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ABSTRACT

We begin by reviewing the current literature on outliers and look at what has

been done both classically and from a Bayesian viewpoint. We then extend

these Bayesian ideas to model outliers in uniform and Pareto samples.

We consider the problem of deciding if there are any outliers in a sample

from a uniform distribution. For a sample from a one parameter uniform dis-

tribution we show that the largest observation in the sample has the smallest

conditional predictive ordinate. Hence we derive the Bayes factor for testing

whether it is an outlier when the amount of contamination is known and

unknown using two different outlier models. Then we investigate this prob-

lem when we have multiple outliers, assuming that our outliers are generated

by the same probability distribution or by different probability distributions.

Similarly for two parameter uniform samples we show that the most extreme

observation in the sample has the smallest conditional predictive ordinate.

Hence we derive the Bayes factors for testing whether extreme observations

are outliers using the stricter outlier model that we had for the one parameter

case.

We consider the problem of deciding if there are any outliers in a sample

from a Pareto distribution. For a sample from a univariate Pareto distribu-

tion we show that the largest observation in the sample has the smallest con-

ditional predictive ordinate and derive the Bayes factor for testing whether
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it is an outlier when the amount of contamination is known and unknown.

Then we investigate this problem when we have multiple outliers, assum-

ing that our outliers are generated by the same probability distribution or

by different probability distributions. Finally we extend these ideas to the

multivariate case both when the marginal samples are independent of one

another and when there are correlations/partial correlations.
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1. INTRODUCTION

1.1 Outliers - What they are

We first discuss what is meant by an outlier. Much has been written on

the subject, for example Barnett and Lewis (1995) and Beckman and Cook

(1983) and the many references therein. We may usefully distinguish between

two types of observations which have at times been referred to as outliers.

Firstly there are contaminants, observations which have been generated by

a different probabilistic mechanism to the rest of the sample. Secondly there

are extremes, observations which are away from the mass of other observa-

tions and thus cause surprise. Different authors refer to contaminants or

extremes as outliers. From hereafter we define outliers as extreme contami-

nants, contaminated observations which are extreme.

Generally there are two approaches to dealing with outliers which Barnett

and Lewis (1995) refer to as identification and accommodation. Classical

methods for identification range from informal graphical techniques, often

involving residuals, to formal tests of significance. Later we will discuss in

detail Bayesian diagnostics which indicate surprising observations. Bayes

factors can be used to test whether extreme observations are outliers, many

of these are functions of classical test statistics. Accommodation is often

achieved classically by the use of robust estimation techniques which have
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good frequentist properties even when some of the underlying assumptions do

not hold. Parameter estimates from Bayesian mixture models accommodate

outliers, but the posterior weights on the models can also identify the number

of outliers. In everything that follows we use the identification approach for

dealing with outliers.

1.2 Some classical approaches to outliers

For univariate samples Barnett and Lewis (1995) describe the seven most

common test statistics used for testing whether extreme observations are

outliers. They are:

(1) Excess/spread statistics - These are the ratio of the difference

between the suspected outlier and next most extreme observation in the

sample to some measure of spread. One example of these are Dixon statistics

which are discussed in Dixon (1951), other examples are discussed in Irwin

(1925).

(2) Range/spread statistics - These are the ratio of the range of the

data to some measure of spread. Examples of these are discussed in David,

Hartley and Pearson (1954), and Pearson and Stephens (1964).

(3) Deviation/spread statistics - These are the ratio of the distance

between the suspected outlier from some measure of central tendency to some

measure of spread. Examples of these are discussed in Grubbs (1950).

(4) Sums of squares statistics - These are ratios of sums of squares for

the restricted and total samples. Grubbs (1950) uses such test statistics for

testing whether extreme observations are outliers in samples from a normal

distribution.
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(5) Exteme/location statistics - These are ratios of extreme observa-

tions to measures of location. Such test statistics can be used for testing

whether extreme observations are outliers in samples from a gamma distri-

bution, which are discussed in Likes (1966), Lewis and Fieller (1979), Kimber

and Stevens (1981), and Kimber (1982).

(6) Higher order moment statistics - Statistics such as measures of

skewness and kurtosis, not specifically designed for assessing outliers, can

none the less be useful in this context; for example Ferguson (1961).

(7) W statistics - These again are not specifically designed for assessing

outliers, but can none the less be useful in this context. These are the ratio of

the square of a particular linear combination of the ordered sample to the sum

of squares of the individual deviations about the sample mean. Examples of

these are discussed in Shapiro and Wilk (1965, 1972), Shapiro, Wilk and

Chen (1968), and Stephens (1978).

When there is more than one extreme observation in the sample many of

the above test statistics are sensitive to both masking and swamping and so

it creates problems. When testing whether a set of extreme observations are

outliers and not including all of the extreme observations in the sample, we

may fail to declare the extreme observations in the set as outliers which is

known as masking. However in some cases we may have the opposite problem

of swamping, which is declaring non extreme observations as outliers when

testing whether a set containing both very extreme and non extreme obser-

vations are outliers. Suppose that the only outliers in the ordered sample

{x1, ..., xn} are xn and xn−1.Masking can be illustrated using the test statistic

T1 = Xn∑n
j=1Xj

, we see that in this case when testing whether xn is an outlier
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xn−1 is larger than it should be, making the observed value of T1 smaller

than it should be and hence we may possibly fail to declare xn as an outlier.

Swamping can be illustrated using the test statistic T3 = Xn+Xn−1+Xn−2∑n
j=1Xj

, as

in this case when testing whether xn, xn−1 and xn−2 are outliers xn and xn−1

may be sufficiently large to make T3 large enough to declare xn−2 as an out-

lier. To overcome these problems Barnett and Lewis (1995) suggest to use

the following procedure:

Consider the least extreme observation that could possibly be an outlier

and delete all of the more extreme observations from the sample. Then for

this new sample test whether it is an outlier. If we conclude that it is, then

all of the other extreme observations are outliers. Otherwise we conclude

that this observation is not an outlier and repeat the procedure until either

we conclude that an observation is an outlier or that none of the observations

are outliers.

Barnett and Lewis (1995) describe many tests which are based on the

previous statistics for testing whether extreme observations are outliers in

samples from normal and gamma type distributions when making many dif-

ferent assumptions. These include whether or not the distribution parameters

are known or unknown, the number of outliers that we are testing for and

how we define an outlier (whether we do a one sided test for upper or lower

outliers or a two sided test for any outliers). The difficulty with using these

tests is that all of the test statistics have very complicated test distributions

and so it is hard to find critical values without using simulation techniques.

They also use similar test procedures for Gumbel, Frechet and Weibull sam-

ples, as well as introducing conditional test statistics to extend these ideas
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to the Poisson and binomial cases.

For a sample from a uniform(θ1, θ2) distribution with both θ1 and θ2 un-

known, Barnett and Roberts (1993) construct the following test for testing

whether extreme observations are outliers, based on the fact that differences

between the order statistics have an exponential distribution. When we sus-

pect that there are u upper outliers and l lower outliers in our ordered sample

{x1, ..., xn} the test statistic is

F =
(n− u− l − 1) (Xn −Xn−u +Xl+1 −X1)

(u+ l) (Xn−u −Xl+1)

and has a F
2(u+l)
2(n−u−l−1) test distribution. From this test statistic the obvious

tests can be derived in the special cases when either we only have observa-

tions suspected of being upper outliers, only have observations suspected of

being lower outliers or have known distribution parameters. See Barnett and

Roberts (1993) or Barnett and Lewis (1995) for more details. As an example

to illustrate this test consider the testing problem in part (ii) of Example

2.6 in Section 2.5. For this problem the observed value of F is equal to

9.596 and the test distribution is F 4
14. The critical value for the 0.1% signif-

icance level test is 8.622, hence there is overwhelming evidence against the

null hypothesis that there are no outliers in the sample.

When we have a sample from a Pareto(θ, k) distribution and k is un-

known, we transform the data to an exponential(θ) sample with origin log (k) ,

where there are excess/spread test statistics in six different cases for expo-

nential samples with an unknown origin. Note that if k is assumed to be

known, we transform the data to a regular exponential(θ) sample and can

use all of the test statistics for a particular case on such samples.
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For multivariate samples Barnett (1979) derived a series of tests that were

based on simulations to test whether extreme points in a sample are outliers.

He did this for a variety of different probability distributions including the

normal, exponential, uniform and Pareto distributions. For uniform samples

he focuses on the bivariate case, here he assumes that the end points of the

intervals are known and we do not see how any point which lies in a known

rectangle can be described as outlying. For Pareto samples he focuses on

the bivariate case, here he simulates the critical values based on finding the

value that makes the cumulative distribution function of
X1j

k1
+

X2j

k2
equal

to (1− α)
1
n , where α is the significance level of the test and the (X1j, X2j)

are independent and all come from the same bivariate Pareto distribution

with distinct terminals k1 and k2. These values are used to test whether a

single observation is an outlier when assuming that the correlation structure

is known, but it is not extended to the case when the correlation structure

is unknown or to multiple outlier problems.

1.3 Some Bayesian approaches to outliers

The conditional predictive ordinate (CPO) was first defined by Geisser (1980).

Given a sample x = {x1, ..., xn} , let us suppose that the standard model gen-

erating the observations has the form p (x|θ) , where θ represents all of the

unknown parameters. Let us denote by xS the elements of x whose labels

are in S ⊂ {1, ..., n} and (S) by the complement of S. Then we define the

CPO for xS given x(S) by

p
(
xS|x(S)

)
=

∫ ∞
−∞

p (xS|θ) p
(
θ|x(S)

)
dθ.
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Small values of this indicate that observations xS are surprising in relation to

x(S) and the prior specification for θ. The CPO can be used to order individual

observations, pairs, triples, etc. on the basis of their surprisingness compared

with the other observations, and is useful in detecting potential outliers.

For the sample x = {x1, ..., xn} , let M0 and Mq denote the models with

no and q outliers in the sample respectively. The model generating good ob-

servations is p (x|M0, θ) , where θ represents all of the unknown parameters

and p (θ) is our prior specification for θ. Suppose we suspect that q observa-

tions in the sample are outliers generated by the same model p (x|Mq, θ, δ) ,

where θ represents all of the unknown null model parameters, δ represents

the contamination factor and p (θ, δ) is our joint prior specification for θ and

δ. Then the Bayes factor for comparing the models M0 and Mq is defined by

B0,q =
p (x|M0)

p (x|Mq)
=

∫∞
−∞ p (x|M0, θ) p (θ) dθ∫∞

−∞ p (x|Mq, θ, δ) p (θ, δ) dθdδ

and is used to formally test whether a set of extreme observations are outliers.

It is often a function of the corresponding classical test statistic. A small

Bayes factor is needed to declare the set of extreme observations as outliers.

Originally when making general inferences, not necessarily about outliers,

Jeffreys (1961) suggests that a Bayes factor of less than or equal to 10−
1
2 or

10−1 is needed to select the alternative model over the null model. Pettit

(1992) argues that these values are not appropriate for outlier problems, as

we have some knowledge that we can use to give an approximation to the

prior probabilities of the null and alternative models. He suggests that we can

judge how small a Bayes factor is necessary to lead us to a greater posterior

probability on the alternative model than the null model. Then gives a formal

argument for assuming that in the case of comparing the models Mγ and



1. INTRODUCTION 14

Mγ+1, a Bayes factor of less than or equal to 0.015 provides strong evidence

for concluding that an observation is an outlier and a Bayes factor of less

than or equal to 0.005 provides very strong evidence for concluding that an

observation is an outlier. This is based on believing that the probability

that a randomly chosen observation is an outlier in a sample of size n is 0.05

together with the scale suggested by Jeffreys. He derives the values for other

cases in a similar way.

Two early Bayesian models for modelling contaminants are the ones given

by Box and Tiao (1968) and Guttman, Dutter and Freeman (1978). These

authors assume that, in a given data set, most observations arise from a

distribution with a normal density p (x|θ) , where θ represents all of the un-

known parameters, but a few observations may arise from an alternative

normal density pδ (x|θ) , where δ is an additional parameter, which may be

known or unknown, representing some form of alternative. The models are

distinguished by the assumptions about the alternative. These models and

that of Abraham and Box (1978) have been reviewed by Freeman (1980).

