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Abstract 

Eryptosis (erythrocyte programmed cell death) is postulated to be related to the 

efficacy of erythropoietin (Epo) treatment in chronic kidney disease (CKD) 

patients. This project was undertaken to determine whether this is the case and if 

any other factors correlate with eryptosis levels. Red cell microparticle (RCMP) 

numbers in whole blood were determined as a measure of eryptosis, using flow 

cytometry adapted from previous methods. Further investigation was performed 

using a flow loop model involving perfusion of whole blood through intact tumour 

necrosis factor (TNF) treated and untreated human umbilical arteries.  

 

Contrary to expectations, fewer RCMP were observed in CKD patients compared to 

controls (p=0.0167). Weak positive correlations were found between RCMP 

numbers and both CRP levels (p=0.0362) and Epo dose (p=0.0014) in the patient 

group.  These results suggest erythrocytes in CKD patients undergo less eryptosis 

than in control subjects. In vitro investigations imply that erythrocytes in patients 

are less susceptible to the impact of flow stress and TNF treated endothelium than 

controls, corroborating this argument. When patients receiving Epo were 

compared to patients not receiving Epo there were no significant differences in 

RCMP numbers under all flow conditions. Further investigations are required, 

including the recruitment of more Epo hyporesponsive patients. 

 

This study highlighted the need for better standardisation of methods for 

measuring not only RCMP, but eryptosis in general, as well as better definitions of 

RCMP populations.  
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Chapter 1: Introduction 

Chronic kidney disease (CKD) is associated with a significant increase in morbidity 

and mortality with many related medical problems. A major clinical finding is the 

development of anaemia which occurs early and contributes to a poor quality of 

life. It has also been shown to be strongly predictive of outcome (Collins et al., 

1998), with an increasing prevalence seen with decreasing renal function. The 

primary cause of this renal anaemia is inappropriately low erythropoietin (Epo) 

levels.  

Prior to the development of recombinant human erythropoietin (rHuEpo) as a 

therapeutic agent, treatment required frequent transfusions. This brought the 

associated risks of iron overload, infection with HIV or viral hepatitis and the 

development of antibodies, limiting transplant options. Development of rHuEpo in 

the 1980s produced major advances in the management of CKD patients and 

drastically altered renal anaemia treatment. However, there is evidence that the 

high doses of rHuEpo required by some patients may adversely affect morbidity 

and mortality (Singh et al., 2006).  

Investigating the process of eryptosis may give an insight into the mechanisms of 

renal anaemia and therefore possibly help to explain rHuEpo hyporesponsiveness.  

 

1.1 Chronic Kidney Disease 

The kidney functions to excrete toxic substances via the urine and optimally 

regulate blood solute concentrations, as well as performing a range of metabolic 

processes and producing hormones (Besarab, 1997). It maintains a stable 

extracellular environment, balancing water and ionic components and supporting 

the function of all cells.  

Chronic kidney disease (CKD) describes a heterogeneous range of disorders of 

kidney structure and function (Levey et al., 2011). CKD is a progressive and 

irreversible loss of renal function (Nahas, 2005). It can progress to Stage 5 CKD 

when it is known as end stage renal failure (ESRF), which is irreversible and 
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requires renal replacement therapy (RRT) (Barratt et al., 2009). CKD is associated 

with a range of disorders resulting from the effects of solute retention and the 

absence of hormones produced by the kidneys, especially Epo (Besarab, 1997).  

The 2002 Kidney Disease Outcomes Quality Initiative Clinical Practice Guidelines 

define CKD as the presence of kidney damage for greater than 3 months (either 

structural or functional abnormalities) or a glomerular filtration rate (GFR) less 

than 60ml/min/1.73m2 for more than 3 months, with or without kidney damage 

(National Kidney Foundation, 2002). CKD is then classified, according to the level 

of GFR, into 5 stages (see Table 1.1) (Barratt et al., 2009).   

CKD Stage Description GFR (ml/min/1.73m2) 

1 

 

Kidney damage  (such as 
microalbuminuria/proteinuria, 
haematuria or histological 
changes) with normal or 
increased GFR 

>90 

 

2 Kidney damage with mild 
decrease in GFR 

60-89 

3 Moderate decrease in GFR 30-59 

4 Severe decrease in GFR 15-29 

5 Kidney failure <15 (or dialysis) 

 
Table 1.1: Classification of CKD Based on recommendations from the National Kidney 
Foundation Kidney Disease Outcomes Quality Initiative Guidelines 2002 (National 
Kidney Foundation, 2002). GFR gives an indication of the kidneys ability to filter 
waste products from the blood, showing the volume of water and other solutes 
filtered out of the blood in the glomeruli within a given period of time (Burrows-
Hudson, 2005). It is used to grade CKD and monitor progression prior to ESRF.  

 

Once a patient reaches ESRF the GFR is no longer a useful measure. Using 

pharmacokinetic models of dialysis a more accurate quantification method was 

developed, the dialysis index - Kt/V (Cambi et al., 2005). This gives an indication of 

the normalised whole body urea clearance, and therefore the dialysis 

dose/adequacy.  

It is calculated as follows: 

K = dialyser clearance of urea, the rate at which blood passes through the dialyser.  

t = dialysis time 
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V = volume of distribution of water (approximately equal to the patients total body 
water)  

Kt represents the volume of fluid cleared of urea during a single dialysis session, 

and V is approximately equal to the patients total body water, therefore Kt/V 

compares the amount of fluid that passes through the dialyser with the amount of 

fluid in the patient’s body.   

The UK Renal Association Guidelines state that in haemodialysis the Kt/V target is 

> 1.3, and in peritoneal dialysis the target is ≥ 1.7/week (Mactier et al., 2009; 

Woodrow and Davies, 2010). 

The urea reduction ratio (URR) is another measure which shows the reduction in 

urea after dialysis and is also used to determine dialysis efficiency. It gives a 

dimensionless number, often expressed as a percentage.  

 

Where: 

 Upre is the pre-dialysis urea level 

 Upost is the post-dialysis urea level 

The target dose for HD 3 times a week is URR of 70% (National Kidney Foundation, 

2006).  

Patients with stage 1-3 CKD rarely have any symptoms, these do not develop until 

ESRF is reached. Clinical signs include fluid retention, presenting as ankle swelling 

or breathlessness, pallor and raised blood pressure, and poor growth and 

development in children, accompanied by falling haemoglobin levels and 

abnormality of several biochemical indices (including serum urea, creatinine and 

potassium), while the patient may become tired, nauseated, lose their appetite and 

be less able to cope with life mentally and physically (Department of Health, 2004).  

Studies examining the true prevalence of CKD have shown that in the South East of 

England there are 5,554 cases per million population (PMP) (John et al., 2004), 

while in the US as many as 5% of adults may have CKD stage 1-2 and another 5% 
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stages 3-5 (Coresh et al., 2003).  Despite its prevalence, less than 1 in 10 people 

with CKD ever require dialysis or a transplant.  

The number of new patients starting treatment and the total number of patients 

receiving treatment increased from 65 PMP and 396 PMP respectively in 1992 to 

91 PMP and 547 PMP in 2001. More than 27,000 people were receiving renal 

replacement therapy (RRT) in England in 2001. Around half of these had a 

functioning transplant; the remainder were on dialysis (Department of Health, 

2004). In 2009 the incidence rate had increased further to 109 PMP (Caskey et al., 

2011). This is expected to rise, as in other developed countries, at an annual rate of 

5-8% (Lysaght, 2002), due to two factors. Firstly to the aging population; CKD is 

more common in elderly people. The United States Renal Data System (2003) 

showed the incidence of ESRF in over 65s to be greater than 1200/PMP/yr. 

Secondly, the number of people worldwide with type II diabetes in 2011 was 

estimated to be 366 million (International Diabetes Federation, 2013). This is 

predicted to increase to over 550 million by 2030 and as diabetes is the most 

common cause of CKD this is likely to impact upon renal failure rates.  

Data from the three largest renal dialysis and transplant registries, in Europe, the 

US and Australia and New Zealand, show the commonest causes of ESRF to be 

glomerulonephritis, diabetes and hypertension. Renovascular disease, infective or 

obstructive nephropathies and hereditary diseases also have an impact (Levy et al., 

2004). Diabetic renal disease is the most common cause of renal failure in the UK, 

accounting for 25% of all cases (Caskey et al., 2011).   

Diabetes is monitored using the haemoglobin A1c (HbA1c) assay, which measures 

a type of glycosylated haemoglobin and indicates the level of glucose control. 

Analysis of the data from the National Health and Nutrition Examination Survey 

(NHANES) found that of those with diabetes only 37% achieved recommended 

HbA1c levels (Saydah et al., 2004). Such a lack of control leads to organ damage, 

including the kidneys (Burrows-Hudson, 2005). High glucose levels in the blood 

damages vessels within the kidneys. Diabetes can also cause damage to nerves 

which means the bladder cannot signal when it is full, putting extra pressure on 

the kidneys. The combination of urine spending excessive time in the bladder and 

high sugar levels can lead to infection which may spread to the kidneys (National 

Kidney Foundation, 2007).  
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There are clear race related differences in susceptibility and outcome of 

nephropathies. The Multiple Risk Factor Interventional Trial demonstrated a 

higher incidence of ESRD for all causes in African-Americans compared with the 

white population (Klag et al., 1997). Pazianas et al. carried out a study in the UK, 

concluding that there is a higher rate of diabetic nephropathy in patients from the 

Indian subcontinent and more hypertensive renal disease in individuals of 

Caribbean and African descent (Pazianas et al., 1991). It has been questioned 

whether there is a genetic component for this difference. 

1.1.1 Renal Replacement Therapy  

A 2005 survey using the Fresenius medical care network data showed that 

worldwide there were 1.3 million people on renal replacement therapy (RRT), 

89% using HD and 11% using PD (Grassman et al., 2005). Dialysis is the default 

therapy for CKD; it provides incomplete replacement of lost renal excretory 

function and is a compromise between the outcome for the patient and the cost 

and inconvenience (Cambi et al., 2005). Renal transplantation is the ideal 

treatment for ESRF as it replaces the lost renal function completely. The goal for 

future treatment is an artificial kidney which encompasses a small affordable 

device to deliver safe and effective RRT including metabolic and endocrine 

functions.  

Treatment for ESRF is costly; it is estimated that 3% of the NHS budget is spent on 

this group of patients; however they only comprise 0.05% of the total population. 

The average cost of dialysis is £30,800 per patient per year; on 1 April 2009 there 

were 6,920 patients waiting for a transplant of which the majority were on 

dialysis, costing around £193m per year. The cost benefit of a transplant compared 

to dialysis is £24,100 per year for each year that the patient has a functioning 

transplanted kidney (NHS Blood and Transplant, 2009).  

1.1.1.1 Dialysis  

Dialysis is initiated upon the appearance of symptoms of uraemia. Due to the very 

slow progression of renal failure the patient adapts well to changes in metabolic 

state and can still feel well despite very low level residual renal function (Cambi et 

al., 2005). Dialysis is not the ideal treatment for ESRF; the morbidity and mortality 

rates are very high, quality of life is suboptimal, the equivalent clearance is low and 
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the cost can be restrictive (Rastogi and Nissenson, 2009). There are two main 

dialysis options, haemodialysis (HD) or peritoneal dialysis (PD), the choice of 

which depends upon many factors. Comorbidities are taken into consideration as 

well as the home situation of the patient. On average patients on PD are 6 years 

younger than HD and have more chance of being white (Xue et al., 2002a).  

Underweight patients have a lower chance of initiating on PD than those of a 

healthy weight (Xue et al., 2002a). PD patients have a higher initial serum albumin 

and Hct and lower initial serum creatinine and blood nitrogen levels (Xue et al., 

2002a). Unequal clinical conditions between the groups make the determination of 

mortality rates between the two groups difficult to assess; patients on PD are 

generally in a more favourable condition on initiation of dialysis than HD patients 

(Xue et al., 2002).  

1.1.1.1.1 Haemodialysis 

The fundamental process of separating solutes using semipermeable membranes 

in vitro was invented by Thomas Graham in 1854, and described as “dialysis” 

(Graham, 1854). Dialysis using an “artificial kidney” was first carried out on dogs 

at Johns Hopkins University in 1913 (Abel et al., 1914). By 1944, the development 

of cellophane, antibiotics and heparin as an anticoagulant meant that Willem 

Kolff’s method of extracorporeal dialysis was a success and is the basis of the 

methods used today (Kolff et al., 1944; Kolff, 1965). The improvements in vascular 

access developed by Scribner et al. (Quinton et al., 1960) allowed for repeated 

dialysis over many years as a long term treatment.  

Haemodialysis is based on a very simple principle; blood flows on one side of a 

semipermeable membrane, with dialysis fluid on the other. Dialysis fluid consists 

of an osmotically balanced solution of electrolytes, buffer and glucose. This allows 

the passage of water molecules and low molecular weight solutes into the dialysate 

but larger solutes such as proteins and blood cells are retained. This mostly occurs 

by diffusion, the rate of passage depending on the concentration gradient. To 

maintain this concentration gradient the blood and dialysis fluid flow in opposite 

directions through the machine (Cambi et al., 2005). Standard haemodialysis is 

performed three times a week, for 4-5 hours each time (Cambi et al., 2005).  
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Excellent access is required for HD to be successful; this is usually obtained from a 

fistula created between a peripheral artery and vein or a permanent plastic 

catheter into a vein. Access problems are a major cause of morbidity. HD can be 

carried out in a main hospital, a satellite unit, or in the patient’s home. Home HD 

generally provides the best quality of life but requires a trained helper as well a 

suitable space. It is likely that HD patients have more comorbidities upon initiation 

of dialysis which may affect dialysis efficiency and Epo responsiveness (Snyder et 

al., 2004).  

1.1.1.1.2 Peritoneal dialysis 

During experiments on cats receiving PD in 1923 it was noted that the peritoneum 

was a “living dialyser” (Putnam, 1923). The concept of modern continuous 

ambulatory peritoneal dialysis (CAPD) was first described in 1976 and extensive 

developments have occurred to make it viable in humans for the treatment of ESRF 

(Popovich et al., 1976). Peritoneal dialysis relies on the exchange of solutes and 

fluid between the peritoneal capillary blood and a dialysis solution in the 

peritoneal cavity (Gokal, 2005), which is the space between the abdominal viscera 

and the abdominal wall (Barratt et al., 2009). This occurs across the 

semipermeable peritoneal membrane (Barratt et al., 2009). Solutes move by 

diffusion and convective transport whilst fluids move by osmosis (Gokal, 2005). 

The kinetics of solute and fluid transport across the peritoneal membrane during 

PD remains incompletely understood (Gokal, 2005).  

The peritoneum is a complex structure of living tissue which will vary between 

patients affecting the transport kinetics of PD as well as the dialysis efficiency. The 

transport characteristics may also change over time due to the dialysis procedure, 

effects of drugs or various physiologic reactions.  

PD requires the insertion of a catheter into the patient’s peritoneum which 

remains permanently and through which dialysate is infused. Safe and reliable 

access to the catheter is vital. PD is carried out by the patient at home or work and 

so allows a lot of independence. Contraindications for PD include intra-abdominal 

adhesions, abdominal wall stoma, obesity, intestinal disease, respiratory disease 

and hernias. Peritonitis is the most important cause of technique failure in PD, and 

complications can lead to death. PD provides a variety of modalities to allow 
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treatment to be tailored to each individual patient’s needs (Barratt et al., 2009). 

Few trials have been carried out comparing the clinical outcomes of these, but the 

small studies so far demonstrate no differences in mortality, dialysis related 

hypotension and hospitalisation (Rabindranath et al., 2008).  

1.1.1.2 Transplantation 

The most clinically and cost effective treatment for many patients with ESRF is a 

successful kidney transplant. The first successful procedure was carried out on 

identical twins by Dr Joseph Murray in 1954 (Murray et al., 1956). In 2008-09, 

2,497 people in the UK received a kidney transplant (NHS Blood and Transplant, 

2009) and at the end of March 2009, the UK Transplant Registry had records of 

over 23,000 people in the United Kingdom with a functioning kidney transplant 

(NHS Blood and Transplant, 2009). A transplant can come from a cadaveric donor, 

a living relative or an unrelated living donor. Over 90% of transplants should be 

working one year after surgery. A cadaveric transplant has a mean survival of 15 

years and a living transplant 18-20 years. To make this an option for everyone who 

could benefit, a considerable increase in the number of kidneys donated is 

required, especially from black and ethnic minority populations (Department of 

Health, 2004).  

1.1.2 Inflammation in chronic kidney disease 

It appears that kidney disease is a pathological state of chronic inflammation. This 

causes damage to vascular walls, altering the expression of adhesion molecules on 

the endothelium and platelets and activating leukocytes which enhance the 

inflammatory state (Sharain et al., 2013).  The presence of inflammation in CKD is a 

strong predictor of outcome (Reddan et al., 2003; Stenvinkel et al., 2002). C 

reactive protein (CRP) is a plasma protein, levels of which increase during systemic 

inflammation. A European study found CRP to be increased in CKD patients, with 

about 75% of them having a CRP > 3.4mg/L (no CRP should be detectable) 

(Steinvinkel et al., 2002). ESRF is associated with an increase in proinflammatory 

cytokines, with IL-1, IL-6 and TNFα 8-10 fold higher than in controls (Kimmel et al., 

1998).  Yeun et al. concluded that CRP predicts mortality and is a significant risk 

factor for CVD in ESRD (Yeun et al.,2000); whilst another study found patients with 
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raised tumour necrosis factor 1 (TNF1) had increased chance of a non-fatal 

myocardial infarction or death as a result of coronary disease (Knight et al., 2004).  

Shlipak et al. found increased levels of all the inflammatory and procoagulant 

biomarkers they tested in elderly patients with renal insufficiency (Shlipak et al., 

2003). They state that inflammation appears to be found early in renal disease and 

could explain the high incidence of CVD in those with ESRF. Significantly they 

found that these inflammatory markers increased in a predictable fashion when 

progressing from control to CKD to ESRF.  

As well as the general systemic inflammation often found in CKD there are many 

potential reversible causes, such as chronic obstructive uropathies, vasculitis, 

infection, biofilms in haemodialysis and in situ failed kidney grafts (Elewa et al., 

2012). Uraemia, atherosclerosis and obesity may also contribute to the 

inflammatory state (Meuwese et al., 2011). Inflammatory mediators cause 

endothelial cell dysfunction and apoptosis, vascular smooth muscle proliferation, 

recruitment of leukocytes to the vascular wall, vascular calcification, plaque 

destabilisation and thrombosis (Schiffrin et al., 2007; Elewa et al., 2012). C reactive 

protein (CRP) is an acute phase reactant which is released in the liver in response 

to inflammation; it is a prominent marker of systemic inflammation as well as 

mortality in the general population and specifically CKD patients (Cachofeiro et al., 

2008; Weiner et al., 2008).  

Up to half of all CKD patients have increased serum levels of inflammatory markers 

such as C-reactive protein, fibrinogen, interleukin-6, tumour necrosis factor, factor 

VIIc, factor VIIIc, plasmin-antiplasmin complex, D-dimer, and the adhesion 

molecules E-selectin, VCAM-1 and ICAM-1 (Vaziri et al., 1998; Iseki et al., 1999; 

Oberg et al., 2004; Nagesh and Pfeffer, 2004; Jofre et al., 2006).  The production of 

increased inflammatory mediators has been linked to increased oxidative stress, 

accumulation of postsynthetically modified proteins, advanced glycation end 

products and other substances normally cleared by the kidney. Causes of 

inflammation may be comorbidities, oxidative stress, infections and haemodialysis 

related factors such as bioincompatability and catheter use (Himmelfarb et al., 

2002). Deterioration of renal function may lead to dyslipidaemia and accumulation 

of uraemic toxins which can stimulate oxidative stress and inflammation (Schiffrin 

et al., 2007). Erythropoiesis appears to be inhibited by cytokines such as TNF, IL-1 
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and interferon γ by supressing stem cell proliferation and erythroid colony 

formation (Kwack and Balakrishnan, 2006). Several studies have found that 

markers of inflammation are linked with a decreased response to Epo, and that 

these cytokines can increase their effect by disrupting iron metabolism 

(Stenvinkel, 2001; Drüeke, 2001) 

 

1.2 Erythrocytes and haemoglobin 

Red blood cells were first noted microscopically by Jan Swammerdam and 

described by van Leeuwenhoek in 1695 (van Leeuwenhoek, 1695).  However these 

cells were not thought to be important until William Hewson in the 18th century 

concluded they must be vital due to their abundance (Dameshek, 1963). 

Knowledge of these cells was of little diagnostic value until 1879 when Paul Ehrlich 

developed stains that allowed a clear distinction between the different types of 

cells in the blood (Kasten, 1996). 

Erythrocytes are the most numerous of the blood cells, responsible for delivering 

oxygen to tissues, and removing waste carbon dioxide. The cells develop in the 

bone marrow and circulate for around 120 days, covering about 300 miles in this 

time. Humans have 20-30x1013 red cells, making up about a quarter of the cells in 

the body. They are approximately 8µm in diameter, flexible biconcave disks and to 

fulfil their purpose effectively erythrocyte precursors lose most organelles leaving 

a mature red cell containing around 640 million haemoglobin molecules 

(Hoffbrand et al., 2006).   

Haemoglobin (Hb) is a 64.4 kDa metalloprotein tetramer. Each molecule of normal 

adult HbA is made up of four polypeptide chains, two α and two β, each covalently 

bound to a haem group. The haem group is formed of a protoporphyrin molecule 

bound to a single ferrous ion (Fe2+). The Hb tetramer is in equilibrium between a 

relaxed (R) structure and a tense (T) structure. Deoxygenated Hb is stabilised by 

inter and intra subunit bonds forming the T structure. When oxygen is unloaded, 

the β chains are pulled apart allowing 2,3-diphosphoglycerate (2,3-DPG) to enter, 

leading to lower oxygen affinity.  As the molecule becomes saturated with oxygen 

these bonds break shifting to the R conformation. The tense form of Hb has low 

oxygen affinity and is favoured by increased H+ or CO2 concentration, allowing 
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oxygen to be given up more easily. In the lung capillaries the opposite conditions 

favour the relaxed form to bind oxygen (Hoffbrand et al., 2006). 

Haem synthesis occurs mostly in the mitochondria via a series of biochemical 

reactions. It begins with the condensation of glycine and succinyl coenzyme A by δ-

aminolaevulinic acid (ALA), in a rate limiting step which requires the coenzyme 

pyridoxal phosphate (vitamin B6) and stimulation from erythropoietin. Eventually 

protoporphyrin combines with Fe2+ to form haem, a molecule of which then 

combines with a globin chain; four of these form a tetramer to create a 

haemoglobin molecule.  

The red cell membrane contains an asymmetric phospholipid bilayer. The outer 

layer is formed of mostly choline-containing phospholipids, such as sphingomyelin, 

while the amine-containing phospholipids are mostly on the inner leaflet, apart 

from phosphatidylserine (PS) which is found exclusively on the inner layer. The 

membrane skeleton contains structural proteins such as α and β spectrin, ankyrin 

and actin which form a lattice on the internal membrane surface and help maintain 

the shape of the cell.   

The membrane skeleton, composed of an intricately interwoven meshwork of 

proteins interacts with both integral membrane proteins and the lipid bilayer. The 

major proteins of the membrane skeleton include spectrin, actin, ankyrin, protein 

4.1 and protein 4.2. α and β spectrin chains intertwine to form heterodimers which 

associate with other αβ-spectrin heterodimers to form heterotetramers, the 

functional spectrin subunit in the erythrocyte. These link to the plasma membrane 

via binding of ankyrin which binds the integral protein band 3. Protein 4.2 binds to 

band 3 and ankyrin, promoting their interaction. Protein 4.1 interacts with both 

spectrin and actin, as well as other proteins, including band 3 and glycophorin C, 

and the plasma membrane (Gallagher and Glader, 2013). See Figure 1.1.  
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Figure 1.1 A representation of the red cell membrane structure. The lipid bilayer 
contains integral membrane proteins, which may have an external component. The 
membrane skeleton is formed by structural proteins which include α and β spectrin, 
ankyrin, protein 4.1 and actin. These form a lattice on the internal side of the 
membrane. 

The process of maintaining this asymmetry is of major physiological importance to 

the cell and requires a large amount of energy. It is facilitated by a number of 

enzymes including aminophospholipidtranslocase, floppase, scramblase and 

calpain (Bevers et al., 1999; Piccin et al., 2007).  

1.2.1 Erythropoiesis 

Erythropoiesis is the process of red blood cell production. It first occurs in the 

foetal yolk sac and by day 40 moves to the foetal liver and spleen. During the last 

three months of foetal life erythropoiesis is established in the bone marrow and 

continues to occur in all bones until the age of 5. By the age of about 20 most long 

bones lose their erythropoietic ability and so the process almost exclusively occurs 

in the vertebrae, sternum, ribs and pelvis. 

Healthy erythrocytes survive for about 120 days in the circulation and so there is a 

constant need to replace these senescent cells. Erythropoiesis is tightly regulated 

but can be rapidly increased when required, for example after blood loss or 

increased destruction. At the end of their lifespan changes in the plasma 

membrane lead to destruction by the reticuloendothelial system.  

1.2.2 Regulation of erythropoiesis 

The process of erythropoiesis is complex and influenced by many factors. These 

include growth factors such as erythropoietin (Epo), interleukin-3 (IL-3) and 
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granulocyte macrophage colony-stimulating factor (GM-CSF) and transcription 

factors including GATA-1 and 2 (Chateauvieux et al., 2011). The anaemia found in 

renal patients appears to be most closely related to Epo so this thesis will 

concentrate on its role in erythropoiesis.  

1.2.2.1 Erythropoietin 

The existence of erythropoietin (Epo) was first suggested in 1906 by Carnot and 

Deflandre, as an intermediary factor that regulates erythrocyte production 

according to blood oxygen levels. They removed around 30ml of blood from 

anaemic rabbits, then took another sample the next day and injected that serum 

into normal rabbits. Within 1-2 days the concentration of erythrocytes in the 

recipients increased by 20-40% (Carnot and Deflandre, 1906a; Carnot and 

Deflandre, 1906b). This was further demonstrated in 1953 by Erslev and his team, 

establishing that this factor was responsible for regulating erythropoiesis. Large 

volumes of plasma were transfused from anaemic rabbits into normal rabbits 

which responded with significant reticulocytosis and increased haematocrit values 

(Erslev et al., 1953). This substance was named erythropoietin by Bonsdorff and 

Jalavisto in 1948.   

Epo has a short plasma half-life of 6-9 hours allowing a relatively rapid response to 

hypoxia. Epo levels increase in a range of situations reflecting changes in oxygen 

delivery to tissues. This gives a compensatory response to anaemia by increasing 

erythropoiesis, as there should be an inverse correlation with Epo concentration 

and Hb levels (Caro et al., 1979).  

1.2.2.1.1 Site of Production  

In 1957 it was reported that Epo was released by the kidneys in response to 

anaemia (Jacobson et al., 1957). Animal experiments further demonstrated this, as 

a bilateral nephrectomy in a dog suppressed erythropoiesis and prevented red cell 

production irrespective of the Hb level (Naets, 1960). The bone marrow was 

rapidly depleted of erythroblasts, often with none found after 72 hours. 

Administration of erythropoietic factor led to normal erythroblast production, 

demonstrating that the bone marrow can respond despite the uraemia and 

absence of the kidneys (Naets, 1960).  The role of the kidney in Epo production 



25 

 

was confirmed using isolated kidneys, which responded to hypoxia by producing 

Epo (Erslev, 1975).  

Later human studies also supported these findings. Demonstration of a low basal 

level of erythropoiesis in an anephric patient showed that the kidney was the 

primary production site of Epo (Nathan et al., 1964). Patients with end stage renal 

failure were found to have low levels of serum Epo. After transplantation normal 

levels of Epo were restored (Denny et al., 1966). 

Cloning of the mouse Epo gene (Lin et al., 1985) allowed the study of Epo mRNA 

following bleeding. In mice, blood loss resulted in a huge increase in Epo mRNA in 

the kidney, and a slight increase in the liver (Bondurant and Koury, 1986). The 

increase in serum Epo levels paralleled this increase, supporting the hypothesis 

that bleeding induces de novo synthesis of Epo, rather than release from storage 

(Koury et al., 1989). Initial studies demonstrated that mRNA can be found in 

interstitial cortical cells near the base of the proximal tubular cells (Koury et al., 

1988) and it was later proven that most Epo is produced by the peritubular 

interstitial cells in the renal cortex (Lacombe and Mayeux, 1998). Using transgenic 

mice, cell type specific and hypoxia inducible expression of the human Epo gene 

have been demonstrated (Semenza et al., 1991).  

