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Exponential increase of transition 
rates in metastable systems driven 
by non‑Gaussian noise
Adrian Baule 1* & Peter Sollich 2,3

Noise‑induced escape from metastable states governs a plethora of transition phenomena in physics, 
chemistry, and biology. While the escape problem in the presence of thermal Gaussian noise has been 
well understood since the seminal works of Arrhenius and Kramers, many systems, in particular living 
ones, are effectively driven by non‑Gaussian noise for which the conventional theory does not apply. 
Here we present a theoretical framework based on path integrals that allows the calculation of both 
escape rates and optimal escape paths for a generic class of non‑Gaussian noises. We find that non‑
Gaussian noise always leads to more efficient escape and can enhance escape rates by many orders of 
magnitude compared with thermal noise, highlighting that away from equilibrium escape rates cannot 
be reliably modelled based on the traditional Arrhenius–Kramers result. Our analysis also identifies a 
new universality class of non‑Gaussian noises, for which escape paths are dominated by large jumps.

Activated transitions between metastable states govern a large variety of phenomena in the physical, chemical, 
and biological sciences, ranging from chemical reactions to nucleation, self-assembly, and protein  folding1–4. 
Following seminal works by Arrhenius, Eyring and Kramers, the description of transition rates has been well 
understood for systems at thermal equilibrium, for which the noise driving the transition is Gaussian: transition 
rates can be expressed in the generic form

where �V  is the energy barrier that has to be crossed, in line with the Arrhenius factor e−�V/T first derived 
in the context of reaction rate  theory5–7. The prefactor C depends on the dimensionality of the problem and is 
determined by the curvatures at the bottom and top of the potential  wells1,6,7. There is a remarkable variety of 
activated processes in equilibrium that have been shown to follow the Kramers result, with only the detailed form 
of C being model  dependent8. However, many systems in the real world are intrinsically out-of-equilibrium due 
to active processes that drive their mechanical and dynamical properties, e.g., in  biology9. As a result, the effective 
fluctuations can be non-Gaussian, such that escape events are not governed by Kramers’ result.

In this work, we show that Eq. (1) is in fact a special case of a much more general expression that governs the 
escape behaviour in generic out-of-equilibrium systems driven by memoryless non-Gaussian fluctuations. Such 
fluctuations are ubiquitous in nature and have been shown to arise, e.g., in the dynamics of the  cytoskeleton10, 
intracellular  transport11–13, and small tracer particles interacting with swimming  microorganisms14–17. They 
also occur in technologically relevant nanoscale systems such as strongly coupled  qubits18 and Josephson 
 junctions19–22, and are often used in phenomenological descriptions of macroscopic dynamics, e.g., for animal 
 foraging23,24, earthquake  tremors25, and financial  markets26. Memoryless non-Gaussian fluctuations are also 
implicit in many models of active matter, such as the widely studied run-and-tumble particles and other models, 
that exhibit, e.g., motility induced phase  transitions28,29. As we discuss below, these systems can also be treated 
within our approach.

We present a unified framework for such noise processes based on path-integrals where exact results for both 
the escape rate and the optimal escape path are obtained. In this approach the general form of the Kramers rate is 
recovered but with �V  replaced by an effective action that depends on both the detailed functional form of the 
potential and the noise parameters. We show that the effective action is, in fact, always lower than �V  for sym-
metric noise, highlighting that non-Gaussian noise generically leads to exponential speed-ups of transition rates. 
This speed-up can be dramatic, as we show for a realistic swimmer model, where transition rates are increased 
by 25 orders of magnitude compared with the Gaussian case. We also discover that escape processes driven by 

(1)r ≃ C e−�V/T ,
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non-Gaussian noise can exhibit large jumps in the most likely transition path, forming a separate universality 
class among such processes that is distinguished further by a non-Kramers form of the transition rate prefactor 
C, which we calculate explicitly. All our results are confirmed by numerical simulations.

Results
We consider the time evolution of a single degree of freedom q, e.g. the position of a particle in one dimension, 
under the influence of a conservative force with potential V as well as noise ξ,

In Eq. (2), we assume that all quantities are dimensionless, see “Methods A: Dimensionless equation of 
motion”. Metastability occurs when V(q) exhibits two or more sufficiently deep potential wells such that the par-
ticle is mostly confined to the bottom of one of the wells, with rare escape events to neighbouring wells induced 
by the  noise1. We study the rates for such escape events, in a framework that can be extended to systems with 
many degrees of freedom and non-conservative forces (which, for the Gaussian case, have been studied  in30). Key 
to our setup is that ξ(t) contains not only the conventional (Langevin) Gaussian white noise, but an additional 
non-Gaussian contribution that breaks detailed balance:

We take the latter as essentially the most general memoryless form of noise. This is Poissonian shot noise, 
which consists of a series of discrete ‘kicks’ arriving at rate �0:

Here the times tj come from a Poisson process with rate �0 , so that the total number Nt of kicks within a time 
interval [0, t] follows a Poisson distribution with mean �0t . Each kick size (amplitude) Aj is drawn independently 
from a fixed distribution with mean value 〈A〉 . In Eq. (4), we subtract the resulting mean value of the shot noise 
such that �ξNG(t)� = 0 for any distribution of kick sizes.

While models of the form Eqs. (2)–(4) have been used on phenomenological grounds to model a large variety 
of processes in the sciences, recent work has also shown that the memoryless (or white) non-Gaussian noise of 
Eq. (4) arises as the result of systematic coarse-graining procedures in interacting particle systems. For example, 
in athermal granular systems coupled with a thermal reservoir, a system-size expansion shows that to leading 
order correlations with the environment can be neglected and white non-Gaussian fluctuations persist in addition 
to thermal Gaussian white  noise31,32. Moreover, the dynamics of a passive tracer interacting with active particles in 
suspension can be shown to universally reduce to a process with Poisson statistics at low  densities33. Memoryless 
non-Gaussian fluctuations then arise in the long-time regime and are manifest, e.g., in the non-Gaussian features 
of the tracer’s displacement  distribution17, see also section “Comparison with simulations” below.