Consider the standard linear model

Y = Xθ + ε,

where Y is an n× 1 vector of random variables, X is an n× p known design

matrix, θ is a p× 1 vector of unknown parameters and ε is an n× 1 vector of

random errors. Suppose that a particular subset {yi1 , ..., yir} of the y’s are

suspected of being contaminants. Let R = {i1, ..., ir} which is a subset of

{1, ..., n} . Denote by yR the vector whose components are the observations

with labels in R and by y(R) the remaining components. We may partition

the design matrix correspondingly into XR and X(R). Application of Bayes
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theorem gives the posterior distribution of θ as

p (θ|y) =
∑

WRpR (θ|y) ,

where the summation extends over all 2n possible subsets R, WR denotes

the posterior probability that yR are contaminants and y(R) are not and

pR (θ|y) is the posterior distribution of θ given the assumed division of the

data set into contaminants and good observations. For both models, given

a normal distribution for the elements of ε and either conjugate priors or

standard improper limits for the unknown parameters (θ, σ) it can be shown

that pR (θ|y) is a p-variate t-distribution with different means, dispersion

matrices and degrees of freedom.

Box and Tiao (1968) assume that associated with each observation i there

is a probability 1 − α that εi is normally distributed with mean zero and

variance σ2 and probability α that the variance is inflated to δ2σ2. They

assume that α and δ are known and use the standard improper uniform

prior on θ and log σ. They find that their results are fairly insensitive to

choices of α in the range (0.03, 0.07) and δ in the range (3, 10) .

Guttman, Dutter and Freeman (1978) consider the model

Y = Xθ + δR + ε,

where δR is a vector, exactly r of whose elements are non-zero; for example,

if R = {1, 3} then δ = (δ1, 0, δ3, ..., 0)T represents the case when the first

and third observations are contaminants and all other observations are not

outliers. The non-zero elements of δR are given a uniform prior as are θ

and log σ. The elements of ε are all assumed to have independent N (0, σ2)

distributions.
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The main problem with all of the Bayesian models that we have discussed

so far is that they assume that a contaminated observation will always out-

lie. Other problems include not being able to use these models in situations

when we have both extreme large and extreme small observations, if there

is a large number of observations in R the computation gets very compli-

cated, masking and swamping. Pettit and Smith (1983, 1985) suggest that

these models can be used for allowing for contaminants, but for an outlier

model there should be a high probability that a contaminant does out-lie.

In the univariate normal case for both the shifted location and inflated vari-

ance models, they choose a value of δ such that it is almost certain that a

contaminated observation will out-lie when δ is assumed to be known, but

if δ is unknown choose a proper prior distribution that reflects this. For

multivariate normal samples Pettit (1990) proves that the point in the sam-

ple with the smallest CPO (which is the most extreme point in the sample)

must lie on one on the vertices of the convex hull of the observations. These

ideas are then used for exponential samples in Pettit (1988) to derive the

CPO to detect possible outliers and Bayes factors to declare whether or not

they are outliers. Here he assumes that the good observations come from

an exponential(λ) distribution and outliers come from an exponential(δλ)

distribution with 0 < δ < 1.

In some situations we may be unable or unwilling to specify a proper

prior distribution for δ because we are unsure of the actual mechanism for

generating outliers. Pettit (1992) reconsiders normal and exponential sample

problems when giving δ an improper prior distribution, using the device of

imaginary observations described in Spiegelhalter and Smith (1982). All
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prior distributions depend on a constant that make its probability density

function integrate to one over the whole distribution range, but in the case

of improper prior distributions we cannot find this constant. Spiegelhalter

and Smith (1982) approach this problem by considering the smallest possible

experiment to distinguish between the null and alternative models that gives

maximal support to the null model, then setting the Bayes factor for this

experiment equal to one and solving for the unknown constant. Pettit (1994)

uses this method for Poisson samples. O’Hagan (1995) suggested the method

of fractional Bayes factors to overcome the problem of the undefined constant

in model choice with improper priors. Pettit (1995) applied this method to

outliers in Poisson samples. Sothinathan and Pettit (2005) applied both of

these methods to binomial samples.

Verdinelli and Wasserman (1991) reconsider some of the previous prob-

lems using a Gibbs sampling approach by regarding outliers as unknown

parameters. However Justel and Pena (1996) show that Gibbs sampling will

fail in outlier problems due to strong masking in situations when there are

multiple outliers.

1.4 An outline of the remaining chapters

In Chapter 2 we extend these Bayesian methods to model outliers in uniform

samples and in Chapter 3 we extend them to model outliers in Pareto

samples.



2. MODELLING OUTLIERS IN UNIFORM SAMPLES

2.1 Modelling outliers in one parameter uniform samples

2.1.1 Modelling a single outlier in a one parameter uniform sample

Suppose that {X1, ..., Xn} are independent uniform(0, θ) random variables,

then the joint probability density function of {X1, ..., Xn} not including Xi

is p
(
x(i)|θ

)
= 1

θn−1 , for θ > max {xj : j 6= i} > 0. The conjugate prior for θ is

a Pareto prior and for this problem θ shall be given a Pareto(α, θ0) prior, so

that p (θ) = αθ0
α

θα+1 , for α > 0, θ > θ0 and where α and θ0 are both assumed to

be known. We can find the posterior distribution of θ given {x1, ..., xn} not

including xi, where its probability density function is written as p
(
θ|x(i)

)
and is such that

p
(
θ|x(i)

)
∝ p

(
x(i)|θ

)
p (θ)

∝ 1

θα+n
, for θ > s = max {θ0, xj : j 6= i} .

The constant C is such that

C

∫ ∞
s

1

θα+n
dθ

=
C

(α + n− 1) sα+n−1

= 1,
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thus

C = (α + n− 1) sα+n−1

and so

θ|x(i) ∼ Pareto (α + n− 1, s) .

The conditional predictive ordinate is then given by

p
(
xi|x(i)

)
=

∫ ∞
s′

p (xi|θ) p
(
θ|x(i)

)
dθ

=

∫ ∞
s′

1

θ

(α + n− 1) sα+n−1

θα+n
dθ

=
(α + n− 1) sα+n−1

(α + n) s′α+n ,

where s′ = max {θ0, x} = max {s, xi} . We can clearly see that the largest

observation in the sample has the smallest conditional predictive ordinate.

Suppose that s′ = xi and it is suspected of being an outlier. We can

derive the Bayes factor to test whether the model M0 that all of the Xj have

a uniform(0, θ) distribution or the model M1 that all of the Xj except for Xi

have a uniform(0, θ) distribution and Xi has a uniform(0, δθ) distribution, is

more appropriate, where δ > 1 and is known. The Bayes factor is denoted

by B0,1 = p(x|M0)
p(x|M1)

, where

p (x|M0) =

∫ ∞
xi

1

θn
αθ0

α

θα+1
dθ

=
αθ0

α

(α + n)xiα+n
,

p (x|M1) =

∫ ∞
s∗

1

δθn
αθ0

α

θα+1
dθ

=
αθ0

α

δ (α + n) s∗α+n

and

s∗ = max
{
θ0,

xi
δ
, xj : j 6= i

}
= max

{
s,

xi
δ

}
.
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Therefore

B0,1 = δ

(
s∗

xi

)α+n

,

which is minimized when xi is very large compared to the other observations,

noting that δ1−α−n is very small for any sensible sample size such as n ≥ 5.

Now consider the previous testing problem when δ is unknown. We shall

give δ a Pareto(β, 1) prior distribution, as the prior probability that δ is

larger than any constant greater than one gets small rather quickly. Also

p (δ) = β
δβ+1 , for δ > 1 and where β is known. In order for it to make sense

to test for outliers we assume that n ≥ 5 and in order to have E (δ) ≥ 2 we

assume that 1 < β ≤ 2. The Bayes factor is denoted by B0,1 = p(x|M0)
p(x|M1)

, where

p (x|M0) is given by the same expression as we had for this problem when δ

was known and

p (x|M1) =

∫ ∞
1

∫ ∞
s∗

1

δθn
αθ0

α

θα+1

β

δβ+1
dθdδ

=
αθ0

αβ

α + n

∫ ∞
1

1

s∗α+nδβ+2
dδ.

By splitting the previous integral up:

If s∗ = s, we have

αθ0
αβ

α + n

∫ ∞
xi
s

1

sα+nδβ+2
dδ

=
αθ0

αβ

(α + n) (β + 1)xiβ+1sα+n−β−1
;

If s∗ = xi
δ

, we have

αθ0
αβ

(α + n)xiα+n

∫ xi
s

1

δα+n−β−2dδ

=
αθ0

αβ

(α + n) (α + n− β − 1)xiα+n

((xi
s

)α+n−β−1

− 1

)
.
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Hence

p (x|M1) =
αθ0

αβ

α + n

(
1

(β + 1)xiβ+1sα+n−β−1
+

(
xi
s

)α+n−β−1 − 1

(α + n− β − 1)xiα+n

)

=
αθ0

αβ

(α + n) (α + n− β − 1)

(
α + n

(β + 1) sα+n−β−1xiβ+1
− 1

xiα+n

)
and therefore

B0,1 =
α + n− β − 1

β
(
α+n
β+1

(
xi
s

)α+n−β−1 − 1
) .

When xi is very large compared to the other observations and θ0, the Bayes

factor will be close to zero because limxi→∞ (B0,1) = 0 and in such cases we

should conclude that xi is an outlier. Note that when both α→ 0 and θ0 → 0

in our current formulae for B0,1, we can obtain the corresponding Bayes

factors using the noninformative prior p (θ) = κ
θ
, where κ is an unknown

constant whose exact value does not matter because it cancels out in the

calculations.

Example 2.1 As an example to illustrate the previous methods, we use

the following data, where the sample has been obtained by simulating ten

uniform(0, 1) observations in R. We have displayed the data correct to three

decimal places, but will use the true values when performing all of the cal-

culations that follow.

0.561 0.770 0.125 0.352 0.647 0.847 0.327 0.622 0.515 0.333

Since we have simulated a uniform(0, 1) sample, one possible way of choosing

α and θ0 is to take values that make the prior mean of θ equal to one. When

α is small the prior distribution for θ is less informative than when it is large

and so for this example we shall use α = 2 and θ0 = 1
2
. We have randomly
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chosen to multiply observation one by five so that it is now 2.806 and can be

suspected of being an outlier. Note that if we would have multiplied another

observation by five and the resulting value was not larger than all of the

other observations in the sample, then obviously there would have been no

evidence to suspect that this value was extreme. We shall test whether 2.806

is an outlier, firstly for the case when δ is known to be five and then for the

case when δ is unknown. It is argued in Pettit (1992) that a Bayes factor

of less than or equal to 0.015 provides strong evidence for concluding that

an observation is an outlier and a Bayes factor of less than or equal to 0.005

provides very strong evidence for concluding that an observation is an outlier,

based on assuming that outliers occur randomly in a sample with probability

0.05. Therefore we shall conclude that xi is an outlier if our Bayes factor is

less than or equal to 0.015.

(i) When δ is known to be five it follows that s∗ = 0.847, hence

B0,1 = 5

(
0.847

2.806

)12

= 2.86× 10−6

and so we should certainly conclude that 2.806 is an outlier. Table 2.1

shows the Bayes factors for this sample using various different combinations

of α and δ when θ0 = 1
2
. These values will be exactly the same for any

choice of θ0 which is less than or equal to 0.847, as then s is always equal to

0.847. Note that if we had simulated a larger uniform(0, 1) sample, then the

largest observation not suspected of being an outlier would have probably

been closer to one than 0.847 is. Table 2.2 shows the critical values for this

sample, where these were calculated by finding the value of xi that makes

B0,1 equal to 0.015 based on all of the other nine observations in this sample
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when s∗ = 0.847. We see that these decrease as the prior mean of θ gets

smaller and increase when we know that an observation has to be larger in

order to be an outlier. Therefore we conclude that this method in general is

hardly at all sensitive to any reasonable choices of θ0 and δ, but very sensitive

to our choices of α and n, where our formula for B0,1 shows that increasing

the sample size has exactly the same effect as increasing α.