It is now known that around 90% of Epo is made in the kidney but it is also 

produced in small amounts by the liver, spleen, lung and testis and in 

macrophages. There are no preformed stores of Epo and it has a short plasma half-

life, allowing relatively fast responses to changes in the tissues. The rate of 

production is inversely proportional to the oxygen capacity of the blood, and the 

vascular structure within in the kidneys makes them very sensitive to changes in 

oxygen levels, allowing the negative feedback mechanism to work effectively 

(Jelkmann, 2007). 

1.2.2.1.2. Epo Structure  

Epo is a 166 amino acid glycoprotein of 30.4kDa which acts as a hormone, cytokine 

and growth factor. Following translation, the molecule is heavily glycosylated, 

which is essential for its biological activity in vivo. It also contains three N-linked 

and one O-linked acidic oligosaccharide side chains, as well as 4 cysteine residues 

that form 2 disulphide bridges (Lai et al., 1986).   
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1.2.2.1.3. Control of Epo gene expression 

The human Epo gene is on the long arm of chromosome 7 (q11-q22) (Law et al., 

1986) and contains five exons and four introns (Lin et al., 1985). The Epo gene 

encodes a 166 amino acid protein, which is biologically active, and a 26 amino acid 

leader sequence (Lin et al., 1985; Jacobs et al., 1985).  

Epo levels vary according to the tissue availability of oxygen, with hypoxia being 

the main stimulus to Epo production (Adamson, 1988). This is detected in the 

kidney via the intracellular oxygen sensor hypoxia inducible factor (HIF) (Wang et 

al., 1995). HIF is a transcription factor which controls the rate of Epo production as 

well as affecting a large number of other hypoxia induced genes such as vascular 

endothelial growth factor and platelet derived growth factor (Wang and Semenza, 

1993). Its degradation is inhibited by hypoxic conditions.  

HIF is a heterodimer containing one of three α subunits (HIF1-α, HIF2-α or HIF3-α) 

bound to the aryl hydrocarbon receptor nuclear translocator (ARNT; also known 

as HIF1-β). The HIF complex is a member of a large family of transcription factors 

which contain a basic helix-loop-helix region, allowing unit dimerisation and the 

binding of hypoxia response elements (HREs) within DNA. HIF1-β is constitutively 

expressed, however hypoxia causes increased levels of HIF1- α by increasing 

protein stability (Jelkmann, 2013). 

Ferrous iron prolyl hydroxylase is thought to be the oxygen sensor involved in this 

process (Bruick and McKnight, 2001). It requires oxygen as a co-substrate to 

hydroxylate conserved prolyl residues in the α-subunits of HIF, leading to 

ubiquitination by von Hippel-Lindau protein (Maxwell et al., 1999; Ohh et al., 

2000). The molecules are then targeted for proteosomal degradation. 

Hydroxylation of an asparaginyl residue in the C terminal transactivation domain 

adds to the effect by blocking the formation of an active transcription complex in 

the cell (Maxwell, 2005). When exposed to hypoxia the α subunits are no longer 

hydroxylated and destroyed, leading to heterodimerization of HIF1-α and HIF1-β 

subunits and formation of an active transcription complex. Accumulated HIF can 

then bind to key sequences in several regulatory DNA regions, known as the 

hypoxia response element (HRE), which activates Epo transcription (Nangaku and 

Eckardt, 2006). 
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Tissue-specific expression of the Epo gene depends on distinct upstream (5’) DNA 

sequences (Semenza et al., 1991). One of the most important regulatory DNA 

sequences found near the Epo gene is the hypoxia response element (HRE). The 

active HIF transcription factor binds the HRE leading to enhanced Epo expression 

(Peyssonnaux et al., 2007). HIF1-α may also affect hepcidin levels by negatively 

transactivating the hepicidin promoter, causing mobilisation of iron for red blood 

cell production (Peyssonnaux et al., 2007).  

Epo expression can be modulated by several other transcription factors. The 5’- 

promoter possesses GATA-binding sites (Jelkmann, 2007). GATA-4 is thought to 

recruit chromatin-modifying activity, promoting the expression of the Epo gene, 

while NF-ĸB and GATA-2 appear to inhibit Epo gene expression (Imagawa et al., 

1994). The nitric oxide synthase inhibitor, NO-monomethyl-L-arginine (L-NMMA) 

increases GATA-2 binding, thereby reducing Epo production. L-NMMA has been 

found to be markedly increased in uraemic patients, and has been implicated as a 

suppressor of Epo synthesis in CKD (Ribero et al., 1996).  

The proinflammatory cytokines IL-1 and TNFα activate GATA-2 and NFĸB, 

contributing to the anaemia of chronic disease caused by Epo suppression 

(Jelkmann, 1998). Experiments have shown that a GATA specific inhibitor reversed 

the inhibitor effects of IL-1, TNF-α and L-NMMA on Epo production in hepatoma 

cell cultures (Imagawa et al., 2003). Therefore, one common pathogenesis of 

anaemia of chronic disease and anaemia with renal disease appears to be via the 

stimulation of GATA binding activity by IL-1β, TNF-α, or L-NMMA (Imagawa et al., 

2003). 

1.2.2.1.4. The Epo receptor  

A single high affinity receptor expressed at low levels on erythrocyte precursors 

allows Epo to control red cell development (D’Andrea and Zon, 1990; Wognum et 

al., 1990). The Epo receptor (EpoR) is a 484 amino acid glycoprotein which is part 

of the class I cytokine receptor family (D’Andrea and Zon, 1990). It is formed of a 

hydrophobic transmembrane sequence, a variable cytoplasmic domain and an 

extracellular domain with conserved cysteines and a WSXWS-motif (Youssoufian 

et al., 1993). Upon binding of Epo, a p66 chain is dimerised causing JAK2 

transphosphorylation (Lacombe and Mayeux, 1998). This in turn phosphorylates 
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specific tyrosine residues in the EpoR creating docking sites for several 

intracellular proteins with SH2 domains. Once docked, these proteins are 

activated, beginning several signal transduction pathways, including PI3K, JAK2, 

STAT5, MAP kinase and protein kinase C (Wang et al., 1993; Damen and Krystal, 

1996).  

The EpoR is highly expressed on colony forming units-erythroid (CFU-E). They 

proliferate and differentiate in response to Epo, eventually producing mature 

erythrocytes. The expression of EpoR declines as the cell matures (Youssoufian et 

al., 1993). Reticulocytes and mature erythrocytes do not express EpoRs (Sawyer 

and Koury, 1987).  

A lack of Epo to bind to erythroid progenitors leads to caspase induced cleavage of 

GATA-1. This is crucial for progenitor maturation and survival and so Epo levels 

must be controlled to allow normal erythroid development (De Maria et al., 1999).  

1.2.2.1.5. Anti-apoptotic effects of Epo 

Programmed cell death eliminates damaged or non-functional cells and controls 

the balance between removal of these cells and protection of the progenitors to 

maintain the red cell lineage. The fate of a cell is determined by its 

microenvironment which contains various cytokines and cell surface interactions 

to promote survival, proliferation and differentiation.  

Several of the signal transduction pathways stimulated by Epo have anti-apoptotic 

effects. Phosphorylation of protein kinase b (Akt) has multiple effects on cell 

survival by maintaining mitochondrial integrity, inhibiting pro-apoptotic 

mediators such as glycogen synthase kinase-3β (GSK-3β) and caspase-9 and 

inhibiting activation of c-Jun N terminal kinases (JNK) (Kashii et al., 2000; Sharples 

et al., 2004). NFĸB is dependent on JAK2 activation and causes expression of X-

linked inhibitors of apoptosis (IAP) which inhibit caspase-3, -7 and -9, as well as 

enhancing expression of Bcl-xL which interacts with the pro-apoptotic Bcl-2-

associated X protein (Bax). JAK2 phosphorylation by the EpoR also activates the 

STAT-5 family of transcription factors, leading to transcription of several genes, 

including an anti-apoptotic molecule of the Bcl-2 family (Silva et al., 1999).  
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Involvement with molecular chaperones provides further anti-apoptotic 

mechanisms for Epo. Molecular chaperones guide folding, transport and assembly 

of proteins (Garrido et al., 2003) but are not associated with the final product or 

function (Weiss and dos Santos, 2009). Epo stimulates nuclear translocation of 

Hsp70 which can rescue cells from apoptosis downstream of caspase activation 

(Jaattela et al., 1998).  

1.2.2.1.6 Extra haematopoietic effects of Epo 

EpoR mRNA is expressed in a range of non-haematopoietic tissues such as 

endothelium, neuronal cells and the placenta (D’Andrea and Zon, 1990).  Epo has 

been shown to improve outcomes in ischaemia and stroke (Ehrenreich et al., 2002; 

Cai et al., 2003; Joyeux-Faure et al., 2006; Ramond et al., 2007). rHuEpo induced 

protection is associated with a decrease in apoptosis in models of neurone and 

cardiac ischaemia (Celik et al., 2002; Cai et al., 2003; Cavillo et al., 2003). It also 

appears to reduce apoptosis in proximal tubule cells (Sharples et al., 2004) and 

endothelial cells (Chong et al., 2002). Epo has been shown to reduce inflammation 

(Brines et al., 2000; Liu, 2006 et al.) and have a protective effect on vascular 

endothelium (Chong et al., 2002).  

1.2.3 Erythrocyte differentiation in the bone marrow 

All blood cells differentiate from a common progenitor in the bone marrow; the 

haematopoietic stem cell (HSC) (Kondo et al., 2003). HSCs have the ability to self-

renew and give rise to multipotent stem cells (Morrison et al., 1997). Multipotent 

stem cells differentiate into myeloid or lymphoid lineages. These terminally 

differentiated cells cannot self-renew so must be constantly replenished 

(Opferman, 2007).  

Figure 1.2 illustrates the development of erythrocytes. Pluripotent haematopoietic 

stem cells in the foetal liver and adult bone marrow generate erythroid 

progenitors. The earliest identified precursors are burst forming unit- erythroid 

(BFU-E) which proliferate slowly and do not express EpoR and are therefore 

unresponsive to Epo (Youssoufian et al., 1993). After 48 to 72 hours in the 

presence of IL-3 or granulocyte-macrophage colony stimulating factor (GM-CSF), 

more mature BFU-E, which express EpoR, develop (Emerson et al., 1985; Sawada 

et al., 1990). Culture for another 4-5 days produces colony forming units-erythroid 
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(CFU-E) which are highly responsive to Epo and give rise to erythroblast colonies 

in around 7 days (Gregory and Eaves, 1977). Beyond the erythroblast stage 

erythroid cells are no longer dependent on Epo and so the EpoR levels decrease 

with maturation (Youssourian et al., 1993).   

Figure 1.2 The maturation sequence in the development of mature erythrocytes from 
the haematopoietic stem cell.  

It has been suggested that Epo promotes the survival of erythrocyte progenitor 

cells by retarding DNA cleavage (Koury et al., 1990). A model predicted that 

normal levels of endogenous Epo are insufficient for the survival of most Epo 

dependent progenitors. An increase would therefore permit maturation of many 

more progenitors, thereby increasing erythrocyte production.  

Studies in transgenic mice overexpressing Epo found that circulating erythrocytes 

in these conditions were sensitised to triggers of eryptosis but more resistant to 

osmotic lysis (Foller et al., 2007). Epo inhibits apoptosis of erythroid progenitors, 

resulting in increased numbers of mature cells (Maiese et al., 2005). Epo inhibits 

the cation channel function, therefore making the cell more resistant to eryptosis 

triggered by Ca2+ entry (Myssina et al., 2003). However during production of red 

cells under conditions of high Epo, upregulation of proeryptotic factors may occur, 

allowing rapid removal of excess erythrocytes when Epo levels fall (Foller et al., 

2007).  

When situations occur resulting in excess erythrocytes there is selective lysis of 

the youngest circulating red cells. This process is known as neocytolysis (Alfrey et 

al., 1997). Rice et al. theorised that the process is initiated by a decrease in Epo to 

below a certain threshold (Rice et al., 1999). They examined the process in CRF to 

see if it led to renal anaemia. Erythrocyte survival curves show increased cell death 

in the first 9 days after Epo withdrawal, consistent with neocytolysis. They 

suggested this process as an explanation for the better results seen with 
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subcutaneous than intravenous administration of Epo, due to smaller fluctuations 

in the levels of Epo occurring after subcutaneous administration. Neocytolysis 

appears to be required to allow control of excess red cell mass (Rice and Alfrey, 

2005); if the decline was dependent upon only apoptosis of progenitors the fall 

would be very slow.  

 

1.3 Anaemia in chronic kidney disease 

Anaemia as a symptom of CKD was recognised by Richard Bright in 1836 when he 

noted the fading of the “healthy colours of countenance” of his renal patients. It is 

still considered as such, with anaemia an independent risk factor for the increased 

mortality and morbidity of CKD patients (Pereira et al., 2010).  

The world health organisation definition of anaemia is a Hb level < 13 g/dL for 

men and < 12 g/dL in women (WHO, 2009), however this was not designed to be 

taken as an international standard (Beutler and Waalen, 2006). Data from the 

Scripps-Kaiser database and the National Health and Nutrition Examination Survey 

(NHANES) studies suggest that a Hb lower than 13.7 g/dL in a white man aged 

between 20 and 60 years would indicate anaemia, with 12.2 g/dL being the 

corresponding value for a woman (Beutler and Waalen, 2006). The National 

Kidney Foundation (NKF) defines anaemia in CKD patients as a Hb level <13.5 g/dl 

in men and 12.0 g/dl in women (Macdougall et al., 2008a).  

Anaemia is common in CKD patients, with the incidence and severity increasing 

with declining glomerular filtration rate (Astor et al., 2002). Population studies 

demonstrate the incidence of anaemia to be less than 10% in CKD stages 1 and 2, 

20-40% in stage 3, 50-60% in stage 4 and more than 70% in stage 5 (Hsu, 2002 et 

al.; Astor et al., 2002).  

The anaemia of CRF is normocytic (red cells are normally sized) and 

normochromic (red cells contain normal amounts of Hb) (Eschbach et al., 1992). In 

anaemia, Epo levels are generally inversely proportional to Hb levels. However in 

renal failure the Epo levels are inappropriately low, because Epo deficiency is the 

primary cause of the anaemia (Spivak, 2000). It is generally accepted that a 

shortened erythrocyte lifespan is also partially responsible for the anaemia in 
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renal patients. However the cells are intrinsically normal, as they survive normally 

when transfused into a healthy person (Erslev and Besarab, 1997). A defect in a 

red cell metabolic pathway or a toxin found in uraemic plasma has been suggested 

as the cause of premature destruction (Erslev and Besarab, 1997). However 

whatever the cause it appears to be overcome by dialysis as the red cell lifespan in 

successfully managed patients is near normal (Erslev and Besarab, 1995). The 

anaemia caused by Epo deficiency is often compounded by iron and other vitamin 

deficiencies, inflammation, hyperparathyroidism, blood loss from haemodialysis, 

decreased erythrocyte life span and chronic gastro-intestinal blood loss. The 

illness causing the renal failure may also contribute to the anaemic state and 

diabetic patients seem to present earlier and with more severe anaemia (Bosman 

et al., 2001).  

Due to the slow progression of anaemia and CKD many patients adjust well to the 

fall in haemoglobin, however after treatment with rHuEpo there is generally a 

noticeable improvement in energy and vitality (Erslev and Besarab, 1997).  Renal 

anaemia leads to a decreased quality of life often including the inability to work, 

fatigue and poor exercise tolerance. A requirement for transfusions comes with the 

associated risks (Parfrey and Wish, 2010). The Third National Health and Nutrition 

Examination Survey in the US found anaemia was more common in non-Hispanic 

black participants than non-Hispanic white people (Astor et al., 2002).  

Zeigler et al. developed a mouse model of Epo deficient anaemia to allow pre-

clinical studies of this condition. Lack of a functional Epo gene causes embryonic 

lethality, but postnatal ablation using Cre recombinase allowed the gene to be 

silenced, leading to development of Epo deficiency and therefore chronic, 

normocytic, normochromic anaemia (Zeigler et al., 2010).  

Untreated anaemia places patients at increased risk of cardiovascular events, more 

rapid progression of CKD and significantly decreased quality of life (Lankhorst and 

Wish, 2010). A low haematocrit (Hct) (<30%) is associated with a significantly 

increased risk of death in patients with ESRD (Collins et al., 1998). 

Results from a study of patients with CRF and healthy people showed that serum 

Epo levels in normal individuals range between 1 and 27mu/ml (mean 6.2, n=53) 

whilst in CRF this increases to between 4.2 and 102mu/ml (mean 29.5, n=36) 
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(Garcia et al., 1990). It has been suggested that even though the Epo deficiency is 

the primary cause of renal anaemia the uraemic state may blunt the bone marrow 

response to Epo (Fisher, 2003). The response of bone marrow cultures to Epo in 

the presence of plasma from patients with anaemia has been shown to be reduced 

compared to healthy individuals (McGonigle et al., 1985; Radtke et al., 1980). It 

may therefore be the case that pharmacological doses of Epo given to renal 

anaemia patients may correct the Epo deficiency but also overwhelm and suppress 

the bone marrow response (Fisher, 2003).  

1.3.1 Use of erythropoiesis stimulating agents 

Hegstrom et al. first predicted the requirement for recombinant human Epo 

(rHuEpo), stating “supplementary erythropoietin, were it available, might reduce 

significantly the transfusion requirement” (Hegstrom et al., 1961). Prior to the 

introduction of rHuEpo therapeutically, red cell transfusions were used routinely 

when the symptoms of renal anaemia could not be sufficiently controlled by iron 

and anabolic steroids (Kliger et al., 2012). The introduction of rHuEpo led to a huge 

decline in the number of transfusions required, however currently patients who 

have symptomatic anaemia requiring immediate treatment or those refractory to 

Epo may still receive red cells. Associated with these transfusions are the risk of 

viral infection, haemolytic transfusion reactions, iron overload and 

alloimmunisation (making finding a suitable donor more difficult) (Tanhehco and 

Berns, 2012). 

Epo was initially extracted from 2500 litres of urine from patients with aplastic 

anaemia (uEPO) (Miyake et al., 1977); however this method did not yield much 

product for therapeutic use or research. A small amount of amino acid sequence 

information was derived from the uEpo, allowing oligonucleotide probes to be 

used in a human foetal liver genomic library. Once the gene was found, it was 

spliced into a plasmid vector and transfected into Chinese hamster ovary (CHO) 

cells (Lin et al., 1985; Jacobs et al., 1985). Using mammalian cells leads to post 

translational glycosylation of the rHuEpo, which is secreted into the surrounding 

medium in an in vivo functional form. This produced a hormone fully active in vivo 

and physiochemically and biologically indistinguishable from uEpo (Imai et al., 

1990). Recombinant human erythropoietin (rHuEpo) has now become a standard 

treatment for the anaemia of CKD (Eschbach et al., 1989).  
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The rHuEpo epoetin alpha was approved by the FDA in 1989 for use in dialysis 

patients (Lim et al., 1989). It is identical in structure to endogenous Epo and 

administered by injection, but only has a half-life of 6 hours so must be given two 

or three times a week (Chateauvieux et al., 2011).  A multicentre study to 

determine dose regimen and safety profile of epoetin alpha concluded that 200-

225U/kg/week, as two or three intravenous injections, is sufficient to maintain a 

Hb of 10-10.5g/dl over a one year period (Sundal et al., 1991). They found the drug 

to be safe and well tolerated when used according to guidelines, with easily 

managed predictable side effects (Sundal et al., 1991).  

Darbopoietin was developed after the discovery that isoforms of Epo with more 

sialic acid residues have a longer half-life in vivo (Egrie et al., 1993). Using site 

directed mutagenesis, the amino acid sequence at non-binding sites was altered to 

allow the incorporation of 22 sialic acid residues rather than 14 in endogenous Epo 

(Macdougall, 2008). This gives a half-life approximately three times longer than 

epoetin alpha, allowing less frequent dosing (Chateauvieux et al., 2011). This novel 

erythropoiesis stimulating protein (NESP) appeared to work as effectively as 

epoetin at maintaining target Hb levels (Navaneethan et al., 2011). 

Continuous erythropoietin receptor activator (CERA) is composed of an Epo 

molecule with a large methoxy-polyethyleneglycol polymer chain integrated via 

amide bonds, leaving a molecule with double its original mass (Macdougall, 2008). 

After intravenous or subcutaneous injection it takes 135 hours to be eliminated 

from the circulation, vastly increasing the half-life of Epo (Chateauvieux et al., 

2011).  

The response to rHuEpo is dose dependent, but a large variance is seen between 

individuals (Erslev and Besarab, 1997). The target Hb should be personalised to 

each patient depending upon their symptoms, comorbidities and Epo 

responsiveness within the range specified by guidelines (Lankhorst and Wish, 

2010). The anaemia of CRF can be corrected in almost every patient provided they 

are not iron deficient (Pollock et al., 2008). Eschbach et al. (1992) investigated the 

difference in rHuEpo response between normal and uraemic subjects and 

concluded that chronic uraemia does not alter the in vivo responsiveness to 

rHuEpo. These authors suggested that the anaemia of CRF is caused primarily by a 

hormone deficiency.  
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Analysis has not been conclusive regarding the risk of death by cardiovascular 

events in CKD patients on rHuEpo treatment (Mehdi and Toto, 2009); however 

there is some evidence that high doses of rHuEpo would be best avoided (Singh et 

al., 2006). A study of 1233 HD patients with heart disease found that the group 

with target haematocrit (Hct) levels within the normal range (42±3%) had 

significantly higher mortality rates than controls (Hct 30±3%) (Besarab et al., 

1998). This led to suspension of the study and the suggestion that the Hct should 

not be increased to normal levels in HD cardiac patients. However Ma et al. 

analysed Hct and mortality in HD patients and found an increased risk of death 

with a Hct of <30% rather than 30-33% (Ma et al., 1999).  Examination of records 

from 71,717 dialysis patients showed a lesser probability of hospitalisation with a 

Hct of 33-36% than with a lower Hct (Xia et al., 1999). In 2000 a further study 

concluded that dialysis patients without diabetes aged under 65 with no significant 

comorbidities should aim for a normal Hct as this increases quality of life and 

decreases mortality rates (Moreno et al., 2000).  

The specific mechanisms by which high doses of Epo may be associated with 

adverse events is also unclear, however Epo receptors have been found in a variety 

of tissues (Szczech et al., 2008). Therapy with large rHuEpo doses does not reflect 

normal Epo biology and therefore the effect on Epo receptors is unknown 

(Fishbane, 2006).  

Dosage requirements also appear to vary dependent upon the route of 

administration; rHuEpo via the subcutaneous route requires 15-50% less than the 

intravenous route (Uehlinger et al., 1992). Snyder et al. studied over 100,000 

dialysis patients aged at least 65 in the USA and concluded that those on peritoneal 

dialysis were far less likely to require Epo than those on haemodialysis (Snyder et 

al., 2004). The Hb levels achieved with Epo treatment were similar in both groups 

but the dosage required in HD patients was approximately double that of those on 

PD. In the US Epo is usually administered intravenously to HD patients and 

subcutaneously to PD patients, however some studies have shown that in terms of 

the Hb level achieved, subcutaneous administration is more efficacious than 

intravenous (Kaufman et al., 1998; Besarab et al., 2002). The Veterans Affairs 

Cooperative Study Group randomly assigned haemodialysis patients to either 

intravenous or subcutaneous Epo and found the subcutaneous route required a 
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32% lower dose (Kaufman et al., 1998). A pilot study suggested that the 

subcutaneous route can reduce the required Epo dose compared with intravenous 

administration (Bommer et al., 1988). Eidmak et al. found that in HD and CAPD the 

target Hb was reached faster with subcutaneous than intravenous administration 

of Epo and that lower doses were required, leading to the conclusion that there is 

an increased efficacy of subcutaneous Epo over intravenous (Eidmak et al., 2002).  

1.3.2 Benefits of erythropoiesis stimulating agents  

The use of erythropoiesis stimulating agents (ESAs) has significantly reduced the 

requirement for transfusion in dialysis patients to maintain a suitable Hb. 

Transfusion events in HD patients decreased during the period from 1992 to 2005, 

mostly in the 5 years after rHuEpo was introduced (Ibrahim et al., 2008). 

Goodnough et al. stated “the availability of Epo in 1989 was accompanied by a 

significant reduction in the frequency of red cell exposure in patients undergoing 

dialysis from 1988”. In 1988 the transfusion rate was 13.4/100 and this decreased 

to just 4.1/100 by 1991 (Goodnough et al., 1994).  

One of the most important perceived benefits of Epo treatment is the improved 

health related quality of life (HRQOL) however the evidence for this is poor. There 

are many limitations to the data analysis, such as the heterogeneity of study 

groups, the range of available HRQOL measures as well as the fact many anaemia 

studies are open label (potentially confounding the results) and are powered to 

assess other outcomes (Clement et al., 2009). The Cochrane review (Strippoli et al., 

2006) could not perform meta-analysis due to these limitations but they did 

conclude that HRQOL is very likely to improve when higher Hb levels are targeted. 

Despite these issues there do appear to be patterns emerging. Leaf and Goldfan 

(2009) examined many studies and found that the best improvements are in 

vitality, energy and performance with modest improvements in social functioning 

and mental health but little improvement in emotional function and pain. They 

concluded that correction of anaemia in CKD leads to clinically relevant 

improvements in HRQOL. The maximum increase in HRQOL per incremental 

increase in Hb appears to occur between 10-12g/dL (Lefebure et al., 2006).  

Since the implementation of Epo therapy, mortality rates  in dialysis patients have 

fallen, with a reduction in standardised mortality ratios of 17% shown between 
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1985 and 2002 (Wolfe et al., 2005). Despite the widespread and routine use of 

ESAs very few randomised controlled trials assessing clinical outcomes with 

greater than 100 participants have been performed in the dialysis or CKD 

population.  

Partial correction of anaemia with low doses of Epo was reported to slow the 

progression rate to ESRD in a group of CKD patients (Gouva et al., 2004). However 

the CREATE (Cardiovascular Risk Reduction by Early Anemia Treatment with 

Epoetin Beta) study found that early treatment with Epo increased the likelihood 

of starting dialysis and the CHOIR (Correction of Hemogloblin and Outcomes in 

Renal Insufficiency) study found no reduction in the rate of progression of CKD in 

patients in the higher Epo dose group compared to those on the lower dose 

(Drueke et al., 2006; Singh et al., 2006)  

Jungers et al. (2001) analysed the rate of decline of renal function and duration of 

the predialysis period in patients treated with rHuEpo. They compared this with 

the results from patients with the same degree of renal impairment but less degree 

of anaemia, not requiring rHuEpo. They found that moderate doses of rHuEpo in 

predialysis CRF patients which corrected the anaemia, resulted in a substantial 

delay in the need for renal replacement therapy (RRT) in half the patients studied.  

1.3.3 Epo hyporesponsiveness 

The introduction of rHuEpo has allowed the correction of anaemia in the majority 

of CKD patients, however around 25% of them require high doses and 5-10% do 

not respond to therapy (Macdougall, 1995). The need for large doses of rHuEpo to 

correct anaemia in certain patients was recognised soon after the treatment came 

into routine usage, but the reason was unknown (Adamson et al., 1990). This 

phenomenon was called Epo resistance. A study of  refractoriness to rHuEpo in 6 

medically stable HD patients did not show any correlation with erythroid marrow 

responsiveness, red cell survival, rHuEpo pharmokinetics, hyperparathyroidism or 

aluminium excess (Adamson et al., 1990). They concluded the reason for such large 

rHuEpo doses in HD patients was unknown.  

rHuEpo resistance is a failure to achieve a Hb greater than 11g/dL with an epoetin 

alpha dose greater than 500units/kg/week (or equivalent of other rHuEpo) 

(Lankhorst and Wish, 2010). European best practice guidelines define an 
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inadequate response to rHuEpo as >300iu/kg/week subcutaneous or 

400iu/kg/week intravenous (Hörl et al., 2000). US guidelines require a “failure, in 

the presence of adequate iron stores, to achieve and maintain the target Hb level 

with 450iu/kg/wk intravenous or 300iu/kg/wk subcutaneous erythropoeitin” 

(National Kidney Foundation, 1997). The major finding of one study was that 

albumin is an important predictor of baseline Hb and Epo sensitivity in a 

representative sample of chronic HD patients (Agarwal et al., 2008). The most 

common cause of an inadequate response to rHuEpo is iron deficiency (Hörl et al., 

2000). All patients must be iron replete to achieve and maintain an optimum Hb 

with minimum doses of rHuEpo, with intravenous iron used if required 

(Macdougall et al., 1996). It has been suggested that inflammation and 

proinflammatory cytokines may play a role in Epo resistance (Drüeke et al., 2001). 

