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Does solar activity affect the price of crude oil? 

A causality and volatility analysis (2007-2020)1 

Abstract: This study examines how solar activity affects the oil volatility index. To test 

whether solar phenomena affect the oil volatility price index, the Granger and Step-by-

Step causality techniques are applied. Furthermore, we employ the autoregressive 

distributed lag order model (ARDL), which introduces as exogenous variables the Dow 

Jones Equity REIT index, the 3-month U.S. Government bond, the Oil Volatility Index, and 

the spread. As part of the model, we also include a solar variable, namely, the solar wind 

velocity, which is one of the most significant features of the solar wind plasma. According 

to the results, the solar wind velocity "Granger causes" and "step-by-step causes" the oil 

volatility price index. All variables analyzed provide useful information for the modelling of 

the oil volatility index, which shows that solar activity does indeed influence the market for 

oil prices. 

JEL codes: C22, C58, C50, C51 
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1. Introduction
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As a primary source of energy, crude oil is one of the most closely watched 

indicators in the global economy. There are however a number of factors that 

contribute to the formation of crude oil prices which are complex and multifaceted, 

including factors related to economics, geopolitics, and the environment. The 

potential impact of solar activity on economic activity has also been examined in 

recent years, with some researchers suggesting that solar activity may affect the 

economy (e.g. Daglis et al., 2019; Daglis et al. 2020). 

The term solar activity usually refers to the variations in the sun's magnetic 

field and the emission of radiation and charged particles that affect the Earth's 

climate and environment (e.g. Gerontidou et al., 2018). It has been widely argued 

that changes in solar activity could impact global temperature patterns and weather 

phenomena such as hurricanes and droughts, which could have a negative impact 

on energy demand and supply. 

The purpose of this study is to investigate whether there is a causal 

relationship between solar activity and the price of crude oil, given the potential 

links between solar activity and energy markets. These findings have important 

implications for policymakers seeking to understand the complex drivers of crude 

oil prices and the potential impact of solar activity on the energy market.  

The present work aims to provide a comprehensive econometric analysis 

quantifying the impact of solar events on oil markets, thereby enabling a new, but 

crucial approach. In this context, to the best of our knowledge, this paper 

contributes to the literature in the following ways: (a) it is the first in the literature 

to argue that solar activity may affect the oil market, broadening the potential 

channels for the oil market effect, (b) it is the first in the literature to quantify the 

solar impact on the oil market via econometric analysis, (c) it offers a deeper 

understanding of the factors that shape global energy markets and, thus, helps to 

inform decision-making. 
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The paper is structured as follows: Section 2 presents the theoretical 

framework; section 3 describes the methodology used; section 4 presents the data 

and the results and, finally, section 5 concludes the paper. 

 

2. Theoretical Framework 

 

As far as we are aware, none of the approaches in the literature examine solar 

activity in the context of the oil market. This paper is the continuation of previous 

works on the impact of solar phenomena on the economic and financial system. 

More precisely, the results of these studies indicate that solar and geomagnetic 

space weather affect the performance of the US telecommunications sector 

(Daglis et al., 2020) as well as the financial select sector fund price index (Daglis 

et al., 2020).  

In brief, due to solar events, the geomagnetic activity is disrupted, negatively 

impacting the infrastructure and performance of these industries. In this context, a 

disruption or destruction to the oil pumping system could also negatively impact 

the oil market prices. According to Chang and Lin (2006), there have been 242 

accidents involving storage tanks over the last 40 years (1960-2003). Human error 

accounted for only 30% of the problems (Galván and Gomes, 2013), meaning that 

other possible factors may have played an important role as well. An example of 

such a factor might be the ionization of the atmosphere (Carpenter, 1996). 

The oil pumping process can be adversely affected by ionization in an 

indirect manner (Changa and Linb, 2006). Oil pumping systems may be affected 

through fire triggers by bound charges, electromagnetic pulses, electrostatic 

pulses, and earth currents, with the ionization of the atmosphere being one of the 

most serious effects of oil pumping hinder (Carpenter, 1996). It is important to note 

that, despite the indirect nature of the fire trigger (through ionization of the 

atmosphere), the risk associated with indirect effects is greater than the risk 
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associated with direct fire triggers, such as lightning strikes (Changa and Linb, 

2006). 

Despite the fact that oil pumping activity is strongly affected by ionization, 

which can be caused by solar events, there has been no research on this particular 

topic, including the effects of solar activity on oil pumping systems. In conclusion, 

solar activity, as captured by the solar wind, may lead to ionization of the 

atmosphere, which may create a variety of problems, including those associated 

with oil pumping and disposal. According to the supply and demand theory 

(Groenewegen, 2008), pumping and maintenance activities affect the supply of oil 

on the market, thereby influencing its price. 

 

3. Methodology 

Our paper uses “Granger causality” as well as “step-by-step causality” to test 

whether solar wind causes oil volatility index. 