Tab. 2.1: Bayes factors when δ is known and θ0 = 1
2

δ

α 3 5 10

2 5.65×10−6 2.86×10−6 5.72×10−6

3 1.88×10−6 8.63×10−7 1.73×10−6

4 6.27×10−7 2.60×10−7 5.21×10−7

5 2.09×10−7 7.86×10−8 1.57×10−7

10 8.60×10−10 1.97×10−10 3.94×10−10

Tab. 2.2: Critical values for this sample when δ is known and θ0 = 1
2

δ

α 2 3 5

2 1.27 1.32 1.37

3 1.23 1.27 1.32

4 1.20 1.24 1.28

5 1.17 1.21 1.25

10 1.08 1.10 1.13



2. MODELLING OUTLIERS IN UNIFORM SAMPLES 24

(ii) When δ is unknown, we choose β = 5
4
, which is the unique value of β

that makes the prior mean of δ equal to five. Therefore

B0,1 =
9.75

1.25
(

12
2.25

(
2.806
0.847

)9.75 − 1
)

= 1.24× 10−5

and hence we should certainly conclude that 2.806 is an outlier, noting that

this is larger than for the case when δ is assumed to be known because not

knowing δ adds extra uncertainty to the problem. Similarly Table 2.3 and

Table 2.4 show the Bayes factors and critical values for this sample using

various different combinations of α and β when θ0 = 1
2
. Therefore we conclude

that this method in general is hardly at all sensitive to any reasonable choices

of θ0 and β, but very sensitive to our choices of α and n. This is because of

the same reasons as before and as the values of β are required to be so small,

where it is shown by our formula for B0,1 that B0,1 gets smaller as β gets

smaller and hence the critical values get smaller as this happens.

Tab. 2.3: Bayes factors when δ is unknown and θ0 = 1
2

β

α 3
2

5
4

10
9

2 1.51×10−5 1.24×10−5 1.12×10−5

3 4.64×10−6 3.80×10−6 3.44×10−6

4 1.42×10−6 1.17×10−6 1.05×10−6

5 4.36×10−7 3.56×10−7 3.22×10−7

10 1.15×10−9 9.32×10−10 8.39×10−10
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Tab. 2.4: Critical values for this sample when δ is unknown and θ0 = 1
2

β

α 2 3
2

5
4

2 1.37 1.36 1.35

3 1.31 1.30 1.30

4 1.26 1.25 1.25

5 1.22 1.22 1.22

10 1.10 1.10 1.10

A truncated exponential(λ) prior distribution is an alternative distribu-

tion such that the prior probability that δ is larger than any constant greater

than one gets small rather quickly, where p (δ) = λe−λ(δ−1), for δ > 1 and

λ > 0. Therefore

p (x|M1) =

∫ ∞
1

∫ ∞
s∗

1

δθn
αθ0

α

θα+1
λe−λ(δ−1)dθdδ

=
αθ0

αλeλ

α + n

∫ ∞
1

e−λδ

δs∗α+n
dδ

=
αθ0

αλeλ

(α + n) sα+n

∫ ∞
xi
s

e−λδ

δ
dδ +

αθ0
αλeλ

(α + n)xiα+n

∫ xi
s

1

δα+n−1e−λδdδ,

where ∫ ∞
xi
s

e−λδ

δ
dδ and

∫ xi
s

1

δα+n−1e−λδdδ

can both be evaluated numerically. Hence

B0,1 =
1

λeλ
((

xi
s

)α+n ∫∞
xi
s

e−λδ

δ
dδ +

∫ xi
s

1
δα+n−1e−λδdδ

) .
We now recalculate the critical values for the data given in Example 2.1

using this Bayes factor, which are shown in Table 2.5, where λ is chosen
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such that E (δ) is equal to the values of δ used in Table 2.2. We see that

the values given in Table 2.5 are not much smaller than the values given in

Table 2.4. Therefore the Pareto prior is the better prior distribution to use

because it produces analytical and simpler Bayes factors.

Tab. 2.5: Critical values for this sample when δ has a truncated exponential(λ)

prior distribution and θ0 = 1
2

λ

α 1 1
2

1
4

2 1.33 1.33 1.35

3 1.28 1.28 1.30

4 1.23 1.24 1.26

5 1.20 1.21 1.22

10 1.09 1.10 1.11

2.1.2 Modelling multiple outliers in a one parameter uniform sample

We now consider the problem when it is believed that more than one ob-

servation in the sample is an outlier, where it is assumed that s′ = zi.

Suppose that {z1, ..., zq} are the q largest observations in the sample and

are suspected of being outliers generated by the same probability distribu-

tion, where q is the number of observations that we suspect of being outliers,

q < n, {Z1, ..., Zq} ⊂ {X1, ..., Xn} and
{
Z[1], ..., Z[n−q]

}
denote the random

variables corresponding to the observations not suspected of being outliers.

We can derive the Bayes factor to test whether the model M0 that all of the

Xj have a uniform(0, θ) distribution or the model Mq that all of the Z[h] have
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a uniform(0, θ) distribution and all of the Zg have a uniform(0, δθ) distribu-

tion, is more appropriate. It is assumed that δ is unknown and is again given

a Pareto(β, 1) prior distribution, for 1 < β ≤ 2. In what follows we again

have n ≥ 5 and assume that q < n
2
, as if q ≥ n

2
it might imply that the Z[h]

should be suspected of being outliers rather than the Zg. We write the Bayes

factor as B0,q = p(x|M0)
p(x|Mq)

to compare these models. Therefore

p (x|Mq) =

∫ ∞
1

∫ ∞
t∗

1

δqθn
αθ0

α

θα+1

β

δβ+1
dθdδ

=
αθ0

αβ

(α + n) (α + n− β − q)

(
α + n

(β + q) tα+n−β−qziβ+q
− 1

ziα+n

)
,

where t = max
{
θ0, z[h]

}
and t∗ = max

{
θ0,

zi
δ
, z[h]

}
. Hence the Bayes fac-

tor for comparing the models M0 and Mq is

B0,q =
α + n− β − q

β
(
α+n
β+q

(
zi
t

)α+n−β−q − 1
) .

We can see that B0,q only depends on the most extreme of the zg, but not

the rest of the zg. For this reason when zi is very large compared to the z[h]

and θ0, the Bayes factor will be close to zero because limzi→∞ (B0,q) = 0 and

in such cases we should conclude that {z1, ..., zq} are outliers generated by

the same probability distribution. Note that if we were to assume that δ is

known, then the corresponding Bayes factor is equal to

B0,q = δq
(
t∗

zi

)α+n

.

We can see that the previous methods are sensitive to both masking

and swamping and so it creates problems. To overcome these problems, we

repeatedly calculate Bayes factors of the form Bγ,γ+1 = p(x|Mγ)

p(x|Mγ+1)
, starting
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with γ = 0, until we can see that γ is equal to some value such that the

(γ + 1)th largest observation in the sample is not extreme. If on all of the

iterations we select the model Mγ over the model Mγ+1, then we should select

M0 as our final model. Otherwise our final model is Mη+1, which is the last

model that we selected over the model suspected of having one less outlier.

Using a similar derivation as we did for finding B0,q it can be shown that the

Bayes factor for comparing the models Mγ and Mγ+1 is

Bγ,γ+1 =
(α + n− β − γ − 1)

(
α+n

(β+γ)tγα+n−β−γziβ+γ
− 1

ziα+n

)
(α + n− β − γ)

(
α+n

(β+γ+1)tγ+1
α+n−β−γ−1ziβ+γ+1 − 1

ziα+n

) ,
where γ ≥ 1, tγ is the (γ + 1)th largest observation in the sample and tγ+1

is the (γ + 2)th largest observation in the sample. Note that if we strongly

believe that there are q outliers in the sample, we could use the previous

method by putting γ equal to q − 1 instead of zero on the first iteration,

so that we can save time from not having to perform as many iterations to

arrive at the final model. Also if we were to assume that δ is known, then

Bγ,γ+1 = δ

(
t∗γ+1

t∗γ

)α+n

,

where t∗γ = max
{
θ0,

zi
δ
, z[1], ..., z[n−γ]

}
, t∗γ+1 = max

{
θ0,

zi
δ
, z̃[1], ..., z̃[n−γ−1]

}
and the sample

{
z̃[1], ..., z̃[n−γ−1]

}
is the same as the sample

{
z[1], ..., z[n−γ]

}
with max

{
z[h]

}
removed from it.

If δ1 and δ2 are both assumed to be known and δ1 > δ2, then it can be

shown that the Bayes factor for testing whether the model M0 that all of

the Xj have a uniform(0, θ) distribution or the model Mq+q∗ that all of the

Z[h] have a uniform(0, θ) distribution, all of the Zg have a uniform(0, δ1θ)

distribution and all of the Zg∗ have a uniform(0, δ2θ) distribution, is more
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appropriate is

B0,q = δ1
qδ2

q∗
(
u

zi

)α+n

,

where zi and zi∗ are the most extreme of the zg and zg∗ respectively and

u = max

{
θ0,

zi
δ1

,
zi∗

δ2

, z[h]

}
.

Similar Bayes factors can be derived for case when we have any number of

sets of outliers, although in practice this is rarely necessary when using a

stretched uniform model for modelling outliers. To deal with masking and

swamping, we use the same procedure that we did for the case of comparing

the models M0 and Mq, except that on each iteration we compare the current

model with all of the reasonable models containing one more outlier and use

the one which gives the smallest Bayes factor as the current model for the

next iteration. If on all of the iterations we select the current model over

the best model with one more outlier, then we should select M0 as our final

model. Otherwise our final model is the last one that we selected over the

model suspected of having one less outlier.

When δ is unknown and we do not conclude that a set of extreme obser-

vations are outliers generated by the same probability distribution, but still

suspect that they are outliers, we use the following method:

(i) Consider the smallest observation that could possibly be an outlier

and delete all of the more extreme observations from the sample. Then for

this new sample test whether it is an outlier. If we conclude that it is, then

all of the other extreme observations are outliers. Otherwise we conclude

that this observation is not an outlier and repeat the procedure until either

we conclude that an observation is an outlier or that none of the observations

are outliers.
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If we are only interested in declaring whether or not extreme observations

are outliers, then this is sufficient, otherwise we continue by using the fol-

lowing method to see which outliers are generated by the same probability

distribution.

(ii) Consider the two smallest outliers and delete the rest of them. If we

find out that these two outliers are generated by the same probability distri-

bution, then we consider adding in a third outlier. Otherwise we conclude

that the first and second smallest outliers are generated by different probabil-

ity distributions, but then consider if the second and third smallest outliers

are generated by the same probability distribution while deleting the first

smallest outlier as well as the fourth smallest to the largest outliers. This

is done until we have found out which probability distribution the largest

outlier has been generated by relative to the other outliers.

Example 2.2 As an example to illustrate the methods in this subsection,

we return to our uniform(0, 1) data which was used in Example 2.1 and

again assume that α = 2 and θ0 = 1
2
.

(i) We have multiplied observations one and nine by five so that they are

now 2.806 and 2.575 respectively, hence it is assumed that β = 5
4

because

of the same reason which was given in part (ii) of Example 2.1. Suppose

we only suspect that 2.806 is an outlier. The Bayes factor for comparing the

models M0 and M1 is

B0,1 =
9.75

1.25
(

12
2.25

(
2.806
2.575

)9.75 − 1
)

= 0.690,

by comparing this to our answer from part (ii) of Example 2.1, we can
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see that masking has definitely occurred. Therefore the Bayes factor for

comparing the models M1 and M2 is

B1,2 =
8.75

(
12

2.25(2.575)9.75(2.806)2.25
− 1

(2.806)12

)
9.75

(
12

3.25(0.847)8.75(2.806)3.25
− 1

(2.806)12

)
= 7.71× 10−5

and so we should certainly select M2 over M1. We do not have to calculate

any more Bayes factors because we can clearly see that 0.847 is not extreme,

therefore we select M2 as our final model and conclude that 2.806 and 2.575

are outliers generated by the same probability distribution. The Bayes factors

for comparing the models M1 and M2 using various different values of α when

θ0 = 1
2

and β = 5
4

are given in Table 2.6. We can see from Table 2.6 that

B1,2 is still very sensitive to our choice of α and hence we conclude in general

that the Bγ,γ+1 are very sensitive to our choices of α and n, but not to any

reasonable choices of θ0 and β.