Erythropoiesis is inhibited by cytokines such as TNFα, IL-1 and IFNγ. Markers of 

inflammation are associated with a decreased response to rHuEpo, especially CRP 

(Barany et al., 1997).  

Dialysis adequacy also appears to affect rHuEpo response. A US study found that 

rHuEpo dose decreased with increasing urea reduction rate (URR) and Hct 

increased with increased URR (McLennan et al., 2000). Movilli et al. also found that 

rHuEpo dose decreased with increasing Kt/V Movilli et al. (2001).  Less common 

causes of Epo hyporesponsiveness include blood loss, hyperthyroidism, aluminium 

toxicity, B12/folate deficiency, haemolysis, marrow dysfunction, 

haemaglobinopathy, ACE inhibitor therapy, carnitine therapy and antibodies 

against Epo (Macdougall and Cooper, 2002).  

A study in 1990 involved giving rHuEpo to 8 patients with CRF and uraemia for a 

year whilst analysing red cell survival (Schwartz et al, 1990). They found that 

rHuEpo maintains a higher haematocrit in patients with progressive CRF by 

increasing the length of RBC survival. They suggested that rHuEpo has an effect on 

the bone marrow, producing red cells which resist the toxic uraemia haemolytic 

effect. It has been demonstrated that red cells formed in response to Epo or in 

conditions of severe anaemia have a shortened lifespan. Stohlman suggested that 

the rapid response in these conditions may account for these changes. The 

differentiated cells may skip division or the generation times may be shortened, in 

what was referred to as a “panic mechanism” (Stohlman, 1959; Stohlman, 1961). It 
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was suggested that reticulocytes produced under high Epo conditions may have an 

intrinsic membrane defect. However Gordon et al. found that erythrocytes 

produced in response to Epo have a normal pattern of haemoglobin 

electrophoresis, normal osmotic fragility and a normal oxygen carrying capacity 

(Gordon et al., 1959).  

 

1.4 Apoptosis and eryptosis 

“Apoptosis” was first defined in 1972 to describe a morphologically distinct form 

of cell death (Kerr et al., 1972). The process occurs during normal development 

and aging as a homeostatic mechanism to maintain cell populations, as well as a 

defence mechanism in situations such as immune reactions or cell damage by 

disease (Norbury and Hickson, 2001). It appears that the majority of pro apoptotic 

stimuli require a mitochondrion dependent step, and so it was thought that 

mitochondria played an important role in programmed cell death (PCD) (Desagher 

and Martinou, 2000).  Studies of apoptosis in mammalian cells found the only cells 

not to undergo apoptosis when treated with the protein kinase inhibitor 

staurosporine and protein synthesis inhibitor cycloheximide were erythrocytes 

(Weil et al., 1996). They were therefore considered to be lacking the capability to 

undergo PCD.  Thus PCD was only investigated in mitochondria containing cells, 

until Bratosin et al. examined the process in erythrocytes (Bratosin et al., 2001). 

They found a regulated form of self-destruction could be induced, which shared 

several features with apoptosis. This indicated that erythrocytes express death 

machinery which can induce cytoplasmic and membrane changes associated with 

apoptosis.  

The term eryptosis was first proposed by Lang et al. (Lang et al., 2005). They noted 

the similarities between apoptosis and eryptosis (see Table 1.2), however they also 

acknowledged that erythrocytes are lacking certain mechanisms which are 

considered to be required for apoptosis. They stated “To distinguish the death of 

erythrocytes from apoptosis of nucleated cells, we do suggest the term ‘eryptosis’” 

(Lang et al., 2005).  
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Apoptosis  Eryptosis  

Nuclear condensation, DNA 
fragmentation 

No equivalent  

Loss of mitochondrial membrane 
potential  

No equivalent 

Cell shrinkage Cell shrinkage 

Apoptotic body formation  Vesiculation 

Activation of caspases 
Generally caspase independent. 
Activation of μ-calpain 

Loss of cell membrane asymmetry and 
therefore PS exposure  

Loss of cell membrane asymmetry and 
therefore PS exposure 

Death receptor expression  CD95 expression  

Sphingomyelinase mediated 
sphingomyelin breakdown or excess 
ceramide synthesis causing ceramide 
accumulation 

Sphingomyelinase induced ceramide 
formation  

Release of Ca2+ from endoplasmic 
reticulum causing increased 
intracellular levels  

Activation of cell membrane Ca2+  
permeable cation channels  

Table 1.2 Comparison of apoptosis and eryptosis. Based on table from Lang et al., 
2006a. Apoptosis is characterised by loss of cellular K+ leading to cell shrinkage, 
nuclear condensation, DNA fragmentation, mitochondrial depolarisation, cell 
membrane blebbling and breakdown of plasma membrane asymmetry (Gulbins et al., 
2000). Some of these features, cell shrinkage, membrane blebbing and PS exposure 
also occur in eryptosis (Bratosin et al., 2001).  

A typical mature erythrocyte lives for about 120 days in the circulation. Since these 

cells lack a nucleus, they cannot divide or synthesize new cellular components. As a 

result, the cells degenerate due to aging or damage in a process of senescence 

(Bratosin et al., 2001). The process of eryptosis is an alternative to haemolysis 

which has negative effects within the body. Rupture of erythrocyte cell membranes 

releases haemoglobin to the extracellular fluid, this may be filtered in the 

glomerula of the kidney and precipitate in the acid lumen of the tubules, 

obliterating the tubules and causing renal failure (Lang et al., 2005). Erythrocytes 

therefore require a disposal mechanism which does not lead to the release of 

intracellular components. The process of eryptosis leads to the production of red 

cell microparticles (RCMPs).  
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Excessive eryptosis has been observed in a wide variety of diseases or clinical 

conditions, including haemolytic uremic syndrome (Lang et al., 2006a) and renal 

insufficiency (Myssina et al., 2003), as well as related to a range of drugs, 

environmental pollutants and endogenous substances (Lang et al., 2008). Further 

studies have shown eryptosis may be inhibited under other conditions (Lang et al., 

2008), most significantly by erythropoietin (Myssina et al., 2003).  

Neocytolysis is another process postulated to be related to eryptosis. It is the 

selective destruction of young circulating erythrocytes when red cell mass 

becomes excessive for the environment (Alfrey and Fishbane, 2007). It is not clear 

whether neocytolysis occurs by an identical mechanism to eryptosis, but it has 

been speculated that stimulation of progenitor cell survival by excessive Epo leads 

to red cells overly susceptible to eryptosis (Lang et al., 2012a). In response to a 

rapid decrease in already elevated levels of serum Epo, neocytolysis is triggered to 

increase from basal levels. The process is thought to begin within 24 hours and can 

reduce red cell mass by 10–15% within 7–10 days (Alfrey and Fishbane, 2007). 

This may accelerate the otherwise slow negative feedback loop (Lang et al., 

2012a).  

1.4.1 The process of eryptosis 

MPs are formed in response to activation or apoptosis (Lacroix et al., 2011). 

Activation of caspases and calpains during apoptosis result in activation of the MP 

pathway (Piccin et al., 2007). Current knowledge of microparticle (MP) formation 

derives mainly from experiments performed in isolated or cultured cells (Leroyer 

et al., 2008). The mediators and mechanisms involved in vivo are mostly unknown. 

Most studies and therefore knowledge on MP formation are based on platelets or 

endothelial microparticles. Whether all of the details translate to red cell 

microparticles is yet to be established.  

Studies on platelets have given indications of the mechanism of microparticle 

formation. It is thought that microparticle formation occurs due to the disruption 

of the asymmetric distribution of phospholipids in the cell membrane. 

Phospholipid expression is conserved throughout all cell types, with 

phosphatidylcholine and sphingomyelin expressed externally and 

phosphatidylserine and phosphatidyl-ethanolamine found on the internal cell 
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membrane. The distribution is maintained in a dynamic steady state by a number 

of enzymes including aminophospholipid translocase, floppase, scramblase and 

calpain (Bevers et al., 1999; Piccin et al., 2007) as described previously.  

The activity of aminophospholipid translocase is dependent on ATP and it 

functions to transport aminophospholipids (phosphatidylserine and phosphatidyl-

ethanolamine) from the surface to the inner layer of the cell membrane. It is 

inhibited in the presence of calcium. Floppase works in a similar ATP dependent 

fashion, but exports lipids from the inside to the outside of the cell. Scramblase also 

facilitates the movement of lipids, but is usually inactive (Bevers et al., 1999). 

These three enzymes are all membrane bound. The cytoplasmic enzyme calpain is 

also usually inactive, but upon activation it cleaves long actin filaments leading to 

cytoskeleton disruption. It also cleaves phosphatidylinositol phosphate (PIP) 

kinases, which usually catalyse the conversion of PIP to phosphatidylinositol 4,5-

biphosphate (PIP2) (O’Connell et al., 2005). An increase in PIP2 within the cell 

membrane increases the membrane-cytoskeleton adhesion energy (Raucher et al., 

2000). Therefore calpain acts in a twofold fashion by destabilising the cytoskeleton 

as well as preventing its reinforcement via inhibition of PIP2 formation.  

Microparticle formation is generally triggered by cellular activation, 

apoptosis/eryptosis or necrosis, all of which involve the release of calcium ions 

from the endoplasmic reticulum. This calcium influx inhibits aminophospholipid 

translocase and activates scramblase and calpain. This causes a loss of lipid 

symmetry in the cell membrane and the surface exposure of phosphatidylserine 

(Lang et al., 2005; Lang et al., 2003). The disruption of the cytoskeleton mediated 

by these enzymes after calcium activation is the key to microparticle formation. 

The lack of attachment of the membrane and cytoskeleton allows budding from the 

surface, eventually producing detached microparticles which expose 

phosphatidylserine on their cell surface. Phosphatidylserine at the erythrocyte 

surface is recognised by macrophages which engulf and degrade the affected cells 

(Lang et al., 2005).  

1.4.2 Microparticles  

Platelet microparticles were first reported by Peter Wolf in 1967 as “cell dust”. 

Microparticles are vesicles formed from the budding of cell membranes from a 
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variety of cell types, including platelets, endothelial cells, monocytes, granulocytes 

and erythrocytes. They are heterogeneous (Mause and Weber, 2010) and generally 

0.2-2µm in diameter but red cell microparticles (RCMP) are typically smaller, with 

a diameter of approximately 0.15 µm (Piccin et al., 2007).  In the blood of a healthy 

individual the majority of microparticles are derived from platelets (Horstman et 

al., 1999), however there are variations in the reported figures, from 56% 

(Berckmans et al., 2001) to greater than 90% (Horstman et al., 1999). The 

contribution of erythrocytes and leukocytes to the overall pool of circulating 

microparticles is much lower, reported in one study as 7% RCMP in whole blood 

(Xiong et al., 2012).  

Most studies involving MPs concentrate on platelets, as these are the most 

numerous. Based on this population a commonly used definition is particles less 

than 1µm in diameter, exposing PS and surface proteins of the cell of origin (Distler 

et al., 2005a). Whether this is a robust definition which can be applied to MPs 

derived from any cell type is yet to be established.  

It is also thought MPs carry a cargo of cytokines, signalling proteins, mRNA and 

microRNA (miRNA) which can act in signalling pathways and are involved in 

intercellular communication (Mause and Weber, 2010). It has been suggested that 

microparticles act as transport vesicles for miRNA, protecting them from 

degradation (Diehl et al., 2012). Significant differences between the miRNA profile 

of patients with stable and unstable coronary artery disease were noted, all of 

which were different again from the cell of origin. The findings describe an 

interesting mechanism for transferring gene-regulatory function from 

microparticle releasing cells to target cells via circulating microparticles.  

It has been postulated that microparticles may play a role in the regulation of 

inflammation (Distler et al., 2006).  Microparticles can both induce and amplify 

inflammation, and depending on the cell type affected and the local 

microenvironment different mechanisms may be involved, including the transfer 

of surface receptors, activation of complement and stimulation of cytokine release 

(Distler et al., 2006). Both pro- and anticoagulant proteins have been detected in 

platelet microparticles (Tans et al., 1991). It has been shown that monocytes shed 

microvesicles of <0.5µm diameter from their plasma membrane after activation, 

which contain bioactive IL-1β.  T cell microparticles can induce macrophages to 
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undergo apoptosis, potentially impairing a key element of the immune system and 

triggering MP release from the dying macrophage to augment other immunological 

and vascular events (Distler et al., 2005a).  

As shown in in vitro studies, microparticles display a variety of proinflammatory 

activities that could contribute to the pathogenesis of inflammatory disease. Thus, 

these particles can promote adhesion and rolling of leukocytes, contain 

proinflammatory cytokines, and trigger the release of microparticles from various 

cell types in vitro (Aupeix et al., 1997; Nieuwland et al., 2000; Minagar et al., 2001; 

Brogan et al., 2004). Microparticles could trigger inflammation by activating the 

complement cascade. It has been found that the recognition unit of the classical 

complement pathway, C1q, binds to microparticles released from apoptotic Jurkat 

T cells. C1q bound to microparticles can activate the classical complement 

pathway, as demonstrated by deposition of C3 and C4 on the surface of 

microparticles (Nauta et al., 2002) 

There is evidence of elevated microparticle levels in a number of systemic and 

chronic conditions such as diabetes mellitus (Diamant et al., 2002), renal failure 

(Faure et al., 2006) and coronary artery disease (Bernal-Mizrachi et al., 2003), 

however none of these studies investigated red cell microparticles. Daniel et al. 

(2008) state that “elevated levels of MP have been detected throughout the entire 

process of vascular damage associated with renal diseases”. They suggest that 

microparticles relate to the cardiovascular risk associated with CKD and they have 

a deleterious effect on renal patients. Studies of MP found similar numbers of cell-

derived MP in asymptomatic patients with well-controlled, uncomplicated type II 

diabetes and in controls (Diamant et al., 2002). However they did find higher 

proportions of MP derived from T-helper cells, granulocytes, and platelets which 

exposed tissue factor (TF) in patients. TF is the major in vivo initiator of 

coagulation and so increased expression of TF may promote thrombotic events.  

Increased endothelial MPs have been found in chronic renal failure patients, both 

those on HD and pre dialysis, possibly attributing to the higher risk of 

cardiovascular events and endothelial dysfunction, a critical element in the 

pathogenesis of atherosclerosis (Faure et al., 2005). Studies of patients with 

chronic arterial disease found increased endothelial MPs compared with control 

subjects (Bernal-Mizrachi et al., 2003).  
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Erythrocytes of patients with CRF are often found to have membrane structural 

and functional abnormalities, such as an increase in PS exposure in uraemic 

patients (Bonomini et al., 1999). This is thought to be due to a failure of the 

transport mechanism which internalises PS from the outer leaflet of the 

erythrocyte membrane (Bonomini et al., 1999). It has also been demonstrated that 

upon exposure to uraemic plasma, increased PS externalisation occurs (Bonomini 

et al., 2004). Exposure of PS leads to recognition and destruction by macrophages, 

so the abnormal exposure found in uraemic RBCs may explain the shortened life 

span seen in uraemia (Bonomimi et al., 2004). Patients with CKD often experience 

associated vascular disease; this may be explained by the increased PS exposure on 

MP promoting adhesion to the vascular endothelial cells, leading to vascular 

inflammation and/or leucocyte adhesion (Bonomini et al., 2002).  

It has been shown that hyperglycaemia can induce a loss of phospholipid 

asymmetry in human erythrocytes, an effect which can be seen in diabetes (Wilson 

et al., 1993). With diabetes being such a common cause of CKD this could influence 

the patterns seen in renal patients. Willekens et al. concluded that “vesiculation 

constitutes a mechanism for the removal of erythrocyte membrane patches 

containing removal molecules, thereby postponing the untimely elimination of 

otherwise healthy erythrocytes” (Willekens et al., 2008). Consequently, these same 

removal molecules mediate the rapid removal of erythrocyte-derived vesicles from 

the circulation.” Similarly, it has been speculated that MPs could be a means for 

erythrocytes to prevent a premature removal from circulation when they are still 

functional or when lesions are reversible (Solheim et al., 2004). If this was correct 

it would allow erythrocytes to clear non-functional molecules that would 

otherwise cause eryptosis or remove IgG binding senescent erythrocytes via 

macrophages (Kriebardis et al., 2007; Bosman et al., 2008).  

1.4.3 Measurement of eryptosis  

Previous studies have used a variety of measures of eryptosis, including cell size, 

annexin V binding, Ca2+ activity and ceramide formation. Phosphatidylserine 

exposure measured via annexin V binding with no size discrimination has been 

used (Calderón –Salinas et al., 2011), and the same method but considering only 

annexin V events with a mean fluorescence greater than 1.0 as positive (Bonomini 

et al., 1999). Another study measured glycophorin A and annexin V dual positivity, 
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similarly with no sizing (Biro et al., 2004). Shet et al. imposed a strict definition of 

microparticles, which had to fulfil the criteria: (i) size = 1.0µm; (ii) ability to be 

isolated from platelet-free plasma by ultracentrifugation; and (iii) surface 

expression of phosphatidylserine, as shown by annexin V binding (Shet et al., 

2004). Studies by Xiong et al. defined red cell microparticles as annexin V+ 

glycophorin A+ events between 0.5 and 0.9µm (Xiong et al., 2011; 2012). Multiple 

studies have measured all of; cytosolic calcium activity (using Flou3 fluorescence), 

cell volume (forward scatter), phosphatidylserine exposure (annexin V binding) 

and ceramide formation (anti ceramide antibody) to determine eryptosis levels 

(Lang et al., 2005; Niemoeller et al., 2006; Kempe et al., 2007; Kiedaisch et al., 

2008; Ahmed et al., 2013).  

 

1.5 Aims and thesis plan 

The process of eryptosis, leading to the production of red cell microparticles has 

not previously been studied in ESRF patients on dialysis. This study aims to assess 

the levels of microparticles in these patients as a measure of eryptosis. 

Determination of associations between clinical factors and numbers of eryptotic 

cells will provide valuable information on the pathogenesis and drivers of the 

response.  

Currently, the anaemia associated with renal failure is treated with 

supraphysiological doses of Epo. There is some evidence that giving very high 

doses of this hormone is associated with morbidity and mortality (irrespective of 

the haemoglobin level). Investigating the process of eryptosis may provide insight 

into the mechanisms of renal anaemia and therefore possibly help to explain 

rHuEpo hyporesponsiveness. If eryptosis plays a significant role in causing renal 

anaemia, then this would permit exploration of other ways of treating these 

patients. 

The objectives for this study were to determine: 

 Does the degree of renal failure affect the concentration of eryptotic cells?  

 Does this exacerbate anaemia? 
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 Does dialysis modality affect eryptosis levels?  

 Are there other factors which correlate with eryptosis levels eg 

inflammation, co morbidity (especially diabetes), race, Epo requirements?  

The subsequent chapters will address these aims: 

Chapter 2 – Method development  

In order to fulfil these aims, this thesis will describe the development of a flow 

cytometric method for the measurement of red cell microparticles, as an indication 

of the level of eryptosis occurring in vivo. 

Chapter 3 – Flow cytometric analysis of red cell microparticles 

Samples from dialysis patients will be analysed using this method, and the 

microparticle levels compared with available patient demographics and other 

pathology results. Any associations will be investigated further.   

Chapter 4 – In vitro flow model  

Further investigations into the link with inflammation and erythropoietin will be 

undertaken using an in vitro whole umbilical artery continuous perfusion loop.  
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Chapter 2: Development of a flow cytometric method for 

the analysis of red cell microparticles 

2.1 Introduction 

This chapter describes the development of a flow cytometric method suitable for 

the analysis of RCMP. The methods within this project have been used previously 

to analyse MPs derived from a range of cell types (Macey et al., 2011; Macey et al., 

2010). In order to refine them solely for RCMP analysis and to ensure suitability 

for the purpose of measuring eryptosis, method development was undertaken 

prior to the receipt of any patient samples.  

There is no standardised method to enumerate RCMPs (Shah et al., 2008; Rubin et 

al., 2008; Ayers et al., 2011; Lacroix et al., 2012; Xiong et al., 2012). However the 

primary method for microparticle detection is to use flow cytometry (FCM) of 

purified MP using one or two colour fluorescence (Christersson et al., 2013). This 

gives the ability to quantitate as well as provide data on the surface antigens of the 

particles. There are a range of technical issues relating to the methodology as well 

as a lack of consensus on the definition of a microparticle. The major sources of 

variability are differences in pre analytic processing, the definition of MP used and 

the difference in flow cytometer settings and MP analysis (Shah et al., 2008; Rubin 

et al., 2008; Robert et al., 2009; Ayers et al., 2011; Lacroix et al., 2012). There have 

been a range of approaches cited in the literature, mostly dealing with platelet MPs 

(Rubin et al., 2008).  

Technical issues include the detection limits of the chosen flow cytometer, whether 

to use plasma or whole blood, the preparation process, which anticoagulant to use 

and the choice of antibodies. The definition of a microparticle is poorly 

standardised between laboratories, with regard the antigenic characteristics and 

the sizing. Some studies have reported that the detection limits of flow cytometry 

mean that small events are excluded from analysis and therefore totals are 

underestimated (Jy et al., 1995). However the limit of detection of the instrument 

in the present study was previously demonstrated to be between 0.6 and 0.1μm 

when using side scatter but not forward scatter (Macey et al., 2011). 
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Microparticles are too small to be seen with light microscopy but can be detected 

by electron microscopy. Their morphology has been reported to be 

“heterogeneous” (Horstman et al., 2004) with relation to size and density and the 

presence of multiple phenotypes reported dependent upon the conditions under 

which they are produced (Jimenez et al., 2003).  

A major problem in enumerating microparticles is cellular activation, which can 

occur during venesection or in vitro prior to analysis. Artefactual cellular activation 

can be minimised by adequate blood collection procedures but an appropriate 

anticoagulant and storage temperature must also be used. None of the commonly 

used anticoagulants (citrate, EDTA or heparin) can prevent platelet or neutrophil 

activation (McCarthy, 2001; Macey et al., 2002; Macey et al., 2003) but the effect of 

anticoagulants on red cells has not been investigated.  

Most studies have used frozen and thawed platelet poor plasma (PPP), and 

prepared cell free plasma employing different centrifugation steps, including high 

speed centrifugation (Shah et al., 2008; van Ierssel et al., 2010). The preparation 

steps, of centrifugation and thawing frozen samples, influence the amount of MPs. 

Recommendations for pre-analytical procedures have been published (Lacroix et 

al., 2011), however there is still a lack of standardisation. A method has been 

developed using whole blood, to reduce in vitro activation and negate the influence 

of centrifugation on MP numbers (Christersson et al., 2013).  

The definition of RCMPs is unclear. Using them as a measure for eryptosis causes 

further confusion. Previous studies have used a variety of measures of eryptosis, 

including cell size, annexin V binding, Ca2+ activity and ceramide formation (Lang 

et al., 2005; Niemoeller et al., 2006; Kempe et al., 2007; Kiedaisch et al., 2008; 

Ahmed et al., 2013).  

Platelet microparticles are still the most widely studied group of MPs. Based on 

this, the definition of a MP is determined by the presence of PS on the surface, 

surface antigens representative of the cell of origin and some sizing parameters. 

However whether this can be universally applied to all MP populations is 

debatable.  
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In this study, RCMPs were initially defined as glycophorin A+ annexin V+ events as 

described previously (Xiong et al., 2012). However this is not always the definition 

of choice as MP may not always express PS or bind annexin V.  

 

2.2 Materials  

1x Annexin V binding buffer (ABB: 10 

mMHepes/NaOH (pH 7.4) 140 mMNaCl, 2.5 

mM CaCl2) passed through a 0.22μm 

diameter filter (Merck-Millipore, Billerica, 

USA). 

BD Biosciences, Oxford, UK 

 

1.1μm diameter latex polystyrene beads 

diluted 1μl in 1ml filtered ABB 

Sigma, Dorset, UK 

 

SpheroTech AccuCount Fluorescent 

Particles 10.1μm ~1x106 particles/mL 

SpheroTech Inc, Illinois, USA (from 

Saxon Europe, Scottish Borders, UK) 

Monoclonal mouse anti-human glycophorin 

A (CD235a) Fluorescein Isothiocyanate 

(FITC) Clone JC159  

Dako, Glostrup, Denmark (from 

Alere, Cheshire, UK) 

 

Annexin V phycoerythrin (PE) BD Pharmingen, Oxford, UK 

Anti-human CD45 Allophycocyanin (APC) 

clone 2D1  

eBioscience, Hatfield, UK 

Cytometer Setup and Tracking (CST) Beads BD Biosciences, Oxford UK 

Tripotassium Ethylenediaminetetraacetic 

acid (K3 EDTA) vacutainers 

BD Biosciences, Oxford UK 

Citrate, theophylline, adenosine and 

dipyridamole (CTAD) vacutainers 

BD Biosciences, Oxford UK 

Table 2.1 Reagents for FCM analysis of RCMPs  

 

2.3 Samples 

The development of the assay was carried out on samples from healthy controls, 

who all gave written informed consent as stipulated by the protocol submitted to 

City Road & Hampstead Research Ethic Committee (ref: 11/LO/0816) . Whole 
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blood was obtained by clean venepuncture from the antecubital vein using the 

BDVacutainer® Safety-Lok™ Blood Collection Set, into 4.5ml EDTA tubes. 

2.4 General methodology  

The basic methods for this study have been employed previously (Macey et al., 

2010; Holtom et al., 2012). Flow cytometric analysis involved incubation of the 

sample with antibodies, annexin V binding buffer, 10µm counting beads and 1µm 

sizing beads. Events gated on the annexin V/glycophorin A dual positive 

population were enumerated using 10µm standardised beads. The method was 

varied to allow comparisons of different variables and the final experimental 

method described in Chapter 3.  

 

2.5 Reagents 

Antibodies conjugated to fluorescent dyes can be used to detect the presence of 

antigens on the surface of microparticles using flow cytometry. Cell specificity, 

abundance of the antigen on parent cells and microparticles and stability and 

availability of monoclonal fluorescently conjugated antibodies are important 

factors in choosing a target antigen. Glycophorin A was chosen to allow detection 

of microparticles expressing red cell antigens (Simak and Gelderman, 2006).  

Microparticle phosphatidylserine exposure can be detected in vitro by labelling 

with fluorochrome conjugated annexin V (Thiagarajan et al., 1990; Vermes et al., 

1995). Annexin V is a phosphatidylserine (PS) binding protein derived from 

placenta which binds PS at physiological calcium concentrations (Reutelingsperger 

et al., 1985; Funakoshi et al., 1987). It has been used to detect PS exposure on the 

surface of aged erythrocytes (Boas et al., 1998), circulating microparticles 

(Dachary-Prigent et al., 1993), activated platelets (Thiagarajan et al., 1990) and 

apoptotic leukocytes (Vermes et al., 1995). 

PS exposing platelets have a significant role in coagulation; however the role of PS 

exposing RCMP is unclear. The ability to express PS suggests that erythrocytes 

should have a role in clotting (Andrews and Low, 1999) and evidence shows that 

the increased PS exposure may contribute to the increased thrombotic risk in 
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paroxysmal nocturnal haemaglobinurea and polycythaemia vera (Ninomiya et al., 

1999; Tan et al., 2013).  

However it appears that not all microparticles expose PS. Freyssinet (2003) 

proposed that all microparticles express PS and therefore bind annexin V, however 

this was disputed, with evidence presented of endothelial derived microparticles 

which do not bind annexin V (Jy et al., 2004). Further studies have found a 

discrepancy in annexin V binding of platelet derived microparticles in thalassaemic 

patients, with only 7% of them capable of binding annexin V (Pattanapanyasat et 

al., 2007). There has been little research into the binding of annexin V to red cell 

microparticles.  

 

2.6 Methodology variations 

2.6.1 Antibody titration  

Antibody titrations were used to determine the optimum antibody volume for each 

experiment without unnecessarily wasting antibody. Also nonspecific antibody 

binding may cause erroneous and difficult to interpret results. This can be 

eliminated by optimising the amount of antibody used, to a volume which gives the 

highest signal of the positive population and the lowest signal of negative 

population (Hulspas, 2010). 