In order to investigate the dynamics of Eq. (2), we exploit the fact that the noise properties are captured by 
the cumulant generator (see “Methods B: Large deviation form of the path probability for non-Gaussian noise”)

where φ is a moment generator defined as

The term D0
2 (ig)2 in Eq. (5) represents the Gaussian white noise contribution, of variance D0 , while the 

second term �0φ(iga0) comes from the non-Gaussian kicks. We write the distribution of their amplitudes A as 
ρ(A/a0)/a0 , where the parameter a0 sets the characteristic amplitude scale and ρ(x) is a baseline distribution. 
The amplitude scale of the distribution ρ(x) can then be fixed, which we do by imposing 

∫

dx x2ρ(x) = 1 . All 
noise statistics can be obtained from Eq. (5), e.g. �ξ(t)ξ(t ′)� = (D0 + �0a

2
0)δ(t − t ′) . Eq. (5) is in fact the most 

general form of the cumulant generator for a (zero mean) noise process ξ that is stationary and uncorrelated in 
time. This is also known as Lévy noise, and defined technically as the derivative of a process with independent 
stationary  increments26. Our only restriction on this is the finiteness of 

∫

dx x2ρ(x) , to allow us to assign a scale 
to the noise variance. In this form the setting also covers cases where ρ is not normalizable, e.g. when it has a 
power law divergence ρ(x) ∝ |x|−α−1 for small x34 with 0 < α < 2 . We focus in the following on symmetric 
noise with ρ(x) = ρ(−x) . Our analysis will show that escape properties depend crucially on the form of ρ ; in fact 
we will be able to classify amplitude distributions ρ into three different types A, B and C as illustrated in Fig. 1. 
Broadly speaking, type A encompasses all noise distributions ρ(x) with tails that—like e.g. Gaussians—decay 
faster than any linear exponential. Noise distributions of types B and C both have tails that are to leading order 
exponential, causing singularities in the moment generator φ(k) at finite k. The further distinction between them 
relies on whether, once the leading exponential decay factor has been removed, the distributions have integrals 
that diverge or converge for x → ∞.

Equations (2)–(6) unify the description of non-Gaussian noise-induced activation studied previously, both 
analytically and numerically, for a range of special cases such as kicks with exponentially  distributed35–41 or 
constant  amplitudes42–44, and Lévy  flights45–52. We also include in our considerations the form of φ obtained by 

(2)q̇(t) = −V ′(q)+ ξ(t)

(3)ξ(t) = ξG(t)+ ξNG(t).

(4)ξNG(t) =

Nt
∑

j=1

Ajδ(t − tj)− �0t �A� .

(5)ln
〈

ei
∫ t
0 ds ξ(s)g(s)

〉

=

∫ t

0
ds

[

D0

2
(ig)2 + �0φ(iga0)

]

,

(6)φ(u) =

∫

dx ρ(x)
(

eux − ux − 1
)
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expanding to the first non-Gaussian order (cubic in general, quartic in our symmetric case). This widely used 
approximation scheme corresponds to artificially setting to zero all higher cumulants of the noise amplitude 
 distribution19–22,44,53 and we will see that it can lead to qualitatively incorrect predictions. Our framework will also 
allow us to recover rigorous mathematical results on the dominant scaling of the escape rate for non-Gaussian 
noise for a specific weak-noise  regime54,55.

Path‑integral framework. Our analysis of non-Gaussian escape rates is based on a path integral frame-
work. As in the seminal Kramers escape rate calculation for Gaussian noise, we will consider a weak-noise 
regime. Fluctuations around the most likely escape path from one metastable state to another are then small and 
the typical path can be obtained by minimizing a stochastic action S[q] w.r.t. to paths q(s). The key technical steps 
in extending this approach to the non-Gaussian case with cumulant generator given by Eq. (5) are (see “Methods 
B: Large deviation form of the path probability for non-Gaussian noise”): (1) Following the Martin–Siggia–Rose 
formalism, the transition probability of the escape process is expressed as an integral over paths q(s), g(s), where 
g is an auxiliary field conjugate to the noise. (2) We rescale the noise parameters by a dimensionless scaling 
parameter ǫ as

The variance of the noise ξ is then D0 + �0a
2
0 = (D + �a2)ǫ ∝ ǫ so that the weak noise limit is ǫ → 0 . While 

Eq. (7) may appear somewhat specific, it represents in fact a generic weak-noise regime that preserves all details 
of the non-Gaussian noise distribution ρ for small ǫ , not just the leading non-Gaussian cumulants as considered 
 in19–22,44 (see the discussion in “Rescaling the noise parameters”). We also emphasize that our final results can be 
converted back into expressions in terms of the original noise parameters D0, �0, a0 or into another weak-noise 
regime, see section “Special cases”, highlighting the generality of our approach.

(3) The auxiliary field g can be integrated out by a saddle-point method for ǫ → 0 . The net result for the path 
probability takes the large-deviation form

with the Onsager–Machlup-like Lagrangian L written only in terms of the physical paths q(s). We find that L(·) 
is given by the Legendre transform L(f ) = maxk[kf − ψ(k)] of

One can check that this result remains valid even when φ has singularities on the real axis; the maximum then 
has to be taken over the non-singular range. In the example cases shown in Fig. 1 such singularities occur for 
the exponential and Gamma noise amplitude distributions, which are of type B and C, respectively. In contrast, 
distributions with tails decaying faster than exponentially (type A) do not produce singularities in φ ; see the 
constant modulus example in Fig. 1. We note for later that φ is convex and therefore so are ψ and the Lagrangian 
L as its Legendre transform. For our symmetric noise distributions, all three functions are also symmetric and 
thus have their global minimum at vanishing argument. The symmetry further ensures that all odd moments of 
x vanish while the even ones are positive, which from Eq. (6) implies the lower bound φ(u) ≥ u2/2 and hence 
a similar bound ψ(k) ≥ (D + �a2)k2/2.

Effective action. Let us now consider escape from a metastable state qa , located at the minimum of the 
metastable basin of V, across the top of the nearest potential barrier at qb > qa . For Gaussian noise, the path 

(7)D0 = D ǫ, �0 = �/ǫ, a0 = a ǫ

(8)P[q] ∝ e−
∫ t
0 dsL(q̇+V ′(q))/ǫ ,

(9)ψ(k) = Dk2/2+ �φ(ak).