Tab. 2.6: Bayes factors for comparing M1 and M2 when θ0 = 1
2 and β = 5

4

α

2 3 4 5 10

7.71×10−5 2.60×10−5 8.71×10−6 2.91×10−6 1.18×10−8

(ii) We have multiplied observation one by ten and observation nine by

three so that they are now 5.611 and 1.545 respectively and can be suspected

of being outliers. When β = 10
9

it follows that B1,2 = 2.30 × 10−2, where if

we would of had the exact same sample except with 1.545 replaced by 1.613

it would have been concluded that 5.611 and 1.613 are outliers generated
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by the same probability distribution. We can clearly see that 0.847 is not

extreme and therefore start by deleting observation one from the sample

and testing whether 1.545 is an outlier. When β = 3
2

it can be shown that

B0,1 = 7.78 × 10−3, hence 1.545 is an outlier and therefore we definitely

conclude that 5.611 and 1.545 are outliers generated by different probability

distributions.

2.1.3 An alternative way of testing for outliers

Consider a single outlier problem for a one parameter uniform sample. An-

other way of finding out whether xi is an outlier is to derive the Bayes factor

for testing whether the model M0 that all of the Xj have a uniform(0, θ) dis-

tribution or the model M1 that all of the Xj except for Xi have a uniform(0, θ)

distribution and Xi has a uniform(ε, θ + ε) distribution, is more appropriate,

where θ is given a Pareto(α, θ0) prior distribution as before and ε > 0. Firstly

we do this for the case when ε is assumed to be known, then it is done for

the case when ε is unknown and given an exponential(λ) prior distribution,

as the prior probability that ε is larger than any constant greater than zero

gets small rather quickly, where λ is known. Also we assume that n ≥ 5 for

the same reason as before.

When ε is assumed to be known it follows that

p (x|M1) =

∫ ∞
v

1

θn
αθ0

α

θα+1
dθ

=
αθ0

α

(α + n) vα+n
,

where

v = max {θ0, xi − ε, xj : j 6= i} .
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Hence

B0,1 =

(
v

xi

)α+n

and is minimized when xi is very large compared to the other observations

for any reasonable choice of ε.

When ε is unknown it follows that

p (x|M1) =

∫ ∞
0

∫ ∞
v

1

θn
αθ0

α

θα+1
λe−λεdθdε

=

∫ ∞
0

αθ0
α

(α + n) vα+n
λe−λεdε

=
αθ0

α

(α + n)

(
e−λ(xi−s)

sα+n
+ I

)
,

where

I =

∫ xi−s

0

λe−λε

(xi − ε)α+ndε

and can be evaluated numerically because of the following reason, noting

that s = max {θ0, xj : j 6= i} as before. To evaluate this integral, we change

the variable to φ = xi − ε, so that

I = λe−λxi
∫ xi

s

eλφ

φα+n
dφ.

Let

Ik =

∫ xi

s

eλφ

φk
dφ,

then integration by parts gives a recurrence relation for Ik in terms of Ik−1.

Since

I = λe−λxiIα+n

it reduces to an expression in terms of

I1 =

∫ xi

s

eλφ

φ
dφ
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which can be evaluated numerically. Therefore

B0,1 =
1(

e−λ(xi−s)

sα+n
+ I
)
xiα+n

and is shown in part (ii) of Example 2.3 that this is minimal when xi is

very large compared to the other observations for any reasonable choice of λ.

Example 2.3 We now recalculate the Bayes factors using this approach

for our uniform(0, 1) data given in Example 2.1 when α = 2 and θ0 = 1
2
.

(i) When ε = 2.806− 0.561 = 2.245 it follows that

B0,1 =

(
0.847

2.806

)12

= 5.72× 10−7,

where we have used the true value of ε to make our answers consistent.

Table 2.7 shows the Bayes factors for this sample using various different

combinations of α and ε when θ0 = 1
2
, noting that B0,1 is hardly at all

sensitive to our choice of θ0 for the same reason as before. For α = 2 and

θ0 = 1
2

it can be shown that the critical value for this sample is equal to 1.20

when 0.353 < ε ≤ 1.200, which is smaller than the critical values that were

given in Table 2.2 in Example 2.1. Therefore this method in general is

hardly at all sensitive to any reasonable choices of θ0 and ε, but very sensitive

to our choices of α and n.

(ii) When ε is unknown and λ = 1
2.245

it follows that

I =

∫ 1.959

0

1
2.245

e−
ε

2.245

(2.806− ε)12dε

= 0.109,
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Tab. 2.7: Bayes factors when ε is known and θ0 = 1
2

ε

α 1.806 2.245 2.806

2 4.20×10−6 5.72×10−7 5.72×10−7

3 1.50×10−6 1.73×10−7 1.73×10−7

4 5.34×10−7 5.21×10−8 5.21×10−8

5 1.90×10−7 1.57×10−8 1.57×10−8

10 1.09×10−9 3.94×10−11 3.94×10−11

hence

B0,1 =
1(

e−
1.959
2.245

0.84712
+ 0.109

)
2.80612

= 1.32× 10−6,

noting that this is larger than for the case when ε is assumed to be known

because not knowing ε adds extra uncertainty to the problem. Table 2.8

shows the Bayes factors for this sample using various different combinations

of α and λ when θ0 = 1
2
. Table 2.9 shows the critical values for this sample

using various different values of λ when α = 2 and θ0 = 1
2
, which are all

smaller than the critical values that were given in Table 2.4 in Example 2.1.

Therefore this method in general is hardly at all sensitive to any reasonable

choices of θ0 and λ, but very sensitive to our choices of α and n. Suppose that

xi is very large, for example xi = 10 and say λ = 1
9.5

(because 10−0.5 = 9.5),

then B0,1 = 3.54 × 10−13 and hence it is confirmed that the Bayes factor is

minimized when xi very large compared to the other observations.

Clearly this set of tests works better than the first set of tests, but there
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Tab. 2.8: Bayes factors when ε is unknown and θ0 = 1
2

λ

α 1
1.806

1
2.245

1
2.806

2 1.62×10−6 1.32×10−6 1.12×10−6

3 4.91×10−7 4.00×10−7 3.38×10−7

4 1.49×10−7 1.21×10−7 1.02×10−7

5 4.50×10−8 3.66×10−8 3.09×10−8

10 1.14×10−10 9.24×10−11 7.79×10−11

Tab. 2.9: Critical values for this sample when ε is unknown and θ0 = 1
2

λ

1
0.353

2 4
3

1 5
6

1.31 1.27 1.24 1.23 1.23

is however one problem. This is that for multiple outlier problems the ex-

treme observations have to be quite similar to suspect that they are outliers

generated by the same probability distribution. So in general we get more

complicated models for modelling outliers when using this approach. In such

cases when the amounts of contamination are unknown, we use the same

methods as before.

For simple multiple outlier problems it can be shown that the correspond-

ing Bayes factors for the cases when ε is known and unknown are

B0,q =

(
w1

zi

)α+n
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and

B0,q =
1(

e−λ(zi−t)

tα+n
+ J

)
ziα+n

respectively, where

w1 = max
{
θ0, zi − ε, z[h]

}
and

J =

∫ zi−t

0

λe−λε

(zi − ε)α+ndε,

noting that t = max
{
θ0, z[h]

}
as before. If ε1 and ε2 are both assumed to

be known and ε1 > ε2, then it can be shown that the Bayes factor for testing

whether the model M0 that all of the Xj have a uniform(0, θ) distribution

or the model Mq+q∗ that all of the Z[h] have a uniform(0, θ) distribution, all

of the Zg have a uniform(ε1, θ + ε1) distribution and all of the Zg∗ have a

uniform(ε2, θ + ε2) distribution, is more appropriate is

B0,q+q∗ =

(
w2

zi

)α+n

,

where

w2 = max
{
θ0, zi − ε1, zi∗ − ε2, z[h]

}
.

Similar Bayes factors can be derived for case when we have any number of

sets of outliers, but when this number of sets is large it is questionable as

to what extreme means. Note that we use the same procedures as before to

deal with masking and swamping.

Example 2.4 We now reconsider Example 2.2 using this approach when

α = 2 and θ0 = 1
2
.

(i) When λ = 1
2.245

it can be shown that B0,1 = 0.371 and therefore by

comparing this to our answer from part (ii) of Example 2.3, we can see that
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masking has definitely occurred, noting that we have used the same value of

λ in both cases. Therefore the Bayes factor for comparing the models M1

and M2 is

B1,2 =
e−

0.231
2.245

2.57512
+ J

e−
1.959
2.245

0.84712
+ J∗

= 3.56× 10−6,

where

J =

∫ 0.231

0

1
2.245

e−
ε

2.245

(2.806− ε)12dε

and

J∗ =

∫ 1.959

0

1
2.245

e−
ε

2.245

(2.806− ε)12dε.

Hence we should certainly select M2 over M1. We do not have to calculate

any more Bayes factors because we can clearly see that 0.847 is not extreme,

therefore we select M2 as our final model and conclude that 2.806 and 2.575

are outliers generated by the same probability distribution. The Bayes factors

for comparing the models M1 and M2 using various different values of α when

θ0 = 1
2

and λ = 1
2.245

are given in Table 2.10. We can see from Table 2.10

that B1,2 is still very sensitive to our choice of α and hence we conclude in

general that the Bγ,γ+1 are very sensitive to our choices of α and n, but not

to any reasonable choices of θ0 and λ.

Tab. 2.10: Bayes factors for comparing M1 and M2 when θ0 = 1
2 and λ = 1

2.245

α

2 3 4 5 10

3.56×10−6 1.17×10−6 3.86×10−7 1.27×10−7 4.87×10−10
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(ii) We can clearly see that 0.847 is not extreme and therefore start by

deleting observation one from the sample and testing whether 1.545 is an

outlier. When λ = 1
1.030

(again so that our answer is consistent with before)

it can be shown that B0,1 = 2.42×10−3, hence 1.545 is an outlier and therefore

5.611 and 1.545 are definitely both outliers. We cannot possibly choose any

reasonable value of λ to test whether 5.611 and 1.545 are outliers generated

by the same probability distribution and hence we conclude that 5.611 and

1.545 are outliers generated by different probability distributions.

In conclusion, we should always use the stretched uniform outlier model

because the tests for outliers are much simpler to perform and we get more

parsimonious models for modelling outliers. However, if these tests fail to de-

clare extreme observations as outliers, then we might use the shifted uniform

outlier model for which the tests for outliers are stricter.

2.2 Modelling outliers in two parameter uniform samples

2.2.1 Modelling a single outlier in a two parameter uniform sample

Suppose that {X1, ..., Xn} are independent uniform(θ1, θ2) random variables,

then the joint probability density function of {X1, ..., Xn} not including Xi

is

p
(
x(i)|θ1, θ2

)
=

1

(θ2 − θ1)n−1 ,

for θ1 < min {xj : j 6= i} < max {xj : j 6= i} < θ2. By letting r = (θ2 − θ1)

and m = 1
2

(θ1 + θ2) this can be written as

p
(
x(i)|r,m

)
=

1

rn−1
,
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for (
max {xj : j 6= i} − r

2

)
< m <

(
min {xj : j 6= i}+

r

2

)
and

(max {xj : j 6= i} −min {xj : j 6= i}) < r <∞.

Due to the complexity of this problem, we shall give r an improper prior such

that p (r) = α
r

and m an improper prior such that p (m) = β, where α and

β are unknown constants whose exact values do not matter in what follows.

We can find the joint posterior density function of r and m given {x1, ..., xn}

not including xi, which is written as p
(
r,m|x(i)

)
and is such that

p
(
r,m|x(i)

)
∝ p

(
x(i)|r,m

)
p (r) p (m)

∝ 1

rn
.

By letting r1 = (max {xj : j 6= i} −min {xj : j 6= i}), the constant C is such

that

C

∫ ∞
r1

∫ min{xj :j 6=i}+ r
2

max{xj :j 6=i}− r2

1

rn
dmdr

= C

∫ ∞
r1

r − r1

rn
dr

= C

(
1

(n− 2) r1
n−2
− 1

(n− 1) r1
n−2

)
=

C

(n− 1) (n− 2) r1
n−2

= 1,

thus

C = (n− 1) (n− 2) (max {xj : j 6= i} −min {xj : j 6= i})n−2

and so

p
(
r,m|x(i)

)
=

(n− 1) (n− 2) (max {xj : j 6= i} −min {xj : j 6= i})n−2

rn
,



2. MODELLING OUTLIERS IN UNIFORM SAMPLES 41

for (
max {xj : j 6= i} − r

2

)
< m <

(
min {xj : j 6= i}+

r

2

)
and

(max {xj : j 6= i} −min {xj : j 6= i}) < r <∞.