A titration curve was created by using serial dilutions of antibody covering a range 

above and below the manufacturers’ recommendation (which varies between 

products). Six dilutions were used and mixed with 10μl of whole blood, as in the 

original method, then incubated for 10 minutes. The samples were then analysed 

on the flow cytometer. This was carried out for both glycophorin A and annexin V.  

2.6.2 CTAD-EDTA v EDTA 

There is a lack of consensus with regard to the choice of anticoagulant for 

microparticle enumeration. Platelet derived microparticles are the most commonly 

studied and these generally involve the use of the anticoagulant sodium citrate. 

However EDTA is the general anticoagulant of choice for the study of red blood 

cells, and so may be more appropriate for RCMP enumeration. Studies have shown 
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increased stability of platelets in CTAD-EDTA, compared to sodium citrate (Mody 

et al., 1999; Macey et al., 2003), and so this is often used. The lack of consensus 

limits the standardisation of microparticle analysis methods.  

CTAD contains sodium citrate and citric acid as anticoagulants, and theophylline, 

adenosine and dipyridamole as inhibitors of platelet activation. These inhibitors 

prevent in vitro spontaneous activation of platelets by increasing cytosolic AMP 

concentration (Contant et al., 1983). When taken into CTAD, platelet MP increased 

with time, but to a lesser extent than when taken into sodium citrate (Kim et al., 

2002). CTAD was first developed for coagulation tests to eliminate coexisting 

platelet effects in platelet-poor plasma. Reinhart et al. first tried to use CTAD 

anticoagulated blood for haematological testing in a relatively small number of 

cases, and reported no difference in haematological data produced by electronic 

particle counters between blood anticoagulated with EDTA and CTAD (Reinhart et 

al., 1990). Tsuda et al. also used CTAD blood for complete blood counts and 

automated white cell differentials to prove its efficacy for haematological analysis 

(Tsuda et al., 2000). In this study, large numbers of samples were investigated with 

two automated analyser systems based on different methods. The data for 

parameters related to RBC were similar to those in EDTA blood and CTAD blood. 

This has been confirmed by Macey (2001, unpublished data).  

The use of CTAD-EDTA requires the blood samples to be taken into an EDTA 

vacutainer, mixed, and then immediately decanted into a CTAD vacutainer. This 

was carried out with bloods from four controls, with EDTA samples taken at the 

same time. They were analysed on the flow cytometer and the number of RCMP in 

the two differently anticoagulated bloods compared.  

2.6.3 Time delay 

Whole blood samples are known to degrade over time, however the effect on 

microparticle formation is unknown. Lacroix et al. found an increase in total 

microparticles over 4 hours in platelet free plasma (PFP) but no change in 

erythrocyte microparticles (Lacroix et al., 2011). Ayers et al. found the number of 

microparticles increases with increased time between venepuncture and 

processing. They found that total microparticle number (annexin V+) doubled after 

two hours, however they did not analyse red cell microparticles separately (Ayers 
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et al., 2011). Studies of erythrocyte concentrates destined for transfusion found an 

increase in the number of RCMP, around 20 fold after 50 days at 4°C; however 

there was a huge variation amongst samples (Rubin et al., 2008). This suggests that 

the effect of time delay may vary from sample to sample.  

To investigate this, aliquots (10µl) of whole blood taken into EDTA from four 

controls were analysed at 0, 2, 4, 6 and 24 hours after venesection.  

2.6.4 Plasma and whole blood microparticles 

Either plasma or whole blood can be used to examine microparticles, each have 

advantages and disadvantages. Whole blood is more physiologically relevant, 

avoiding handling issues related to generation of plasma and requires smaller 

sample volumes; however the presence of a large number of erythrocytes may 

affect antibody binding. Also samples cannot be stored, whereas plasma samples 

can be frozen and processed in batches. Preparation of plasma may lead to 

artifactual increases in microparticle levels and centrifugation has been shown to 

cause increases in MPs (Rubin et al., 2008). Freezing plasma samples prior to 

analysis also appears to generate artifactual MPs (Simak and Gelderman, 2006). 

Therefore the difference in red cell microparticle levels in whole blood and plasma 

was analysed in 20 patients, using either 50μl of plasma or 10µl of whole blood.  

2.6.5 Temperature 

The effect of storage temperature on in vitro microparticle levels is unknown. It 

has been suggested that cooling or heating of samples may induce microparticle 

release from blood cells (Simak and Gelderman, 2006). Generally samples for 

analysis by flow cytometry are not refrigerated due to the degradation effect this 

may have on antigenic expression. However some studies advocate maintaining 

samples at 4°C prior to analysis (Macey et al., 2003).  

Four control samples were taken into EDTA and each immediately divided into 

two aliquots. One was kept at 4°C and one at room temperature. Aliquots of blood 

were then analysed at intervals up until 6 hours.  
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2.7 Statistics 

Statistical analysis was performed using GraphPad Prism software (version 6.01). 

Tests of normality found much of the data to be non normally distributed, with 

transformation unsuccessful, so all analysis of data used non parametric methods. 

Comparisons were made using a Mann Whitney test, correlations were assessed 

with Spearman Rank and multiple comparisons with a Kruskal-Wallis test and 

Dunn’s post analysis test. Paired comparisons used the Wilcoxon test. All results, 

unless otherwise stated, are expressed as the median ± IQR.  

 

2.8 Results 

2.8.1 Antibody titrations  

The antibodies were titrated according to the method described in section 2.6.1. 

Glycophorin A was titrated to 2.5μl and Annexin V to 5μl (see Figure 2.1). These 

volumes were used throughout the project.  

 

 

Figure 2.1a Titration of glycophorin A. 
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Figure 2.1b Titration of annexin V. 

 

2.8.2 Time delay 

As the clinical samples were taken in the Renal Unit they sometimes did not reach 

the laboratory until a significant amount of time had elapsed. There are reports 

(Macey et al., 2003) that microparticle production increases over time in 

anticoagulated blood. Therefore this was tested to determine a cut off time for the 

acceptance of samples for processing.  

Control bloods were labelled with mAbs and analysed at intervals over 24 hours. A 

significant increase in the numbers of RCMP was found to occur between 1 and 24 

hours (p=0.0325) post venesection, but no significant difference was found 

between 1 and 6 hours (p=0.3502) (see Figure 2.2). All subsequent samples were 

analysed within 6 hours of venesection.  
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There was a small increase over 6 hours and so ideally all samples should be 

processed at the same time after venepuncture. However this is logistically 

challenging due to the nature of the samples available and the transportation of the 

bloods to the laboratory.  

 

 

 

 

 

 

 

 

 

Figure 2.2 Increase in red cell microparticle levels in control samples over a 24 hour 
period. There was a significant increase from time 1 hr to 24 hours (p= 0.0325), but 
not over the first 6 hours (p=0.3502) (n=4). 

2.8.3 CTAD-EDTA v EDTA 

Samples from four controls were taken into EDTA and CTAD-EDTA and tested after 

6 hours at RT, as this was determined to be the cut off for sample processing in 

section 2.6.2.  No statistically significant difference (P=0.0571) was found between 

the two anticoagulants at 6 hours.  

As the ethical approval for this project only permits the use of “left over” samples 

the use of CTAD would be quite difficult to implement as samples are taken into 

EDTA on the ward and would not be immediately available to transfer into CTAD. 

The amount of time between venepuncture and transfer into CTAD would also 

vary from patient to patient which could also affect the results. It was therefore 

decided on a practical basis that all samples would be processed in EDTA.   
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2.8.4 Plasma and whole blood   

Platelet poor or platelet free plasma (PPP/PFP) appears to be the most commonly 

used source of microparticles, however the majority of studies have investigated 

platelet microparticles for which plasma is the obvious choice. Whole blood is 

more physiologically relevant but has its own disadvantages so the two were 

compared.  

Whole blood samples were analysed on day of collection. Plasma was stored frozen 

for one month then analysed. The analysis of RCMPs in whole blood and stored 

plasma samples was compared. If plasma gave similar results to whole blood it 

would make batch testing possible which would be more practical.  

Figure 2.3 shows a significant difference in RCMP levels (p=0.0017) in whole blood 

and plasma. Clearly part of the processing caused an increase in RCMP. The results 

also show much greater variability in the levels in plasma (whole blood 13511 ± 

8256 RCMP/µl; Plasma 44267 ± 41089 RCMP/µl). However the process of plasma 

production leads to a reduction in volume by around a half, which will impact upon 

the concentration of MPs in the samples.  
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Figure 2.3 Comparison of microparticle levels in plasma and whole blood. Showing a 
significant increase in plasma samples compared to whole blood (p=0.0017), as well 
as increased variance between samples. 

It was therefore decided that whole blood would be used throughout the study.  
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2.8.5 Temperature 

Storing samples taken into EDTA at either room temperature or 4°C gave no 

significant difference at 6 hours (p=0.3429).  
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Figure 2.4 Difference in RCMP levels between samples stored at room temperature or 
4°C for 6 hours prior to processing was not shown to be significant (p=0.3429). 

The samples for this project were from patients located on the dialysis ward and 

transported to the laboratory via normal portering services. Therefore the 

immediate storage of samples at 4°C would be logistically challenging. As there 

appears to be no statistical difference between the two conditions it was decided 

that samples should be stored at room temperature prior to analysis.  

 

2.9 Final Methodology 

2.9.1 Agitation/transportation  

The effect of agitation on microparticle formation has been examined previously 

(Lacroix et al., 2011).  Moderate agitation did not have a significant impact on 

erythrocyte microparticle numbers measured in PFP. The patient samples for this 

project were delivered from the ward via porters and so experienced some 

unavoidable agitation however previoud work suggested this would not impact 
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significantly on the results. However it was also found that samples transported 

vertically produced less MP that those transported horizontally (Lacroix et al., 

2011). The investigators had no control over specimen transport and so this was 

not controlled in this study.  

2.9.2 Phlebotomy 

The sampling of patients and controls was carried out under slightly different 

conditions due to cannulation on the ward, however it has previously been 

established that the use of different gauge needles has no effect on microparticle 

levels (Shah et al. 2008).  Also no significant difference was observed in MP levels 

between a light or strong tourniquet and a straight needle or butterfly device for 

blood collection (Larcoix et al., 2011).  

2.9.3 Methodology used  

From these preliminary experiments a protocol was developed to enumerate red 

cell microparticles. The study of red cell microparticles does not have a 

standardised method, and there are few previous examples of the process. These 

preliminary experiments should provide accurate results using the methods 

described below.  

2.9.3.1 Flow cytometry 

The flow cytometric analysis of red cell microparticles was performed on a BD 

Canto II flow cytometer using Diva software version 6.1. The instrument was 

calibrated daily with Cell Setup and Tracker (CST) Beads (BD). The instrument had 

three lasers and a standard optical filter setup. Compensation was performed using 

Comp Beads (BD) and photomultiplier voltages suitable for cellular analysis as 

determined from the CST beads.  

2.9.3.2 Immunolabelling 

To measure red cell microparticle levels, 10µl of EDTA anticogulated blood was 

incubated for 15 minutes in the dark with 2.5µl of glycophorin A FITC and 5µl of 

Annexin V PE, plus 50µl of Annexin V binding buffer (ABB). After incubation, 50µl 

of AccuCount 10µm enumeration beads, plus 1µl of 1µm sizing beads were added 

and the samples diluted to 1ml with ABB.  
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2.9.3.3 Flow cytometric analysis 

The microparticle/platelet cloud was first identified on a plot of forward scatter 

versus side scatter. The 1µm sizing beads were gated to allow identification of 

microparticles smaller and greater than 1µm. A plot of glycophorin A versus 

annexin V allowed the identification of dual positive events, which were gated to 

give an absolute count. The 10µm enumeration beads were used to provide a 

stopping gate; once 1500 bead events were acquired data collection was stopped. 

This then allowed calculation of the red cell microparticles present per µl of 

original sample. Refer to Figure 2.5 for an illustration of this.  
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2.10 Discussion 

The individual flow cytometer may be affected by a variety of factors, such as the 

machine age, laser strengths and detection capabilities. The use of effective 

cleaning protocols, filtration of buffers and the purity of antibodies are also 

important issues for accurate microparticle detection.  

The topic of standardisation for microparticle enumeration was addressed in a 

published forum (Jy et al., 2004) and has been the focus of Working Group 

meetings of the International Society of Thrombosis and Haemostasis (Lacroix et 

al., 2010). These attempts mostly relate to platelet microparticles but may equally 

be applied to red cell microparticles. The definition of a red cell microparticle is 

still not entirely standardised and therefore neither are the methods used to detect 

C 

Figure 2.5. FCM gating example: 
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them. This makes comparisons between studies challenging and the decision of the 

methodology to use difficult.  

During initial experimentation it was noted that there are events which may reflect 

different populations of red cell microparticles. These will be investigated in the 

next chapter as well as the initially defined RCMP population.  
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Chapter 3: Flow cytometric analysis of red cell 

microparticles in patients with chronic kidney disease 

3.1 Introduction 

The previous chapter described development of a method for the flow cytometric 

analysis of red cell microparticles. This method was used to quantify red cell 

microparticles in patients with ESRF on dialysis, as an indicator of levels of 

eryptosis occurring in vivo. These values were compared with healthy controls and 

differences between the patient groups analysed to determine if there were any 

factors influencing the level of microparticles observed.  

The aim of this part of the study was to test the hypothesis that eryptosis levels 

vary between healthy controls and ESRF patients on dialysis. Investigating the 

process of eryptosis may give an insight into the mechanisms of renal anaemia and 

therefore possibly help to explain rHuEpo hyporesponsiveness.  

 

3.2 Materials 

See Table 2.1, page 50.  

 

3.3 Control samples  

Healthy controls were recruited. A poster (see Appendix 2) was displayed 

explaining the study. All controls were consented and samples coded to include 

details of age and gender, with no other identifiable details stored.  A full blood 

count was carried out on all controls, but no other analysis. Exclusion criteria 

included know serious illnesses and medication. 

 

3.4 Patient samples 

Patients from the Renal Unit at the Royal London Hospital were consented upon 

initiation of treatment (see Appendix 2). They agreed to the use of any leftover 
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clinical samples for ethically approved research projects. Any patients who signed 

the consent form were eligible to take part in the current study.  

This project was specifically study to patients in CKD stage 5, undergoing regular 

haemodialysis or peritoneal dialysis. All dialysis patients were monitored monthly 

for routine haematology and biochemistry tests, the samples for this project were 

those left over from these analyses, as stipulated in the ethics approval.  

Phlebotomy was performed by the ward nurses for patients and by the principal 

investigator (PI) for controls.  

Patients also gave permission for their health records to be used by authorised 

members of staff who are not directly involved in their care if this was used for 

research as approved by research ethics committee.  

 

3.5 Ethics 

Ethical approval for the study was granted by City Road & Hampstead Research 

Ethic Committee (ref: 11/LO/0816). The trial was sponsored by Barts and the 

London NHS Trust. The patients were recruited from the Renal Department, Royal 

London Hospital, Whitechapel, London, E1 1BB, United Kingdom. Full, written 

consent was obtained from all participants. (See Appendix 2 for details.) 

3.5.1 Confidentiality  

Documentation was made in the Renal Units’ database Filemaker Pro which acts as 

source data. The patient’s participation in the trial was indicated in a specific study 

documentation screen. All data collected and results were then placed into the 

Study Spreadsheet (Microsoft Excel 2003). FileMaker Pro is password protected 

and all computers used during data collection were also password protected. Data 

was kept on Trust computers or Trust encrypted USBs.  
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3.6 Sample collection  

Patient bloods were taken via a cannula straight into EDTA vacutainers. The 

phlebotomy was carried out on the dialysis unit by the nurses. HD patient samples 

were taken pre dialysis, before any part of the dialysis procedure had begun. PD 

patients were in a steady state due to the nature of their dialysis regime and so 

bloods were not taken at a specific time in the cycle.  

Control bloods were taken using a BD Vacutainer® Safety-Lok™ Blood Collection 

Set needle straight into EDTA vacutainers.  

All samples were stored at room temperature and processed within 6 hours of 

venepuncture.  

 

3.7 Sample analysis  

All samples were processed by the same operator.  

3.7.1 Flow cytometric analysis  

10μl of whole blood was incubated in the dark for 15 minutes with 2.5μl 

glycophorin A FITC, 5μl annexin V PE and 50μl filtered annexin binding buffer 

(ABB). Prior to analysis, 50μl 10.0μm AccuCount fluorescent particles and 1μl of 

1:1000 1.1μm latex beads were added to each tube and the volume made up to 1ml 

with ABB.  

To allow for additional data analysis, 2.5µl of CD45 APC was also added to each 

tube prior to incubation. The plots produced represent white cell MP events and 

were treated in the same way as RCMP data, see Figure 3.1b.  

Samples were analysed by flow cytometry on a FACSCanto II (BD, Oxford, UK) flow 

cytometer equipped with FACSDiva version 6.1 software. The instrument was 

calibrated and standardised daily prior to use with set up and tracking beads (BD, 

Oxford, UK) and cleaned after use. The instrument had three lasers and a standard 

optical filter setup with forward scatter (FSC) and side scatter (SSC) thresholds set 

low. Compensation was performed using anti mouse Ig κ/negative control 

compensation particle set (Comp Beads, BD, Oxford, UK). The limit of detection of 
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the instrument was previously demonstrated to be below 0.6μm (Macey et al., 

2011). 

The plots produced allowed enumeration of the red cell microparticles per μl of 

original sample.  

As discussed previously there is no standard definition of a red cell microparticle. 

Therefore all potential RCMP populations were analysed in this study, for example 

Glycophorin A+ Annexin V+ <1µm, Glycophorin A+ Annexin V- >1µm, by gating the 

plots produced.  An example of this is shown in Figure 3.1.  

 

 

 

 

 

 

Figure 3.1a Example flow cytometric plots of results. These plots demonstrate the 
different results seen in different samples. Initial gating on the FSC/SSC plot gave a 
MP/platelet cloud which was then used to plot glycophorin A/annexin V. Plot A 
clearly shows both a dual positive annexin V+ glycophorin A+ population and a 
glycophorin A+ annexin V- population, whilst plot B only shows annexin V- 
glycophorin A+ MP. Using the sizing beads from the FSC/SSC plot these populations 
were also split by MP size.  

A B 
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Figure 3.1b Example flow cytometric plot of results for determination of CD45+ 
populations. The same gating strategy is used initially to separate the microparticle 
population, with a plot of CD45/Annexin V used to quantify dual positive CD45+ 
annexin V+ events and CD45+ annexin V- events. There are far fewer CD45+ events 
than glycophorin A+.  

 

The absolute value was then used to calculate the concentration of MPs/µl of 

original sample: 

MPs/µl =  Number of MPs          x       Number of beads per 50µl (~500,000) 
      Number of bead events (1500)            Volume of test sample used (10µl)  

Each sample was processed in triplicate and the mean of the three MP/µl results 

used for all analysis. 

3.7.2 Haematology  

All haematological indices were measured in the Haematology laboratories of the 

Royal London Hospital on a Sysmex XE-2100 Haematology Analyser (Sysmex Ltd, 

Milton Keynes, UK). This analyser uses fluorescence flow cytometry to give a WBC 

differential, nucleated red cell count and reticulocyte count and impedance 

counting for platelet and red cell counts and haematocrit. The cyanide-free sodium 

lauryl sulphate method was used for Hb measurement.  

3.7.3 Biochemistry  

All biochemistry was performed in the Biochemistry laboratory at the Royal 

London Hospital. CRP, serum albumin and urine creatinine were measured on the 

Roche Modular Analytics P-Unit (Roche, Burgess Hill, UK).  
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An in vitro immunoturbidimetric assay was used to determine C reactive protein 

(CRP) levels in human serum, by adding anti human CRP antibodies which bound 

CRP to create an insoluble aggregate causing turbidity which was measured 

spectrophotometrically, and was proportional to the amount of CRP in the sample. 

The results of this assay are not very sensitive, with the lowest result produced 

being “<5mg/L”. However as the normal range was less than 5mg/L, any patient 

with this result is within the normal range and so the exact result was less 

important. For the purpose of data analysis all results given as less than 5 were 

treated as being equal to 1mg/L.   

Serum creatinine was measured with a kinetic colorimetric assay. Alkaline 

creatinine forms a yellow-orange complex when mixed with picric acid which can 

be measured photometrically and is directly proportional to the initial creatinine 

concentration.  

Serum albumin was measured using bromocresol green, which binds albumin 

forming a complex that can be measured spectrophotometrically. This value is 

proportional to the serum in the original sample.  

3.7.4 Renal Function 

Kt/V is a measure of dialysis adequacy. eGFR (estimated glomerular filtration rate) 

is used to give an indication of renal function in CRF patients, however once ESRF 

is reached this is no longer appropriate as there is very little or no residual renal 

function. Once dialysis treatment begins Kt/V is then used to determine its 

effectiveness.  

Kt represents the volume of fluid cleared of urea during a single dialysis session, 

and V is approximately equal to the patients total body water, therefore Kt/V 

compares the amount of fluid that passes through the dialyser with the amount of 

fluid in the patient’s body.  

Other data used in this project was collected from the renal database, as permitted 

by ethics approval.  
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3.8 Statistics  

All samples were tested in triplicate and the raw data converted to MP/µl. The 

mean of the three values was then used for all analysis. Statistical analysis was 

performed using GraphPad Prism software (version 6.01). Tests of normality 

found much of the data to be non normally distributed, with transformation 

unsuccessful, so all analysis carried out was using non parametric methods. 

Comparisons were made using a Mann Whitney test, correlations were assessed 

with Spearman Rank and multiple comparisons with a Kruskal-Wallis test and 

Dunn’s post analysis. Paired comparisons used the Wilcoxon test. All results, unless 

otherwise stated, are expressed as the median ± IQR. All box and whisker plots are 

plotted using the Tukey method (Tukey, 1977).  

 

3.9 Results 

Samples were analysed from 83 patients and 19 controls, demographics are shown 

in Table 3.1 

 Patients Controls 

Gender (% male) 58 58 

Mean age (range) 58.2 (24-86) 50.7 (25-63) 

Mean Hb 11.1 14.6 

Dialysis modality (% HD) 58 - 

Diabetic status (% 
diabetic) 

42 - 

Epo status (% on Epo) 86 - 

Mean time on dialysis 
(range) (days) 

980 (26-4293) - 

eGFR (range) 7.4 (3.0-29.73) - 

Table 3.1 Demographics of patients and controls.  

All the patients enrolled on the study had a range of comorbidities and therefore 

were on a selection of medications. Due to the small sample size it was decided 

that splitting the groups further by any other measure would give such small 

subgoups as to make any statistical analysis impossible. It was noted that 

transplant history, hypertension, heart disease, malignancy, smoking, medications, 
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BMI and blood pressure may influence the process of eryptosis, however due to 

limitations of this project they were not analysed.  

Age and sex matching of the patients and controls was attempted but due to the 

greater age of the general dialysis population it was not possible to recruit 

sufficient controls of a suitable age.  

Preliminary experiments demonstrated the presence of microparticle populations 

other than the Annexin V+ GlycoA+ <1µm events. These events were counted to 

determine if these populations could provide further insight into red cell 

microparticles. Analysis was carried out to determine if there was a difference 

between the patient and control groups.  

Table 3.2 Comparisons of patients and controls using varying definitions of RCMPs. 

Population  Patients Controls 
p Comment 

Median IQR Median IQR 
All Annexin V 
<1µm 

36350 34791 44944 38852 0.0692 
Fewer all Annexin V+  
MP in patients than 

controls, but no 
difference  when split 

All Annexin V 
>1µm 

14911 10266 18377 15980 0.1015 

All Annexin V+ 
 

52155 40169 63172 60172 0.0496 

All Glyco A+ 
 

122011 59366 202894 109308 0.0001 
Fewer Glyco A+  MP in 
patients than controls, 

when comparing all MP 
and those  >1µm, but 

not <1µm 
 

All Glyco A<1 µm 
 

86511 41044 86327 18036 0.7959 

All Glyco A>1µm 
 

43900 25966 50377 29127 0.0001 

All MP 
 

5477206 2806064 9151322 2835494 0.0001 

Fewer MP in patients 
than controls 

All MP<1µm 
 

1806917 1714672 4112206 1786569 0.0001 

All MP>1µm 
 

3607061 1922533 5549911 1444625 0.0001 

Glyco A- Annexin 
V+ <1µm 

25400 28652 32783 16630 0.0825 No difference between 
patients and controls 

 
Glyco A- Annexin 
V+ >1µm 

12500 8550 16100 7388 0.0582 

Glyco A+ Annexin 
V- > 1µm 

41061 29116 43533 21602 0.2672 
Fewer Glyco A+ 

Annexin V– MP <1µm in 
patients compared to 

controls but not >1µm 
Glyco A+ Annexin 
V- <1µm 

69722 46780 130611 67213 0.0001 

All Glyco A+ 
Annexin V+  

19494 15616 30900 25230 <0.0001 
Fewer Glyco A+ 

Annexin V+ MP in 
patients than controls 

 

Glyco A+ Annexin 
V+ <1µm 

15350 12883 22067 22980 0.0167 

Glyco A+ Annexin 
V+ >1µm 

3672 3886 7666 8955 0.0013 
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Analysis found there to be statistically significantly (p <0.05) more microparticles 

per µl in controls than patients in the following populations:  

All MP< 1µm, GlycoA+ AnnexinV+ < 1 µm, All MP> 1 µm, All GlycoA> 1 µm, GlycoA+ 

AnnexinV+ > 1 µm, All MP, All GlycoA+, All Annexin V+. 

Gating on all microparticles, those >1µm, <1µm and all events, showed a significant 

difference in numbers between patients and controls with patients having 

significantly less. This gate is only based upon size, and so may not be an accurate 

representation of microparticle numbers. Platelets, red cell fragments, 

microvesicles and fragments of other cells may be included in this count.  

Analysis of Glycophorin A+ events within the microparticle gate shows 

significantly more events in controls than patients in MP > 1µm, and in all events 

but not in MP <1µm. This is interesting as it could imply that the larger events 

include some intact red cells, which are decreased in patients due to anaemia. The 

smaller events are likely to be microparticles and possibly fragments and this 

suggests the levels of these are equivocal in both groups.  

Gating on Annexin V+ events did not show a significant difference in values 

between patients and controls when split into < and > than 1µm events, however 

analysis of all annexin V+ events did show a significant difference (p=0.0496). This 

demonstrates either a decreased level of PS expression on these MPs in patients, or 

just a lack of MPs expressing PS.  

Fewer GlycoA+ AnnexinV – MP<1µm were found in patients but not > 1µm. These 

could represent annexin V- microparticles, or other red cell debris.  

GlycoA- AnnexinV+ events showed no significant difference between patients and 

controls.  

Analysis of GlycoA+ AnnexinV+ events showed fewer in patients < 1µm,> 1µm and 

all events. All three are statistically significant.  

This data shows inconsistencies between populations, demonstrating the 

requirement for a robust definition of red cell microparticles. A commonly used 

definition is sized between 0.1 and 1µm and expressing PS and antigens 

representative of cellular origin. Therefore further analysis was carried out on the 
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glycophorinA+ annexinV+ events <1µm as these gave a statistically significant 

difference between patients and controls and may be true red cell microparticles. 

The data was analysed to see if any correlations or relationships could be 

established to possibly explain the differences between patients and controls. 

3.9.1 Patients v controls 

As stated previously there were significantly more red cell microparticles observed 

in patients than in controls. See Figure 3.2.  

 

Figure 3.2 RCMP in patients v controls. There was a significant lower number of 
RCMPs in patients compared to controls (p= 0.0167).  

3.9.2 Patient demographics  

When comparing the demographics of the patients (see Figure 3.3) it was found 

there were significantly more RCMP in haemodialysis patients than peritoneal 

dialysis patients. No difference was observed with relation to diabetic status or 

between male and female patients, or between those patients receiving Epo 

treatment and those not. No correlation was observed between patient age and MP 

levels.  
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A. Dialysis modality and  B. Diabetic status 
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Figure 3.3 RCMP levels and patient demographic comparisons. A. There were 
significantly more red cell microparticles in haemodialysis patients compared with 
peritoneal dialysis patients (p=0.0128). B. There was no significant difference in red 
cell microparticle counts between patients who are diabetic and those who are not 
(p= 0.4021). C. No significant difference was observed between male patients and 
female patients (p= 0.5103). D. No correlation was observed between patient age and 
RCMP levels (R=-0.004621, p=0.9669).  