Figure 1.  We classify amplitude distributions ρ into three types according to their moment generator φ . Type 
A: φ is unbounded without singularities. Type B: φ diverges upon approaching two singularities, taken as lying 
at ±1 . Type C: φ is bounded with singularities at ±1 in higher derivatives. Examples for each type are given, 
normalized as 

∫

dx x2ρ(x) = 1 . For the Gamma distribution we assume 0 < α < 2 and show the cases α = 0.6 
(solid line) and α = 1.6 (dashed).
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integral solution of this  problem58–60 is analogous to the quantum mechanical tunneling problem treated in a 
semiclassical  approximation61 and gives the dominant scaling of the escape rate r for small ǫ as r ∼= C e−Smin/ǫ . 
In our general non-Gaussian case the equivalent form can be deduced from the theory of large  deviations62 for 
ǫ → 0 with the effective energy barrier given by the minimum action

The minimum is over all paths with q(0) = qa , q(t) = qb , and the resulting optimal path (also called ‘instan-
ton’ or ‘excitation path’) gives the typical escape trajectory for small ǫ . To make progress in determining Smin , 
one can think of any q(s) as a path in the (q, v)-plane, with v = q̇ . Then the action reads 

∫

dqL(v + V ′(q))/|v| 
and for each q we can find v = q̇ simply as the minimum of L(v + V ′(q))/|v| . We do not need to enforce the 
total time constraint t =

∫

dq/|v| as the minimal action path is obtained for t → ∞ , which is automatically 
fulfilled since the integral for t diverges at both ends for paths between stationary points of V. The trivial global 
minimum is v = −V ′(q) , which describes deterministic relaxation. For an excitation from qa to qb > qa , on 
the other hand, we have V ′ > 0 and need v > 0 . If – and this is an important restriction as we will show—the 
minimum of L(v + V ′(q))/v occurs at finite v, it obeys L(v + V ′(q)) = vL′(v + V ′(q)) . This condition, together 
with the fact that L is the Legendre transform of ψ , i.e., L′(f ) = k∗ with k∗ = argmaxk[kf − ψ(k)] yields for the 
minimum action the simple result

where k∗(V ′) is determined from

This expression is just our minimum condition L(f ) = vk∗ rewritten using L(f ) = k∗f − ψ(k∗) and 
f = v + V ′ . The inverse Legendre transform relation ψ ′(k∗) = f  yields further

Together with Eq. (12) this defines a velocity function q̇ = �(V ′(q)) that characterizes the shape of the 
instanton.

By comparing Eq. (11) with the classical mechanics result ∂S/∂q = p one sees that our k∗ plays exactly the role 
of momentum, while the minimization condition k∗V ′(q) = ψ(k∗) corresponds to the well-known condition 
that the Hamiltonian H = k∗q̇− L = −k∗V ′(q)+ ψ(k∗) must vanish on minimum action paths of duration 
t → ∞41,42. However, we will discover below that minimal action paths can in certain cases contain jumps, in 
which case the criterion H = 0 ceases to be applicable because q̇ becomes undefined. Our approach of minimiz-
ing L(v + V ′(q))/|v| will continue to be valid, on the other hand.

Gaussian vs non‑Gaussian escape. Analysing the effective energy barrier Smin for arbitrary non-Gauss-
ian noise types yields striking differences with the Gaussian case summarized as follows: (i) On replacing a 
Gaussian noise by a non-Gaussian one of the same variance, the escape rate always increases, i.e. non-Gaussian 
noise is at least as efficient as Gaussian noise: Smin < 2�V/(D + �a2) ≡ SG for any distribution of type A, B or 
C, see Fig. 2a,b. The reference value SG here is the activation barrier that results when the non-Gaussian noise is 
replaced by Gaussian noise of the same variance, corresponding to the truncation of the Taylor expansion of φ(k) 
after the quadratic term. Because Smin enters the escape rate as exp(−Smin/ǫ) , non-Gaussian noise thus offers 
exponential speed-ups. (ii) Remarkably, for amplitude distributions of types B and C even noise of infinitesimal 
intensity � → 0 yields a value of Smin considerably smaller than SG , indicating a singular limit. (iii) Optimal 
escape paths have the characteristic instanton shape, with the particle moving rapidly from the initial minimum 
to the transition state at the top of the barrier, but the shape varies with φ . This contrasts with the Gaussian noise 
case, where excitation paths are, in the situation we consider, simply the time-reverse of deterministic relaxation 
paths (Fig. 2). In d = 1 it is sufficient for the noise to be additive, as we assume, for this statement to hold. In 
higher dimensions it holds e.g. when the noise is additive and isotropic and the force is derived from a poten-
tial. (iv) For type C amplitude distributions we identify an entire region in the (a, �) parameter plane where the 
escape paths contain a discontinuous jump (Fig. 2). Note that the behaviours (ii) and (iv) cannot be reproduced 
with any cumulant truncation, as this effectively produces a type A form of φ(k).

We proceed to explain all of these observations on the basis of the properties of the noise amplitude 
moment generator φ . Firstly we saw above that ψ(k) ≥ (D + �a2)k2/2 , which implies from Eq. (12) that 
k∗ ≤ 2V ′/(D + �a2) . With Eq. (11) the reduction (i) of the effective barrier, Smin < SG , follows directly.

To analyse the limit of small � we consider the solutions of Eq. (12), which using Eq. (9) can be cast in the form

Rewriting further one can show that in order to see strongly non-Gaussian behaviour the noise ampli-
tude has to lie in the range 1 ≪ a ≪ 1/� (see “Methods C: Analysis of the escape behaviour”), which in turn 
requires � ≪ 1 . Considering accordingly � → 0 for fixed a , the last term in Eq. (14) disappears, suggesting 
that k∗ = 2V ′/D , which yields Gaussian behaviour. This argument always works for amplitudes of type A, 
while for type B it only holds if k∗ = 2V ′/D remains smaller than the singularity in φ(ak) at 1/a , i.e., when 

(10)Smin = lim
t→∞

min
[q]

∫ t

0
dsL(q̇+ V ′(q)).

(11)Smin =

∫ qb

qa

dq k∗(V ′(q)),

(12)V ′(q) =ψ(k∗)/k∗.

(13)v = q̇ = ψ ′(k∗)− V ′(q).

(14)V ′(q) =
D

2
k∗ + �

φ(ak∗)

k∗
.
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2V ′/D < 1/a . If instead 2V ′/D > 1/a , the solution of Eq. (14) approaches k∗ = 1/a for � → 0 , since φ(ak) 
diverges for k → 1/a and the last term in Eq. (14) eventually becomes dominant. Overall, one therefore obtains 
k∗(V ′) → min(2V ′/D, 1/a) and the effective energy barrier Smin → S0 where from Eq. (11)

The value S0 that is approached as � → 0 lies below SG for 1/a < 2maxq V
′(q)/D , making the limit discontinu-

ous (see Fig. 2). The discontinuity is possible as we have implicitly taken the limit ǫ → 0 , where the unscaled rate 
�0 is large for any � > 0 from Eq. (7). Since for type B noise φ′(ak) and thus ψ ′(k) diverge for k → 1/a , Eq. (13) 
tells us that the velocity v becomes very large on the sections of the instanton with 1/a < 2V ′/D , so that the 
path in that region becomes closer and closer to a discontinuous jump as � decreases. On the other hand, on the 
sections with 1/a > 2V ′/D , Eq. (13) yields the Gaussian shape.

