patches separated by open savannah – Wurster et al. 2010) then some population genetic 

structure might still be expected to be visible (see Rossiter et al. 2007). Therefore, the 

absence of strong genetic differentiation from Bayesian clustering and also the PCoA adds 

additional weight to the conclusion that there has been a long population history in the 

peninsula. Future work to verify my results could involve extending the comparative 

phylogenetics approach to include other co-distributed forest specialist species. More in-

depth sampling might also provide evidence of the potential presence of cryptic species of 

R. affinis, as suggested by Struebig (2008). 

 

 Following interpretations from the mtDNA results and other microsatellite-based 

analyses, the observed northward (and westward) increases in allelic richness, as seen in 

both horseshoe bat species, were unexpected. If I rule out southerly colonization events, 

which seem highly unlikely, then a more plausible explanation for more alleles in the north 

is a longer population history and/or recurrent gene flow from the Thai populations north of 

the Isthmus of Kra. From the phylogenetic results of R. affinis, then some population 

divergence would be expected to occur further north. Unfortunately sampling of 

populations from Thailand was not possible in my study; however, this could form a 

valuable part of any future work on these species. 
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Several aspects of my findings have conservation implications. First, the greatest 

forest bat diversity was found in the southern areas of Johor, Melacca and the tip of Pahang. 

Human activity in Sundaland over the past two centuries has led to massively modification 

of the natural landscape, and rates of deforestation have been particularly high in the 

southern part of the peninsula (Peh et al. 2006). However, as mentioned in Chapter 2, high 

species diversity cannot - unfortunately - be taken to signify that such species are in any 

way resilient to change. The loss of taxa can lag behind the loss of the habitat by many 

years (extinction debt) as seen clearly in Singapore where most forest bats have 

disappeared. My study suggests action needs to be taken now to preserve the remaining 

diversity in southern Peninsular Malaysia before a new equilibrium is reached. Such a 

priority is even more important in light of the fact that my results support the suggestions of 

Cannon et al. (2009) that there has been no contraction of forests at the LGM. Thus the 

species diversity in the south of Malaysia, as well as the genetic diversity in the north, will 

have accumulated over many thousands of years and possibly over the course of multiple 

glacial maxima. While the species are being conserved, new advances in genome 

sequencing mean that the potential now exists for documenting some of this extraordinary 

population genetic diversity before it is lost (Allendorf et al., 2010). 
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