R= -0.004621 
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3.9.3 Investigation of RCMP relationships with other parameters 

3.9.3.1 Dialysis adequacy  

There were no statistically significant correlations found of RCMPs with kt/v or 

time on dialysis, suggesting that dialysis adequacy and stability have no impact 

upon microparticle formation in vivo (see Figure 3.4).  
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Figure 3.4 RCMP levels and dialysis adequacy. A. No correlation was observed 
between the time on dialysis and RCMP/µl (r=0.01545. p=0.8898).  B. No correlation 
was observed between kt/V as a measure of dialysis adequacy and RCMP/µl (r=-
0.1335, p=0.2288). 

 

3.9.3.2 Red cell indices  

Hb and RBC showed no relationship with MP numbers per µl of blood. This implies 

red cell indices are not related to the RCMP levels.  Also no significant correlation 

was observed between reticulocyte counts and MP levels. Reticulocyte counts were 

performed on very few patients (n=8). All were in the normal range.  

The RCMP data was also analysed with respect to the RCMPs/RBC, giving a ratio of 

RCMPs per red cell in the circulation. Comparing this data between patients and 

controls gave the same pattern as just RCMP, implying the difference is not related 

to the lack of red cells in renal patients. See Figure 3.5.  

  

 

R = -0.1335 

  
R= 0.01545 

 



76 

 

A MPs v Hb      B MPs v RBC 
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Figure 3.5 RCMP level and red cell indices. A. No correlation was observed between 
haemoglobin and RCMP (r=-0.06064, p=0.5860). B. No correlation was observed 
between red cell count and RCMP (r=0.07055, p=0.5262). C .No correlation was 
observed between reticulocyte count and RCMP (r=-0.4762, p=0.2431, n=8). 

3.9.3.3 Inflammation  

A statistically significant weak positive relationship was found between RCMPs 

and CRP; however there was no correlation with serum albumin measurements 

(see Figure 3.6). CRP is a more reliable measure of inflammation than albumin and 

so this analysis warrants further investigation.  

 

 

 

 

R= -0.06064 R= 0.07055 

R= -0.4762 
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A MPs v CRP       B MPs v serum albumin 
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Figure 3.6 RCMP levels and inflammation. A. A weak statistically significant 
correlation was found between CRP and RCMP (r=0.2303, p=0.0362). B. No 
correlation was found between serum albumin and RCMP (r=-0.03249, p=0.7706).  

3.9.4 Erythropoietin  

A weak statistically significant correlation was found between Epo dose and 

RCMPs. Further investigation found this was upheld when compared to the Epo 

dose per g of Hb. Dividing the patients in half to give a “high” Epo dose and “low” 

Epo dose group showed a statistically significant difference between the two. Using 

the definition of Epo resistance as requiring more than 15000IU of rHuEpo/wk to 

maintain target Hb the patients were split into Epo resistant and non-resistant. 

Comparison of these groups did not show any difference. However there are only 4 

patients in this study who met the criteria for “Epo resistant”. There was no 

significant difference observed between patients treated with Epo and those not 

(p= 0.3184).  See Figure 3.7.  

 

 

 

 

 

 

 

R= 0.2303 
R= -0.03249 
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A Epo treatment status  B MPs v Epo 
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Figure 3.7 RCMP levels and erythropoietin. A. No difference was observed between 
RCMP levels in those patients on Epo treatment and those not (p= 0.3184). B. A 

R= 0.3447 

 

R= 0.3425 
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statistically significant weak positive correlation was found between Epo dose and 
RCMP (r=0.3447, p=0.0014). C. A weak statistically significant correlation was seen 
between RCMP and Epo/Hb, a measure of the amount of Epo required to maintain 
target Hb (r= 0.3425, P= 0.0015). D. A statistically significant increase in RCMP was 
seen in patients on a high dose of Epo compared to a low dose (p=0.0075). E. No 
significant difference was seen between Epo resistant patients (defined as requiring 
more than 15000IU of rHuEpo/wk to maintain target Hb) and not (p=0.5163).  

3.9.5 White cell microparticles  

Further analysis was carried out to enumerate the CD45+ white blood cell 

microparticles in these subjects. Comparing patients and controls in 4 different 

subpopulations of white cell microparticles showed no significant difference 

between any of them (see Table 3.3).  

Patients v controls for WBC MP populations: Comment 

CD45+ AnnexinV+ >1 p=0.6416 No significant difference in WBC 
MPs between pts and controls 

CD45+ AnnexinV+ <1 p=0.1928 No significant difference in WBC 
MPs between pts and controls 

CD45+ AnnexinV- >1 p=0.4721 No significant difference in WBC 
MPs between pts and controls 

CD45+ AnnexinV- <1 p=0.8363 No significant difference in WBC 
MPs between pts and controls 

Table 3.3 Comparison of patients and controls using differing definitions of white cell 
MPs. 

These results were then correlated with RCMP data to determine if they 

demonstrate a similar pattern. No correlation was found with any population (see 

Table 3.4).  

 Spearman rank correlation (WBCMP v RCMP) 

r p 

AnnexinV+ <1 CD45+ v 
Annexin V+ <1 GlycoA+ 

0.1736342 0.1142071 

AnnexinV- <1 CD45+ v 
AnnexinV- <1 GlycoA+ 

0.07864 0.477 

AnnexinV+ >1 CD45+ v 
AnnexinV+ >1 GlycoA+ 

0.0377 0.7335 

AnnexinV->1 CD45+ v 
AnnexinV->1 GlycoA+ 

0.00809 0.9418 

Table 3.4 Comparison of RCMP and WBC MP populations in patients to determine if 
any correlation was present.  

Previous work has focused on PMPs, and therefore many generalisations regarding 

MPs are based on these observations. However in this study, analysis of WBC MPs 
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showed that they do not display the same characteristics as RCMPs. This suggests 

that MP may more heterogeneous than previously thought, with differences 

dependent upon the cell of origin. Findings relating to one specific population of 

MPs may therefore only relate MP derived from that source, and not to MP in 

general.  

 

3.10 Conclusions  

The method described in Chapter 2 allowed the enumeration of red cell 

microparticles.  

Preliminary experiments highlighted the issues with RCMP definitions, as it was 

observed that a number of populations of cells could represent microparticle 

populations. These were analysed initially, comparing patients with controls. It 

was found that there are statistically significantly more microparticles per µl in 

controls than patients in several of the populations studied.  

Previous studies have used a variety of measures of eryptosis, including cell size, 

annexin V binding, Ca2+ activity and ceramide formation. The International Society 

on Thrombosis and Haemostasis (ISTH) Scientific and Standardisation 

Subcommittees define platelet microparticles by the presence of cell specific 

antigens and surface PS using annexin V (Lacroix et al., 2011). Whether this 

definition can be used across microparticles derived from other cell types is yet to 

be determined.  

However, it is also clear there is a population of red cell microparticles which do 

not express annexin V. Horstman et al.  demonstrated that only a fraction of MPs 

are positive for annexin V (Horstman et al., 2004). They found that 35 times more 

endothelial microparticles were identified using anti-CD62 than annexin V binding. 

A similar situation has been observed in platelet microparticles, with 80% of them 

not binding annexin V, which seems to be dependent upon the agonist inducing MP 

formation (Connor, 2010).  

Comparing the mean of all MP and mean annexin V+ events in this study found 

approximately a 100 fold difference. In populations <1µm approximately 2% of all 
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MP are annexin V+, and in events >1µm this falls to 0.5%. Some of these events 

may not be true microparticles but this clearly shows there are many other 

particles present which are not counted as microparticles if annexin V positivity is 

part of the definition.  

This study found annexin V- glycophorin A+ populations both <and  > than 1µm in 

size. Whether these populations are different to those which are annexin V positive 

is yet to be determined.  

This demonstrates some of the issues involved with MP analysis, as the definition 

used affects the results. In order to analyse the data further it was necessary to 

specify a population to be defined as red cell microparticles in this study. Previous 

studies have used the definition of annexin V+ glycophorin A+ <1µ and this group 

gave a statistically significant difference between patients and controls and was 

our initial definition. It is noted that this may not be a definitive use of the term 

RCMP but for the purposes of this study it was used.  

Contrary to expectations, statistically significantly more RCMP were found in 

controls than patients (p=0.0167). When adjusted to account for the anaemia 

found in the patient group, by measuring RCMP per g/Hb or in relation to the 

absolute red cell count, the correlation remained. The patient data was then 

correlated with a selection of other parameters.  

No difference was found between diabetic and non-diabetic patients in this study. 

Previously annexin V binding was observed to be higher in CKD patients with type 

II diabetes (Calderón-Salinas et al., 2011), using washed red cells with no size 

discrimination. Caspase-3 activation, an effector mechanism of eryptosis, has been 

found to be higher in diabetic erythrocytes (Maellaro et al., 2013) but whether this 

translates to microparticle production has yet to be established.  

The prevalence of CKD is much greater in men however this predisposition did not 

appear to have an effect on the RCMP levels in this study. Previously it has been 

found that healthy women have increased levels of platelet and endothelial 

microparticles, compared to healthy men (Toth et al., 2007). This may suggest 

RCMPs do not act in the same way as other, more commonly studied MP 

populations.  
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No correlation was observed between microparticle levels and age in this 

population. Previously, decreased endothelial microparticles have been found in 

stable elderly patients, but no corresponding change in red cell or platelet 

microparticles (Forest et al., 2010).  

This study found significantly more red cell microparticles in haemodialysis 

patients compared to peritoneal dialysis patients (p=0.0128). This could be related 

to the sheer stress (Boulanger et al, 2007) or increased systemic inflammation in 

HD. Further investigation into this is required.  

It is very difficult to measure the severity of CKD once the patient has initiated 

upon RRT. Kt/V may be used to determine dialysis adequacy, however this result 

can be inaccurate due to any residual renal function the patient has. There was no 

correlation found between Kt/V and red cell microparticle levels. Also no 

correlation was found with time on dialysis and microparticle levels; this suggests 

that stability of dialysis has no impact on RCMP formation and eryptosis.  

It was found that there was no correlation between microparticle levels and Hb or 

red cell count. Reticulocyte counts also demonstrated no relationship with 

microparticles. This lack of association with any measured red cell indices suggests 

that these factors have little impact upon the process of eryptosis, suggesting 

microparticle levels are unrelated to the process of anaemia.  

CKD is a chronic inflammatory state and so the relationship between inflammation 

and microparticle levels was analysed. CRP is a standard marker for inflammation 

and is routinely monitored in CKD patients. A weak but statistically significant 

correlation was found between CRP and red cell microparticle levels. However 

serum albumin, another indicator of inflammation did not give a correlation. This 

is a less relevant marker but this adds to the weak nature of the correlation. 

Comparing the CRP levels between HD and PD patients gave a median level of 7 to 

1 mg/L. This is statistically significant (p=0.0036) showing a considerable 

difference in inflammation found in patients with HD compared to PD. The 

difference in the physical methods of dialysis clearly has a large impact on 

systemic inflammation levels.  
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A weak, statistically significant, correlation was found between red cell 

microparticle levels and Epo dose. Dividing the patient group in half into “high Epo 

dose” and “low Epo dose” gave a significant difference; however comparing 

patients receiving Epo with those not receiving Epo did not.  Using Epo/g Hb, as an 

indicator of the amount of Epo required to maintain an adequate Hb level also gave 

a significant correlation with microparticle levels.  

Further analysis of this data showed that comparing the Epo resistant group 

(defined as requiring more than 15000IU of rHuEpo/wk to maintain target Hb) 

with the remaining patients receiving Epo showed no difference. However the 

resistant group was very small and the range was wide, indicating a lack of 

consistency. A difference would be expected between these groups and so further 

investigations are required with more Epo resistant patients to confirm this 

hypothesis.  

The reticulocyte count was correlated with microparticle levels. This did not give a 

significant correlation, however there were very few patients for whom a 

reticulocyte count was performed. Also all the results are in the normal range, 

which is unexpected with those on such high Epo doses.  

From these investigations is it clear that both erythropoietin dose and 

inflammation may impact upon microparticle levels and therefore the process of 

eryptosis. Further work into the effect of erythropoietin dosage was not within the 

scope of this project, due to the logistical challenges of collecting samples from the 

relevant patients. It was therefore decided to carry out some in vitro experiments 

to try to further characterise the nature and cause of the inflammation in HD 

patients.  
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Chapter 4: In vitro flow model using whole umbilical 

artery continuous perfusion loops 

4.1 Introduction 

The results from Chapter 3 suggested that there may be a link between eryptosis, 

Epo dose and CRP. It has previously been established that patients with a high CRP 

require greater doses of Epo to achieve similar Hb levels (Barany et al., 1997; 

Bradbury et al., 2009). However the link of Epo with eryptosis is novel. As a 

marker of inflammation, CRP is increased in a range of acute and chronic 

conditions, and so would be expected to be elevated in ESRF. This chronic 

inflammatory state may influence eryptosis levels.  

The experiments described in this chapter were designed to compare the effect of 

normal blood with that from CKD patients on inflamed and normal endothelium. 

The flow model used was based upon an ex vivo model developed by Baumgartner 

and Haudenschild in the 1970s using rabbit aortas perfused with blood to measure 

platelet activation and aggregation (Baumgartner and Haudenschild, 1972). The 

model has been recently modified (Holtom et al., 2012), to allow investigation of 

interactions between the vascular endothelium and blood cells whilst retaining the 

3D vascular anatomy. It involves using intact umbilical arteries isolated from 

human umbilical cords as part of an ex vivo flow loop (Holtom et al., 2012). 

Previous studies used blood from healthy subjects to analyse the difference in 

microparticle production resulting from flow over TNF treated and normal 

endothelium (Holtom et al., 2012). 

Two loops were set up in parallel (see below); one was treated with TNF to cause 

an inflammatory response in the endothelial cells. The other remained untreated. 

TNF causes vascular endothelial cells to undergo a range of proinflammatory 

changes leading to increased leukocyte adhesion, transendothelial migration and 

vascular leak (Bradley et al., 2008).  Different combinations and patterns of 

adhesion molecules are expressed, including E-selectin, ICAM-1 and VCAM-1 

(Pober et al., 1986; Munro et al., 1989). The release of chemokines, such as IL-8 

and monocyte chemoattractant protein-1 (MCP-1) (Rollins et al., 1990), together 

with the adhesion molecule expression leads to recruitment of leukocytes. TNF 
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causes an increase in inducible nitric oxide synthase (iNOS) expression in a range 

of cells, leading to increased nitric oxide (NO) production (Miyasaka and Hirata, 

1997).  

The TNF treated loop was therefore used as a model for the endothelium found in 

HD patients and untreated endothelium used as a model for healthy endothelium. 

Blood from healthy controls and HD patients was allowed to flow over both treated 

and untreated endothelium.  

 

4.2 Reagents 

All general laboratory reagents were from Sigma (Poole, Dorset, UK) unless 

otherwise stated. All tubing and connectors were from Cole Parmer (London, UK). 

Reagents for flow cytometry were used as described in Table 2.1.  

 

4.3 Samples  

A subgroup of patients and controls from the initial study were used again for 

these in vitro studies. Only HD patients were used in this study, due to their 

generally increased CRP levels.  All the same criteria and ethical approval applied. 

All venepuncture occurred at the Royal London Hospital; samples were transferred 

to the Royal Veterinary College for flow loop analysis, which involved dilution of  

anticoagulated blood 1 in 10 in PBS with 0.2% EDTA and then transported on ice 

back to the Royal London Hospital for flow cytometric analysis.  

 

4.4 Ethics 

The use of left over blood samples was covered by the ethics approval as stated 

previously. Umbilical cords were collected from the Labour Ward of the Royal 

London Hospital with informed consent from the pregnant women and under 

conditions approved by the East London Local Research Ethics Committee (ref 

04/Q0604/4).  



86 

 

 

4.5 Methods 

4.5.1 Umbilical Artery Preparation 

Umbilical cords were collected as above. They were stored in Na2HCO3 buffered 

Hanks balanced salts solution (HBSS) with penicillin/streptomycin and 

gentamycin at 4°C. The cords were dissected to excise sections of artery around 

10cm in length, removing as much fat as possible but not damaging the artery wall.  

1/16” to female luer adaptors (Cole Parmer, London, UK) were inserted into each 

end and attached securely with strong embroidery thread. Each vessel was gently 

flushed with 1xPBS to remove clots and ensure the viability of the artery.  

4.5.2 Flow Loop 

A flow loop, as shown in Figure 4.1 was set up in a 37°C tent. The vessels were kept 

in a bath of warmed 1x PBS. All tubing was Tygone silicone 1/16” internal 

diameter (Cole Parmer) connected with polystyrene luer adaptors (Cole Parmer), 

sterilised by autoclaving prior to use.  A peristaltic pump was used to provide a 

continuous flow and a flexible capacitance reservoir was used to dampen the 

pulsatile flow.  

Two artery segments were set up for each experiment and acclimatised to the loop 

containing flow medium (M199, 10% foetal bovine serum (FBS), L-glutamine, 

penicillin/streptomycin, amphotericin B) for an hour. One circuit then had 

10ng/ml human recombinant TNF (Insight Ltd, London, UK) added and left for 18 

hours. 1x PBS with 0.2% EDTA was used to wash out the loop without disrupting 

the flow, and repeated three times. Diluted whole blood (1 in 10 in PBS with 0.2% 

EDTA) was added to each reservoir and run through the loop continuously for 30 

minutes, then collected and held on ice until flow cytometric analysis. Further 

aliquots of diluted blood were used as controls; one was incubated at 37°C for the 

length of the experiment and one was circulated through a flow loop without any 

umbilical artery for 30 minutes and collected as above. This was carried out with 6 

patients and 6 controls.  
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Figure 4.1 Simplified schematic of in vitro whole umbilical artery continuous 
perfusion loop. A: Reservoir containing diluted anticoagulated whole blood. B: 
Peristaltic pump. C: Compliance reservoir to remove pulses from peristaltic pump. D: 
Dissected human umbilical artery cannulated with luer adaptors. All tubing is 
silicone 3/16” internal diameter with polystyrene luer attachments (adapted from 
Holtom et al., 2012). 

4.5.3 Flow cytometric analysis 

Flow cytometric analysis was carried out as described in Chapter 2; however 100μl 

of diluted blood was used.  

 

4.6 Statistics  

See section 3.8.  

Multiple comparisons, between each condition in the flow loop, were done using 

the Kruskal Wallis test with Dunns post-test analysis.  
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4.7 Results  

4.7.1Patients v controls 

 

Figure 4.2 Medians +IQR of results from all patients and all controls under flow loop 
conditions. Diluted samples held in a tube for the duration of the experiment were 
classed as ‘no flow’, bloods passed through the apparatus with no endothelium were 
‘flow alone’, bloods passed through the apparatus with a portion of umbilical artery 
were ‘untreated EC’ and bloods passed through the loop with a portion of umbilical 
artery pretreated with TNF were ‘TNF’.  

These results show that initially the patient and control bloods do not contain 

differing numbers of red cell microparticles. When not exposed to flow conditions 

the behaviour of the bloods remain the same (p= 0.1255). However once exposed 

to flow, endothelium and TNF treated endothelium, the RCMP concentration in the 

controls increases (p=0.0410). A statistically significant difference is seen between 

no flow and TNF treated endothelium (p=0.0278). In contrast the red cell 

microparticle levels in the patient samples did not vary significantly with any of 

the conditions imposed (p=0.1406).  

However compared to the experiments in Chapter 3 the absolute values were 

much greater, the average of the control blood samples not undergoing flow was 

1,1815,741MP/µl compared to 21,656MP/µl in experiments from the previous 

P=0.0278 
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chapter. The numbers found for the patients and controls are more comparable in 

this experiment, rather than the almost two fold difference seen in the previous 

chapter.  

4.7.2 Epo v no Epo 

Further data analysis was carried out, splitting the patient group into those being 

treated with Epo and those not, to determine if the impact of both inflammation 

and Epo may have an effect on eryptosis.  

 

Figure 4.3 Comparison of patients who are being treated with Epo and those who are 
not, using an in vitro flow loop to assess the impact of inflammation on endothelium.  

Statistical analysis of this data shows no significant differences between any of the 

experimental conditions in either patient group (Epo p=0.2833, No Epo p=0.1606). 

Comparison of blood from the two groups when flowed through untreated 

endothelium did not show a significant difference (p=0.275). However, treating the 

endothelium with TNF and repeating the flow loop experiment demonstrated an 

almost statistically significant difference (p=0.05) between the Epo treated and 

Epo not treated groups. However this cohort is very small, with only 3 patients in 

each group. 

P=0.05 
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4.8 Conclusions 

These experiments gave inconclusive results which require more investigations to 

fully understand. They show that the number of red cell microparticles was not 

increased when CKD patient whole blood was exposed to flow, vascular 

endothelium under flow or TNF treated vascular endothelium under flow. 

However the same conditions with healthy control blood gave increasing 

microparticle levels, as flow was introduced and inflammation increased. A 

statistically significant increase was observed between blood not undergoing flow 

and TNF treated endothelium under flow conditions in controls.  

The patient population was further divided into those receiving Epo and those not. 

Multiple comparisons showed there was no significant difference between any of 

the experimental treatments in either group. However comparing the MP levels in 

each group when flowed through TNF treated endothelium, showed an almost 

significant increase in RCMP numbers in Epo treated patients (p=0.05). This may 

suggest that there is a difference in the level of eryptosis during inflammation 

between patients treated with Epo and not. However these cohorts were very 

small and would benefit from a repeat experiment with more patients.  

This set of experiments also have hugely increased absolute red cell microparticle 

counts, around 50 fold that of the previous experiments. This may have impacted 

upon the results. This is possibly due to the increased time involved in the 

methodology, particularly prior to analysis.  
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Chapter 5: Discussion  

Eryptosis is a process analogous to apoptosis which leads to production of red cell 

microparticles. The hypothesis for this study was that this would be upregulated in 

patients with CKD; however this study has found lower red cell microparticles 

levels in patients compared to controls. Further investigations were undertaken to 

attempt to explain this and it is hypothesised that erythrocytes in CKD patients 

undergo less eryptosis than those in controls.  

Each chapter contains a summary of the results. This chapter aims to discuss the 

relevance of the data and potential limitations, as well as further work which could 

be done to answer questions which have arisen from this study. 

 

5.1 Development of a flow cytometric method for the analysis of red cell 

microparticles 

There is no standardised method to enumerate RBC MPs (Shah et al., 2008; Rubin 

et al., 2008; Ayers et al., 2011; Xiong et al., 2012; Lacroix et al., 2012). However the 

primary method for microparticle detection is to use flow cytometry of purified MP 

using one or two colours (Christersson et al., 2013). 

The methods within this project have been used previously to analyse MPs derived 

from a range of cell types (Macey et al., 2011; Macey et al., 2012). In order to refine 

them solely for RCMP analysis and to ensure suitability for the purpose of 

measuring eryptosis, method development was undertaken prior to the receipt of 

any patient samples.  

The preliminary experiments outlined in Chapter 2 led to the development of a 

protocol to enumerate RCMPs. This involved flow cytometric analysis of red cell 

microparticles using a BD Canto II flow cytometer with Diva software version 6.1. 

EDTA anticoagulated blood was stained with glycophorin A FITC and annexin V PE, 

and after incubation, 10µm enumeration beads and 1µm sizing beads added. The 

microparticle/platelet cloud was first identified on a plot of forward scatter-side 

scatter. The 1µm sizing beads were gated to allow differentiation of microparticles 

by size. A plot of glycophorin A-annexin V allowed the identification of events 
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positive for each or both antigens, which were gated to give an absolute count. The 

10µm enumeration beads were used to provide a stopping gate; once 1500 events 

were acquired data collection was stopped. This then allowed calculation of the red 

cell microparticles present per µl of original sample.  

In this part of the study it was also noted there are multiple populations which 

could be classified as RCMP. These vary with their expression of annexin V and the 

sizing limits imposed. For example the definition used in the initial stages of this 

project was annexin V+ glycophorin A+ <1µl, however it could also be stated that 

there is no need to split the MP cloud by size and so gating on annexin V+ 

glycophorin A+ events could be classified as RCMP. Similarly there is evidence that 

not all MP bind annexin V and so simply glycophorin A+ events from within the MP 

cloud could be defined as RCMP. Comparisons of the different populations between 

patients and controls gave varying results. Some demonstrated highly significant 

differences, whilst others showed no difference, demonstrating heterogeneity 

amongst the populations. This highlights the issues involved in defining a suitable 

population as red cell microparticles.  

Previous studies have used a variety of measures of eryptosis, including cell size, 

annexin V binding, Ca2+ activity and ceramide formation. Phosphatidylserine 

exposure measured via annexin V binding with no size discrimination has been 

used (Calderón-Salinas et al., 2011), and the same method but considering only 

annexin V events with a mean fluorescence greater than 1.0 as positive (Bonomini 

et al., 1999). Another study measured glycophorin A and annexin V dual positivity, 

similarly with no sizing (Jy et al., 2004). Others have imposed a strict definition of 

microparticles, which had to fulfil the criteria: (i) size = 1.0µm; (ii) ability to be 

isolated from platelet-free plasma by ultracentrifugation; and (iii) surface 

expression of phosphatidylserine, as shown by annexin V binding (Jy et al., 2004). 

Closest to the definition initially used in this project, studies by Xiong et al. defined 

red cell microparticles as annexin V+ glycophorin A+ events between 0.5 and 

0.9µm (Xiong et al., 2011; 2012). Multiple studies have measured all of; cytosolic 

calcium activity (using Flou3 fluorescence), cell volume (forward scatter), 

phosphatidylserine exposure (annexin V binding) and ceramide formation (anti 

ceramide antibody) to determine eryptosis levels (Lang et al., 2005; Niemoeller et 

al., 2006; Kempe et al., 2007; Kiedaisch et al., 2008; Ahmed et al., 2013). Sample 
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processing also appears to have a large impact upon microparticle levels (Lacroix 

et al., 2012).  

 

5.2 Flow cytometric analysis of red cell microparticles in patients with 

chronic kidney disease 

The aim of this project was to determine whether eryptosis was related to renal 

anaemia and could therefore help to explain Epo hyporesponsiveness. The results 

do not seem to support the hypothesis that eryptosis is related to anaemia directly, 

as there was no correlation with microparticle levels and Hb, or any other red cell 

indices. However there may be a correlation with Epo treatment. The significance 

of this is yet to be determined. There was also a weak correlation with 

microparticle numbers and the level of CRP, which may be used clinically as an 

indicator of inflammation. 

Contrary to expectations, more red cell microparticles were found in the blood 

from controls than from patients. Previous studies have found increased 

endothelial microparticles in uraemia (using PFP) (Faure et al., 2006). Amabile et 

al. (2005) found an increase in red cell microparticles (defined as CD235a+ and 

between 0.1 and 1µm), in ESRF patients compared with healthy controls, using 

washed freeze-thawed MP pellets. However Trappenburg et al. found no difference 

in red cell microparticle (glycophorin A+ annexin V+) levels between controls and 

CRF patients, and no difference between those on HD or PD (Trappenburg et al., 

2012).  

Analysis of other data collected from these patients was undertaken to try and 

determine any factors which may influence the microparticle levels.  

It could be the case that the membranes involved in haemodialysis are providing a 

surface to which microparticles adhere, thereby reducing the numbers circulating 

in vivo. Analysis of the membranes post dialysis would confirm or rebuke this 

theory, whether it would be possible to wash them to remove all adherent particles 

is unclear.  However analysing the microparticle enumeration data from HD and 

PD patients does not support this; in fact it shows increased microparticle levels in 

HD patients. There are no artificial membranes involved in PD and so this 
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hypothesis would suggest more microparticles should be expected in PD patients. 

However PD is a more physiological process and this would therefore lead to 

reduced interference and inflammation, potentially confounding the effect.  PD 

patients are more likely to suffer infections and therefore the effects of 

inflammation, this may impact upon the microparticles. The membranes involved 

in HD may however cause an increase in inflammation thereby exacerbating the 

proinflammatory phenotype seen with these patients. As described in Chapter 4 

this may have an impact upon microparticle production. TNF treated endothelium 

was shown to cause an increase in RCMP production in control blood but not in 

patient blood, but the impact of artificial membranes is unknown.  