Remarkably, for type C, the boundedness of φ implies that Eq. (14) will not have a solution when V ′ lies above 
a threshold V ′

th = maxk ψ(k)/k = D/(2a)+ �aφ(1) . This condition is met on at least part of the instanton when 
� < �th = [maxq V

′(q)− D/(2a)]/[aφ(1)] . In the range of q where V ′(q) > V ′
th our approach shows its key 

benefit over the standard Euler-Lagrange equations or the criterion H = 0 , neither of which have solutions in 
this regime because q̇ becomes undefined: one can check here that L(v + V ′(q))/v is monotonically decreasing 
for v > 0 , reaching the limit 1/a for v → ∞ : the optimal velocity is infinite, �(V ′(q)) = ∞ . This implies that 
there must be a jump in the optimal path whenever � < �th . To the action this jump contributes 

∫

dq/a = �q/a 
where the integral covers the relevant q-range and gives the length �q of the jump. The contribution of the rest of 
the path has to be found by solving Eqs. (12) and (13) as before, which produces the Gaussian shape for � ≪ 1 . 
The condition � < �th maps out a dynamical phase diagram in the (a, �) plane separating jump and no-jump 
escape behaviours (see Fig. 2c).

Since the threshold V ′
th → D/(2a) for � ≪ 1 , the escape behaviour for noise amplitude distributions of type 

B and C becomes identical in this regime: the instanton consist of initial and final segments of time-reversed 
relaxations, connected by a jump, and the resulting action is S0 , Eq. (15). We remark that the class of amplitude 
distributions with this property can be characterized generally as distributions with exponentially decaying 
tails, i.e. of the form ρ(x) = c(x)e−|x| , with limx→±∞ ln(c(x))/x = 0 . These two conditions are sufficient for 
the existence of a singularity in φ(u) at u = 1 , see Eq. (6). Jump instantons at finite � as in type C appear when, 
in addition, the condition 

∫∞
1 dx c(x) < ∞ is satisfied, since then φ(1) is finite.

Special cases. Our general solution in Eqs.  (11)–(13) reproduces existing results in the literature for 
specific amplitude distributions. As a sanity check, we find in the Gaussian case ( � = 0 ) ψ(k) = Dk2/2 ; thus 
k∗ = 2V ′/D , which with Eq. (11) and the Einstein relation Dǫ = D0 = 2T recovers the van’t Hoff–Arrhenius 
scaling ∼ e−�V/T of the escape rate. The instanton obeys q̇ = V ′(q) from Eq. (13), which as expected for Gauss-
ian noise is the time reverse of a noise-free deterministic relaxation  path58–60. For escape driven by one-sided 
exponentially distributed amplitudes without a Gaussian component, we have φ(u) = u2/(2(1− u)) and solv-
ing Eq. (12) for k∗ yields k∗ = 2V ′/(�a2 + 2aV ′) as obtained  in35,36,39. We likewise recover analytical results for 
the effective action derived for one-sided constant and two-sided exponentially distributed  amplitudes41,42, see 
“Methods C: Analysis of the escape behaviour”.

(15)S0 =

∫ qb

qa

dqmin(2V ′(q)/D, 1/a)

Figure 2.  (a) The normalized action Snorm = Smin/SG for the different φ of Fig. 1 ( a = 10 , α = 0.8 , b = 1/2 , 
D = 1 ) and the potential V(q) = q4/4− q2/2 . Noise amplitude distributions of type A ( φconst,φtrunc ) recover 
the Gaussian value Snorm = 1 as � → 0 . For type B and C amplitudes ( φexp,φα ), Snorm decreases monotonically 
as � → 0 and converges to a nontrivial limit S0 , Eq. (15). The action for φα corresponds to an escape path with 
a discontinuous jump when � < �th (red dashed line). (b) Instanton escape paths for the different φ showing 
a rapid motion from the initial minimum to the barrier; for φα the instanton has a jump section. Colors, 
potential, and parameters as in (a) (apart from α = 1.2 and � = 0.01 ). For non-Gaussian noise the time-reversal 
symmetry between excitation and relaxation paths is broken, seen here by the difference with the slower � = 0 
instanton of the Gaussian dynamics (dotted line). Inset: Mean path sampled numerically from the path weight 
for ǫ = 0.01 compared with theory for φα , confirming the jump. (c, d) Colour maps of Snorm for (c) φα with 
α = 0.8 and (d) φconst . The dashed line is the phase boundary �th(a) separating regions with smooth ( � ≥ �th ) 
and jump ( � < �th ) instantons.
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Rigorous mathematical results for the escape rates of Eqs. (2)–(6) have been obtained  in54,55 for a different 
scaling regime of the noise parameters. Remarkably, our large deviation approach is able to recover these results 
for those amplitude distributions for which φ from Eq. (6) is well-defined. Instead of Eq. (7), the parameter 
scaling adopted  in54,55 is given by

which leads to a weak-noise regime with a constant rate of non-Gaussian noise kicks and intensity 
D0 + �0a

2
0 = ǫ2 . We can retrieve this scaling by setting D = � = ǫ′ and a = 1 after the rescaling in Eq. (7) that 

leads to the large deviation form of the action. We then take ǫ′ as small and identify ǫ′ = ǫ at the end. Now for 
ǫ′ ≪ 1 the solutions of Eq. (14) satisfy

since k∗ will become large for small ǫ′ and φ(u) increases at least exponentially for large k∗ . Two classes of 
amplitude distributions discussed  in54,55 are bounded amplitudes such as the constant amplitudes of Fig. 1, and 
amplitude distributions with super-exponentially decaying tails, ρ(x) ∝ exp(−xγ ) with γ > 1 . For the former 
we have φ(u) ∼ ebu for u ≫ 1 , where b is the upper bound, and for the latter φ(u) ∼ exp

[

(γ − 1)(u/γ )γ/(γ−1)
]

 . 
Determining then the asymptotic solutions of Eq. (17) for ǫ′ ≪ 1 and substituting into Eq. (11) with ǫ′ = ǫ yields 
the dominant terms in the effective action for ǫ → 0 as

for bounded amplitudes and

for amplitude distributions with super-exponentially decaying tails. Eqs. (18,19) are precisely the results obtained 
 in54,55 for r ∝ e−Smin/ǫ and ǫ ≪ 1 . We note that our approach is not able to reproduce the corresponding expres-
sions for amplitude distributions that decay with power-law or sub-exponential tails calculated  in54,55 since in 
these cases φ(u) is undefined for any nonzero real u.