3.1 Granger causality 

Using the Granger causality test, we test the hypothesis that the times series are 

not Granger causal, which means that the volatility of the solar wind’s velocity 

(Vsw) does not have predictive power over the oil volatility index (OVX). In order 

to capture the long-run relationship between two variables, Engle and Granger 

(1987) recommended the use of an Error Correction Model (ECM) in the model if 

two variables are cointegrated. The ECM Granger non-causality test involves fitting 

the model: 

𝛥𝑦𝑡 = 𝑎0 + ∑ 𝑎1𝑖𝛥𝑦𝑡−𝑖
𝑚
𝑖=1 +  ∑ 𝑎2𝑖𝛥𝑥𝑡−𝑖

𝑚
𝑖=0 + 𝜆𝜇𝑡−1 +  𝜀𝑡 (1) 

where Δ is the first difference operator, Δyt and Δxt are stationary time series and 

εt is the white noise error term with zero mean and constant variance. Also, μt-1 is 

the lagged value of the error term of the co-integration regression:  
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𝑌𝑡 = 𝑐1 + 𝑐2𝑋𝑡 + 𝜇𝑡 (2) 

 

The next step is to use the state-of-the-art step-by-step causality introduced by 

Dufour and Renault (1998) and extended by Dufour et al. (2006) to study the exact 

timing pattern of the causality relationship. 

 

3.2 Dufour and Renault causality 

Based on the literature, Granger causality test may fail to unveil the potential 

timing pattern of a causal relationship. To overcome this problem, Dufour and 

Renault (1998) introduced the notion of step-by-step or short-run causality based 

on the idea that two time series Xt and Yt could interact in a causal scheme via a 

third variable Zt. More precisely, despite the fact that Xt could not cause Yt one 

period ahead, it could cause Zt one period ahead i.e. Zt+1, and Zt could cause Yt 

two periods ahead i.e. Yt+2. Therefore, Xt → Yt+2, even though Xt↛ Yt+1. 

For testing the step by-step causality, consider the following model: 

𝑌𝑡 = 𝑎 + ∑ 𝜋𝜅𝑌𝑡−𝑘
𝑝
𝑘=1 + ∑ 𝛽𝑞𝑋𝑡−𝑞

𝑄
𝑞=0 + 𝑢𝑡 (3) 

where: Yt is an (1xm) vector of variables, a is a (1xm) vector of constant terms; Xt 

is a vector of variables and ut is a (1xm) vector of error terms such that 𝐸(𝑢𝑡𝑢𝑠) =

𝜎𝑖𝑖𝐼𝑖𝑓𝑡 = 𝑠𝑎𝑛𝑑𝐸(𝑢𝑡𝑢𝑠) = 𝜎𝑖𝑗𝐼𝑖𝑓𝑡 ≠ 𝑠, where I is the identity matrix. Based on Dufour 

et al. (2006), the model described in (3) corresponds to horizon h=1 and we will 

test for the existence of non-causality in horizon h. In the next sub-section, we use 

an autoregressive distributed lag (ARDL) model to examine whether the variables 

employed provide useful information regarding the modeling of OVX. 

3.3 ARDL (p, q) Model 

 

An ARDL model is used in this study, as it is considered one of the most 

appropriate techniques. The ARDL(p,q) model contains p lags of the dependent 
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(𝑦𝑡) and also q lags of the independent variable (𝑥𝑡), and has the following general 

form:  

 

𝑦𝑡 = 𝑏0 + ∑ 𝑏𝑖
𝑝
𝑖=1 𝑦𝑡−𝑖 + ∑ 𝑎𝑖

𝑞
𝑖=0 𝑥𝑡−𝑖 +  𝜀𝑡 (4) 

 

 

4. Empirical Analysis 

 

4.1 Data and variables 

 

The solar wind velocity (derived from the Goddard space flight center, space 

physics data facility) was used in our analysis. It was chosen because plasma 

velocity is considered to be one of the most significant characteristics of solar wind 

streams (Gerontidou et al., 2018). The macroeconomic variables used are: the 

Dow Jones equity reit index (djreit) which measures publicly traded real estate 

investment trusts in the Dow Jones, the 3-month US government bond (3Musgov), 

the Chicago Board Options Exchange also known as (Cboe) Volatility Index (Vix), 

and the spread (10-year US government bond minus 3-month government bond). 

Oil volatility index (OVX) is the dependent variable. All data are presented in a 

weekly format and cover the period between week 21 of the year 2007 and week 

18 of the year 2020. The descriptive statistics of the time series are shown in Table 

1, below. 