Diabetes is a common cause of CKD, due to the effects of glucose damage to the 

vasculature and nervous system and this may be related to the increase in 

eryptosis previously described in these patients. Manodori et al. (2002) found that 

a population of erythrocytes in diabetic patients expose PS, and the size of this 

population is related to blood glucose levels. These PS exposing red cells are 

abnormally adherent to each other and endothelial cells, especially the vascular 

endothelium (Wautier et al., 1981). Increased MP have been observed in type II 

diabetes, derived from platelets (Zhang et al., 2013), endothelium (Tramontano et 

al., 2010) and lymphocytes, as well as annexin V+MPs (Chen et al., 2012). However 

no such correlation has been observed with erythrocyte derived MP. Interestingly 

no correlation was found with RCMP and HbA1c levels in type II diabetes patients 

(Alkhatatbeh et al., 2013), suggesting that potentially glucose levels do not affect 

RCMP, only intact erythrocytes. No difference in RCMP levels was found between 

diabetic and non-diabetic patients in this study, suggesting this common 

comorbidity has no impact upon eryptosis.  

Epo status was analysed to determine its effect on eryptosis, with no difference in 

RCMP numbers being found between those on Epo and those not. However the 

RCMP range within the Epo treatment group was very large and the dosage range 

was also very large, making it difficult to assess this accurately. Due to regular 

monitoring and adjustment of Epo therapy very few patients were on a consistent 

dose of Epo. The dose data used was that for the date of the sample provided, 

however the previous 3 months Epo dose would be likely to have an effect on the 

behaviour of the red blood cells.  
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Monitoring dialysis adequacy is challenging, especially in patients who have some 

residual renal function remaining. Kt/V gives some indication but is not very 

reliable. No correlation was found between Kt/V and red cell microparticle levels, 

suggesting that their production is not dependent upon factors within the uraemic 

plasma, as these would be removed during effective dialysis. It would be 

interesting to analyse HD patient blood before and immediately after a dialysis 

session to determine how the process impacts upon RCMP production. No 

correlation was found between microparticles and time on dialysis, further 

implying no link between eryptosis and the process of dialysis.  

It was anticipated that the levels of RCMP would correlate with haemoglobin 

levels, in order to help explain the anaemia found in renal patients. However this 

was not the case. No correlation was found, implying that the anaemia is not 

influenced by microparticle levels. The red cell count did not correlate with red cell 

microparticle levels; further supporting the argument that eryptosis does not 

affect anaemia.  

No correlation was found between the reticulocyte concentration and the numbers 

of RCMP. If the process was related to red cell age this would have been expected. 

However all the patients had a reticulocyte count within the normal range and so 

the effect may not have been as noticeable as expected. There are other methods to 

more accurately determine red cell age which could be employed in the future. The 

patient group in this study were all anaemic; studying eryptosis in conditions of 

excess erythrocytes, polycythaemia, may give more clues about the mechanisms 

involved.  

CRP is an indicator of systemic inflammation within the patient. A weak positive 

correlation was found with red cell microparticles and CRP levels. This suggests 

that inflammation in some way impacts upon the process of eryptosis. Analysis of 

serum albumin, also an indicator of inflammation gave no correlation. This 

suggests there may be a weak relationship, which was investigated further.  

The most promising correlation found was with Epo treatment. There was a 

statistically significant positive correlation found between rHuEpo dose and RCMP 

levels. Comparing those on a high dose of Epo to those on a low dose gave a 

statistically significant difference. However, comparing red cell microparticles 
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from those who are classified as Epo resistant and those who are not, failed to 

demonstrate any difference. Within this cohort there were only 4 patients who 

were classified as Epo resistant, giving little weight to this analysis, and suggesting 

the need for recruitment of more patients.  These results suggest that Epo may 

have an impact upon red cells which affects their ability to undergo eryptosis.  

Overall these results suggest that red cells in patients are less likely to undergo 

eryptosis than in controls. There appears to be a link with Epo treatment and 

possibly with inflammation.  

Further analysis, including other possible RCMP populations and white cell 

microparticles (CD45+) was carried out. This did not demonstrate any consistent 

pattern, or any correlation between red and white cell MPs. This implies both that 

the definition chosen is very important, and that this phenomenon may not apply 

to microparticles derived from all cell types. Comparing studies is therefore made 

more challenging, as they may not really be assessing the same populations.   

 

5.3 In vitro flow model using whole umbilical artery continuous perfusion 

loops  

Further investigations were carried out using an in vitro model of TNF treated 

endothelium. The aim of this part of the study was to determine whether the weak 

correlation seen with CRP and microparticle levels in the initial study may have an 

impact upon red cell microparticle production.  

This part of the study used human umbilical arteries, which were assembled into a 

flow loop. Two flow loops were set up in parallel with one treated with TNF to 

induce inflammation. Diluted blood was then passed through the loop and 

analysed by FCM to determine the RCMP concentration, as described previously.  

The methods used were based on those employed previously (Holtom et al., 2012). 

They found an increase in red cell microparticles in control blood after exposure to 

the TNF activated endothelium. The behaviour of patient blood was investigated to 

determine the mechanism of red cell microparticle formation in renal patients.  
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The results from the controls confirm those found previously and showed an 

increase in red cell microparticles after incubation with TNF treated umbilical 

arteries (Holtom et al., 2012).  A statistically significant difference was observed 

between no flow and TNF treated endothelium under flow conditions with control 

blood.  

However the patient samples demonstrated no significant difference in RCMP 

levels between any of the flow conditions. Further subdivision of the patient group 

into those treated with Epo or without prior Epo treatment demonstrated no 

significant difference between any of the flow conditions. However the TNF treated 

endothelium flow loop gave an almost significant difference (p=0.05) between the 

Epo and not Epo treated patients.  

These results back up the finding from Chapter 3 that erythrocytes in renal 

patients are undergoing less eryptosis, as MP numbers do not appear to increase 

with increased flow/inflammatory insult, as in controls. The analysis of the TNF 

treated model demonstrated a difference (p=0.05) between those patients being 

treated with Epo and those not. This suggests there may be interplay between 

inflammation and Epo treatment which may impact upon RCMP levels.  

This study suggests that red cells in patients with ESRF are undergoing eryptosis 

less readily and producing less RCMP. The reasons for this are yet to be elucidated, 

however this section will present relevant information which may suggest the 

processes involved.  

The lack of eryptosis in CKD could be due to another process occurring, which 

removes intact erythrocytes prior to microparticle formation. Erythrophagocytosis 

occurs to engulf and remove erythrocytes which are exposing PS, generally by 

macrophages. An increase in macrophage number or activity could make them 

more efficient at removal of erythrocytes, leaving fewer red cells to undergo 

eryptosis. Increased PS exposure has been previously observed on erythrocytes in 

conditions of uraemia (Sakthivel, et al., 2007). It was also found that patients with 

CKD had increased PS exposure on RBC, no matter the dialysis treatment, which 

was caused by a factor within uraemic plasma (Bonomini et al., 1999). This could 

lead to erythrophagocyctosis and engulfment of whole red cells before the 

opportunity for eryptosis occurs. An increase in specific monocyte populations 
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have been found in HD patients, with further increases seen in chronic infection 

(Nockher and Scherberich, 1998). It has been suggested this is due to an increase 

in inflammatory cytokines, particularly TNF (Guidi and Santonastaso, 2010). These 

experiments could be carried out on the populations in this study, measuring PS 

exposure on whole erythrocytes to determine if this could be leading to premature 

destruction. As demonstrated previously (Manodori, 2002) this could also provide 

a link between diabetes and CKD.  

The results seen could also be explained by the increased adherence of 

microparticles derived from patient cells. In initial experiments this would occur 

during dialysis itself, with microparticles adhering to the dialysis membranes and 

equipment. This would also be observed in the flow loop model, where they could 

be present in similar numbers to in the controls, however adhering to the tubing, 

adhering more to the endothelium and adhering even more to the inflamed 

endothelium. Previous reports show that the induction of eryptosis leads to a 

significant increase in the number of erythrocytes adhering to the vascular 

endothelium under flow (Borst et al., 2012). It appears that TNF causes 

upregulation of CXCL16 on endothelial cells, to which the upregulated PS binds 

(Borst et al., 2012).  This could be investigated further by washing the dialysis 

apparatus and flow loops to remove the adhered microparticles and measuring the 

levels.  

Enhanced PS exposure on the cell surface of erythrocytes has been linked to 

abnormal adhesion to endothelial cells in chronic uraemia (Bonomini et al., 2002). 

The role of PS in the adhesion has not been elucidated however there appear to be 

specific interactions with the endothelial matrix (Yang et al., 2010). Schlegel et al. 

found that red cells with an asymmetric bilayer do not bind to endothelial cells, but 

those with a symmetric bilayer do (Schlegel et al., 1985); suggesting that bilayer 

rearrangement influences the behaviour of erythrocytes and may contribute to 

microvascular occlusion formation. This may reflect the situation in other 

pathogenic states which also demonstrate increased adhesive properties. It is 

postulated that extravascular haemolysis and the related upregulation of 

erythrocyte production may contribute to increased red cell adhesion in sickle cell 

disease (Sakamoto et al., 2013). Plasmodium falciparum infection leads to 

erythrocyte adhesion to the vascular endothelium to allow parasite dissemination 



99 

 

and in diabetes glycated band 3 protein leads to interaction with the endothelium 

(Wautier and Wautier, 2013). These mechanisms may also be involved in CKD and 

should be explored further.  

The samples used in this set of experiments were whole blood, meaning there 

were many other cell type and microparticles derived from these cells present. 

There is evidence that platelet and leukocyte microparticles cause release of 

cytokines which lead to adhesion onto endothelial cells (VanWijk et al., 2003). 

Platelet derived microparticles may also initiate inflammation and bind to already 

activated endothelium, further exacerbating the already inflamed endothelium. 

There is also evidence that microparticles produced in response to an 

inflammatory stimulus cause endothelial expression of adhesion molecules in vitro 

(Mesri and Altieri, 1999). This could lead to adhesion of red cell microparticles.  

However the initial experiments do not back up this theory as they demonstrated 

significantly more RCMP in HD than PD. The extra mechanical devices involved in 

HD would be expected to cause greater adhesion and therefore fewer detectable 

MP. The flow loop experiments do appear to demonstrate that control blood may 

follow this pattern. This further demonstrates the robust nature of the patient 

blood, as they do not seem to be affected by the increasing inflammation.  

There is evidence that CKD has an impact upon the structure of erythrocytes 

(Gwozdzinski et al., 1997; Brzeszczynska et al., 2008; Costa et al., 2008; Antonelou 

et al., 2011), however whether there could be a factor involved to make the cells 

less susceptible to eryptosis is unclear. The relationship with inflammation is also 

unclear.  

Results from the flow loop appear to show that control blood is more influenced by 

inflammation than patient blood. It is postulated that this may be due to the 

chronic inflammation in CKD patients, whereas controls are less likely to be 

desensitised to chronic inflammatory signals to these conditions and react strongly 

to them.  

Previous investigations showed that microparticles derived from co-culture with 

TNF treated endothelium induced significantly enhanced levels of reactive oxygen 

species (ROS) (Holtom et al., 2012). These data suggest that the presence of TNF 

treated endothelium caused release of pro-inflammatory microparticles from 
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circulating blood cells, which could contribute to prolonged endothelial activation. 

This process may be occurring in CKD patients, so the red cells do not react to the 

TNF treated endothelium in the flow model.  

The process of eryptosis may be inhibited by Epo, in both progenitors and mature 

red cells, but it has also been suggested that in a mechanism similar to 

neocytolysis, high Epo doses may lead to the production of erythrocytes which are 

more susceptible to eryptosis.  

It has been noted that erythropoietin has a direct antiapoptotic effect on mature 

erythrocytes, which significantly contributes to the enhanced erythrocyte survival 

observed in erythropoietin treated patients (Myssina et al., 2003). This direct 

regulatory effect of erythropoietin is thought to be due to inactivation of calcium-

permeable cation channels.  

It was also found that RBC survival was prolonged by the action of Epo on 

erythroid progenitors, resulting in the production of RBC with improved viability 

(Polenakovic and Sikole, 1996). Erythropoietin inhibits apoptosis of erythrocyte 

progenitor cells as well as suicidal death of mature erythrocytes. The hormone is 

effective through inhibition of the Ca2+-permeable cation channels (Lang et al., 

2006).  

However Foller et al. found that erythrocytes drawn from Epo-overexpressing 

transgenic mice were significantly more resistant to osmotically-induced lysis than 

wild type erythrocytes but more sensitive to the eryptotic effects of Cl-removal and 

exposure to the Ca2+ ionophore ionomycin (Foller et al., 2007). Those observations 

prompted the hypothesis that erythropoietin treatment leads to the generation of 

erythrocytes expressing genes which render the erythrocytes more sensitive to 

eryptosis. The generation of susceptible erythrocytes under the influence of high 

erythropoietin concentrations is expected to trigger removal of excessive 

erythrocytes as soon as the enhanced erythrocyte concentration is no longer 

needed and the plasma erythropoietin concentration declines (Foller et al., 2007). 

The influence of erythropoietin on proeryptotic genes would thus shorten negative 

feedback regulation of the circulating erythrocyte number, which otherwise would 

take 120 days. According to this view, the accelerated death of young erythrocytes 

following a limited exposure to high altitude or space flight (Rice and Alfrey, 2005) 
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may reflect the death of those erythrocytes that have been generated under high 

erythropoietin concentrations and are thus more vulnerable to eryptosis (Foller et 

al., 2007). 

This theory is based on the principles of neocytolysis; the selective destruction of 

neocytes. It is an adaptive physiologic process which controls red cell mass by 

initiating neocyte removal when the red cell mass becomes excessive for the 

environment. This is detected by a decrease in previously elevated levels of Epo 

(Alfrey and Fishbane, 2007). Fluctuating circulating Epo levels could cause the 

initiation of neocytolysis.  

 

5.4 Evaluation of study  

The methods used in the study were based upon those used previously (Macey et 

al., 2010; Holtom et al., 2012) but have been adapted for the analysis specifically of 

red cell microparticles. Measurement of microparticles has been performed by 

many groups but there is little method standardisation. Due to the heterogeneity of 

the populations it is difficult to compare methods used for microparticles derived 

from different cell types. The methods used are therefore not necessarily 

comparable to previous studies. From the preliminary experiments it was decided 

to use whole blood due to its physiological relevance which is in contrast to most 

other microparticle studies. A recent paper described the development of a method 

to measure microparticle populations in whole blood, however they only stained 

with annexin V and antibodies to tissue factor (TF), platelets (CD41 and CD62P), 

monocyte (CD14) and endothelial cells (CD144) (Christersson et al., 2013). This 

multicolour flow cytometry assay in whole blood mimics the in vivo situation by 

avoiding several procedure steps interfering with the MP count. The steps involved 

in producing the plasma, as used in many previous studies, may lead to the ex vivo 

stimulation of erythrocytes, falsely elevating microparticle levels. The majority of 

previous work has been carried out with platelet microparticles, using plasma, and 

there are now accepted recommendations relating to their analysis (Lacroix et al., 

2010).  

The study population used in this project also imposed limitations for data 

analysis. There were fewer patients available than ideally required due to the need 
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to analyse samples within 6 hours of venesection. Due to the small number of 

patients available it was not possible to analyse patients based upon comorbidity 

or drugs or cause of CKD. Splitting patients into smaller groups was also 

impractical and would have made any statistical analysis invalid and so there are 

many other possible reasons and correlations which will not have been detected in 

this study. Especially with the in vitro work this became an issue as the unexpected 

results could have been genuine or due to the individual patients who happened to 

be selected for this part of the study.  

Practicalities made the flow loop experiments challenging and certain aspects 

appear to have affected the results. The samples had to be taken on the dialysis 

unit at the Royal London Hospital and the flow loop equipment was all situated at 

the Royal Veterinary College, meaning transport was required between the two 

sites. The flow cytometer was also located at the Royal London Hospital meaning 

samples had to be transported back after the experiments. It is suspected that this 

transport, as well as the additional time it therefore took, affected the absolute 

numbers of red cell microparticles found in the samples, as this was considerably 

higher than the initial experiments. The use of human umbilical cords added 

further variability to the system, as the nature of the vascular endothelium could 

be altered dependent upon many factors.  

An important point to note with the results from Chapter 4 compared to those 

from the initial experiments in Chapter 3 is the change in absolute values of red 

cell microparticles found. They are increased, on average, around 50 fold. The 

reason for this increase is unclear; it could be related to the transport of the 

samples from the Royal London Hospital to the Royal Veterinary College and back 

again. The samples were kept on ice due to the increased transport time, but this 

could also have had an effect. The samples were not analysed within 6 hours of 

venepuncture as previously because of the length of time required for travel and 

processing. The microparticle numbers were shown to increase with time in 

Chapter 2, however the differences were not as great as seen here. The samples 

were also diluted in EDTA buffer prior to being added to the flow loop; this has an 

unknown effect. A small investigation was done into this; one control sample had 

an extra EDTA sample taken, half of which was left at the Royal London Hospital 

and half transported to the Royal Veterinary College, but not used for any 
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experimentation. The sample left at the Royal London gave a tenfold increase 

compared with the Chapter 3 baseline and that which was transported 

demonstrated similar results to the diluted samples not subjected to flow. This 

suggests a combination of the time delay and the agitation caused by transport of 

the samples led to the hugely increased microparticle counts. Transporting 

samples vertically has been shown to be beneficial in producing results as similar 

to in vitro as possible (Lacroix et al., 2011). Therefore the samples in this study 

were carried upright whilst travelling.  

The absolute numbers are also more similar in patients and controls for the 

baseline conditions which is dissimilar to the initial findings. This may just be due 

to the huge numbers of MP measured due to handling and time constraints 

outlined above. 

There have been issues raised over the use of annexin V for microparticle 

enumeration (Jy et al., 2004; Boulanger et al., 2006), because it has been shown 

that not all microparticles bind annexin V. Jimenez et al. (2003) reported that only 

a small proportion of microparticles bind annexin V and that relying only on 

annexin V for microparticle detection is likely to give inaccurate results. It is 

possible that a lack of annexin V binding may result from sub optimal binding 

conditions, the presence of inhibitors or insufficient PS exposure (Connor, 2007).  

In agreement with previous work (Jimenez et al., 2003; Jy et al., 2004) in this study 

it was also observed that not all red cell microparticles bind annexin V. Comparing 

the mean of all MP and mean annexin V+ events in this study found approximately 

a 100 fold difference. In populations <1µm approximately 2% of all MP are annexin 

V+, and in events >1µm this falls to 0.5%. Whether the “all MP” population truly 

represents just microparticles is uncertain, however there are clearly a proportion 

of microparticles which do not bind annexin V.  

Studies by Dasgupta et al. found lactadherin to be more sensitive than annexin V 

for detection of both erythrocytes and red cell microparticles (Dasgupta et al., 

2006). Albanyan et al. studied PS exposure in platelets and found that lactadherin 

is more sensitive than annexin V at detecting low levels of PS (Albanyan et al., 

2009).  They concluded that due to their small surface area, it is expected that MPs 

express a limited number of PS molecules that are below the binding threshold of 
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annexin V, suggesting that lactadherin is likely to be more sensitive at detecting PS 

exposing platelet MPs. It has been shown using synthetic membranes that 

lactadherin detects low levels of PS (0.5%) independently of 

phosphatidylethanolamine and calcium content (Shi et al., 2008; 2006; Waehrens 

et al., 2009). In contrast, annexin V binding was detected only when PS was 8 

percent and in the presence of 2 percent phosphatidylethanolamine (Shi et al., 

2006).  Furthermore, the actual binding properties of lactadherin and annexin V 

appear to be different because lactadherin, but not annexin V, preferentially binds 

to highly curved membranes (Shi et al., 2004).  

 

5.5 Recommendations for further research  

5.5.1 More erythropoietin resistant patients  

The results of this study suggest that Epo dose may have an effect upon eryptosis, 

but further investigation is required to confirm this.  

Due to the requirement for using only left over blood, this restricted the samples 

which could be collected. Recruiting more patients who are resistant to Epo would 

be of benefit in investigating the effect of Epo resistance upon microparticle 

production. 

Epo is speculated to have an impact upon eryptosis and recruitment of patients on 

a consistent dose of therapy would be beneficial to truly determine the effect. In 

this study the Epo dosage data was provided for that specific blood test date, 

however monthly reviews of Hb levels lead to regular review of Epo dose. As red 

cells generally exist in the circulation for 120 days the treatment for the last 3 

months could well affect the results, so controlling this would give more of an 

insight into the process involved.  

5.5.2 Improved methods for measuring phosphatidylserine exposure 

As discussed earlier the reliance of annexin V as a measure of PS exposure has 

been called into question (Horstman et al., 2004; Piccin et al., 2007). The flow 

cytometric analysis could therefore be repeated using lactadherin to ensure all PS 

exposure is detected.  
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Annexin V binding counts demonstrate the number of microparticles capable of 

binding annexin V and do not relate to the number of membrane site exposing PS.  

5.5.3 Other ways to measure eryptosis 

It is apparent that microparticles are a heterogeneous population (Jy et al., 1995; 

Abid Hussein et al., 2003; Freyssinet, 2003) and therefore vary in their size, 

protein composition and lipid content. Endothelial microparticles vary in their 

antigenic characteristics and PS exposure, which has been attributed to the 

mechanism by which they are generated (Abid Hussein et al., 2003). It is likely that 

a similar mechanism will apply to red cell microparticles. There is no standardised 

method to enumerate RCMPs by flow cytometry (Shah et al., 2008; Rubin et al., 

2008; Ayers et al., 2011; Xiong et al., 2012; Lacroix et al., 2012). Many previous 

studies do not use dual positivity to define microparticles, but instead analyse 

annexin V positive events separately (Faure et al., 2006; Trappenburg et al., 2012).  

Using strict definitions and flow cytometry may therefore not be the most effective 

way to determine eryptosis levels. Previous studies have used entirely different 

methods to measure eryptosis. This could be employed in conjunction with flow 

cytometry to give a more accurate picture of the process. Multiple studies have 

measured all of; cytosolic calcium activity (using Flou3 fluorescence), cell volume 

(forward scatter), phosphatidylserine exposure (annexin V binding) and ceramide 

formation (anti ceramide antibody) to determine eryptosis levels (Lang et al., 

2005; Niemoeller et al., 2006; Kempe et al., 2007; Kiedaisch et al., 2008; Ahmed et 

al., 2013).  

Flow cytometry was designed to measure events greater than 3µm in diameter and 

is therefore unable to detect the smallest microparticles, limiting its accuracy. It is 

also possible for multiple microparticles to pass through the aperture at once, 

leading to an underestimation of numbers and an overestimation of size. Also the 

binding of antibodies may be restricted in very small particles, as a limited surface 

area will inhibit available epitopes. Currently there are companies working 

towards developing new flow cytometry technology which can detect 

microparticles.  

There are other methods which may be employed to assess microparticles further, 

all of which have their own benefits and limitations.  
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Resistive pulse sensing is able to detect very small particles, and therefore the 

smallest microparticles which cannot be identified by flow cytometry. It is based 

on the technology developed by Coulter, that when a particle passes through a thin 

channel filled with aqueous electrolyte there is a change in the ionic resistance 

known as a resistive pulse (Coulter, 1953). This is valuable for identification of 

small particles, but has no phenotyping capabilities and so would require 

combination with a pre-sorting stage to separate RCMP from other cells and MPs 

(Willmott et al., 2012). 

Microparticles can also be detected using enzyme-linked immunosorbent assays 

(ELISAs), capturing them with immobilized annexin V or cell-specific antibodies (Jy 

et al., 2004). The MP are then quantified via measuring the concentration of 

negatively charged phospholipids. However this method does require that the MP 

expose PS on their surface and does not give information about the numbers of 

MPs (Enjeti et al., 2007).  

Atomic force microscopy (AFM) allows high-resolution topography imaging of 

particles with a resolution down to the subnanometer range. AFM has been used to 

detect CD41+ MPs, demonstrating 1000-fold more than with flow cytometry, the 

majority of which were below the size detection limits of conventional flow 

cytometry (Yuana et al., 2010). This could be valuable for assessing the smallest 

RCMP and achieving more accurate counts, however this technique is highly labour 

intensive. 

Proteomics has been used to characterise populations of MPs, including platelets 

and leukocyte derived MP from atherosclerotic plaques (Mayr et al., 2005; Garcia 

et al., 2009).  Garcia et al. found proteins characteristic of platelets as well as other 

proteins, suspected to be related to the formation of MPs (Garcia et al., 2005). This 

method requires purified preparations but would allow for detailed study of the 

protein characteristics of RCMPs.  

Nanoparticle tracking analysis (NTA) has been developed for direct real time 

visualisation and analysis of nanoparticles in liquids by relating the rate of 

Brownian motion to particle size. This technology has been combined with 

antibody-conjugated quantum dots to measure placental vesicles as small as 
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∼50nm (Dragovic et al., 2011). This combines the ability to identify small particles 

with phenotyping, providing benefits over flow cytometry.  

Varga et al. used five methods to determine the size distribution of erythrocyte 

derived extracellular vesicles (EVs) (Varga et al., 2014). These were small-angle X-

ray scattering (SAXS), size exclusion chromatography coupled with on-line 

dynamic light scattering detection (SEC-DLS), freeze fracture transmission electron 

microscopy (FF-TEM), nanoparticle tracking analysis (NTA) and resistive pulse 

sensing (RPS). They concluded that “coupling of SAXS to SEC may represent a 

promising way towards traceable size determination of EVs, which, together with 

the development of reliable reference materials with similar properties to EVs, 

may facilitate standardisation in the near future”. There is still some way to go to 

find a reliable and standardised method for the detection of RCMPs.  

5.5.4 General methodology improvements  

It appears that the transport of samples and the extra time involved in processing 

during the flow loop experiments had a significant impact upon the results. 

Therefore repeating these experiments with the flow loop equipment on the same 

site as the patients would be advantageous. It would also prove whether the huge 

increases in absolute microparticle numbers is related to the conditions in the 

model or simply the differing transport/storage/timings. Further investigations 

could also be carried out into the impact of transportation and time before analysis 

on RCMP production in patient samples.  

In order to draw meaningful conclusions this study should be continued with more 

HD and PD patients, a power calculation based on the data from this study would 

give an indication the numbers required. The ability to either recruit dependent 

upon certain factors or to have enough patients to split them into groups would 

allow for a much more effective analysis. There are a large number of 

comorbidities associated with CKD and therefore many drug options and the cause 

of the renal failure may also impact upon the disease progression.  

The measurement of CRP by current clinical methodology is only sensitive to 

5mg/L. This is adequate for routine analysis as this demonstrates whether the 

patient is within the normal range or not. However, recently high sensitivity CRP 

testing has demonstrated accuracy down to 0.3 mg/L (Pearson et al., 2003; Rudolf 
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and Lewandrowski, 2014). It has been used as a prognostic marker in cardiac 

disease, and may also be applicable for detecting early changes in CRP in CKD 

patients. Using this measure on the cohort from this study may give a more robust 

correlation with RCMPs.  

5.5.4 Measurement of cell age  

Using reticulocyte counts to determine cell age was inconclusive in this study, as all 

patients were within the reference range. A better measure of cell age would be 

useful in order to ascertain whether this impacts upon eryptosis. Possibly the red 

cells within the renal patients are generally younger than those in healthy controls 

and so cannot undergo eryptosis. It has been shown that susceptibility to eryptosis 

increases with erythrocyte age, at least partially due to increased sensitivity of 

oxidative stress (Ghashghaeinia et al., 2012). 

Most, but not all, techniques to estimate RBC survival require that a label be placed 

on the cells that can be followed while the RBC age in the circulation (Franco, 

2009). Determining the RBC life span in healthy populations and patients with 

disease states is restricted by the lack of a simple and reliable method. The 

technique most widely used is the random-labelling method in which RBCs are 

tagged with radioactive chromium (51Cr), such that disappearance of the 

radioactivity reflects loss of RBCs. This method provides data that often are 

confounded with other processes, such dissociation of 51Cr from the haemoglobin, 

and potential loss of 51Cr bound haemoglobin due to RBC vesiculation. The extent 

of elution varies depending on the labelling technique used. Consequently, 

methods used previously provide only relative RBC survival and the survival rate 

obtained is comparable to only other survival rates measured in the same study 

(Vos et al., 2011). 

As the red cell ages its density progressively increases therefore separation on the 

basis of age may be done by centrifugation through a density gradient (Danon and 

Marikovsky, 1964; Wilson and Peterson, 1988). Elutriation followed by a 

fractionation according to cell density using discontinuous Percoll gradients can 

also be carried out (Bosch et al., 1992). Comparison of the characteristics of the 

differing populations in both healthy people and CKD patients may give an insight 

into the process of eryptosis.  
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5.6 Conclusions  

This study has shown that erythrocytes in CKD patients appear to be less 

susceptible to eryptosis. The reasons for this are unclear. There could be a 

relationship between the process and Epo treatment or chronic inflammation. The 

age of erythrocytes in these patients may have an effect, or another process may be 

occurring to replace eryptosis.  