Prefactor. The effects discussed above relate to the exponential term in the rate of escape processes 
r ≃ C exp(−Smin/ǫ) , with non-Gaussian noise producing exponential speed-ups by reducing Smin . We have 
also studied the prefactor C, to see whether this modifies the results. Recent work has shown that C can be 
determined by solving matrix Riccati equations, which is particularly suitable for numerical  evaluations56,57. 
Analytical expressions for C have previously been obtained e.g. by calculating the fluctuation determinant in the 
path integral  approach58,59,63 or by determining steady state  solutions1,7 of the Fokker–Planck equation associated 
with Eq. (2), augmented by an injection term near qa . We have used both these methods to confirm that in the 
regime where the excitation path is smooth, the prefactor is exactly the same as in the Gaussian case, i.e. given 
by the Eyring-Kramers expression C =

√

V ′′(qa)|V ′′(qb)|/(2π)
64, as observed previously for special cases of 

our  noise35,41.
However, C is modified when the excitation path has a jump section. The path integral method breaks down 

here because the eigenfunction expansion of the relevant fluctuation operator becomes ill-defined. However, 
determining the flux over the barrier in steady state remains feasible. We report the technically non-trivial cal-
culation  elsewhere64. The result applies generally to noise distributions ρ(x) = c(x)e−|x| with exponential cutoff 
and power law tails, c(x) ≃ cαx

−α−1 for x ≫ 1 . We find

if the jump is from q− to q+ . The key observation here is that while the prefactor is no longer independent of ǫ , 
its power law variation ǫα is much weaker than the exponential exp(−Smin/ǫ) . For small ǫ non-Gaussian noise 
therefore still generates vastly faster escapes from metastable states than Gaussian noise of the same variance. We 
also observe in Eq. (20) that the (scaled) rate � of the non-Gaussian noise enters as a prefactor, demonstrating 
that the escape dynamics is largely controlled by non-Gaussian effects. These must then disappear for � = 0 or 
more precisely, by comparing with the Kramers rate, when � becomes of O(e−(SG−S0)/ǫ).

The final factor in Eq. (20) contains the curvature information from the Kramers prefactor (V ′′(qa)|V
′′(qb)|)

1/2 
but effectively corrects this by the relevant curvatures at the beginning and end of the jump, i.e. the term is divided 
by (V ′′(q−)|V

′′(q+)|)
1/2 . Note that the remaining factors can be written as �ǫ−1c((q+ − q−)/(ǫa)) using the 

large x-behaviour of c(x), and in that form should be generic for other, less than exponentially varying, forms of 
c(x) that produce discontinuous excitation paths. This contribution to C is essentially the probability of receiv-
ing a noise “kick” that will perform the required jump. The exponential factor e−|x| = e−(q+−q−)/(ǫa) from ρ(x) 
that should also appear here is accounted for in the action Smin and is exactly the jump contribution to Smin we 
identified earlier.

Comparison with simulations. To check our theoretical predictions, we implemented different simula-
tion algorithms to determine the escape rates numerically. The Langevin dynamics can be simulated with stand-
ard methods based on an Euler discretization of Eq. (2)26, but escape events become exceedingly rare as ǫ → 0 

(16)D0 = ǫ2, �0 = 1, a0 = ǫ,

(17)V ′(q) =
ǫ′

2
k∗ + ǫ′

φ(k∗)

k∗
≈ ǫ′

φ(k∗)

k∗
,

(18)Smin ≈ (qb − qa)| ln ǫ|

(19)Smin ≈ (qb − qa)γ (γ − 1)(1−γ )/γ | ln ǫ|(γ−1)/γ

(20)C = cαǫ
α
�[(q+ − q−)/a]

−α−1

(

V ′′(qa)|V
′′(qb)|

V ′′(q−)|V ′′(q+)|

)1/2
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and measuring very small rates thus requires suitable rare-event sampling algorithms. In the parameter regime 
in which the instanton is smooth, we have used forward-flux sampling (FFS)65 and jumpy  FFS66 to confirm the 
theoretical predictions, see Fig. 3a, reaching rates as small as r ≈ 10−22 . These methods are not applicable when 
the instanton has jumps, since for escape events with jumps the partitioning of the coordinate space into neigh-
bouring bins as used in FFS becomes meaningless. In the jump regime, we thus used direct Langevin simulations 
(DL) and, in order to reach smaller rates, a numerical solution of the Master equation associated with Eq. (2) 
(MS), which confirm our theory and demonstrate in particular the validity of the prefactor Eq. (20), see Fig. 3b.

Figure 3 highlights the exponential increase of escape rates due to non-Gaussian noise, which results in 
speed-ups of up to 20 orders of magnitude for the same noise intensity. Conversely, this dramatic difference 
implies that assessing the effect of fluctuations on transition rates from their variance alone is unreliable and can 
drastically underestimate the true transition rate. To elucidate this point further we investigated a realistic non-
Gaussian noise-driven system to compare our predictions with the Kramers theory. We simulate non-interacting 
swimmers in a three dimensional volume interacting with a passive tracer particle via a truncated dipolar force 
that describes the hydrodynamic interaction in the far-flow field regime at low Reynolds  numbers17. As shown 
 in17, the stochastic motion of the tracer is effectively driven by non-Gaussian noise described by Eqs. (2) and 
(6), provided the dynamics is observed on sufficiently long time scales. Trapping the tracer in the double well 
potential V(q) = V0

[

(q/q0)
4/4− (q/q0)

2/2
]

 , we measure the escape rate as

for V0 = 5 · 10−6 and q0 = 25 . These parameters have been adjusted such that escape times are short enough 
to be measurable (while they would be astronomically long for Gaussian noise, see below), but also sufficiently 
long to probe the Markovian regime of the tracer dynamics; all remaining parameters are set as  in17. Calculating 
the escape rate with Eqs. (9), (11) and (12) where φ is fitted from the empirical tracer displacement statistics 
(see “Methods D: Escape rate calculation for a tracer particle diffusing in an active suspension”) yields a rate 
of r ≈ 6× 10−4 . While this differs by two orders of magnitude from the measured rate in Eq. (21), Kramers 
rate theory based on the diffusion coefficient of the tracer would give r ≈ 5× 10−32(!), again emphasizing 
that ignoring the non-Gaussian characteristics of the tracer can lead to dramatically inaccurate predictions. 
The discrepancy of two order of magnitude in the escape rate can be attributed both to the fact that the noise 
underlying the tracer dynamics is only approximately a memoryless non-Gaussian noise as expressed in Eq. (6), 
and to pre-asymptotic effects arising from the fact that the exponent Smin/ǫ we obtain in the calculation of the 
escape rate is of order unity.