The conditional predictive ordinate is then given by

p
(
xi|x(i)

)
=

∫ ∞
r2

∫ min{xj}+ r
2

max{xj}− r2

1

r

(max {xj : j 6= i} −min {xj : j 6= i})n−2

(n− 1)−1(n− 2)−1rn
dmdr

=
(n− 2) (max {xj : j 6= i} −min {xj : j 6= i})n−2

n(max {xj} −min {xj})n−1 ,

where r2 = (max {xj} −min {xj}) . We can clearly see that the most extreme

observation in the sample has the smallest conditional predictive ordinate.

Suppose that xi is the most extreme observation in the sample and it is

suspected of being an outlier. We can derive the Bayes factor to test whether

the model M0 that all of the Xj have a uniform(θ1, θ2) distribution or the

model M1 that all of the Xj except for Xi have a uniform(θ1, θ2) distribution

and Xi has a uniform(θ1 + ε, θ2 + ε) distribution, is more appropriate. In

order for it to make sense to test for outliers we assume that n ≥ 5. Also

it is assumed that ε is known, where ε > 0 when xi is suspected of being

an upper outlier and ε < 0 when xi is suspected of being a lower outlier.

Note that we have chosen to model an outlier as something generated by a

shifted uniform distribution rather than a stretched uniform distribution, as

we cannot get analytical Bayes factors when we come to look at the case

when δ is unknown using a stretched uniform model, which was one of the

main advantages for using it before. The Bayes factor for the shifted uniform
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model is B0,1 = p(x|M0)
p(x|M1)

, where

p (x|M0) =

∫ ∞
r2

∫ min{xj}+ r
2

max{xj}− r2

1

rn
αβ

r
dmdr

=
αβ

n (n− 1) (max {xj} −min {xj})n−1 ,

p (x|M1) =

∫ ∞
r3

∫ min{xi−ε, xj :j 6=i}+ r
2

max{xi−ε, xj :j 6=i}− r2

1

rn
αβ

r
dmdr

=
αβ

n (n− 1) (max {xi − ε, xj : j 6= i} −min {xi − ε, xj : j 6= i})n−1

and

r3 = (max {xi − ε, xj : j 6= i} −min {xi − ε, xj : j 6= i}) .

Therefore

B0,1 =

(
max {xi − ε, xj : j 6= i} −min {xi − ε, xj : j 6= i}

max {xj} −min {xj}

)n−1

,

which is minimized when xi is very large or very small compared to the other

observations for any reasonable choice of ε.

Now consider the previous testing problem when ε is unknown and xi

is suspected of being an upper outlier. We shall give ε an exponential(λ)

prior distribution, as the prior probability that ε is larger than any constant

greater than zero gets small rather quickly, where it is assumed that λ is

known. The Bayes factor is B0,1 = p(x|M0)
p(x|M1)

, where p (x|M0) is given by the

same expression as we had for this problem when ε was known and

p (x|M1) =

∫ ∞
0

∫ ∞
r3

∫ min{xi−ε, xj :j 6=i}+ r
2

max{xi−ε, xj :j 6=i}− r2

1

rn
αβ

r
λe−λεdmdrdε

=

∫ ∞
0

αβλe−λε

n (n− 1) (max {xi − ε, xj : j 6= i} −min {xi − ε, xj : j 6= i})n−1dε.

By splitting the previous integral up:
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If xi− ε is neither larger nor smaller than all the other observations, we have

αβ

n (n− 1) (max {xj : j 6= i} −min {xj : j 6= i})n−1

∫ xi−min{xj :j 6=i}

xi−max{xj :j 6=i}
λe−λεdε

=
αβ
(
e−λ(xi−max{xj :j 6=i}) − e−λ(xi−min{xj :j 6=i})

)
n (n− 1) (max {xj : j 6= i} −min {xj : j 6= i})n−1

=
αβ

n (n− 1)
ρu;

If xi − ε is larger than all the other observations, we have∫ xi−max{xj :j 6=i}

0

αβ

n (n− 1) (xi −min {xj : j 6= i} − ε)n−1λe
−λεdε

=
αβ

n (n− 1)
Iu;

If xi − ε is smaller than all the other observations, we have∫ ∞
xi−min{xj :j 6=i}

αβ

n (n− 1) (max {xj : j 6= i} − xi + ε)n−1λe
−λεdε

=
αβ

n (n− 1)
Ju.

The integral Iu can be evaluated numerically because it has the same form

as the integral I given in Section 1.3. The integral Ju can be evaluated

numerically for the following reason. To evaluate Ju, we change the variable

to φ = (max {xj : j 6= i} − xi + ε) , so that

Ju = λeλ(max{xj :j 6=i}−xi)
∫ ∞
r1

e−λφ

φn−1
dφ,

where r1 = (max {xj : j 6= i} −min {xj : j 6= i}) as before. By changing the

variable to ω = λφ, we can simplify this expression further to

Ju = λn−1eλ(max{xj :j 6=i}−xi)
∫ ∞
λr1

e−ω

ωn−1
dω.

For large ω we have 0 < e−ω

ωn−1 < e−ω and as e−ω is integrable on (λr1,∞) it

follows that e−ω

ωn−1 is also integrable on (λr1,∞) . Let

Juk =

∫ ∞
λr1

e−ω

ωk
dω,
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then integration by parts gives a recurrence relation for Juk in terms of Juk−1.

Since

Ju = λn−1eλ(max{xj :j 6=i}−xi)Jun−1

it reduces to an expression in terms of

Ju1 =

∫ ∞
λr1

e−ω

ω
dω

which can be evaluated numerically. Therefore

p (x|M1) =
αβ

n (n− 1)
(ρu + Iu + Ju) ,

hence

B0,1 =
1

(ρu + Iu + Ju) (xi −min {xj : j 6= i})n−1

and is shown in part (ii) of Example 2.5 that this is minimal when xi is

very large compared to the other observations for any reasonable choice of λ.

If xi is suspected of being a lower outlier and−ε is given an exponential(λ)

prior distribution it can be shown in a similar way that the corresponding

Bayes factor is

B0,1 =
1

(ρl + J l + I l) (max {xj : j 6= i} − xi)n−1 ,

where

ρl =
eλ(xi−min{xj :j 6=i}) − eλ(xi−max{xj :j 6=i})

(max {xj : j 6= i} −min {xj : j 6= i})n−1 ,

I l =

∫ 0

xi−min{xj :j 6=i}

1

(max {xj : j 6= i} − xi + ε)n−1λe
λεdε

and J l =

∫ xi−max{xj :j 6=i}

−∞

1

(xi −min {xj : j 6= i} − ε)n−1λe
λεdε.

The integrals I l and J l have the same form as the integrals Iu and Ju respec-

tively and therefore can be evaluated numerically. Also it is shown in part
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(ii) of Example 2.5 that B0,1 is minimal when xi is very small compared to

the other observations for any reasonable choice of λ.

Example 2.5 As an example to illustrate the previous methods, we use

the following data, where the sample has been obtained by simulating ten

uniform(−1, 1) observations in R. We have displayed the data correct to

three decimal places, but will use the true values when performing all of the

calculations that follow.

-0.225 -0.745 0.480 0.294 0.561

0.972 -0.656 -0.981 -0.334 0.713

We have randomly added two to observation five so that it is now 2.561,

which is large enough to be suspected of being an upper outlier. We shall

test whether 2.561 is an upper outlier, firstly for the case when ε is known

to be two and then for the case when ε is unknown.

(i) If ε is known to be two, then max {xj} = 2.561, min {xj} = −0.981,

max {xi − ε, xj : j 6= i} = max {xj : j 6= i} = 0.972 and min {xi − ε, xj : j 6= i} =

min {xj : j 6= i} = −0.981, hence

B0,1 =

(
0.972 + 0.981

2.561 + 0.981

)9

= 4.70× 10−3

and so we should certainly conclude that 2.561 is an upper outlier. Note

that B0,1 is hardly at all sensitive to any reasonable choice of ε, but very

sensitive to the sample size. This is because of the same reasons that were

given for the additive outlier model when ε is assumed to be known in the

one parameter case.
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(ii) When ε is unknown, we choose λ = 1
2
, which is the unique value of λ

that makes the prior mean of ε equal to two. Therefore

ρu =
e−

1
2

(2.561−0.972) − e− 1
2

(2.561+0.981)

(0.972 + 0.981)9

= 0.000682,

Iu =

∫ 2.561−0.972

0

1

(2.561 + 0.981− ε)9

1

2
e−

1
2
εdε

= 0.000153,

Ju =

∫ ∞
2.561+0.981

1

(0.972− 2.561 + ε)9

1

2
e−

1
2
εdε

= 0.0000443

and

ρu + Iu + Ju = 0.000879.

Hence

B0,1 =
1

(2.561 + 0.981)9 (0.000879)

= 1.30× 10−2

and so we conclude that 2.561 is an upper outlier, where again the Bayes

factor is larger than for the case when ε is assumed to be known. Note that

B0,1 is hardly at all sensitive to any reasonable choice of λ, but very sensitive

to the sample size. This is because of the same reasons that were given for the

additive outlier model when ε is unknown in the one parameter case. Suppose

that xi is very large, for example xi = 10 and λ = 1
10
, then B0,1 = 1.97×10−6

and hence it is confirmed for upper outlier problems that the Bayes factor is

minimized when xi very large compared to the other observations. Similarly

if xi = −10 and λ = 1
10
, then B0,1 = 1.99 × 10−6 and hence it is confirmed

for lower outlier problems that the Bayes factor is minimized when xi very

small compared to the other observations.
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2.2.2 Modelling multiple outliers in a two parameter uniform sample

We now consider the problem when it is believed that more than one observa-

tion in the sample is an outlier. First we address the case when {z1, ..., zq} are

suspected of being outliers generated by the same probability distribution,

where q is the number of observations that we suspect of being outliers, q < n,

{Z1, ..., Zq} ⊂ {X1, ..., Xn} and
{
Z[1], ..., Z[n−q]

}
denote the random variables

corresponding to the observations not suspected of being outliers. We can

derive the Bayes factor to test whether the model M0 that all of the Xj have

a uniform(θ1, θ2) distribution or the model Mq that all of the Z[h] have a

uniform(θ1, θ2) distribution and all of the Zg have a uniform(θ1 + ε, θ2 + ε)

distribution, is more appropriate, where ε is unknown. In what follows we

again have n ≥ 5 and assume that q < n
2
, as if q ≥ n

2
it might imply that

the Z[h] should be suspected of being outliers rather than the Zg. The Bayes

factor for comparing these models is denoted by B0,q = p(x|M0)
p(x|Mq)

.

If {z1, ..., zq} are suspected of being upper outliers and ε is given an

exponential(λ) prior distribution it follows that

p (x|Mq) =

∫ ∞
0

∫ ∞
r4

∫ min{zg−ε, z[h]}+ r
2

max{zg−ε, z[h]}− r2

1

rn
αβ

r
λe−λεdmdrdε

=

∫ ∞
0

αβλe−λε

n (n− 1)
(
max

{
zg − ε, z[h]

}
−min

{
zg − ε, z[h]

})n−1dε,

where

r4 =
(
max

{
zg − ε, z[h]

}
−min

{
zg − ε, z[h]

})
.

Let zi and zi′ denote the largest and smallest of the zg respectively, where it

is assumed that zi′ differs more from the sample median than min
{
z[h]

}
does

because otherwise we will have potential lower outliers in the sample. It can
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be shown that the Bayes factor for comparing the models M0 and Mq is

B0,q =
1

τ1

(
zi −min

{
z[h]

})n−1 when zi′ −min
{
z[h]

}
≥ zi −max

{
z[h]

}
and

B0,q =
1

τ2

(
zi −min

{
z[h]

})n−1 when zi′ −min
{
z[h]

}
≤ zi −max

{
z[h]

}
,

where

τ1 =
e−λ(zi−max{z[h]}) − e−λ(zi′−min{z[h]})(

max
{
z[h]

}
−min

{
z[h]

})n−1

+

∫ zi−max{z[h]}

0

1(
zi −min

{
z[h]

}
− ε
)n−1λe

−λεdε

+

∫ ∞
zi′−min{z[h]}

1(
max

{
z[h]

}
− zi′ + ε

)n−1λe
−λεdε

and

τ2 =
e−λ(zi′−min{z[h]}) − e−λ(zi−max{z[h]})

(zi − zi′)n−1

+

∫ zi′−min{z[h]}

0

1(
zi −min

{
z[h]

}
− ε
)n−1λe

−λεdε

+

∫ ∞
zi−max{z[h]}

1(
max

{
z[h]

}
− zi′ + ε

)n−1λe
−λεdε.