 

Table 1: Descriptive statistics of the time-series 

 

Variable Min Mean Std Max 

OVX 17,7600 184,5135 92,1979 1005,5700 

Vsw 279,0000 2046,7095 394,0497 3145,0000 

Vix 9,4860 19,8099 9,6733 72,0260 
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djreit 92,4720 283,8645 71,0156 432,5480 

3Musgov 0,0020 0,7828 1,0930 4,9700 

Spread -0,4960 1,8581 0,9999 3,7900 

 

 

4.2 Results 

As mentioned above, to test the causal relationship between solar activity and oil 

volatility, the present study uses Granger causality and step-by-step causality. A 

summary of the results can be found in Tables 2 and 3, respectively. 

Table 2: Granger causality results. 

Order F-stat P-value 

1 26.247 3.916*10-7 

 

The results show that the Vsw variable Granger causes OVX with a lag equal to 1. 

 

Table 3: Step-by-step causality results 

Order F-stat P-value 

5 7.5853 0.006043 

18 12.044 0.000553 

 

According to the results, in lags 5 and 18, the Vsw step-by-step causes the OVX. 

Furthermore, we construct an ARDL model, in which we include 

macroeconomic variables that have been shown to influence the volatility of oil, 

thereby testing how these variables affect the oil volatility.  

Tables 4 and 5 below summarize the results of the model estimation. 

Besides the coefficients and standard error, Tables 4 and 5 present the 

heteroscedasticity and autocorrelation consistent standard errors (HACSE) and 

the Jackknife heteroscedastic-consistent standard errors (JHCSE). When lags are 

included for a variable, the name is followed by ".l1". The constant term, Vsw, and 

Djreit are in levels, while OVX, VIX, 3Musgov, and spread are lagged. Both OVX 
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and Vsw have been multiplied by 100, and djreit is included in the first difference, 

also multiplied by 100. 

 

Table 4: ARDL model with robust HC standard errors 

Variable Coefficient Std.Error JHCSE t-JHCSE stat P-Value 

Constant -0.325677 0.11110 0.15110 -2.16 0.0314 

OVX.l1 0.647526 0.02712 0.19100 3.39 0.0007 

Vsw 0.035904 0.00405 0.01146 3.13 0.0018 

vix.l1 0.027934 0.00263 0.01207 2.31 0.0209 

3Musgov.l1 -0.095367 0.02196 0.03501 -2.72 0.0066 

djreit -0.086378 0.01886 0.03870 -2.23 0.0259 

spread.l1 -0.126197 0.02512 0.04228 -2.98 0.0029 

 

According to Table 4, all variables are statistically significant. As can be 

seen from the table above, the coefficients for the OVX, VIX, and Vsw are positive, 

which indicates that they increase the value of the OVX. By contrast, 3Musgov, 

djreit, and spread have negative coefficients, which reduce the OVX value. 

 

Table 5: ARDL model with robust HAC standard errors 

Variable Coefficient Std.Error HACSE t-HACSE stat P-Value 

Constant -0.325677 0.11110 0.14710 -2.21 0.0271 

OVX.l1 0.647526 0.02712 0.08775 7.38 0.0000 

Vsw 0.035904 0.00405 0.00977 3.67 0.0003 

vix.l1 0.027934 0.00263 0.00752 3.72 0.0002 

3Musgov.l1 -0.095367 0.02196 0.04101 -2.33 0.0203 

Djreit -0.086378 0.01886 0.04237 -2.04 0.0419 

spread.l1 -0.126197 0.02512 0.05501 -2.29 0.0221 

Similarly, according to Table 5, all variables are statistically significant, the 

coefficients for the OVX, VIX, and Vsw are positive, while the 3Musgov, djreit, and 

spread have negative coefficients. 

Moreover, the number of observations for the models equals 684, R-

squared = 0.800, Adj.R-squared = 0.798, Log-likelihood = -362.722, F-stat = 452.7, 

P-value (F-stat) = 0.000, residual sum of squares (rss) = 115.662065, indicating 

that the independent variables adequately model the dependent variable. 
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5. Conclusion 

As part of this study, we examined the impact of solar phenomena on oil volatility. 

In order to test the causal pattern of Vsw on OVX, we performed Granger and step-

by-step causality tests. Based on the results, there is indeed a causal relationship, 

which means that the solar activity, and more specifically, the solar wind, causes 

the oil volatility index. 

Additionally, we developed an ARDL model. The empirical results indicate 

that macroeconomic variables provide useful information regarding the predictive 

ability of the oil volatility index. These results are consistent with previous studies 

(e.g. Bakas and Triantafyllou, 2019). Accordingly, solar activity, which is 

statistically significant, is also useful for modeling the oil volatility index 

performance. 

           These results clearly show that solar phenomena, in particular the solar 

wind, may have an adverse effect on the oil market as a result of oil pumping 

malfunctions caused by atmospheric ionization. According to the findings of the 

present study, more information channels must be taken into consideration in the 

analysis of markets, and more specifically in the analysis of the oil market. Further 

research could include additional variables that express solar and geomagnetic 

phenomena, such as solar flares. 
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