Discussion
Our results demonstrate that non-Gaussian noise can induce qualitatively very different escape behaviours. The 
instantons with jump section, occurring within the jump phase shown in Fig. 2c, indicate an escape strategy 
that is fundamentally different from the one we find in thermal equilibrium systems: instead of completing the 
entire escape using a rare sequence of small fluctuations, the system prefers to wait for a single rare fluctuation 
that is large enough to carry it across the steepest section of the potential barrier. Remarkably, the prefactor 
C highlights the existence of two universality classes associated with these two types of escape: the Kramers 

(21)r ≈ 2 · 10−6

Figure 3.  Comparison of the theoretical predictions (lines) for the escape rate r and results from numerical 
simulations. We have employed forward-flux sampling (FFS), jumpy forward-flux sampling (JFFS), 
direct Langevin simulations (LD), and a numerical solution of the Master equation (MS). The potential is 
V(q) = q4/4− q2/2 , D = 1 , and we have set the rescaled noise intensity �a2 of the non-Gaussian component 
also to unity, i.e., a = 1/

√
� , which leaves � as the only free parameter. Dashed black line: escape rates for purely 

Gaussian noise of the same noise intensity (GWN), highlighting exponential speed-ups due to non-Gaussian 
effects. (a) PSN with exponentially distributed amplitudes, leading to smooth instantons. (b) Gamma noise with 
α = 0.8 , leading to jump instantons for � = 0.005 and � = 0.02 ; the predicted jump prefactor (20) clearly gives a 
better description of the data than the Eyring-Kramers prefactor (dotted line for � = 0.005 ). In both (a) and (b) 
the largest escape rates are achieved for � → 0 , see also Fig. 2a.
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prefactor, which also applies to non-Gaussian noise in the parameter range where the escape path is smooth; 
and Eq. (20) governing the jump escape.

The theoretical analysis shows that the exponential speed-up of transition rates can persist and become even 
more pronounced in the regime � → 0 (for constant a), i.e. when the intensity of the non-Gaussian contribu-
tion in Eq. (3) is vanishingly small, see Fig. 2a. It might be possible to exploit this effect to optimize switching 
behaviour in artificial systems driven by non-Gaussian noise such as colloids interacting with an active micro-
bial heat bath on which thermodynamic cycles can be  imposed15. Indeed, recent experiments have shown that 
non-Gaussian noise can be used to tune the performance of a colloidal Stirling engine by shifting the operating 
speed at which power is  maximum67.

The generalisation of our model Eq. (2) to higher dimensions includes e.g. non-Gaussian noise effects from 
copy number fluctuations in chemical reactions, which for a specific case were studied  in68, and widely used 
active particle models such as run-and-tumble  particles27,28. Taking the latter case in two dimensions, one would 
have position coordinates (qx , qy) and the orientation angle θ of the active force that receives non-Gaussian noise 
kicks during tumbling events. With our approach one could, in particular, study the regime where tumbling 
and diffusion are of comparable strength, rather than the simpler situation where tumbling is so fast that the 
active force direction becomes effectively slaved to the particle  position69. Our method also allows a systematic 
investigation of non-Gaussian noise effects on activation processes observed in other models for active particle 
 motion70 and opens up many further fascinating questions, e.g., how non-Gaussian noise affects the selection of 
the transition states that are traversed during the escape from a metastable state.

Methods A: Dimensionless equation of motion. We consider the overdamped motion of the position 
coordinate q under the effect of the potential V(q) in one dimension

where γ denotes the friction coefficient and ξ noise from the environment. We assume that V(q) can be expressed 
as V(q) = V0Ṽ(q/q0) , where V0 and q0 set the energy and spatial scales, respectively, and Ṽ  is dimensionless. 
The scale of time can then be set by t0 = q20γ /V0 . Introducing dimensionless time and position as q̃ = q/q0 and 
t̃ = t/t0 yields

Defining the dimensionless noise as

leads to Eq. (2) in the main text, with the tildes dropped from variable names for clarity.
It is straightforward to check that Eq.  (24) correctly transforms the specific noise parame-

ters into dimensionless quantities. Assuming first ξ(t) = ξG(t) as Gaussian white noise with noise 
intensity D0 , i.e. 

〈

ξ(t)ξ(t ′)
〉

= D0γ
2δ(t − t ′) , Eq.  (22) with V(q) = 0 implies that 

〈

q2(t)
〉

= D0 t 
and thus D0 has dimensions [D0] = [q0]

2/[t0]
2 as expected for a diffusion coefficient. The 

dimensionless noise intensity is then D̃0 = D0t0/q
2
0 and the dimensionless noise has variance 

�ξ̃ (t̃)ξ̃ (t̃ ′)� = [t0/(γ q0)]
2D0γ

2δ(t0(t̃ − t̃ ′)) = (D0t0/q
2
0)δ(t̃ − t̃ ′) = D̃0δ(t̃ − t̃ ′) . In the literature our D0 is often 

written as 2D0 and D̃0 as 2D̃0 ; we omit the factor of 2 in order to have D̃0 directly related to the noise variance.
Secondly, let us assume that the noise ξ(t) = ξNG(t) is given by the Poissonian shot noise of Eq. (4). From 

the fact that ξ/γ has the same dimension as q̇ , one sees that [Aj] = [γ ][q0] . The dimensionless amplitudes are 
thus given by Ãj = Aj/(γ q0) consistent with Eq. (22). In addition, the dimensionless rate is �̃0 = �0t0 , which 
preserves �̃0 t̃ = �0t ; the average number of noise kicks is therefore unaffected by the change to dimensionless 
units as it must be.

Methods B: Large deviation form of the path probability for non‑Gaussian noise. The cumu‑
lant generator for non‑Gaussian noise with independent stationary increments. For the Poissonian shot noise of 
Eq. (4), we see that the increments ξ̄ (s) ≡

∫

s+�t

s
ξNG(s

′)ds′ over a small time step �t are all independent and 
assume the values ξ̄ (s) = A with probability �0�t and ξ̄ (s) = 0 otherwise. The characteristic function of a given 
increment is thus

with the remaining average taken over the amplitude distribution ρ0 . In general one wants the noise to have zero 
mean. Subtracting the constant average 〈ξ(t)〉 to enforce this in Eq. (4) gives an extra term −ig(s)A inside the 
average of Eq. (25). Adding also in Eq. (4) a Gaussian noise contribution with variance D0 we obtain

where φ0 is given as

(22)γ q̇(t) = −V ′(q)+ ξ(t),

(23)
dq̃(t̃)

dt̃
= −Ṽ ′(q̃)+

t0

γ q0
ξ(t0 t̃).