The hypothesis examined in this thesis needs to be tested further. The 

susceptibility of erythrocytes in CKD patients and controls to undergo eryptosis in 

response to inflammatory conditions, Epo and aging should be assessed using 

further methods.  

It has also become clear that the behaviour of populations of MP varies depending 

on the cell of origin, and the definition of MP which is used. Therefore use of the 

generalised term “microparticle” may not be relevant.  

Previous studies have demonstrated varying results, but also used a wide range of 

methods and employed inconsistent definitions of red cell microparticles. There is 

a requirement for standardisation of methodology and definitions. This thesis has 

provided a possible method that could be developed for use by other groups to 

further investigate red cell microparticles. Further validation and standardisation 

would be required to achieve this.   
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Appendix 1: Data tables 

Chapter 3 

Patient data 

ID Age Sex 
Dialysis 

modality 

Time on 
dialysis 
(days) 

Diabetes? Epo? Epo drug 
Mode 

of 
Admin 

Epo dose 
(equivalent 

mcg/wk) 
Hb eGFR Kt/V 

Serum 
albumin 

(g/L) 
CRP 

RCMP/µl 
<1µm* 

SD 

001 72 F PD 128 N Y 
Mircera (pre-filled 

syringe) 
SC 50 10.3 9.24 2.4 41 5 17400 1560 

002 25 F PD 100 N Y 
Darbepoetin 

(syringe)/Aranesp 
SC 30 7.7 3.7 2.53 37 1 48544 28949 

003 33 F HD 916 N Y 
NeoRecormon - 

syringe 
IV 30 12.3 3.81 1.05 47 1 8322 1588 

004 48 M HD 531 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 5 12.9 6.14 1.69 45 1 14733 12042 

005 27 F HD 737 Y Y 
Darbepoetin 

(syringe)/Aranesp 
IV 15 12.3 6.23 1.9 43 5 10311 1782 

006 34 M HD 1181 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 10 11.6 4.97 1.41 51 1 11856 84 

007 30 F HD 793 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 30 11.0 5.79 1.9 46 1 9689 1641 

008 77 M HD 921 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 30 12.0 8.62 1.8 43 5 2756 195 

009 71 M HD 558 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 40 10.6 8.7 1.57 41 15 9522 10770 

010 72 F HD 932 Y Y 
Darbepoetin 

(syringe)/Aranesp 
IV 80 11.8 4.81 2.34 46 1 7411 1036 

011 61 M PD 1408 N Y 
Darbepoetin 

(syringe)/Aranesp 
SC 20 11.4 9.16 1.77 39 1 8533 3979 

012 34 M HD 1370 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 50 11.7 4.88 1.47 46 24 9144 3458 
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ID Age Sex 
Dialysis 

modality 

Time on 
dialysis 
(days) 

Diabetes? Epo? Epo drug 
Mode 

of 
Admin 

Epo dose 
(equivalent 

mcg/wk) 
Hb eGFR Kt/V 

Serum 
albumin 

(g/L) 
CRP 

RCMP/µl 
<1µm* 

SD 

013 66 F HD 998 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 130 8.7 5.09 1.8 37 31 41611 1309 

014 79 F HD 448 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 60 10.9 6.51 1.77 36 9 24211 2269 

015 55 M PD 1012 N N 
None 

 
SC 0 11.5 5.07 1.75 39 1 7678 1022 

016 33 M HD 411 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 100 7.4 5.73 1.12 38 18 2267 233 

017 61 M PD 145 Y Y 
Darbepoetin 

(syringe)/Aranesp 
SC 15 12.8 8.24 2.35 43 1 13556 8298 

018 53 M PD 161 Y Y 
Darbepoetin 

(syringe)/Aranesp 
SC 20 12.4 8.66 1.61 38 1 7756 1202 

019 75 F PD 1914 Y Y 
NeoRecormon - 

syringe 
SC 15 10.8 8.17 2.12 42 5 7033 233 

020 68 M PD 553 N N 
None 

 
SC 0 12.7 13.59 3.46 36 1 4289 2135 

021 31 F PD 632 N Y 
Darbepoetin 

(syringe)/Aranesp 
SC 30 11.0 9.37 3.47 37 1 2656 280 

022 55 F PD 244 N Y 
Darbepoetin 

(syringe)/Aranesp 
SC 20 9.6 6.81 2.23 36 1 13511 5412 

023 78 M PD 1779 N Y 
NeoRecormon - 

syringe 
SC 10 11.4 5.52 1.88 41 5 5367 384 

024 75 M PD 279 N Y 
NeoRecormon - 

syringe 
SC 10 11.0 6.76 1.79 35 9 10756 5861 

025 40 M HD 112 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 40 9.2 5.51 0.83 43 5 4278 674 

026 74 M PD 423 Y Y 
Darbepoetin 

(syringe)/Aranesp 
SC 20 12.6 10.84 2.83 40 1 18656 20101 

027 69 M PD 548 Y Y 
Darbepoetin 

(syringe)/Aranesp 
SC 5 11.7 7.65 2.16 38 40 5389 482 

028 48 F PD 285 N N 
None 

 
SC 0 10.1 7.21 2.02 38 7 8644 1075 
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ID Age Sex 
Dialysis 

modality 

Time on 
dialysis 
(days) 

Diabetes? Epo? Epo drug 
Mode 

of 
Admin 

Epo dose 
(equivalent 

mcg/wk) 
Hb eGFR Kt/V 

Serum 
albumin 

(g/L) 
CRP 

RCMP/µl 
<1µm* 

SD 

029 58 F HD 1897 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 40 12.9 8.6 1.7 45 16 18211 5176 

030 35 F HD 3537 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 80 11.1 4.41 1.7 42 1 7900 862 

031 60 F PD 26 N Y 
Darbepoetin 

(syringe)/Aranesp 
SC 20 10.7 6.21 2.73 48 1 13922 832 

032 66 F PD 654 Y Y 
Mircera (pre-filled 

syringe) 
SC 80 11.2 5.48 1.71 42 5 21911 6236 

033 55 M PD 878 Y Y 
Darbepoetin 

(syringe)/Aranesp 
SC 40 12.5 8.44 2.23 42 17 20311 3351 

034 80 M PD 1977 N Y 
Darbepoetin 

(syringe)/Aranesp 
SC 20 15.2 7.21 2.01 39 1 15378 6767 

035 76 M HD 2206 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 150 7.7 10.79 2.47 29 64 36178 28627 

036 70 M HD 798 N Y 
NeoRecormon - 

syringe 
IV 30 9.6 7.08 1.24 41 6 28744 9297 

037 61 M HD 431 Y N 
None 

 
IV 0 11.5 9.59 1.01 39 46 10533 145 

038 72 F HD 809 Y Y 
Darbepoetin 

(syringe)/Aranesp 
IV 20 9.9 5.26 1.68 41 1 15156 3136 

039 74 M HD 2308 Y Y 
Darbepoetin 

(syringe)/Aranesp 
IV 10 11.6 5.73 1.63 45 1 9400 694 

040 66 M HD 978 Y Y 
Darbepoetin 

(syringe)/Aranesp 
IV 60 10.9 8.63 1.25 35 13 18467 7060 

041 83 F HD 2494 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 30 10.4 6.69 1.78 44 1 17367 5472 

042 75 M HD 1618 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 20 10.8 7.86 1.45 40 5 12611 2040 

043 58 F HD 1925 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 30 12.6 8.2 1.7 45 9 37000 28354 

044 50 M HD 763 Y Y 
NeoRecormon - 

syringe 
IV 75 10.2 4.55 1.37 46 6 40189 43707 
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ID Age Sex 
Dialysis 

modality 

Time on 
dialysis 
(days) 

Diabetes? Epo? Epo drug 
Mode 

of 
Admin 

Epo dose 
(equivalent 

mcg/wk) 
Hb eGFR Kt/V 

Serum 
albumin 

(g/L) 
CRP 

RCMP/µl 
<1µm* 

SD 

045 86 M HD 1367 N Y 
NeoRecormon - 

syringe 
IV 50 10.3 10.12 1.52 36 14 19189 10431 

046 46 F HD 134 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 20 11.7 6.94 1.63 40 1 25511 21959 

047 52 F HD 866 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 100 10.3 4.06 2.34 40 12 26933 11566 

048 67 M HD 1201 Y Y 
Darbepoetin 

(syringe)/Aranesp 
IV 80 10.7 10.97 1.7 40 25 18333 6954 

049 75 F HD 2060 Y Y 
Darbepoetin 

(syringe)/Aranesp 
IV 80 9.2 6.91 1.64 41 12 15322 2200 

050 59 M PD 527 N N 
None 

 
SC 0 13.2 12.73 2.76 37 1 12833 1206 

051 61 M PD 646 Y Y 
Darbepoetin 

(syringe)/Aranesp 
SC 25 10.0 6.6 1.73 34 1 16800 2411 

052 61 M HD 459 Y N 
None 

 
IV 0 11.1 8.28 1.01 37 116 20611 4802 

053 55 F HD 776 N Y 
NeoRecormon - 

syringe 
IV 30 11.0 29.73 2.21 33 37 13600 5916 

054 27 M PD 441 N Y 
Darbepoetin 

(syringe)/Aranesp 
SC 30 11.1 8.68 1.55 51 1 8322 782 

055 70 F PD 1152 Y Y 
NeoRecormon - 

syringe 
SC 15 11.6 10.37 2.18 38 5 7233 2174 

056 58 M HD 1595 Y Y 
Darbepoetin 

(syringe)/Aranesp 
IV 40 11.1 7.2 1.86 39 14 27833 10408 

057 75 M PD 683 Y N 
None 

 
SC 0 12.4 12.58 2.6 41 1 18133 10616 

058 56 F PD 987 N Y 
Mircera (pre-filled 

syringe) 
SC 15 11.7 8.99 2 40 1 15067 6073 

059 59 M PD 1577 Y Y 
Mircera (pre-filled 

syringe) 
SC 60 9.3 6.63 1.74 41 1 11956 1336 

060 51 F PD 532 Y Y 
Darbepoetin 

(syringe)/Aranesp 
SC 20 11.8 5.2 2.37 39 26 12311 1707 
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ID Age Sex 
Dialysis 

modality 

Time on 
dialysis 
(days) 

Diabetes? Epo? Epo drug 
Mode 

of 
Admin 

Epo dose 
(equivalent 

mcg/wk) 
Hb eGFR Kt/V 

Serum 
albumin 

(g/L) 
CRP 

RCMP/µl 
<1µm* 

SD 

061 69 M PD 218 Y Y 
Darbepoetin 

(syringe)/Aranesp 
SC 20 13.5 5.69 1.91 41 1 120711 7959 

062 67 M PD 288 N N 
None 

 
SC 0 10.0 8.51 2.4 38 1 11456 1628 

063 73 M PD 1014 N Y 
Darbepoetin 

(syringe)/Aranesp 
SC 10 11.1 9.03 2.54 38 1 14622 1884 

064 53 F PD 159 N Y 
Darbepoetin 

(syringe)/Aranesp 
SC 15 10.5 7.54 1.43 40 19 47967 819 

065 42 M PD 517 N N 
None 

 
SC 0 12.2 6.02 2.37 42 1 23567 6094 

066 75 M PD 1476 Y N 
None 

 
SC 0 9.0 8.01 1.84 30 39 19189 9307 

067 48 M HD 847 Y Y 
Darbepoetin 

(syringe)/Aranesp 
IV 60 9.7 4.94 1.37 45 1 29356 1309 

068 40 F PD 1465 N Y 
Darbepoetin 

(syringe)/Aranesp 
SC 50 12.3 3.02 3.18 36 1 18411 681 

069 52 M PD 752 Y Y 
Mircera (pre-filled 

syringe) 
SC 40 10.0 5.96 1.73 39 1 16056 1946 

070 44 F HD 1161 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 40 10.5 10.15 1.29 43 1 19489 3401 

071 53 M HD 1958 Y Y 
Darbepoetin 

(syringe)/Aranesp 
IV 40 12.8 5.24 1.42 44 1 31644 2533 

072 75 F HD 1436 Y Y 
Darbepoetin 

(syringe)/Aranesp 
IV 130 11.6 5.76 1.37 41 11 16944 1039 

073 68 F HD 558 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 40 9.3 5.85 1.05 40 7 13422 4665 

074 43 F HD 304 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 20 11.6 8.41 1.91 45 1 12522 1858 

075 54 M HD 4293 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 60 11.7 5.68 1.5 41 7 22533 2450 

076 45 M HD 388 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 80 12.7 5.92 1.48 45 8 52244 3039 
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ID Age Sex 
Dialysis 

modality 

Time on 
dialysis 
(days) 

Diabetes? Epo? Epo drug 
Mode 

of 
Admin 

Epo dose 
(equivalent 

mcg/wk) 
Hb eGFR Kt/V 

Serum 
albumin 

(g/L) 
CRP 

RCMP/µl 
<1µm* 

SD 

077 69 M HD 478 Y Y 
Darbepoetin 

(syringe)/Aranesp 
IV 40 13.2 8 1.23 38 6 23722 3415 

078 76 M HD 749 Y Y 
Darbepoetin 

(syringe)/Aranesp 
IV 40 13.9 3 1.43 45 6 23956 17302 

079 43 F HD 282 N Y 
Darbepoetin 

(syringe)/Aranesp 
IV 50 10.4 6.77 1.57 39 13 31122 3664 

080 57 F HD 2014 Y Y 
Darbepoetin 

(syringe)/Aranesp 
IV 30 11.7 7.21 2.03 43 1 23500 5467 

081 56 M HD 1140 Y N 
None 

 
IV 0 13.1 6.49 1.45 43 7 19167 4521 

082 52 F HD 494 Y Y 
Darbepoetin 

(syringe)/Aranesp 
IV 30 10.7 7.25 1.65 35 8 22867 1538 

083 81 M PD 2229 Y N 
None 

 
SC 0 9.0 6.71 1.47 35 5 11644 1578 

084 24 M HD 294 Y Y 
Darbepoetin 

(syringe)/Aranesp 
IV 100 10.6 7.04 1.83 43 1 17489 3430 

* These are the mean of the triplicate repeats for each subject, calculated from the absolute counts as described in the methods.  
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Control data 

ID  Age Sex Diabetic? Hb RCMP/µl <1µm* SD 
C01 

25 F 
N 

14.4 6744 3067 
C02 

32 F 
N 

14.1 15167 65 
C03 

39 M 
N 

15.6 33500 14700 
C04 

60 M 
N 

13.7 7789 71 
C05 

47 M 
N 

15.7 12867 1519 
C06 

42 M 
N 

15.4 17478 128 
C07 

58 M 
N 

14.9 21522 7809 
C08 

47 F 
N 

13.1 34989 122 
C09 

57 F 
N 

14.2 39789 11210 
C10 

58 F 
N 

13.9 12844 82 
C11 

60 F 
N 

13.1 19033 6365 
C12 

58 M 
N 

15.6 47378 204 
C13 

49 M 
N 

14.5 36833 6967 
C14 

54 M 
N 

16.8 248622 677 
C15 

44 F 
N 

14.4 21656 4752 
C16 

58 M 
N 

15.2 36833 382 
C17 

62 F 
N 

12.7 74622 13030 
C18 

63 M 
N 

15.0 87678 419 
C19 

44 M 
N 

15.1 11267 7499 
C20 

61 M 
N 

15.2 22478 107 

* These are the mean of the triplicate repeats for each subject, calculated from the absolute counts as described in the methods.  
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MP populations using different definitions 

ID 

MP/µl for each population* 

All Annexin V 
<1µl 

All Annexin V 
>1µl 

All Annexin 
V+ 

All Glyco A+ 
All Glyco A<1 

µl 
All Glyco 

A>1µl 
All MP All MP<1µl All MP>1µl 

Glyco A- 
Annexin V+ 

<1µl 

001 37044 14800 47789 112522 88022 72522 1142089 340778 801311 21989 

002 120256 75856 197422 121889 144711 73344 6880744 1541589 5339156 108456 

003 11111 9578 19989 66711 44222 28389 3295144 633333 2661811 5367 

004 34111 21722 33422 53089 38233 15089 2044578 203478 1841100 8511 

005 25044 12200 35656 44422 29833 13022 4679100 898589 3780511 16978 

006 20244 16789 32167 74922 48111 29589 1842833 234667 1608167 9311 

007 18389 10567 27567 78800 59722 24389 3026356 566567 2459789 11133 

008 3567 3544 7711 43322 20833 24400 2552978 543511 2009467 2233 

009 7256 6000 11078 48800 27589 20111 4172411 789367 3383044 3789 

010 10800 4644 15489 89144 62189 31100 1973978 308589 1665389 3867 

011 19011 19300 35300 144822 71878 73178 6569722 1129711 5440011 12244 

012 13933 11222 29100 115667 75756 39756 5730322 1527767 4202556 9189 

013 75011 36700 110078 127956 88067 45056 5990644 2221022 3769622 38400 

014 33256 19089 51844 123300 76467 55511 3822822 1361333 2461489 12811 

015 21267 20356 38744 74156 47111 33367 6572211 1813400 4758811 14978 

016 3644 3178 6889 74756 32600 28856 2649200 1011267 1637933 2689 

017 166378 69589 232700 137300 95189 48733 3447956 1143989 2303967 155633 

018 16378 12911 29433 64567 45422 23844 3392956 715722 2677233 10122 
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ID 

MP/µl for each population* 

All Annexin V 
<1µl 

All Annexin V 
>1µl 

All Annexin 
V+ 

All Glyco A+ 
All Glyco A<1 

µl 
All Glyco 

A>1µl 
All MP All MP<1µl All MP>1µl 

Glyco A- 
Annexin V+ 

<1µl 

019 15322 10622 23100 37233 27867 13556 4746944 1352200 3394744 9411 

020 12422 13656 25944 32967 18456 18744 4704489 1052667 3651822 9233 

021 4156 4900 8311 55233 27778 27578 4388233 1310511 3077722 5400 

022 11389 5411 16178 119767 96711 43900 5044289 1718211 3326078 7811 

023 11744 10567 36178 84367 35578 51200 4894233 1903022 2991211 12300 

024 26644 28578 57700 126144 92167 43900 9655367 3333600 6321767 19033 

025 5044 7289 13256 92622 59900 43867 5307822 1046411 4261411 6467 

026 21067 17511 37411 154033 83656 50333 4271633 2060511 2211122 20700 

027 8811 9533 19222 151611 102222 58056 4867000 1803122 3063878 5678 

028 25989 15011 32600 138333 95211 47622 9152156 4206622 4945533 15611 

029 40267 23889 67967 235500 129689 122500 5763433 2801678 2961756 26556 

030 15700 8822 22778 100278 78189 31578 6364178 3026822 3337356 8544 

031 50511 29822 65456 217144 136000 89744 11482911 6879389 4603522 37200 

032 51644 25878 72889 160300 105256 72589 7304111 2080856 5223256 42767 

033 49689 31589 78878 157144 120856 45400 5439733 1929356 3510378 63667 

034 42289 25422 61467 149289 110633 59767 6592867 1715267 4877600 33411 

035 88867 65922 144889 155233 115000 47889 5562244 1735222 3827022 66656 

036 54089 33300 80778 153300 90756 43533 3384800 1380367 2004433 36989 

037 21056 12800 25867 97856 52067 51544 2868856 995456 1873400 12022 

038 24344 13467 37433 154456 81389 81311 3504256 1513511 1990744 11544 
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ID 

MP/µl for each population* 

All Annexin V 
<1µl 

All Annexin V 
>1µl 

All Annexin 
V+ 

All Glyco A+ 
All Glyco A<1 

µl 
All Glyco 

A>1µl 
All MP All MP<1µl All MP>1µl 

Glyco A- 
Annexin V+ 

<1µl 

039 16622 8756 18778 40867 27700 18244 2463500 1161178 1302322 10644 

040 26689 14811 43400 116322 80756 45211 5340333 1915178 3425156 17667 

041 22967 13944 36556 63489 42156 19156 4330622 1510811 2819811 12667 

042 22022 12344 32211 53089 35478 25133 4486056 1702900 2783156 13122 

043 71800 35478 108222 144356 83700 50722 4774022 1860622 2913400 56967 

044 65100 24300 83678 103644 68556 36867 5064556 2268356 2796200 36722 

045 36322 15233 48911 135856 91900 46700 8069889 3489878 4580011 28467 

046 58589 23089 70100 158178 97711 62944 8666789 4192933 4473856 37500 

047 47744 27522 62778 107778 73522 42967 7988989 3288567 4700422 32400 

048 30611 12756 42878 113167 83611 39222 6480511 3165700 3314811 19956 

049 24422 10711 32289 121244 81456 49322 6536867 3258267 3278600 16811 

050 23178 23300 38156 147644 107589 50122 9287689 3623833 5663856 20189 

051 25867 9578 33656 96167 77000 23078 4851756 2130289 2721467 14133 

052 30033 15500 49256 187578 136100 62144 3180811 1082833 2097978 9778 

053 43111 16211 59267 119933 98500 24889 8819733 3353333 5466400 32244 

054 13367 3867 19433 97978 72956 27956 3973756 1692667 2281089 9689 

055 22400 9922 31856 233600 104567 79033 5015733 1493111 3522622 11444 

056 46100 14022 61456 156267 100222 59211 10039278 5052044 4987233 24644 

057 53911 18022 70467 119422 86511 33167 12242489 5540656 6701833 40522 

058 35656 9333 46411 108489 79533 29933 7360933 1589178 5771756 23956 
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ID 

MP/µl for each population* 

All Annexin V 
<1µl 

All Annexin V 
>1µl 

All Annexin 
V+ 

All Glyco A+ 
All Glyco A<1 

µl 
All Glyco 

A>1µl 
All MP All MP<1µl All MP>1µl 

Glyco A- 
Annexin V+ 

<1µl 

059 33833 11544 46244 103389 77611 25300 5038522 1140356 3898167 26356 

060 36378 13956 52467 105256 86333 21833 9737156 3098744 6638411 28944 

061 142256 21889 165856 309556  53944 7953078 2919589 5033489 35789 

062 47467 13067 58822 142678 97922 47156 11846811 5014967 6831844 36678 

063 15022 12233 60044 154222 125511 27311 9052689 3942356 5110333 10756 

064 90767 25522 114922 215344 151844 65189 11269267 4388178 6881089 48533 

065 50467 17300 65333 208844 145889 70033 9669056 4421111 5247944 39378 

066 41511 10622 44700 102156 94022 27978 6628900 3577878 3051022 26156 

067 90611 23400 131378 248867 154167 74511 10723911 4725911 5998000 81511 

068 66244 17256 58833 191356 136111 63333 5833100 2253878 3579222 52167 

069 57589 23267 74244 122133 98000 26844 4358200 1396922 2961278 46389 

070 60467 13744 59689 138978 117678 22733 5514678 1658844 3855833 44300 

071 71467 14656 78811 183633 144967 47367 5351122 1193322 4157800 39067 

072 45189 14489 71478 205467 138944 77944 4885533 1250633 3634900 39700 

073 44256 11289 58367 172244 122989 49800 7913322 2171011 5742311 38222 

074 48078 19100 56278 94467 75411 22489 6480922 1815456 4665467 37778 

075 58844 17656 75356 111956 80356 25033 5835944 1687467 4148478 41511 

076 109956 40911 139144 263978 167389 100122 6283656 2595544 3688111 84400 

077 50889 12278 69044 165411 134689 36522 5206344 2041111 3165233 44778 

078 61411 12244 83322 204778 154078 50033 5762422 149578 5612844 42800 
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ID 

MP/µl for each population* 

All Annexin V 
<1µl 

All Annexin V 
>1µl 

All Annexin 
V+ 

All Glyco A+ 
All Glyco A<1 

µl 
All Glyco 

A>1µl 
All MP All MP<1µl All MP>1µl 

Glyco A- 
Annexin V+ 

<1µl 

079 80211 19678 96089 127144 101489 24022 8688822 3782922 4905900 77022 

080 57822 16478 89956 209933 173956 44478 6743767 2143644 4600122 51189 

081 56000 15078 76611 197822 135033 61478 5288211 1810711 3477500 45233 

082 55400 19922 77744 102978 79089 27789 3389978 1567544 1822433 44633 

083 56933 19722 68556 66800 52078 15333 6615356 2098411 4516944 51211 

084 51678 18522 57667 173167 114000 45444 6596644 2959311 3637333 36522 

C01 18267 11300 26989 97844 104364 40367 12378844 6888678 5490167 10689 

C02 31167 11600 43578 113867 102465 35522 14514678 8349378 6165300 27267 

C03 34989 11578 43744 221500 100566 63644 10358867 5519978 4838889 23222 

C04 26933 14611 45944 227311 98668 51511 4779122 1197144 3581978 18100 

C05 65244 29511 93356 156700 96769 32511 5209044 949622 4259422 36167 

C06 64567 26933 96011 137133 94871 26744 6503778 1345833 5157944 35211 

C07 55689 21478 76133 251089 92972 82489 8971522 4188000 4783522 31333 

C08 20778 8833 28656 132267 91074 38378 7923356 4412756 6431844 16400 

C09 43544 18033 54744 163422 89175 41967 9822189 3603211 6218978 34233 

C10 32878 17033 53356 138022 87276 33267 9041000 3972733 5068267 24978 

C11 39533 15089 53100 226200 85378 63922 8305922 2696267 5609656 27967 

C12 79078 30011 134233 249122 83479 58533 7374522 2394911 4979611 53644 

C13 68711 14189 64044 212111 81581 63011 9261644 4122811 7735778 35689 

C14 373500 91511 467589 1508378 79682 123722 8895211 4101600 4793611 120567 
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ID 

MP/µl for each population* 

All Annexin V 
<1µl 

All Annexin V 
>1µl 

All Annexin 
V+ 

All Glyco A+ 
All Glyco A<1 

µl 
All Glyco 

A>1µl 
All MP All MP<1µl All MP>1µl 

Glyco A- 
Annexin V+ 

<1µl 

C15 40411 18722 69311 171567 77783 41456 5414989 1486922 3928067 37011 

C16 113144 29556 155467 349756 75885 91344 11409967 4860911 6549056 107456 

C17 178267 67567 249900 296956 73986 78322 14004067 4405744 9598322 125533 

C18 186411 58267 227533 357289 72088 84878 13337044 4043278 9293767 125900 

C19 25911 9722 29500 193678 70189 49244 10179100 4241511 5937589 19944 

C20 46344 19811 62300 141067 68290 38400 10009056 4367389 5641667 29411 

* These are the mean of the triplicate repeats for each subject, calculated from the absolute counts as described in the methods.  

MP populations using different definitions (cont.) 