All of the integrals can be evaluated numerically because they have the same

form as the integrals Iu and Ju.

If {z1, ..., zq} are suspected of being lower outliers and −ε is given an

exponential(λ) prior distribution it follows that

p (x|Mq) =

∫ 0

−∞

∫ ∞
r4

∫ min{zg−ε, z[h]}+ r
2

max{zg−ε, z[h]}− r2

1

rn
αβ

r
λeλεdmdrdε

=

∫ 0

−∞

αβλeλε

n (n− 1)
(
max

{
zg − ε, z[h]

}
−min

{
zg − ε, z[h]

})n−1dε.
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Let zi and zi′ denote the smallest and largest of the zg respectively, where

it is assumed that zi′ differs more from the sample median than max
{
z[h]

}
does because otherwise we will have potential upper outliers in the sample.

It can be shown that the Bayes factor for comparing the models M0 and Mq

is

B0,q =
1

τ3

(
max

{
z[h]

}
− zi

)n−1 when zi′ −max
{
z[h]

}
≤ zi −min

{
z[h]

}
and

B0,q =
1

τ4

(
max

{
z[h]

}
− zi

)n−1 when zi′ −max
{
z[h]

}
≥ zi −min

{
z[h]

}
,

where

τ3 =
eλ(zi−min{z[h]}) − eλ(zi′−max{z[h]})(

max
{
z[h]

}
−min

{
z[h]

})n−1

+

∫ 0

zi−min{z[h]}
1(

max
{
z[h]

}
− zi + ε

)n−1λe
λεdε

+

∫ zi′−max{z[h]}

−∞

1(
zi′ −min

{
z[h]

}
− ε
)n−1λe

λεdε

and

τ4 =
eλ(zi′−max{z[h]}) − eλ(zi−min{z[h]})

(zi′ − zi)n−1

+

∫ 0

zi′−max{z[h]}
1(

max
{
z[h]

}
− zi + ε

)n−1λe
λεdε

+

∫ zi−min{z[h]}

−∞

1(
zi′ −min

{
z[h]

}
− ε
)n−1λe

λεdε.

All of the integrals can be evaluated numerically because they have the same

form as the integrals I l and J l.
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If we were to assume that ε is known, then the corresponding Bayes factor

is equal to

B0,q =

(
max

{
zi − ε, z[h]

}
−min

{
zi − ε, z[h]

}
max {xj} −min {xj}

)n−1

.

Also we use the same procedure as before to deal with masking and swamping,

based on adding the next largest observation in the case when we have upper

outliers and the next smallest observation in the case when we have lower

outliers into the set of extreme observations on each iteration.

If ε1 and ε2 are both assumed to be known and ε1 > ε2, then it can be

shown that the Bayes factor for testing whether the model M0 that all of the

Xj have a uniform(θ1, θ2) distribution or the model Mq+q∗ that all of the Z[h]

have a uniform(θ1, θ2) distribution, all of the Zg have a uniform(θ1 + ε1, θ2 + ε1)

distribution and all of the Zg∗ have a uniform(θ1 + ε2, θ2 + ε2) distribution,

is more appropriate is

B0,q+q∗ =

(
max

{
zi − ε1, zi∗ − ε2, z[h]

}
−min

{
zi − ε1, zi∗ − ε2, z[h]

}
max {xj} −min {xj}

)n−1

.

Similar Bayes factors can be derived for case when we have any number of

sets of outliers, but when this number of sets is large it is questionable as

to what extreme means. We use the same procedure as before to deal with

masking and swamping, based on adding the next most extreme observation

into the set of observations suspected of being least contaminated and then

considering all of the reasonable outlier models on each iteration.

When the amounts of contamination are unknown, we use the following

method for the case of testing whether extreme observations are outliers

generated by different probability distributions:
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(i) Consider the least extreme observation that could possibly be an out-

lier and delete all of the more extreme observations from the sample. Then

for this new sample test whether it is an outlier. If we conclude that it is,

then all of the other extreme observations are outliers. Otherwise we conclude

that this observation is not an outlier and repeat the procedure until either

we conclude that an observation is an outlier or that none of the observations

are outliers.

If we are only interested in declaring whether or not extreme observations

are outliers, then this is sufficient, otherwise we continue by using the fol-

lowing method to see which outliers are generated by the same probability

distribution.

(ii) Consider the two least extreme outliers and delete the rest of them.

If we find out that these two outliers are generated by the same probability

distribution (noting that this will not be the case if one is an upper outlier

and the other is a lower outlier), then we consider adding in a third outlier.

Otherwise we conclude that the first and second least extreme outliers are

generated by different probability distributions, but then consider if the first

and third or second and third least extreme outliers are generated by the

same probability distribution using the same approach. This is done until

we have found out which probability distribution the most extreme outlier

has been generated by relative to the other outliers.

Example 2.6 As an example to illustrate the methods in this subsection,

we return to our uniform(−1, 1) data which was used in Example 2.5.

(i) We have added three to observations one and five so that they are now

2.775 and 3.561 respectively. When λ = 1
3

it can be shown that B0,1 = 0.265
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and therefore by comparing this to our answer from part (ii) of Example 2.5,

we can see that masking has definitely occurred. We know that zi = 3.561,

zi′ = 2.775, max
{
z[h]

}
= 0.972 and min

{
z[h]

}
= −0.981, hence 2.775 +

0.981 > 3.561 − 0.972 and so we calculate B1,2 based on τ1. Therefore it

can be shown that B1,2 = 9.71 × 10−3 and we should certainly select M2

over M1. We do not have to calculate any more Bayes factors because we

can clearly see that 0.972 is not extreme, therefore we select M2 as our final

model and conclude that 3.561 and 2.775 are upper outliers generated by the

same probability distribution. Note that the Bγ,γ+1 are hardly at all sensitive

to any reasonable choice of λ, but very sensitive to the sample size. This is

because of the same reasons that were given for the additive multiple outlier

model when ε is unknown in the one parameter case.

(ii) We have added three to observation five and subtracted three from

observation two so that they are now 3.561 and −3.745 respectively. We can

clearly see that −0.981 is not extreme and therefore start by deleting obser-

vation two from the sample and testing whether 3.561 is an upper outlier.

When λ = 1
3

it can be shown that B0,1 = 4.42×10−3, hence 3.561 is an upper

outlier and therefore we definitely conclude that 3.561 is an upper outlier and

−3.745 is a lower outlier.

Having built on the Bayesian methods discussed in Section 1.3, we come

to the following conclusions:

For a sample from a one parameter uniform distribution we have shown

that the largest observation in the sample has the smallest conditional pre-

dictive ordinate. Hence we have derived the Bayes factor for testing whether

it is an outlier when the amount of contamination is known and unknown us-
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ing two different outlier models. We then investigated this problem when we

had multiple outliers, assuming that our outliers are generated by the same

probability distribution or by different probability distributions. Similarly

for two parameter uniform samples we have shown that the most extreme

observation in the sample has the smallest conditional predictive ordinate.

Hence we derived the Bayes factors for testing whether extreme observations

are outliers using an additive outlier model. In practice, outlier detection

and declaration is only a secondary task of the analysis of a data set. There-

fore our methods for uniform samples could be built into statistical software

packages in a similar way to existing outlier tests and goodness of fit tests,

so that they can be used without much additional effort.
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3.1 Modelling a single outlier in a Pareto sample

Suppose that {X1, ..., Xn} are independent Pareto(θ, k) random variables,

then the joint probability density function of {X1, ..., Xn} not including Xi

is

p
(
x(i)|θ, k

)
= θn−1e−θ

∑
j 6=i log(

xj
k )
∏
j 6=i

1

xj
,

for θ > 0, 0 < k < s and s = min {xj : j 6= i} . The conjugate prior for θ is

a gamma prior and for this problem θ shall be given a gamma(α, β) prior,

so that p (θ) = βαθα−1e−βθ

Γ(α)
, for θ > 0 and where both α and β are assumed

to be known. When k is assumed to be known, we use the transformation

Yj = log
(
Xj
k

)
to transform our data to an exponential(θ) sample so that the

methods in Pettit (1988) can be used to model outliers. We shall assume

that k is unknown and is given an improper prior such that p (k) = a
k
, where

a is an unknown constant whose exact value does not matter in what follows.

We can find the joint posterior density function of θ and k given {x1, ..., xn}

not including xi, which is written as p
(
θ, k|x(i)

)
and is such that

p
(
θ, k|x(i)

)
∝ p

(
x(i)|θ, k

)
p (θ) p (k)

∝ θα+n−2e−θ(β+
∑
j 6=i log(

xj
k )) 1

k
.
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The constant C is such that

C

∫ s

0

∫ ∞
0

θα+n−2e−θ(β+
∑
j 6=i log(

xj
k )) 1

k
dθdk

= C

∫ s

0

Γ (α + n− 1)(
β +

∑
j 6=i log

(xj
k

))α+n−1

k
dk

=
CΓ (α + n− 1)

(n− 1) (α + n− 2)
(
β +

∑
j 6=i log

(xj
s

))α+n−2

= 1,

thus

C =
(n− 1) (α + n− 2)

(
β +

∑
j 6=i log

(xj
s

))α+n−2

Γ (α + n− 1)

and so

p
(
θ, k|x(i)

)
=

(n− 1) (α + n− 2)
(
β +

∑
j 6=i log

(xj
s

))α+n−2

θα+n−2e−θ(β+
∑
j 6=i log(

xj
k ))

Γ (α + n− 1) k
.

The conditional predictive ordinate is then given by

p
(
xi|x(i)

)
=

∫ s′

0

∫ ∞
0

p (xi|θ, k) p
(
θ, k|x(i)

)
dθdk

=

∫ s′

0

∫ ∞
0

Cθα+n−2e−θ(β+
∑
j 6=i log(

xj
k )) 1

k

θ

xi
e−θ log(xik )dθdk

=
CΓ (α + n)

n (α + n− 1)xi

(
β +

∑n
j=1 log

(xj
s′

))α+n−1 ,

where s′ = min {xj} . We can clearly see that the largest observation in the

sample has the smallest conditional predictive ordinate and therefore will not

consider small observations to be possible lower outliers. From hereafter an

upper outlier is referred to as an outlier.

Suppose that xi is the largest observation in the sample and it is suspected

of being an outlier. We can derive the Bayes factor to test whether the model
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M0 that all of the Xj have a Pareto(θ, k) distribution or the model M1 that

all of the Xj except for Xi have a Pareto(θ, k) distribution and Xi has a

Pareto(θ, δk) distribution, is more appropriate, where δ > 1 and is known.

The Bayes factor is B0,1 = p(x|M0)
p(x|M1)

, where

p (x|M0) =

∫ s

0

∫ ∞
0

θne−θ
∑n
j=1 log(

xj
k )βαθα−1e−βθa(∏n

j=1 xj

)
Γ (α) k

dθdk

=
aβαΓ (α + n)

n (α + n− 1) Γ (α)
(∏n

j=1 xj

)(
β +

∑n
j=1 log

(xj
s

))α+n−1 ,

p (x|M1) =

∫ s∗

0

∫ ∞
0

θn−1e−θ
∑
j 6=i log(

xj
k )θe−θ log( xiδk)βαθα−1e−βθa(∏n
j=1 xj

)
Γ (α) k

dθdk

=
aβαΓ (α + n)

n (α + n− 1) Γ (α)
(∏n

j=1 xj

)(
β +

∑n
j=1 log

(xj
s∗

)
− log (δ)

)α+n−1

and

s∗ = min
{xi
δ
, xj : j 6= i

}
.