(24)ξ̃ (t̃) =
t0

γ q0
ξ(t0 t̃)

(25)
�eig(s)ξ̄ (s)� =�eig(s)A�0�t + 1(1− �0�t)�

≈ exp
(

�0�t�eig(s)A − 1�
)

,

(26)�eig(s)ξ̄ (s)� = exp

(

−
D0

2
g(s)2�t + �0φ0(ig(s))�t

)

,
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As explained in the main text we find it useful to write ρ0(A) = ρ(A/a0)/a0 in terms of a characteristic scale a0 
and a base distribution ρ , normalized so that 

∫

dx x2ρ(x) = 1 . For φ0 this scaling implies φ0(k) = φ(ka0) , where

and the normalization of ρ simplifies the non-Gaussian noise variance to �0�A2� = �0a
2
0 . Considering a whole 

noise trajectory and the continuum limit �t → 0 recovers the noise cumulant generator Eq. (5).

MSR action functional. In order to develop a path integral description of the dynamics Eq. (2) we again con-
sider first a discretization into small time steps �t . Using an Ito convention Eq. (2) can be discretized as

Enforcing the dynamics Eq. (29) at every time step with delta functions, we can express the probability of a path 
[q] = (q(0), q(�t), . . . , q(t)) with fixed q(0) as a product

The average is over the noises ξ̄ (s) ≡
∫

s+�t

s
ξ(s′)ds′ and can be done independently for each time step. Fourier 

transforming one such step gives

using Eq. (26). Collecting the contributions from all time steps and taking �t → 0 gives the path probability in 
terms of a Martin–Siggia–Rose (MSR)-type action S[q, g]71,72:

Rescaling the noise parameters. The seminal Kramers escape rate for Gaussian noise ( � = 0 ) can formally be 
derived from the theory of large deviations that is applicable in the weak-noise limit D0 → 0 . Fluctuations 
around the most likely path from one metastable state to another are then small and the typical path can be 
obtained by making the action S[q] stationary w.r.t. q(s) and g(s) . In order to analyse such a weak-noise regime, 
we introduce a dimensionless scaling parameter ǫ and rescale D0 as

such that the weak-noise regime is equivalent to taking ǫ → 0 . Setting δS/δg(s) = 0 (still for � = 0 ) gives 
Dǫg = i(q̇+ V ′) , showing that in the low-ǫ limit one needs to scale g = g̃/ǫ . The action then becomes

Without the non-Gaussian term this already has the desired scaling with ǫ−1 that shows how path fluctuations 
away from the most likely path become exponentially suppressed for small ǫ.

For nonzero � the task now is to identify a scaling regime that achieves the same result for the non-Gaussian 
contribution. The non-Gaussian term �0ǫφ(ig̃a0/ǫ) in Eq. (35) suggests the scaling �0 = �/ǫ , a0 = a ǫ considered 
in the main text [cf. Eq. (16)]. We now show that this is in fact the only scaling that preserves all non-Gaussian 
noise features, by considering general scaling exponents

Expanding then the function φ yields

so that the O(g̃n) term of �0ǫφ scales as ǫ1−µ+n(ν−1) . The exponents µ , ν thus define different scaling regimes 
for ǫ → 0 as shown in Fig. 4.

In regime I, all orders ( n ≥ 2 ) in g̃ diverge as ǫ → 0 . In regime II, there are always some higher orders that 
diverge as ǫ → 0 , while in regime III all orders scale to zero as ǫ → 0 so that one effectively recovers the case 

(27)φ0(k) =

∫

dA ρ0(A)
(

ekA − kA− 1
)

.

(28)φ(u) =

∫

dA ρ(A)
(

euA − uA− 1
)

.

(29)q(s +�t) = q(s)+�t V ′(q(s))+ ξ̄ (s).

(30)P[q] =

〈

t−�t
∏

s=0

δ(q(s +�t)− q(s)+�t V ′(q(s))− ξ̄ (s))

〉

.

(31)

∫

dg(s)

2π
e−ig(s)[q(s+�t)−q(s)+�t V ′(q(s))]�eig(s)ξ̄ (s)� =

∫

dg(s)

2π
e−ig(s)[q(s+�t)−q(s)+�t V ′(q(s))]−

D0
2 g(s)2�t+�0φ(ig(s)a0)�t

(32)P[q] =

∫

D

[ g

2π

]

e−S[q,g]

(33)S[q, g] =

∫ t

0
ds

{

ig(s)[q̇(s)+ V ′(q(s))] +
D0

2
g(s)2 − �0φ(ig(s)a0)

}

(34)D0 = D ǫ,

(35)S[q, g̃] =
1

ǫ

∫ t

0
ds

{

ig̃[q̇+ V ′(q)] +
g̃2

2
− �0ǫφ(ig̃a0/ǫ)

}

(36)�0 = �/ǫµ, a0 = a ǫν .

(37)φ(ig̃/ǫ) =
a20�x

2�

ǫ2

(ig̃)2

2!
+

a30�x
3�

ǫ3

(ig̃)3

3!
+ . . .
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�0 = 0 . For the particular combination ν = 1
2 (µ+ 1) with µ > 1 (red line in Fig. 4) only the g̃2 term remains in 

Eq. (37) as ǫ → 0 . The non-Gaussian noise strength �0a20 ∝ ǫ → 0 here, so this is a valid weak noise-limit but 
one that reduces to effective Gaussian noise. Only for µ = ν = 1 do all orders in g̃ remain in Eq. (37) as ǫ → 0 . 
This is therefore the scaling we adopt: it represents a genuine weak-noise limit of our generic noise, since the 
noise variance is D0 + �0a

2
0 = (D + �a2)ǫ ∝ ǫ while the infinite hierarchy of noise cumulants is retained. The 

action then simplifies to S[q, g̃] = S̃[q, g̃]/ǫ with

and contains ǫ only through the overall scale ǫ−1 as desired. The path probabilities are as before except for the 
scaling of the conjugate variables,