ID 

MP/µl for each population* 

Glyco A- 
Annexin+ 

>1µl 

Glyco A+ 
Annexin- > 

1µl 

Glyco A+ 
Annexin V- 

<1µl 

All Glyco A+ 
Annexin V+ 

Glyco A+ 
Annexin V+ 

<1µl 

Glyco A+ 
Annexin V+ 

>1µl 

CD45+ 
AnnexinV+ 

>1 

CD45+ 
AnnexinV+ 

<1 

CD45+ 
AnnexinV- >1 

CD45+ 
AnnexinV- <1 

001 9967 287100 68611 31267 17400 13867 1233 3800 5233 7489 

002 68189 40867 50600 51433 48544 2889 2711 5800 11278 14578 

003 7556 25411 36811 11533 8322 3211 133 133 9911 1833 

004 10722 17767 24678 16922 14733 2189 56 200 4811 1111 

005 11167 12289 23956 11967 10311 1656 144 133 8356 1822 

006 12056 27700 38156 14622 11856 2767 178 167 12944 2344 

007 7722 8411 11122 12056 9689 2367 89 167 8822 1278 
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ID 

MP/µl for each population* 

Glyco A- 
Annexin+ 

>1µl 

Glyco A+ 
Annexin- > 

1µl 

Glyco A+ 
Annexin V- 

<1µl 

All Glyco A+ 
Annexin V+ 

Glyco A+ 
Annexin V+ 

<1µl 

Glyco A+ 
Annexin V+ 

>1µl 

CD45+ 
AnnexinV+ 

>1 

CD45+ 
AnnexinV+ 

<1 

CD45+ 
AnnexinV- >1 

CD45+ 
AnnexinV- <1 

008 3356 23556 18867 3256 2756 500 67 133 6811 1367 

009 5633 19167 28778 9767 9522 244 56 156 15000 1800 

010 7422 30456 58367 8111 7411 700 522 911 12222 5322 

011 15389 69089 65878 12800 8533 4267 267 389 24211 3156 

012 10800 38178 68511 11578 9144 2433 300 589 17000 4411 

013 9956 34533 47833 51722 41611 10111 711 667 22967 5167 

014 12144 48533 53789 30911 24211 6700 356 422 13211 3656 

015 18711 31700 39544 9300 7678 1622 133 400 12144 2478 

016 2811 28733 32122 2433 2267 167 56 211 3444 1211 

017 65911 71611 80044 16633 13556 3078 1667 1378 34378 5244 

018 11300 22367 39000 9622 7756 1867 156 400 13333 2556 

019 8867 11756 21033 8089 7033 1056 144 144 9733 1989 

020 13211 17122 12400 5856 4289 1567 78 122 10689 2100 

021 12700 27178 24478 4022 2656 1367 167 89 6989 1844 

022 3200 41444 67556 16022 13511 2511 78 211 16156 3600 

023 17189 49744 29000 7378 5367 2011 89 144 7644 3167 

024 27244 58278 80811 13433 10756 2678 322 233 17978 5033 

025 21322 42844 53978 5289 4278 1011 244 156 29733 2622 

026 14789 47278 88511 20989 18656 2333 100 189 7667 3178 

027 8367 55689 96044 6956 5389 1567 78 144 7911 3167 

028 11133 51411 88256 11278 8644 2633 22 33 1056 1333 
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ID 

MP/µl for each population* 

Glyco A- 
Annexin+ 

>1µl 

Glyco A+ 
Annexin- > 

1µl 

Glyco A+ 
Annexin V- 

<1µl 

All Glyco A+ 
Annexin V+ 

Glyco A+ 
Annexin V+ 

<1µl 

Glyco A+ 
Annexin V+ 

>1µl 

CD45+ 
AnnexinV+ 

>1 

CD45+ 
AnnexinV+ 

<1 

CD45+ 
AnnexinV- >1 

CD45+ 
AnnexinV- <1 

029 21700 110178 107433 25800 18211 7589 44 111 1811 2467 

030 8344 29922 70733 9989 7900 2089 11 67 978 1200 

031 24900 87022 123344 17333 13922 3411 122 89 3067 2678 

032 20200 66844 83378 26267 21911 4356 222 256 3422 3233 

033 33567 49867 100522 27344 20311 7033 111 133 1844 1878 

034 26600 54922 101367 17944 15378 2567 78 56 1367 1644 

035 70611 44600 82600 42256 36178 6078 311 533 2378 2133 

036 23444 48056 82778 43978 28744 15233 100 100 967 600 

037 8133 50622 42911 14833 10533 4300 56 89 1033 1656 

038 9122 82611 71167 19256 15156 4100 89 100 1356 1556 

039 9289 15456 23289 12289 9400 2889 56 56 978 1078 

040 13100 52678 65444 25178 18467 6711 111 144 1822 2144 

041 9878 14033 26644 25711 17367 8344 67 144 700 989 

042 8344 23578 24522 18167 12611 5556 56 78 989 1078 

043 29700 47189 55567 49889 37000 12889 156 244 2489 2789 

044 18022 39478 37789 51289 40189 11100 122 289 1244 1856 

045 16967 45856 74411 23178 19189 3989 44 100 1144 722 

046 21222 66822 72878 30333 25511 4822 100 211 2389 2400 

047 19189 37678 48322 34511 26933 7578 144 222 1733 1644 

048 12578 40978 64322 24656 18333 6322 56 167 833 911 

049 10467 47911 65300 20522 15322 5200 11 56 733 1144 
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ID 

MP/µl for each population* 

Glyco A- 
Annexin+ 

>1µl 

Glyco A+ 
Annexin- > 

1µl 

Glyco A+ 
Annexin V- 

<1µl 

All Glyco A+ 
Annexin V+ 

Glyco A+ 
Annexin V+ 

<1µl 

Glyco A+ 
Annexin V+ 

>1µl 

CD45+ 
AnnexinV+ 

>1 

CD45+ 
AnnexinV+ 

<1 

CD45+ 
AnnexinV- >1 

CD45+ 
AnnexinV- <1 

050 10056 43556 87367 15722 12833 2889 167 167 4411 1133 

051 6178 18567 58533 21522 16800 4722 122 222 1956 2778 

052 8800 55089 115900 29133 20611 8522 67 67 1189 1311 

053 12389 21822 87278 17367 13600 3767 0 22 2033 567 

054 4522 26256 64400 9944 8322 1622 11 22 411 844 

055 7767 74156 146156 10211 7233 2978 0 33 967 1111 

056 11978 58411 74522 32422 27833 4589 67 178 2467 2078 

057 19944 31556 69200 21800 18133 3667 44 144 2389 1189 

058 8644 29922 65578 16522 15067 1456 0 33 1622 1611 

059 13300 25089 66356 13800 11956 1844 33 22 2856 1133 

060 14511 24589 73878 13978 12311 1667 56 100 2200 1922 

061 17533 64444 129700 132133 120711 11422 33 122 2744 2322 

062 10444 31822 87311 13322 11456 1867 189 133 2444 2744 

063 6122 30144 118922 16056 14622 1433 722 156 1267 1100 

064 25078 59800 106244 56011 47967 8044 78 378 2233 2122 

065 17878 69244 124767 26678 23567 3111 67 78 2367 2511 

066 11222 25544 75778 22056 19189 2867 78 44 2022 2144 

067 21933 51189 124367 35211 29356 5856 133 122 2633 2711 

068 17789 68533 118144 23544 18411 5133 56 89 2256 3356 

069 20444 22300 83000 19733 16056 3678 22 100 911 2044 

070 13522 20311 97878 24400 19489 4911 200 300 1333 1978 
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ID 

MP/µl for each population* 

Glyco A- 
Annexin+ 

>1µl 

Glyco A+ 
Annexin- > 

1µl 

Glyco A+ 
Annexin V- 

<1µl 

All Glyco A+ 
Annexin V+ 

Glyco A+ 
Annexin V+ 

<1µl 

Glyco A+ 
Annexin V+ 

>1µl 

CD45+ 
AnnexinV+ 

>1 

CD45+ 
AnnexinV+ 

<1 

CD45+ 
AnnexinV- >1 

CD45+ 
AnnexinV- <1 

071 13611 41644 106667 39789 31644 8144 89 156 1867 2444 

072 13511 74756 122478 21700 16944 4756 56 189 1878 2733 

073 10967 47456 111211 16278 13422 2856 22 33 889 1244 

074 15444 21622 62522 15256 12522 2733 22 156 1511 2311 

075 14067 25144 60233 28811 22533 6278 111 267 2422 2200 

076 42533 97556 113600 60400 52244 8156 200 244 2267 3078 

077 10911 33700 109622 28567 23722 4844 22 144 1456 1589 

078 11111 51411 131400 27822 23956 3867 33 56 978 1267 

079 17344 23189 70244 38611 31122 7489 133 100 1033 844 

080 12422 41144 146278 28489 23500 4989 22 78 1233 1567 

081 12389 60300 117533 24389 19167 5222 22 22 1689 2311 

082 13633 21789 57867 30778 22867 7911 33 89 1533 2156 

083 15378 13100 41033 14744 11644 3100 44 78 1200 1189 

084 9000 42444 101967 30033 17489 12544 89 200 1044 1189 

C01 8400 39533 51433 9467 6744 2722 11 33 1078 1011 

C02 13100 30756 62389 20922 15167 5756 22 89 1367 1744 

C03 9789 62778 151356 36256 33500 2756 56 22 2656 2556 

C04 12822 52122 174478 12111 7789 4322 33 133 1633 2200 

C05 19667 26833 87100 27411 12867 14544 189 389 2911 3233 

C06 19100 19144 72733 29978 17478 12500 111 133 2911 1756 

C07 17911 74567 146022 30711 21522 9189 144 89 2278 2367 
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ID 

MP/µl for each population* 

Glyco A- 
Annexin+ 

>1µl 

Glyco A+ 
Annexin- > 

1µl 

Glyco A+ 
Annexin V- 

<1µl 

All Glyco A+ 
Annexin V+ 

Glyco A+ 
Annexin V+ 

<1µl 

Glyco A+ 
Annexin V+ 

>1µl 

CD45+ 
AnnexinV+ 

>1 

CD45+ 
AnnexinV+ 

<1 

CD45+ 
AnnexinV- >1 

CD45+ 
AnnexinV- <1 

C08 7778 39411 91911 36144 34989 1156 11 33 2544 3122 

C09 13500 40233 115811 43044 39789 3256 56 67 1300 1656 

C10 16067 28156 95044 17967 12844 5122 78 78 1022 1044 

C11 13056 58800 157867 25756 19033 6722 44 78 1311 1478 

C12 25733 48644 158089 62633 47378 15256 211 267 2344 2011 

C13 17233 40944 118111 52678 36833 15844 44 144 3956 1378 

C14 84167 114978 1156711 257733 248622 9111 811 689 3844 2556 

C15 16133 34744 113189 28367 21656 6711 111 189 1756 1289 

C16 22544 81033 221233 48811 36833 11978 100 111 1533 1400 

C17 47944 46122 144811 110756 74622 36133 144 244 2222 2189 

C18 34889 54200 189289 126378 87678 38700 167 144 3456 1833 

C19 10778 48400 143111 12778 11267 1511 89 67 1678 2833 

C20 15367 19667 85022 31089 22478 8611 33 100 1778 1844 

* These are the mean of the triplicate repeats for each subject, calculated from the absolute counts as described in the methods.  
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Chapter 4 

Patients/Control demongraphics 

ID Age Sex 
Dialysis 

modality 

Time on 
dialysis 
(days) 

Diabetes? Epo? Epo drug 
Mode 

of 
Admin 

Epo dose 
(equivalent 

mcg/wk) 
Hb eGFR Kt/V 

Serum 
albumin 

(g/L) 
CRP 

P01 77 M HD 943 N Y 
Darbepoetin 

(syringe)/Aranesp 
iv 30 11.0 8.63 1.7 45 5 

P02 43 F HD 341 N N - - - 12.3 8.51 1.76 41 1 

P03 56 M HD 1159 Y Y 
Darbepoetin 

(syringe)/Aranesp 
iv 20 12.4 6.51 1.43 44 8 

P04 48 M HD 571 N N - - - 12.0 6.19 1.71 46 1 

P05 33 F HD 938 N N - - - 9.7 3.79 1.02 42 1 

P06 67 F HD 
1914 

 
Y Y 

NeoRecormon - 
syringe 

iv 30 11.6 7.11 1.63 43 5 

C01 32 M - - N - - - - 14.6 - - - - 

C02 31 F - - N - - - - 12.8 - - - - 

C03 30 F - - N - - - - 13.5 - - - - 

C04 29 M - - N - - - - 14.1 - - - - 

C05 52 M - - N - - - - 13.8 - - - - 

C06 43 M - - N - - - - 14.3 - - - - 
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Patient RCMP/µl for each part of the in vitro model   

 RCMP/µl <1µm* (±SD) 
P01 P02 P03 P04 P05 P06 

No flow 536556 (±71064) 469444 (±46684) 573444 (±63600) 468889 (±51548) 226889 (±14416) 391222 (±19825) 

Flow alone 287222 (±35586) 60889 (±15763) 467222 (±68699) 179667 (±82289) 210222 (±33128) 452556 (±83060) 

Untreated EC 295444 (±111742) 424778 (±114135) 437556 (±61707) 194111 (±28253) 186667(±7937) 261111 (±58705) 

TNF 116000 (±48439) 201556 (±19004) 287556 (±111341) 514556 (±111277) 225444 (±49055) 504000 (±57159) 

* These are the mean of the triplicate repeats for each subject, calculated from the absolute counts as described in the methods.  

Control RCMP/µl for each part of the in vitro model   

 RCMP/µl <1µm* (±SD) 
C01 C02 C03 C04 C05 C06 

No flow 202333 (±75675) 349778 (±152698) 1413111 (±143133) 413556 (±69360) 295111 (±39363) 436333 (±57197) 

Flow alone 432222 (±34022) 687444 (±105550) 414111 (±146716) 567444 (±110976) 304778 (±9674) 532222 (±64633) 

Untreated EC 586333 (±33451) 1260667 (±205060) 795556 (±418967) 292000 (±103026) 414667 (±13642) 266333 (±44886) 

TNF 450111 (±47619) 1233000 (±358345) 259778 (±43656) 765556 (±58989) 761667 (±191087) 809778 (±44883) 

* These are the mean of the triplicate repeats for each subject, calculated from the absolute counts as described in the methods. 
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Appendix 2: Ethics approval documentation 

Protocol 

 

Full title of the research: Study of Eryptosis in Patients with Renal Disease 

Short title: Eryptosis in Renal Failure 

Chief Investigator: Prof Marion Macey, Department of Haematology 

Co-Investigators: Prof Magdi Yaqoob and Dr Stanley Fan, Renal Unit 

 

Summary of the study 

Historically, the cause for anaemia (low red cells in the blood) in patients with renal 

failure is thought to be because of reduced levels of a hormone called erythropoietin 

(Epo) that is produced in the kidneys.  

However, this would not explain several observations: 

 The doses of Epo used to treat patients with renal failure are much larger than 

"physiological" concentrations. 

 The mean dose of Epo required for patients on different dialysis modalities are 

different. 

We now know that red cells can undergo a process of programmed suicidal death 

(called eryptosis; analogous to a process called apoptosis but erythrocytes are devoid of 

nuclei and mitochondria). 

Very little is known about eryptosis in patients with renal failure. We would like to 

study the amount of eryptotic cells in patients with renal failure. 

Aims would include: 

 Does the degree of renal failure affect the concentration of eryptotic cells? 
(thereby exacerbating anaemia)? 
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 Does dialysis modality (Peritoneal Dialysis vs Haemodialysis) influence 
concentration of eryptotic cells? 

 Can we find factors that might be associated with the concentration of eryptotic 
cells (e.g. does the degree of inflammation or comorbidity affect this process)? 

Summary of main Ethical issues 

We regularly monitor patients with renal failure by blood tests. We have their signed 

consent allowing us to store left over samples for research. We also have their 

agreement that authorised members of staff who are not directly involved in their care 

may access their health records for research approved by a research ethics committee 

(refer to the end of this document for a copy of the consent form). We therefore do not 

intend to go back to the patients for permission to use their surplus blood. However, we 

shall seek consent from health volunteers for a control group (see information sheet 

and consent form). 

Primary Aim: 

Does the degree of renal failure affect the concentration of eryptotic cells? (thereby 

exacerbating anaemia)? 

Secondary Aims: 

Does dialysis modality (Peritoneal Dialysis vs Haemodialysis) influence concentration of 

eryptotic cells? 

Can we find factors that might be associated with the concentration of eryptotic cells (eg 

does the degree of inflammation or comorbidity affect this process)? 

What is the scientific justification for the research?  

At the moment, we treat the anaemia associated with renal failure by giving supra-

physiological doses of a hormone called EPO. There is some evidence that giving very 

high doses of this hormone is associated with morbidity and mortality (irrespective of 

the haemoglobin level). 
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If eryptosis plays a significant role in causing the anaemia that is associated with renal 

failure, then this would permit us to explore other ways of treating these patients. 

If we can find association between clinical factors and the amount of eryptotic cells in 

blood, this will give us a clue about the pathogenesis and drivers of this process. 

Methodology 

Flow cytometry for analysis of microparticle formation 

The immunolabelling and flow cytometric analysis of MP in whole blood will be 

performed as described previously (1, 2) using a Canto II flow cytometer (BD, Oxford 

UK) with Diva Software version 6.1. The instrument will be calibrated daily. The 

instrument will have a standard set up and be suitable for cellular analysis. 

 For the analysis of platelets and microparticles anticoagulated blood (50μl) will be 

labelled with fluorescent antibodies to cell surface proteins. 1.09μm latex beads  from a 

manufacturers stock solution (Sigma) diluted 1:1000 will be added to each sample to 

allow detection of particles less than and greater than 1μm. For enumeration 10μm 

AccuCount beads (from Spherotech, Glasgow UK) will be added to each sample after 

labelling. Samples will be diluted to 1 ml with filtered buffer solution and analysed 

immediately by flow cytometry as described previously (3, 4). Changes in the number of 

microparticles will be recorded relative to total gated microparticles. The number of 

microparticles per microlitre carrying cell surface molecules will be counted on at least 

10,000 microparticle events   

References 

1. Macey MG, Enniks N, Bevan S. Flow cytometric analysis of microparticle 
phenotype and their role in thrombin generation. Cytometry: Part B Clin Cytom. 2010; 

2. Macey MG, Wolf SI, Lawson C. Microparticle formation after exposure of blood to 
activated endothelium under flow. Cytometry A. 2010;77:761-8. 

3. Macey M, McCarthy D, Azam U, Milne T, Golledge P, Newland A. 
Ethylenediaminetetraacetic acid plus citrate-theophylline-adenosine-dipyridamole 
(edta-ctad): A novel anticoagulant for the flow cytometric assessment of platelet and 
neutrophil activation ex vivo in whole blood. Cytometry B Clin Cytom. 2003;51:30-40. 
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4. McCarthy DA, Macey MG, Allen PD. A simple, novel, procedure for monitoring 
membrane scrambling and permeability in microparticles, platelets, and leukocytes in 
whole blood samples. Exp Hematol. 2008;36:909-21. 

 

Study 1 

To determine stability of eryptotic cells in blood samples at room temperature.  

We shall use "fresh" surplus samples from patients that have consented. These samples 

shall be divided into aliquots that will be left at room temperature for varying duration. 

This will simulate the different times it might take for blood samples to reach the 

laboratory from different dialysis sites. We shall determine the variability in the 

concentration of eryptotic cells measured in the aliquots 

Study 2 

Depending on how stable eryptotic cells are in the blood samples, we shall measure the 

concentration of eryptotic cells in patients with renal failure. If eryptotic cells are stable, 

then we can use blood samples from patients that have consented even if they are 

collected at "satellite" haemodialysis units. Otherwise the study would be restricted to 

dialysis units that can arrange rapid transport of the surplus blood samples to the 

laboratory. 

We shall study the concentration of eryptotic cells in patients with chronic renal failure 

(not on dialysis) and patients on peritoneal dialysis and haemodialysis. 

Secondary analysis: We shall correlate the concentration of eryptotic cells with various 

biochemical and comorbidity factors (including but not restricted to: age, diabetic 

status, dialysis modality, level of renal function, serum CRP, serum albumin). 

Study numbers 

We have approximately 800 HD patients, 200 PD patients and 200 patients with severe 

chronic renal failure. We shall aim to use “left over” blood from 100 HD and 20 PD 

patients who have signed consent permitting “left over” blood to be used for research. 
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We shall also compare blood from the study groups against 20 normal controls (healthy 

volunteers within the hospital).  

Statistical analysis 

Unfortunately, because eryptosis has not been studied in this patient group, we are 

unable to perform a power calculation to determine the numbers we hope to recruit will 

be sufficient for either the primary or secondary analysis. In effect, this study is a pilot 

to help determine the size of future studies. 

Inclusion criteria 

All patients with renal failure who have given consent for their blood to be stored and 

used for research. We are particularly interested in patients who are EPO unresponsive 

and will target these patients until we have acquired 20 patients. Patients must also 

have given permission for their health records to be used by authorised members of 

staff who are not directly involved in their care for research approved by research 

ethics committee. 

Healthy volunteers will be consented if they are unknown to have any serious illnesses 

(in the opinion of the investigators). Their samples will be coded and include details of 

age and gender. No other identifiable details will be kept. 

Exclusion criteria 

Nil. This is a non-interventional, observational study using surplus blood 

How will potential participants, records or samples be identified? Who will carry 

this out and what resources will be used? 

Patients with Renal Disease: The renal database has a record of patients that have 

consented for their blood to be stored and used for approved research. When these 

patients have routine blood tests, the surplus blood is automatically flagged for storage. 

We shall use this surplus blood. The “clinical” sample result will allow us to identify 

suitable patients (eg EPO unresponsive or responsive patients). 
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Healthy volunteers: This will be recruited by word of mouth and using a poster asking 

for a 3mL blood sample (see poster). Information Sheet and Consent for the healthy 

volunteers are attached. 

Study Size 

We already have consent from almost 100 PD patients and we have 800 HD patients. 

We are in the process of obtaining consent (as part of standard clinical practice). We 

would hope to collect 100 surplus samples during the study period. We aim to collect 20 

healthy controls. 

Consent for future use of any specimens taken for pathology (potential research) 
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Healthy Volunteers Wanted 
 
 

Research into “Eryptosis in Patients with Renal 
failure” 

 

Prof Marion Macey, Prof Magdi Yaqoob and Dr Stanley Fan 
 
 
 
 

We wish to study the phenomenon of eryptosis (equivalent of apoptosis in 
red cells) in patients with renal failure. We wish to compare the amount of 

eryptotic cells in patients with renal failure with normal healthy 
volunteers. 

 
 

We require 3mLs of blood from 20 healthy volunteers. 
 
 

If you do not take any regular medication and do not have any serious 
medical illnesses, would you volunteer? 

 
 

We only want a single blood test. The sample will be anonymised 
immediately and your result will not be identifiable in any way. 

 
 
 
If you are agreeable, please contact: 
Prof Marion Macey: 
Professor of Haematology, BLT 
marion.macey@bartsandthelondon.nhs.uk 
Tel: 0203 246 0228 
 
Dr Stanley Fan: 
Consultant Nephrologist, BLT 
fan.stanley@bartsandthelondon.nhs.uk 
Tel: 020 7377 7480 or Extn 2861 
 

  

mailto:marion.macey@bartsandthelondon.nhs.uk
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Healthy Volunteer Information  

Eryptosis in Patients with Renal Failure 

Investigators: Prof Marion Macey, Prof Magdi Yaqoob and Dr Stanley Fan, Barts and The 

London NHS Trust   

You are being invited to take part in a research study.  Before you decide it is important 

for you to understand why the research is being done and what it will involve.  Please 

take time to read the following information carefully. Talk to others about the study if 

you wish.  

Part 1 tells you the purpose of this study and what will happen to you if you take part.   

Part 2 gives you more detailed information about the conduct of the study.  

Ask us if there is anything that is not clear or if you would like more information.  Take 

time to decide whether or not you wish to take part. 

Part 1 

What is the purpose of the study? 

Patients with renal failure have anaemia. Historically this is thought to be due to the 

lack of a hormone called Erythropoeitin (EPO) that is made by the kidneys. 

However, the dose of EPO that is required to maintain patients’ haemoglobin levels is 

much higher than expected. So there may be other reasons for patients having anaemia. 

Cells are known to undergo a process of programmed cell deaths. This is commonly 

known as apoptosis. Because red blood cells do not have nuclei, this process is called 

eryptosis. It has only been described very recently and we do not know if the rate of 

eryptosis is higher in renal failure patients. 

Research Study Question 

We would like to compare the concentration of eryptotic cells in patients with renal 

failure with normal healthy controls.  
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Why have I been chosen? 

We have invited you because we believe you do not have any serious illnesses and are 

not taking any medications. If you are, please let us know. 

Do I have to take part? 

No.  It is up to you to decide whether or not to take part.  If you do, you will be given this 

information sheet to keep and be asked to sign a consent form. You are still free to 

withdraw at any time and without giving a reason.  A decision to withdraw at any time, 

or a decision not to take part, will not affect the relationship you may have with anyone 

involved with this research project.  

What will happen to me if I take part? 

If you agree to take part, we will ask you to sign a consent form. We shall then take a 

3mL blood sample under sterile technique in a place and time of your convenience. 

Expenses and payments 

We do not think this study will cost you any money so we are not making any payments. 

What do I have to do? 

If you agree to this study, we shall ask that you confirm that: 

You are not pregnant (if applicable) 

You do not have any serious illnesses (if in doubt tell us of any illnesses) 

You are not taking any drugs 

Your details are not recorded anywhere. We shall only label your blood sample with a 

number, your age and gender. We shall not be able to match your blood or the results 

with you. 

What is the treatment that is being tested? 
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None. We want to know if the concentration of eryptotic cells are higher in patients with 

renal failure. 

What are the other possible disadvantages and risks of taking part? 

We think the risks of having 3mL blood sample taken are negligible. There may be 

temporary pain involved with the phlebotomy. 

What are the possible benefits of taking part? 

The study will not help you but the information we get might help improve the 

treatment of people with renal failure. 

What happens when the research study stops? 

At the end of the study, your blood sample will be discarded. 

What if there is a problem? Who can I contact? 

Any complaint about the way you have been dealt with during the study or any possible 

harm you might suffer will be addressed. The detailed information on this is given in 

Part 2.    

If you have any complaints or have any questions, please contact: 

Dr Stanley Fan or Prof Marion Macey. 

Tel: 020 7377 7480 (Direct Line to Dr Fan’s Secretary) 

Tel: 020 7377 7000 Extn: 14-60228 (Prof Macey) 

Alternatively, you can contact: 

Patient Advice and Liaison Service (PALS) 

Telephone: 020 7943 1335, Minicom: 020 7943 1350 

E-mail: pals@bartsandthelondon.nhs.uk 

 

mailto:pals@bartsandthelondon.nhs.uk
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Will my taking part in the study be kept confidential?  

All information which is collected about you during the course of the research will be 

kept strictly confidential.  If you consent to take part in the research the people 

conducting the study will abide by the Data Protection Act 1988, and the rights you have 

under this Act.   

All the information about your participation in this study will be kept confidential.  The 

details are included in Part 2.  

This completes Part 1 of the Information Sheet. 

If the information in Part 1 has interested you and you are considering 

participation, please continue to read the additional information in Part 2 before 

making any decision. 

Part 2  

What if relevant new information becomes available?   

Not applicable as your participation lasts only for the duration of the blood test. 

What will happen if I don’t want to carry on with the study? 

Not applicable as your participation lasts only for the duration of the blood test. 

What if there is a problem? 

If you have a concern about any aspect of this study, you should ask to speak with the 

researchers who will do their best to answer your questions.  If you remain unhappy 

and wish to complain formally, you can do this through the NHS Complaints Procedure.  

Details can be obtained from the hospital. 

Harm 
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In the event that something does go wrong and you are harmed during the research 

study there are no special compensation arrangements.  If you are harmed and this is 

due to someone’s negligence then you may have grounds for a legal action for 

compensation against Barts and The London, but you may have to pay your legal costs. 

The normal National Health Service complaints mechanisms will still be available to you 

(if appropriate). NHS Indemnity does not offer no-fault compensation i.e. for non-

negligent harm and NHS bodies are unable to agree in advance to pay compensation for 

non-negligent harm.  They are able to consider an ex-gratia payment in the case of a 

claim. 

Will my taking part in this study be kept confidential? 

All information which is collected about you during the course of the research will be 

kept strictly confidential.  If you consent to take part in the research the people 

conducting the study will abide by the Data Protection Act 1988, and the rights you have 

under this Act.   

Your blood sample will only be labelled with your age, gender and a study number. 

Details about you will not be kept (only the consent form will be kept). 

Involvement of the General Practitioner/Family doctor (GP)  

We will not inform your GP. 

What will happen to the results of the research study? 

We hope the results of our study will be important to all doctors looking after patients 

with renal failure. We will therefore publish the results and present the data at various 

meetings. However, at all times, your confidentiality will be protected. You will NOT be 

identified in any report/publication unless we ask you for specific permission. 

Who is organising and funding the research?   

Barts and The London is organising and running this study.  

Who has reviewed the study?  
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This study was given a favourable ethical opinion for conduct in the NHS by the East 

London and The City Research Ethics Committee. The detailed study has also been 

carefully considered by an independent internal research committee of the Renal Unit at 

BLT. 

You may wish to thank your participant for considering taking part or taking time 

to read this sheet. 
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Control consent form 
 
Centre Number:       Patient ID: 
 
Title of Project: Eryptosis in Patients with Renal Failure 
 
Name of Researcher: Prof M Macey  
 
Please initial boxes 
 
1. I confirm that I have read and understand the information sheet dated 1 April 

2011 (version 1) for the above study. I have had the opportunity to consider the 
information, ask questions and have had these answered satisfactorily. 

           
 
2.  I understand that my participation is voluntary and that I am free to withdraw at 

any time, without giving any reason, without my medical care or legal rights 
being affected.   

            
 
3.    I agree to take part in the above study.  
     
 
____________________________________________ ____________________________ ________________ 
Name of Patient    Signature   Date 
 
 
____________________________________________ ____________________________ ________________ 
Name of Person taking consent  Signature    Date 
 (if different from researcher) 
 
 
____________________________________________ ____________________________ ________________ 
Researcher     Signature    Date 
 
 
 
 
 