Therefore

B0,1 =

(
β +

∑n
j=1 log

(xj
s∗

)
− log (δ)

β +
∑n

j=1 log
(xj
s

) )α+n−1

,

which is minimized when xi is very large compared to the other observations

for any reasonable choice of δ and any sensible sample size such as n ≥ 5.

Now consider the previous testing problem when δ is unknown. We shall

give δ an improper prior such that p (δ) = b1
δ
, for δ > 1 and where b1 is an

unknown constant to be determined. In order for it to make sense to test

for outliers we assume that n ≥ 5. The Bayes factor is B0,1 = p(x|M0)
p(x|M1)

, where

p (x|M0) is given by the same expression as we had for this problem when δ
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was known and

p (x|M1) =

∫ ∞
1

∫ s∗

0

∫ ∞
0

θn−1e−θ
∑
j 6=i log(

xj
k )θe−θ log( xiδk)βαθα−1e−βθab1(∏n
j=1 xj

)
Γ(α)kδ

dθdkdδ

=

∫ ∞
1

ab1β
αΓ (α + n)

n (α + n− 1) Γ (α)
(∏n

j=1 xj

)(
β +

∑n
j=1 log

(xj
s∗

)
− log (δ)

)α+n−1

δ
dδ.

By splitting the previous integral up:

If s∗ = s, we have∫ xi
s

1

ab1β
αΓ (α + n)

n (α + n− 1) Γ (α)
(∏n

j=1 xj

)(
β +

∑n
j=1 log

(xj
s

)
− log (δ)

)α+n−1

δ
dδ

=
ab1β

αΓ (α + n)

n (α + n− 1) (α + n− 2) Γ (α)
(∏n

j=1 xj

)(
β +

∑
j 6=i log

(xj
s

))α+n−2

− ab1β
αΓ (α + n)

n (α + n− 1) (α + n− 2) Γ (α)
(∏n

j=1 xj

)(
β +

∑n
j=1 log

(xj
s

))α+n−2

=
aβαΓ (α + n)

n (α + n− 1) Γ (α)
∏n

j=1 xj
φa;

If s∗ = xi
δ
, we have∫ ∞

xi
s

ab1β
αΓ (α + n)

n (α + n− 1) Γ (α)
(∏n

j=1 xj

)(
β +

∑n
j=1 log

(
xj
xi

)
+ (n− 1) log (δ)

)α+n−1

δ
dδ

=
ab1β

αΓ (α + n)

n (n− 1) (α + n− 1) (α + n− 2) Γ (α)
(∏n

j=1 xj

)(
β +

∑
j 6=i log

(xj
s

))α+n−2

=
aβαΓ (α + n)

n (α + n− 1) Γ (α)
∏n

j=1 xj
φb.

Therefore

p (x|M1) =
aβαΓ (α + n)

n (α + n− 1) Γ (α)
∏n

j=1 xj
(φa + φb)

and hence

B0,1 =
1(

β +
∑n

j=1 log
(xj
s

))α+n−1

(φa + φb)
.
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When xi is very large compared to the other observations, the Bayes factor

will be close to zero because limxi→∞ (B0,1) = 0 and in such cases we should

conclude that xi is an outlier. To find the constant b1, we use the method

of imaginary observations described in Spiegelhalter and Smith (1982). The

smallest possible experiment to distinguish between the models M0 and M1

would have two observations and gives maximal support to M0 if they are

equal. We shall denote this observation by x and so b1 can be found by

solving the equation B0,1 = 1 for b1. When we have a sample of two equal

observations log
(xj
s

)
= 0, so that φa = 0 and φb = b1

αβα
, hence B0,1 = α

βb1
and

therefore b1 = α
β
.

Example 3.1 As an example to illustrate the previous methods, we shall

consider the data displayed in Table 3.1 (Ryland, 1841) which was taken

from Barnett and Lewis (1995). This shows the annual incomes (in order of

magnitude to the nearest pound) of the top 69 of 91 scientific and literary

societies in England in 1840. Barnett and Lewis (1995) argue that a Pareto

model is appropriate for the original data set of 91 observations and show

that this argument is unaffected by the fact that they have truncated the

lower values (less than 75 pounds) in the original data set. They suspect

that the observation 7000 is an outlier.

Figure 3.1 shows the quantile plot for this data set, which suggests that

there is little evidence to suspect that the observation 7000 is an outlier

because the corresponding point lies roughly on the straight line connecting

all of the other points. Figure 3.2 again shows the quantile plot for this

data set with the observation 7000 replaced by 12000, which suggests that

12000 may possibly be an outlier. We shall use the previous methods to
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Tab. 3.1: (Ryland, 1841) showing the annual incomes (in order of magnitude to

the nearest pound) of the top 69 of 91 scientific and literary societies in

England in 1840 and taken from Barnett and Lewis (1995)

77 77 79 80 80 84 87 90 90 90

92 100 102 110 112 115 120 120 120 125

130 135 136 138 140 147 150 150 169 170

170 190 200 200 200 200 201 206 208 230

230 237 249 290 300 309 335 350 400 404

431 445 456 500 650 650 700 800 844 900

900 1050 1300 1400 1878 2000 2363 3000 7000

formally test whether 7000 is an outlier for the cases when both δ is known

and unknown. This shall be done using a variety of different combinations

of α and β, noting that the maximum likelihood estimate of k is equal to 77

and the maximum likelihood estimate of θ is close to 0.8.

(i) When δ is known and Y ∼ Pareto(0.8, 77δ), we can find the value of δ

such that p (Y > 7000) = π, where π is some fixed probability. For π = 0.90,

0.95 or 0.99 it follows that δ = 80, 85 or 90 respectively. In all of these

cases s∗ = s = 77, hence
∑69

j=1 log
(xj
s

)
= 83.7829 and so the Bayes factors

using our various different combinations of the known parameters are given

in Table 3.2, Table 3.3 and Table 3.4. We can see from these three tables

that the Bayes factor is hardly at all sensitive to any reasonable choice of

δ. Also we see that the Bayes factor is not sensitive to our choices of α and

β when the prior mean of θ is equal to 0.8, otherwise the size of the Bayes

factor gets smaller as the prior mean of θ gets larger. The reason for this is
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Fig. 3.1: Quantile plot for the original income data set, where {y1, ..., y69} denotes

the ascending ordered sample.

Fig. 3.2: Quantile plot for the modified income data set, where {y1, ..., y69} denotes

the ascending ordered sample.
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because for M0 we know p (Xi > xi) =
(
k
xi

)θ
and so large observations are

less likely as θ gets larger. Therefore as B0,1 is greater than 0.015 for most of

these combinations of the known parameters there is not enough evidence to

conclude that 7000 is an outlier. Note that in general, increasing the sample

size has a similar effect to increasing α, which is shown by our formula for

B0,1.

(ii) When δ is unknown,
∑69

j=1 log
(xj
s

)
= 83.7829 and

∑
j 6=i log

(xj
s

)
=

79.2730, hence the Bayes factors using exactly the same combinations of α

and β as before are given in Table 3.5. We can see from Table 3.5 that

the Bayes factor is not sensitive to our choices of α and β when the prior

mean of θ is equal to 0.8 and has similar values to the case when δ is known.

Otherwise the larger we initially believe the mean of θ is, the more likely we

are to conclude that 7000 is an outlier for the same reason as before. Again

in general, increasing the sample size has a similar effect to increasing α.

Note that for α = 4 and β = 5 it can be shown that the critical value for

this sample is equal to 12970 and agrees with our quantile plots.
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Tab. 3.2: Bayes factors when δ = 80

α

β 1 2 4 8 16

1.25 0.0260 0.0246 0.0222 0.0179 0.0117

2.5 0.0274 0.0260 0.0235 0.0190 0.0125

5 0.0304 0.0289 0.0261 0.0213 0.0142

10 0.0368 0.0351 0.0319 0.0263 0.0180

20 0.0510 0.0488 0.0448 0.0377 0.0267

Tab. 3.3: Bayes factors when δ = 85

α

β 1 2 4 8 16

1.25 0.0247 0.0234 0.0210 0.0169 0.0110

2.5 0.0261 0.0247 0.0222 0.0180 0.0118

5 0.0290 0.0275 0.0248 0.0202 0.0134

10 0.0351 0.0335 0.0304 0.0250 0.0170

20 0.0489 0.0468 0.0429 0.0360 0.0253
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Tab. 3.4: Bayes factors when δ = 90

α

β 1 2 4 8 16

1.25 0.0235 0.0222 0.0199 0.0160 0.0104

2.5 0.0248 0.0235 0.0211 0.0171 0.0111

5 0.0276 0.0262 0.0236 0.0192 0.0127

10 0.0336 0.0320 0.0290 0.0238 0.0161

20 0.0470 0.0449 0.0411 0.0344 0.0242

Tab. 3.5: Bayes factors when δ is unknown

α

β 1 2 4 8 16

1.25 0.0248 0.0119 0.0055 0.0023 0.0008

2.5 0.0518 0.0249 0.0115 0.0049 0.0017

5 0.1121 0.0539 0.0249 0.0106 0.0039

10 0.2593 0.1250 0.0581 0.0251 0.0093

20 0.6613 0.3202 0.1501 0.0659 0.0253

3.2 Modelling multiple outliers in a Pareto sample

We now consider the problem when it is believed that more than one obser-

vation in the sample is an outlier. Suppose that {z1, ..., zq} are the q largest

observations in the sample and are suspected of being outliers generated

by the same probability distribution, where q is the number of observations
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that we suspect of being outliers, q < n, {Z1, ..., Zq} ⊂ {X1, ..., Xn} and{
Z[1], ..., Z[n−q]

}
denote the random variables corresponding to the observa-

tions not suspected of being outliers. We can derive the Bayes factor to test

whether the model M0 that all of the Xj have a Pareto(θ, k) distribution or

the model Mq that all of the Z[h] have a Pareto(θ, k) distribution and all of

the Zg have a Pareto(θ, δk) distribution, is more appropriate. It is assumed

that δ is unknown, so that p (δ) = bq
δ
, for δ > 1 and where bq is an unknown

constant to be determined. In what follows we again have n ≥ 5. It is as-

sumed that zi is the smallest of the zg and that q < n
2
, as if q ≥ n

2
it might

imply that the Z[h] should be suspected of being contaminants rather than

the Zg. We write the Bayes factor as B0,q = p(x|M0)
p(x|Mq)

to compare these models.

Therefore

p (x|Mq) =

∫ ∞
1

∫ t

0

∫ ∞
0

θn−qe
−θ
∑n−q
h=1 log

( z[h]
k

)
θqe−θ

∑q
g=1 log( zgδk )βαθα−1e−βθabq(∏n

j=1 xj

)
Γ (α) kδ

dθdkdδ

=

∫ ∞
1

abqβ
αΓ (α + n)

n (α + n− 1) Γ (α)
(∏n

j=1 xj

)(
β +

∑n
j=1 log

(xj
t

)
− q log(δ)

)α+n−1

δ
dδ

=
aβαΓ (α + n)

n (α + n− 1) Γ (α)
∏n

j=1 xj
(φc + φd) ,

where

φc =
bq

q (α + n− 2)
(
β +

∑n
j=1 log

(xj
s

)
− q log

(
zi
s

))α+n−2

− bq

q (α + n− 2)
(
β +

∑n
j=1 log

(xj
s

))α+n−2 ,

φd =
bq

(n− q) (α + n− 2)
(
β +

∑n
j=1 log

(xj
s

)
− q log

(
zi
s

))α+n−2

and

t = min
{zi
δ
, z[h]

}
.



3. MODELLING OUTLIERS IN PARETO SAMPLES 65

Hence

B0,q =
1(

β +
∑n

j=1 log
(xj
s

))α+n−1

(φc + φd)
.

When the zg do not hugely differ and are very large compared to the z[h],

the Bayes factor will be close to zero because limzi→∞ (B0,q) = 0 and in such

cases we should conclude that {z1, ..., zq} are outliers generated by the same

probability distribution. We again use the method of imaginary observa-

tions to find the constant bq. The smallest possible experiment to distinguish

between the models M0 and Mq would have q + 1 observations and gives

maximal support to M0 if they are equal. We shall denote this observation

by x and so it can be shown that bq = α+q−1
β

. Note that if we were to assume

that δ is known, then the corresponding Bayes factor is equal to

B0,q =

(
β +

∑n
j=1 log

(xj
t

)
− q log (δ)

β +
∑n

j=1 log
(xj
s

) )α+n−1

.