Saddle‑point integration. With the above large deviation form of the path probability, a path-integral expres-
sion for the propagator of the dynamics Eq. (2), i.e., the probability of reaching a given q(t) from some q(0), can 
be obtained by integrating over all paths with those end points. For ǫ → 0 , this propagator is dominated by the 
path that makes the action Eq. (38) stationary, which can be found by solving the associated Euler-Lagrange 
equations for q(s), g̃(s) . However, these presume continuous paths and we find that for some non-Gaussian noise 
types such solutions do not exist for low � . But we can obtain a description that extends to this more difficult 
regime by first eliminating g̃ in Eqs. (38) and (39) by saddle point integration in the weak noise limit ǫ → 0 . 
Technically we discretize into small time intervals �t and take ǫ → 0 first, then �t → 0 . The stationarity condi-
tion

shows that g̃ is imaginary at the saddle point, so in terms of k = ig̃ the resulting contribution to the action can 
be written as

with f = q̇+ V ′(q) . The maximum rather than minimum appears here because of the saddle structure of the 
stationary point. One can check that this result remains valid even when φ has singularities on the real axis; 
the maximum in Eq. (41) then has to be taken over the range where φ remains non-singular. In our examples 
in Fig. 1 such singularities occur for the Gamma and exponential noise amplitude distributions. In contrast, 
distributions with tails decaying faster than exponentially do not exhibit such singularities; see the constant 
modulus example in Fig. 1.

(38)S̃[q, g̃] =

∫ t

0
ds

{

ig̃[q̇+ V ′(q)] +
g̃2

2
− �φ(ig̃a)

}

(39)P[q] =

∫

D

[

g̃

2πǫ

]

e−S̃[q,g̃]/ǫ .

(40)0 = i[q̇+ V ′(q)] + g̃ − i�aφ′(ig̃a)

(41)
L(f ) =max

k
{kf − k2/2− �φ(ak)}

=max
k

{kf − ψ(k)}

Figure 4.  Different noise regimes arising under the scaling �0 = �/ǫµ , a0 = a ǫν in the limit ǫ → 0.
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Methods C: Analysis of the escape behaviour. Parameter regime for non‑Gaussian effects. To under-
stand the reduction in Smin as a function of � and a we write Eq. (12) with Eq. (9) as

The terms on the right are both positive so if either of the prefactors are large ( 1/a ≫ 1 or �a ≫ 1 ) this will 
force k̃∗ to be small. Now for small arguments φ(u) ≈ u2/2 and one obtains k̃∗ = 2V ′/(a−1 + �a) . Bearing in 
mind that k∗ = k̃∗/a , the minimum action Smin from Eq. (11) then takes the Gaussian value, Smin ≈ SG . Like-
wise, the instanton in this regime will assume the Gaussian shape, since ψ(k) ≈ (1+ �a2)k2/2 and Eq. (13) 
yields q̇ = V ′(q).

Summarizing, we predict Gaussian behaviour when 1/a ≫ 1 or �a ≫ 1 . Conversely, to see non-Gaussian 
noise effects we need the noise amplitude to lie in the range 1 ≪ a ≪ 1/� ; such a range exists for � ≪ 1 . These 
predictions are consistent with the data shown in Fig. 2a,b.

Comparison with literature results for the action in special cases. We briefly review literature results where ana-
lytical predictions for the effective action Smin of the escape problem have been obtained for special cases of our 
general non-Gaussian noise as defined in Eqs. (5) and (6).

In35,36,39, one-sided Poissonian shot noise with exponentially distributed amplitudes was considered, which 
corresponds to ρ(x) = e−x/2 for x > 0 once we impose our normalization 

∫

dx x2ρ(x) = 1 . With Eq. (6) we 
obtain the associated moment generator

and we also have D = 0 due to the absence of a Gaussian component. The condition for k∗ , Eq. (12), is thus

and solving for k∗ yields the action with Eq. (11)

which has been obtained  in35,36,39.
In42, the authors consider one-sided Poissonian shot noise with constant one-sided amplitudes, where 

ρ(x) = δ(x − 1) and thus

In this case, Eq. (12) cannot be solved in closed form for k∗ . Rearranging Eq. (12) with D = 0 yields k∗ as 
the solution of

and the action obtained via Eq. (11) recovers the result  in42.
In41, the authors consider a combination of Gaussian noise and two-sided Poissonian shot noise with expo-

nentially distributed amplitudes, which is one of the cases considered in the main text. Rearranging Eq. (12) for 
the type B case of Fig. 1 yields k∗ as the solution of

Equation (11) with this expression for k∗ matches the result obtained  in41, bearing in mind the difference by 
a factor 2 due to the different noise intensity conventions used.

Methods D: Escape rate calculation for a tracer particle diffusing in an active suspension. In 
order to obtain theoretical predictions on the escape rate for the tracer particle diffusing in an active suspension 
for the setup of Ref.17, we fit the function φ from the tracer statistics established  in17 using the following steps: 

1. We start with the data for the tracer displacement PDF P�t(|�X|) displayed in Fig. 2  of17 for the time incre-
ment �t = 104 . This time interval is long enough such that the tracer statistics is in the Lévy-flight regime.

2. From the normalized displacement PDF we determine the moment generating function of the displacements 
for a set of k-values {k1, . . . , kn}

(42)k̃∗ = ak∗, V ′(q) =
1

2a
k̃∗ + �a

φ0(k̃
∗)

k̃∗
.

(43)φ(u) =
u2

2(1− u)

(44)V ′(q) = �a2
k∗

2(1− ak∗)

(45)Smin =

∫ qb

qa

dq
2V ′(q)

�a2 + 2aV ′(q)
,

(46)φ(u) = eu − u− 1.

(47)k∗ =
1

a
ln

(

1+

(

a+
V ′(q)

�

)

k∗
)

,

(48)k∗ =
2V ′(q)

D + �a2/(1− a2k∗2)
.

(49)
〈

eki�X
〉

=

∫ xmax

−xmax

eki�XP�t(|�X|)d�X ,
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 where xmax = 2.7 is the maximal �X value in the empirical PDF. The set of k-values is chosen such as to 
cover the range needed later in the numerical solution of Eq. (12).

3. We assume that the PDF of displacements is generated by an underlying Lévy process, which implies that 
〈

ek�X
〉

= e��t φ(k) and thus 

 leading to a discrete representation of �φ(k) obtained from the data.
4. The discrete representation is then fitted by a regression function φ̂ given as a superposition of φ-functions 

corresponding to constant amplitude jumps: 

  Here, {b1, . . . , bm} parametrize different amplitudes over a suitable range and the scale parameters 
{a1, . . . , am} are determined by least squares minimization.

5. Finally, we numerically solve Eq. (12) with the fitted φ̂(k) of Eq. (51) to determine the effective action for the 
given potential.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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