We can see that the previous methods are sensitive to both masking

and swamping and so it creates problems. To overcome these problems, we

repeatedly calculate Bayes factors of the form Bγ,γ+1 = p(x|Mγ)

p(x|Mγ+1)
, starting

with γ = 0, until we can see that γ is equal to some value such that the

(γ + 1)th largest observation in the sample is not extreme. If on all of the

iterations we select the model Mγ over the model Mγ+1, then we should select

M0 as our final model. Otherwise our final model is Mη+1, which is the last

model that we selected over the model suspected of having one less outlier.

Using a similar derivation as we did for finding B0,q it can be shown that the

Bayes factor for comparing the models Mγ and Mγ+1 is

Bγ,γ+1 =
φc,γ + φd,γ

φc,γ+1 + φd,γ+1

,
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where γ ≥ 1. Also φc,γ, φc,γ+1, φd,γ and φd,γ+1 have the same form as φc

and φd respectively, except that we replace q by γ or γ + 1 and zi by the

γth or (γ + 1)th largest observation in the sample. Note that the constant

bq cancels out in all of the Bayes factors used in this procedure except for

B0,1. If we strongly believe that there are q outliers in the sample, we could

use the previous method by putting γ equal to q − 1 instead of zero on the

first iteration, so that we can save time from not having to perform as many

iterations to arrive at the final model. Also if we were to assume that δ is

known, then

Bγ,γ+1 =

β +
∑n

j=1 log
(

xj
tγ+1

)
− (γ + 1) log (δ)

β +
∑n

j=1 log
(
xj
tγ

)
− γ log (δ)

α+n−1

,

where tγ = min
{
zi
δ
, z[1], ..., z[n−γ]

}
, tγ+1 = min

{
z̃i
δ
, z̃[1], ..., z̃[n−γ−1]

}
, the

sample
{
z̃[1], ..., z̃[n−γ−1]

}
is the same as the sample

{
z[1], ..., z[n−γ]

}
with

max
{
z[h]

}
removed from it and z̃i = max

{
z[h]

}
.

If δ1 and δ2 are both assumed to be known and δ1 > δ2, then it can

be shown that the Bayes factor for testing whether the model M0 that all

of the Xj have a Pareto(θ, k) distribution or the model Mq+q∗ that all of

the Z[h] have a Pareto(θ, k) distribution, all of the Zg have a Pareto(θ, δ1k)

distribution and all of the Zg∗ have a Pareto(θ, δ2k) distribution, is more

appropriate is

B0,q+q∗ =

(
β +

∑n
j=1 log

(xj
u

)
− q1 log (δ1)− q2 log (δ2)

β +
∑n

j=1 log
(xj
s

) )α+n−1

,

where zi and zi∗ are the most extreme of the zg and zg∗ respectively and

u = min

{
zi
δ1

,
zi∗

δ2

, z[h]

}
.



3. MODELLING OUTLIERS IN PARETO SAMPLES 67

Similar Bayes factors can be derived for case when we have any number of

sets of outliers, but when this number of sets is large it is questionable as

to what extreme means. To deal with masking and swamping, we use the

same procedure that we did for the case of comparing the models M0 and

Mq, except that on each iteration we compare the current model with all of

the reasonable models containing one more outlier and use the one which

gives the smallest Bayes factor as the current model for the next iteration. If

on all of the iterations we select the current model over the best model with

one more outlier, then we should select M0 as our final model. Otherwise

our final model is the last one that we selected over the model suspected of

having one less outlier.

When δ is unknown and we do not conclude that a set of extreme obser-

vations are outliers generated by the same probability distribution, but still

suspect that they are outliers, we use the following method:

(i) Consider the smallest observation that could possibly be an outlier

and delete all of the more extreme observations from the sample. Then for

this new sample test whether it is an outlier. If we conclude that it is, then

all of the other extreme observations are outliers. Otherwise we conclude

that this observation is not an outlier and repeat the procedure until either

we conclude that an observation is an outlier or that none of the observations

are outliers.

If we are only interested in declaring whether or not extreme observations

are outliers, then this is sufficient, otherwise we continue by using the fol-

lowing method to see which outliers are generated by the same probability

distribution.



3. MODELLING OUTLIERS IN PARETO SAMPLES 68

(ii) Consider the two smallest outliers and delete the rest of them. If we

find out that these two outliers are generated by the same probability distri-

bution, then we consider adding in a third outlier. Otherwise we conclude

that the first and second smallest outliers are generated by different probabil-

ity distributions, but then consider if the second and third smallest outliers

are generated by the same probability distribution while deleting the first

smallest outlier as well as the fourth smallest to the largest outliers. This

is done until we have found out which probability distribution the largest

outlier has been generated by relative to the other outliers.

Example 3.2 As an example to illustrate the methods in this subsection,

we return to our Income data which was used in Example 3.1. We have

replaced the observation 7000 by 15000 and have also added an observation

of 20000 to the sample. For α
β

= 0.8, we know from part (ii) of Example 3.1

that 15000 is an outlier when deleting 20000 from the sample, hence 15000

and 20000 are definitely both outliers in this case. Table 3.6 shows the Bayes

factors for comparing the models M1 and M2 using the same combinations

of α and β as before. We see that B1,2 is not sensitive to our choices of α

and β when the prior mean of θ is equal to 0.8, but otherwise the larger we

initially believe the mean of θ is, the more likely we are to conclude that

15000 and 20000 are outliers generated by the same probability distribution.

Therefore we generally conclude that 15000 and 20000 are outliers generated

by different probability distributions.
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Tab. 3.6: Bayes factors for comparing M1 and M2

α

β 1 2 4 8 16

1.25 0.0313 0.0295 0.0262 0.0207 0.0129

2.5 0.0332 0.0314 0.0279 0.0221 0.0138

5 0.0373 0.0353 0.0315 0.0251 0.0159

10 0.0461 0.0437 0.0393 0.0317 0.0207

20 0.0659 0.0629 0.0572 0.0472 0.0321

3.3 Modelling outliers in a multivariate Pareto sample

When we have N independent samples of independent Pareto random vari-

ables, all of our results for the univariate Pareto distribution can be extended

to the multivariate case by performing our tests on each of the marginal

Pareto samples individually. When these N samples are not independent

ways of defining the multivariate Pareto distribution are discussed in Mardia

(1962). For modelling outliers we use ”Multivariate Pareto Type 1”. This

has probability density function

p (x1, ..., xN |θ, k1, ..., kN) =
θ (θ + 1) ... (θ +N − 1)(∏N

l=1 kl

){(∑N
l=1 kl

−1xl

)
−N + 1

}θ+N ,
for xl > kl > 0, θ > 0, where the marginal distribution of Xl is Pareto(θ, kl) .

When θ > 2, all the correlations of zero order are equal to 1
θ
, every partial

correlation coefficient of the mth order is 1
θ+m

and the multiple correlation

of a variate with the other N − 1 variates is
[

N−1
θ(θ+N−2)

] 1
2
. For the bivariate
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case it follows that

p (x1, x2|θ, k1, k2) =
θ (θ + 1)

k1k2

(
x1
k1

+ x2
k2
− 1
)θ+2

and therefore the joint probability density function of {(X11, X21) , ..., (X1n, X2n)}

not including (X1i, X2i) is given by

p
(
x1(i),x2(i)|θ, k1, k2

)
=

(θ2n−2 + θn−1) e
−(θ+2)

∑
j 6=i log

(
x1j
k1

+
x2j
k2
−1
)

(k1k2)n−1 ,

for θ > 0, 0 < k1 < s1 and 0 < k2 < s2, where s1 = min {x1j : j 6= i} and

s2 = min {x2j : j 6= i} . By letting p (k1) = a1
k1
, p (k2) = a2

k2
and giving θ a

gamma(α, β) prior it follows that

p
(
θ, k1, k2|x1(i),x2(i)

)
∝ (θα+2n−3 + θα+n−2) e

−θ
(
β+
∑
j 6=i log

(
x1j
k1

+
x2j
k2
−1
))

(k1k2)ne
2
∑
j 6=i log

(
x1j
k1

+
x2j
k2
−1
) .

The constant C is such that

C

∫ s2

0

∫ s1

0

∫ ∞
0

(θα+2n−3 + θα+n−2) e
−θ
(
β+
∑
j 6=i log

(
x1j
k1

+
x2j
k2
−1
))

(k1k2)ne
2
∑
j 6=i log

(
x1j
k1

+
x2j
k2
−1
) dθdk1dk2

= C

∫ s2

0

∫ s1

0

Γ (α + 2n− 2)

(k1k2)ne
2
∑
j 6=i log

(
x1j
k1

+
x2j
k2
−1
)(
β +

∑
j 6=i log

(
x1j
k1

+
x2j
k2
− 1
))α+2n−2dk1dk2

+ C

∫ s2

0

∫ s1

0

Γ (α + n− 1)

(k1k2)ne
2
∑
j 6=i log

(
x1j
k1

+
x2j
k2
−1
)(
β +

∑
j 6=i log

(
x1j
k1

+
x2j
k2
− 1
))α+n−1dk1dk2

= 1.

At this early stage the integral cannot be evaluated exactly and therefore we

assume that both k1 and k2 are known.

When k1 and k2 are both assumed to be known and θ is unknown it

follows that C = ξ−1, where

ξ =
Γ (α + 2n− 2)

(k1k2)n−1e
2
∑
j 6=i log

(
x1j
k1

+
x2j
k2
−1
)(
β +

∑
j 6=i log

(
x1j
k1

+
x2j
k2
− 1
))α+2n−2
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+
Γ (α + n− 1)

(k1k2)n−1e
2
∑
j 6=i log

(
x1j
k1

+
x2j
k2
−1
)(
β +

∑
j 6=i log

(
x1j
k1

+
x2j
k2
− 1
))α+n−1 .

It can be shown that the conditional predictive ordinate is then given by

p
(
x1i, x2i|x1(i),x2(i)

)
= ξ′, where

ξ′ =
Γ (α + 2n)

ξ(k1k2)ne
2
∑n
j=1 log

(
x1j
k1

+
x2j
k2
−1
)(
β +

∑n
j=1 log

(
x1j
k1

+
x2j
k2
− 1
))α+2n

+
Γ (α + 2n− 1)

ξ(k1k2)ne
2
∑n
j=1 log

(
x1j
k1

+
x2j
k2
−1
)(
β +

∑n
j=1 log

(
x1j
k1

+
x2j
k2
− 1
))α+2n−1

+
Γ (α + n+ 1)

ξ(k1k2)ne
2
∑n
j=1 log

(
x1j
k1

+
x2j
k2
−1
)(
β +

∑n
j=1 log

(
x1j
k1

+
x2j
k2
− 1
))α+n+1

+
Γ (α + n)

ξ(k1k2)ne
2
∑n
j=1 log

(
x1j
k1

+
x2j
k2
−1
)(
β +

∑n
j=1 log

(
x1j
k1

+
x2j
k2
− 1
))α+n .

We clearly see that the point in the sample with the smallest conditional

predictive ordinate has the largest value of x1i
k1

+ x2i
k2
−1. This is in agreement

with Barnett (1979) and so we could use his approach for testing whether

extreme points in the sample are outliers, as it is not even possible to derive

Bayes factors for the case when both k1 and k2 are assumed to be known.

Having built on the Bayesian methods discussed in Section 1.3, we come

to the following conclusions:

For a sample from a univariate Pareto distribution we have shown that

the largest observation in the sample has the smallest conditional predictive

ordinate and derived the Bayes factor for testing whether it is an outlier when

the amount of contamination is known and unknown. We then investigated

this problem when we had multiple outliers, assuming that our outliers are

generated by the same probability distribution or by different probability

distributions. Finally we extended these ideas to the multivariate case both
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when the marginal samples are independent of one another and when there

are correlations/partial correlations. In practice, outlier detection and dec-

laration is only a secondary task of the analysis of a data set. Therefore our

methods for Pareto samples could be built into statistical software packages

in a similar way to existing outlier tests and goodness of fit tests, so that

they can be used without much additional effort. A further research problem

may be to use a copula based approach for modelling outliers in multivariate

Pareto samples, as it could be used to overcome the difficulties that we had

in Section 3.3.
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